1
|
Wang R, Lan C, Benlagha K, Camara NOS, Miller H, Kubo M, Heegaard S, Lee P, Yang L, Forsman H, Li X, Zhai Z, Liu C. The interaction of innate immune and adaptive immune system. MedComm (Beijing) 2024; 5:e714. [PMID: 39286776 PMCID: PMC11401974 DOI: 10.1002/mco2.714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 09/19/2024] Open
Abstract
The innate immune system serves as the body's first line of defense, utilizing pattern recognition receptors like Toll-like receptors to detect pathogens and initiate rapid response mechanisms. Following this initial response, adaptive immunity provides highly specific and sustained killing of pathogens via B cells, T cells, and antibodies. Traditionally, it has been assumed that innate immunity activates adaptive immunity; however, recent studies have revealed more complex interactions. This review provides a detailed dissection of the composition and function of the innate and adaptive immune systems, emphasizing their synergistic roles in physiological and pathological contexts, providing new insights into the link between these two forms of immunity. Precise regulation of both immune systems at the same time is more beneficial in the fight against immune-related diseases, for example, the cGAS-STING pathway has been found to play an important role in infections and cancers. In addition, this paper summarizes the challenges and future directions in the field of immunity, including the latest single-cell sequencing technologies, CAR-T cell therapy, and immune checkpoint inhibitors. By summarizing these developments, this review aims to enhance our understanding of the complexity interactions between innate and adaptive immunity and provides new perspectives in understanding the immune system.
Collapse
Affiliation(s)
- Ruyuan Wang
- Department of Thyroid and Breast Surgery Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Caini Lan
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Kamel Benlagha
- Alloimmunity, Autoimmunity and Transplantation Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160 Paris France
| | - Niels Olsen Saraiva Camara
- Department of Immunology Institute of Biomedical Sciences University of São Paulo (USP) São Paulo São Paulo Brazil
| | - Heather Miller
- Coxiella Pathogenesis Section, Laboratory of Bacteriology Rocky Mountain Laboratories National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton Montana USA
| | - Masato Kubo
- Division of Molecular Pathology Research Institute for Biomedical Sciences (RIBS) Tokyo University of Science Noda Chiba Japan
| | - Steffen Heegaard
- Department of Ophthalmology Rigshospitalet Hospital Copenhagen University Copenhagen Denmark
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong China
| | - Lu Yang
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology Wuhan Hubei China
| | - Huamei Forsman
- Department of Laboratory Medicine Institute of Biomedicine, University of Gothenburg Gothenburg Sweden
| | - Xingrui Li
- Department of Thyroid and Breast Surgery Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Zhimin Zhai
- Department of Hematology The Second Hospital of Anhui Medical University Hefei China
| | - Chaohong Liu
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology Wuhan Hubei China
| |
Collapse
|
2
|
Kowalska D, Bieńkowski M, Jurkowska P, Kawecka A, Kuryło J, Kuźniewska A, Okrój M. Accurate Visualization of C4d Complement Fragment in Immunohistochemistry by C-Terminal Linear Neoepitope-Specific Antibodies. Int J Mol Sci 2024; 25:10526. [PMID: 39408855 PMCID: PMC11476897 DOI: 10.3390/ijms251910526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
C4d is the end degradation product of activated complement component C4b that appears during the early steps of the classical and lectin complement pathways. Within the primary sequence of C4d, there is a reactive thioester group that binds covalently to nearby surfaces, thus labeling the locations of complement activation. This feature makes C4d a target for immunohistochemical staining aimed to aid the diagnosis of, among others, the antibody-mediated rejection of transplanted organs, membranous glomerulonephritis, bullous pemphigoid, or inflammatory myopathies. However, the credibility of C4d immunostaining is debatable, as a high background in surrounding tissues and body fluids and diffused patterns of deposits in target structures are experienced with some of the available anti-C4d antibodies. Herein, we present an improved version of a rabbit anti-C4d antibody, originally raised against the C-terminal linear neoepitope of this complement fragment. Minor cross-reactivity with C4b and native C4 proteins, measured by ELISAs, as well as relatively low concentrations necessary for obtaining a specific signal in immunohistochemical analyses of formalin-fixed paraffin-embedded material, makes the improved antibody superior to commercially available rabbit monoclonal anti-C4d antibody SP91 dedicated to ex vivo diagnostics, as demonstrated by the staining of a panel of kidney transplant biopsies.
Collapse
Affiliation(s)
- Daria Kowalska
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 Street, 80-211 Gdańsk, Poland; (D.K.); (P.J.); (A.K.); (J.K.); (A.K.)
| | - Michał Bieńkowski
- Department of Pathomorphology, Medical University of Gdańsk, Smoluchowskiego 17 Street, 80-214 Gdańsk, Poland;
| | - Paulina Jurkowska
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 Street, 80-211 Gdańsk, Poland; (D.K.); (P.J.); (A.K.); (J.K.); (A.K.)
| | - Ada Kawecka
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 Street, 80-211 Gdańsk, Poland; (D.K.); (P.J.); (A.K.); (J.K.); (A.K.)
| | - Jacek Kuryło
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 Street, 80-211 Gdańsk, Poland; (D.K.); (P.J.); (A.K.); (J.K.); (A.K.)
| | - Alicja Kuźniewska
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 Street, 80-211 Gdańsk, Poland; (D.K.); (P.J.); (A.K.); (J.K.); (A.K.)
| | - Marcin Okrój
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 Street, 80-211 Gdańsk, Poland; (D.K.); (P.J.); (A.K.); (J.K.); (A.K.)
| |
Collapse
|
3
|
Guérin M, Vandevenne M, Brans A, Matagne A, Marquant R, Prost E, Octave S, Avalle B, Maffucci I, Padiolleau-Lefèvre S. Production, purification, and quality assessment of borrelial proteins CspZ from Borrelia burgdorferi and FhbA from Borrelia hermsii. Appl Microbiol Biotechnol 2024; 108:425. [PMID: 39042328 PMCID: PMC11266248 DOI: 10.1007/s00253-024-13195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 07/24/2024]
Abstract
Borrelia, spirochetes transmitted by ticks, are the etiological agents of numerous multisystemic diseases, such as Lyme borreliosis (LB) and tick-borne relapsing fever (TBRF). This study focuses on two surface proteins from two Borrelia subspecies involved in these diseases: CspZ, expressed by Borrelia burgdorferi sensu stricto (also named BbCRASP-2 for complement regulator-acquiring surface protein 2), and the factor H binding A (FhbA), expressed by Borrelia hermsii. Numerous subspecies of Borrelia, including these latter, are able to evade the immune defenses of a variety of potential vertebrate hosts in a number of ways. In this context, previous data suggested that both surface proteins play a role in the immune evasion of both Borrelia subspecies by interacting with key regulators of the alternative pathway of the human complement system, factor H (FH) and FH-like protein 1 (FHL-1). The recombinant proteins, CspZ and FhbA, were expressed in Escherichia coli and purified by one-step metal-affinity chromatography, with yields of 15 and 20 mg or pure protein for 1 L of cultured bacteria, respectively. The purity was evaluated by SDS-PAGE and HPLC and is close to about 95%. The mass of CspZ and FhbA was checked by mass spectrometry (MS). Proper folding of CspZ and FhbA was confirmed by circular dichroism (CD), and their biological activity, namely their interaction with purified FH from human serum (recombinant FH15-20 and recombinant FHL-1), was characterized by SPR. Such a study provides the basis for the biochemical characterization of the studied proteins and their biomolecular interactions which is a necessary prerequisite for the development of new approaches to improve the current diagnosis of LB and TBRF. KEY POINTS: • DLS, CD, SEC-MALS, NMR, HPLC, and MS are tools for protein quality assessment • Borrelia spp. possesses immune evasion mechanisms, including human host complement • CspZ and FhbA interact with high affinity (pM to nM) to human FH and rFHL-1.
Collapse
Affiliation(s)
- Mickaël Guérin
- Unité de Génie Enzymatique et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, Compiègne, 60203, France
| | - Marylène Vandevenne
- Robotein®, InBioS Research Unit, University of Liège, Building B6, Quartier Agora, Allée du 6 Août, 13, Sart-Tilman, Liège, 4000, Belgium
- Centre for Protein Engineering, InBioS Research Unit, University of Liège, Building B6, Quartier Agora, Allée du 6 Août, 13, Liège, Sart- Tilman), 4000, Belgium
| | - Alain Brans
- Protein Factory, InBioS Research Unit, University of Liège, Building B6, Quartier Agora, Allée du 6 Août, 13, Sart-Tilman, Liège, 4000, Belgium
- Centre for Protein Engineering, InBioS Research Unit, University of Liège, Building B6, Quartier Agora, Allée du 6 Août, 13, Liège, Sart- Tilman), 4000, Belgium
| | - André Matagne
- Laboratory of Enzymology and Protein Folding, InBioS Research Unit, University of Liège, Building B6, Quartier Agora, Allée du 6 Août, 13, Sart-Tilman, Liège, 4000, Belgium
- Centre for Protein Engineering, InBioS Research Unit, University of Liège, Building B6, Quartier Agora, Allée du 6 Août, 13, Liège, Sart- Tilman), 4000, Belgium
| | - Rodrigue Marquant
- Unité de Génie Enzymatique et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, Compiègne, 60203, France
| | - Elise Prost
- Unité de Génie Enzymatique et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, Compiègne, 60203, France
| | - Stéphane Octave
- Unité de Génie Enzymatique et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, Compiègne, 60203, France
| | - Bérangère Avalle
- Unité de Génie Enzymatique et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, Compiègne, 60203, France
| | - Irene Maffucci
- Unité de Génie Enzymatique et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, Compiègne, 60203, France
| | - Séverine Padiolleau-Lefèvre
- Unité de Génie Enzymatique et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, Compiègne, 60203, France.
| |
Collapse
|
4
|
Carpenter S, O'Neill LAJ. From periphery to center stage: 50 years of advancements in innate immunity. Cell 2024; 187:2030-2051. [PMID: 38670064 PMCID: PMC11060700 DOI: 10.1016/j.cell.2024.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/24/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Over the past 50 years in the field of immunology, something of a Copernican revolution has happened. For a long time, immunologists were mainly concerned with what is termed adaptive immunity, which involves the exquisitely specific activities of lymphocytes. But the other arm of immunity, so-called "innate immunity," had been neglected. To celebrate Cell's 50th anniversary, we have put together a review of the processes and components of innate immunity and trace the seminal contributions leading to the modern state of this field. Innate immunity has joined adaptive immunity in the center of interest for all those who study the body's defenses, as well as homeostasis and pathology. We are now entering the era where therapeutic targeting of innate immune receptors and downstream signals hold substantial promise for infectious and inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Susan Carpenter
- University of California Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA.
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
5
|
Xu R, Zheng J, Liu L, Zhang W. Effects of inflammation on myopia: evidence and potential mechanisms. Front Immunol 2023; 14:1260592. [PMID: 37849748 PMCID: PMC10577208 DOI: 10.3389/fimmu.2023.1260592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
As the most common type of refractive error, myopia has become one of the leading causes of visual impairment. With the increasing prevalence of myopia, there is a growing need to better understand the factors involved in its development. Inflammation, one of the most fundamental pathophysiological processes in humans, is a rapid response triggered by harmful stimuli and conditions. Although controlled inflammatory responses are necessary, over-activated inflammation is the common soil for many diseases. The impact of inflammation on myopia has received rising attention in recent years. Elevated inflammation may contribute to myopia progression either directly or indirectly by inducing scleral remodeling, and myopia development may also increase ocular inflammation. This article provides a comprehensive review of the interplay between inflammation and myopia and the potential biological mechanisms, which may present new targets for understanding the pathology of myopia and developing myopia therapies.
Collapse
Affiliation(s)
- Ran Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zheng
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqiu Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Fang Z, Lee H, Liu J, Wong KA, Brown LM, Li X, Xiaoli AM, Yang F, Zhang M. Complement C3 Reduces Apoptosis via Interaction with the Intrinsic Apoptotic Pathway. Cells 2023; 12:2282. [PMID: 37759504 PMCID: PMC10528058 DOI: 10.3390/cells12182282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Myocardial ischemia/reperfusion (I/R) elicits an acute inflammatory response involving complement factors. Recently, we reported that myocardial necrosis was decreased in complement C3-/- mice after heart I/R. The current study used the same heart model to test the effect of C3 on myocardial apoptosis and investigated if C3 regulation of apoptosis occurred in human cardiomyocytes. Comparative proteomics analyses found that cytochrome c was present in the myocardial C3 complex of WT mice following I/R. Incubation of exogenous human C3 reduced apoptosis in a cell culture system of human cardiomyocytes that did not inherently express C3. In addition, human C3 inhibited the intrinsic apoptosis pathway in a cell-free apoptosis system. Finally, human pro-C3 was found to bind with an apoptotic factor, pro-caspase 3, in a cell-free system. Thus, we present firsthand evidence showing that C3 readily reduces myocardial apoptosis via interaction with the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Zhou Fang
- Departments of Anesthesiology, SUNY Downstate Health Science University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (Z.F.); (H.L.); (J.L.); (K.A.W.); (X.L.)
| | - Haekyung Lee
- Departments of Anesthesiology, SUNY Downstate Health Science University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (Z.F.); (H.L.); (J.L.); (K.A.W.); (X.L.)
| | - Junying Liu
- Departments of Anesthesiology, SUNY Downstate Health Science University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (Z.F.); (H.L.); (J.L.); (K.A.W.); (X.L.)
| | - Karen A. Wong
- Departments of Anesthesiology, SUNY Downstate Health Science University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (Z.F.); (H.L.); (J.L.); (K.A.W.); (X.L.)
| | - Lewis M. Brown
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA;
| | - Xiang Li
- Departments of Anesthesiology, SUNY Downstate Health Science University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (Z.F.); (H.L.); (J.L.); (K.A.W.); (X.L.)
| | - Alus M. Xiaoli
- Department of Medicine/Endocrinology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (A.M.X.); (F.Y.)
| | - Fajun Yang
- Department of Medicine/Endocrinology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (A.M.X.); (F.Y.)
| | - Ming Zhang
- Departments of Anesthesiology, SUNY Downstate Health Science University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (Z.F.); (H.L.); (J.L.); (K.A.W.); (X.L.)
- Departments of Cell Biology, SUNY Downstate Health Science University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| |
Collapse
|
7
|
Fang Z, Li X, Liu J, Lee H, Salciccioli L, Lazar J, Zhang M. The role of complement C3 in the outcome of regional myocardial infarction. Biochem Biophys Rep 2023; 33:101434. [PMID: 36748063 PMCID: PMC9898614 DOI: 10.1016/j.bbrep.2023.101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Coronary heart disease leading to myocardial ischemia is a major cause of heart failure. A hallmark of heart failure is myocardial fibrosis. Using a murine model of myocardial ischemia/reperfusion injury (IRI), we showed that, following IRI, in mice genetically deficient in the central factor of complement system, C3, myocardial necrosis was reduced compared with WT mice. Four weeks after the ischemic period, the C3-/- mice had significantly less cardiac fibrosis and better cardiac function than the WT controls. Overall, our results suggest that innate immune response through complement C3 plays an important role in necrotic cell death, which contributes to the cardiac fibrosis that underlies post-infarction heart failure.
Collapse
Affiliation(s)
| | - Xiang Li
- Department of Anesthesiology, USA
| | | | | | - Louis Salciccioli
- Department of Medicine, SUNY Downstate Health Science University, 450 Clarkson Avenue, Brooklyn, NY, 11203, USA
| | - Jason Lazar
- Department of Medicine, SUNY Downstate Health Science University, 450 Clarkson Avenue, Brooklyn, NY, 11203, USA
| | - Ming Zhang
- Department of Anesthesiology, USA,Department of Cell Biology, USA,Corresponding author. Department of Anesthesiology, MSC6 SUNY Downstate Health Science University, 450 Clarkson Avenue Brooklyn, NY, 11203, USA.
| |
Collapse
|
8
|
Bedoui Y, De Larichaudy D, Daniel M, Ah-Pine F, Selambarom J, Guiraud P, Gasque P. Deciphering the Role of Schwann Cells in Inflammatory Peripheral Neuropathies Post Alphavirus Infection. Cells 2022; 12:cells12010100. [PMID: 36611893 PMCID: PMC9916230 DOI: 10.3390/cells12010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Old world alphaviruses (e.g., chikungunya) are known to cause severe acute and chronic debilitating arthralgia/arthritis. However, atypical neurological manifestations and, in particular, unexpected cases of acute inflammatory Guillain-Barre syndrome (GBS) have been associated with the arthritogenic alphaviruses. The pathogenesis of alphavirus-associated GBS remains unclear. We herein addressed for the first time the role of Schwann cells (SC) in peripheral neuropathy post-alphaviral infection using the prototypical ONNV alphavirus model. We demonstrated that human SC expressed the recently identified alphavirus receptor MxRA8 and granting viral entry and robust replication. A canonical innate immune response was engaged by ONNV-infected SC with elevated gene expression for RIG-I, MDA5, IFN-β, and ISG15 and inflammatory chemokine CCL5. Transcription levels of prostaglandin E2-metabolizing enzymes including cPLA2α, COX-2, and mPGES-1 were also upregulated in ONNV-infected SC. Counterintuitively, we found that ONNV failed to affect SC regenerative properties as indicated by elevated expression of the pro-myelinating genes MPZ and MBP1 as well as the major pro-myelin transcription factor Egr2. While ONNV infection led to decreased expression of CD55 and CD59, essential to control complement bystander cytotoxicity, it increased TRAIL expression, a major pro-apoptotic T cell signal. Anti-apoptotic Bcl2 transcription levels were also increased in infected SC. Hence, our study provides new insights regarding the remarkable immunomodulatory role of SC of potential importance in the pathogenesis of GBS following alphavirus infection.
Collapse
Affiliation(s)
- Yosra Bedoui
- Unité de Recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (D.D.L.); (M.D.); (F.A.-P.); (J.S.); (P.G.); (P.G.)
- Laboratoire D’immunologie Clinique et Expérimentale de la Zone de L’océan Indien (LICE-OI) CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Correspondence:
| | - Dauriane De Larichaudy
- Unité de Recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (D.D.L.); (M.D.); (F.A.-P.); (J.S.); (P.G.); (P.G.)
| | - Matthieu Daniel
- Unité de Recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (D.D.L.); (M.D.); (F.A.-P.); (J.S.); (P.G.); (P.G.)
- Laboratoire D’immunologie Clinique et Expérimentale de la Zone de L’océan Indien (LICE-OI) CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Franck Ah-Pine
- Unité de Recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (D.D.L.); (M.D.); (F.A.-P.); (J.S.); (P.G.); (P.G.)
- Laboratoire D’immunologie Clinique et Expérimentale de la Zone de L’océan Indien (LICE-OI) CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Service D’anatomopathologie du CHU Sud de La Réunion, 97410 Saint Pierre, France
| | - Jimmy Selambarom
- Unité de Recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (D.D.L.); (M.D.); (F.A.-P.); (J.S.); (P.G.); (P.G.)
| | - Pascale Guiraud
- Unité de Recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (D.D.L.); (M.D.); (F.A.-P.); (J.S.); (P.G.); (P.G.)
| | - Philippe Gasque
- Unité de Recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (D.D.L.); (M.D.); (F.A.-P.); (J.S.); (P.G.); (P.G.)
- Laboratoire D’immunologie Clinique et Expérimentale de la Zone de L’océan Indien (LICE-OI) CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| |
Collapse
|
9
|
Conde L, Maciel G, de Assis GM, Freire-de-Lima L, Nico D, Vale A, Freire-de-Lima CG, Morrot A. Humoral response in Leishmaniasis. Front Cell Infect Microbiol 2022; 12:1063291. [PMID: 36579347 PMCID: PMC9791258 DOI: 10.3389/fcimb.2022.1063291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Leishmaniasis presents different types of clinical manifestations that can be divided into cutaneous leishmaniasis and visceral leishmaniasis. The host's immune system, associated with genetic and nutritional factors, is strongly involved in the evolution of the disease or parasite escape. Humoral immunity is characterized by the production of antibodies capable of promoting neutralization, opsonization, and activation of the complement system. In this scenario, B lymphocytes produce antibodies that play an important role in Leishmania infection although neglected for a long time. Thus, relevant aspects in the establishment of Leishmania infection will be addressed, highlighting the importance of humoral immunity during the entire process of Leishmania infection.
Collapse
Affiliation(s)
- Luciana Conde
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela Maciel
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Meira de Assis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dirlei Nico
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Vale
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Alexandre Morrot
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil,Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil,*Correspondence: Alexandre Morrot,
| |
Collapse
|
10
|
Xiao K, Zhang S, Li C. The complement system and complement-like factors in sea cucumber. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104511. [PMID: 36029917 DOI: 10.1016/j.dci.2022.104511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The complement system is an important part of innate immunity and plays an essential role in immune responses. Complement system consists of a series of proteins, its activation results in opsonization and phagocytosis of pathogens. Although the complement system has been studied extensively in vertebrates, considerably less is known about complement in invertebrates, especially in sea cucumber. Here, we reviewed the complement-like factors including Component 3 (C3), Complement factor B (Bf), Mannan-binding lectin (MBL) and globular Complement component 1q Receptor (gC1qR), which had been found in the complement system of sea cucumber. Furthermore, we compared the features of complement components among marine invertebrates and described the evolution of sea cucumber complement system obviously. This review can offer theoretical basis for disease control of the sea cucumber and will provide new insights into immune system of marine invertebrates. Meantime, the complete framework of sea cucumber complement may benefit the aquaculture industry.
Collapse
Affiliation(s)
- Ke Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Siyuan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China.
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
11
|
Transcriptome Analysis of Immune Responses and Metabolic Regulations of Chinese Soft-Shelled Turtle (Pelodiscus sinensis) against Edwardsiella tarda Infection. FISHES 2022. [DOI: 10.3390/fishes7020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The Chinese soft-shelled turtle (Pelodiscus sinensis) is an important aquatic species in southern China that is threatened by many serious diseases. Edwardsiella tarda is one of the highly pathogenic bacteria that cause the white abdominal shell disease. Yet, little is known about the immune and metabolic responses of the Chinese soft-shelled turtle against E. tarda infection. In the paper, gene expression profiles in the turtle liver were obtained to study the immune responses and metabolic regulations induced by E. tarda infection using RNA sequencing. A total of 3908 differentially expressed unigenes between the experimental group and the control group were obtained by transcriptome analysis, among them, were the significantly upregulated unigenes and downregulated unigenes 2065 and 1922, respectively. Further annotation and analysis revealed that the DEGs were mainly enriched in complement and coagulation cascades, phagosome, and steroid hormone biosynthesis pathways, indicating that they were mainly associated with defense mechanisms in the turtle liver against E. tarda four days post infection. For the first time, we reported on the gene profile of anti-E. tarda response in the soft-shelled turtle, and our research might provide valuable data to support further study on anti-E. tarda defense mechanisms in turtles
Collapse
|
12
|
Roast MJ, Hidalgo Aranzamendi N, Teunissen N, Fan M, Verhulst S, Peters A. No Evidence for Constitutive Innate Immune Senescence in a Longitudinal Study of a Wild Bird. Physiol Biochem Zool 2021; 95:54-65. [PMID: 34870562 DOI: 10.1086/717937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractAging is associated with declines in physiological performance; declining immune defenses particularly could have consequences for age-related fitness and survival. In aging vertebrates, adaptive (memory-based) immune responses typically become impaired, innate (nonspecific) responses undergo lesser declines, and inflammation increases. Longitudinal studies of immune functions in wild animals are rare, yet they are needed to understand immunosenescence under evolutionarily relevant conditions. Using longitudinal data from a tropical passerine (Malurus coronatus) population, we investigate how population trends emerge from within-individual changes and between-individual heterogeneity (e.g., selective disappearance) in immune status. We quantified constitutive immune indexes (haptoglobin [inflammation associated], natural antibodies, complement [lytic] activity, and heterophil-lymphocyte ratio; n=505-631) in individuals sampled one to seven times over 5 yr. Unexpectedly, longitudinal analyses showed no age-related change within individuals in any immune index, despite sufficient power to detect within-individual change. Between individuals, we found age-related declines in natural antibodies and increases in heterophil-lymphocyte ratios. However, selective disappearance could not adequately explain between-individual age effects, and longitudinal models could not explain our data better than cross-sectional analyses. The lack of clear within-individual immunosenescence is itself notable. Persistent levels of haptoglobin, complement activity, and natural antibodies into old age suggests that these immune components are maintained, potentially with adaptive significance.
Collapse
|
13
|
Estapé Senti M, de Jongh CA, Dijkxhoorn K, Verhoef JJF, Szebeni J, Storm G, Hack CE, Schiffelers RM, Fens MH, Boross P. Anti-PEG antibodies compromise the integrity of PEGylated lipid-based nanoparticles via complement. J Control Release 2021; 341:475-486. [PMID: 34890719 DOI: 10.1016/j.jconrel.2021.11.042] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022]
Abstract
PEGylation of lipid-based nanoparticles and other nanocarriers is widely used to increase their stability and plasma half-life. However, either pre-existing or de novo formed anti-PEG antibodies can induce hypersensitivity reactions and accelerated blood clearance through binding to the nanoparticle surfaces, leading to activation of the complement system. In this study, we investigated the consequences and mechanisms of complement activation by anti-PEG antibodies interacting with different types of PEGylated lipid-based nanoparticles. By using both liposomes loaded with different (model) drugs and LNPs loaded with mRNA, we demonstrate that complement activation triggered by anti-PEG antibodies can compromise the bilayer/surface integrity, leading to premature drug release or exposure of their mRNA contents to serum proteins. Anti-PEG antibodies also can induce deposition of complement fragments onto the surface of PEGylated lipid-based nanoparticles and induce the release of fluid phase complement activation products. The role of the different complement pathways activated by lipid-based nanoparticles was studied using deficient sera and/or inhibitory antibodies. We identified a major role for the classical complement pathway in the early activation events leading to the activation of C3. Our data also confirm the essential role of amplification of C3 activation by alternative pathway components in the lysis of liposomes. Finally, the levels of pre-existing anti-PEG IgM antibodies in plasma of healthy donors correlated with the degree of complement activation (fixation and lysis) induced upon exposure to PEGylated liposomes and mRNA-LNPs. Taken together, anti-PEG antibodies trigger complement activation by PEGylated lipid-based nanoparticles, which can potentially compromise their integrity, leading to premature drug release or cargo exposure to serum proteins.
Collapse
Affiliation(s)
- Mariona Estapé Senti
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; CDL Research, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Caroline A de Jongh
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Kim Dijkxhoorn
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Johan J F Verhoef
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Janos Szebeni
- Nanomedicine Research and Education Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary; SeroScience LCC, Budapest, Hungary; Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Surgery, Nanomedicine Translational Programme, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, University of Singapore, Singapore
| | - C Erik Hack
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Raymond M Schiffelers
- CDL Research, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marcel H Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Peter Boross
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
14
|
Abstract
BACKGROUND Circulating complement C3 fragments released during septic shock might contribute to the development of complications such as profound hypotension and disseminated intravascular coagulation. The role of C3 in the course of septic shock varies in the literature, possibly because circulating C3 exists in different forms indistinguishable via traditional ELISA-based methods. We sought to test the relationship between C3 forms, measured by Western blotting with its associated protein size differentiation feature, and clinical outcomes. METHODS Secondary analysis of two prospective cohorts of patients with septic shock: a discovery cohort of 24 patents and a validation cohort of 181 patients. C3 levels were measured by Western blotting in both cohorts using blood obtained at enrollment. Differences between survivors and non-survivors were compared, and the independent prognostic values of C3 forms were assessed. RESULTS In both cohorts there were significantly lower levels of the C3-alpha chain in non-survivors than in survivors, and persisted after controlling for sequential organ failure assessment score. Area under the receiver operating characteristics to predict survival was 0.65 (95% confidence interval: 0.56-0.75). At a best cutoff value (Youden) of 970.6 μg/mL, the test demonstrated a sensitivity of 68.5% and specificity of 61.5%. At this cutoff point, Kaplan-Meier survival analysis showed that patients with lower levels of C3-alpha chain had significantly lower survival than those with higher levels (P < 0.001). CONCLUSION Circulating C3-alpha chain levels is a significant independent predictor of survival in septic shock patients.
Collapse
|
15
|
Liu Z, Fu Q, Tang S, Xie Y, Meng Q, Tang X, Zhang S, Zhang H, Schroyen M. Proteomics analysis of lung reveals inflammation and cell death induced by atmospheric H 2S exposure in pig. ENVIRONMENTAL RESEARCH 2020; 191:110204. [PMID: 32937176 DOI: 10.1016/j.envres.2020.110204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Hydrogen sulfide (H2S) is a popular toxic environmental gas and industrial pollutant, which can be harmful to multiple organ systems of both human and livestock, especially to the respiratory system. However, the injury mechanism of H2S exposure to lung remains poorly understood. In this study, pig lung was selected as a H2S exposure model for the first time. We first examined the histological damage and the mRNA expression of pro-inflammatory genes of lung in pigs exposed to H2S. Histopathology change and increased mRNA level of pro-inflammatory cytokines demonstrated that H2S exposure indeed induced inflammatory injury in the porcine lung. We then performed TMT-based quantitative proteomics analysis to probe the injury molecular mechanism. The proteomics results showed that 526 proteins have significant changes in abundance between control and H2S treated swine. Further validation analysis of some H2S responsive proteins using both Real-time quantitative PCR and western blotting demonstrated that proteomics data are reliable. KEGG pathway analysis revealed that these proteins were involved in antigen processing and presentation, complement and coagulation cascade, IL-17 signaling pathway, ferroptosis and necroptosis. Our data suggest that H2S exposure induced immune suppression, inflammatory response and cell death. These findings provide a new insight into the complexity mechanisms of H2S induced lung injury, and offer therapeutic potential as drug targets with a view towards curing the intoxication caused by H2S.
Collapse
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Passage des Déportés 2, Gembloux, Belgium
| | - Qin Fu
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, NY, 14853, USA
| | - Shanlong Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanjiao Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingshi Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, NY, 14853, USA
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Passage des Déportés 2, Gembloux, Belgium
| |
Collapse
|
16
|
Roast MJ, Aranzamendi NH, Fan M, Teunissen N, Hall MD, Peters A. Fitness outcomes in relation to individual variation in constitutive innate immune function. Proc Biol Sci 2020; 287:20201997. [PMID: 33143586 DOI: 10.1098/rspb.2020.1997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Although crucial for host survival when facing persistent parasite pressure, costly immune functions will inevitably compete for resources with other energetically expensive traits such as reproduction. Optimizing, but not necessarily maximizing, immune function might therefore provide net benefit to overall host fitness. Evidence for associations between fitness and immune function is relatively rare, limiting our potential to understand ultimate fitness costs of immune investment. Here, we assess how measures of constitutive immune function (haptoglobin, natural antibodies, complement activity) relate to subsequent fitness outcomes (survival, reproductive success, dominance acquisition) in a wild passerine (Malurus coronatus). Surprisingly, survival probability was not positively linearly predicted by any immune index. Instead, both low and high values of complement activity (quadratic effect) were associated with higher survival, suggesting that different immune investment strategies might reflect a dynamic disease environment. Positive linear relationships between immune indices and reproductive success suggest that individual heterogeneity overrides potential resource reallocation trade-offs within individuals. Controlling for body condition (size-adjusted body mass) and chronic stress (heterophil-lymphocyte ratio) did not alter our findings in a sample subset with available data. Overall, our results suggest that constitutive immune components have limited net costs for fitness and that variation in immune maintenance relates to individual differences more closely.
Collapse
Affiliation(s)
- Michael J Roast
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | | | - Marie Fan
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Niki Teunissen
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Matthew D Hall
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Anne Peters
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| |
Collapse
|
17
|
The role of complement activation in autoimmune liver disease. Autoimmun Rev 2020; 19:102534. [PMID: 32234403 DOI: 10.1016/j.autrev.2020.102534] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The complement system, an essential part of the innate immune system, is involved in various autoimmune diseases. Activation of the complement system by autoantibodies results in immune activation and tissue damage. At the moment little is known about the role of the complement system in autoimmune liver disease, including primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC) and autoimmune hepatitis (AIH). Since inhibition of the complement system is currently being tested in several autoimmune diseases as a therapeutic option, its role in autoimmune liver disease requires further clarification. METHODS A review of the literature was performed on studies investigating complement activation in PBC, PSC and AIH. Since data on AIH were lacking immunohistochemical staining for IgG, C1q, C3d, C4d and C5b9 was performed on liver tissue of nine AIH patients, two healthy controls and one positive control (acute liver failure caused by paracetamol intoxication). RESULTS Immunohistochemical analysis in AIH revealed increased production of C3 and C4 by hepatocytes. Despite a strong staining for IgG in the immune infiltrate in AIH, C3d, C4d and C5b9 deposition was only present in one AIH patient and the deposition was restricted to the interface between portal tracts and liver parenchyma. No deposition was found in all other AIH patients or healthy controls. Literature review showed raised plasma C3 and C4 levels in AIH, PBC and PSC patients compared to healthy controls. For PBC and PSC no complement depositions at the bile ducts were reported. CONCLUSION AND DISCUSSION Although complement is involved in various autoimmune diseases, the role of complement in autoimmune liver disease seems limited. Therefore it is unlikely that complement inhibition will become a novel treatment option for these diseases.
Collapse
|
18
|
Walter L, Sürth V, Röttgerding F, Zipfel PF, Fritz-Wolf K, Kraiczy P. Elucidating the Immune Evasion Mechanisms of Borrelia mayonii, the Causative Agent of Lyme Disease. Front Immunol 2019; 10:2722. [PMID: 31849943 PMCID: PMC6902028 DOI: 10.3389/fimmu.2019.02722] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/06/2019] [Indexed: 01/24/2023] Open
Abstract
Borrelia (B.) mayonii sp. nov. has recently been reported as a novel human pathogenic spirochete causing Lyme disease (LD) in North America. Previous data reveal a higher spirochaetemia in the blood compared to patients infected by LD spirochetes belonging to the B. burgdorferi sensu lato complex, suggesting that this novel genospecies must exploit strategies to overcome innate immunity, in particular complement. To elucidate the molecular mechanisms of immune evasion, we utilized various methodologies to phenotypically characterize B. mayonii and to identify determinants involved in the interaction with complement. Employing serum bactericidal assays, we demonstrated that B. mayonii resists complement-mediated killing. To further elucidate the role of the key regulators of the alternative pathway (AP), factor H (FH), and FH-like protein 1 (FHL-1) in immune evasion of B. mayonii, serum adsorption experiments were conducted. The data revealed that viable spirochetes recruit both regulators from human serum and FH retained its factor I-mediated C3b-inactivating activity when bound to the bacterial cells. In addition, two prominent FH-binding proteins of approximately 30 and 18 kDa were detected in B. mayonii strain MN14-1420. Bioinformatics identified a gene, exhibiting 60% identity at the DNA level to the cspA encoding gene of B. burgdorferi. Following PCR amplification, the gene product was produced as a His-tagged protein. The CspA-orthologous protein of B. mayonii interacted with FH and FHL-1, and both bound regulators promoted inactivation of C3b in the presence of factor I. Additionally, the CspA ortholog counteracted complement activation by inhibiting the alternative and terminal but not the classical and Lectin pathways, respectively. Increasing concentrations of CspA of B. mayonii also strongly affected C9 polymerization, terminating the formation of the membrane attack complex. To assess the role of CspA of B. mayonii in facilitating serum resistance, a gain-of-function strain was generated, harboring a shuttle vector allowing expression of the CspA encoding gene under its native promotor. Spirochetes producing the native protein on the cell surface overcame complement-mediated killing, indicating that CspA facilitates serum resistance of B. mayonii. In conclusion, here we describe the molecular mechanism utilized by B. mayonii to resists complement-mediated killing by capturing human immune regulators.
Collapse
Affiliation(s)
- Lea Walter
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Valerie Sürth
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Florian Röttgerding
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz-Institute for Natural Products Research and Infection Biology, Jena, Germany.,Friedrich Schiller University, Jena, Germany
| | - Karin Fritz-Wolf
- Max Planck Institute for Medical Research, Heidelberg, Germany.,Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
19
|
Roast MJ, Aulsebrook AE, Fan M, Hidalgo Aranzamendi N, Teunissen N, Peters A. Short-Term Climate Variation Drives Baseline Innate Immune Function and Stress in a Tropical Bird: A Reactive Scope Perspective. Physiol Biochem Zool 2019; 92:140-151. [PMID: 30689489 DOI: 10.1086/702310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Investment in immune function can be costly, and life-history theory predicts trade-offs between immune function and other physiological demands. Environmental heterogeneity may constrain or change the optimal strategy and thereby alter baseline immune function (possibly mediated by stress responses). We tested several hypotheses relating variation in climatic, ecological, and social environments to chronic stress and levels of baseline innate immunity in a wild, cooperatively breeding bird, the purple-crowned fairy-wren (Malurus coronatus coronatus). From samples collected biannually over 5 yr, we quantified three indexes of constitutive innate immune function (haptoglobin/PIT54, natural antibodies, complement activity) and one index of chronic stress (heterophil-lymphocyte ratio; <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>n</mml:mi><mml:mo>=</mml:mo><mml:mn>513</mml:mn><mml:mtext>-</mml:mtext><mml:mn>647</mml:mn></mml:mrow></mml:math> ). Using an information-theoretic and multimodel inference statistical approach, we found that habitat quality and social group size did not affect any immune index, despite hypothesized links to resource abundance and parasite pressure. Rather, short-term variation in temperature and rainfall was related to immune function, while overall differences between seasons were small or absent, despite substantial seasonal variation in climate. Contrary to our expectation, we found no evidence that physiological stress mediated any effects of short-term climatic variables on immune indexes, and alternative mechanisms may be involved. Our results may be interpreted from the perspective of reactive scope models, whereby predictive homeostasis maintains standing immune function relative to long-term demands, while short-term environmental change, being less predictable, has a greater influence on baseline immune function.
Collapse
|
20
|
Mühleip JJ, Lin YP, Kraiczy P. Further Insights Into the Interaction of Human and Animal Complement Regulator Factor H With Viable Lyme Disease Spirochetes. Front Vet Sci 2019; 5:346. [PMID: 30766876 PMCID: PMC6365980 DOI: 10.3389/fvets.2018.00346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/28/2018] [Indexed: 12/19/2022] Open
Abstract
Spirochetes belonging to the Borrelia (B.) burgdorferi sensu lato (s.l.) complex differ in their ability to establish infection and to survive in diverse vertebrate hosts. Association with and adaption to various hosts most likely correlates with the spirochetes' ability to acquire complement regulator factor H (FH) to overcome the host's innate immune response. Here we assessed binding of serum FH from human and various animals including bovine, cat, chicken, dog, horse, mouse, rabbit, and rat to viable B. burgdorferi sensu stricto (s.s.), B. afzelii, B. garinii, B. spielmanii, B. valaisiana, and B. lusitaniae. Spirochetes ectopically producing CspA orthologs of B. burgdorferi s.s., B. afzelii, and B. spielmanii, CspZ, ErpC, and ErpP, respectively, were also investigated. Our comparative analysis using viable bacterial cells revealed a striking heterogeneity among Lyme disease spirochetes regarding their FH-binding patterns that almost mirrors the serum susceptibility of the respective borrelial genospecies. Moreover, native CspA from B. burgdorferi s.s., B. afzelii, and B. spielmanii as well as CspZ were identified as key ligands of FH from human, horse, and rat origin while ErpP appears to bind dog and mouse FH and to a lesser extent human FH. By contrast, ErpC did not bind FH from human as well as from animal origin. These findings indicate a strong restriction of distinct borrelial proteins toward binding of polymorphic FH of various vertebrate hosts.
Collapse
Affiliation(s)
- Jovana Jasmin Mühleip
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| | - Yi-Pin Lin
- Department of Biomedical Science, State University of New York at Albany, Albany, NY, United States.,Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, NY, United States
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| |
Collapse
|
21
|
Brangulis K, Akopjana I, Petrovskis I, Kazaks A, Kraiczy P, Tars K. Crystal structure of the membrane attack complex assembly inhibitor BGA71 from the Lyme disease agent Borrelia bavariensis. Sci Rep 2018; 8:11286. [PMID: 30050126 PMCID: PMC6062577 DOI: 10.1038/s41598-018-29651-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/14/2018] [Indexed: 11/09/2022] Open
Abstract
Borrelia (B.) bavariensis, B. burgdorferi, B. afzelii, B. garinii, B. spielmanii, and B. mayonii are the causative agents in Lyme disease. Lyme disease spirochetes reside in infected Ixodes ticks and are transferred to mammalian hosts during tick feeding. Once transmitted, spirochetes must overcome the first line of defense of the innate immune system either by binding complement regulators or by terminating the formation of the membrane attack complex (MAC). In B. bavariensis, the proteins BGA66 and BGA71 inhibit complement activation by interacting with the late complement components C7, C8, and C9, as well as with the formed MAC. In this study, we have determined the crystal structure of the potent MAC inhibitor BGA71 at 2.9 Ǻ resolution. The structure revealed a cysteine cross-linked homodimer. Based on the crystal structure of BGA71 and the structure-based sequence alignment with CspA from B. burgdorferi, we have proposed a potential binding site for C7 and C9, both of which are constituents of the formed MAC. Our results shed light on the molecular mechanism of immune evasion developed by the human pathogenic Borrelia species to overcome innate immunity. These results will aid in the understanding of Lyme disease pathogenesis and pave the way for the development of new strategies to prevent Lyme disease.
Collapse
Affiliation(s)
- Kalvis Brangulis
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067, Riga, Latvia. .,Riga Stradins University, Department of Human Physiology and Biochemistry, Dzirciema 16, LV-1007, Riga, Latvia.
| | - Inara Akopjana
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067, Riga, Latvia
| | - Ivars Petrovskis
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067, Riga, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067, Riga, Latvia
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Paul-Ehrlich-Str. 40, D-60596, Frankfurt am Main, Germany
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067, Riga, Latvia.,University of Latvia, Faculty of Biology, Jelgavas 1, LV-1004, Riga, Latvia
| |
Collapse
|
22
|
Age-related variations in the in vitro bactericidal activity of human sera against Pseudomonas aeruginosa. Cent Eur J Immunol 2018; 43:18-25. [PMID: 29731689 PMCID: PMC5927169 DOI: 10.5114/ceji.2018.74869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/18/2017] [Indexed: 01/03/2023] Open
Abstract
The human serum is a vital component of the innate immunity of the host that acts as the first line of defence against invading pathogens. A key player in serum-mediated innate immune defence is a system of more than 35 proteins, collectively named as the complement system. After exposure of the pathogen, these proteins are activated in a cascade manner, ultimately forming a membrane attack complex (MAC) on the surface of the pathogen that directly lyses the bacterial cell. Formation of the MAC can be demonstrated in vitro by using serum bactericidal assay (SBA) that works in the absence of cellular components of blood after incubating the serum along with bacteria. Here, we describe the age-related differences in the bactericidal activity of human serum against Pseudomonas aeruginosa, an opportunistic human pathogen causing an array of hospital and community-acquired infections. We demonstrate that adult sera were highly effective in the in vitro killing of Pseudomonas aeruginosa as compared to children and the elderly (p < 0.0001). Sera from children were seriously compromised in the killing P. aeruginosa, whereas elderly sera showed a reduced level of killing. Data revealed a positive correlation between age and serum-killing with higher coefficient of determination values of 0.34, 0.27, and 0.58 and p values of < 0.0001, < 0.001, and < 0.0001, respectively, after 60, 90, and 120 minutes of incubation. Hence, our study highlights the age-related difference in the bactericidal activity of human sera. We conclude that sera of children are totally compromised, whereas elderly sera are only partially compromised, in the killing of P. aeruginosa.
Collapse
|
23
|
Dho SH, Lim JC, Kim LK. Beyond the Role of CD55 as a Complement Component. Immune Netw 2018; 18:e11. [PMID: 29503741 PMCID: PMC5833118 DOI: 10.4110/in.2018.18.e11] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/09/2018] [Accepted: 02/11/2018] [Indexed: 01/28/2023] Open
Abstract
The complement is a part of the immune system that plays several roles in removing pathogens. Despite the importance of the complement system, the exact role of each component has been overlooked because the complement system was thought to be a nonspecific humoral immune mechanism that worked against pathogens. Decay-accelerating factor (DAF or CD55) is a known inhibitor of the complement system and has recently attracted substantial attention due to its role in various diseases, such as cancer, protein-losing enteropathy, and malaria. Some protein-losing enteropathy cases are caused by CD55 deficiency, which leads to complement hyperactivation, malabsorption, and angiopathic thrombosis. In addition, CD55 has been reported to be an essential host receptor for infection by the malaria parasite. Moreover, CD55 is a ligand of the seven-span transmembrane receptor CD97. Since CD55 is present in various cells, the functional role of CD55 has been expanded by showing that CD55 is associated with a variety of diseases, including cancer, malaria, protein-losing enteropathy, paroxysmal nocturnal hemoglobinuria, and autoimmune diseases. This review summarizes the current understanding of CD55 and the role of CD55 in these diseases. It also provides insight into the development of novel drugs for the diagnosis and treatment of diseases associated with CD55.
Collapse
Affiliation(s)
- So Hee Dho
- Radioisotope Research Division, Department of Research Reactor Utilization, Korea Atomic Energy Research Institute, Daejeon 34057, Korea
| | - Jae Cheong Lim
- Radioisotope Research Division, Department of Research Reactor Utilization, Korea Atomic Energy Research Institute, Daejeon 34057, Korea
| | - Lark Kyun Kim
- Severance Biomedical Science Institute and BK21 PLUS Project to Medical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06230, Korea
| |
Collapse
|
24
|
Zeng HL, Shi JM. The role of microglia in the progression of glaucomatous neurodegeneration- a review. Int J Ophthalmol 2018; 11:143-149. [PMID: 29376003 DOI: 10.18240/ijo.2018.01.22] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022] Open
Abstract
Glaucoma is a serious leading cause of irreversible blindness worldwide. Reducing intraocular pressure (IOP) does not always stop glaucomatous neurodegeneration and the optic nerve may continue to be damaged in the normal IOP. Microglial activity has been recognized to play essential roles in pathogenesis of the central nervous system (CNS) as well as retinal ganglion cell (RGC) survival. The relationship between the neurodegeneration and the microglia cells in glaucoma is very complicated and still remains unclear. In the present review, we summarize the recent studies of mechanisms of microglia in glaucoma neurodegeneration, which might provide new ways to treat glaucoma.
Collapse
Affiliation(s)
- Hui-Lan Zeng
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Jing-Ming Shi
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
25
|
Stahlschmidt ZR, French SS, Ahn A, Webb A, Butler MW. A Simulated Heat Wave Has Diverse Effects on Immune Function and Oxidative Physiology in the Corn Snake (Pantherophis guttatus). Physiol Biochem Zool 2017; 90:434-444. [DOI: 10.1086/691315] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Tamura T, Cazander G, Rooijakkers SHM, Trouw LA, Nibbering PH. Excretions/secretions from medicinal larvae (Lucilia sericata) inhibit complement activation by two mechanisms. Wound Repair Regen 2017; 25:41-50. [PMID: 28019718 DOI: 10.1111/wrr.12504] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/15/2016] [Indexed: 12/17/2022]
Abstract
Larvae of the blowfly Lucilia sericata facilitate wound healing by removing dead tissue and biofilms from non-healing and necrotic wounds. Another beneficial action of larvae and their excretions/secretions (ES) is down-regulation of excessive inflammation. As prolonged complement activation is key to excessive inflammation, the aim of this study was to elucidate the mechanisms underlying the anti-complement activities of ES. Results revealed that heat sensitive serine proteases in ES degrade multiple complement proteins in all steps of the three complement activation pathways. Importantly, C3a and C5a-major activators of inflammation-were also degraded by ES and pretreatment of these factors with ES completely blocked their ability to induce activation of human neutrophils. Pre-exposure of the neutrophils to ES did not affect their responsiveness to C3a/C5a and fMLP, indicating that the receptors for these activators on neutrophils were not affected by ES. Surprisingly, heat and serine protease inhibitor pretreatment did not affect the ability of ES to inhibit C5b-9 complex formation despite degrading complement proteins, indicating a second complement-inhibiting molecule in ES. Heated ES was as effective as intact ES in inhibiting C3 deposition upon activation of the alternative pathway, but was significantly less effective in wells with a classical or lectin pathway-specific coating. Unfortunately, the molecules affecting the complement system could not be identified due to an insufficient database for L. sericata. Together, larval ES inhibit complement activation by two different mechanisms and down-regulate the C3a/C5a-mediated neutrophil activation. This attenuates the inflammatory process, which may facilitate wound healing.
Collapse
Affiliation(s)
- Tetsuro Tamura
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands.,Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Gwendolyn Cazander
- Department of Surgery, Medical Center Haaglanden/Bronovo Hospital, The Hague, the Netherlands
| | - Suzan H M Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Leendert A Trouw
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter H Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
27
|
Ekdahl KN, Soveri I, Hilborn J, Fellström B, Nilsson B. Cardiovascular disease in haemodialysis: role of the intravascular innate immune system. Nat Rev Nephrol 2017; 13:285-296. [PMID: 28239169 DOI: 10.1038/nrneph.2017.17] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Haemodialysis is a life-saving renal replacement modality for end-stage renal disease, but this therapy also represents a major challenge to the intravascular innate immune system, which is comprised of the complement, contact and coagulation systems. Chronic inflammation is strongly associated with cardiovascular disease (CVD) in patients on haemodialysis. Biomaterial-induced contact activation of proteins within the plasma cascade systems occurs during haemodialysis and initially leads to local generation of inflammatory mediators on the biomaterial surface. The inflammation is spread by soluble activation products and mediators that are generated during haemodialysis and transported in the extracorporeal circuit back into the patient together with activated leukocytes and platelets. The combined effect is activation of the endothelium of the cardiovascular system, which loses its anti-thrombotic and anti-inflammatory properties, leading to atherogenesis and arteriosclerosis. This concept suggests that maximum suppression of the intravascular innate immune system is needed to minimize the risk of CVD in patients on haemodialysis. A potential approach to achieve this goal is to treat patients with broad-specificity systemic drugs that target more than one of the intravascular cascade systems. Alternatively, 'stealth' biomaterials that cause minimal cascade system activation could be used in haemodialysis circuits.
Collapse
Affiliation(s)
- Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, SE-751 85 Uppsala, Sweden.,Linnæus Center of Biomaterials Chemistry, Linnæus University, SE-391 82 Kalmar, Sweden
| | - Inga Soveri
- Department of Medical Sciences, Uppsala University, SE-75185 Uppsala, Sweden
| | - Jöns Hilborn
- Department of Chemistry, Ångström Laboratory, Uppsala University, SE-751 21, Sweden
| | - Bengt Fellström
- Department of Medical Sciences, Uppsala University, SE-75185 Uppsala, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
28
|
Yorulmaz S, Jackman JA, Hunziker W, Cho NJ. Influence of membrane surface charge on adsorption of complement proteins onto supported lipid bilayers. Colloids Surf B Biointerfaces 2016; 148:270-277. [DOI: 10.1016/j.colsurfb.2016.08.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/29/2016] [Accepted: 08/21/2016] [Indexed: 10/21/2022]
|
29
|
Chen M, Wu J, Shi S, Chen Y, Wang H, Fan H, Wang S. Structure analysis of a heteropolysaccharide from Taraxacum mongolicum Hand.-Mazz. and anticomplementary activity of its sulfated derivatives. Carbohydr Polym 2016; 152:241-252. [DOI: 10.1016/j.carbpol.2016.06.110] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/22/2016] [Accepted: 06/28/2016] [Indexed: 12/17/2022]
|
30
|
Kraiczy P. Hide and Seek: How Lyme Disease Spirochetes Overcome Complement Attack. Front Immunol 2016; 7:385. [PMID: 27725820 PMCID: PMC5036304 DOI: 10.3389/fimmu.2016.00385] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/13/2016] [Indexed: 11/15/2022] Open
Abstract
Overcoming the first line of the innate immune system is a general hallmark of pathogenic microbes to avoid recognition and to enter the human host. In particular, spirochetes belonging to the Borrelia burgdorferi sensu lato complex have developed various means to counter the immune response and to successfully survive in diverse host environments for a prolonged period of time. In regard to complement resistance, Borrelia utilize a plethora of immune evasion strategies involves capturing of host-derived complement regulators, terminating complement activation as well as shedding of cell-destroying complement complexes to manipulate and to expeditiously inhibit human complement. Owing to their mode of action, the interacting surface-exposed proteins identified among B. burgdorferi sensu stricto (s.s.), Borrelia afzelii, Borrelia spielmanii, and Borrelia bavariensis can be classified into at least two major categories, namely, molecules that directly interfere with distinct complement components including BBK32, CspA, BGA66, BGA71, and a CD59-like protein or molecules, which indirectly counteract complement activation by binding various complement regulators such as Factor H, Factor H-like protein 1 (FHL-1), Factor H-related proteins FHR-1, FHR-2, or C4Bp. The latter group of genetically and structurally unrelated proteins has been collectively referred to as “complement regulator-acquiring surface proteins” and consists of CspA, CspZ, ErpA, ErpC, ErpP, and the as yet unidentified protein p43. This review focuses on the current knowledge of immune evasion mechanisms exhibited by Lyme disease spirochetes and highlights the role of complement-interfering, infection-associated molecules playing an important part in these processes. Deciphering the immune evasion strategies may provide novel avenues for improved diagnostic approaches and therapeutic interventions.
Collapse
Affiliation(s)
- Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt , Frankfurt am Main , Germany
| |
Collapse
|
31
|
Travelling between Two Worlds: Complement as a Gatekeeper for an Expanded Host Range of Lyme Disease Spirochetes. Vet Sci 2016; 3:vetsci3020012. [PMID: 29056721 PMCID: PMC5644625 DOI: 10.3390/vetsci3020012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 01/21/2023] Open
Abstract
Evading innate immunity is a prerequisite for pathogenic microorganisms in order to survive in their respective hosts. Concerning Lyme disease spirochetes belonging to the Borrelia (B.) burgdorferi sensu lato group, a broad range of diverse vertebrates serve as reservoir or even as incidental hosts, including humans. The capability to infect multiple hosts implies that spirochetes have developed sophisticated means to counter the destructive effects of complement of humans and various animals. While the means by which spirochetes overcome the hosts immune defense are far from being completely understood, there is a growing body of evidence suggesting that binding of the key regulator of the alternative pathway, Factor H, plays a pivotal role for immune evasion and that Factor H is an important determinant of host specificity. This review covers (i) the contribution of complement in host-specificity and transmissibility of Lyme disease spirochetes; (ii) the involvement of borrelial-derived determinants to host specificity; (iii) the interplay of human and animal Factor H with complement-acquiring surface proteins of diverse borrelial species; and (iv) the potential role of additional animal complement proteins in the immune evasion of spirochetes.
Collapse
|
32
|
Luoma RL, Butler MW, Stahlschmidt ZR. Plasticity of immunity in response to eating. ACTA ACUST UNITED AC 2016; 219:1965-8. [PMID: 27099367 DOI: 10.1242/jeb.138123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/29/2016] [Indexed: 01/27/2023]
Abstract
Following a meal, an animal can exhibit dramatic shifts in physiology and morphology, as well as a substantial increase in metabolic rate associated with the energetic costs of processing a meal (i.e. specific dynamic action, SDA). However, little is known about the effects of digestion on another important physiological and energetically costly trait: immune function. Thus, we tested two competing hypotheses. (1) Digesting animals up-regulate their immune systems (putatively in response to the increased microbial exposure associated with ingested food). (2) Digesting animals down-regulate their immune systems (presumably to allocate energy to the breakdown of food). We assayed innate immunity (lytic capacity and agglutination) in cornsnakes (Pantherophis guttatus) during and after meal digestion. Lytic capacity was higher in females, and (in support of our first hypothesis) agglutination was higher during absorption. Given its potential energetic cost, immune up-regulation may contribute to SDA.
Collapse
Affiliation(s)
- Rachel L Luoma
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | | | - Zachary R Stahlschmidt
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| |
Collapse
|
33
|
Nigam Y, Morgan C. Does maggot therapy promote wound healing? The clinical and cellular evidence. J Eur Acad Dermatol Venereol 2015; 30:776-82. [DOI: 10.1111/jdv.13534] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/30/2015] [Indexed: 01/27/2023]
Affiliation(s)
- Y. Nigam
- College of Human and Health Sciences; Swansea University; Swansea UK
| | - C. Morgan
- College of Medicine; Swansea University; Swansea UK
| |
Collapse
|
34
|
Hammerschmidt C, Klevenhaus Y, Koenigs A, Hallström T, Fingerle V, Skerka C, Pos KM, Zipfel PF, Wallich R, Kraiczy P. BGA66 and BGA71 facilitate complement resistance of Borrelia bavariensis by inhibiting assembly of the membrane attack complex. Mol Microbiol 2015; 99:407-24. [PMID: 26434356 DOI: 10.1111/mmi.13239] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2015] [Indexed: 01/09/2023]
Abstract
Borrelia (B.) bavariensis exhibits a marked tropism for nervous tissues and frequently causes neurological manifestations in humans. The molecular mechanism by which B. bavariensis overcomes innate immunity, in particular, complement remains elusive. In contrast to other serum-resistant spirochetes, none of the B. bavariensis isolates investigated bound complement regulators of the alternative (AP) and classical pathway (CP) or proteolytically inactivated complement components. Focusing on outer surface proteins BGA66 and BGA71, we demonstrated that both molecules either inhibit AP, CP and terminal pathway (TP) activation, or block activation of the CP and TP respectively. Both molecules bind complement components C7, C8 and C9, and thereby prevent assembly of the terminal complement complex. This inhibitory activity was confirmed by the introduction of the BGA66 and BGA71 encoding genes into a serum-sensitive B. garinii strain. Transformed spirochetes producing either BGA66 or BGA71 overcome complement-mediated killing, thus indicating that both proteins independently facilitate serum resistance of B. bavariensis. The generation of C-terminally truncated proteins as well as a chimeric BGA71 protein lead to the localization of the complement-interacting binding site within the N-terminus. Collectively, our data reveal a novel immune evasion strategy of B. bavariensis that is directed against the activation of the TP.
Collapse
Affiliation(s)
- Claudia Hammerschmidt
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| | - Yvonne Klevenhaus
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| | - Arno Koenigs
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| | - Teresia Hallström
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Volker Fingerle
- National Reference Center for Borrelia, Oberschleißheim, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Klaas Martinus Pos
- Institute of Biochemistry, Goethe University of Frankfurt, Frankfurt, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany.,Friedrich Schiller University, Jena, Germany
| | - Reinhard Wallich
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| |
Collapse
|
35
|
Activated Complement Factors as Disease Markers for Sepsis. DISEASE MARKERS 2015; 2015:382463. [PMID: 26420913 PMCID: PMC4572436 DOI: 10.1155/2015/382463] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/16/2015] [Indexed: 02/06/2023]
Abstract
Sepsis is a leading cause of death in the United States and worldwide. Early recognition and effective management are essential for improved outcome. However, early recognition is impeded by lack of clinically utilized biomarkers. Complement factors play important roles in the mechanisms leading to sepsis and can potentially serve as early markers of sepsis and of sepsis severity and outcome. This review provides a synopsis of recent animal and clinical studies of the role of complement factors in sepsis development, together with their potential as disease markers. In addition, new results from our laboratory are presented regarding the involvement of the complement factor, mannose-binding lectin, in septic shock patients. Future clinical studies are needed to obtain the complete profiles of complement factors/their activated products during the course of sepsis development. We anticipate that the results of these studies will lead to a multipanel set of sepsis biomarkers which, along with currently used laboratory tests, will facilitate earlier diagnosis, timely treatment, and improved outcome.
Collapse
|
36
|
Gao TT, Long Q, Yang X. Complement factors C1q, C3 and C5b-9 in the posterior sclera of guinea pigs with negative lens-defocused myopia. Int J Ophthalmol 2015; 8:675-80. [PMID: 26309860 DOI: 10.3980/j.issn.2222-3959.2015.04.06] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/29/2015] [Indexed: 12/14/2022] Open
Abstract
AIM To investigate the expression of complement factors in the posterior scleral fibroblasts of guinea pigs with negative lens-defocused myopia. METHODS Eighteen guinea pigs were assigned randomly to two groups: the negative lens-defocused group (NLD group, n=9) and the normal control without treatment group (NC group, n=9). The effect of myopic induction was compared in three subgroups: eyes treated with a -10.00 D negative lens in the NLD group (NL group), eyes treated with a plano (0 D) lens in the NLD group (PL group), and untreated right eyes in the NC group (NC group). The following analyses were conducted at four weeks: examination of the refractive error via retinoscopy, assessment of complement C5b-9 expression in the posterior scleral fibroblasts using immunohistochemistry, and measurements of complement C1q and C3 protein levels in the posterior sclera by Western blot. RESULTS After an induction period of four weeks, a significant myopic shift was detected in the eyes of the NL group, relative to that of the PL and NC groups (P<0.05). Data analysis showed a significant increase in the percentage of C5b-9 immunopositive fibroblasts in the posterior sclera of the NL group eyes, compared to the PL group (q=11.50, P<0.001). Significantly higher levels of C1q (q=4.94, P=0.01) and C3 (q=4.07, P=0.03) protein were detected in the posterior sclera of NL group eyes, compared to the PL group. There were no significant difference between the PL and NC groups for C5b-9 (q=2.44, P=0.10), C1q (q=1.55, P=0.53) and C3 (q=0.98, P=0.77) in the posterior sclera. CONCLUSION The data from present study provide evidence of the up-regulation of C5b-9, C1q and C3 in the posterior scleral fibroblasts in a NLD myopic animal model. The results suggest that the complement system may be involved in the development of myopia.
Collapse
Affiliation(s)
- Ting-Ting Gao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Qin Long
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xue Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
37
|
Wu M, Li H, Zhang Y, Chen D. Development of a C3c-based ELISA method for the determination of anti-complementary potency of Bupleurum polysaccharides. Acta Pharm Sin B 2015; 5:316-22. [PMID: 26579461 PMCID: PMC4629277 DOI: 10.1016/j.apsb.2015.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/30/2015] [Accepted: 02/26/2015] [Indexed: 01/13/2023] Open
Abstract
Traditionally, determination of inhibitory potency of complement inhibitors is performed by the hemolytic assay. However, this assay is not applicable to the lectin pathway, thus impeding the understanding of complement inhibitors against the overall function of the complement system. The main objective of our study was to develop a specific enzyme-linked immunosorbent assay (ELISA) as an alternative method to assess the anti-complement activity, particularly against the lectin pathway. By using respective coating substrates against different activation pathways, followed by capturing the stable C3c fragments, our ELISA method can be used to screen complement inhibitors against the classical pathway and the lectin pathway. The inhibitory effect of suramin on the classical pathway, as measured by our hemolytic assay is consistent with previous reports. Further assessment of suramin and Bupleurum polysaccharides against the lectin pathway showed a good reproducibility of the method. Comparison of the lectin pathway IC50 between Bupleurum smithii var. parvifolium polysaccharides (1.055 mg/mL) and Bupleurum chinense polysaccharides (0.98 mg/mL) showed that, similar to the classical and alterative pathway, these two Bupleurum polysaccharides had comparable anti-complementary properties against the lectin pathway. The results demonstrate that the described ELISA assay can compensate for the shortcomings of the hemolytic assay in lectin pathway.
Collapse
Key Words
- AP, alternative pathway
- Abs, antibodies
- BCPs, Bupleurum chinense polysaccharides
- BG, background value
- BPs, Bupleurum smithii var. parvifolium polysaccharides
- BSA, bovine serum albumin
- Bupleurum chinense
- Bupleurum smithii var. parvifolium
- CP, classical pathway
- CV, coefficient of variation
- Complement C3c
- DFC, drug-free control
- ELISA
- ELISA, enzyme-linked immunosorbent assay
- HRP, horseradish peroxides
- LP, lectin pathway
- LPS, lipopolysaccharide
- MASP, MBL-associated serine proteases
- MBL, mannose-binding lectin
- OD, optical density
- PBS-T-BSA, PBS containing 0.05% Tween-20 and 1% BSA
- Polysaccharides
- SRBC, sheep erythrocytes
- Suramin
- VBS, Veronal buffer saline
Collapse
Affiliation(s)
- Mulu Wu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
- Corresponding author. Tel.: +86 21 51980050.
| | - Yunyi Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Daofeng Chen
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
38
|
Nadjar Y, Triller A, Bessereau JL, Dumoulin A. The Susd2 protein regulates neurite growth and excitatory synaptic density in hippocampal cultures. Mol Cell Neurosci 2015; 65:82-91. [PMID: 25724483 DOI: 10.1016/j.mcn.2015.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 12/12/2014] [Accepted: 02/12/2015] [Indexed: 10/24/2022] Open
Abstract
Complement control protein (CCP) domains have adhesion properties and are commonly found in proteins that control the complement immune system. However, an increasing number of proteins containing CCP domains have been reported to display neuronal functions. Susd2 is a transmembrane protein containing one CCP domain. It was previously identified as a tumor-reversing protein, but has no characterized function in the CNS. The present study investigates the expression and function of Susd2 in the rat hippocampus. Characterization of Susd2 during development showed a peak in mRNA expression two weeks after birth. In hippocampal neuronal cultures, the same expression profile was observed at 15days in vitro for both mRNA and protein, a time consistent with synaptogenesis in our model. At the subcellular level, Susd2 was located on the soma, axons and dendrites, and appeared to associate preferentially with excitatory synapses. Inhibition of Susd2 by shRNAs led to decreased numbers of excitatory synaptic profiles, exclusively. Also, morphological parameters were studied on young (5DIV) developing neurons. After Susd2 inhibition, an increase in dendritic tree length but a decrease in axon elongation were observed, suggesting changes in adhesion properties. Our results demonstrate a dual role for Susd2 at different developmental stages, and raise the question whether Susd2 and other CCP-containing proteins expressed in the CNS could be function-related.
Collapse
Affiliation(s)
- Yann Nadjar
- Ecole Normale Supérieure, IBENS, INSERM U1024, 75005 Paris, France
| | - Antoine Triller
- Ecole Normale Supérieure, IBENS, INSERM U1024, 75005 Paris, France
| | | | - Andrea Dumoulin
- Ecole Normale Supérieure, IBENS, INSERM U1024, 75005 Paris, France.
| |
Collapse
|
39
|
A quantitative lateral flow assay to detect complement activation in blood. Anal Biochem 2015; 477:78-85. [PMID: 25660530 DOI: 10.1016/j.ab.2015.01.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 01/21/2023]
Abstract
Complement is a major effector arm of the innate immune system that responds rapidly to pathogens or altered self. The central protein of the system, C3, participates in an amplification loop that can lead to rapid complement deposition on a target and, if excessive, can result in host tissue damage. Currently, complement activation is routinely monitored by assessing total C3 levels, which is an indirect and relatively insensitive method. An alternative approach would be to measure downstream C3 activation products such as C3a and iC3b. However, in vitro activation can produce falsely elevated levels of these biomarkers. To circumvent this issue, a lateral flow immunoassay system was developed that measures iC3b in whole blood, plasma, and serum and avoids in vitro activation by minimizing sample handling. This assay system returns results within 15 min and specifically measures iC3b while having minimal cross-reactivity to other C3 split products. While evaluating the potential of this assay, it was observed that circulating iC3b levels can distinguish healthy individuals from those with complement activation-associated diseases. This tool is engineered to provide an improved method to assess complement activation at point of care and could facilitate studies to monitor disease progression in a variety of inflammatory conditions.
Collapse
|
40
|
Age-related macular degeneration: insights into inflammatory genes. J Ophthalmol 2014; 2014:582842. [PMID: 25478207 PMCID: PMC4247975 DOI: 10.1155/2014/582842] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 01/24/2023] Open
Abstract
Age-related macular degeneration (AMD) is a progressive neurodegenerative disease that affects approximately 8.7% of elderly people worldwide (>55 years old). AMD is characterized by a multifactorial aetiology that involves several genetic and environmental risk factors (genes, ageing, smoking, family history, dietary habits, oxidative stress, and hypertension). In particular, ageing and cigarette smoking (including oxidative compounds and reactive oxygen species) have been shown to significantly increase susceptibility to the disease. Furthermore, different genes (CFH, CFI, C2, C3, IL-6, IL-8, and ARMS2) that play a crucial role in the inflammatory pathway have been associated with AMD risk. Several genetic and molecular studies have indicated the participation of inflammatory molecules (cytokines and chemokines), immune cells (macrophages), and complement proteins in the development and progression of the disease. Taking into consideration the genetic and molecular background, this review highlights the genetic role of inflammatory genes involved in AMD pathogenesis and progression.
Collapse
|
41
|
Tan Y, Li Y, Fu X, Yang F, Zheng P, Zhang J, Guo B, Wu Y. Systemic C3 modulates CD8+ T cell contraction after Listeria monocytogenes infection. THE JOURNAL OF IMMUNOLOGY 2014; 193:3426-35. [PMID: 25187659 DOI: 10.4049/jimmunol.1302763] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ag-specific CD8(+) T cell contraction (contraction), which occurs after the resolution of infection, is critical for homeostasis of the immune system. Although complement components regulate the primary CD8(+) T cell response, there is insufficient evidence supporting their role in regulating contraction and memory. In this study, we show that C3-deficient (C3(-/-)) mice exhibited significantly less CD8(+) T cell contraction than did wild-type mice postinfection with recombinant Listeria monocytogenes expressing OVA. Kinetic analyses also revealed decreased contraction in mice treated with cobra venom factor to deplete C3, which was consistent with the results in C3(-/-) recipient mice transplanted with bone marrow cells from the same donors as wild-type recipient mice. The phenotypes of memory cells generated by C3(-/-) mice were not altered compared with those of wild-type mice. Further, C5aR signaling downstream of C3 was not involved in the regulation of contraction. Moreover, the regulation of contraction by C3 may be independent of the duration of antigenic stimulation or the functional avidity of effector CD8(+) T cells. However, reduced contraction in C3(-/-) mice was accompanied by a decrease in the proportion of KLRG-1(hi) (killer-cell lectin-like receptor G1) CD127(lo) short-lived effector cells at the peak of the response and correlated with a reduction in the levels of inflammatory cytokines, such as IL-12 and IFN-γ, produced early postinfection. These results provide new insights into the role of systemic C3 in regulating contraction following intracellular bacterial infection and may help to develop vaccines that are more effective.
Collapse
Affiliation(s)
- Yulong Tan
- Department of Immunology, Third Military Medical University, Chongqing 400038, China; and
| | - Yongsheng Li
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xiaolan Fu
- Department of Immunology, Third Military Medical University, Chongqing 400038, China; and
| | - Fei Yang
- Department of Immunology, Third Military Medical University, Chongqing 400038, China; and
| | - Ping Zheng
- Department of Immunology, Third Military Medical University, Chongqing 400038, China; and
| | - Jue Zhang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Bo Guo
- Department of Immunology, Third Military Medical University, Chongqing 400038, China; and
| | - Yuzhang Wu
- Department of Immunology, Third Military Medical University, Chongqing 400038, China; and
| |
Collapse
|
42
|
Fadda SH, Bassyouni IH, Hamdy A, Foad NA, Wali IE. Anti-C1q in chronic hepatitis C virus genotype IV infection: association with autoimmune rheumatologic manifestations. Immunol Invest 2014; 44:45-55. [PMID: 25028787 DOI: 10.3109/08820139.2014.932378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A growing body of evidence suggests that anti-complement-1q (anti-C1q) antibodies are elevated in a variety of autoimmune disease. Therefore, we investigated their prevalence and clinical significance in plasma of patients with hepatitis C virus (HCV) genotype IV in the presence and absence of autoimmune extra hepatic manifestations in comparison to normal healthy individuals. Plasma Anti-C1q Abs levels were assessed by an Enzyme Linked Immunosorbant Assay in 91 chronic HCV-infected patients (51 with and 40 without autoimmune rheumatic manifestations) and 40 healthy volunteers matched for age and gender. Epidemiological, clinical, immunochemical and virological data were prospectively collected. Positive Anti-C1q antibodies were more frequent among HCV patients with extra-hepatic autoimmune involvement, than those without and healthy control subjects. No significant correlations were found between Anti-C1q levels with either the liver activity or the fibrosis scores. In HCV-patients with autoimmune involvements, plasma Anti-C1q levels were significantly higher in patients with positive cryoglobulin, and in those with lymphoma than in those without. These results were confirmed by multivariate analysis. Further large scale longitudinal studies are required to assess and clarify the significance and the pathogenic role of anti-C1q antibodies among HCV infected patients with positive cryoglobulinaemia and lymphoma.
Collapse
Affiliation(s)
- Samia H Fadda
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Cairo University , Egypt
| | | | | | | | | |
Collapse
|
43
|
A novel peptide can mimic extracellular fibrinogen-binding protein to block the activation of complement system. Cell Biochem Biophys 2014; 66:753-7. [PMID: 23420525 DOI: 10.1007/s12013-013-9520-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Extracellular fibrinogen-binding protein (Efb) of Staphylococcus aureus (S. aureus) is a bi-functional protein, which can specifically bind fibrinogen with its N terminus and inhibit deposition of C3b on the surface of S. aureus with its C terminus. Here, we screened the epitopes of Efb using phage display. Four peptides with consensus motif were screened. This consensus motif was identical to C terminus (161-164) of Efb. In the further investigation, it was found the synthesized peptide EC1 (154-165aa of Efb) could specifically bind C3/C3b and subsequently to block the activation of complement. Meanwhile, EC1 could inhibit the interaction between Efb and C3/C3b. Moreover, the interaction between the mutant protein of EmC1 (Efb without EC1) and C3 was decreased. And, the effect on the complement system of the mutant protein was dramatically declined compared with Efb. Our finding suggested that the peptide EC1 could mimic Efb to block complement system activation via binding C3.
Collapse
|
44
|
Nowak JZ. Oxidative stress, polyunsaturated fatty acids-derived oxidation products and bisretinoids as potential inducers of CNS diseases: focus on age-related macular degeneration. Pharmacol Rep 2014; 65:288-304. [PMID: 23744414 DOI: 10.1016/s1734-1140(13)71005-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/31/2013] [Indexed: 12/12/2022]
Abstract
Many pathologies of the central nervous system (CNS) originate from excess of reactive free radicals, notably reactive oxygen species (ROS), and oxidative stress. A phenomenon which usually runs in parallel with oxidative stress is unsaturated lipid peroxidation, which, via a chain reaction, contributes to the progression of disbalanced redox homeostasis. Among long-chain (LC) polyunsaturated fatty acids (PUFAs) abundantly occurring in the CNS, docosahexaenoic acid (DHA), a member of ω-3 LC-PUFAs, deserves special attention, as it is avidly retained and uniquely concentrated in the nervous system, particularly in retinal photoreceptors and synaptic membranes; owing to the presence of the six double bonds between carbon atoms in its polyene chain (C=C), DHA is exquisitely sensitive to oxidative damage. In addition to oxidative stress and LC-PUFAs peroxidation, other stress-related mechanisms may also contribute to the development of various CNS malfunctions, and a good example of such mechanisms is the process of lipofuscin formation occurring particularly in the retina, an integral part of the CNS. The retinal lipofuscin is formed and accumulated by the retinal pigment epithelial (RPE) cells as a consequence of both visual process taking place in photoreceptor-RPE functional complex and metabolic insufficiency of RPE lysosomal compartment. Among various retinal lipofuscin constituents, bisretinoids, originating from all-trans retinal substrate--a photometabolite of visual pigment cofactor 11-cis-retinal (responsible for photon capturing), are endowed with cytotoxic and complement-activating potential which increases upon illumination and oxidation. This survey deals with oxidative stress, PUFAs (especially DHA) peroxidation products of carboxyalkylpyrrole type and bisretinoids as potential inducers of the CNS pathology. A focus is put on vision-threatening disease, i.e., age-related macular degeneration (AMD), as an example of the CNS disorder whose pathogenesis has strong background in both oxidative stress and lipid peroxidation products.
Collapse
Affiliation(s)
- Jerzy Z Nowak
- Institute of Pharmacology, Polish Academy of Sciences, Scientific Board, Smętna 12, PL 31-343 Kraków, Poland.
| |
Collapse
|
45
|
Daghighi S, Sjollema J, van der Mei HC, Busscher HJ, Rochford ET. Infection resistance of degradable versus non-degradable biomaterials: An assessment of the potential mechanisms. Biomaterials 2013; 34:8013-7. [DOI: 10.1016/j.biomaterials.2013.07.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/11/2013] [Indexed: 01/09/2023]
|
46
|
Cazander G, Pritchard DI, Nigam Y, Jung W, Nibbering PH. Multiple actions ofLucilia sericatalarvae in hard-to-heal wounds. Bioessays 2013; 35:1083-92. [DOI: 10.1002/bies.201300071] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Gwendolyn Cazander
- Department of Surgery; Bronovo Hospital; The Hague The Netherlands
- Department of Surgery; Leiden University Medical Center; Leiden The Netherlands
| | | | - Yamni Nigam
- College of Human and Health Sciences; Swansea University; Swansea UK
| | | | - Peter H. Nibbering
- Department of Infectious Diseases; Leiden University Medical Center; Leiden The Netherlands
| |
Collapse
|
47
|
Potempa M, Potempa J. Protease-dependent mechanisms of complement evasion by bacterial pathogens. Biol Chem 2013; 393:873-88. [PMID: 22944688 DOI: 10.1515/hsz-2012-0174] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/06/2012] [Indexed: 12/11/2022]
Abstract
The human immune system has evolved a variety of mechanisms for the primary task of neutralizing and eliminating microbial intruders. As the first line of defense, the complement system is responsible for rapid recognition and opsonization of bacteria, presentation to phagocytes and bacterial cell killing by direct lysis. All successful human pathogens have mechanisms of circumventing the antibacterial activity of the complement system and escaping this stage of the immune response. One of the ways in which pathogens achieve this is the deployment of proteases. Based on the increasing number of recent publications in this area, it appears that proteolytic inactivation of the antibacterial activities of the complement system is a common strategy of avoiding targeting by this arm of host innate immune defense. In this review, we focus on those bacteria that deploy proteases capable of degrading complement system components into non-functional fragments, thus impairing complement-dependent antibacterial activity and facilitating pathogen survival inside the host.
Collapse
Affiliation(s)
- Michal Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | | |
Collapse
|
48
|
Zhang S, Wang Z, Wang H. Maternal immunity in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:72-78. [PMID: 22387589 DOI: 10.1016/j.dci.2012.02.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 12/23/2011] [Accepted: 02/18/2012] [Indexed: 05/31/2023]
Abstract
Both innate and adaptive immune-relevant factors are transferred from mother to offspring in fishes. These maternally-transferred factors include IgM, lysozymes, lectin, cathelicidin and complement components. Recently, yolk proteins, phosvitin and lipovitellin, have been shown to be maternally-transferred factors, functioning in the defense of teleost larvae against pathogens. Among these factors, the mode of action of complement components and yolk proteins has been explored, whereas that of all the other factors remains elusive. At present, the transfer mechanisms of maternally-derived immune factors are largely unknown although those of IgM and yolk protein transmission from mother to offspring have been reported in some fishes. Maternal transfer of immunity is affected by many elements, including biological factors, such as age and maturation, and environmental conditions experienced by brood fish, such as pathogens and nutritional supply. Practically, the manipulation of maternal immunity transfer can be used to enhance the survival rate of fish larvae.
Collapse
Affiliation(s)
- Shicui Zhang
- Institute of Evolution and Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| | | | | |
Collapse
|
49
|
Cazander G, Jukema GN, Nibbering PH. Complement activation and inhibition in wound healing. Clin Dev Immunol 2012; 2012:534291. [PMID: 23346185 PMCID: PMC3546472 DOI: 10.1155/2012/534291] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/05/2012] [Accepted: 12/07/2012] [Indexed: 11/17/2022]
Abstract
Complement activation is needed to restore tissue injury; however, inappropriate activation of complement, as seen in chronic wounds can cause cell death and enhance inflammation, thus contributing to further injury and impaired wound healing. Therefore, attenuation of complement activation by specific inhibitors is considered as an innovative wound care strategy. Currently, the effects of several complement inhibitors, for example, the C3 inhibitor compstatin and several C1 and C5 inhibitors, are under investigation in patients with complement-mediated diseases. Although (pre)clinical research into the effects of these complement inhibitors on wound healing is limited, available data indicate that reduction of complement activation can improve wound healing. Moreover, medicine may take advantage of safe and effective agents that are produced by various microorganisms, symbionts, for example, medicinal maggots, and plants to attenuate complement activation. To conclude, for the development of new wound care strategies, (pre)clinical studies into the roles of complement and the effects of application of complement inhibitors in wound healing are required.
Collapse
Affiliation(s)
- Gwendolyn Cazander
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | | | | |
Collapse
|
50
|
Mäkelä K, Helén P, Haapasalo H, Paavonen T. Complement activation in astrocytomas: deposition of C4d and patient outcome. BMC Cancer 2012; 12:565. [PMID: 23199209 PMCID: PMC3517746 DOI: 10.1186/1471-2407-12-565] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 11/28/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND C4d is a cleavage product of complement component C4 and is considered to serve as a marker for the site of complement activation. In this study C4d staining of grade I-IV astrocytic tumors was studied to explore if there is an association between complement activation and the grade of tumor, or patient survival. METHODS Tissue micro-array samples of 102 astrocytomas were stained immunohistochemically. The material consisted of 9 pilocytic astrocytomas and 93 grade II-IV astrocytomas, of which 67 were primary resections and 26 recurrent tumors. The intensity of C4d staining as well as extent of C4d and CD34 staining were evaluated. The intensity of C4d staining was scored semiquantitatively. The extent of the staining was counted morphometrically with a point counting grid yielding a percent of C4d and CD34 positive area of the sample. RESULTS The intensity and extent of C4d staining increased in grade II-IV diffusely infiltrating astrocytoma tumors in line with the malignancy grade (p = 0.034 and p = 0.016, respectively, Kruskal-Wallis test). However, C4d positive tumor area percentages were higher in grade I pilocytic astrocytomas than in grade II-IV diffusely infiltrating astrocytomas (p = 0.041, Mann-Whitney test). There was a significant correlation between CD34 positive and C4d positive endothelial area fraction in diffusely infiltrating astrocytomas (p < 0.001, Pearson correlation). In these tumors, the increasing intensity of C4d staining was also associated with worsened patient outcome (p = 0.014, log-rank test). CONCLUSION The worsening of patient outcome and malignant progression of tumor cells seem to be connected to microenvironmental changes evoked by chronically activated complement.
Collapse
Affiliation(s)
- Katri Mäkelä
- Department of Pathology, University of Tampere Medical School, Tampere, Finland
- University of Tampere, School of Medicine, Biokatu 6, Tampere 33520, Finland
| | - Pauli Helén
- Unit of Neurosurgery, Tampere University Hospital, Tampere, Finland
| | - Hannu Haapasalo
- Department of Pathology, University of Tampere Medical School, Tampere, Finland
- Department of Pathology, Fimlab laboratories, Tampere University Hospital, Tampere, Finland
| | - Timo Paavonen
- Department of Pathology, University of Tampere Medical School, Tampere, Finland
- Department of Pathology, Fimlab laboratories, Tampere University Hospital, Tampere, Finland
| |
Collapse
|