1
|
Chawla AS, Vandereyken M, Arias M, Santiago L, Dikovskaya D, Nguyen C, Skariah N, Wenner N, Golovchenko NB, Thomson SJ, Ondari E, Garzón-Tituaña M, Anderson CJ, Bergkessel M, C D Hinton J, Edelblum KL, Pardo J, Swamy M. Distinct cell death pathways induced by granzymes collectively protect against intestinal Salmonella infection. Mucosal Immunol 2024; 17:1242-1255. [PMID: 39137883 PMCID: PMC11631773 DOI: 10.1016/j.mucimm.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
Intestinal intraepithelial T lymphocytes (IEL) constitutively express high amounts of the cytotoxic proteases Granzymes (Gzm) A and B and are therefore thought to protect the intestinal epithelium against infection by killing infected epithelial cells. However, the role of IEL granzymes in a protective immune response has yet to be demonstrated. We show that GzmA and GzmB are required to protect mice against oral, but not intravenous, infection with Salmonella enterica serovar Typhimurium, consistent with an intestine-specific role. IEL-intrinsic granzymes mediate the protective effects by controlling intracellular bacterial growth and aiding in cell-intrinsic pyroptotic cell death of epithelial cells. Surprisingly, we found that both granzymes play non-redundant roles. GzmB-/- mice carried significantly lower burdens of Salmonella, as predominant GzmA-mediated cell death effectively reduced bacterial translocation across the intestinal barrier. Conversely, in GzmA-/- mice, GzmB-driven apoptosis favored luminal Salmonella growth by providing nutrients, while still reducing translocation across the epithelial barrier. Together, the concerted actions of both GzmA and GzmB balance cell death mechanisms at the intestinal epithelium to provide optimal control that Salmonella cannot subvert.
Collapse
Affiliation(s)
- Amanpreet Singh Chawla
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Maud Vandereyken
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Maykel Arias
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, and CIBER en Enfermedades Infecciosas, Madrid, Spain; Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, Spain
| | - Llipsy Santiago
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, and CIBER en Enfermedades Infecciosas, Madrid, Spain; Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, Spain
| | - Dina Dikovskaya
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Chi Nguyen
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Neema Skariah
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Nicolas Wenner
- Department of Clinical Infection Microbiology & Immunology, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom; Current address: Biozentrum, University of Basel, Basel, Switzerland
| | - Natasha B Golovchenko
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah J Thomson
- Biological Services, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Edna Ondari
- Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Marcela Garzón-Tituaña
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, and CIBER en Enfermedades Infecciosas, Madrid, Spain
| | - Christopher J Anderson
- Centre for Inflammation Research, Institute for Regeneration & Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Megan Bergkessel
- Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Jay C D Hinton
- Department of Clinical Infection Microbiology & Immunology, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Karen L Edelblum
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julian Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, and CIBER en Enfermedades Infecciosas, Madrid, Spain; Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, Spain
| | - Mahima Swamy
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, United Kingdom.
| |
Collapse
|
2
|
Nguyen AT, McSorley SJ. Fighting the enemy within: Systemic immune defense against mucosal Salmonella infection. Immunol Lett 2024; 270:106930. [PMID: 39343314 DOI: 10.1016/j.imlet.2024.106930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Salmonella infection remains a persistent global health threat, as different serovars induce a range of clinical disease, depending upon bacterial virulence and host susceptibility. While some Salmonella serovars induce gastroenteritis in healthy individuals, others can cause more serious systemic enteric fever or invasive nontyphoidal Salmonellosis. The rise of antibiotic resistance, coupled with the absence of effective vaccines for most serovars, perpetuates the spread of Salmonella in endemic regions. A detailed mechanistic understanding of immunity to Salmonella infections has been aided by the availability of mouse models that have served as a valuable tool for understanding host-pathogen interactions under controlled laboratory conditions. These mouse studies have delineated the processes by which early inflammation is triggered after infection, how adaptive immunity is initiated in lymphoid tissues, and the contribution of lymphocyte memory responses to resistance. While recent progress has been made in vaccine development for some causes of enteric fever, deeper understanding of Salmonella-specific immune memory might allow the formation of new vaccines for all serovars. This review will provide a summary of our understanding of vaccination and protective immunity to Salmonella with a focus on recent developments in T cell memory formation.
Collapse
Affiliation(s)
- Alana T Nguyen
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Stephen J McSorley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Majeed S, Shah BR, Khalid N, Bielke L, Nazmi A. Dynamic Changes in the Intraepithelial Lymphocyte Numbers Following Salmonella Typhimurium Infection in Broiler Chickens. Animals (Basel) 2024; 14:3463. [PMID: 39682428 DOI: 10.3390/ani14233463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
At day 21 of age, Ross-308 broilers were orally gavaged with 7.5 × 106 CFU/mL S. Typhimurium (n = 30), and another 30 birds were kept as the control. The body weight of birds was recorded on days 0, 2, 7, and 14 days post-infection (dpi) to calculate body weight gains (BWGs). At each time point, seven birds per group were euthanized for sample collection to acquire IELs and lymphocytes from the ileum and spleen for flow cytometric analysis. A reduction in BWGs of the infected groups compared to the control group was observed only at 2 dpi. Additionally, there were no changes in the expression of IFN-γ, IL-1β, and TNF-α in the ileum at 2 and 7 dpi. The number of IELs increased significantly following Salmonella infection in the ileum at 2 and 7 dpi without any changes in spleen lymphocytes. The increase in the total number of IELs was derived from the elevated numbers of conventional CD8αβ+TCRαβ+ and natural IEL populations (CD4-CD8-TCRαβ+, CD8αα+TCRαβ+, TCRγδ+, non-T cells (TCRneg, and iCD8α cells)). The increase in regulatory IELs and the stable expression of proinflammatory cytokine genes during the first week of infection suggests the potential role of IELs in modulating intestinal inflammation.
Collapse
Affiliation(s)
- Shuja Majeed
- Department of Animal Sciences, College of Food Agriculture and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Bikas R Shah
- Department of Animal Sciences, College of Food Agriculture and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Nimra Khalid
- Department of Animal Sciences, College of Food Agriculture and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore 54000, Punjab, Pakistan
| | - Lisa Bielke
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Ali Nazmi
- Department of Animal Sciences, College of Food Agriculture and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Food for Health Discovery Theme, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Depew CE, McSorley SJ. The role of tissue resident memory CD4 T cells in Salmonella infection: Implications for future vaccines. Vaccine 2023; 41:6426-6433. [PMID: 37739887 DOI: 10.1016/j.vaccine.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/20/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023]
Abstract
Salmonella infections cause a wide range of intestinal and systemic disease that affects global human health. While some vaccines are available, they do not mitigate the impact of Salmonella on endemic areas. Research using Salmonella mouse models has revealed the important role of CD4 T cells and antibody in the development of protective immunity against Salmonella infection. Recent work points to a critical role for hepatic tissue-resident memory lymphocytes in naturally acquired immunity to systemic infection. Thus, understanding the genesis and function of this Salmonella-specific population is an important objective and is the primary focus of this review. Greater understanding of how these memory lymphocytes contribute to bacterial elimination could suggest new approaches to vaccination against an important human pathogen.
Collapse
Affiliation(s)
- Claire E Depew
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| | - Stephen J McSorley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
5
|
Wang N, Scott TA, Kupz A, Shreenivas MM, Peres NG, Hocking DM, Yang C, Jebeli L, Beattie L, Groom JR, Pierce TP, Wakim LM, Bedoui S, Strugnell RA. Vaccine-induced inflammation and inflammatory monocytes promote CD4+ T cell-dependent immunity against murine salmonellosis. PLoS Pathog 2023; 19:e1011666. [PMID: 37733817 PMCID: PMC10547166 DOI: 10.1371/journal.ppat.1011666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/03/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Prior infection can generate protective immunity against subsequent infection, although the efficacy of such immunity can vary considerably. Live-attenuated vaccines (LAVs) are one of the most effective methods for mimicking this natural process, and analysis of their efficacy has proven instrumental in the identification of protective immune mechanisms. Here, we address the question of what makes a LAV efficacious by characterising immune responses to a LAV, termed TAS2010, which is highly protective (80-90%) against lethal murine salmonellosis, in comparison with a moderately protective (40-50%) LAV, BRD509. Mice vaccinated with TAS2010 developed immunity systemically and were protected against gut-associated virulent infection in a CD4+ T cell-dependent manner. TAS2010-vaccinated mice showed increased activation of Th1 responses compared with their BRD509-vaccinated counterparts, leading to increased Th1 memory populations in both lymphoid and non-lymphoid organs. The optimal development of Th1-driven immunity was closely correlated with the activation of CD11b+Ly6GnegLy6Chi inflammatory monocytes (IMs), the activation of which can be modulated proportionally by bacterial load in vivo. Upon vaccination with the LAV, IMs expressed T cell chemoattractant CXCL9 that attracted CD4+ T cells to the foci of infection, where IMs also served as a potent source of antigen presentation and Th1-promoting cytokine IL-12. The expression of MHC-II in IMs was rapidly upregulated following vaccination and then maintained at an elevated level in immune mice, suggesting IMs may have a role in sustained antigen stimulation. Our findings present a longitudinal analysis of CD4+ T cell development post-vaccination with an intracellular bacterial LAV, and highlight the benefit of inflammation in the development of Th1 immunity. Future studies focusing on the induction of IMs may reveal key strategies for improving vaccine-induced T cell immunity.
Collapse
Affiliation(s)
- Nancy Wang
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timothy A. Scott
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Andreas Kupz
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Meghanashree M. Shreenivas
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Newton G. Peres
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Dianna M. Hocking
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Chenying Yang
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Leila Jebeli
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Joanna R. Groom
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Thomas P. Pierce
- Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, Parkville, Victoria, Australia
| | - Linda M. Wakim
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Richard A. Strugnell
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Chatterjee R, Chowdhury AR, Mukherjee D, Chakravortty D. From Eberthella typhi to Salmonella Typhi: The Fascinating Journey of the Virulence and Pathogenicity of Salmonella Typhi. ACS OMEGA 2023; 8:25674-25697. [PMID: 37521659 PMCID: PMC10373206 DOI: 10.1021/acsomega.3c02386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
Salmonella Typhi (S. Typhi), the invasive typhoidal serovar of Salmonella enterica that causes typhoid fever in humans, is a severe threat to global health. It is one of the major causes of high morbidity and mortality in developing countries. According to recent WHO estimates, approximately 11-21 million typhoid fever illnesses occur annually worldwide, accounting for 0.12-0.16 million deaths. Salmonella infection can spread to healthy individuals by the consumption of contaminated food and water. Typhoid fever in humans sometimes is accompanied by several other critical extraintestinal complications related to the central nervous system, cardiovascular system, pulmonary system, and hepatobiliary system. Salmonella Pathogenicity Island-1 and Salmonella Pathogenicity Island-2 are the two genomic segments containing genes encoding virulent factors that regulate its invasion and systemic pathogenesis. This Review aims to shed light on a comparative analysis of the virulence and pathogenesis of the typhoidal and nontyphoidal serovars of S. enterica.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Atish Roy Chowdhury
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Debapriya Mukherjee
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Dipshikha Chakravortty
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Centre
for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
7
|
Zhou G, Zhao Y, Ma Q, Li Q, Wang S, Shi H. Manipulation of host immune defenses by effector proteins delivered from multiple secretion systems of Salmonella and its application in vaccine research. Front Immunol 2023; 14:1152017. [PMID: 37081875 PMCID: PMC10112668 DOI: 10.3389/fimmu.2023.1152017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Salmonella is an important zoonotic bacterial species and hazardous for the health of human beings and livestock globally. Depending on the host, Salmonella can cause diseases ranging from gastroenteritis to life-threatening systemic infection. In this review, we discuss the effector proteins used by Salmonella to evade or manipulate four different levels of host immune defenses: commensal flora, intestinal epithelial-mucosal barrier, innate and adaptive immunity. At present, Salmonella has evolved a variety of strategies against host defense mechanisms, among which various effector proteins delivered by the secretory systems play a key role. During its passage through the digestive system, Salmonella has to face the intact intestinal epithelial barrier as well as competition with commensal flora. After invasion of host cells, Salmonella manipulates inflammatory pathways, ubiquitination and autophagy processes with the help of effector proteins. Finally, Salmonella evades the adaptive immune system by interfering the migration of dendritic cells and interacting with T and B lymphocytes. In conclusion, Salmonella can manipulate multiple aspects of host defense to promote its replication in the host.
Collapse
Affiliation(s)
- Guodong Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuying Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Qifeng Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China
| |
Collapse
|
8
|
Agbayani G, Clark K, Sad S, Murphy SP, Krishnan L. Roles of natural resistance-associated macrophage protein-1 in modulating bacterial distribution and immune responses during Salmonella enterica serovar Typhimurium infection in murine pregnancy. Am J Reprod Immunol 2022; 88:e13599. [PMID: 35851978 PMCID: PMC9509426 DOI: 10.1111/aji.13599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 11/27/2022] Open
Abstract
PROBLEM Salmonella enterica serovar Typhimurium (S.Tm) infection in Nramp1+/+ mice during pregnancy can lead to profound bacterial growth in the feto-placental unit and adverse pregnancy outcomes, including fetal loss, maternal illness and death. The kinetics and mechanisms by which S.Tm gains entry within individual feto-placental unit, and disseminates through tissues leading to placental resorption and fetal demise remain unclear. METHOD OF STUDY Mice were systemically infected with S.Tm. Bacterial burden within spleen and individual placentas, and placental/fetal resorptions were quantified. Flow cytometric analysis of immune cell types in the spleen and individual placentas was performed. Cytokine expression in maternal serum was determined through cytometric bead array. RESULTS Systemic infection with S.Tm resulted in preferential bacterial proliferation in placentas compared to the spleen in Nramp1+/+ mice. At 24 h post-infection, the mean infection rate of individual placentas per mouse was ∼50%, increasing to >75% by 72 h post-infection, suggesting that initial infection in few sites progresses to rapid spread of infection through the uterine milieu. This correlated with a steady increase in placental/fetal resorption rates. Placental infection was associated with local increased neutrophil percentages, whereas numbers and percentages in the spleen remained unchanged, suggesting dichotomous modulation of inflammation between the systemic compartment and the feto-maternal interface. Reduced survival rates of pregnant mice during infection correlated with decreased serum IFN-γ but increased IL-10 levels relative to non-pregnant controls. CONCLUSION Pregnancy compromises host resistance conferred by Nramp1 against S.Tm through compartment-specific regulation of maternal and placental cellular responses, and modulation of systemic cytokine expression.
Collapse
Affiliation(s)
- Gerard Agbayani
- Division of Life Sciences, Human Health Therapeutics, National Research Council Canada, Ottawa, Ontario, Canada
| | - Kristina Clark
- Division of Life Sciences, Human Health Therapeutics, National Research Council Canada, Ottawa, Ontario, Canada
| | - Subash Sad
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Shawn P Murphy
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Lakshmi Krishnan
- Division of Life Sciences, Human Health Therapeutics, National Research Council Canada, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Howell LM, Forbes NS. Bacteria-based immune therapies for cancer treatment. Semin Cancer Biol 2021; 86:1163-1178. [PMID: 34547442 DOI: 10.1016/j.semcancer.2021.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/03/2021] [Accepted: 09/12/2021] [Indexed: 12/23/2022]
Abstract
Engineered bacterial therapies that target the tumor immune landscape offer a new class of cancer immunotherapy. Salmonella enterica and Listeria monocytogenes are two species of bacteria that have been engineered to specifically target tumors and serve as delivery vessels for immunotherapies. Therapeutic bacteria have been engineered to deliver cytokines, gene silencing shRNA, and tumor associated antigens that increase immune activation. Bacterial therapies stimulate both the innate and adaptive immune system, change the immune dynamics of the tumor microenvironment, and offer unique strategies for targeting tumors. Bacteria have innate adjuvant properties, which enable both the delivered molecules and the bacteria themselves to stimulate immune responses. Bacterial immunotherapies that deliver cytokines and tumor-associated antigens have demonstrated clinical efficacy. Harnessing the diverse set of mechanisms that Salmonella and Listeria use to alter the tumor-immune landscape has the potential to generate many new and effective immunotherapies.
Collapse
Affiliation(s)
- Lars M Howell
- Department of Chemical Engineering, University of Massachusetts, Amherst, United States
| | - Neil S Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, United States.
| |
Collapse
|
10
|
T-Cell Cytokine Response in Salmonella Typhimurium-Vaccinated versus Infected Pigs. Vaccines (Basel) 2021; 9:vaccines9080845. [PMID: 34451970 PMCID: PMC8402558 DOI: 10.3390/vaccines9080845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022] Open
Abstract
Vaccination with the live attenuated vaccine Salmoporc is an effective measure to control Salmonella Typhimurium (STM) in affected swine populations. However, the cellular immune response evoked by the Salmoporc vaccine including differences in vaccinated pigs versus non-vaccinated pigs upon STM infection have not been characterized yet. To investigate this, tissue-derived porcine lymphocytes from different treatment groups (vaccination-only, vaccination and infection, infection-only, untreated controls) were stimulated in vitro with heat-inactivated STM and abundances of IFN-γ, TNF-α and/or IL-17A-producing T-cell subsets were compared across organs and treatment groups. Overall, our results show the induction of a strong CD4+ T-cell response after STM infection, both locally and systemically. Low-level induction of STM-specific cytokine-producing CD4+ T cells, notably for the IFN-γ/TNF-α co-producing phenotype, was detected after vaccination-only. Numerous significant contrasts in cytokine-producing T-cell phenotypes were observed after infection in vaccinated and infected versus infected-only animals. These results suggest that vaccine-induced STM-specific cytokine-producing CD4+ T cells contribute to local immunity in the gut and may limit the spread of STM to lymph nodes and systemic organs. Hence, our study provides insights into the underlying immune mechanisms that account for the efficacy of the Salmoporc vaccine.
Collapse
|
11
|
Harrell JE, Hahn MM, D'Souza SJ, Vasicek EM, Sandala JL, Gunn JS, McLachlan JB. Salmonella Biofilm Formation, Chronic Infection, and Immunity Within the Intestine and Hepatobiliary Tract. Front Cell Infect Microbiol 2021; 10:624622. [PMID: 33604308 PMCID: PMC7885405 DOI: 10.3389/fcimb.2020.624622] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Within the species of Salmonella enterica, there is significant diversity represented among the numerous subspecies and serovars. Collectively, these account for microbes with variable host ranges, from common plant and animal colonizers to extremely pathogenic and human-specific serovars. Despite these differences, many Salmonella species find commonality in the ability to form biofilms and the ability to cause acute, latent, or chronic disease. The exact outcome of infection depends on many factors such as the growth state of Salmonella, the environmental conditions encountered at the time of infection, as well as the infected host and immune response elicited. Here, we review the numerous biofilm lifestyles of Salmonella (on biotic and abiotic surfaces) and how the production of extracellular polymeric substances not only enhances long-term persistence outside the host but also is an essential function in chronic human infections. Furthermore, careful consideration is made for the events during initial infection that allow for gut transcytosis which, in conjunction with host immune functions, often determine the progression of disease. Both typhoidal and non-typhoidal salmonellae can cause chronic and/or secondary infections, thus the adaptive immune responses to both types of bacteria are discussed with particular attention to the differences between Salmonella Typhi, Salmonella Typhimurium, and invasive non-typhoidal Salmonella that can result in differential immune responses. Finally, while strides have been made in our understanding of immunity to Salmonella in the lymphoid organs, fewer definitive studies exist for intestinal and hepatobiliary immunity. By examining our current knowledge and what remains to be determined, we provide insight into new directions in the field of Salmonella immunity, particularly as it relates to chronic infection.
Collapse
Affiliation(s)
- Jaikin E Harrell
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Mark M Hahn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Shaina J D'Souza
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Erin M Vasicek
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Jenna L Sandala
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - John S Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
12
|
Shepherd FR, McLaren JE. T Cell Immunity to Bacterial Pathogens: Mechanisms of Immune Control and Bacterial Evasion. Int J Mol Sci 2020; 21:E6144. [PMID: 32858901 PMCID: PMC7504484 DOI: 10.3390/ijms21176144] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
The human body frequently encounters harmful bacterial pathogens and employs immune defense mechanisms designed to counteract such pathogenic assault. In the adaptive immune system, major histocompatibility complex (MHC)-restricted αβ T cells, along with unconventional αβ or γδ T cells, respond to bacterial antigens to orchestrate persisting protective immune responses and generate immunological memory. Research in the past ten years accelerated our knowledge of how T cells recognize bacterial antigens and how many bacterial species have evolved mechanisms to evade host antimicrobial immune responses. Such escape mechanisms act to corrupt the crosstalk between innate and adaptive immunity, potentially tipping the balance of host immune responses toward pathological rather than protective. This review examines the latest developments in our knowledge of how T cell immunity responds to bacterial pathogens and evaluates some of the mechanisms that pathogenic bacteria use to evade such T cell immunosurveillance, to promote virulence and survival in the host.
Collapse
Affiliation(s)
| | - James E. McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
| |
Collapse
|
13
|
Evasion of MAIT cell recognition by the African Salmonella Typhimurium ST313 pathovar that causes invasive disease. Proc Natl Acad Sci U S A 2020; 117:20717-20728. [PMID: 32788367 PMCID: PMC7456131 DOI: 10.1073/pnas.2007472117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are innate T lymphocytes activated by bacteria that produce vitamin B2 metabolites. Mouse models of infection have demonstrated a role for MAIT cells in antimicrobial defense. However, proposed protective roles of MAIT cells in human infections remain unproven and clinical conditions associated with selective absence of MAIT cells have not been identified. We report that typhoidal and nontyphoidal Salmonella enterica strains activate MAIT cells. However, S. Typhimurium sequence type 313 (ST313) lineage 2 strains, which are responsible for the burden of multidrug-resistant nontyphoidal invasive disease in Africa, escape MAIT cell recognition through overexpression of ribB This bacterial gene encodes the 4-dihydroxy-2-butanone-4-phosphate synthase enzyme of the riboflavin biosynthetic pathway. The MAIT cell-specific phenotype did not extend to other innate lymphocytes. We propose that ribB overexpression is an evolved trait that facilitates evasion from immune recognition by MAIT cells and contributes to the invasive pathogenesis of S. Typhimurium ST313 lineage 2.
Collapse
|
14
|
Perez-Toledo M, Beristain-Covarrubias N, Channell WM, Hitchcock JR, Cook CN, Coughlan RE, Bobat S, Jones ND, Nakamura K, Ross EA, Rossiter AE, Rooke J, Garcia-Gimenez A, Jossi S, Persaud RR, Marcial-Juarez E, Flores-Langarica A, Henderson IR, Withers DR, Watson SP, Cunningham AF. Mice Deficient in T-bet Form Inducible NO Synthase-Positive Granulomas That Fail to Constrain Salmonella. THE JOURNAL OF IMMUNOLOGY 2020; 205:708-719. [PMID: 32591391 PMCID: PMC7372318 DOI: 10.4049/jimmunol.2000089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/29/2020] [Indexed: 11/19/2022]
Abstract
Clearance of intracellular infections caused by Salmonella Typhimurium (STm) requires IFN-γ and the Th1-associated transcription factor T-bet. Nevertheless, whereas IFN-γ-/- mice succumb rapidly to STm infections, T-bet-/- mice do not. In this study, we assess the anatomy of immune responses and the relationship with bacterial localization in the spleens and livers of STm-infected IFN-γ-/- and T-bet-/- mice. In IFN-γ-/- mice, there is deficient granuloma formation and inducible NO synthase (iNOS) induction, increased dissemination of bacteria throughout the organs, and rapid death. The provision of a source of IFN-γ reverses this, coincident with subsequent granuloma formation and substantially extends survival when compared with mice deficient in all sources of IFN-γ. T-bet-/- mice induce significant levels of IFN-γ- after challenge. Moreover, T-bet-/- mice have augmented IL-17 and neutrophil numbers, and neutralizing IL-17 reduces the neutrophilia but does not affect numbers of bacteria detected. Surprisingly, T-bet-/- mice exhibit surprisingly wild-type-like immune cell organization postinfection, including extensive iNOS+ granuloma formation. In wild-type mice, most bacteria are within iNOS+ granulomas, but in T-bet-/- mice, most bacteria are outside these sites. Therefore, Th1 cells act to restrict bacteria within IFN-γ-dependent iNOS+ granulomas and prevent dissemination.
Collapse
Affiliation(s)
- Marisol Perez-Toledo
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Nonantzin Beristain-Covarrubias
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - William M Channell
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jessica R Hitchcock
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Charlotte N Cook
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ruth E Coughlan
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Saeeda Bobat
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Nicholas D Jones
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Kyoko Nakamura
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ewan A Ross
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Amanda E Rossiter
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jessica Rooke
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Alicia Garcia-Gimenez
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Sian Jossi
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ruby R Persaud
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Edith Marcial-Juarez
- Department of Cell Biology, Center for Research and Advanced Studies, The National Polytechnic Institute, Mexico City 07360, Mexico
| | - Adriana Flores-Langarica
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia; and
| | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
15
|
Yadav J, Dikshit N, Ismaeel S, Qadri A. Innate Activation of IFN-γ-iNOS Axis During Infection With Salmonella Represses the Ability of T Cells to Produce IL-2. Front Immunol 2020; 11:514. [PMID: 32269573 PMCID: PMC7109407 DOI: 10.3389/fimmu.2020.00514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/06/2020] [Indexed: 12/28/2022] Open
Abstract
Pathogenic Salmonella serovars are a major cause of enteric illness in humans and animals, and produce clinical manifestations ranging from localized gastroenteritis to systemic disease. T cells are a critical component of immunity against this intracellular pathogen. The mechanisms by which Salmonella modulates T-cell—mediated immune responses in order to establish systemic infection are not completely understood. We show that infection of mice with Salmonella enterica serovar Typhimurium (S. Typhimurium) suppresses IL-2 and increases IFN-γ and IL-17 production from T cells activated in vivo or ex vivo through the T cell receptor. Infection with S. Typhimurium brings about recruitment of CD11b+Gr1+ suppressor cells to the spleen. Ex vivo depletion of these cells restores the ability of activated T cells to produce IL-2 and brings secretion of IFN-γ and IL-17 from these cells back to basal levels. The reduction in IL-2 secretion is not seen in IFN-γ−/− and iNOS−/− mice infected with Salmonella. Our findings demonstrate that sustained innate activated IFN-γ production during progression of infection with Salmonella reduces IL-2—secreting capability of T cells through an iNOS-mediated signaling pathway that can adversely affect long term immunity against this pathogen.
Collapse
Affiliation(s)
- Jitender Yadav
- Hybridoma Laboratory, National Institute of Immunology, New Delhi, India
| | - Neha Dikshit
- Hybridoma Laboratory, National Institute of Immunology, New Delhi, India
| | - Sana Ismaeel
- Hybridoma Laboratory, National Institute of Immunology, New Delhi, India
| | - Ayub Qadri
- Hybridoma Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
16
|
Quantitative Assessment of an Artificial Neural Network for the Variation in Immunity to Salmonella Infection Among Sudanese and Chinese Populations and the Relationship Between HLA-DQB1 and Antibody: A Preliminary Study. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.99379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
17
|
Takaya A, Yamamoto T, Tokoyoda K. Humoral Immunity vs. Salmonella. Front Immunol 2020; 10:3155. [PMID: 32038650 PMCID: PMC6985548 DOI: 10.3389/fimmu.2019.03155] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/30/2019] [Indexed: 01/13/2023] Open
Abstract
In primary infection with Salmonella, it has been reported—without consideration of Salmonella's functions—that humoral immunity plays no role in the clearance of bacteria. In fact, Salmonella targets and suppresses several aspects of humoral immunity, including B cell lymphopoiesis, B cell activation, and IgG production. In particular, the suppression of IgG-secreting plasma cell maintenance allows the persistence of Salmonella in tissues. Therefore, the critical role(s) of humoral immunity in the response to Salmonella infection, especially at the late phase, should be re-investigated. The suppression of IgG plasma cell memory strongly hinders vaccine development against non-typhoidal Salmonella (NTS) because Salmonella can also reduce humoral immune memory against other bacteria and viruses, obtained from previous vaccination or infection. We propose a new vaccine against Salmonella that would not impair humoral immunity, and which could also be used as a treatment for antibody-dependent autoimmune diseases to deplete pathogenic long-lived plasma cells, by utilizing the Salmonella's own suppression mechanism of humoral immunity.
Collapse
Affiliation(s)
- Akiko Takaya
- Laboratory of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tomoko Yamamoto
- Department of Infectious Diseases, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Koji Tokoyoda
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), A Leibniz Institute, Berlin, Germany
| |
Collapse
|
18
|
Amadou Amani S, Lang ML. Bacteria That Cause Enteric Diseases Stimulate Distinct Humoral Immune Responses. Front Immunol 2020; 11:565648. [PMID: 33042146 PMCID: PMC7524877 DOI: 10.3389/fimmu.2020.565648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
Bacterial enteric pathogens individually and collectively represent a serious global health burden. Humoral immune responses following natural or experimentally-induced infections are broadly appreciated to contribute to pathogen clearance and prevention of disease recurrence. Herein, we have compared observations on humoral immune mechanisms following infection with Citrobacter rodentium, the model for enteropathogenic Escherichia coli, Vibrio cholerae, Shigella species, Salmonella enterica species, and Clostridioides difficile. A comparison of what is known about the humoral immune responses to these pathogens reveals considerable variance in specific features of humoral immunity including establishment of high affinity, IgG class-switched memory B cell and long-lived plasma cell compartments. This article suggests that such variance could be contributory to persistent and recurrent disease.
Collapse
|
19
|
Cerny O, Holden DW. Salmonella SPI-2 type III secretion system-dependent inhibition of antigen presentation and T cell function. Immunol Lett 2019; 215:35-39. [PMID: 30771380 DOI: 10.1016/j.imlet.2019.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/17/2022]
Abstract
Salmonella enterica serovars infect a broad range of mammalian hosts, including humans, causing both gastrointestinal and systemic diseases. Effective immune responses to Salmonella infections depend largely on CD4+ T cell activation by dendritic cells (DCs). Bacteria are internalised by intestinal DCs and respond by translocating effectors of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system (T3SS) into host cells. In this review, we discuss processes that are hijacked by SPI-2 T3SS effectors and how this affects DC biology and the activation of T cell responses.
Collapse
Affiliation(s)
- Ondrej Cerny
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, SW7 2AZ, UK
| | - David W Holden
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
20
|
Unexpected Role of CD8 T Cells in Accelerated Clearance of Salmonella enterica Serovar Typhimurium from H-2 Congenic mice. Infect Immun 2019; 87:IAI.00588-19. [PMID: 31427450 DOI: 10.1128/iai.00588-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
Salmonella infection can cause gastroenteritis in healthy individuals or a serious, systemic infection in immunocompromised patients and has a global impact. CD4 Th1 cells represent the main lymphocyte population that participates in bacterial clearance during both primary and secondary infections in mice of the H-2b haplotype. Previous studies have used congenic mice to examine the function of major histocompatibility complex (MHC) molecules in elimination of this pathogen from the host. In this study, we further characterized the ability of H-2b, H-2k, and H-2u molecules to influence adaptive immunity to Salmonella in MHC congenic mice. By depleting different cell populations during infection, we unexpectedly found that CD8 T cells, in addition to CD4 T cells, play a major role in accelerated clearance of bacteria from H-2k congenic hosts. Our data suggest that CD8 T cells accelerate clearance in some MHC congenic mouse strains and could therefore represent an unexpected contributor to the protective efficacy of Salmonella vaccines outside the typical studies in C57BL/6 mice.
Collapse
|
21
|
Wei S, Huang J, Liu Z, Wang M, Zhang B, Lian Z, Guo Y, Han H. Differential immune responses of C57BL/6 mice to infection by Salmonella enterica serovar Typhimurium strain SL1344, CVCC541 and CMCC50115. Virulence 2019; 10:248-259. [PMID: 30898022 PMCID: PMC6527021 DOI: 10.1080/21505594.2019.1597496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
With a broad range of hosts, Salmonella enterica serovar Typhimurium (S. Typhimurium) is the major cause of gastroenteritis in human beings and systemic disease in susceptible mice strains. However, different S. Typhimurium strains differ in regard to virulence and host adaptation. Here, C57BL/6 mice were infected, respectively, with different S. Typhimurium strains SL1344 (calf), CVCC541 (chicken) and CMCC50115 (mutton) to determine their virulence and host immune responses. It was found that mice were less susceptible to infection by S. Typhimurium CVCC541 and CMCC50115 strains, with lower lethality and decreased bacterial burden in liver and spleen. Besides, S. Typhimurium strains CVCC541 and CMCC50115 enhanced host innate immune responses by increased frequencies of macrophages and neutrophils 3 days after infection. But SL1344 strain evaded immune response by inducing apoptosis of macrophages. Moreover, CVCC541 could elicit adaptive immune responses of host 11 days after infection upon examination of the proliferation and activation of CD4+ T cells. In addition, 125 and 138 unique mutant coding genes, respectively, in S. Typhimurium strains CVCC541 and CMCC50115 and 78 shared mutant coding genes were annotated by genomic alignment to SL1344 genome and the signal pathways involving these genes were further analyzed. The acquired results indicate that different original S. Typhimurium strains show differential virulence and may induce diverse immune responses in the same host infected.
Collapse
Affiliation(s)
- Shao Wei
- a State Key Laboratory of Animal Nutrition, College of Animal Science and Technology , China Agricultural University , Beijing , China.,b Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China.,c National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | - Jianwei Huang
- b Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China.,c National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology , China Agricultural University , Beijing , China.,d Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | - Zhexi Liu
- b Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China.,c National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology , China Agricultural University , Beijing , China.,d Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | - Mengyao Wang
- b Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China.,c National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology , China Agricultural University , Beijing , China.,d Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | - Bingkun Zhang
- a State Key Laboratory of Animal Nutrition, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | - Zhengxing Lian
- b Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China.,c National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology , China Agricultural University , Beijing , China.,d Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | - Yuming Guo
- a State Key Laboratory of Animal Nutrition, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | - Hongbing Han
- b Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China.,c National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology , China Agricultural University , Beijing , China.,d Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology , China Agricultural University , Beijing , China
| |
Collapse
|
22
|
O’Brien EC, McLoughlin RM. Considering the ‘Alternatives’ for Next-Generation Anti-Staphylococcus aureus Vaccine Development. Trends Mol Med 2019; 25:171-184. [DOI: 10.1016/j.molmed.2018.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
|
23
|
Gogoi M, Chandra K, Sarikhani M, Ramani R, Sundaresan NR, Chakravortty D. Salmonella escapes adaptive immune response via SIRT2 mediated modulation of innate immune response in dendritic cells. PLoS Pathog 2018; 14:e1007437. [PMID: 30452468 PMCID: PMC6277114 DOI: 10.1371/journal.ppat.1007437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 12/03/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022] Open
Abstract
Salmonella being a successful pathogen, employs a plethora of immune evasion mechanisms. This contributes to pathogenesis, persistence and also limits the efficacy of available treatment. All these contributing factors call upon for new drug targets against Salmonella. For the first time, we have demonstrated that Salmonella upregulates sirtuin 2 (SIRT2), an NAD+ dependent deacetylase in dendritic cells (DC). SIRT2 upregulation results in translocation of NFκB p65 to the nucleus. This further upregulates NOS2 transcription and nitric oxide (NO) production. NO subsequently shows antibacterial activity and suppresses T cell proliferation. NOS2 mediated effect of SIRT2 is further validated by the absence of effect of SIRT2 inhibition in NOS2-/- mice. Inhibition of SIRT2 increases intracellular survival of the pathogen and enhances antigen presentation in vitro. However, in vivo SIRT2 inhibition shows lower bacterial organ burden and reduced tissue damage. SIRT2 knockout mice also demonstrate reduced bacterial organ burden compared to wild-type mice. Collectively, our results prove the role of SIRT2 in Salmonella pathogenesis and the mechanism of action. This can aid in designing of host-targeted therapeutics directed towards inhibition of SIRT2.
Collapse
Affiliation(s)
- Mayuri Gogoi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Kasturi Chandra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Mohsen Sarikhani
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Ramya Ramani
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Nagalingam Ravi Sundaresan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Division of Biological Sciences, Indian Institute of Science, Bangalore, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Division of Biological Sciences, Indian Institute of Science, Bangalore, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
24
|
Clonal analysis of Salmonella-specific effector T cells reveals serovar-specific and cross-reactive T cell responses. Nat Immunol 2018; 19:742-754. [PMID: 29925993 DOI: 10.1038/s41590-018-0133-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 04/19/2018] [Indexed: 12/20/2022]
Abstract
To tackle the complexity of cross-reactive and pathogen-specific T cell responses against related Salmonella serovars, we used mass cytometry, unbiased single-cell cloning, live fluorescence barcoding, and T cell-receptor sequencing to reconstruct the Salmonella-specific repertoire of circulating effector CD4+ T cells, isolated from volunteers challenged with Salmonella enterica serovar Typhi (S. Typhi) or Salmonella Paratyphi A (S. Paratyphi). We describe the expansion of cross-reactive responses against distantly related Salmonella serovars and of clonotypes recognizing immunodominant antigens uniquely expressed by S. Typhi or S. Paratyphi A. In addition, single-amino acid variations in two immunodominant proteins, CdtB and PhoN, lead to the accumulation of T cells that do not cross-react against the different serovars, thus demonstrating how minor sequence variations in a complex microorganism shape the pathogen-specific T cell repertoire. Our results identify immune-dominant, serovar-specific, and cross-reactive T cell antigens, which should aid in the design of T cell-vaccination strategies against Salmonella.
Collapse
|
25
|
Verma S, Sugadev R, Kumar A, Chandna S, Ganju L, Bansal A. Multi-epitope DnaK peptide vaccine against S.Typhi: An in silico approach. Vaccine 2018; 36:4014-4022. [DOI: 10.1016/j.vaccine.2018.05.106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 10/14/2022]
|
26
|
Pham OH, O’Donnell H, Al-Shamkhani A, Kerrinnes T, Tsolis RM, McSorley SJ. T cell expression of IL-18R and DR3 is essential for non-cognate stimulation of Th1 cells and optimal clearance of intracellular bacteria. PLoS Pathog 2017; 13:e1006566. [PMID: 28817719 PMCID: PMC5574617 DOI: 10.1371/journal.ppat.1006566] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/29/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023] Open
Abstract
Th1 cells can be activated by TCR-independent stimuli, but the importance of this pathway in vivo and the precise mechanisms involved require further investigation. Here, we used a simple model of non-cognate Th1 cell stimulation in Salmonella-infected mice to examine these issues. CD4 Th1 cell expression of both IL-18R and DR3 was required for optimal IFN-γ induction in response to non-cognate stimulation, while IL-15R expression was dispensable. Interestingly, effector Th1 cells generated by immunization rather than live infection had lower non-cognate activity despite comparable IL-18R and DR3 expression. Mice lacking T cell intrinsic expression of MyD88, an important adapter molecule in non-cognate T cell stimulation, exhibited higher bacterial burdens upon infection with Salmonella, Chlamydia or Brucella, suggesting that non-cognate Th1 stimulation is a critical element of efficient bacterial clearance. Thus, IL-18R and DR3 are critical players in non-cognate stimulation of Th1 cells and this response plays an important role in protection against intracellular bacteria.
Collapse
Affiliation(s)
- Oanh H. Pham
- Center for Comparative Medicine and Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Hope O’Donnell
- Center for Comparative Medicine and Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Aymen Al-Shamkhani
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Tobias Kerrinnes
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, United States of America
| | - Renée M. Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, United States of America
| | - Stephen J. McSorley
- Center for Comparative Medicine and Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
27
|
Kurtz JR, Goggins JA, McLachlan JB. Salmonella infection: Interplay between the bacteria and host immune system. Immunol Lett 2017; 190:42-50. [PMID: 28720334 DOI: 10.1016/j.imlet.2017.07.006] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022]
Abstract
Salmonella infection causes morbidity and mortality throughout the world with the host immune response varying depending on whether the infection is acute and limited, or systemic and chronic. Additionally, Salmonella bacteria have evolved multiple mechanisms to avoid or subvert immunity to its own benefit and often the anatomical location of infection plays a role in both the immune response and bacterial fate. Here, we provide an overview of the interplay between the immune system and Salmonella, while discussing how different host and bacterial factors influence the outcome of infection.
Collapse
Affiliation(s)
- Jonathan R Kurtz
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - J Alan Goggins
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States.
| |
Collapse
|
28
|
Abstract
Salmonella enterica subspecies enterica includes several serovars infecting both humans and other animals and leading to typhoid fever or gastroenteritis. The high prevalence of associated morbidity and mortality, together with an increased emergence of multidrug-resistant strains, is a current global health issue that has prompted the development of vaccination strategies that confer protection against most serovars. Currently available systemic vaccine approaches have major limitations, including a reduced effectiveness in young children and a lack of cross-protection among different strains. Having studied host-pathogen interactions, microbiologists and immunologists argue in favor of topical gastrointestinal administration for improvement in vaccine efficacy. Here, recent advances in this field are summarized, including mechanisms of bacterial uptake at the intestinal epithelium, the assessment of protective host immunity, and improved animal models that closely mimic infection in humans. The pros and cons of existing vaccines are presented, along with recent progress made with novel formulations. Finally, new candidate antigens and their relevance in the refined design of anti-Salmonella vaccines are discussed, along with antigen vectorization strategies such as nanoparticles or secretory immunoglobulins, with a focus on potentiating mucosal vaccine efficacy.
Collapse
|
29
|
Arias M, Martínez-Lostao L, Santiago L, Ferrandez A, Granville DJ, Pardo J. The Untold Story of Granzymes in Oncoimmunology: Novel Opportunities with Old Acquaintances. Trends Cancer 2017; 3:407-422. [PMID: 28718416 DOI: 10.1016/j.trecan.2017.04.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 12/16/2022]
Abstract
For more than 20 years perforin and granzymes (GZMs) have been recognized as key cell death executors of cytotoxic T (Tc) and natural killer (NK) cells during cancer immunosurveillance. In immune surveillance, perforin and GZMB, the most potent cytotoxic molecules, act mainly as antitumoral and anti-infectious factors. However, when expressed by immune regulatory cells they may contribute to immune evasion of specific cancer types. By contrast, the other major granzyme, GZMA, seems not to play a major role in Tc/NK cell-mediated cytotoxicity, but acts as a proinflammatory cytokine that might contribute to cancer development. Members of the GZM family also regulate other biological processes unrelated to cell death, such as angiogenesis, vascular integrity, extracellular matrix remodeling, and barrier function, all of which contribute to cancer initiation and progression. Thus, a new paradigm is emerging in the field of oncoimmunology. Can GZMs act as protumoral factors under some circumstances? We review the diverse roles of GZMs in cancer progression, and new therapeutic opportunities emerging from targeting these protumoral roles.
Collapse
Affiliation(s)
- Maykel Arias
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; These authors contributed equally to this work
| | - Luis Martínez-Lostao
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; Department of Biochemistry and Molecular and Cell Biology, and Department of Microbiology, Preventive Medicine, and Public Health, University of Zaragoza, 50009 Zaragoza, Spain; Servicio de Inmunología Hospital Clínico Universitario Lorenzo Blesa, Zaragoza, Spain; Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain; These authors contributed equally to this work
| | - Llipsy Santiago
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain
| | - Angel Ferrandez
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; Servicio de Aparato Digestivo, Hospital Clínico Universitario Lorenzo Blesa, Zaragoza, Spain
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Julián Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; Department of Biochemistry and Molecular and Cell Biology, and Department of Microbiology, Preventive Medicine, and Public Health, University of Zaragoza, 50009 Zaragoza, Spain; Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain; Aragon I+D Foundation (ARAID), Zaragoza, Spain.
| |
Collapse
|
30
|
Collateral Damage: Detrimental Effect of Antibiotics on the Development of Protective Immune Memory. mBio 2016; 7:mBio.01520-16. [PMID: 27999159 PMCID: PMC5181774 DOI: 10.1128/mbio.01520-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Antibiotic intervention is an effective treatment strategy for many bacterial infections and liberates bacterial antigens and stimulatory products that can induce an inflammatory response. Despite the opportunity for bacterial killing to enhance the development of adaptive immunity, patients treated successfully with antibiotics can suffer from reinfection. Studies in mouse models of Salmonella and Chlamydia infection also demonstrate that early antibiotic intervention reduces host protective immunity to subsequent infection. This heightened susceptibility to reinfection correlates with poor development of Th1 and antibody responses in antibiotic-treated mice but can be overcome by delayed antibiotic intervention, thus suggesting a requirement for sustained T cell stimulation for protection. Although the contribution of memory T cell subsets is imperfectly understood in both of these infection models, a protective role for noncirculating memory cells is suggested by recent studies. Together, these data propose a model where antibiotic treatment specifically interrupts tissue-resident memory T cell formation. Greater understanding of the mechanistic basis of this phenomenon might suggest therapeutic interventions to restore a protective memory response in antibiotic-treated patients, thus reducing the incidence of reinfection.
Collapse
|
31
|
Jneid B, Moreau K, Plaisance M, Rouaix A, Dano J, Simon S. Role of T3SS-1 SipD Protein in Protecting Mice against Non-typhoidal Salmonella Typhimurium. PLoS Negl Trop Dis 2016; 10:e0005207. [PMID: 27992422 PMCID: PMC5167260 DOI: 10.1371/journal.pntd.0005207] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/25/2016] [Indexed: 11/24/2022] Open
Abstract
Background Salmonella enterica species are enteric pathogens that cause severe diseases ranging from self-limiting gastroenteritis to enteric fever and sepsis in humans. These infectious diseases are still the major cause of morbidity and mortality in low-income countries, especially in children younger than 5 years and immunocompromised adults. Vaccines targeting typhoidal diseases are already marketed, but none protect against non-typhoidal Salmonella. The existence of multiple non-typhoidal Salmonella serotypes as well as emerging antibiotic resistance highlight the need for development of a broad-spectrum protective vaccine. All Salmonella spp. utilize two type III Secretion Systems (T3SS 1 and 2) to initiate infection, allow replication in phagocytic cells and induce systemic disease. T3SS-1, which is essential to invade epithelial cells and cross the barrier, forms an extracellular needle and syringe necessary to inject effector proteins into the host cell. PrgI and SipD form, respectively, the T3SS-1 needle and the tip complex at the top of the needle. Because they are common and highly conserved in all virulent Salmonella spp., they might be ideal candidate antigens for a subunit-based, broad-spectrum vaccine. Principal Findings We investigated the immunogenicity and protective efficacy of PrgI and SipD administered by subcutaneous, intranasal and oral routes, alone or combined, in a mouse model of Salmonella intestinal challenge. Robust IgG (in all immunization routes) and IgA (in intranasal and oral immunization routes) antibody responses were induced against both proteins, particularly SipD. Mice orally immunized with SipD alone or SipD combined with PrgI were protected against lethal intestinal challenge with Salmonella Typhimurium (100 Lethal Dose 50%) depending on antigen, route and adjuvant. Conclusions and Significance Salmonella T3SS SipD is a promising antigen for the development of a protective Salmonella vaccine, and could be developed for vaccination in tropical endemic areas to control infant mortality. Salmonella are bacteria responsible for a high global burden of invasive diseases, especially in South and South-East Asia (mainly enteric fever due to Salmonella Typhi) and sub-Saharan Africa (mainly invasive Non-Typhoidal Salmonella, iNTS). This iNTS disease has emerged as a prominent cause of systemic infection in children and immunocompromised African adults, with an associated case fatality of 20–25%. Because licensed vaccines only protect against enteric fever, there is a crucial need to develop a new broad-spectrum vaccine effective against enteric fever and iNTS that can be administered safely to children under 2 years old. The virulence of Salmonella depends on two type III secretion systems (T3SS-1 and T3SS-2) necessary for invasion, replication, intracellular survival and dissemination of the bacteria. Two structural proteins of T3SS-1 (essential for crossing the epithelial barrier) are highly conserved among Salmonella spp. and might be good candidates for a broad-spectrum vaccine. The current study describes the protective effect elicited by these proteins in a murine model. A specific immune response was generated against our antigens and provided protection against Salmonella Typhimurium oral infection. Such a candidate vaccine offers promising perspectives to control Salmonella diseases.
Collapse
Affiliation(s)
- Bakhos Jneid
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Karine Moreau
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marc Plaisance
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Audrey Rouaix
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Julie Dano
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Stéphanie Simon
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
32
|
Karunakaran KP, Yu H, Jiang X, Chan Q, Goldberg MF, Jenkins MK, Foster LJ, Brunham RC. Identification of MHC-Bound Peptides from Dendritic Cells Infected with Salmonella enterica Strain SL1344: Implications for a Nontyphoidal Salmonella Vaccine. J Proteome Res 2016; 16:298-306. [PMID: 27802388 DOI: 10.1021/acs.jproteome.6b00926] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Worldwide Salmonella enterica infections result in substantial morbidity and mortality and are the major cause of infant bacteremia in Sub-Saharan Africa. Diseases caused by Salmonella are treatable with antibiotics, but successful antibiotic treatment has become difficult due to antimicrobial resistance and collateral effects on the microbiome. An effective vaccine together with public health efforts may be a better strategy to control these infections. Protective immunity against Salmonella depends primarily on CD4 T-cell-mediated immune responses; therefore, identifying relevant T-cell antigens is necessary for Salmonella vaccine development. We previously used a dendritic-cell-based immunoproteomics approach in our laboratory to identify T-cell antigens. The testing of these antigens as vaccine candidates against Chlamydia infection in mice yielded positive results. We applied this technology in the present study by infecting murine bone-marrow-derived dendritic cells from C57BL/6 mice with Salmonella enterica strain SL1344, followed by immunoaffinity isolation of MHC class I and II molecules and elution of bound peptides. The sequences of the peptides were identified using tandem mass spectrometry. We identified 87 MHC class-II- and 23 MHC class-I-binding Salmonella-derived peptides. Four of the 12 highest scoring class-II-binding Salmonella peptides stimulated IFN-γ production by CD4+ T cells from the spleens of mice with persistent Salmonella infection. We conclude that antigens identified by MHC immunoproteomics will be useful for Salmonella immunobiology studies and are potential Salmonella vaccine candidates. Data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD004451.
Collapse
Affiliation(s)
- Karuna P Karunakaran
- Vaccine Research Laboratory, University of British Columbia Centre for Disease Control , Vancouver, British Columbia V5Z 4R4, Canada
| | - Hong Yu
- Vaccine Research Laboratory, University of British Columbia Centre for Disease Control , Vancouver, British Columbia V5Z 4R4, Canada
| | - Xiaozhou Jiang
- Vaccine Research Laboratory, University of British Columbia Centre for Disease Control , Vancouver, British Columbia V5Z 4R4, Canada
| | - Queenie Chan
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z3, Canada
| | - Michael F Goldberg
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota Medical School , Minneapolis, Minnesota 55455, United States
| | - Marc K Jenkins
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota Medical School , Minneapolis, Minnesota 55455, United States
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z3, Canada
| | - Robert C Brunham
- Vaccine Research Laboratory, University of British Columbia Centre for Disease Control , Vancouver, British Columbia V5Z 4R4, Canada
| |
Collapse
|
33
|
Salmonella Infection Enhances Erythropoietin Production by the Kidney and Liver, Which Correlates with Elevated Bacterial Burdens. Infect Immun 2016; 84:2833-41. [PMID: 27456828 PMCID: PMC5038055 DOI: 10.1128/iai.00337-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/18/2016] [Indexed: 02/06/2023] Open
Abstract
Salmonella infection profoundly affects host erythroid development, but the mechanisms responsible for this effect remain poorly understood. We monitored the impact of Salmonella infection on erythroid development and found that systemic infection induced anemia, splenomegaly, elevated erythropoietin (EPO) levels, and extramedullary erythropoiesis in a process independent of Salmonella pathogenicity island 2 (SPI2) or flagellin. The circulating EPO level was also constitutively higher in mice lacking the expression of signal-regulatory protein α (SIRPα). The expression level of EPO mRNA was elevated in the kidney and liver but not increased in the spleens of infected mice despite the presence of extramedullary erythropoiesis in this tissue. In contrast to data from a previous report, mice lacking EPO receptor (EPOR) expression on nonerythroid cells (EPOR rescued) had bacterial loads similar to those of wild-type mice following Salmonella infection. Indeed, treatment to reduce splenic erythroblasts and mature red blood cells correlated with elevated bacterial burdens, implying that extramedullary erythropoiesis benefits the host. Together, these findings emphasize the profound effect of Salmonella infection on erythroid development and suggest that the modulation of erythroid development has both positive and negative consequences for host immunity.
Collapse
|
34
|
Memory CD8 + T Cells Require Increased Concentrations of Acetate Induced by Stress for Optimal Function. Immunity 2016; 44:1312-24. [DOI: 10.1016/j.immuni.2016.03.016] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 11/20/2022]
|
35
|
Transcription factor Batf3 is important for development of CD8+ T-cell response against a phagosomal bacterium regardless of the location of antigen. Immunol Cell Biol 2015; 94:378-87. [PMID: 26567886 DOI: 10.1038/icb.2015.98] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 12/13/2022]
Abstract
Salmonella enterica serovar Typhimurium (ST) is a virulent intracellular bacterium that conceals itself in the phagosomes of infected cells. Although CD8(+) T cells promote protection against various intracellular pathogens, the role of CD8(+) T cells against virulent ST has been unclear due to early fatality of susceptible (B6) mice. Herein, we generated MHC I-deficient mice on the resistant (129SvJ) and susceptible (Nramp1 transgenic B6) background to evaluate the role of CD8(+) T cells against virulent ST. Our results indicate that CD8(+) T cells have a critical protective role in host survival during infection with virulent ST. As antigen presentation and CD8(+) T-cell activation against phagosomal antigens are considered to operate through the cross-presentation pathway, we have evaluated CD8(+) T-cell response against ST in Batf3-deficient mice that lack CD8α dendritic cells (DCs). Using a recombinant of ST that expresses antigen (ST-OVA) mainly in the phagosomes of infected cells, we show that CD8(+) T-cell response is compromised throughout the duration of infection in Batf3-deficient mice. In contrast, when ST delivers antigen to the cytosol of infected cells (ST-OVA-C), CD8(+) T-cell response against the cytosolic antigen was compromised only in the short term in the absence of CD8α DCs, with wild-type and Batf3-deficient mice generating similar CD8(+) T-cell response in the long term. Thus, Batf3 has an important role in CD8(+) T-cell priming regardless of antigenic location; however, its role is redundant at later time intervals against cytosolic antigen.
Collapse
|
36
|
Gilchrist JJ, MacLennan CA, Hill AVS. Genetic susceptibility to invasive Salmonella disease. Nat Rev Immunol 2015; 15:452-63. [PMID: 26109132 DOI: 10.1038/nri3858] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Invasive Salmonella disease, in the form of enteric fever and invasive non-typhoidal Salmonella (iNTS) disease, causes substantial morbidity and mortality in children and adults in the developing world. The study of genetic variations in humans and mice that influence susceptibility of the host to Salmonella infection provides important insights into immunity to Salmonella. In this Review, we discuss data that have helped to elucidate the host genetic determinants of human enteric fever and iNTS disease, alongside data from the mouse model of Salmonella infection. Considered together, these studies provide a detailed picture of the immunobiology of human invasive Salmonella disease.
Collapse
Affiliation(s)
- James J Gilchrist
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, UK
| | - Calman A MacLennan
- 1] Jenner Institute, Nuffield Department of Medicine, Old Road Campus Research Building, Roosevelt Drive, University of Oxford, Oxford, OX3 7DQ, UK. [2] Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Adrian V S Hill
- 1] Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, UK. [2] Jenner Institute, Nuffield Department of Medicine, Old Road Campus Research Building, Roosevelt Drive, University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
37
|
Lopez-Medina M, Perez-Lopez A, Alpuche-Aranda C, Ortiz-Navarrete V. Salmonella induces PD-L1 expression in B cells. Immunol Lett 2015; 167:131-40. [PMID: 26292028 DOI: 10.1016/j.imlet.2015.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 07/22/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022]
Abstract
Salmonella persists for a long time in B cells; however, the mechanism(s) through which infected B cells avoid effector CD8 T cell responses has not been characterized. In this study, we show that Salmonella infects and survives within all B1 and B2 cell subpopulations. B cells are infected with a Salmonella typhimurium strain expressing an ovalbumin (OVA) peptide (SIINFEKL) to evaluate whether B cells process and present Salmonella antigens in the context of MHC-I molecules. Our data showed that OVA peptides are presented by MHC class I K(b)-restricted molecules and the presented antigen is generated through proteasomal degradation and vacuolar processing. In addition, Salmonella-infected B cells express co-stimulatory molecules such as CD40, CD80, and CD86 as well as inhibitory molecules such as PD-L1. Thus, the cross-presentation of Salmonella antigens and the expression of activation molecules suggest that infected B cells are able to prime and activate specific CD8(+) T cells. However, the Salmonella infection-stimulated expression of PD-L1 suggests that the PD-1/PD-L1 pathway may be involved in turning off the cytotoxic effector response during Salmonella persistent infection, thereby allowing B cells to become a reservoir for the bacteria.
Collapse
Affiliation(s)
- Marcela Lopez-Medina
- Departamento de Biomedicina Molecular Centro de Investigación y Estudios Avanzados del IPN, México City CP 07360, Mexico
| | - Araceli Perez-Lopez
- Department of Microbiology and Molecular Genetics, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Celia Alpuche-Aranda
- Instituto Nacional de Salud Pública, Secretaría de Salud y Asistencia, Cuernavaca, Morelos CP 62100, Mexico
| | - Vianney Ortiz-Navarrete
- Departamento de Biomedicina Molecular Centro de Investigación y Estudios Avanzados del IPN, México City CP 07360, Mexico.
| |
Collapse
|
38
|
Pham OH, McSorley SJ. Protective host immune responses to Salmonella infection. Future Microbiol 2015; 10:101-10. [PMID: 25598340 DOI: 10.2217/fmb.14.98] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Salmonella enterica serovars Typhi and Paratyphi are the causative agents of human typhoid fever. Current typhoid vaccines are ineffective and are not widely used in endemic areas. Greater understanding of host-pathogen interactions during Salmonella infection should facilitate the development of improved vaccines to combat typhoid and nontyphoidal Salmonellosis. This review will focus on our current understanding of Salmonella pathogenesis and the major host immune components that participate in immunity to Salmonella infection. In addition, recent findings regarding host immune mechanisms in response to Salmonella infection will be also discussed, providing a new perspective on the utility of improved tools to study the immune response to Salmonella infections.
Collapse
Affiliation(s)
- Oanh H Pham
- Center for Comparative Medicine, Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | | |
Collapse
|
39
|
López-Medina M, Carrillo-Martín I, Leyva-Rangel J, Alpuche-Aranda C, Ortiz-Navarrete V. Salmonella impairs CD8 T cell response through PD-1: PD-L axis. Immunobiology 2015. [PMID: 26210046 DOI: 10.1016/j.imbio.2015.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have shown that Salmonella remains for a long period of time within B cells, plasma cells, and bone marrow B cell precursors, which might allow persistence and dissemination of infection. Nonetheless, how infected cells evade CD8 T cell response has not been characterized. Evidence indicates that some pathogens exploit the PD-1: PD-L (PD-L1 and PD-L2) interaction to inhibit CD8 T cells response to contribute the chronicity of the infection. To determine whether the PD-1: PD-L axis plays a role during Salmonella infection; we evaluated PD-1 expression in antigen-specific CD8 T cells and PD-1 ligands in Salmonella-infected cells. Our results show that infected B cells and macrophages express continuously co-stimulatory (CD40, CD80, and CD86) and inhibitory molecules (PD-L1 and PD-L2) in early and late stages of chronic Salmonella infection, while antigen-specific CD8 T cells express in a sustained manner PD-1 in the late stages of infection. Blocking this axis restores the ability of the CD8 T cells to proliferate and eliminate primary infected APCs. Therefore, a continuous PD-1: PDL interaction might be a mechanism employed by Salmonella to negatively regulate Salmonella-specific CD8 T cell cytotoxic response in order to remain within the host for a long period of time.
Collapse
Affiliation(s)
- Marcela López-Medina
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN, México City CP 07360, Mexico
| | - Ismael Carrillo-Martín
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN, México City CP 07360, Mexico
| | - Jessica Leyva-Rangel
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN, México City CP 07360, Mexico; Doctorado en Ciencias Biomédicas, Facultad de Medicina, UNAM, Mexico City CP 045510, Mexico
| | - Celia Alpuche-Aranda
- Instituto Nacional de Salud Pública, Secretaría de Salud y Asistencia, Cuernavaca, Morelos CP 62100, Mexico
| | - Vianney Ortiz-Navarrete
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN, México City CP 07360, Mexico.
| |
Collapse
|
40
|
Abstract
Salmonella are a common source of food- or water-borne infection and cause a wide range of clinical disease in human and animal hosts. Salmonella are relatively easy to culture and manipulate in a laboratory setting, and the infection of laboratory animals induces robust innate and adaptive immune responses. Thus, immunologists have frequently turned to Salmonella infection models to expand understanding of host immunity to intestinal pathogens. In this review, I summarize current knowledge of innate and adaptive immunity to Salmonella and highlight features of this response that have emerged from recent studies. These include the heterogeneity of the antigen-specific T-cell response to intestinal infection, the prominence of microbial mechanisms to impede T- and B-cell responses, and the contribution of non-cognate pathways for elicitation of T-cell effector functions. Together, these different issues challenge an overly simplistic view of host-pathogen interaction during mucosal infection, but also allow deeper insight into the real-world dynamic of protective immunity to intestinal pathogens.
Collapse
Affiliation(s)
- Stephen J McSorley
- Center for Comparative Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
41
|
Reynolds CJ, Jones C, Blohmke CJ, Darton TC, Goudet A, Sergeant R, Maillere B, Pollard AJ, Altmann DM, Boyton RJ. The serodominant secreted effector protein of Salmonella, SseB, is a strong CD4 antigen containing an immunodominant epitope presented by diverse HLA class II alleles. Immunology 2014; 143:438-46. [PMID: 24891088 PMCID: PMC4212957 DOI: 10.1111/imm.12327] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/03/2014] [Accepted: 05/19/2014] [Indexed: 12/25/2022] Open
Abstract
Detailed characterization of the protective T-cell response in salmonellosis is a pressing unmet need in light of the global burden of human Salmonella infections and the likely contribution of CD4 T cells to immunity against this intracellular infection. In previous studies screening patient sera against antigen arrays, SseB was noteworthy as a serodominant target of adaptive immunity, inducing significantly raised antibody responses in HIV-seronegative compared with seropositive patients. SseB is a secreted protein, part of the Espa superfamily, localized to the bacterial surface and forming part of the translocon of the type III secretion system (T3SS) encoded by Salmonella pathogenicity island 2. We demonstrate here that SseB is also a target of CD4 T-cell immunity, generating a substantial response after experimental infection in human volunteers, with around 0·1% of the peripheral repertoire responding to it. HLA-DR/peptide binding studies indicate that this protein encompasses a number of peptides with ability to bind to several different HLA-DR alleles. Of these, peptide 11 (p11) was shown in priming of both HLA-DR1 and HLA-DR4 transgenic mice to contain an immunodominant CD4 epitope. Analysis of responses in human donors showed immunity focused on p11 and another epitope in peptide 2. The high frequency of SseB-reactive CD4 T cells and the broad applicability to diverse HLA genotypes coupled with previous observations of serodominance and protective vaccination in mouse challenge experiments, make SseB a plausible candidate for next-generation Salmonella vaccines.
Collapse
Affiliation(s)
- Catherine J Reynolds
- Section of Infectious Diseases and Immunity, Department of Medicine, Imperial College, Hammersmith Hospital, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lopez-Medina M, Perez-Lopez A, Alpuche-Aranda C, Ortiz-Navarrete V. Salmonella modulates B cell biology to evade CD8(+) T cell-mediated immune responses. Front Immunol 2014; 5:586. [PMID: 25484884 PMCID: PMC4240163 DOI: 10.3389/fimmu.2014.00586] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/03/2014] [Indexed: 12/22/2022] Open
Abstract
Although B cells and antibodies are the central effectors of humoral immunity, B cells can also produce and secrete cytokines and present antigen to helper T cells. The uptake of antigen is mainly mediated by endocytosis; thus, antigens are often presented by MHC-II molecules. However, it is unclear if B cells can present these same antigens via MHC-I molecules. Recently, Salmonella bacteria were found to infect B cells, allowing possible antigen cross-processing that could generate bacterial peptides for antigen presentation via MHC-I molecules. Here, we will discuss available knowledge regarding Salmonella antigen presentation by infected B cell MHC-I molecules and subsequent inhibitory effects on CD8(+) T cells for bacterial evasion of cell-mediated immunity.
Collapse
Affiliation(s)
- Marcela Lopez-Medina
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN , México City, DF , Mexico
| | - Araceli Perez-Lopez
- Department of Microbiology and Molecular Genetics, Irvine School of Medicine, University of California , Irvine, CA , USA
| | - Celia Alpuche-Aranda
- Instituto Nacional de Salud Pública, Secretaría de Salud y Asistencia , Cuernavaca, Morelos CP , Mexico
| | - Vianney Ortiz-Navarrete
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN , México City, DF , Mexico
| |
Collapse
|
43
|
Bumann D. Identification of Protective Antigens for Vaccination against Systemic Salmonellosis. Front Immunol 2014; 5:381. [PMID: 25157252 PMCID: PMC4127814 DOI: 10.3389/fimmu.2014.00381] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/25/2014] [Indexed: 12/21/2022] Open
Abstract
There is an urgent medical need for improved vaccines with broad serovar coverage and high efficacy against systemic salmonellosis. Subunit vaccines offer excellent safety profiles but require identification of protective antigens, which remains a challenging task. Here, I review crucial properties of Salmonella antigens that might help to narrow down the number of potential candidates from more than 4000 proteins encoded in Salmonella genomes, to a more manageable number of 50–200 most promising antigens. I also discuss complementary approaches for antigen identification and potential limitations of current pre-clinical vaccine testing.
Collapse
Affiliation(s)
- Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel , Basel , Switzerland
| |
Collapse
|
44
|
McSorley SJ. The Role of Non-Cognate T Cell Stimulation during Intracellular Bacterial Infection. Front Immunol 2014; 5:319. [PMID: 25071779 PMCID: PMC4089505 DOI: 10.3389/fimmu.2014.00319] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/24/2014] [Indexed: 01/29/2023] Open
Abstract
Intra-macrophage bacterial infections cause significant morbidity and mortality in both the developed and developing world. Protective host immune responses to these infections initially requires the activation and expansion of pathogen-specific CD4 Th1 cells within lymphoid tissues and subsequent relocation of these effector cells to sites of infection. After entering infected tissues, the elicitation of Th1 bactericidal activity can be triggered by cognate or non-cognate signals that are delivered by locally infected antigen-presenting cells and innate cells. However, the contribution of non-cognate stimulation to the resolution of bacterial infection remains poorly understood, especially in the context of a Th1 response. Here, we review the current data on Th1 cell activation and expansion in mouse models of Salmonella and Chlamydia infection and discuss the potential role of non-cognate Th1 cell stimulation in these disease models. Greater understanding of this pathway of T cell activation may lead to the design of therapeutics or vaccines to combat intra-macrophage pathogens.
Collapse
Affiliation(s)
- Stephen J McSorley
- Department of Anatomy, Physiology and Cell Biology, Center for Comparative Medicine, School of Veterinary Medicine, University of California Davis , Davis, CA , USA
| |
Collapse
|
45
|
Blessing or curse? Proteomics in granzyme research. Proteomics Clin Appl 2014; 8:351-81. [DOI: 10.1002/prca.201300096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/29/2013] [Accepted: 12/21/2013] [Indexed: 01/08/2023]
|
46
|
Abstract
CD4(+) T cells are key cells of the adaptive immune system that use T cell antigen receptors to recognize peptides that are generated in endosomes or phagosomes and displayed on the host cell surface bound to major histocompatibility complex molecules. These T cells participate in immune responses that protect hosts from microbes such as Mycobacterium tuberculosis, Cryptococcus neoformans, Leishmania major, and Salmonella enterica, which have evolved to live in the phagosomes of macrophages and dendritic cells. Here, we review studies indicating that CD4(+) T cells control phagosomal infections asymptomatically in most individuals by secreting cytokines that activate the microbicidal activities of infected phagocytes but in a way that inhibits the pathogen but does not eliminate it. Indeed, we make the case that localized, controlled, persistent infection is necessary to maintain large numbers of CD4(+) effector T cells in a state of activation needed to eradicate systemic and more pathogenic forms of the infection. Finally, we posit that current vaccines for phagosomal infections fail because they do not produce this "periodic reminder" form of CD4(+) T cell-mediated immune control.
Collapse
|
47
|
O'Donnell H, Pham OH, Li LX, Atif SM, Lee SJ, Ravesloot MM, Stolfi JL, Nuccio SP, Broz P, Monack DM, Baumler AJ, McSorley SJ. Toll-like receptor and inflammasome signals converge to amplify the innate bactericidal capacity of T helper 1 cells. Immunity 2014; 40:213-24. [PMID: 24508233 DOI: 10.1016/j.immuni.2013.12.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/23/2013] [Indexed: 12/14/2022]
Abstract
T cell effector functions can be elicited by noncognate stimuli, but the mechanism and contribution of this pathway to the resolution of intracellular macrophage infections have not been defined. Here, we show that CD4(+) T helper 1 (Th1) cells could be rapidly stimulated by microbe-associated molecular patterns during active infection with Salmonella or Chlamydia. Further, maximal stimulation of Th1 cells by lipopolysaccharide (LPS) did not require T-cell-intrinsic expression of toll-like receptor 4 (TLR4), interleukin-1 receptor (IL-1R), or interferon-γ receptor (IFN-γR) but instead required IL-18R, IL-33R, and adaptor protein MyD88. Innate stimulation of Th1 cells also required host expression of TLR4 and inflammasome components that together increased serum concentrations of IL-18. Finally, the elimination of noncognate Th1 cell stimulation hindered the resolution of primary Salmonella infection. Thus, the in vivo bactericidal capacity of Th1 cells is regulated by the response to noncognate stimuli elicited by multiple innate immune receptors.
Collapse
Affiliation(s)
- Hope O'Donnell
- Center for Comparative Medicine, Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA; Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota Medical School - Twin Cities, Minneapolis, MN 55455, USA
| | - Oanh H Pham
- Center for Comparative Medicine, Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Lin-xi Li
- Center for Comparative Medicine, Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Shaikh M Atif
- Center for Comparative Medicine, Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Seung-Joo Lee
- Center for Comparative Medicine, Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Marietta M Ravesloot
- Center for Comparative Medicine, Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Jessica L Stolfi
- Center for Comparative Medicine, Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Sean-Paul Nuccio
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Petr Broz
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Denise M Monack
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Andreas J Baumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Stephen J McSorley
- Center for Comparative Medicine, Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
48
|
Martins RP, Aguilar C, Graham JE, Carvajal A, Bautista R, Claros MG, Garrido JJ. Pyroptosis and adaptive immunity mechanisms are promptly engendered in mesenteric lymph-nodes during pig infections with Salmonella enterica serovar Typhimurium. Vet Res 2013; 44:120. [PMID: 24308825 PMCID: PMC4028780 DOI: 10.1186/1297-9716-44-120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 11/25/2013] [Indexed: 12/21/2022] Open
Abstract
In this study, we explored the transcriptional response and the morphological changes occurring in porcine mesenteric lymph-nodes (MLN) along a time course of 1, 2 and 6 days post infection (dpi) with Salmonella Typhimurium. Additionally, we analysed the expression of some Salmonella effectors in tissue to complete our view of the processes triggered in these organs upon infection. The results indicate that besides dampening apoptosis, swine take advantage of the flagellin and prgJ expression by Salmonella Typhimuriun to induce pyroptosis in MLN, preventing bacterial dissemination. Furthermore, cross-presentation of Salmonella antigens was inferred as a mechanism that results in a rapid clearance of pathogen by cytotoxic T cells. In summary, although the Salmonella Typhimurium strain employed in this study was able to express some of its major virulence effectors in porcine MLN, a combination of early innate and adaptive immunity mechanisms might overcome virulence strategies employed by the pathogen, enabling the host to protect itself against bacterial spread beyond gut-associated lymph-nodes. Interestingly, we deduced that clathrin-mediated endocytosis could contribute to mechanisms of pathogen virulence and/or host defence in MLN of Salmonella infected swine. Taken together, our results are useful for a better understanding of the critical protective mechanisms against Salmonella that occur in porcine MLN to prevent the spread of infection beyond the intestine.
Collapse
Affiliation(s)
- Rodrigo Prado Martins
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio Gregor Mendel C5, 14071, Córdoba, Spain
| | - Carmen Aguilar
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio Gregor Mendel C5, 14071, Córdoba, Spain
| | - James E Graham
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, 40202, Louisville, KY, USA
| | - Ana Carvajal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | - Rocío Bautista
- Plataforma Andaluza de Bioinformática, Universidad de Málaga, Parque Tecnológico de Andalucía, 29590, Málaga, Spain
| | - M Gonzalo Claros
- Plataforma Andaluza de Bioinformática, Universidad de Málaga, Parque Tecnológico de Andalucía, 29590, Málaga, Spain
| | - Juan J Garrido
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio Gregor Mendel C5, 14071, Córdoba, Spain
| |
Collapse
|
49
|
Lv S, Yi PF, Shen HQ, Zhang LY, Dong HB, Wu SC, Xia F, Guo X, Wei XB, Fu BD. Ginsenoside Rh2-B1 stimulates cell proliferation and IFN-γ production by activating the p38 MAPK and ERK-dependent signaling pathways in CTLL-2 cells. Immunopharmacol Immunotoxicol 2013; 36:43-51. [PMID: 24294901 DOI: 10.3109/08923973.2013.864669] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Ginsenoside Rh2, an active component of ginseng, exhibits immunoregulatory and anti-inflammatory properties. Rh2-B1, a sulfated derivative, was prepared to enhance its water solubility. We studied the effect of Rh2-B1 on CTLL-2, a CD8⁺ cytotoxic T cell line that was known for protecting against viral infection. OBJECTIVE We aimed to investigate the effect of Rh2-B1 on interferon (IFN)-γ production and cell proliferation and its possible mechanism. MATERIALS AND METHODS Enzyme-linked immunosorbent assay (ELISA) was employed to analyze the IFN-γ concentration of the whole blood and the supernatant of CTLL-2 cell culture. Cell proliferation assay was conducted using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Western blots were used to evaluate changes in signal transduction pathways in CTLL-2 cells. RESULTS Rh2-B1 was able to enhance IFN-γ production from whole blood culture of Balb/c mice. We then evaluated the effect of Rh2-B1 on a cytotoxic T cell line, CTLL-2 for cell proliferation, IFN-γ production and its molecular mechanism. Rh2-B1 promoted cell proliferation and IFN-γ production of CTLL-2 cells. It also induced activation of p38 mitogen-activated protein kinase (MAPK) and extracellular-signal-regulated kinases (ERK), but inhibited p56 Lck and transducer and activator of transcription 5 (STAT5) expression. The effect was blocked by the specific p38 MAPK inhibitor SB203580 and ERK inhibitor U0126. CONCLUSION Rh2-B1 could stimulate cell proliferation and IFN-γ production by activating the p38 MAPK- and ERK-dependent signaling pathways in cytotoxic T cells. This may be a novel medicine for treatment of viral infections.
Collapse
Affiliation(s)
- Shuang Lv
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University , Changchun, Jilin , China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Vanden Bergh P, Frey J. Aeromonas salmonicida subsp. salmonicida in the light of its type-three secretion system. Microb Biotechnol 2013; 7:381-400. [PMID: 24119189 PMCID: PMC4229320 DOI: 10.1111/1751-7915.12091] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 11/30/2022] Open
Abstract
Aeromonas salmonicida subsp. salmonicida is an important pathogen in salmonid aquaculture and is responsible for the typical furunculosis. The type-three secretion system (T3SS) is a major virulence system. In this work, we review structure and function of this highly sophisticated nanosyringe in A. salmonicida. Based on the literature as well as personal experimental observations, we document the genetic (re)organization, expression regulation, anatomy, putative functional origin and roles in the infectious process of this T3SS. We propose a model of pathogenesis where A. salmonicida induces a temporary immunosuppression state in fish in order to acquire free access to host tissues. Finally, we highlight putative important therapeutic and vaccine strategies to prevent furunculosis of salmonid fish.
Collapse
Affiliation(s)
- Philippe Vanden Bergh
- Institute of Veterinary Bacteriology, University of Bern, Länggassstrasse 122, Bern, Switzerland
| | | |
Collapse
|