1
|
Tang X, Wang Y, Xu R. Phase separation participates in the genetic regulation mechanism of hematopoietic stem cells: potential therapeutic methods. Stem Cell Res Ther 2025; 16:214. [PMID: 40312729 PMCID: PMC12044980 DOI: 10.1186/s13287-025-04350-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/17/2025] [Indexed: 05/03/2025] Open
Abstract
Hematopoietic stem cells (HSCs) are the primitive cells that give rise to common precursors for all blood cell lineages. Abnormalities in their number and/or function are important factors leading to the decline of immune function and the occurrence of various systemic diseases. Phase separation refers to a physicochemical mechanism in which intracellular liquid-liquid phase separation (LLPS) forms membrane-less organelles. It participates in various physiological activities and is related to the occurrence of diseases. Studies have shown that the functional activity of HSCs is regulated by complex mechanisms, and phase separation is closely related to these complex mechanisms such as genetic regulation, epigenetic regulation, microenvironment regulation, gene expression, autophagy degradation, and cell proliferation. With the deepening of research, the importance of phase separation in the pathogenesis and treatment of diseases such as leukemia and tumors has gradually emerged, but the deep mechanism of its regulation of HSCs genetic regulation still lacks exploration, and the direction of clinical targeted therapy is not yet clear. Here, we will summarize and elaborate the genetic regulation mechanism of HSCs, discuss the relationship between phase separation and the functional regulation of HSCs, and analyze the possibility of phase separation participating in the genetic regulation of HSCs to treat diseases, in order to provide help for the clinical implementation of targeted therapy for HSCs regulation.
Collapse
Affiliation(s)
- XinYu Tang
- Doctoral student of Grade 2024, First Clinical Medical College of, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - RuiRong Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
2
|
Meng Y, Nerlov C. Epigenetic regulation of hematopoietic stem cell fate. Trends Cell Biol 2025; 35:217-229. [PMID: 39271425 DOI: 10.1016/j.tcb.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024]
Abstract
Hematopoietic stem cells (HSCs) sustain blood cell production throughout the mammalian life span. However, it has become clear that at the single cell level a subset of HSCs is stably biased in their lineage output, and that such heterogeneity may play a key role in physiological processes including aging and adaptive immunity. Analysis of chromatin accessibility, DNA methylation, and histone modifications has revealed that HSCs with different lineage bias exhibit distinct epigenetic traits inscribed at poised, lineage-specific enhancers. This allows for lineage priming without initiating lineage-specific gene expression in HSCs, controlling lineage bias while preserving self-renewal and multipotency. Here, we review our current understanding of epigenetic regulation in the establishment and maintenance of HSC fate decisions under different physiological conditions.
Collapse
Affiliation(s)
- Yiran Meng
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | - Claus Nerlov
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK.
| |
Collapse
|
3
|
Priam P, Krasteva V, Rousseau P, Polsinelli A, Côté L, Desanlis I, Farah A, Lavallée VP, Kmita M, Lessard JA. Smarcd1 subunit of SWI/SNF chromatin-remodeling complexes collaborates with E2a to promote murine lymphoid specification. Dev Cell 2024; 59:3124-3140.e8. [PMID: 39232562 DOI: 10.1016/j.devcel.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 05/02/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
Lymphocyte development from murine hematopoietic stem cells (HSCs) entails a loss of self-renewal capacity and a progressive restriction of developmental potential. Previous research from our laboratory suggests that specialized assemblies of ATP-dependent SWI/SNF chromatin-remodeling complexes play lineage-specific roles during murine hematopoiesis. Here, we demonstrate that the Smarcd1 subunit is essential for specification of lymphoid cell fate from multipotent progenitors. Acute deletion of Smarcd1 in murine adult hematopoiesis leads to lymphopenia, characterized by a near-complete absence of early lymphoid progenitors and mature B and T cells, while the myeloid and erythroid lineages remain unaffected. Mechanistically, we demonstrate that Smarcd1 is essential for the coordinated activation of a lymphoid gene signature in murine multipotent progenitors. This is achieved by interacting with the E2a transcription factor at proximal promoters and by regulating the activity of distal enhancers. Globally, these findings identify Smarcd1 as an essential chromatin remodeler that governs lymphoid cell fate.
Collapse
Affiliation(s)
- Pierre Priam
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Veneta Krasteva
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Philippe Rousseau
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Alexandre Polsinelli
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Laurence Côté
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ines Desanlis
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Azer Farah
- Centre de Recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | | | - Marie Kmita
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Julie A Lessard
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; Department of Pathology and Cellular Biology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
4
|
Xia J, Lan L, You C, Tang L, Chen T, Yang Y, Lin L, Sun J. Interleukin-1β modulates lymphoid differentiation of Flt3-positive multipotent progenitors after transplantation. Cell Rep 2024; 43:114890. [PMID: 39425929 DOI: 10.1016/j.celrep.2024.114890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/05/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
Myeloablative pre-conditioning facilitates the differentiation of transplanted hematopoietic stem and progenitor cells (HSPCs). However, the factors in the stress environment that regulate HSPC behavior remain elusive. Here, we investigated the mechanisms that shaped the cell fates of transplanted murine multipotent progenitors (MPPs) expressing the Fms-related receptor tyrosine kinase 3 gene (Flt3). Using lineage tracing, clonal analysis, and single-cell RNA sequencing (RNA-seq), we showed that the myeloablative environment increased lymphoid priming of Flt3+ MPPs and that their efficient B cell output required intact interleukin 1 (IL-1) signaling. The Flt3+ MPPs with short-term exposure to IL-1β underwent a myeloid-biased to lymphoid-biased cell fate switch and produced more lymphoid-biased progeny with a stronger B lymphopoiesis capacity in vitro. Correspondingly, a brief exposure to IL-1β facilitated the B cell output of transplanted Flt3+ MPPs in vivo. Together, our study demonstrated an unrecognized function of IL-1β in promoting B lymphopoiesis and highlighted a latent effect of IL-1β in regulating MPP cell fate dynamics.
Collapse
Affiliation(s)
- Jing Xia
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lisi Lan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chenyu You
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Li Tang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tao Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yunqiao Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Li Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Jianlong Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
5
|
Hong NE, Chaplin A, Di L, Ravodina A, Bevan GH, Gao H, Asase C, Gangwar RS, Cameron MJ, Mignery M, Cherepanova O, Finn AV, Nayak L, Pieper AA, Maiseyeu A. Nanoparticle-based itaconate treatment recapitulates low-cholesterol/low-fat diet-induced atherosclerotic plaque resolution. Cell Rep 2024; 43:114911. [PMID: 39466775 PMCID: PMC11648168 DOI: 10.1016/j.celrep.2024.114911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/22/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Current pharmacologic treatments for atherosclerosis do not completely protect patients; additional protection can be achieved by dietary modifications, such as a low-cholesterol/low-fat diet (LCLFD), that mediate plaque stabilization and inflammation reduction. However, this lifestyle modification can be challenging for patients. Unfortunately, incomplete understanding of the underlying mechanisms has thwarted efforts to mimic the protective effects of a LCLFD. Here, we report that the tricarboxylic acid cycle intermediate itaconate (ITA), produced by plaque macrophages, is key to diet-induced plaque resolution. ITA is produced by immunoresponsive gene 1 (IRG1), which we observe is highly elevated in myeloid cells of vulnerable plaques and absent from early or stable plaques in mice and humans. We additionally report development of an ITA-conjugated lipid nanoparticle that accumulates in plaque and bone marrow myeloid cells, epigenetically reduces inflammation via H3K27ac deacetylation, and reproduces the therapeutic effects of LCLFD-induced plaque resolution in multiple atherosclerosis models.
Collapse
Affiliation(s)
- Natalie E Hong
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alice Chaplin
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Lin Di
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Anastasia Ravodina
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Graham H Bevan
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Huiyun Gao
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Courteney Asase
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Roopesh Singh Gangwar
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark J Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Matthew Mignery
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Olga Cherepanova
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aloke V Finn
- Department of Internal Medicine, Cardiovascular Division, University of Maryland School of Medicine, Baltimore, MD, USA; CVPath Institute, Inc., Gaithersburg, MD, USA
| | - Lalitha Nayak
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Hematology & Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Andrew A Pieper
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Andrei Maiseyeu
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
6
|
Karin O. EnhancerNet: a predictive model of cell identity dynamics through enhancer selection. Development 2024; 151:dev202997. [PMID: 39289870 PMCID: PMC11488642 DOI: 10.1242/dev.202997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
Understanding how cell identity is encoded by the genome and acquired during differentiation is a central challenge in cell biology. I have developed a theoretical framework called EnhancerNet, which models the regulation of cell identity through the lens of transcription factor-enhancer interactions. I demonstrate that autoregulation in these interactions imposes a constraint on the model, resulting in simplified dynamics that can be parameterized from observed cell identities. Despite its simplicity, EnhancerNet recapitulates a broad range of experimental observations on cell identity dynamics, including enhancer selection, cell fate induction, hierarchical differentiation through multipotent progenitor states and direct reprogramming by transcription factor overexpression. The model makes specific quantitative predictions, reproducing known reprogramming recipes and the complex haematopoietic differentiation hierarchy without fitting unobserved parameters. EnhancerNet provides insights into how new cell types could evolve and highlights the functional importance of distal regulatory elements with dynamic chromatin in multicellular evolution.
Collapse
Affiliation(s)
- Omer Karin
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
7
|
Su TY, Hauenstein J, Somuncular E, Dumral Ö, Leonard E, Gustafsson C, Tzortzis E, Forlani A, Johansson AS, Qian H, Månsson R, Luc S. Aging is associated with functional and molecular changes in distinct hematopoietic stem cell subsets. Nat Commun 2024; 15:7966. [PMID: 39261515 PMCID: PMC11391069 DOI: 10.1038/s41467-024-52318-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
Age is a risk factor for hematologic malignancies. Attributes of the aging hematopoietic system include increased myelopoiesis, impaired adaptive immunity, and a functional decline of the hematopoietic stem cells (HSCs) that maintain hematopoiesis. Changes in the composition of diverse HSC subsets have been suggested to be responsible for age-related alterations, however, the underlying regulatory mechanisms are incompletely understood in the context of HSC heterogeneity. In this study, we investigated how distinct HSC subsets, separated by CD49b, functionally and molecularly change their behavior with age. We demonstrate that the lineage differentiation of both lymphoid-biased and myeloid-biased HSC subsets progressively shifts to a higher myeloid cellular output during aging. In parallel, we show that HSCs selectively undergo age-dependent gene expression and gene regulatory changes in a progressive manner, which is initiated already in the juvenile stage. Overall, our studies suggest that aging intrinsically alters both cellular and molecular properties of HSCs.
Collapse
Affiliation(s)
- Tsu-Yi Su
- Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Julia Hauenstein
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ece Somuncular
- Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Özge Dumral
- Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Elory Leonard
- Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | - Efthymios Tzortzis
- Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Aurora Forlani
- Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Anne-Sofie Johansson
- Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hong Qian
- Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Robert Månsson
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Sidinh Luc
- Center for Hematology and Regenerative Medicine, Stockholm, Sweden.
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
- Hematology Center, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
8
|
Stonehouse OJ, Biben C, Weber TS, Garnham A, Fennell KA, Farley A, Terreaux AF, Alexander WS, Dawson MA, Naik SH, Taoudi S. Clonal analysis of fetal hematopoietic stem/progenitor cells reveals how post-transplantation capabilities are distributed. Stem Cell Reports 2024; 19:1189-1204. [PMID: 39094562 PMCID: PMC11368694 DOI: 10.1016/j.stemcr.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
It has been proposed that adult hematopoiesis is sustained by multipotent progenitors (MPPs) specified during embryogenesis. Adult-like hematopoietic stem cell (HSC) and MPP immunophenotypes are present in the fetus, but knowledge of their functional capacity is incomplete. We found that fetal MPP populations were functionally similar to adult cells, albeit with some differences in lymphoid output. Clonal assessment revealed that lineage biases arose from differences in patterns of single-/bi-lineage differentiation. Long-term (LT)- and short-term (ST)-HSC populations were distinguished from MPPs according to capacity for clonal multilineage differentiation. We discovered that a large cohort of long-term repopulating units (LT-RUs) resides within the ST-HSC population; a significant portion of these were labeled using Flt3-cre. This finding has two implications: (1) use of the CD150+ LT-HSC immunophenotype alone will significantly underestimate the size and diversity of the LT-RU pool and (2) LT-RUs in the ST-HSC population have the attributes required to persist into adulthood.
Collapse
Affiliation(s)
- Olivia J Stonehouse
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; The University of Melbourne, Melbourne, Victoria, Australia; Lowy Cancer Research Centre, UNSW, Sydney, New South Wales, Australia
| | - Christine Biben
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; The University of Melbourne, Melbourne, Victoria, Australia
| | - Tom S Weber
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; The University of Melbourne, Melbourne, Victoria, Australia
| | - Alexandra Garnham
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; The University of Melbourne, Melbourne, Victoria, Australia
| | - Katie A Fennell
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Alison Farley
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; The University of Melbourne, Melbourne, Victoria, Australia
| | - Antoine F Terreaux
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; The University of Melbourne, Melbourne, Victoria, Australia
| | - Warren S Alexander
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; The University of Melbourne, Melbourne, Victoria, Australia
| | - Mark A Dawson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia; The University of Melbourne Centre for Cancer Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Shalin H Naik
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; The University of Melbourne, Melbourne, Victoria, Australia
| | - Samir Taoudi
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; The University of Melbourne, Melbourne, Victoria, Australia; School of Cellular and Molecular Medicine, University of Bristol, Bristol, England, UK.
| |
Collapse
|
9
|
Garyn CM, Bover O, Murray JW, Ma J, Salas-Briceno K, Ross SR, Snoeck HW. G2 arrest primes hematopoietic stem cells for megakaryopoiesis. Cell Rep 2024; 43:114388. [PMID: 38935497 PMCID: PMC11330628 DOI: 10.1016/j.celrep.2024.114388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/22/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
In contrast to most hematopoietic lineages, megakaryocytes (MKs) can derive rapidly and directly from hematopoietic stem cells (HSCs). The underlying mechanism is unclear, however. Here, we show that DNA damage induces MK markers in HSCs and that G2 arrest, an integral part of the DNA damage response, suffices for MK priming followed by irreversible MK differentiation in HSCs, but not in progenitors. We also show that replication stress causes DNA damage in HSCs and is at least in part due to uracil misincorporation in vitro and in vivo. Consistent with this notion, thymidine attenuated DNA damage, improved HSC maintenance, and reduced the generation of CD41+ MK-committed HSCs. Replication stress and concomitant MK differentiation is therefore one of the barriers to HSC maintenance. DNA damage-induced MK priming may allow rapid generation of a lineage essential to immediate organismal survival, while also removing damaged cells from the HSC pool.
Collapse
Affiliation(s)
- Corey M Garyn
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Oriol Bover
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - John W Murray
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jing Ma
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Karen Salas-Briceno
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Susan R Ross
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Hans-Willem Snoeck
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
10
|
Elias HK, Mitra S, da Silva MB, Rajagopalan A, Gipson B, Lee N, Kousa AI, Ali MAE, Grassman S, Zhang X, DeWolf S, Smith M, Andrlova H, Argyropoulos KV, Sharma R, Fei T, Sun JC, Dunbar CE, Park CY, Leslie CS, Bhandoola A, van den Brink MRM. An epigenetically distinct HSC subset supports thymic reconstitution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597775. [PMID: 38895335 PMCID: PMC11185715 DOI: 10.1101/2024.06.06.597775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Hematopoietic stem cells (HSCs) with multilineage potential are critical for effective T cell reconstitution and restoration of the adaptive immune system after allogeneic Hematopoietic Cell Transplantation (allo-HCT). The Kit lo subset of HSCs is enriched for multipotential precursors, 1, 2 but their T-cell lineage potential has not been well-characterized. We therefore studied the thymic reconstituting and T-cell potential of Kit lo HSCs. Using a preclinical allo-HCT model, we demonstrate that Kit lo HSCs support better thymic recovery, and T-cell reconstitution resulting in improved T cell responses to infection post-HCT. Furthermore, Kit lo HSCs with augmented BM lymphopoiesis mitigate age-associated thymic alterations, thus enhancing T-cell recovery in middle-aged hosts. We find the frequency of the Kit lo subset declines with age, providing one explanation for the reduced frequency of T-competent HSCs and reduced T-lymphopoietic potential in BM precursors of aged mice. 3, 4, 5 Chromatin profiling revealed that Kit lo HSCs exhibit higher activity of lymphoid-specifying transcription factors (TFs), including Zbtb1 . Deletion of Zbtb1 in Kit lo HSCs diminished their T-cell potential, while reinstating Zbtb1 in megakaryocytic-biased Kit hi HSCs rescued T-cell potential, in vitro and in vivo . Finally, we discover an analogous Kit lo HSC subset with enhanced lymphoid potential in human bone marrow. Our results demonstrate that Kit lo HSCs with enhanced lymphoid potential have a distinct underlying epigenetic program.
Collapse
|
11
|
Non-hierarchically related HSCs replenish platelets by distinct progenitor pathways. Nat Immunol 2024; 25:955-956. [PMID: 38831105 DOI: 10.1038/s41590-024-01878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
|
12
|
Stergiou IE, Tsironis C, Papadakos SP, Tsitsilonis OE, Dimopoulos MA, Theocharis S. Unraveling the Role of the NLRP3 Inflammasome in Lymphoma: Implications in Pathogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:2369. [PMID: 38397043 PMCID: PMC10889189 DOI: 10.3390/ijms25042369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Inflammasomes are multimeric protein complexes, sensors of intracellular danger signals, and crucial components of the innate immune system, with the NLRP3 inflammasome being the best characterized among them. The increasing scientific interest in the mechanisms interconnecting inflammation and tumorigenesis has led to the study of the NLRP3 inflammasome in the setting of various neoplasms. Despite a plethora of data regarding solid tumors, NLRP3 inflammasome's implication in the pathogenesis of hematological malignancies only recently gained attention. In this review, we investigate its role in normal lymphopoiesis and lymphomagenesis. Considering that lymphomas comprise a heterogeneous group of hematologic neoplasms, both tumor-promoting and tumor-suppressing properties were attributed to the NLRP3 inflammasome, affecting neoplastic cells and immune cells in the tumor microenvironment. NLRP3 inflammasome-related proteins were associated with disease characteristics, response to treatment, and prognosis. Few studies assess the efficacy of NLRP3 inflammasome therapeutic targeting with encouraging results, though most are still at the preclinical level. Further understanding of the mechanisms regulating NLRP3 inflammasome activation during lymphoma development and progression can contribute to the investigation of novel treatment approaches to cover unmet needs in lymphoma therapeutics.
Collapse
Affiliation(s)
- Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (C.T.)
| | - Christos Tsironis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (C.T.)
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece;
| | - Ourania E. Tsitsilonis
- Flow Cytometry Unit, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Meletios Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, 11528 Athens, Greece;
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece;
| |
Collapse
|
13
|
Xue L, Mukherjee K, Kelley KA, Bieker JJ. Generation, characterization, and use of EKLF(Klf1)/CRE knock-in mice for cell-restricted analyses. FRONTIERS IN HEMATOLOGY 2024; 2:1292589. [PMID: 39280931 PMCID: PMC11393758 DOI: 10.3389/frhem.2023.1292589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Introduction EKLF/Klf1 is a tissue-restricted transcription factor that plays a critical role in all aspects of erythropoiesis. Of particular note is its tissue-restricted pattern of expression, a property that could prove useful for expression control of a linked marker or enzymatic gene. Methods and results With this in mind, we fused the CRE recombinase to the genomic EKLF coding region and established mouse lines. We find by FACS analyses that CRE expression driven by the EKLF transcription unit recapitulates erythroid-restricted expression with high penetrance in developing embryos. We then used this line to test its properties in the adult, where we found EKLF/CRE is an active and is a robust mimic of normal EKLF expression in the adult bone marrow. EKLF/CRE is also expressed in erythroblastic island macrophage in the fetal liver, and we demonstrate for the first time that, as seen during embryonic development, EKLF is also expressed in adult BM-derived erythroblastic island macrophage. Our data also support lineage studies showing EKLF expression at early stages of hematopoiesis. Discussion The EKLF/CRE mouse lines are novel reagents whose availability will be of great utility for future experiments by investigators in the red cell field.
Collapse
Affiliation(s)
- Li Xue
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
| | - Kaustav Mukherjee
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - Kevin A Kelley
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
- Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, United States
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, United States
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, United States
- Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, NY, United States
| |
Collapse
|
14
|
Cui Z, Wei H, Goding C, Cui R. Stem cell heterogeneity, plasticity, and regulation. Life Sci 2023; 334:122240. [PMID: 37925141 DOI: 10.1016/j.lfs.2023.122240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
As a population of homogeneous cells with both self-renewal and differentiation potential, stem cell pools are highly compartmentalized and contain distinct subsets that exhibit stable but limited heterogeneity during homeostasis. However, their striking plasticity is showcased under natural or artificial stress, such as injury, transplantation, cancer, and aging, leading to changes in their phenotype, constitution, metabolism, and function. The complex and diverse network of cell-extrinsic niches and signaling pathways, together with cell-intrinsic genetic and epigenetic regulators, tightly regulate both the heterogeneity during homeostasis and the plasticity under perturbation. Manipulating these factors offers better control of stem cell behavior and a potential revolution in the current state of regenerative medicine. However, disruptions of normal regulation by genetic mutation or excessive plasticity acquisition may contribute to the formation of tumors. By harnessing innovative techniques that enhance our understanding of stem cell heterogeneity and employing novel approaches to maximize the utilization of stem cell plasticity, stem cell therapy holds immense promise for revolutionizing the future of medicine.
Collapse
Affiliation(s)
- Ziyang Cui
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing 100034, China.
| | - Hope Wei
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America
| | - Colin Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX37DQ, UK
| | - Rutao Cui
- Skin Disease Research Institute, The 2nd Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
15
|
Xu H, Tan S, Zhao Y, Zhang L, Cao W, Li X, Tian J, Wang X, Li X, Wang F, Cao J, Zhao T. Lin - PU.1 dim GATA-1 - defines haematopoietic stem cells with long-term multilineage reconstitution activity. Cell Prolif 2023; 56:e13490. [PMID: 37147872 PMCID: PMC10623959 DOI: 10.1111/cpr.13490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 05/07/2023] Open
Abstract
Despite extensive characterization of the state and function of haematopoietic stem cells (HSCs), the use of transcription factors to define the HSC population is still limited. We show here that the HSC population in mouse bone marrow can be defined by the distinct expression levels of Spi1 and Gata1. By using a double fluorescence knock-in mouse model, PGdKI, in which the expression levels of PU.1 and GATA-1 are indicated by the expression of GFP and mCherry, respectively, we uncover that the HSCs with lymphoid and myeloid repopulating activity are specifically enriched in a Lin- PU.1dim GATA-1- (LPG) cell subset. In vivo competitive repopulation assays demonstrate that bone marrow cells gated by LPG exhibit haematopoietic reconstitution activity which is comparable to that of classical Lin- Sca1+ c-kit+ (LSK). The integrated analysis of single-cell RNA sequence data from LPG and LSK-gated cells reveals that a transcriptional network governed by core TFs contributes to regulation of HSC multipotency. These discoveries provide new clues for HSC characterization and functional study.
Collapse
Affiliation(s)
- Haoyu Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shaojing Tan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yu Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weiyun Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xing Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jiayi Tian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaojing Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoyan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fengchao Wang
- National Institute of Biological Sciences (NIBS)BeijingChina
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
16
|
Alhaj Hussen K, Chabaane E, Nelson E, Lekiashvili S, Diop S, Keita S, Evrard B, Lardenois A, Delord M, Verhoeyen E, Cornils K, Kasraian Z, Macintyre EA, Cumano A, Garrick D, Goodhardt M, Andrieu GP, Asnafi V, Chalmel F, Canque B. Multimodal cartography of human lymphopoiesis reveals B and T/NK/ILC lineages are subjected to differential regulation. iScience 2023; 26:107890. [PMID: 37766969 PMCID: PMC10520540 DOI: 10.1016/j.isci.2023.107890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The developmental cartography of human lymphopoiesis remains incompletely understood. Here, we establish a multimodal map demonstrating that lymphoid specification follows independent direct or stepwise hierarchic routes converging toward the emergence of newly characterized CD117lo multi-lymphoid progenitors (MLPs) that undergo a proliferation arrest before entering the CD127- (NK/ILC/T) or CD127+ (B) lymphoid pathways. While the differentiation of CD127- early lymphoid progenitors is mainly driven by Flt3 signaling, emergence of their CD127+ counterparts is regulated cell-intrinsically and depends exclusively on the divisional history of their upstream precursors, including hematopoietic stem cells. Further, transcriptional mapping of differentiation trajectories reveals that whereas myeloid granulomonocytic lineages follow continuous differentiation pathways, lymphoid trajectories are intrinsically discontinuous and characterized by sequential waves of cell proliferation allowing pre-commitment amplification of lymphoid progenitor pools. Besides identifying new lymphoid specification pathways and regulatory checkpoints, our results demonstrate that NK/ILC/T and B lineages are under fundamentally distinct modes of regulation. (149 words).
Collapse
Affiliation(s)
- Kutaiba Alhaj Hussen
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
- Service de Biochimie, Université de Paris Saclay, Hôpital Paul Brousse, AP-HP, Villejuif, Paris, France
| | - Emna Chabaane
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Elisabeth Nelson
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Shalva Lekiashvili
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Samuel Diop
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Seydou Keita
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Bertrand Evrard
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Aurélie Lardenois
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Marc Delord
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Els Verhoeyen
- CIRI, International Center for Infectiology Research, Université de Lyon, INSERM U1111, Lyon, France
- Centre Mediterranéen de Médecine Moléculaire (C3M), INSERM U1065, Nice, France
| | - Kerstin Cornils
- Division of Pediatric Stem Cell Transplantation and Immunology, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf and Research Institute Children’s Cancer Center, Hamburg, Germany
| | - Zeinab Kasraian
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Elizabeth A. Macintyre
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Ana Cumano
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, Paris, France
| | - David Garrick
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Michele Goodhardt
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Guillaume P. Andrieu
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Vahid Asnafi
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Frederic Chalmel
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Bruno Canque
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| |
Collapse
|
17
|
Meng Y, Carrelha J, Drissen R, Ren X, Zhang B, Gambardella A, Valletta S, Thongjuea S, Jacobsen SE, Nerlov C. Epigenetic programming defines haematopoietic stem cell fate restriction. Nat Cell Biol 2023; 25:812-822. [PMID: 37127714 DOI: 10.1038/s41556-023-01137-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Haematopoietic stem cells (HSCs) are multipotent, but individual HSCs can show restricted lineage output in vivo. Currently, the molecular mechanisms and physiological role of HSC fate restriction remain unknown. Here we show that lymphoid fate is epigenetically but not transcriptionally primed in HSCs. In multi-lineage HSCs that produce lymphocytes, lymphoid-specific upstream regulatory elements (LymUREs) but not promoters are preferentially accessible compared with platelet-biased HSCs that do not produce lymphoid cell types, providing transcriptionally silent lymphoid lineage priming. Runx3 is preferentially expressed in multi-lineage HSCs, and reinstating Runx3 expression increases LymURE accessibility and lymphoid-primed multipotent progenitor 4 (MPP4) output in old, platelet-biased HSCs. In contrast, platelet-biased HSCs show elevated levels of epigenetic platelet-lineage priming and give rise to MPP2 progenitors with molecular platelet bias. These MPP2 progenitors generate platelets with faster kinetics and through a more direct cellular pathway compared with MPP2s derived from multi-lineage HSCs. Epigenetic programming therefore predicts both fate restriction and differentiation kinetics in HSCs.
Collapse
Affiliation(s)
- Yiran Meng
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Joana Carrelha
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Haematopoietic Stem Cell Laboratory, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Roy Drissen
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Xiying Ren
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Bowen Zhang
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Adriana Gambardella
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Simona Valletta
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Supat Thongjuea
- MRC WIMM Centre for Computational Biology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Sten Eirik Jacobsen
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Haematopoietic Stem Cell Laboratory, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Cell and Molecular Biology, Wallenberg Institute for Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
| | - Claus Nerlov
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
18
|
Asgari A, Jurasz P. Role of Nitric Oxide in Megakaryocyte Function. Int J Mol Sci 2023; 24:ijms24098145. [PMID: 37175857 PMCID: PMC10179655 DOI: 10.3390/ijms24098145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Megakaryocytes are the main members of the hematopoietic system responsible for regulating vascular homeostasis through their progeny platelets, which are generally known for maintaining hemostasis. Megakaryocytes are characterized as large polyploid cells that reside in the bone marrow but may also circulate in the vasculature. They are generated directly or through a multi-lineage commitment step from the most primitive progenitor or Hematopoietic Stem Cells (HSCs) in a process called "megakaryopoiesis". Immature megakaryocytes enter a complicated development process defined as "thrombopoiesis" that ultimately results in the release of extended protrusions called proplatelets into bone marrow sinusoidal or lung microvessels. One of the main mediators that play an important modulatory role in hematopoiesis and hemostasis is nitric oxide (NO), a free radical gas produced by three isoforms of nitric oxide synthase within the mammalian cells. In this review, we summarize the effect of NO and its signaling on megakaryopoiesis and thrombopoiesis under both physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Amir Asgari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G-2E1, Canada
| | - Paul Jurasz
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G-2E1, Canada
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G-2H7, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB T6G-2S2, Canada
- Mazankowski Alberta Heart Institute, Edmonton, AB T6G-2R7, Canada
| |
Collapse
|
19
|
Mendoza-Castrejon J, Magee JA. Layered immunity and layered leukemogenicity: Developmentally restricted mechanisms of pediatric leukemia initiation. Immunol Rev 2023; 315:197-215. [PMID: 36588481 PMCID: PMC10301262 DOI: 10.1111/imr.13180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hematopoietic stem cells (HSCs) and multipotent progenitor cells (MPPs) arise in successive waves during ontogeny, and their properties change significantly throughout life. Ontological changes in HSCs/MPPs underlie corresponding changes in mechanisms of pediatric leukemia initiation. As HSCs and MPPs progress from fetal to neonatal, juvenile and adult stages of life, they undergo transcriptional and epigenetic reprogramming that modifies immune output to meet age-specific pathogenic challenges. Some immune cells arise exclusively from fetal HSCs/MPPs. We propose that this layered immunity instructs cell fates that underlie a parallel layered leukemogenicity. Indeed, some pediatric leukemias, such as juvenile myelomonocytic leukemia, myeloid leukemia of Down syndrome, and infant pre-B-cell acute lymphoblastic leukemia, are age-restricted. They only present during infancy or early childhood. These leukemias likely arise from fetal progenitors that lose competence for transformation as they age. Other childhood leukemias, such as non-infant pre-B-cell acute lymphoblastic leukemia and acute myeloid leukemia, have mutation profiles that are common in childhood but rare in morphologically similar adult leukemias. These differences could reflect temporal changes in mechanisms of mutagenesis or changes in how progenitors respond to a given mutation at different ages. Interactions between leukemogenic mutations and normal developmental switches offer potential targets for therapy.
Collapse
Affiliation(s)
- Jonny Mendoza-Castrejon
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
| | - Jeffrey A. Magee
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
| |
Collapse
|
20
|
Konturek-Ciesla A, Dhapola P, Zhang Q, Säwén P, Wan H, Karlsson G, Bryder D. Temporal multimodal single-cell profiling of native hematopoiesis illuminates altered differentiation trajectories with age. Cell Rep 2023; 42:112304. [PMID: 36961818 DOI: 10.1016/j.celrep.2023.112304] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/16/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023] Open
Abstract
Aging negatively affects hematopoiesis, with consequences for immunity and acquired blood cell disorders. Although impairments in hematopoietic stem cell (HSC) function contribute to this, the in vivo dynamics of such changes remain obscure. Here, we integrate extensive longitudinal functional assessments of HSC-specific lineage tracing with single-cell transcriptome and epitope profiling. In contrast to recent suggestions from single-cell RNA sequencing alone, our data favor a defined structure of HSC/progenitor differentiation that deviates substantially from HSC-derived hematopoiesis following transplantation. Native age-dependent attrition in HSC differentiation manifests as drastically reduced lymphoid output through an early lymphoid-primed progenitor (MPP Ly-I). While in vitro activation fails to rescue lymphoid differentiation from most aged HSCs, robust lymphopoiesis can be achieved by culturing elevated numbers of candidate HSCs. Therefore, our data position rare chronologically aged HSC clones, fully competent at producing lymphoid offspring, as a prime target for approaches aimed to improve lymphopoiesis in the elderly.
Collapse
Affiliation(s)
- Anna Konturek-Ciesla
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
| | - Parashar Dhapola
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
| | - Qinyu Zhang
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
| | - Petter Säwén
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
| | - Haixia Wan
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
| | - Göran Karlsson
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
| | - David Bryder
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden.
| |
Collapse
|
21
|
Tang X, Wang Z, Wang J, Cui S, Xu R, Wang Y. Functions and regulatory mechanisms of resting hematopoietic stem cells: a promising targeted therapeutic strategy. Stem Cell Res Ther 2023; 14:73. [PMID: 37038215 PMCID: PMC10088186 DOI: 10.1186/s13287-023-03316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/29/2023] [Indexed: 04/12/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are the common and essential precursors of all blood cells, including immune cells, and they are responsible for the lifelong maintenance and damage repair of blood tissue homeostasis. The vast majority (> 95%) of HSCs are in a resting state under physiological conditions and are only activated to play a functional role under stress conditions. This resting state affects their long-term survival and is also closely related to the lifelong maintenance of hematopoietic function; however, abnormal changes may also be an important factor leading to the decline of immune function in the body and the occurrence of diseases in various systems. While the importance of resting HSCs has attracted increasing research attention, our current understanding of this topic remains insufficient, and the direction of clinical targeted treatments is unclear. Here, we describe the functions of HSCs, analyze the regulatory mechanisms that affect their resting state, and discuss the relationship between resting HSCs and different diseases, with a view to providing guidance for the future clinical implementation of related targeted treatments.
Collapse
Affiliation(s)
- Xinyu Tang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenzhen Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingyi Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Siyuan Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruirong Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yan Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
22
|
Ouahed JD. Understanding inborn errors of immunity: A lens into the pathophysiology of monogenic inflammatory bowel disease. Front Immunol 2022; 13:1026511. [PMID: 36248828 PMCID: PMC9556666 DOI: 10.3389/fimmu.2022.1026511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory conditions of the gastrointestinal tract, including Crohn’s disease, ulcerative colitis and inflammatory bowel disease-undefined (IBD-U). IBD are understood to be multifactorial, involving genetic, immune, microbial and environmental factors. Advances in next generation sequencing facilitated the growing identification of over 80 monogenic causes of IBD, many of which overlap with Inborn errors of immunity (IEI); Approximately a third of currently identified IEI result in gastrointestinal manifestations, many of which are inflammatory in nature, such as IBD. Indeed, the gastrointestinal tract represents an opportune system to study IEI as it consists of the largest mass of lymphoid tissue in the body and employs a thin layer of intestinal epithelial cells as the critical barrier between the intestinal lumen and the host. In this mini-review, a selection of pertinent IEI resulting in monogenic IBD is described involving disorders in the intestinal epithelial barrier, phagocytosis, T and B cell defects, as well as those impairing central and peripheral tolerance. The contribution of disrupted gut-microbiota-host interactions in disturbing intestinal homeostasis among patients with intestinal disease is also discussed. The molecular mechanisms driving pathogenesis are reviewed along with the personalized therapeutic interventions and investigational avenues this growing knowledge has enabled.
Collapse
|
23
|
Peña-Pérez L, Kharazi S, Frengen N, Krstic A, Bouderlique T, Hauenstein J, He M, Somuncular E, Li Wang X, Dahlberg C, Gustafsson C, Johansson AS, Walfridsson J, Kadri N, Woll P, Kierczak M, Qian H, Westerberg L, Luc S, Månsson R. FOXO Dictates Initiation of B Cell Development and Myeloid Restriction in Common Lymphoid Progenitors. Front Immunol 2022; 13:880668. [PMID: 35603175 PMCID: PMC9116193 DOI: 10.3389/fimmu.2022.880668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 12/23/2022] Open
Abstract
The development of B cells relies on an intricate network of transcription factors critical for developmental progression and lineage commitment. In the B cell developmental trajectory, a temporal switch from predominant Foxo3 to Foxo1 expression occurs at the CLP stage. Utilizing VAV-iCre mediated conditional deletion, we found that the loss of FOXO3 impaired B cell development from LMPP down to B cell precursors, while the loss of FOXO1 impaired B cell commitment and resulted in a complete developmental block at the CD25 negative proB cell stage. Strikingly, the combined loss of FOXO1 and FOXO3 resulted in the failure to restrict the myeloid potential of CLPs and the complete loss of the B cell lineage. This is underpinned by the failure to enforce the early B-lineage gene regulatory circuitry upon a predominantly pre-established open chromatin landscape. Altogether, this demonstrates that FOXO3 and FOXO1 cooperatively govern early lineage restriction and initiation of B-lineage commitment in CLPs.
Collapse
Affiliation(s)
- Lucía Peña-Pérez
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shabnam Kharazi
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nicolai Frengen
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Aleksandra Krstic
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thibault Bouderlique
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Julia Hauenstein
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Minghui He
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ece Somuncular
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoze Li Wang
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carin Dahlberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte Gustafsson
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ann-Sofie Johansson
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Julian Walfridsson
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nadir Kadri
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Petter Woll
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marcin Kierczak
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Hong Qian
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Lisa Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sidinh Luc
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Robert Månsson
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
24
|
Guo R, Li W, Li Y, Li Y, Jiang Z, Song Y. Generation and clinical potential of functional T lymphocytes from gene-edited pluripotent stem cells. Exp Hematol Oncol 2022; 11:27. [PMID: 35568954 PMCID: PMC9107657 DOI: 10.1186/s40164-022-00285-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/26/2022] [Indexed: 12/16/2022] Open
Abstract
Engineered T cells have been shown to be highly effective in cancer immunotherapy, although T cell exhaustion presents a challenge for their long-term function. Additional T-cell sources must be exploited to broaden the application of engineered T cells for immune defense and reconstitution. Unlimited sources of pluripotent stem cells (PSCs) have provided a potential opportunity to generate precise-engineered therapeutic induced T (iT) cells. Single-cell transcriptome analysis of PSC-derived induced hematopoietic stem and progenitor cells (iHSPC)/iT identified the developmental pathways and possibilities of generating functional T cell from PSCs. To date, the PSC-to-iT platforms encounter several problems, including low efficiency of conventional T subset specification, limited functional potential, and restrictions on large-scale application, because of the absence of a thymus-like organized microenvironment. The updated PSC-to-iT platforms, such as the three-dimensional (3D) artificial thymic organoid (ATO) co-culture system and Runx1/Hoxa9-enforced iT lymphopoiesis, provide fresh perspectives for coordinating culture conditions and transcription factors, which may greatly improve the efficiency of T-cell generation greatly. In addition, the improved PSC-to-iT platform coordinating gene editing technologies will provide various functional engineered unconventional or conventional T cells. Furthermore, the clinical applications of PSC-derived immune cells are accelerating from bench to bedside.
Collapse
Affiliation(s)
- Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yadan Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.,Academy of Medical Science, Henan Medical College of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
25
|
Safi F, Dhapola P, Warsi S, Sommarin M, Erlandsson E, Ungerbäck J, Warfvinge R, Sitnicka E, Bryder D, Böiers C, Thakur RK, Karlsson G. Concurrent stem- and lineage-affiliated chromatin programs precede hematopoietic lineage restriction. Cell Rep 2022; 39:110798. [PMID: 35545037 DOI: 10.1016/j.celrep.2022.110798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/20/2021] [Accepted: 04/15/2022] [Indexed: 01/06/2023] Open
Abstract
The emerging notion of hematopoietic stem and progenitor cells (HSPCs) as a low-primed cloud without sharply demarcated gene expression programs raises the question on how cellular-fate options emerge and at which stem-like stage lineage priming is initiated. Here, we investigate single-cell chromatin accessibility of Lineage-, cKit+, and Sca1+ (LSK) HSPCs spanning the early differentiation landscape. Application of a signal-processing algorithm to detect transition points corresponding to massive alterations in accessibility of 571 transcription factor motifs reveals a population of LSK FMS-like tyrosine kinase 3 (Flt3)intCD9high cells that concurrently display stem-like and lineage-affiliated chromatin signatures, pointing to a simultaneous gain of both lympho-myeloid and megakaryocyte-erythroid programs. Molecularly and functionally, these cells position between stem cells and committed progenitors and display multi-lineage capacity in vitro and in vivo but lack self-renewal activity. This integrative molecular analysis resolves the heterogeneity of cells along hematopoietic differentiation and permits investigation of chromatin-mediated transition between multipotency and lineage restriction.
Collapse
Affiliation(s)
- Fatemeh Safi
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - Parashar Dhapola
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - Sarah Warsi
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - Mikael Sommarin
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - Eva Erlandsson
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - Jonas Ungerbäck
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - Rebecca Warfvinge
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - Ewa Sitnicka
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - David Bryder
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - Charlotta Böiers
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - Ram Krishna Thakur
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden.
| | - Göran Karlsson
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden.
| |
Collapse
|
26
|
Dircio-Maldonado R, Castro-Oropeza R, Flores-Guzman P, Cedro-Tanda A, Beltran-Anaya FO, Hidalgo-Miranda A, Mayani H. Gene expression profiles and cytokine environments determine the in vitro proliferation and expansion capacities of human hematopoietic stem and progenitor cells. Hematology 2022; 27:476-487. [PMID: 35413231 DOI: 10.1080/16078454.2022.2061108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE The interplay between intrinsic and extrinsic elements involved in the physiology of hematopoietic cells is not completely understood. In the present study, we analyzed the transcriptional profiles of human cord blood-derived hematopoietic stem cells (HSCs), as well as myeloid (MPCs) and erythroid (EPCs) progenitors, and assessed their proliferation and expansion kinetics in vitro. METHODS All cell populations were obtained by cell-sorting, and were cultured in liquid cultures supplemented with different cytokine combinations. Their gene expression profiles were determined by RNA microarrays right after cell-sorting, before culture. RESULTS HSCs showed the highest proliferation and expansion capacities in culture, and were found to be more closely related, in transcriptional terms, to MPCs than to EPCs. This correlated with the fact that after 30 days, only cultures initiated with HSCs and MPCs were sustained. Expression of cell cycle and cell division-related genes was enriched in EPCs. Such cells showed significantly higher proliferation than MPCs, however, their expansion potential was reduced, so that cultures initiated with EPCs declined after 15 days and became exhausted by day 30. Proliferation and expansion of HSCs and EPCs were higher in the presence of a cytokine combination that favors erythropoiesis, whereas the growth of MPCs was higher under a cytokine combination that favors myelopoiesis. CONCLUSION This study shows a correlation between the transcriptional profiles of HSCs, MPCs, and EPCs, and their respective in vitro growth under particular culture conditions. These results may be relevant in the development of ex vivo systems for the expansion of hematopoietic cells for clinical application.
Collapse
Affiliation(s)
- Roberto Dircio-Maldonado
- Hematopoietic Stem Cells Laboratory, IMSS National Medical Center, Oncology Research Unit, Oncology Hospital, Mexico City, Mexico
| | - Rosario Castro-Oropeza
- Hematopoietic Stem Cells Laboratory, IMSS National Medical Center, Oncology Research Unit, Oncology Hospital, Mexico City, Mexico
| | - Patricia Flores-Guzman
- Hematopoietic Stem Cells Laboratory, IMSS National Medical Center, Oncology Research Unit, Oncology Hospital, Mexico City, Mexico
| | - Alberto Cedro-Tanda
- National Institute of Genomic Medicine, National Ministry of Health, Mexico City, Mexico
| | | | | | - Hector Mayani
- Hematopoietic Stem Cells Laboratory, IMSS National Medical Center, Oncology Research Unit, Oncology Hospital, Mexico City, Mexico
| |
Collapse
|
27
|
Dntt expression reveals developmental hierarchy and lineage specification of hematopoietic progenitors. Nat Immunol 2022; 23:505-517. [PMID: 35354960 PMCID: PMC9208307 DOI: 10.1038/s41590-022-01167-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/18/2022] [Indexed: 12/02/2022]
Abstract
Intrinsic and extrinsic cues determine developmental trajectories of hematopoietic stem cells (HSCs) towards erythroid, myeloid and lymphoid lineages. Using two newly generated transgenic mice that report and trace the expression of terminal deoxynucleotidyl transferase (TdT), transient induction of TdT was detected on a newly identified multipotent progenitor (MPP) subset that lacked self-renewal capacity but maintained multilineage differentiation potential. TdT induction on MPPs reflected a transcriptionally dynamic but uncommitted stage, characterized by low expression of lineage-associated genes. Single-cell CITE-seq indicated that multipotency in the TdT+ MPPs is associated with expression of the endothelial cell adhesion molecule ESAM. Stable and progressive upregulation of TdT defined the lymphoid developmental trajectory. Collectively, we here identify a new multipotent progenitor within the MPP4 compartment. Specification and commitment are defined by downregulation of ESAM which marks the progressive loss of alternative fates along all lineages.
Collapse
|
28
|
The bone marrow niche from the inside out: how megakaryocytes are shaped by and shape hematopoiesis. Blood 2022; 139:483-491. [PMID: 34587234 PMCID: PMC8938937 DOI: 10.1182/blood.2021012827] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/10/2021] [Indexed: 01/29/2023] Open
Abstract
Megakaryocytes (MKs), the largest of the hematopoietic cells, are responsible for producing platelets by extending and depositing long proplatelet extensions into the bloodstream. The traditional view of megakaryopoiesis describes the cellular journey from hematopoietic stem cells (HSCs) along the myeloid branch of hematopoiesis. However, recent studies suggest that MKs can be generated from multiple pathways, some of which do not require transit through multipotent or bipotent MK-erythroid progenitor stages in steady-state and emergency conditions. Growing evidence suggests that these emergency conditions are due to stress-induced molecular changes in the bone marrow (BM) microenvironment, also called the BM niche. These changes can result from insults that affect the BM cellular composition, microenvironment, architecture, or a combination of these factors. In this review, we explore MK development, focusing on recent studies showing that MKs can be generated from multiple divergent pathways. We highlight how the BM niche may encourage and alter these processes using different mechanisms of communication, such as direct cell-to-cell contact, secreted molecules (autocrine and paracrine signaling), and the release of cellular components (eg, extracellular vesicles). We also explore how MKs can actively build and shape the surrounding BM niche.
Collapse
|
29
|
Liao W, Kohler ME, Fry T, Ernst P. Does lineage plasticity enable escape from CAR-T cell therapy? Lessons from MLL-r leukemia. Exp Hematol 2021; 100:1-11. [PMID: 34298117 PMCID: PMC8611617 DOI: 10.1016/j.exphem.2021.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 01/20/2023]
Abstract
The clinical success of engineered, CD19-directed chimeric antigen receptor (CAR) T cells in relapsed, refractory B-cell acute lymphoblastic leukemia (B-ALL) has generated great enthusiasm for the use of CAR T cells in patients with cytogenetics that portend a poor prognosis with conventional cytotoxic therapies. One such group includes infants and children with mixed lineage leukemia (MLL1, KMT2A) rearrangements (MLL-r), who fare much worse than patients with low- or standard-risk B-ALL. Although early clinical trials using CD19 CAR T cells for MLL-r B-ALL produced complete remission in most patients, relapse with CD19-negative disease was a common mechanism of treatment failure. Whereas CD19neg relapse has been observed across a broad spectrum of B-ALL patients treated with CD19-directed therapy, patients with MLL-r have manifested the emergence of AML, often clonally related to the B-ALL, suggesting that the inherent heterogeneity or lineage plasticity of MLL-r B-ALL may predispose patients to a myeloid relapse. Understanding the factors that enable and drive myeloid relapse may be important to devise strategies to improve durability of remissions. In this review, we summarize clinical observations to date with MLL-r B-ALL and generally discuss lineage plasticity as a mechanism of escape from immunotherapy.
Collapse
Affiliation(s)
- Wenjuan Liao
- Department of Pediatrics, Section of Hematology/Oncology/BMT, Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO
| | - M Eric Kohler
- Department of Pediatrics, Section of Hematology/Oncology/BMT, Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO
| | - Terry Fry
- Department of Pediatrics, Section of Hematology/Oncology/BMT, Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO; Immunology Department and HI3 Initiative, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO
| | - Patricia Ernst
- Department of Pediatrics, Section of Hematology/Oncology/BMT, Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO; Pharmacology Department, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO.
| |
Collapse
|
30
|
Strid T, Okuyama K, Tingvall-Gustafsson J, Kuruvilla J, Jensen CT, Lang S, Prasad M, Somasundaram R, Åhsberg J, Cristobal S, Soneji S, Ungerbäck J, Sigvardsson M. B Lymphocyte Specification Is Preceded by Extensive Epigenetic Priming in Multipotent Progenitors. THE JOURNAL OF IMMUNOLOGY 2021; 206:2700-2713. [PMID: 34021049 DOI: 10.4049/jimmunol.2100048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/27/2021] [Indexed: 11/19/2022]
Abstract
B lymphocyte development is dependent on the interplay between the chromatin landscape and lineage-specific transcription factors. It has been suggested that B lineage commitment is associated with major changes in the nuclear chromatin environment, proposing a critical role for lineage-specific transcription factors in the formation of the epigenetic landscape. In this report, we have used chromosome conformation capture in combination with assay for transposase-accessible chromatin sequencing analysis to enable highly efficient annotation of both proximal and distal transcriptional control elements to genes activated in B lineage specification in mice. A large majority of these genes were annotated to at least one regulatory element with an accessible chromatin configuration in multipotent progenitors. Furthermore, the majority of binding sites for the key regulators of B lineage specification, EBF1 and PAX5, occurred in already accessible regions. EBF1 did, however, cause a dynamic change in assay for transposase-accessible chromatin accessibility and was critical for an increase in distal promoter-enhancer interactions. Our data unravel an extensive epigenetic priming at regulatory elements annotated to lineage-restricted genes and provide insight into the interplay between the epigenetic landscape and transcription factors in cell specification.
Collapse
Affiliation(s)
- Tobias Strid
- Department of Biological and Clinical Sciences, Linköping University, Linköping, Sweden.,Division of Molecular Hematology, Lund University, Lund, Sweden; and.,Department of Clinical Pathology, Biological and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Kazuki Okuyama
- Department of Biological and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | - Jacob Kuruvilla
- Division of Molecular Hematology, Lund University, Lund, Sweden; and
| | | | - Stefan Lang
- Division of Molecular Hematology, Lund University, Lund, Sweden; and
| | - Mahadesh Prasad
- Department of Biological and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Rajesh Somasundaram
- Department of Biological and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Josefine Åhsberg
- Department of Biological and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Susana Cristobal
- Department of Biological and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Shamit Soneji
- Division of Molecular Hematology, Lund University, Lund, Sweden; and
| | - Jonas Ungerbäck
- Division of Molecular Hematology, Lund University, Lund, Sweden; and
| | - Mikael Sigvardsson
- Department of Biological and Clinical Sciences, Linköping University, Linköping, Sweden; .,Division of Molecular Hematology, Lund University, Lund, Sweden; and
| |
Collapse
|
31
|
CD34 expression does not correlate with immunophenotypic stem cell or progenitor content in human cord blood products. Blood Adv 2021; 4:5357-5361. [PMID: 33136125 DOI: 10.1182/bloodadvances.2020002891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/27/2020] [Indexed: 11/20/2022] Open
Abstract
Key Points
The CD34+ compartment of human cord blood contains a range of HSPC immunophenotypes, among which the Lin−CD34+CD38+CD127+ CLP is rare. There is no correlation between the frequencies of CD34+ cells and immunophenotypic HSC in umbilical cord blood products.
Collapse
|
32
|
Jassinskaja M, Pimková K, Arh N, Johansson E, Davoudi M, Pereira CF, Sitnicka E, Hansson J. Ontogenic shifts in cellular fate are linked to proteotype changes in lineage-biased hematopoietic progenitor cells. Cell Rep 2021; 34:108894. [PMID: 33761361 DOI: 10.1016/j.celrep.2021.108894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/16/2020] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
The process of hematopoiesis is subject to substantial ontogenic remodeling that is accompanied by alterations in cellular fate during both development and disease. We combine state-of-the-art mass spectrometry with extensive functional assays to gain insight into ontogeny-specific proteomic mechanisms regulating hematopoiesis. Through deep coverage of the cellular proteome of fetal and adult lympho-myeloid multipotent progenitors (LMPPs), common lymphoid progenitors (CLPs), and granulocyte-monocyte progenitors (GMPs), we establish that features traditionally attributed to adult hematopoiesis are conserved across lymphoid and myeloid lineages, whereas generic fetal features are suppressed in GMPs. We reveal molecular and functional evidence for a diminished granulocyte differentiation capacity in fetal LMPPs and GMPs relative to their adult counterparts. Our data indicate an ontogeny-specific requirement of myosin activity for myelopoiesis in LMPPs. Finally, we uncover an ontogenic shift in the monocytic differentiation capacity of GMPs, partially driven by a differential expression of Irf8 during fetal and adult life.
Collapse
Affiliation(s)
- Maria Jassinskaja
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden
| | - Kristýna Pimková
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden
| | - Nejc Arh
- Lund Stem Cell Center, Division of Molecular Medicine and Gene Therapy, Lund University, 221 84 Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Emil Johansson
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden; Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| | - Mina Davoudi
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden
| | - Carlos-Filipe Pereira
- Lund Stem Cell Center, Division of Molecular Medicine and Gene Therapy, Lund University, 221 84 Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Ewa Sitnicka
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden
| | - Jenny Hansson
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
33
|
Sonoda Y. Human CD34-negative hematopoietic stem cells: The current understanding of their biological nature. Exp Hematol 2021; 96:13-26. [PMID: 33610645 DOI: 10.1016/j.exphem.2021.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/29/2021] [Accepted: 02/07/2021] [Indexed: 12/29/2022]
Abstract
Hematopoietic stem cell (HSC) heterogeneity and hierarchy are a current topic of interest, having major implications for clinical HSC transplantation and basic research on human HSCs. It was long believed that the most primitive HSCs in mammals, including mice and humans, were CD34 antigen positive (CD34+). However, 2 decades ago, it was reported that murine long-term multilineage reconstituting HSCs were lineage marker negative (Lin-, i.e., c-kit+Sca-1+CD34low/-), known as CD34low/- KSL cells. In contrast, human CD34- HSCs, a counterpart of murine CD34low/- KSL cells, were hard to identify for a long time mainly because of their rarity. We previously identified very primitive human cord blood (CB)-derived CD34- severe combined immunodeficiency (SCID)-repopulating cells (SRCs) using the intra-bone marrow injection method and proposed the new concept that CD34- SRCs (HSCs) reside at the apex of the human HSC hierarchy. Through a series of studies, we identified two positive/enrichment markers: CD133 and GPI-80. The combination of these two markers enabled the development of an ultrahigh-resolution purification method for CD34- as well as CD34+ HSCs and the successful purification of both HSCs at the single-cell level. Cell population purity is a crucial prerequisite for reliable biological and molecular analyses. Clonal analyses of highly purified human CD34- HSCs have revealed their potent megakaryocyte/erythrocyte differentiation potential. Based on these observations, we propose a revised road map for the commitment of human CB-derived CD34- HSCs. This review updates the current understanding of the stem cell nature of human CB-derived primitive CD34- as well as CD34+ HSCs.
Collapse
Affiliation(s)
- Yoshiaki Sonoda
- Department of iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, Japan.
| |
Collapse
|
34
|
Bast L, Buck MC, Hecker JS, Oostendorp RAJ, Götze KS, Marr C. Computational modeling of stem and progenitor cell kinetics identifies plausible hematopoietic lineage hierarchies. iScience 2021; 24:102120. [PMID: 33665548 PMCID: PMC7897991 DOI: 10.1016/j.isci.2021.102120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/08/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Classically, hematopoietic stem cell (HSC) differentiation is assumed to occur via progenitor compartments of decreasing plasticity and increasing maturity in a specific, hierarchical manner. The classical hierarchy has been challenged in the past by alternative differentiation pathways. We abstracted experimental evidence into 10 differentiation hierarchies, each comprising 7 cell type compartments. By fitting ordinary differential equation models with realistic waiting time distributions to time-resolved data of differentiating HSCs from 10 healthy human donors, we identified plausible lineage hierarchies and rejected others. We found that, for most donors, the classical model of hematopoiesis is preferred. Surprisingly, multipotent lymphoid progenitor differentiation into granulocyte-monocyte progenitors is plausible in 90% of samples. An in silico analysis confirmed that, even for strong noise, the classical model can be identified robustly. Our computational approach infers differentiation hierarchies in a personalized fashion and can be used to gain insights into kinetic alterations of diseased hematopoiesis. We assembled 10 lineage hierarchy models of human hematopoiesis Multiparameter immunophenotyping determines HSC differentiation for 10 healthy donors ODE fitting and model selection allows to identify plausible hierarchies A simulation study confirms robustness of model selection for different noise levels
Collapse
Affiliation(s)
- Lisa Bast
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany.,Technical University of Munich, Department of Mathematics, Chair of Mathematical Modeling of Biological Systems, Garching, Germany
| | - Michèle C Buck
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Internal Medicine III, Munich, Germany
| | - Judith S Hecker
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Internal Medicine III, Munich, Germany
| | - Robert A J Oostendorp
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Internal Medicine III, Munich, Germany
| | - Katharina S Götze
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Internal Medicine III, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Partner Site Munich, Germany
| | - Carsten Marr
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany.,Technical University of Munich, Department of Mathematics, Chair of Mathematical Modeling of Biological Systems, Garching, Germany
| |
Collapse
|
35
|
Cahan P, Cacchiarelli D, Dunn SJ, Hemberg M, de Sousa Lopes SMC, Morris SA, Rackham OJL, Del Sol A, Wells CA. Computational Stem Cell Biology: Open Questions and Guiding Principles. Cell Stem Cell 2021; 28:20-32. [PMID: 33417869 PMCID: PMC7799393 DOI: 10.1016/j.stem.2020.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Computational biology is enabling an explosive growth in our understanding of stem cells and our ability to use them for disease modeling, regenerative medicine, and drug discovery. We discuss four topics that exemplify applications of computation to stem cell biology: cell typing, lineage tracing, trajectory inference, and regulatory networks. We use these examples to articulate principles that have guided computational biology broadly and call for renewed attention to these principles as computation becomes increasingly important in stem cell biology. We also discuss important challenges for this field with the hope that it will inspire more to join this exciting area.
Collapse
Affiliation(s)
- Patrick Cahan
- Institute for Cell Engineering, Department of Biomedical Engineering, Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy d Department of Translational Medicine, University of Naples "Federico II," Naples, Italy
| | - Sara-Jane Dunn
- DeepMind, 14-18 Handyside Street, London N1C 4DN, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Martin Hemberg
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | | | - Samantha A Morris
- Department of Developmental Biology, Department of Genetics, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Owen J L Rackham
- Centre for Computational Biology and The Program for Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, Belvaux 4366, Luxembourg; CIC bioGUNE, Bizkaia Technology Park, 801 Building, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Christine A Wells
- Centre for Stem Cell Systems, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
36
|
Martin EW, Krietsch J, Reggiardo RE, Sousae R, Kim DH, Forsberg EC. Chromatin accessibility maps provide evidence of multilineage gene priming in hematopoietic stem cells. Epigenetics Chromatin 2021; 14:2. [PMID: 33407811 PMCID: PMC7789351 DOI: 10.1186/s13072-020-00377-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
Hematopoietic stem cells (HSCs) have the capacity to differentiate into vastly different types of mature blood cells. The epigenetic mechanisms regulating the multilineage ability, or multipotency, of HSCs are not well understood. To test the hypothesis that cis-regulatory elements that control fate decisions for all lineages are primed in HSCs, we used ATAC-seq to compare chromatin accessibility of HSCs with five unipotent cell types. We observed the highest similarity in accessibility profiles between megakaryocyte progenitors and HSCs, whereas B cells had the greatest number of regions with de novo gain in accessibility during differentiation. Despite these differences, we identified cis-regulatory elements from all lineages that displayed epigenetic priming in HSCs. These findings provide new insights into the regulation of stem cell multipotency, as well as a resource to identify functional drivers of lineage fate.
Collapse
Affiliation(s)
- Eric W Martin
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Jana Krietsch
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Roman E Reggiardo
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Rebekah Sousae
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Daniel H Kim
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
37
|
Prins D, Park HJ, Watcham S, Li J, Vacca M, Bastos HP, Gerbaulet A, Vidal-Puig A, Göttgens B, Green AR. The stem/progenitor landscape is reshaped in a mouse model of essential thrombocythemia and causes excess megakaryocyte production. SCIENCE ADVANCES 2020; 6:eabd3139. [PMID: 33239297 PMCID: PMC7688335 DOI: 10.1126/sciadv.abd3139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/07/2020] [Indexed: 05/12/2023]
Abstract
Frameshift mutations in CALR (calreticulin) are associated with essential thrombocythemia (ET), but the stages at and mechanisms by which mutant CALR drives transformation remain incompletely defined. Here, we use single-cell approaches to examine the hematopoietic stem/progenitor cell landscape in a mouse model of mutant CALR-driven ET. We identify a trajectory linking hematopoietic stem cells (HSCs) with megakaryocytes and prospectively identify a previously unknown intermediate population that is overrepresented in the disease state. We also show that mutant CALR drives transformation primarily from the earliest stem cell compartment, with some contribution from megakaryocyte progenitors. Last, relative to wild-type HSCs, mutant CALR HSCs show increases in JAK-STAT signaling, the unfolded protein response, cell cycle, and a previously undescribed up-regulation of cholesterol biosynthesis. Overall, we have identified a novel megakaryocyte-biased cell population that is increased in a mouse model of ET and described transcriptomic changes linking CALR mutations to increased HSC proliferation and megakaryopoiesis.
Collapse
Affiliation(s)
- Daniel Prins
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Hyun Jung Park
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Sam Watcham
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Juan Li
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Michele Vacca
- Wellcome Trust-Medical Research Council Institute of Metabolic Science-Metabolic Research Laboratories, Addenbrooke's Hospital, Cambridge, UK
| | - Hugo P Bastos
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Alexander Gerbaulet
- Institute for Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Antonio Vidal-Puig
- Wellcome Trust-Medical Research Council Institute of Metabolic Science-Metabolic Research Laboratories, Addenbrooke's Hospital, Cambridge, UK
- Wellcome Trust Sanger Institute, Hinxton, UK
| | - Berthold Göttgens
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Anthony R Green
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK
| |
Collapse
|
38
|
Chen C, Yu W, Tober J, Gao P, He B, Lee K, Trieu T, Blobel GA, Speck NA, Tan K. Spatial Genome Re-organization between Fetal and Adult Hematopoietic Stem Cells. Cell Rep 2020; 29:4200-4211.e7. [PMID: 31851943 PMCID: PMC7262670 DOI: 10.1016/j.celrep.2019.11.065] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/16/2019] [Accepted: 11/14/2019] [Indexed: 01/28/2023] Open
Abstract
Fetal hematopoietic stem cells (HSCs) undergo a developmental switch to become adult HSCs with distinct functional properties. To better understand the molecular mechanisms underlying the developmental switch, we have conducted deep sequencing of the 3D genome, epigenome, and transcriptome of fetal and adult HSCs in mouse. We find that chromosomal compartments and topologically associating domains (TADs) are largely conserved between fetal and adult HSCs. However, there is a global trend of increased compartmentalization and TAD boundary strength in adult HSCs. In contrast, intra-TAD chromatin interactions are much more dynamic and wide-spread, involving over a thousand gene promoters and distal enhancers. These developmental-stage-specific enhancer-promoter interactions are mediated by different sets of transcription factors, such as TCF3 and MAFB in fetal HSCs, versus NR4A1 and GATA3 in adult HSCs. Loss-of-function studies of TCF3 confirm the role of TCF3 in mediating condition-specific enhancer-promoter interactions and gene regulation in fetal HSCs. A developmental transition occurs between fetal and adult hematopoietic stem cells. How the 3D genome folding contributes to this transition is poorly understood. Chen et al. show global genome organization is largely conserved, but a large fraction of enhancer-promoter interactions is reorganized and regulate genes contributing to the phenotypic differences.
Collapse
Affiliation(s)
- Changya Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Wenbao Yu
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Joanna Tober
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peng Gao
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bing He
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kiwon Lee
- Sol Sherry Thrombosis Research Center, Temple University Medical School, Philadelphia, PA 19140, USA
| | - Tuan Trieu
- Department of Computer Science, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Gerd A Blobel
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy A Speck
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kai Tan
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
39
|
Shin JJ, Schröder MS, Caiado F, Wyman SK, Bray NL, Bordi M, Dewitt MA, Vu JT, Kim WT, Hockemeyer D, Manz MG, Corn JE. Controlled Cycling and Quiescence Enables Efficient HDR in Engraftment-Enriched Adult Hematopoietic Stem and Progenitor Cells. Cell Rep 2020; 32:108093. [PMID: 32877675 PMCID: PMC7487781 DOI: 10.1016/j.celrep.2020.108093] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/07/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Genome editing often takes the form of either error-prone sequence disruption by non-homologous end joining (NHEJ) or sequence replacement by homology-directed repair (HDR). Although NHEJ is generally effective, HDR is often difficult in primary cells. Here, we use a combination of immunophenotyping, next-generation sequencing, and single-cell RNA sequencing to investigate and reprogram genome editing outcomes in subpopulations of adult hematopoietic stem and progenitor cells. We find that although quiescent stem-enriched cells mostly use NHEJ, non-quiescent cells with the same immunophenotype use both NHEJ and HDR. Inducing quiescence before editing results in a loss of HDR in all cell subtypes. We develop a strategy of controlled cycling and quiescence that yields a 6-fold increase in the HDR/NHEJ ratio in quiescent stem cells ex vivo and in vivo. Our results highlight the tension between editing and cellular physiology and suggest strategies to manipulate quiescent cells for research and therapeutic genome editing.
Collapse
Affiliation(s)
- Jiyung J Shin
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Francisco Caiado
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Stacia K Wyman
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Nicolas L Bray
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Matteo Bordi
- Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Mark A Dewitt
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jonathan T Vu
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Won-Tae Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Jacob E Corn
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Department of Biology, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
40
|
Regan JL, Smalley MJ. Integrating single-cell RNA-sequencing and functional assays to decipher mammary cell states and lineage hierarchies. NPJ Breast Cancer 2020; 6:32. [PMID: 32793804 PMCID: PMC7391676 DOI: 10.1038/s41523-020-00175-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
The identification and molecular characterization of cellular hierarchies in complex tissues is key to understanding both normal cellular homeostasis and tumorigenesis. The mammary epithelium is a heterogeneous tissue consisting of two main cellular compartments, an outer basal layer containing myoepithelial cells and an inner luminal layer consisting of estrogen receptor-negative (ER−) ductal cells and secretory alveolar cells (in the fully functional differentiated tissue) and hormone-responsive estrogen receptor-positive (ER+) cells. Recent publications have used single-cell RNA-sequencing (scRNA-seq) analysis to decipher epithelial cell differentiation hierarchies in human and murine mammary glands, and reported the identification of new cell types and states based on the expression of the luminal progenitor cell marker KIT (c-Kit). These studies allow for comprehensive and unbiased analysis of the different cell types that constitute a heterogeneous tissue. Here we discuss scRNA-seq studies in the context of previous research in which mammary epithelial cell populations were molecularly and functionally characterized, and identified c-Kit+ progenitors and cell states analogous to those reported in the recent scRNA-seq studies.
Collapse
Affiliation(s)
- Joseph L Regan
- Charité Comprehensive Cancer Centre, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Matthew J Smalley
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Wales, CF24 4HQ UK
| |
Collapse
|
41
|
Loughran SJ, Haas S, Wilkinson AC, Klein AM, Brand M. Lineage commitment of hematopoietic stem cells and progenitors: insights from recent single cell and lineage tracing technologies. Exp Hematol 2020; 88:1-6. [PMID: 32653531 DOI: 10.1016/j.exphem.2020.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
Blood production is essential to maintain human health, and even small perturbations in hematopoiesis can cause disease. Hematopoiesis has therefore been the focus of much research for many years. Experiments determining the lineage potentials of hematopoietic stem and progenitor cells (HSPCs) in vitro and after transplantation revealed a hierarchy of progenitor cell states, where differentiating cells undergo lineage commitment-a series of irreversible changes that progressively restrict their potential. New technologies have recently been developed that allow for a more detailed analysis of the molecular states and fates of differentiating HSPCs. Proteomic and lineage-tracing approaches, alongside single-cell transcriptomic analyses, have recently helped to reveal the biological complexity underlying lineage commitment during hematopoiesis. Recent insights from these new technologies were presented by Dr. Marjorie Brand and Dr. Allon Klein in the Summer 2019 ISEH Webinar, and are discussed in this Perspective.
Collapse
Affiliation(s)
- Stephen J Loughran
- Wellcome-MRC Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, United Kingdom.
| | - Simon Haas
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine and Division of Stem Cells and Cancer, DKFZ German Cancer Research Centre, Heidelberg, Germany
| | - Adam C Wilkinson
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA; Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
42
|
Cumano A, Berthault C, Ramond C, Petit M, Golub R, Bandeira A, Pereira P. New Molecular Insights into Immune Cell Development. Annu Rev Immunol 2020; 37:497-519. [PMID: 31026413 DOI: 10.1146/annurev-immunol-042718-041319] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During development innate lymphoid cells and specialized lymphocyte subsets colonize peripheral tissues, where they contribute to organogenesis and later constitute the first line of protection while maintaining tissue homeostasis. A few of these subsets are produced only during embryonic development and remain in the tissues throughout life. They are generated through a unique developmental program initiated in lympho-myeloid-primed progenitors, which lose myeloid and B cell potential. They either differentiate into innate lymphoid cells or migrate to the thymus to give rise to embryonic T cell receptor-invariant T cells. At later developmental stages, adaptive T lymphocytes are derived from lympho-myeloid progenitors that colonize the thymus, while lymphoid progenitors become specialized in the production of B cells. This sequence of events highlights the requirement for stratification in the establishment of immune functions that determine efficient seeding of peripheral tissues by a limited number of cells.
Collapse
Affiliation(s)
- Ana Cumano
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Claire Berthault
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Cyrille Ramond
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , ,
| | - Maxime Petit
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Rachel Golub
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Antonio Bandeira
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Pablo Pereira
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| |
Collapse
|
43
|
Haas S. Hematopoietic Stem Cells in Health and Disease—Insights from Single-Cell Multi-omic Approaches. CURRENT STEM CELL REPORTS 2020. [DOI: 10.1007/s40778-020-00174-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Naik SH. Dendritic cell development at a clonal level within a revised 'continuous' model of haematopoiesis. Mol Immunol 2020; 124:190-197. [PMID: 32593782 DOI: 10.1016/j.molimm.2020.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/15/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022]
Abstract
Understanding development of the dendritic cell (DC) subtypes continues to evolve. The origin and relationship of conventional DC type 1 (cDC1), cDC type 2 (cDC2) and plasmacytoid DCs (pDCs) to each other, and in relation to classic myeloid and lymphoid cells, has had a long and controversial history and is still not fully resolved. This review summarises the technological developments and findings that have been achieved at a clonal level, and how that has enhanced our knowledge of the process. It summarises the single cell lineage tracing technologies that have emerged, their application in in vitro and in vivo studies, in both mouse and human settings, and places the findings in a wider context of understanding haematopoiesis at a single cell or clonal level. In particular, it addresses the fate heterogeneity observed in many phenotypically defined progenitor subsets and how these findings have led to a departure from the classic ball-and-stick models of haematopoiesis to the emerging continuous model. Prior contradictions in DC development may be reconciled if they are framed within this revised model, where commitment to a lineage or cell type does not occur in an all-or-nothing process in defined progenitors but rather can occur at many stages of haematopoiesis in a dynamic process.
Collapse
Affiliation(s)
- Shalin H Naik
- Immunology Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, Australia; The Department of Medical Biology, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
45
|
Pucella JN, Upadhaya S, Reizis B. The Source and Dynamics of Adult Hematopoiesis: Insights from Lineage Tracing. Annu Rev Cell Dev Biol 2020; 36:529-550. [PMID: 32580566 DOI: 10.1146/annurev-cellbio-020520-114601] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The generation of all blood cell lineages (hematopoiesis) is sustained throughout the entire life span of adult mammals. Studies using cell transplantation identified the self-renewing, multipotent hematopoietic stem cells (HSCs) as the source of hematopoiesis in adoptive hosts and delineated a hierarchy of HSC-derived progenitors that ultimately yield mature blood cells. However, much less is known about adult hematopoiesis as it occurs in native hosts, i.e., without transplantation. Here we review recent advances in our understanding of native hematopoiesis, focusing in particular on the application of genetic lineage tracing in mice. The emerging evidence has established HSCs as the major source of native hematopoiesis, helped to define the kinetics of HSC differentiation, and begun exploring native hematopoiesis in stress conditions such as aging and inflammation. Major outstanding questions about native hematopoiesis still remain, such as its clonal composition, the nature of lineage commitment, and the dynamics of the process in humans.
Collapse
Affiliation(s)
- Joseph N Pucella
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; , ,
| | - Samik Upadhaya
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; , ,
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; , ,
| |
Collapse
|
46
|
Brown G. Towards a New Understanding of Decision-Making by Hematopoietic Stem Cells. Int J Mol Sci 2020; 21:ijms21072362. [PMID: 32235353 PMCID: PMC7178065 DOI: 10.3390/ijms21072362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Cells within the hematopoietic stem cell compartment selectively express receptors for cytokines that have a lineage(s) specific role; they include erythropoietin, macrophage colony-stimulating factor, granulocyte colony-stimulating factor, granulocyte/macrophage colony-stimulating factor and the ligand for the fms-like tyrosine kinase 3. These hematopoietic cytokines can instruct the lineage fate of hematopoietic stem and progenitor cells in addition to ensuring the survival and proliferation of cells that belong to a particular cell lineage(s). Expression of the receptors for macrophage colony-stimulating factor and granulocyte colony-stimulating factor is positively autoregulated and the presence of the cytokine is therefore likely to enforce a lineage bias within hematopoietic stem cells that express these receptors. In addition to the above roles, macrophage colony-stimulating factor and granulocyte/macrophage colony-stimulating factor are powerful chemoattractants. The multiple roles of some hematopoietic cytokines leads us towards modelling hematopoietic stem cell decision-making whereby these cells can 'choose' just one lineage fate and migrate to a niche that both reinforces the fate and guarantees the survival and expansion of cells as they develop.
Collapse
Affiliation(s)
- Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
47
|
Lineage Decision-Making within Normal Haematopoietic and Leukemic Stem Cells. Int J Mol Sci 2020; 21:ijms21062247. [PMID: 32213936 PMCID: PMC7139697 DOI: 10.3390/ijms21062247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 11/20/2022] Open
Abstract
To produce the wide range of blood and immune cell types, haematopoietic stem cells can “choose” directly from the entire spectrum of blood cell fate-options. Affiliation to a single cell lineage can occur at the level of the haematopoietic stem cell and these cells are therefore a mixture of some pluripotent cells and many cells with lineage signatures. Even so, haematopoietic stem cells and their progeny that have chosen a particular fate can still “change their mind” and adopt a different developmental pathway. Many of the leukaemias arise in haematopoietic stem cells with the bulk of the often partially differentiated leukaemia cells belonging to just one cell type. We argue that the reason for this is that an oncogenic insult to the genome “hard wires” leukaemia stem cells, either through development or at some stage, to one cell lineage. Unlike normal haematopoietic stem cells, oncogene-transformed leukaemia stem cells and their progeny are unable to adopt an alternative pathway.
Collapse
|
48
|
Luo H, Mu WC, Karki R, Chiang HH, Mohrin M, Shin JJ, Ohkubo R, Ito K, Kanneganti TD, Chen D. Mitochondrial Stress-Initiated Aberrant Activation of the NLRP3 Inflammasome Regulates the Functional Deterioration of Hematopoietic Stem Cell Aging. Cell Rep 2020; 26:945-954.e4. [PMID: 30673616 PMCID: PMC6371804 DOI: 10.1016/j.celrep.2018.12.101] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/05/2018] [Accepted: 12/26/2018] [Indexed: 02/07/2023] Open
Abstract
Aging-associated defects in hematopoietic stem cells (HSCs) can manifest in their progeny, leading to aberrant activation of the NLRP3 inflammasome in macrophages and affecting distant tissues and organismal health span. Whether the NLRP3 inflammasome is aberrantly activated in HSCs during physiological aging is unknown. We show here that SIRT2, a cytosolic NAD+-dependent deacetylase, is required for HSC maintenance and regenerative capacity at an old age by repressing the activation of the NLRP3 inflammasome in HSCs cell autonomously. With age, reduced SIRT2 expression and increased mitochondrial stress lead to aberrant activation of the NLRP3 inflammasome in HSCs. SIRT2 overexpression, NLRP3 inactivation, or caspase 1 inactivation improves the maintenance and regenerative capacity of aged HSCs. These results suggest that mitochondrial stress-initiated aberrant activation of the NLRP3 inflammasome is a reversible driver of the functional decline of HSC aging and highlight the importance of inflammatory signaling in regulating HSC aging.
Collapse
Affiliation(s)
- Hanzhi Luo
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Wei-Chieh Mu
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hou-Hsien Chiang
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Mary Mohrin
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Jiyung J Shin
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Rika Ohkubo
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Danica Chen
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
49
|
Lopez CK, Noguera E, Stavropoulou V, Robert E, Aid Z, Ballerini P, Bilhou-Nabera C, Lapillonne H, Boudia F, Thirant C, Fagnan A, Arcangeli ML, Kinston SJ, Diop M, Job B, Lecluse Y, Brunet E, Babin L, Villeval JL, Delabesse E, Peters AHFM, Vainchenker W, Gaudry M, Masetti R, Locatelli F, Malinge S, Nerlov C, Droin N, Lobry C, Godin I, Bernard OA, Göttgens B, Petit A, Pflumio F, Schwaller J, Mercher T. Ontogenic Changes in Hematopoietic Hierarchy Determine Pediatric Specificity and Disease Phenotype in Fusion Oncogene-Driven Myeloid Leukemia. Cancer Discov 2019; 9:1736-1753. [PMID: 31662298 DOI: 10.1158/2159-8290.cd-18-1463] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 08/05/2019] [Accepted: 09/23/2019] [Indexed: 01/18/2023]
Abstract
Fusion oncogenes are prevalent in several pediatric cancers, yet little is known about the specific associations between age and phenotype. We observed that fusion oncogenes, such as ETO2-GLIS2, are associated with acute megakaryoblastic or other myeloid leukemia subtypes in an age-dependent manner. Analysis of a novel inducible transgenic mouse model showed that ETO2-GLIS2 expression in fetal hematopoietic stem cells induced rapid megakaryoblastic leukemia whereas expression in adult bone marrow hematopoietic stem cells resulted in a shift toward myeloid transformation with a strikingly delayed in vivo leukemogenic potential. Chromatin accessibility and single-cell transcriptome analyses indicate ontogeny-dependent intrinsic and ETO2-GLIS2-induced differences in the activities of key transcription factors, including ERG, SPI1, GATA1, and CEBPA. Importantly, switching off the fusion oncogene restored terminal differentiation of the leukemic blasts. Together, these data show that aggressiveness and phenotypes in pediatric acute myeloid leukemia result from an ontogeny-related differential susceptibility to transformation by fusion oncogenes. SIGNIFICANCE: This work demonstrates that the clinical phenotype of pediatric acute myeloid leukemia is determined by ontogeny-dependent susceptibility for transformation by oncogenic fusion genes. The phenotype is maintained by potentially reversible alteration of key transcription factors, indicating that targeting of the fusions may overcome the differentiation blockage and revert the leukemic state.See related commentary by Cruz Hernandez and Vyas, p. 1653.This article is highlighted in the In This Issue feature, p. 1631.
Collapse
Affiliation(s)
- Cécile K Lopez
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Esteve Noguera
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Vaia Stavropoulou
- University Children's Hospital Beider Basel (UKBB) and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Elie Robert
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Zakia Aid
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | | | | | | | - Fabien Boudia
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
- Université Paris Diderot, Paris, France
| | - Cécile Thirant
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Alexandre Fagnan
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
- Université Paris Diderot, Paris, France
| | - Marie-Laure Arcangeli
- Unité Mixte de Recherche 967 INSERM, CEA/DRF/IBFJ/IRCM/LSHL, Université Paris-Diderot-Université Paris-Sud, Equipe labellisée Association Recherche Contre le Cancer, Fontenay-aux-roses, France
| | - Sarah J Kinston
- Wellcome and MRC Cambridge Stem Cell Institute and the Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | - Erika Brunet
- Genome Dynamics in the Immune System Laboratory, Institut Imagine, INSERM, Université Paris Descartes, Sorbonne Paris Cité, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Loélia Babin
- Genome Dynamics in the Immune System Laboratory, Institut Imagine, INSERM, Université Paris Descartes, Sorbonne Paris Cité, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Jean Luc Villeval
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Eric Delabesse
- INSERM U1037, Team 16, Center of Research of Cancerology of Toulouse, Hematology Laboratory, IUCT-Oncopole, France
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - William Vainchenker
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Muriel Gaudry
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Riccardo Masetti
- Department of Pediatrics, "Lalla Seràgnoli," Hematology-Oncology Unit, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Franco Locatelli
- Department of Pediatrics, Sapienza, University of Rome, Rome, Italy
- Hematology-Oncology-IRCCS Ospedale Bambino Gesù, Rome, Italy
| | - Sébastien Malinge
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Claus Nerlov
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | - Isabelle Godin
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Olivier A Bernard
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Berthold Göttgens
- Wellcome and MRC Cambridge Stem Cell Institute and the Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | | - Françoise Pflumio
- Unité Mixte de Recherche 967 INSERM, CEA/DRF/IBFJ/IRCM/LSHL, Université Paris-Diderot-Université Paris-Sud, Equipe labellisée Association Recherche Contre le Cancer, Fontenay-aux-roses, France
| | - Juerg Schwaller
- University Children's Hospital Beider Basel (UKBB) and Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Thomas Mercher
- INSERM U1170, Gustave Roussy, Villejuif, France.
- Gustave Roussy, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
- Université Paris Diderot, Paris, France
| |
Collapse
|
50
|
Elsaid R, Yang J, Cumano A. The influence of space and time on the establishment of B cell identity. Biomed J 2019; 42:209-217. [PMID: 31627863 PMCID: PMC6818146 DOI: 10.1016/j.bj.2019.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/21/2019] [Accepted: 07/01/2019] [Indexed: 02/01/2023] Open
Abstract
During embryonic development multiple waves of hematopoietic progenitors with distinct lineage potential are differentially regulated in time and space. Consistent with this view, some specialized lymphocytes emerge during a limited time-window in embryogenesis and migrate to the tissues where they contribute to organogenesis and to tissue homeostasis. These cells are not constantly produced by bone marrow derived hematopoietic stem cells but are maintained in tissues and self-renew throughout life. These particular cell subsets are produced from lymphoid restricted progenitors only found in the first days of fetal liver hematopoietic activity. Growing evidence of the heterogeneity and layered organization of the hematopoietic system is leading to a common view that some lymphocyte subsets are functionally different because they follow distinct developmental programs and emerge from distinct waves of lymphoid progenitors. However, understanding the influence of developmental origin and the relative contribution of local microenvironment on the development of these specialized lymphocyte subsets needs further analysis. In this review, we discuss how different pathways followed by developing B cells during ontogeny may contribute to the diverse functions.
Collapse
Affiliation(s)
- Ramy Elsaid
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, U1223, INSERM, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Junjie Yang
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, U1223, INSERM, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France; CNBG Company, China
| | - Ana Cumano
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, U1223, INSERM, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|