1
|
Miftah H, Benthami H, Badou A. Insights into the emerging immune checkpoint NR2F6 in cancer immunity. J Leukoc Biol 2025; 117:qiae260. [PMID: 39722227 DOI: 10.1093/jleuko/qiae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/17/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024] Open
Abstract
NR2F6 has emerged as a key player in immune regulation, especially in cancer immunity. It has been reported that NR2F6 could suppress the antitumor immune response and has therefore been suggested as a possible target in cancer immunotherapy. In this review, we start by describing the complex structure of the NR2F6 gene and its multifaceted biological functions. Then, we examine its expression in distinct immune cells and cancer cells, elucidating its role in cancer progression. Subsequently, we highlight the predictive significance of NR2F6 for cancer patient outcomes, suggesting its possible use as a prognostic biomarker. Finally, we discuss the emerging potential of NR2F6 as a therapeutic target, presenting novel opportunities for developing effective cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Hayat Miftah
- LIGEP, Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Tarik Ibnou Ziad Street, P.O. Box 9154, Casablanca 20000, Morocco
| | - Hamza Benthami
- LIGEP, Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Tarik Ibnou Ziad Street, P.O. Box 9154, Casablanca 20000, Morocco
| | - Abdallah Badou
- LIGEP, Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Tarik Ibnou Ziad Street, P.O. Box 9154, Casablanca 20000, Morocco
| |
Collapse
|
2
|
Woelk J, Hornsteiner F, Aschauer-Wallner S, Stoitzner P, Baier G, Hermann-Kleiter N. Regulation of NK cell development, maturation, and antitumor responses by the nuclear receptor NR2F6. Cell Death Dis 2025; 16:77. [PMID: 39920136 PMCID: PMC11806049 DOI: 10.1038/s41419-025-07407-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 01/12/2025] [Accepted: 01/29/2025] [Indexed: 02/09/2025]
Abstract
Natural killer (NK) cell development and functionality rely on precise regulation by specific transcription factors (TFs). Our study demonstrates that the nuclear orphan receptor NR2F6 represses the expression of the activating receptor NKp46, an established key player in NK cell-mediated cytotoxicity during infection and tumor rejection. Despite normal NK cell development in the bone marrow, germline Nr2f6-deficient mice exhibit impaired terminal maturation of NK cells in the periphery. Short-term NK cell responses to lipopolysaccharide (LPS) activation, independent of NKp46, are subsequently reduced in Nr2f6-deficient mice. Conventional type 1 dendritic cells (cDC1) and macrophage populations are decreased in spleens of Nr2f6-deficient mice, subsequently, IL-15-dependent NK cell priming is limited. Administration of exogenous IL-15 in vitro and as IL-15 complex in vivo can compensate for these deficits, promoting terminal maturation of NK cells in Nr2f6-deficient mice. Subsequent transcriptome analysis reveals significant changes in gene expression profiles of NK cells from IL-15 complex treated Nr2f6-deficient mice, with notable alterations in essential NK genes such as Klrg1, Prdm1, Stat5a, Zeb2, and Prf1. Consequently, Nr2f6-deficient IL-15 complex-treated NK cells raise enhanced effector responses of IFNγ, Perforin, and Granzyme B upon ex vivo activation. Of importance, Nr2f6-deficient mice are protected against MHC-I negative B16-F10 melanoma lung metastasis formation, especially with IL-15 complex treatment, indicating the potential of NR2F6 to affect NKp46-dependent NK cell-mediated tumor surveillance. The therapeutic targeting of NR2F6 may be a promising strategy for boosting NKp46-dependent NK-cell-mediated tumor surveillance and metastasis.
Collapse
Affiliation(s)
- Johannes Woelk
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Hornsteiner
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stephanie Aschauer-Wallner
- Laboratory of Tumor Immunology, Tyrolean Cancer Institute & Internal Medicine V, Medical University of Innsbruck, 6020, Innsbruck, Austria
- Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gottfried Baier
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
3
|
Woelk J, Narasimhan H, Pfeifhofer-Obermair C, Schraml BU, Hermann-Kleiter N. NR2F6 regulates stem cell hematopoiesis and myelopoiesis in mice. Front Immunol 2025; 15:1404805. [PMID: 39840064 PMCID: PMC11747239 DOI: 10.3389/fimmu.2024.1404805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
Nuclear receptors regulate hematopoietic stem cells (HSCs) and peripheral immune cells in mice and humans. The nuclear orphan receptor NR2F6 (EAR-2) has been shown to control murine hematopoiesis. Still, detailed analysis of the distinct stem cell, myeloid, and lymphoid progenitors in the bone marrow in a genetic loss of function model remains pending. In this study, we found that adult germline Nr2f6-deficient mice contained increased percentages of total long-term and short-term HSCs, as well as a subpopulation within the lineage-biased multipotent progenitor (MPP3) cells. The loss of NR2F6 thus led to an increase in the percentage of LSK+ cells. Following the differentiation from the common myeloid progenitors (CMP), the granulocyte-monocyte progenitors (GMP) were decreased, while monocyte-dendritic progenitors (MDP) were increased in Nr2f6-deficient bone marrow. Within the pre-conventional dendritic progenitors (pre-cDCs), the subpopulation of pre-cDC2s was reduced in the bone marrow of Nr2f6-deficient mice. We did not observe differences in the development of common lymphoid progenitor populations. Our findings contrast previous studies but underscore the role of NR2F6 in regulating gene expression levels during mouse bone marrow hematopoiesis and myelopoiesis.
Collapse
Affiliation(s)
- Johannes Woelk
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hamsa Narasimhan
- Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- Institute of Cardiovascular Physiology and Pathophysiology at the Walter-Brendel-Centre of Experimental Medicine, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Christa Pfeifhofer-Obermair
- Department of Internal Medicine II (Infectious Diseases, Immunology, Rheumatology, Pneumology), Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara U. Schraml
- Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- Institute of Cardiovascular Physiology and Pathophysiology at the Walter-Brendel-Centre of Experimental Medicine, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Natascha Hermann-Kleiter
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Matsuda T, Kono T, Taki Y, Sakuma I, Fujimoto M, Hashimoto N, Kawakami E, Fukuhara N, Nishioka H, Inoshita N, Yamada S, Nakamura Y, Horiguchi K, Miki T, Higuchi Y, Tanaka T. Deciphering craniopharyngioma subtypes: Single-cell analysis of tumor microenvironment and immune networks. iScience 2024; 27:111068. [PMID: 39483146 PMCID: PMC11525618 DOI: 10.1016/j.isci.2024.111068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/24/2024] [Accepted: 09/26/2024] [Indexed: 11/03/2024] Open
Abstract
Craniopharyngiomas, including adamantinomatous (ACP) and squamous papillary (PCP) types, are challenging to treat because of their proximity to crucial pituitary structures. This study aimed to characterize the cellular composition, tumor tissue diversity, and cell-cell interactions in ACPs and PCPs using single-cell RNA sequencing. Single-cell clustering revealed diverse cell types, further classified into developing epithelial, calcification, and immune response for ACP and developing epithelial, cell cycle, and immune response for PCP, based on gene expression patterns. Subclustering revealed the enrichment of classical M1 and M2 macrophages in ACP and PCP, respectively, with high expression of pro-inflammatory markers in classical M1 macrophages. The classical M1 and M2 macrophage ratio significantly correlated with the occurrence of diabetes insipidus and panhypopituitarism. Cell-cell interactions, particularly involving CD44-SPP, were identified between tumor cells. Thus, we developed a comprehensive cell atlas that elucidated the molecular characteristics and immune cell inter-networking in ACP and PCP tumor microenvironments.
Collapse
Affiliation(s)
- Tatsuma Matsuda
- Department of Neurological Surgery Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takashi Kono
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Yuki Taki
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ikki Sakuma
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masanori Fujimoto
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoko Hashimoto
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Eiryo Kawakami
- Department of Aritificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Noriaki Fukuhara
- Department of Hypothalamic and Pituitary Surgery, Toranomon Hospital, Tokyo, Japan
| | - Hiroshi Nishioka
- Department of Hypothalamic and Pituitary Surgery, Toranomon Hospital, Tokyo, Japan
| | - Naoko Inoshita
- Hypothalamic and Pituitary Center, Moriyama Memorial Hospital, Tokyo, Japan
| | - Shozo Yamada
- Hypothalamic and Pituitary Center, Moriyama Memorial Hospital, Tokyo, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Kentaro Horiguchi
- Department of Neurological Surgery Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takashi Miki
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Department of Medical Physiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshinori Higuchi
- Department of Neurological Surgery Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
5
|
Masarapu Y, Cekanaviciute E, Andrusivova Z, Westholm JO, Björklund Å, Fallegger R, Badia-I-Mompel P, Boyko V, Vasisht S, Saravia-Butler A, Gebre S, Lázár E, Graziano M, Frapard S, Hinshaw RG, Bergmann O, Taylor DM, Wallace DC, Sylvén C, Meletis K, Saez-Rodriguez J, Galazka JM, Costes SV, Giacomello S. Spatially resolved multiomics on the neuronal effects induced by spaceflight in mice. Nat Commun 2024; 15:4778. [PMID: 38862479 PMCID: PMC11166911 DOI: 10.1038/s41467-024-48916-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/17/2024] [Indexed: 06/13/2024] Open
Abstract
Impairment of the central nervous system (CNS) poses a significant health risk for astronauts during long-duration space missions. In this study, we employed an innovative approach by integrating single-cell multiomics (transcriptomics and chromatin accessibility) with spatial transcriptomics to elucidate the impact of spaceflight on the mouse brain in female mice. Our comparative analysis between ground control and spaceflight-exposed animals revealed significant alterations in essential brain processes including neurogenesis, synaptogenesis and synaptic transmission, particularly affecting the cortex, hippocampus, striatum and neuroendocrine structures. Additionally, we observed astrocyte activation and signs of immune dysfunction. At the pathway level, some spaceflight-induced changes in the brain exhibit similarities with neurodegenerative disorders, marked by oxidative stress and protein misfolding. Our integrated spatial multiomics approach serves as a stepping stone towards understanding spaceflight-induced CNS impairments at the level of individual brain regions and cell types, and provides a basis for comparison in future spaceflight studies. For broader scientific impact, all datasets from this study are available through an interactive data portal, as well as the National Aeronautics and Space Administration (NASA) Open Science Data Repository (OSDR).
Collapse
Affiliation(s)
- Yuvarani Masarapu
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Zaneta Andrusivova
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jakub O Westholm
- National Bioinformatics Infrastructure Sweden, Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Stockholm, Sweden
| | - Åsa Björklund
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Robin Fallegger
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Pau Badia-I-Mompel
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
- GSK, Cellzome, Heidelberg, Germany
| | - Valery Boyko
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
- Bionetics, Yorktown, VA, USA
| | - Shubha Vasisht
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Amanda Saravia-Butler
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Samrawit Gebre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Enikő Lázár
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Marta Graziano
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solna, Sweden
| | - Solène Frapard
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Robert G Hinshaw
- NASA Postdoctoral Program - Oak Ridge Associated Universities, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Olaf Bergmann
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
- Pharmacology and Toxicology, Department of Pharmacology and Toxicology University Medical Center Goettingen, Goettingen, Germany
| | - Deanne M Taylor
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and Department of Pediatrics, Division of Human Genetics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Christer Sylvén
- Department of Medicine, Karolinska Institute, Huddinge, Sweden
| | | | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Jonathan M Galazka
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA.
| | - Stefania Giacomello
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
6
|
Peng L, Chen JW, Chen YZ, Zhang C, Shen SH, Liu MZ, Fan Y, Yang SQ, Zhang XZ, Wang W, Gao XS, Di XP, Ma YC, Zeng X, Shen H, Jin X, Luo DY. UPK3A + umbrella cell damage mediated by TLR3-NR2F6 triggers programmed destruction of urothelium in Hunner-type interstitial cystitis/painful bladder syndrome. J Pathol 2024; 263:203-216. [PMID: 38551071 DOI: 10.1002/path.6275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 05/12/2024]
Abstract
Urothelial damage and barrier dysfunction emerge as the foremost mechanisms in Hunner-type interstitial cystitis/bladder pain syndrome (HIC). Although treatments aimed at urothelial regeneration and repair have been employed, their therapeutic effectiveness remains limited due to the inadequate understanding of specific cell types involved in damage and the lack of specific molecular targets within these mechanisms. Therefore, we harnessed single-cell RNA sequencing to elucidate the heterogeneity and developmental trajectory of urothelial cells within HIC bladders. Through reclustering, we identified eight distinct clusters of urothelial cells. There was a significant reduction in UPK3A+ umbrella cells and a simultaneous increase in progenitor-like pluripotent cells (PPCs) within the HIC bladder. Pseudotime analysis of the urothelial cells in the HIC bladder revealed that cells faced challenges in differentiating into UPK3A+ umbrella cells, while PPCs exhibited substantial proliferation to compensate for the loss of UPK3A+ umbrella cells. The urothelium in HIC remains unrepaired, despite the substantial proliferation of PPCs. Thus, we propose that inhibiting the pivotal signaling pathways responsible for the injury to UPK3A+ umbrella cells is paramount for restoring the urothelial barrier and alleviating lower urinary tract symptoms in HIC patients. Subsequently, we identified key molecular pathways (TLR3 and NR2F6) associated with the injury of UPK3A+ umbrella cells in HIC urothelium. Finally, we conducted in vitro and in vivo experiments to confirm the potential of the TLR3-NR2F6 axis as a promising therapeutic target for HIC. These findings hold the potential to inhibit urothelial injury, providing promising clues for early diagnosis and functional bladder self-repair strategies for HIC patients. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Liao Peng
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Jia-Wei Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Yuan-Zhuo Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Chi Zhang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Si-Hong Shen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Meng-Zhu Liu
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Yang Fan
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Shi-Qin Yang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Xiu-Zhen Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Wei Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Xiao-Shuai Gao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Xing-Peng Di
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Yu-Cheng Ma
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Xiao Zeng
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Hong Shen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Xi Jin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - De-Yi Luo
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
- Pelvic Floor Diseases Center, West China Tianfu Hospital, Sichuan University, Chengdu, Sichuan, PR China
| |
Collapse
|
7
|
Ramal M, Corral S, Kalisz M, Lapi E, Real FX. The urothelial gene regulatory network: understanding biology to improve bladder cancer management. Oncogene 2024; 43:1-21. [PMID: 37996699 DOI: 10.1038/s41388-023-02876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
The urothelium is a stratified epithelium composed of basal cells, one or more layers of intermediate cells, and an upper layer of differentiated umbrella cells. Most bladder cancers (BLCA) are urothelial carcinomas. Loss of urothelial lineage fidelity results in altered differentiation, highlighted by the taxonomic classification into basal and luminal tumors. There is a need to better understand the urothelial transcriptional networks. To systematically identify transcription factors (TFs) relevant for urothelial identity, we defined highly expressed TFs in normal human bladder using RNA-Seq data and inferred their genomic binding using ATAC-Seq data. To focus on epithelial TFs, we analyzed RNA-Seq data from patient-derived organoids recapitulating features of basal/luminal tumors. We classified TFs as "luminal-enriched", "basal-enriched" or "common" according to expression in organoids. We validated our classification by differential gene expression analysis in Luminal Papillary vs. Basal/Squamous tumors. Genomic analyses revealed well-known TFs associated with luminal (e.g., PPARG, GATA3, FOXA1) and basal (e.g., TP63, TFAP2) phenotypes and novel candidates to play a role in urothelial differentiation or BLCA (e.g., MECOM, TBX3). We also identified TF families (e.g., KLFs, AP1, circadian clock, sex hormone receptors) for which there is suggestive evidence of their involvement in urothelial differentiation and/or BLCA. Genomic alterations in these TFs are associated with BLCA. We uncover a TF network involved in urothelial cell identity and BLCA. We identify novel candidate TFs involved in differentiation and cancer that provide opportunities for a better understanding of the underlying biology and therapeutic intervention.
Collapse
Affiliation(s)
- Maria Ramal
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sonia Corral
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mark Kalisz
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Eleonora Lapi
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- CIBERONC, Madrid, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
8
|
Wamsley NT, Wilkerson EM, Guan L, LaPak KM, Schrank TP, Holmes BJ, Sprung RW, Gilmore PE, Gerndt SP, Jackson RS, Paniello RC, Pipkorn P, Puram SV, Rich JT, Townsend RR, Zevallos JP, Zolkind P, Le QT, Goldfarb D, Major MB. Targeted Proteomic Quantitation of NRF2 Signaling and Predictive Biomarkers in HNSCC. Mol Cell Proteomics 2023; 22:100647. [PMID: 37716475 PMCID: PMC10587640 DOI: 10.1016/j.mcpro.2023.100647] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
The NFE2L2 (NRF2) oncogene and transcription factor drives a gene expression program that promotes cancer progression, metabolic reprogramming, immune evasion, and chemoradiation resistance. Patient stratification by NRF2 activity may guide treatment decisions to improve outcome. Here, we developed a mass spectrometry-based targeted proteomics assay based on internal standard-triggered parallel reaction monitoring to quantify 69 NRF2 pathway components and targets, as well as 21 proteins of broad clinical significance in head and neck squamous cell carcinoma (HNSCC). We improved an existing internal standard-triggered parallel reaction monitoring acquisition algorithm, called SureQuant, to increase throughput, sensitivity, and precision. Testing the optimized platform on 27 lung and upper aerodigestive cancer cell models revealed 35 NRF2 responsive proteins. In formalin-fixed paraffin-embedded HNSCCs, NRF2 signaling intensity positively correlated with NRF2-activating mutations and with SOX2 protein expression. Protein markers of T-cell infiltration correlated positively with one another and with human papilloma virus infection status. CDKN2A (p16) protein expression positively correlated with the human papilloma virus oncogenic E7 protein and confirmed the presence of translationally active virus. This work establishes a clinically actionable HNSCC protein biomarker assay capable of quantifying over 600 peptides from frozen or formalin-fixed paraffin-embedded archived tissues in under 90 min.
Collapse
Affiliation(s)
- Nathan T Wamsley
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Emily M Wilkerson
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Li Guan
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Kyle M LaPak
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Travis P Schrank
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brittany J Holmes
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Robert W Sprung
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Petra Erdmann Gilmore
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Sophie P Gerndt
- Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Ryan S Jackson
- Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Randal C Paniello
- Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Patrik Pipkorn
- Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Sidharth V Puram
- Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Jason T Rich
- Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Reid R Townsend
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - José P Zevallos
- Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Paul Zolkind
- Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA; Institute for Informatics, Washington University in St Louis, St Louis, Missouri, USA.
| | - Michael B Major
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA; Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
9
|
Miftah H, Naji O, Ssi SA, Ghouzlani A, Lakhdar A, Badou A. NR2F6, a new immune checkpoint that acts as a potential biomarker of immunosuppression and contributes to poor clinical outcome in human glioma. Front Immunol 2023; 14:1139268. [PMID: 37575237 PMCID: PMC10419227 DOI: 10.3389/fimmu.2023.1139268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Intoroduction Nuclear receptor subfamily 2 group F member 6 (NR2F6) is a promising checkpoint target for cancer immunotherapy. However, there has been no investigation of NR2F6 in glioma. Our study systematically explored the clinical characteristics and biological functions of NR2F6 in gliomas. Methods We extracted RNA sequencing (RNA-seq) data of 663 glioma samples from The Cancer Genome Atlas (TCGA) as the training cohort and 325 samples from the Chinese Glioma Genome Atlas (CGGA) as the validation cohort. We also confirmed the NR2F6 gene expression feature in our own cohort of 60 glioma patients. R language and GraphPad Prism softwares were mainly used for statistical analysis and graphical work. Results We found that NR2F6 was significantly related to high tumor aggressiveness and poor outcomes for glioma patients. Functional enrichment analysis demonstrated that NR2F6 was associated with many biological processes that are related to glioma progression, such as angiogenesis, and with multiple immune-related functions. Moreover, NR2F6 was found to be significantly correlated with stromal and immune infiltration in gliomas. Subsequent analysis based on Gliomas single-cell sequencing datasets showed that NR2F6 was expressed in immune cells, tumor cells, and stromal cells. Mechanistically, results suggested that NR2F6 might act as a potential immunosuppression-mediated molecule in the glioma microenvironment through multiple ways, such as the recruitment of immunosuppressive cells, secretion of immunosuppressive cytokines, M2 polarization of macrophages, in addition to combining with other immune checkpoint inhibitors. Conclusion Our findings indicated that intracellular targeting of NR2F6 in both immune cells and tumor cells, as well as stromal cells, may represent a promising immunotherapeutic strategy for glioma. Stromal cells, may represent a promising immunotherapeutic strategy for glioma.
Collapse
Affiliation(s)
- Hayat Miftah
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Oumayma Naji
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Saadia Ait Ssi
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Amina Ghouzlani
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abdelhakim Lakhdar
- Department of Neurosurgery, University Hospital Center (UHC) Ibn Rochd, Casablanca, Morocco
- Laboratory of Research on Neurologic, Neurosensorial Diseases and Handicap, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
| |
Collapse
|
10
|
You G, Li W, Wang Y, Cao H, Li X, Gao L, Zheng SJ. Reduced NR2F2 Expression in the Host Response to Infectious Bursal Disease Virus Infection Suppressed Viral Replication by Enhancing Type I Interferon Expression by Targeting SOCS5. J Virol 2023; 97:e0066423. [PMID: 37358466 PMCID: PMC10373545 DOI: 10.1128/jvi.00664-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/01/2023] [Indexed: 06/27/2023] Open
Abstract
Nuclear receptors are ligand-activated transcription factors that play an important role in regulating innate antiviral immunity and other biological processes. However, the role of nuclear receptors in the host response to infectious bursal disease virus (IBDV) infection remains elusive. In this study, we show that IBDV infection or poly(I·C) treatment of DF-1 or HD11 cells markedly decreased nuclear receptor subfamily 2 group F member 2 (NR2F2) expression. Surprisingly, knockdown, knockout, or inhibition of NR2F2 expression in host cells remarkably inhibited IBDV replication and promoted IBDV/poly(I·C)-induced type I interferon and interferon-stimulated genes expression. Furthermore, our data show that NR2F2 negatively regulates the antiviral innate immune response by promoting the suppressor of cytokine signaling 5 (SOCS5) expression. Thus, reduced NR2F2 expression in the host response to IBDV infection inhibited viral replication by enhancing the expression of type I interferon by targeting SOCS5. These findings reveal that NR2F2 plays a crucial role in antiviral innate immunity, furthering our understanding of the mechanism underlying the host response to viral infection. IMPORTANCE Infectious bursal disease (IBD) is an immunosuppressive disease causing considerable economic losses to the poultry industry worldwide. Nuclear receptors play an important role in regulating innate antiviral immunity. However, the role of nuclear receptors in the host response to IBD virus (IBDV) infection remains elusive. Here, we report that NR2F2 expression decreased in IBDV-infected cells, which consequently reduced SOCS5 expression, promoted type I interferon expression, and suppressed IBDV infection. Thus, NR2F2 serves as a negative factor in the host response to IBDV infection by regulating SOCS5 expression, and intervention in the NR2F2-mediated host response by specific inhibitors might be employed as a strategy for prevention and treatment of IBD.
Collapse
Affiliation(s)
- Guangju You
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wei Li
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongqiang Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hong Cao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoqi Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Li Gao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shijun J. Zheng
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Kim H, Feng Y, Murad R, Pozniak J, Pelz C, Chen Y, Dalal B, Sears R, Sergienko E, Jackson M, Ruppin E, Herlyn M, Harris C, Marine JC, Klepsch V, Baier G, Ronai ZA. Melanoma-intrinsic NR2F6 activity regulates antitumor immunity. SCIENCE ADVANCES 2023; 9:eadf6621. [PMID: 37406115 DOI: 10.1126/sciadv.adf6621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 05/30/2023] [Indexed: 07/07/2023]
Abstract
Nuclear receptors (NRs) are implicated in the regulation of tumors and immune cells. We identify a tumor-intrinsic function of the orphan NR, NR2F6, regulating antitumor immunity. NR2F6 was selected from 48 candidate NRs based on an expression pattern in melanoma patient specimens (i.e., IFN-γ signature) associated with positive responses to immunotherapy and favorable patient outcomes. Correspondingly, genetic ablation of NR2F6 in a mouse melanoma model conferred a more effective response to PD-1 therapy. NR2F6 loss in B16F10 and YUMM1.7 melanoma cells attenuated tumor development in immune-competent but not -incompetent mice via the increased abundance of effector and progenitor-exhausted CD8+ T cells. Inhibition of NACC1 and FKBP10, identified as NR2F6 effectors, phenocopied NR2F6 loss. Inoculation of NR2F6 KO mice with NR2F6 KD melanoma cells further decreased tumor growth compared with NR2F6 WT mice. Tumor-intrinsic NR2F6 function complements its tumor-extrinsic role and justifies the development of effective anticancer therapies.
Collapse
Affiliation(s)
- Hyungsoo Kim
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yongmei Feng
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Rabi Murad
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Carl Pelz
- Department of Molecular and Medical Genetics, Brenden Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
| | - Yeqing Chen
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Bhavik Dalal
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Rosalie Sears
- Department of Molecular and Medical Genetics, Brenden Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
| | - Eduard Sergienko
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael Jackson
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Curtis Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Victoria Klepsch
- Division of Translational Cell Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Gottfried Baier
- Division of Translational Cell Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Ze'ev A Ronai
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
12
|
Olson WJ, Jakic B, Labi V, Woelk J, Derudder E, Baier G, Hermann-Kleiter N. A role for the nuclear receptor NR2F6 in peritoneal B cell homeostasis. Front Immunol 2022; 13:845235. [PMID: 36052079 PMCID: PMC9425112 DOI: 10.3389/fimmu.2022.845235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/18/2022] [Indexed: 11/19/2022] Open
Abstract
B cells are key mediators of humoral immunity. Mature B cells fall into various sub-classes that can be separated by their ontogeny, expression of cell surface markers, anatomical location, and function. B1 subsets play important roles in natural immunity and constitute the majority of B cells in newborns. In the adult, B1 cells predominate in the pleural and peritoneal cavities, while the mature B2 follicular subset makes up the major fraction of B cells in lymphoid tissue, although important subsets of antibody-secreting B1 cells are also present at these sites. B1 cells are the main producers of natural IgM but can also contribute to elimination of some pathogens, while B2 cells primarily mediate response to foreign antigens. The differential molecular underpinning of the B1 and B2 subsets remains incompletely understood. Here we demonstrate that germline-deficiency of the orphan nuclear receptor NR2F6 causes a partial loss of B1b and B2 B cells in the peritoneum while leaving peritoneal B1a cells unaltered. A competitive bone marrow chimera in Nr2f6+/+ host mice produced similar numbers of Nr2f6+/+ and Nr2f6-/- peritoneal B1b and B2 cells. The proliferation of Nr2f6-/- peritoneal B cells was not altered, while the migration marker CXCR5 was reduced on all subsets but Beta7-integrin was reduced only on peritoneal B1b and B2 cells. Similarly, B1b and B2 but not B1a cells, exhibited significantly reduced survival.
Collapse
Affiliation(s)
- William J. Olson
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Bojana Jakic
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Labi
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Woelk
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Emmanuel Derudder
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Gottfried Baier
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
13
|
Lu YF, Zhou JP, Zhou QM, Yang XY, Wang XJ, Yu JN, Zhang JG, Du YZ, Yu RS. Ultra-thin layered double hydroxide-mediated photothermal therapy combine with asynchronous blockade of PD-L1 and NR2F6 inhibit hepatocellular carcinoma. J Nanobiotechnology 2022; 20:351. [PMID: 35907841 PMCID: PMC9338598 DOI: 10.1186/s12951-022-01565-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/18/2022] [Indexed: 12/03/2022] Open
Abstract
Background The efficacy of immune checkpoint blockade (ICB), in the treatment of hepatocellular carcinoma (HCC), is limited due to low levels of tumor-infiltrating T lymphocytes and deficient checkpoint blockade in this immunologically "cool" tumor. Thus, combination approaches are needed to increase the response rates of ICB and induce synergistic antitumor immunity. Methods Herein, we designed a pH-sensitive multifunctional nanoplatform based on layered double hydroxides (LDHs) loaded with siRNA to block the intracellular immune checkpoint NR2F6, together with the asynchronous blockade surface receptor PD-L1 to induce strong synergistic antitumor immunity. Moreover, photothermal therapy (PTT) generated by LDHs after laser irradiation modified an immunologically “cold” microenvironment to potentiate Nr2f6-siRNA and anti-PD-L1 immunotherapy. Flow cytometry was performed to assess the immune responses initiated by the multifunctional nanoplatform. Results Under the slightly acidic tumor extracellular environment, PEG detached and the re-exposed positively charged LDHs enhanced tumor accumulation and cell uptake. The accumulated siRNA suppressed the signal of dual protumor activity in both immune and H22 tumor cells by silencing the NR2F6 gene, which further reduced the tumor burden and enhanced systemic antitumor immunity. The responses include enhanced tumor infiltration by CD4+ helper T cells, CD8+ cytotoxic T cells, and mature dendritic cells; the significantly decreased level of immune suppressed regulator T cells. The therapeutic responses were also attributed to the production of IL-2, IFN-γ, and TNF-α. The prepared nanoparticles also exhibited potential magnetic resonance imaging (MRI) ability, which could serve to guide synergistic immunotherapy treatment. Conclusions In summary, the three combinations of PTT, NR2F6 gene ablation and anti-PD-L1 can promote a synergistic immune response to inhibit the progression of primary HCC tumors and prevent metastasis. This study can be considered a proof-of-concept for the targeting of surface and intracellular immune checkpoints to supplement the existing HCC immunotherapy treatments. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01565-9.
Collapse
Affiliation(s)
- Yuan-Fei Lu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Jia-Ping Zhou
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Qiao-Mei Zhou
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Xiao-Yan Yang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Xiao-Jie Wang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Jie-Ni Yu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Jin-Guo Zhang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China.
| | - Ri-Sheng Yu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China.
| |
Collapse
|
14
|
High throughput screening for compounds to the orphan nuclear receptor NR2F6. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:242-248. [PMID: 35331960 PMCID: PMC9670014 DOI: 10.1016/j.slasd.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 12/24/2022]
Abstract
NR2F6 is considered an orphan nuclear receptor since its endogenous ligand has yet to be identified. Recently, NR2F6 has emerged as a novel cancer therapeutic target. NR2F6 has been demonstrated to be upregulated or overexpressed in several cancers. Importantly, Nr2f6-/- mice spontaneously reject tumors and develop host-protective immunological memory, a consequence of NR2F6 acting as an immune checkpoint in effector T cells. Collectively, these data suggest that modulation of NR2F6 activity may have important clinical applications in the fight against cancer. The nuclear receptor superfamily of ligand-regulated transcription factors has proven to be an excellent source of targets for therapeutic intervention of a broad range of diseases. Approximately 15% of FDA approved drugs target NRs, demonstrating their clinical efficacy. To identify small molecule regulators of NR2F6 activity, with the overall goal of immuno-oncology, we developed and initiated a high-throughput cell-based assay that specifically measures the transcriptional activity of NR2F6. We completed automated screening of approximately 666,000 compounds and identified 5,008 initial hits. Further screening efforts, including counterscreening assays, confirmed 128 of these hits, most of which had IC50s of equal to or less than 5μM potencies. Here, we report, for the first time, the identification of several small molecule compounds to the orphan nuclear receptor, NR2F6.
Collapse
|
15
|
Wang T, Wang Z, de Fabritus L, Tao J, Saied EM, Lee HJ, Ramazanov BR, Jackson B, Burkhardt D, Parker M, Gleinich AS, Wang Z, Seo DE, Zhou T, Xu S, Alecu I, Azadi P, Arenz C, Hornemann T, Krishnaswamy S, van de Pavert SA, Kaech SM, Ivanova NB, Santori FR. 1-deoxysphingolipids bind to COUP-TF to modulate lymphatic and cardiac cell development. Dev Cell 2021; 56:3128-3145.e15. [PMID: 34762852 PMCID: PMC8628544 DOI: 10.1016/j.devcel.2021.10.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/30/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
Identification of physiological modulators of nuclear hormone receptor (NHR) activity is paramount for understanding the link between metabolism and transcriptional networks that orchestrate development and cellular physiology. Using libraries of metabolic enzymes alongside their substrates and products, we identify 1-deoxysphingosines as modulators of the activity of NR2F1 and 2 (COUP-TFs), which are orphan NHRs that are critical for development of the nervous system, heart, veins, and lymphatic vessels. We show that these non-canonical alanine-based sphingolipids bind to the NR2F1/2 ligand-binding domains (LBDs) and modulate their transcriptional activity in cell-based assays at physiological concentrations. Furthermore, inhibition of sphingolipid biosynthesis phenocopies NR2F1/2 deficiency in endothelium and cardiomyocytes, and increases in 1-deoxysphingosine levels activate NR2F1/2-dependent differentiation programs. Our findings suggest that 1-deoxysphingosines are physiological regulators of NR2F1/2-mediated transcription.
Collapse
Affiliation(s)
- Ting Wang
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA; Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zheng Wang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China; Department of Reproductive Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Lauriane de Fabritus
- Aix-Marseille Universite, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex 9, France
| | - Jinglian Tao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China; Center for Molecular Medicine, Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Essa M Saied
- Institut für Chemie, Humboldt Universität zu Berlin, Berlin 12489, Germany; Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Ho-Joon Lee
- Department of Genetics, Yale University, New Haven, CT 06520, USA; Center for Genome Analysis, Yale University, New Haven, CT 06510, USA
| | - Bulat R Ramazanov
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA
| | - Benjamin Jackson
- Center for Molecular Medicine, Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Daniel Burkhardt
- Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Mikhail Parker
- Center for Molecular Medicine, Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Anne S Gleinich
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Zhirui Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Dong Eun Seo
- Center for Molecular Medicine, Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Ting Zhou
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Shihao Xu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, the Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Irina Alecu
- Neural Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Christoph Arenz
- Institut für Chemie, Humboldt Universität zu Berlin, Berlin 12489, Germany
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University and University Hospital of Zurich, Zurich 8091, Switzerland
| | | | - Serge A van de Pavert
- Aix-Marseille Universite, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex 9, France
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, the Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Natalia B Ivanova
- Center for Molecular Medicine, Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| | - Fabio R Santori
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
16
|
Emerging Next-Generation Target for Cancer Immunotherapy Research: The Orphan Nuclear Receptor NR2F6. Cancers (Basel) 2021; 13:cancers13112600. [PMID: 34073258 PMCID: PMC8197903 DOI: 10.3390/cancers13112600] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The most successful strategies for solid cancer immunotherapy have centered on targeting the co-stimulatory and co-inhibitory T cell molecules that regulate T cell activation. Although immunotherapy that targets surface receptors such as CTLA-4 and/or PD-1 with recombinant antibodies has been a game changer for cancer treatment, a sizeable subset of patients still fail to respond to, and even fewer patients are cured by, these therapy regimens. Here, we discuss the unique potential of NR2F6 as an emerging target for cancer immunotherapy to significantly increase response rates of cancer patients and/or to extend treatment to a broader range of cancer types. Abstract Additional therapeutic targets suitable for boosting anti-tumor effector responses have been found inside effector CD4+ and CD8+ T cells. It is likely that future treatment options will combine surface receptor and intracellular protein targets. Utilizing germline gene ablation as well as CRISPR/Cas9-mediated acute gene mutagenesis, the nuclear receptor NR2F6 (nuclear receptor subfamily 2 group F member 6, also called Ear-2) has been firmly characterized as such an intracellular immune checkpoint in effector T cells. Targeting this receptor appears to be a strategy for improving anti-tumor immunotherapy responses, especially in combination with CTLA-4 and PD-1. Current preclinical experimental knowledge firmly validates the immune checkpoint function of NR2F6 in murine tumor models, which provides a promising perspective for immunotherapy regimens in humans in the near future. While the clinical focus remains on the B7/CD28 family members, protein candidate targets such as NR2F6 are now being investigated in laboratories around the world and in R&D companies. Such an alternative therapeutic approach, if demonstrated to be successful, could supplement the existing therapeutic models and significantly increase response rates of cancer patients and/or expand the reach of immune therapy regimens to include a wider range of cancer entities. In this perspective review, the role of NR2F6 as an emerging and druggable target in immuno-oncology research will be discussed, with special emphasis on the unique potential of NR2F6 and its critical and non-redundant role in both immune and tumor cells.
Collapse
|
17
|
Freen-van Heeren JJ. Using CRISPR to enhance T cell effector function for therapeutic applications. Cytokine X 2021; 3:100049. [PMID: 33604565 PMCID: PMC7885876 DOI: 10.1016/j.cytox.2020.100049] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
T cells are critical to fight pathogenic microbes and combat malignantly transformed cells in the fight against cancer. To exert their effector function, T cells produce effector molecules, such as the pro-inflammatory cytokines IFN-γ, TNF-α and IL-2. Tumors possess many inhibitory mechanisms that dampen T cell effector function, limiting the secretion of cytotoxic molecules. As a result, the control and elimination of tumors is impaired. Through recent advances in genomic editing, T cells can now be successfully modified via CRISPR/Cas9 technology. For instance, engaging (post-)transcriptional mechanisms to enhance T cell cytokine production, the retargeting of T cell antigen specificity or rendering T cells refractive to inhibitory receptor signaling can augment T cell effector function. Therefore, CRISPR/Cas9-mediated genome editing might provide novel strategies for cancer immunotherapy. Recently, the first-in-patient clinical trial was successfully performed with CRISPR/Cas9-modified human T cell therapy. In this review, a brief overview of currently available techniques is provided, and recent advances in T cell genomic engineering for the enhancement of T cell effector function for therapeutic purposes are discussed.
Collapse
Key Words
- AP-1, activator protein 1
- ARE, AU-rich element
- ARE-Del, deletion of the 3′UTR AREs from the Ifng/IFNG gene
- CAR T cells
- CAR, Chimeric Antigen Receptor
- CRISPR
- CRISPR, Clustered Regularly Interspaced Short Palindromic Repeat
- CRS, cytokine release syndrome
- CTLA-4, cytotoxic T-lymphocyte-associated protein 4
- Cas, CRISPR-associated
- Cas9
- Cytokines
- DGK, Diacylglycerol kinase
- DHX37, DEAH-box helicase 37
- EBV, Epstein Barr virus
- FOXP3, Forkhead box P3
- GATA, GATA binding protein
- Genome editing
- IFN, interferon
- IL, interleukin
- LAG-3, Lymphocyte Activating 3
- NF-κB, nuclear factor of activated B cells
- PD-1, Programmed cell Death 1
- PD-L1, Programmed Death Ligand 1
- PTPN2, Protein Tyrosine Phosphatase Non-Receptor 2
- Pdia3, Protein Disulfide Isomerase Family A Member 3
- RBP, RNA-binding protein
- RNP, ribonuclear protein
- T cell effector function
- T cells
- TCR, T cell receptor
- TGF, transforming growth factor
- TIL, Tumor Infiltrating Lymphocyte
- TLRs, Toll-like receptors
- TNF, tumor necrosis factor
- TRAC, TCR-α chain
- TRBC, TCR-β chain
- UTR, untranslated region
- tTCR, transgenic TCR
Collapse
|
18
|
Jakic B, Olson WJ, Siegmund K, Klepsch V, Kimpel J, Labi V, Zehn D, Baier G, Hermann-Kleiter N. Loss of the orphan nuclear receptor NR2F6 enhances CD8 + T-cell memory via IFN-γ. Cell Death Dis 2021; 12:187. [PMID: 33589606 PMCID: PMC7884426 DOI: 10.1038/s41419-021-03470-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
Memory formation is a hallmark of T cell-mediated immunity, but how differentiation into either short-lived effector cells (SLECs, CD127−KLRG1+) or memory precursors cells (MPECs, CD127+KLRG1−) and subsequent regulation of long-term memory is adjusted is incompletely understood. Here, we show that loss of the nuclear orphan receptor NR2F6 in germ-line Nr2f6-deficient mice enhances antigen-specific CD8+ memory formation up to 70 days after bacterial infection with Listeria monocytogenes (LmOVA) and boosts inflammatory IFN-γ, TNFα, and IL-2 cytokine recall responses. Adoptive transfer experiments using Nr2f6−/− OT-I T-cells showed that the augmented memory formation is CD8+ T-cell intrinsic. Although the relative difference between the Nr2f6+/+ and Nr2f6−/− OT-I memory compartment declines over time, Nr2f6-deficient OT-I memory T cells mount significantly enhanced IFN-γ responses upon reinfection with increased clonal expansion and improved host antigen-specific CD8+ T-cell responses. Following a secondary adoptive transfer into naïve congenic mice, Nr2f6-deficient OT-I memory T cells are superior in clearing LmOVA infection. Finally, we show that the commitment to enhanced memory within Nr2f6-deficient OT-I T cells is established in the early phases of the antibacterial immune response and is IFN-γ mediated. IFN-γ blocking normalized MPEC formation of Nr2f6-deficient OT-I T cells. Thus, deletion or pharmacological inhibition of NR2F6 in antigen-specific CD8+ T cells may have therapeutic potential for enhancing early IFN-γ production and consequently the functionality of memory CD8+ T cells in vivo.
Collapse
Affiliation(s)
- Bojana Jakic
- Translational Cell Genetics, Institute of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - William J Olson
- Translational Cell Genetics, Institute of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria.,Institute for Biomedical Aging Research, University Innsbruck, Innsbruck, Austria
| | - Kerstin Siegmund
- Translational Cell Genetics, Institute of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Victoria Klepsch
- Translational Cell Genetics, Institute of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Janine Kimpel
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Labi
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Gottfried Baier
- Translational Cell Genetics, Institute of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Translational Cell Genetics, Institute of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
19
|
Zhou B, Jia L, Zhang Z, Xiang L, Yuan Y, Zheng P, Liu B, Ren X, Bian H, Xie L, Li Y, Lu J, Zhang H, Lu Y. The Nuclear Orphan Receptor NR2F6 Promotes Hepatic Steatosis through Upregulation of Fatty Acid Transporter CD36. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002273. [PMID: 33173745 PMCID: PMC7610302 DOI: 10.1002/advs.202002273] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Indexed: 05/08/2023]
Abstract
Nuclear receptors (NRs) are a superfamily of transcription factors which sense hormonal signals or nutrients to regulate various biological events, including development, reproduction, and metabolism. Here, this study identifies nuclear receptor subfamily 2, group F, member 6 (NR2F6), as an important regulator of hepatic triglyceride (TG) homeostasis and causal factor in the development of non-alcoholic fatty liver disease (NAFLD). Adeno-associated virus (AAV)-mediated overexpression of NR2F6 in the liver promotes TG accumulation in lean mice, while hepatic-specific suppression of NR2F6 improves obesity-associated hepatosteatosis, insulin resistance, and methionine and choline-deficient (MCD) diet-induced non-alcoholic steatohepatitis (NASH). Mechanistically, the fatty acid translocase CD36 is identified as a transcriptional target of NR2F6 to mediate its steatotic role. NR2F6 is able to bind directly onto the CD36 promoter region in hepatocytes and increases the enrichment of nuclear receptor coactivator 1 (SRC-1) and histone acetylation at its promoter. Of pathophysiological significance, NR2F6 is significantly upregulated in the livers of obese mice and NAFLD patients. Moreover, treatment with metformin decreases NR2F6 expression in obese mice, resulting in suppression of CD36 and reduced hepatic TG contents. Therefore, these results provide evidence for an unpredicted role of NR2F6 that contributes to liver steatosis and suggest that NR2F6 antagonists may present a therapeutic strategy for reversing or treating NAFLD/NASH pathogenesis.
Collapse
Affiliation(s)
- Bing Zhou
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of EducationDepartment of Endocrinology and MetabolismFudan Institute for Metabolic DiseasesZhongshan HospitalFudan UniversityShanghai230032P. R. China
| | - Lijing Jia
- Department of EndocrinologyShenzhen People's HospitalThe Second Clinical Medical College, Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhenGuangdong518020P. R. China
| | - Zhijian Zhang
- Department of Endocrinology and MetabolismShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620P. R. China
| | - Liping Xiang
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of EducationDepartment of Endocrinology and MetabolismFudan Institute for Metabolic DiseasesZhongshan HospitalFudan UniversityShanghai230032P. R. China
| | - Youwen Yuan
- Department of Endocrinology and MetabolismNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Peilin Zheng
- Department of EndocrinologyShenzhen People's HospitalThe Second Clinical Medical College, Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhenGuangdong518020P. R. China
| | - Bin Liu
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of EducationDepartment of Endocrinology and MetabolismFudan Institute for Metabolic DiseasesZhongshan HospitalFudan UniversityShanghai230032P. R. China
| | - Xingxing Ren
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of EducationDepartment of Endocrinology and MetabolismFudan Institute for Metabolic DiseasesZhongshan HospitalFudan UniversityShanghai230032P. R. China
| | - Hua Bian
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of EducationDepartment of Endocrinology and MetabolismFudan Institute for Metabolic DiseasesZhongshan HospitalFudan UniversityShanghai230032P. R. China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern ChinaGuangdong Provincial Key Laboratory of Microbial Culture Collection and ApplicationGuangdong Open Laboratory of Applied MicrobiologyGuangdong Institute of MicrobiologyGuangdong Academy of SciencesGuangzhouGuangdong510070P. R. China
| | - Yao Li
- Department of Laboratory Animal ScienceShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Jieli Lu
- Department of Endocrinology and MetabolismRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Huijie Zhang
- Department of Endocrinology and MetabolismNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Yan Lu
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of EducationDepartment of Endocrinology and MetabolismFudan Institute for Metabolic DiseasesZhongshan HospitalFudan UniversityShanghai230032P. R. China
| |
Collapse
|
20
|
Thuille N, Sajinovic T, Siegmund K, Baier G. Chemically modified mRNA nucleofection of primary human T cells. J Immunol Methods 2020; 487:112878. [PMID: 33031795 DOI: 10.1016/j.jim.2020.112878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
Here we show that an approach of in-vitro transcribed mRNA nucleofection expands the range of transfection of primary human T cells. It represents a reproducible and time-efficient technology, and is thus an ideal tool in basic research involving highly controlled in-vitro experiments with a gene of interest aiming at identifying its biological human T cell function.
Collapse
Affiliation(s)
- Nikolaus Thuille
- Department of Pharmacology and Genetics, Medical University of Innsbruck, Austria.
| | - Tajana Sajinovic
- Department of Pharmacology and Genetics, Medical University of Innsbruck, Austria
| | - Kerstin Siegmund
- Department of Pharmacology and Genetics, Medical University of Innsbruck, Austria
| | - Gottfried Baier
- Department of Pharmacology and Genetics, Medical University of Innsbruck, Austria
| |
Collapse
|
21
|
Olson WJ, Jakic B, Labi V, Schoeler K, Kind M, Klepsch V, Baier G, Hermann-Kleiter N. Orphan Nuclear Receptor NR2F6 Suppresses T Follicular Helper Cell Accumulation through Regulation of IL-21. Cell Rep 2020; 28:2878-2891.e5. [PMID: 31509749 PMCID: PMC6791812 DOI: 10.1016/j.celrep.2019.08.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/08/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022] Open
Abstract
CD4 T follicular helper (Tfh) cells are specialized in helping B cells during the germinal center (GC) reaction and ultimately promote long-term humoral immunity. Here we report that loss of the nuclear orphan receptor NR2F6 causes enhanced survival and accumulation of Tfh cells, GC B cells, and plasma cells (PCs) following T cell-dependent immunization. Nr2f6-deficient CD4 T cell dysfunction is the primary cause of cell accumulation. Cytokine expression in Nr2f6-deficient Tfh cells is dysregulated, and Il21 expression is enhanced. Mechanistically, NR2F6 binds directly to the interleukin 21 (IL-21) promoter and a conserved noncoding sequence (CNS) near the Il21 gene in resting CD4+ T cells. During Tfh cell differentiation, this direct NR2F6 DNA interaction is abolished. Enhanced Tfh cell accumulation in Nr2f6-deficient mice can be reverted by blocking IL-21R signaling. Thus, NR2F6 is a critical negative regulator of IL-21 cytokine production in Tfh cells and prevents excessive Tfh cell accumulation. Loss of NR2F6 results in accumulation of Tfh, GC B, and plasma cells after immunization Increased GC populations depend on Nr2f6 loss within the CD4 compartment NR2F6 directly binds to several sites within the Il21 promoter and CNS −36 NR2F6 restrains Il21 expression in CD4 cells; IL-21R blockade reduces Tfh accumulation
Collapse
Affiliation(s)
- William J Olson
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Peter Mayr Str. 1a, 6020 Innsbruck, Austria
| | - Bojana Jakic
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Peter Mayr Str. 1a, 6020 Innsbruck, Austria
| | - Verena Labi
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Katia Schoeler
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Michaela Kind
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Peter Mayr Str. 1a, 6020 Innsbruck, Austria
| | - Victoria Klepsch
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Peter Mayr Str. 1a, 6020 Innsbruck, Austria
| | - Gottfried Baier
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Peter Mayr Str. 1a, 6020 Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Peter Mayr Str. 1a, 6020 Innsbruck, Austria.
| |
Collapse
|
22
|
Fang Y, He Y, Zhai B, Hou C, Xu R, Xing C, Wang X, Ma N, Han G, Wang R. The E3 ubiquitin ligase Itch deficiency promotes antigen-driven B-cell responses in mice. Eur J Immunol 2020; 51:103-114. [PMID: 32652569 DOI: 10.1002/eji.202048640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/20/2020] [Indexed: 11/10/2022]
Abstract
Deficiency of Itch, an E3 ubiquitin ligase, usually induced severe systemic and progressive autoimmune disease. The Itch function is well studied in T cells but not in B cells. We hypothesize that B-cell-specific Itch deficiency promoted antigen-induced B-cell activation and antibody-expressing plasma cell (PC) production. We found that unlike Itch KO, Itch cKO (CD19cre Itchf/f ) mice did not demonstrated a significant increase in the sizes of spleens and LNs, antibody level, and base mutation of antibody gene. However, in line with the fact that Itch expression decreased in GC B cells, PCs, and plasmablast (PB)-like SP 2/0 cells, Itch deficiency promoted B-cell activation and antibody production induced by antigens including lipopolysaccharide (LPS) and sheep red blood cells (SRBCs). Mechanistically, we found that Itch deficiency promotes antigen-induced cytokine production because Itch controls the proteins (e.g., eIF3a, eIF3c, eIF3h) with translation initiation factor activity. Altogether, our data suggest that Itch deficiency promotes antigen-driven B-cell response. This may provide hints for Itch-targeted treatment of patients with autoimmune disease.
Collapse
Affiliation(s)
- Ying Fang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Department of Rheumatology, First Hospital of Jilin University, Changchun, China
| | - Youdi He
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Bing Zhai
- Institute of Military Cognition and Brain Sciences, Beijing, China.,Department of Geriatric Hematology, Chinese PLA General Hospital, Beijing, China
| | - Chunmei Hou
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Ruonan Xu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Chen Xing
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Xiaoqian Wang
- Staidson (Beijing) Biopharmaceuticals Co., Ltd, Beijing, China
| | - Ning Ma
- Department of Rheumatology, First Hospital of Jilin University, Changchun, China
| | - Gencheng Han
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Olson WJ, Jakic B, Hermann‐Kleiter N. Regulation of the germinal center response by nuclear receptors and implications for autoimmune diseases. FEBS J 2020; 287:2866-2890. [PMID: 32246891 PMCID: PMC7497069 DOI: 10.1111/febs.15312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/15/2020] [Accepted: 03/26/2020] [Indexed: 01/09/2023]
Abstract
The immune system plays an essential role in protecting the host from infectious diseases and cancer. Notably, B and T lymphocytes from the adaptive arm of the immune system can co-operate to form long-lived antibody responses and are therefore the main target in vaccination approaches. Nevertheless, protective immune responses must be tightly regulated to avoid hyper-responsiveness and responses against self that can result in autoimmunity. Nuclear receptors (NRs) are perfectly adapted to rapidly alter transcriptional cellular responses to altered environmental settings. Their functional role is associated with both immune deficiencies and autoimmunity. Despite extensive linking of nuclear receptor function with specific CD4 T helper subsets, research on the functional roles and mechanisms of specific NRs in CD4 follicular T helper cells (Tfh) and germinal center (GC) B cells during the germinal center reaction is just emerging. We review recent advances in our understanding of NR regulation in specific cell types of the GC response and discuss their implications for autoimmune diseases such as systemic lupus erythematosus (SLE).
Collapse
Affiliation(s)
- William J. Olson
- Translational Cell GeneticsDepartment of Pharmacology and GeneticsMedical University of InnsbruckAustria
| | - Bojana Jakic
- Translational Cell GeneticsDepartment of Pharmacology and GeneticsMedical University of InnsbruckAustria
- Department of Immunology, Genetics and PathologyUppsala UniversitySweden
| | - Natascha Hermann‐Kleiter
- Translational Cell GeneticsDepartment of Pharmacology and GeneticsMedical University of InnsbruckAustria
| |
Collapse
|
24
|
Klepsch V, Pommermayr M, Humer D, Brigo N, Hermann-Kleiter N, Baier G. Targeting the orphan nuclear receptor NR2F6 in T cells primes tumors for immune checkpoint therapy. Cell Commun Signal 2020; 18:8. [PMID: 31937317 PMCID: PMC6961368 DOI: 10.1186/s12964-019-0454-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND NR2F6 has been proposed as an alternative cancer immune checkpoint in the effector T cell compartment. However, a realistic assessment of the in vivo therapeutic potential of NR2F6 requires acute depletion. METHODS Employing primary T cells isolated from Cas9-transgenic mice for electroporation of chemically synthesized sgRNA, we established a CRISPR/Cas9-mediated acute knockout protocol of Nr2f6 in primary mouse T cells. RESULTS Analyzing these Nr2f6CRISPR/Cas9 knockout T cells, we reproducibly observed a hyper-reactive effector phenotype upon CD3/CD28 stimulation in vitro, highly reminiscent to Nr2f6-/- T cells. Importantly, CRISPR/Cas9-mediated Nr2f6 ablation prior to adoptive cell therapy (ACT) of autologous polyclonal T cells into wild-type tumor-bearing recipient mice in combination with PD-L1 or CTLA-4 tumor immune checkpoint blockade significantly delayed MC38 tumor progression and induced superior survival, thus further validating a T cell-inhibitory function of NR2F6 during tumor progression. CONCLUSIONS These findings indicate that Nr2f6CRISPR/Cas9 knockout T cells are comparable to germline Nr2f6-/- T cells, a result providing an independent confirmation of the immune checkpoint function of lymphatic NR2F6. Taken together, CRISPR/Cas9-mediated acute Nr2f6 gene ablation in primary mouse T cells prior to ACT appeared feasible for potentiating established PD-L1 and CTLA-4 blockade therapies, thereby pioneering NR2F6 inhibition as a sensitizing target for augmented tumor regression. Video abstract.
Collapse
Affiliation(s)
- Victoria Klepsch
- Division of Translational Cell Genetics, Medical University of Innsbruck, Peter Mayr Str. 1a, A-6020, Innsbruck, Austria.
| | - Maria Pommermayr
- Division of Translational Cell Genetics, Medical University of Innsbruck, Peter Mayr Str. 1a, A-6020, Innsbruck, Austria
| | - Dominik Humer
- Division of Translational Cell Genetics, Medical University of Innsbruck, Peter Mayr Str. 1a, A-6020, Innsbruck, Austria
| | - Natascha Brigo
- Division of Translational Cell Genetics, Medical University of Innsbruck, Peter Mayr Str. 1a, A-6020, Innsbruck, Austria
- Present address: Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, A-6020, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Division of Translational Cell Genetics, Medical University of Innsbruck, Peter Mayr Str. 1a, A-6020, Innsbruck, Austria
| | - Gottfried Baier
- Division of Translational Cell Genetics, Medical University of Innsbruck, Peter Mayr Str. 1a, A-6020, Innsbruck, Austria.
| |
Collapse
|
25
|
Siegmund K, Thuille N, Posch N, Fresser F, Leitges M, Baier G. Novel mutant mouse line emphasizes the importance of protein kinase C theta for CD4 + T lymphocyte activation. Cell Commun Signal 2019; 17:56. [PMID: 31138259 PMCID: PMC6537413 DOI: 10.1186/s12964-019-0364-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/14/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The protein kinase C theta (PKCθ) has an important and non-redundant function downstream of the antigen receptor and co-receptor complex in T lymphocytes. PKCθ is not only essential for activation of NF-κB, AP-1 and NFAT and subsequent interleukin-2 expression, but also critical for positive selection and development of regulatory T lymphocytes in the thymus. Several domains regulate its activity, such as a pseudosubstrate sequence mediating an auto-inhibitory intramolecular interaction, the tandem C1 domains binding diacylglycerol, and phosphorylation at conserved tyrosine, threonine as well as serine residues throughout the whole length of the protein. To address the importance of the variable domain V1 at the very N-terminus, which is encoded by exon 2, a mutated version of PKCθ was analyzed for its ability to stimulate T lymphocyte activation. METHODS T cell responses were analyzed with promoter luciferase reporter assays in Jurkat T cells transfected with PKCθ expression constructs. A mouse line expressing mutated instead of wild type PKCθ was analyzed in comparison to PKCθ-deficient and wild type mice for thymic development and T cell subsets by flow cytometry and T cell activation by quantitative RT-PCR, luminex analysis and flow cytometry. RESULTS In cell lines, the exon 2-replacing mutation impaired the transactivation of interleukin-2 expression by constitutively active mutant form of PKCθ. Moreover, analysis of a newly generated exon 2-mutant mouse line (PKCθ-E2mut) revealed that the N-terminal replacement mutation results in an hypomorph mutant of PKCθ combined with reduced PKCθ protein levels in CD4+ T lymphocytes. Thus, PKCθ-dependent functions in T lymphocytes were affected resulting in impaired thymic development of single positive T lymphocytes in vivo. In particular, there was diminished generation of regulatory T lymphocytes. Furthermore, early activation responses such as interleukin-2 expression of CD4+ T lymphocytes were significantly reduced even though cell viability was not affected. Thus, PKCθ-E2mut mice show a phenotype similar to conventional PKCθ-deficient mice. CONCLUSION Taken together, PKCθ-E2mut mice show a phenotype similar to conventional PKCθ-deficient mice. Both our in vitro T cell culture experiments and ex vivo analyses of a PKCθ-E2-mutant mouse line independently validate the importance of PKCθ downstream of the antigen-receptor complex for activation of CD4+ T lymphocytes.
Collapse
Affiliation(s)
- Kerstin Siegmund
- Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | - Nikolaus Thuille
- Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | - Nina Posch
- Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | - Friedrich Fresser
- Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | | | - Gottfried Baier
- Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| |
Collapse
|
26
|
Siegmund K, Thuille N, Posch N, Fresser F, Leitges M, Baier G. Novel mutant mouse line emphasizes the importance of protein kinase C theta for CD4 + T lymphocyte activation. Cell Commun Signal 2019. [PMID: 31138259 PMCID: PMC6537413 DOI: 10.1186/s12964-019-0364-0#] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The protein kinase C theta (PKCθ) has an important and non-redundant function downstream of the antigen receptor and co-receptor complex in T lymphocytes. PKCθ is not only essential for activation of NF-κB, AP-1 and NFAT and subsequent interleukin-2 expression, but also critical for positive selection and development of regulatory T lymphocytes in the thymus. Several domains regulate its activity, such as a pseudosubstrate sequence mediating an auto-inhibitory intramolecular interaction, the tandem C1 domains binding diacylglycerol, and phosphorylation at conserved tyrosine, threonine as well as serine residues throughout the whole length of the protein. To address the importance of the variable domain V1 at the very N-terminus, which is encoded by exon 2, a mutated version of PKCθ was analyzed for its ability to stimulate T lymphocyte activation. METHODS T cell responses were analyzed with promoter luciferase reporter assays in Jurkat T cells transfected with PKCθ expression constructs. A mouse line expressing mutated instead of wild type PKCθ was analyzed in comparison to PKCθ-deficient and wild type mice for thymic development and T cell subsets by flow cytometry and T cell activation by quantitative RT-PCR, luminex analysis and flow cytometry. RESULTS In cell lines, the exon 2-replacing mutation impaired the transactivation of interleukin-2 expression by constitutively active mutant form of PKCθ. Moreover, analysis of a newly generated exon 2-mutant mouse line (PKCθ-E2mut) revealed that the N-terminal replacement mutation results in an hypomorph mutant of PKCθ combined with reduced PKCθ protein levels in CD4+ T lymphocytes. Thus, PKCθ-dependent functions in T lymphocytes were affected resulting in impaired thymic development of single positive T lymphocytes in vivo. In particular, there was diminished generation of regulatory T lymphocytes. Furthermore, early activation responses such as interleukin-2 expression of CD4+ T lymphocytes were significantly reduced even though cell viability was not affected. Thus, PKCθ-E2mut mice show a phenotype similar to conventional PKCθ-deficient mice. CONCLUSION Taken together, PKCθ-E2mut mice show a phenotype similar to conventional PKCθ-deficient mice. Both our in vitro T cell culture experiments and ex vivo analyses of a PKCθ-E2-mutant mouse line independently validate the importance of PKCθ downstream of the antigen-receptor complex for activation of CD4+ T lymphocytes.
Collapse
Affiliation(s)
- Kerstin Siegmund
- 0000 0000 8853 2677grid.5361.1Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | - Nikolaus Thuille
- 0000 0000 8853 2677grid.5361.1Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | - Nina Posch
- 0000 0000 8853 2677grid.5361.1Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | - Friedrich Fresser
- 0000 0000 8853 2677grid.5361.1Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | | | - Gottfried Baier
- 0000 0000 8853 2677grid.5361.1Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| |
Collapse
|
27
|
Klepsch V, Moschen AR, Tilg H, Baier G, Hermann-Kleiter N. Nuclear Receptors Regulate Intestinal Inflammation in the Context of IBD. Front Immunol 2019; 10:1070. [PMID: 31139192 PMCID: PMC6527601 DOI: 10.3389/fimmu.2019.01070] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/26/2019] [Indexed: 12/26/2022] Open
Abstract
Gastrointestinal (GI) homeostasis is strongly dependent on nuclear receptor (NR) functions. They play a variety of roles ranging from nutrient uptake, sensing of microbial metabolites, regulation of epithelial intestinal cell integrity to shaping of the intestinal immune cell repertoire. Several NRs are associated with GI pathologies; therefore, systematic analysis of NR biology, the underlying molecular mechanisms, and regulation of target genes can be expected to help greatly in uncovering the course of GI diseases. Recently, an increasing number of NRs has been validated as potential drug targets for therapeutic intervention in patients with inflammatory bowel disease (IBD). Besides the classical glucocorticoids, especially PPARγ, VDR, or PXR-selective ligands are currently being tested with promising results in clinical IBD trials. Also, several pre-clinical animal studies are being performed with NRs. This review focuses on the complex biology of NRs and their context-dependent anti- or pro-inflammatory activities in the regulation of gastrointestinal barrier with special attention to NRs already pharmacologically targeted in clinic and pre-clinical IBD treatment regimens.
Collapse
Affiliation(s)
- Victoria Klepsch
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander R. Moschen
- Department of Internal Medicine I, Gastroenterology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Gottfried Baier
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
28
|
Alexandre PA, Naval-Sanchez M, Porto-Neto LR, Ferraz JBS, Reverter A, Fukumasu H. Systems Biology Reveals NR2F6 and TGFB1 as Key Regulators of Feed Efficiency in Beef Cattle. Front Genet 2019; 10:230. [PMID: 30967894 PMCID: PMC6439317 DOI: 10.3389/fgene.2019.00230] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/04/2019] [Indexed: 11/20/2022] Open
Abstract
Systems biology approaches are used as strategy to uncover tissue-specific perturbations and regulatory genes related to complex phenotypes. We applied this approach to study feed efficiency (FE) in beef cattle, an important trait both economically and environmentally. Poly-A selected RNA of five tissues (adrenal gland, hypothalamus, liver, skeletal muscle and pituitary) of eighteen young bulls, selected for high and low FE, were sequenced (Illumina HiSeq 2500, 100 bp, pared-end). From the 17,354 expressed genes considering all tissues, 1,335 were prioritized by five selection categories (differentially expressed, harboring SNPs associated with FE, tissue-specific, secreted in plasma and key regulators) and used for network construction. NR2F6 and TGFB1 were identified and validated by motif discovery as key regulators of hepatic inflammatory response and muscle tissue development, respectively, two biological processes demonstrated to be associated with FE. Moreover, we indicated potential biomarkers of FE, which are related to hormonal control of metabolism and sexual maturity. By using robust methodologies and validation strategies, we confirmed the main biological processes related to FE in Bos indicus and indicated candidate genes as regulators or biomarkers of superior animals.
Collapse
Affiliation(s)
- Pâmela A. Alexandre
- Department of Veterinary Medicine, College of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - Marina Naval-Sanchez
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - Laercio R. Porto-Neto
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - José Bento S. Ferraz
- Department of Veterinary Medicine, College of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Antonio Reverter
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - Heidge Fukumasu
- Department of Veterinary Medicine, College of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| |
Collapse
|
29
|
Ichim CV, Dervovic DD, Chan LSA, Robertson CJ, Chesney A, Reis MD, Wells RA. The orphan nuclear receptor EAR-2 (NR2F6) inhibits hematopoietic cell differentiation and induces myeloid dysplasia in vivo. Biomark Res 2018; 6:36. [PMID: 30555701 PMCID: PMC6286615 DOI: 10.1186/s40364-018-0149-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/13/2018] [Indexed: 01/21/2023] Open
Abstract
Background In patients with myelodysplastic syndrome (MDS), bone marrow cells have an increased predisposition to apoptosis, yet MDS cells outcompete normal bone marrow (BM)-- suggesting that factors regulating growth potential may be important in MDS. We previously identified v-Erb A related-2 (EAR-2, NR2F6) as a gene involved in control of growth ability. Methods Bone marrow obtained from C57BL/6 mice was transfected with a retrovirus containing EAR-2-IRES-GFP. Ex vivo transduced cells were flow sorted. In some experiments cells were cultured in vitro, in other experiments cells were injected into lethally irradiated recipients, along with non-transduced bone marrow cells. Short-hairpin RNA silencing EAR-2 was also introduced into bone marrow cells cultured ex vivo. Results Here, we show that EAR-2 inhibits maturation of normal BM in vitro and in vivo and that EAR-2 transplant chimeras demonstrate key features of MDS. Competitive repopulation of lethally irradiated murine hosts with EAR-2-transduced BM cells resulted in increased engraftment and increased colony formation in serial replating experiments. Recipients of EAR-2-transduced grafts had hypercellular BM, erythroid dysplasia, abnormal localization of immature precursors and increased blasts; secondary transplantation resulted in acute leukemia. Animals were cytopenic, having reduced numbers of erythrocytes, monocytes and granulocytes. Suspension culture confirmed that EAR-2 inhibits granulocytic and monocytic differentiation, while knockdown induced granulocytic differentiation. We observed a reduction in the number of BFU-E and CFU-GM colonies and the size of erythroid and myeloid colonies. Serial replating of transduced hematopoietic colonies revealed extended replating potential in EAR-2-overexpressing BM, while knockdown reduced re-plating ability. EAR-2 functions by recruitment of histone deacetylases, and inhibition of differentiation in 32D cells is dependent on the DNA binding domain. Conclusions This data suggest that NR2F6 inhibits maturation of normal BM in vitro and in vivo and that the NR2F6 transplant chimera system demonstrates key features of MDS, and could provide a mouse model for MDS.
Collapse
Affiliation(s)
- Christine V Ichim
- Nuclear Exploration Inc., Palo Alto, California 94301 USA.,3Department of Medical Biophysics, University of Toronto, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada.,4Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada
| | - Dzana D Dervovic
- 4Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada.,5Department of Immunology, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Lap Shu Alan Chan
- 3Department of Medical Biophysics, University of Toronto, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada.,4Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada
| | - Claire J Robertson
- 1Materials Engineering Division, Lawrence Livermore National Lab, 7000 East Ave, Livermore, CA USA
| | - Alden Chesney
- 6VCU Medical Centre, Department of Pathology, Richmond, VA 23298 USA
| | - Marciano D Reis
- 9Department of Laboratory Hematology, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Richard A Wells
- 3Department of Medical Biophysics, University of Toronto, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada.,4Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada.,6VCU Medical Centre, Department of Pathology, Richmond, VA 23298 USA.,7Department of Medicine, University of Toronto, Toronto, ON M5G 2C4 Canada.,8Department of Medical Oncology, Myelodysplastic Syndromes Program, Toronto Sunnybrook Regional Cancer Centre, Toronto, ON M4N 3M5 Canada
| |
Collapse
|
30
|
Klepsch V, Gerner RR, Klepsch S, Olson WJ, Tilg H, Moschen AR, Baier G, Hermann-Kleiter N. Nuclear orphan receptor NR2F6 as a safeguard against experimental murine colitis. Gut 2018; 67:1434-1444. [PMID: 28779026 PMCID: PMC6204953 DOI: 10.1136/gutjnl-2016-313466] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/26/2017] [Accepted: 05/19/2017] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Nuclear receptors are known to regulate both immune and barrier functions in the GI tract. The nuclear orphan receptor NR2F6 has been shown to suppress the expression of proinflammatory cytokines in T lymphocytes. NR2F6 gene expression is reduced in patients with IBS or UC, but its functional role and tissue dependency in healthy and inflamed gut have not yet been investigated. DESIGN Intestinal inflammation was induced in wild-type, Nr2f6-deficient, Rag1-deficient or bone marrow-reconstituted mice by administration of chemical (dextran sodium sulfate (DSS)) and immunogenic (T cell transfer) triggers. Disease phenotypes were investigated by survival, body weight, colon length and analysis of immune cell infiltrates. Additionally, histology, intestinal permeability, tight junction proteins, bacterial fluorescence in situ hybridisation, apoptosis, cell proliferation and mucus production were investigated. RESULTS Nr2f6-deficient mice were highly susceptible to DSS-induced colitis characterised by enhanced weight loss, increased colonic tissue destruction and immune cell infiltration together with enhanced intestinal permeability and reduced Muc2 expression. T cell transfer colitis and bone marrow reconstitution experiments demonstrated that disease susceptibility was not dependent on the expression of Nr2f6 in the immune compartment but on the protective role of NR2F6 in the intestinal epithelium. Mechanistically, we show that NR2F6 binds to a consensus sequence at -2 kb of the Muc2 promoter and transactivates Muc2 expression. Loss of NR2F6 alters intestinal permeability and results in spontaneous late-onset colitis in Nr2f6-deficient mice. CONCLUSION We have for the first time identified a fundamental and non-redundant role of NR2F6 in protecting gut barrier homeostasis.
Collapse
Affiliation(s)
- Victoria Klepsch
- Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Romana R Gerner
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Tirol, Austria
| | - Sebastian Klepsch
- Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - William J Olson
- Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Tirol, Austria
| | - Alexander R Moschen
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Tirol, Austria
| | - Gottfried Baier
- Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Natascha Hermann-Kleiter
- Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| |
Collapse
|
31
|
Klepsch V, Hermann-Kleiter N, Do-Dinh P, Jakic B, Offermann A, Efremova M, Sopper S, Rieder D, Krogsdam A, Gamerith G, Perner S, Tzankov A, Trajanoski Z, Wolf D, Baier G. Nuclear receptor NR2F6 inhibition potentiates responses to PD-L1/PD-1 cancer immune checkpoint blockade. Nat Commun 2018; 9:1538. [PMID: 29670099 PMCID: PMC5906604 DOI: 10.1038/s41467-018-04004-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 03/28/2018] [Indexed: 12/16/2022] Open
Abstract
Analyzing mouse tumor models in vivo, human T cells ex vivo, and human lung cancer samples, we provide direct evidence that NR2F6 acts as an immune checkpoint. Genetic ablation of Nr2f6, particularly in combination with established cancer immune checkpoint blockade, efficiently delays tumor progression and improves survival in experimental mouse models. The target genes deregulated in intratumoral T lymphocytes upon genetic ablation of Nr2f6 alone or together with PD-L1 blockade reveal multiple advantageous transcriptional alterations. Acute Nr2f6 silencing in both mouse and human T cells induces hyper-responsiveness that establishes a non-redundant T-cell-inhibitory function of NR2F6. NR2F6 protein expression in T-cell-infiltrating human NSCLC is upregulated in 54% of the cases (n = 303) and significantly correlates with PD-1 and CTLA-4 expression. Our data define NR2F6 as an intracellular immune checkpoint that suppresses adaptive anti-cancer immune responses and set the stage for clinical validation of targeting NR2F6 for next-generation immuno-oncological regimens. Immune checkpoints blockade (ICB) is a viable anti-cancer strategy. Here the authors show that nuclear receptor NR2F6 acts as an immune checkpoint in T cells and, using mouse models and human T cells, they show NR2F6 inhibition might improve current ICB therapy or work as an alternative therapeutic strategy.
Collapse
Affiliation(s)
- Victoria Klepsch
- Division of Translational Cell Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Division of Translational Cell Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Patricia Do-Dinh
- Division of Translational Cell Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Bojana Jakic
- Division of Translational Cell Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Anne Offermann
- Pathology of the University Hospital Schleswig-Holstein, Campus Luebeck and Research Center Borstel, Leibniz Lung Center, 23538, Leubeck, Germany
| | - Mirjana Efremova
- Biocenter, Division of Bioinformatics, Medical University of Innsbruck, 6030, Innsbruck, Austria
| | - Sieghart Sopper
- Tumor Immunology, Tyrolean Cancer Institute & Internal Medicine V, 6020, Innsbruck, Austria
| | - Dietmar Rieder
- Biocenter, Division of Bioinformatics, Medical University of Innsbruck, 6030, Innsbruck, Austria
| | - Anne Krogsdam
- Biocenter, Division of Bioinformatics, Medical University of Innsbruck, 6030, Innsbruck, Austria
| | - Gabriele Gamerith
- Tumor Immunology, Tyrolean Cancer Institute & Internal Medicine V, 6020, Innsbruck, Austria
| | - Sven Perner
- Pathology of the University Hospital Schleswig-Holstein, Campus Luebeck and Research Center Borstel, Leibniz Lung Center, 23538, Leubeck, Germany
| | - Alexandar Tzankov
- Department of Pathology, University of Basel, University Hospital Basel, 4031, Basel, Switzerland
| | - Zlatko Trajanoski
- Tumor Immunology, Tyrolean Cancer Institute & Internal Medicine V, 6020, Innsbruck, Austria
| | - Dominik Wolf
- Tumor Immunology, Tyrolean Cancer Institute & Internal Medicine V, 6020, Innsbruck, Austria.,Medical Clinic III, Oncology, Hematology & Rheumatology, University Clinic Bonn, 53127, Bonn, Germany
| | - Gottfried Baier
- Division of Translational Cell Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
32
|
Mathew SP, Thakur K, Kumar S, Yende AS, Singh SK, Dash AK, Tyagi RK. A Comprehensive Analysis and Prediction of Sub-Cellular Localization of Human Nuclear Receptors. NUCLEAR RECEPTOR RESEARCH 2018. [DOI: 10.11131/2018/101324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Tao Z, Li S, Ichim TE, Yang J, Riordan N, Yenugonda V, Babic I, Kesari S. Cellular immunotherapy of cancer: an overview and future directions. Immunotherapy 2017; 9:589-606. [DOI: 10.2217/imt-2016-0086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The clinical success of checkpoint inhibitors has led to a renaissance of interest in cancer immunotherapies. In particular, the possibility of ex vivo expanding autologous lymphocytes that specifically recognize tumor cells has attracted much research and clinical trial interest. In this review, we discuss the historical background of tumor immunotherapy using cell-based approaches, and provide some rationale for overcoming current barriers to success of autologous immunotherapy. An overview of adoptive transfer of lymphocytes, tumor infiltrating lymphocytes and dendritic cell therapies is provided. We conclude with discussing the possibility of gene-manipulating immune cells in order to augment therapeutic activity, including silencing of the immune-suppressive zinc finger orphan nuclear receptor, NR2F6, as an attractive means of overcoming tumor-associated immune suppression.
Collapse
Affiliation(s)
- Ziqi Tao
- The Affiliated XuZhou Center Hospital of Nanjing University of Chinese Medicine, The Affiliated XuZhou Hospital of Medical College of Southeast University, Jiangsu, China
| | - Shuang Li
- Department of Endocrinology, the Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | | | - Junbao Yang
- Department of Translational Neurosciences and Neurotherapeutics, Pacific Neuroscience Institute, John Wayne Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Neil Riordan
- Medistem Panama, Inc., City of Knowledge, Clayton, Republic of Panama
| | - Venkata Yenugonda
- Department of Translational Neurosciences and Neurotherapeutics, Pacific Neuroscience Institute, John Wayne Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Ivan Babic
- Department of Translational Neurosciences and Neurotherapeutics, Pacific Neuroscience Institute, John Wayne Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Santosh Kesari
- Department of Translational Neurosciences and Neurotherapeutics, Pacific Neuroscience Institute, John Wayne Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
- John Wayne Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
| |
Collapse
|
34
|
Zhao M, Wang J, Liao W, Li D, Li M, Wu H, Zhang Y, Gershwin ME, Lu Q. Increased 5-hydroxymethylcytosine in CD4 + T cells in systemic lupus erythematosus. J Autoimmun 2016; 69:64-73. [DOI: 10.1016/j.jaut.2016.03.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 12/16/2022]
|
35
|
Klepsch V, Hermann-Kleiter N, Baier G. Beyond CTLA-4 and PD-1: Orphan nuclear receptor NR2F6 as T cell signaling switch and emerging target in cancer immunotherapy. Immunol Lett 2016; 178:31-6. [PMID: 26992368 DOI: 10.1016/j.imlet.2016.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 01/29/2023]
Abstract
Blockade of immune checkpoints has emerged as key strategy in the development of effective cancer therapies. In contrast to cell surface checkpoints like CTLA-4 and PD-1, however, additional cancer therapeutic targets are located inside the effector immune cells. Targeting these alternative checkpoints in cancer immunotherapy with the goal to strengthen the patient's immune system are likely to extend the benefits of cancer immunotherapy in the near future. Along this line, we have defined and validated the orphan nuclear receptor NR2F6 (nuclear receptor subfamily 2 group F member 6, also called Ear-2) as an intracellular immune checkpoint in effector T cells. NR2F6 acts as a novel master switch of antitumor responses against both transplantable and spontaneous tumors in mice relevant for human cancer. NR2F6 directly represses transcription of key cytokine genes in T effector cells relevant for tumor cell rejection, such as IL-2, IFN and TNFα. Thus, in the presence of NR2F6, T cell activation is limited within the tumor microenvironment. This defines NR2F6 as a key checkpoint governing the amplitude of cancer immune surveillance. Based on our study, an approach shall be initiated to identify low molecular weight compounds that selectively interfere with NR2F6 function in the clinic.
Collapse
Affiliation(s)
- Victoria Klepsch
- Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | - Gottfried Baier
- Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria.
| |
Collapse
|
36
|
Santori FR. Nuclear hormone receptors put immunity on sterols. Eur J Immunol 2015; 45:2730-41. [PMID: 26222181 PMCID: PMC4651655 DOI: 10.1002/eji.201545712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/01/2015] [Accepted: 07/24/2015] [Indexed: 12/13/2022]
Abstract
Nuclear hormone receptors (NHRs) are transcription factors regulated by small molecules. The functions of NHRs range from development of primary and secondary lymphoid organs, to regulation of differentiation and function of DCs, macrophages and T cells. The human genome has 48 classic (hormone and vitamin receptors) and nonclassic (all others) NHRs; 17 nonclassic receptors are orphans, meaning that the endogenous ligand is unknown. Understanding the function of orphan NHRs requires the identification of their natural ligands. The mevalonate pathway, including its sterol and nonsterol intermediates and derivatives, is a source of ligands for many classic and nonclassic NHRs. For example, cholesterol biosynthetic intermediates (CBIs) are natural ligands for RORγ/γt. CBIs are universal endogenous metabolites in mammalian cells, and to study NHRs that bind CBIs requires ligand-free reporters system in sterol auxotroph cells. Furthermore, RORγ/γt shows broad specificity to sterol lipids, suggesting that RORγ/γt is either a general sterol sensor or specificity is defined by an abundant endogenous ligand. Unlike other NHRs, which regulate specific metabolic pathways, there is no connection between the genetic programs induced by RORγ/γt and ligand biosynthesis. In this review, we summarize the roles of nonclassic NHRs and their potential ligands in the immune system.
Collapse
Affiliation(s)
- Fabio R Santori
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
37
|
Hermann-Kleiter N, Klepsch V, Wallner S, Siegmund K, Klepsch S, Tuzlak S, Villunger A, Kaminski S, Pfeifhofer-Obermair C, Gruber T, Wolf D, Baier G. The Nuclear Orphan Receptor NR2F6 Is a Central Checkpoint for Cancer Immune Surveillance. Cell Rep 2015; 12:2072-85. [PMID: 26387951 PMCID: PMC4594157 DOI: 10.1016/j.celrep.2015.08.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/02/2015] [Accepted: 08/11/2015] [Indexed: 12/18/2022] Open
Abstract
Nuclear receptor subfamily 2, group F, member 6 (NR2F6) is an orphan member of the nuclear receptor superfamily. Here, we show that genetic ablation of Nr2f6 significantly improves survival in the murine transgenic TRAMP prostate cancer model. Furthermore, Nr2f6(-/-) mice spontaneously reject implanted tumors and develop host-protective immunological memory against tumor rechallenge. This is paralleled by increased frequencies of both CD4(+) and CD8(+) T cells and higher expression levels of interleukin 2 and interferon γ at the tumor site. Mechanistically, CD4(+) and CD8(+) T cell-intrinsic NR2F6 acts as a direct repressor of the NFAT/AP-1 complex on both the interleukin 2 and the interferon γ cytokine promoters, attenuating their transcriptional thresholds. Adoptive transfer of Nr2f6-deficient T cells into tumor-bearing immunocompetent mice is sufficient to delay tumor outgrowth. Altogether, this defines NR2F6 as an intracellular immune checkpoint in effector T cells, governing the amplitude of anti-cancer immunity.
Collapse
Affiliation(s)
- Natascha Hermann-Kleiter
- Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Victoria Klepsch
- Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stephanie Wallner
- Laboratory of Tumor Immunology, Tyrolean Cancer Institute & Internal Medicine V, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Kerstin Siegmund
- Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sebastian Klepsch
- Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Selma Tuzlak
- Division of Developmental Immunology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sandra Kaminski
- Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Christa Pfeifhofer-Obermair
- Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Gruber
- Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Dominik Wolf
- Laboratory of Tumor Immunology, Tyrolean Cancer Institute & Internal Medicine V, Medical University of Innsbruck, 6020 Innsbruck, Austria; Medical Clinic III, Oncology, Hematology & Rheumatology, University Clinic Bonn, 53127 Bonn, Germany
| | - Gottfried Baier
- Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
38
|
Abstract
Activating as well as inhibitory circuits tightly regulate T-cell activation thresholds and effector differentiation processes enabling proper immune response outcomes. Recently, an additional molecular link between T-cell receptor signalling and CD4⁺ Th17 cell skewing has been reported, namely that protein kinase C (PKC) θ critically regulates Th17/Th1 phenotypic differentiation and plasticity in CD4⁺ T-cells by selectively acting as a 'reprogramming element' that suppresses Th1-typical genes during Th17-mediated immune activation in order to stabilize a Th17 cell phenotype.
Collapse
|
39
|
Palmieri O, Mazzoccoli G, Bossa F, Maglietta R, Palumbo O, Ancona N, Corritore G, Latiano T, Martino G, Rubino R, Biscaglia G, Scimeca D, Carella M, Annese V, Andriulli A, Latiano A. Systematic analysis of circadian genes using genome-wide cDNA microarrays in the inflammatory bowel disease transcriptome. Chronobiol Int 2015; 32:903-916. [PMID: 26172092 DOI: 10.3109/07420528.2015.1050726] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Simultaneous analysis of the transcripts of thousands of genes by cDNA microarrays allows the identification of genetic regulatory mechanisms involved in disease pathophysiology. The circadian clock circuitry controls essential cell processes and the functioning of organ systems, which are characterized by rhythmic variations with 24-hour periodicity. The derangement of these processes is involved in the basic mechanisms of inflammatory, metabolic, degenerative and neoplastic diseases. We evaluated by genome-wide cDNA microarray analysis the transcriptome of endoscopic mucosal biopsies of patients with inflammatory bowel diseases (IBD) focusing on the expression of circadian genes in Crohn's disease (CD) and ulcerative colitis (UC). Twenty-nine IBD patients (15 with CD and 14 with UC) were enrolled and mucosal biopsies were sampled at either inflamed or adjacent non-inflamed areas of the colon. A total of 150 circadian genes involved in pathways controlling crucial cell processes and tissue functions were investigated. In CD specimens 50 genes were differentially expressed, and 21 genes resulted up-regulated when compared to healthy colonic mucosa. In UC specimens 50 genes were differentially expressed, and 27 genes resulted up-regulated when compared to healthy colonic mucosa. Among the core clock genes ARNTL2 and RORA were up-regulated, while CSNK2B, NPAS2, PER1 and PER3 were down-regulated in CD specimens. Conversely, ARNTL2, CRY1, CSNK1E, RORA and TIPIN were up-regulated, while NR1D2 and PER3 were down-regulated in UC. In conclusion, in CD and UC patients there are differences in the expression of circadian genes between normal and diseased intestinal mucosa. The deregulated genes evidenced by transcriptome analysis in the major IBDs may play a crucial role in the pathophysiological mechanisms and may suggest novel therapeutic approaches.
Collapse
Affiliation(s)
- Orazio Palmieri
- a Department of Medical Sciences , Division of Gastroenterology and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Peláez-García A, Barderas R, Batlle R, Viñas-Castells R, Bartolomé RA, Torres S, Mendes M, Lopez-Lucendo M, Mazzolini R, Bonilla F, García de Herreros A, Casal JI. A proteomic analysis reveals that Snail regulates the expression of the nuclear orphan receptor Nuclear Receptor Subfamily 2 Group F Member 6 (Nr2f6) and interleukin 17 (IL-17) to inhibit adipocyte differentiation. Mol Cell Proteomics 2014; 14:303-15. [PMID: 25505127 DOI: 10.1074/mcp.m114.045328] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Adipogenesis requires a differentiation program driven by multiple transcription factors, where PPARγ and C/EBPα play a central role. Recent findings indicate that Snail inhibits adipocyte differentiation in 3T3-L1 and murine mesenchymal stem cells (mMSC). An in-depth quantitative SILAC analysis of the nuclear fraction of Snail-induced alterations of 3T3-L1 cells was carried out. In total, 2251 overlapping proteins were simultaneously quantified in forward and reverse experiments. We observed 574 proteins deregulated by Snail1 using a fold-change ≥1.5, with 111 up- and 463 down-regulated proteins, respectively. Among other proteins, multiple transcription factors such as Trip4, OsmR, Nr2f6, Cbx6, and Prrx1 were down-regulated. Results were validated in 3T3-L1 cells and mMSC cells by Western blot and quantitative PCR. Knock-down experiments in 3T3-L1 cells demonstrated that only Nr2f6 (and Trip4 at minor extent) was required for adipocyte differentiation. Ectopic expression of Nr2f6 reversed the effects of Snail1 and promoted adipogenesis. Because Nr2f6 inhibits the expression of IL-17, we tested the effect of Snail on IL-17 expression. IL-17 and TNFα were among the most up-regulated pro-inflammatory cytokines in Snail-transfected 3T3-L1 and mMSC cells. Furthermore, the blocking of IL-17 activity in Snail-transfected cells promoted adipocyte differentiation, reverting Snail inhibition. In summary, Snail inhibits adipogenesis through a down-regulation of Nr2f6, which in turn facilitates the expression of IL-17, an anti-adipogenic cytokine. These results would support a novel and important role for Snail and Nr2f6 in obesity control.
Collapse
Affiliation(s)
- Alberto Peláez-García
- From the ‡Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Rodrigo Barderas
- §Departamento de Biochemistry and Molecular Biology Department I, Universidad Complutense de Madrid, Spain
| | | | | | - Rubén A Bartolomé
- From the ‡Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Sofía Torres
- From the ‡Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Marta Mendes
- From the ‡Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - María Lopez-Lucendo
- From the ‡Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | | | - Félix Bonilla
- ‖Hospital Puerta de Hierro, Majadahonda, Madrid, Spain
| | | | - J Ignacio Casal
- From the ‡Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain;
| |
Collapse
|
41
|
Hermann-Kleiter N, Baier G. Orphan nuclear receptor NR2F6 acts as an essential gatekeeper of Th17 CD4+ T cell effector functions. Cell Commun Signal 2014; 12:38. [PMID: 24919548 PMCID: PMC4066320 DOI: 10.1186/1478-811x-12-38] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/06/2014] [Indexed: 12/21/2022] Open
Abstract
Members of the evolutionarily conserved family of the chicken ovalbumin upstream promoter transcription factor NR2F/COUP-TF orphan receptors have been implicated in lymphocyte biology, ranging from activation to differentiation and elicitation of immune effector functions. In particular, a CD4+ T cell intrinsic and non-redundant function of NR2F6 as a potent and selective repressor of the transcription of the pro-inflammatory cytokines interleukin (Il) 2, interferon y (ifng) and consequently of T helper (Th)17 CD4+ T cell-mediated autoimmune disorders has been discovered. NR2F6 serves as an antigen receptor signaling threshold-regulated barrier against autoimmunity where NR2F6 is part of a negative feedback loop that limits inflammatory tissue damage induced by weakly immunogenic antigens such as self-antigens. Under such low affinity antigen receptor stimulation, NR2F6 appears as a prototypical repressor that functions to “lock out” harmful Th17 lineage effector transcription. Mechanistically, only sustained high affinity antigen receptor-induced protein kinase C (PKC)-mediated phosphorylation has been shown to inactivate NR2F6, thereby displacing pre-bound NR2F6 from the DNA and, subsequently, allowing for robust NFAT/AP-1- and RORγt-mediated cytokine transcription. The NR2F6 target gene repertoire thus identifies a general anti-inflammatory gatekeeper role for this orphan receptor. Investigating these signaling pathway(s) will enable a greater knowledge of the genetic, immune, and environmental mechanisms that lead to chronic inflammation and of certain autoimmune disorders in a given individual.
Collapse
Affiliation(s)
- Natascha Hermann-Kleiter
- Department for Pharmacology and Genetics, Translational Cell Genetics, Medical University of Innsbruck, Peter Mayr Str, 1a, A-6020, Innsbruck, Austria.
| | | |
Collapse
|
42
|
Wachowicz K, Hermann-Kleiter N, Meisel M, Siegmund K, Thuille N, Baier G. Protein kinase C θ regulates the phenotype of murine CD4+ Th17 cells. PLoS One 2014; 9:e96401. [PMID: 24788550 PMCID: PMC4008503 DOI: 10.1371/journal.pone.0096401] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/06/2014] [Indexed: 02/07/2023] Open
Abstract
Protein kinase C θ (PKCθ) is involved in signaling downstream of the T cell antigen receptor (TCR) and is important for shaping effector T cell functions and inflammatory disease development. Acquisition of Th1-like effector features by Th17 cells has been linked to increased pathogenic potential. However, the molecular mechanisms underlying Th17/Th1 phenotypic instability remain largely unknown. In the current study, we address the role of PKCθ in differentiation and function of Th17 cells by using genetic knock-out mice. Implementing in vitro (polarizing T cell cultures) and in vivo (experimental autoimmune encephalomyelitis model, EAE) techniques, we demonstrated that PKCθ-deficient CD4+ T cells show normal Th17 marker gene expression (interleukin 17A/F, RORγt), accompanied by enhanced production of the Th1-typical markers such as interferon gamma (IFN-γ) and transcription factor T-bet. Mechanistically, this phenotype was linked to aberrantly elevated Stat4 mRNA levels in PKCθ−/− CD4+ T cells during the priming phase of Th17 differentiation. In contrast, transcription of the Stat4 gene was suppressed in Th17-primed wild-type cells. This change in cellular effector phenotype was reflected in vivo by prolonged neurological impairment of PKCθ-deficient mice during the course of EAE. Taken together, our data provide genetic evidence that PKCθ is critical for stabilizing Th17 cell phenotype by selective suppression of the STAT4/IFN-γ/T-bet axis at the onset of differentiation.
Collapse
Affiliation(s)
- Katarzyna Wachowicz
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Marlies Meisel
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Kerstin Siegmund
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Nikolaus Thuille
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Gottfried Baier
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
- * E-mail:
| |
Collapse
|
43
|
Abstract
The nuclear receptor superfamily includes many receptors, identified based on their similarity to steroid hormone receptors but without a known ligand. The study of how these receptors are diversely regulated to interact with genomic regions to control a plethora of biological processes has provided critical insight into development, physiology, and the molecular pathology of disease. Here we provide a compendium of these so-called orphan receptors and focus on what has been learned about their modes of action, physiological functions, and therapeutic promise.
Collapse
Affiliation(s)
- Shannon E Mullican
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
44
|
Ichim CV, Dervović DD, Zúñiga-Pflücker JC, Wells RA. The orphan nuclear receptor Ear-2 (Nr2f6) is a novel negative regulator of T cell development. Exp Hematol 2013; 42:46-58. [PMID: 24096122 DOI: 10.1016/j.exphem.2013.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/05/2013] [Accepted: 09/23/2013] [Indexed: 01/08/2023]
Abstract
We describe a novel role for the orphan nuclear receptor Ear-2 in regulating T cell development. Retrovirus-mediated overexpression of Ear-2 (EAR-2++) in a bone marrow (BM) transplantation assay resulted in limited T cell development and a greater than tenfold decrease in thymus size and cellularity relative to controls. Ear-2-transduced murine BM hematopoietic stem cells (HSCs) in OP9-DL1 cultures showed a proliferation deficit during days 1-5 after induction of differentiation, which corresponded to increased expression of the cell cycle regulators p21 (cdkn1a) and p27 (cdkn1b), as well as increased expression of Hes1, Notch3, Egr1, and Scl (Tal1) and decreased expression of Gli1, Gfi-1, HoxA9, PU.1, Nrarp, and Tcf1. In addition, there was a block in differentiation at the DN4 to double-positive (DP) transition accompanied by an increase in apoptosis, similar to the deficit seen in the RORγt null mouse. Gene expression profiling revealed that, like the RORγt-deficient mouse, EAR-2++ DP cells had decreased expression of BclXL and increased expression of the proapoptosis gene Bad. In addition, EAR-2++ DP cells had decreased expression of Bcl11b, PU.1, and HoxA9, and increased expression of Id2. Based on these findings, we conclude that EAR-2++ cells were able to migrate to, but not fully repopulate, the thymus because of a cell-intrinsic defect in the proliferation of DN1 cells followed by a block in differentiation from the DN4 to DP stage of T cell development. We conclude that Ear-2 is a novel negative regulator of T-cell development and that downregulation of Ear-2 is indispensable for the proliferation of DN1 cells and the survival of DN4-DP cells.
Collapse
Affiliation(s)
- Christine V Ichim
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, Canada; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Džana D Dervović
- Biological Sciences, Sunnybrook Research Institute, Toronto, Canada; Department of Immunology, University of Toronto, Toronto, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Biological Sciences, Sunnybrook Research Institute, Toronto, Canada; Department of Immunology, University of Toronto, Toronto, Canada
| | - Richard A Wells
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, Canada; Department of Medicine, University of Toronto, Toronto, Canada; Department of Medical Oncology, Myelodysplastic Syndromes Program, Toronto Sunnybrook Regional Cancer Centre, Toronto, Canada.
| |
Collapse
|
45
|
Aryl hydrocarbon receptor-mediated induction of the microRNA-132/212 cluster promotes interleukin-17-producing T-helper cell differentiation. Proc Natl Acad Sci U S A 2013; 110:11964-9. [PMID: 23818645 DOI: 10.1073/pnas.1311087110] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) plays critical roles in various autoimmune diseases such as multiple sclerosis by controlling interleukin-17 (IL-17)-producing T-helper (TH17) and regulatory T cells. Although various transcription factors and cytokines have been identified as key participants in TH17 generation, the role of microRNAs in this process is poorly understood. In this study, we found that expression of the microRNA (miR)-132/212 cluster is up-regulated by AHR activation under TH17-inducing, but not regulatory T-inducing conditions. Deficiency of the miR-132/212 cluster prevented the enhancement of TH17 differentiation by AHR activation. We also identified B-cell lymphoma 6, a negative regulator of TH17 differentiation, as a potential target of the miR-212. Finally, we investigated the roles of the miR-132/212 cluster in experimental autoimmune encephalomyelitis, a murine model of multiple sclerosis. Mice deficient in the miR-132/212 cluster exhibited significantly higher resistance to the development of experimental autoimmune encephalomyelitis and lower frequencies of both TH1 and TH17 cells in draining lymph nodes. Our findings reveal a unique mechanism of AHR-dependent TH17 differentiation that depends on the miR-132/212 cluster.
Collapse
|
46
|
Kurebayashi Y, Nagai S, Ikejiri A, Koyasu S. Recent advances in understanding the molecular mechanisms of the development and function of Th17 cells. Genes Cells 2013; 18:247-65. [PMID: 23383714 PMCID: PMC3657121 DOI: 10.1111/gtc.12039] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/26/2012] [Indexed: 12/13/2022]
Abstract
IL-17-producing T helper (Th17) cells comprise a distinct Th subset involved in epithelial cell- and neutrophil-mediated immune responses against extracellular microbes. At the same time, Th17 cells play significant roles in the development of autoimmune diseases including rheumatoid arthritis and multiple sclerosis. Since the identification of Th17 cells approximately a decade ago, the molecular mechanisms of their differentiation have been intensively studied and a number of signaling cascades and transcription factors have been shown to be involved. Here, we review the current knowledge regarding the function of Th17 cells in vivo as well as several key concepts for the molecular mechanisms of Th17 differentiation. We also discuss the emerging roles of phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin complex 1 (mTORC1) and hypoxia-inducible factor 1 (HIF-1) in the differentiation of Th17 cells.
Collapse
Affiliation(s)
- Yutaka Kurebayashi
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | | | | | | |
Collapse
|
47
|
The kinase PKCα selectively upregulates interleukin-17A during Th17 cell immune responses. Immunity 2013; 38:41-52. [PMID: 23290522 PMCID: PMC3556779 DOI: 10.1016/j.immuni.2012.09.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 09/27/2012] [Indexed: 12/14/2022]
Abstract
Transforming growth-factor β (TGFβ) has been implicated in T helper 17 (Th17) cell biology and in triggering expression of interleukin-17A (IL-17A), which is a key Th17 cell cytokine. Deregulated TGFβ receptor (TGFβR) signaling has been implicated in Th17-cell-mediated autoimmune pathogenesis. Nevertheless, the full molecular mechanisms involved in the activation of the TGFβR pathway in driving IL-17A expression remain unknown. Here, we identified protein kinase C α (PKCα) as a signaling intermediate specific to the Th17 cell subset in the activation of TGFβRI. We have shown that PKCα physically interacts and functionally cooperates with TGFβRI to promote robust SMAD2-3 activation. Furthermore, PKCα-deficient (Prkca−/−) cells demonstrated a defect in SMAD-dependent IL-2 suppression, as well as decreased STAT3 DNA binding within the Il17a promoter. Consistently, Prkca−/− cells failed to mount appropriate IL-17A, but not IL-17F, responses in vitro and were resistant to induction of Th17-cell-dependent experimental autoimmune encephalomyelitis in vivo.
Collapse
|
48
|
Coquet JM, Middendorp S, van der Horst G, Kind J, Veraar EAM, Xiao Y, Jacobs H, Borst J. The CD27 and CD70 costimulatory pathway inhibits effector function of T helper 17 cells and attenuates associated autoimmunity. Immunity 2012; 38:53-65. [PMID: 23159439 DOI: 10.1016/j.immuni.2012.09.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/15/2012] [Accepted: 09/28/2012] [Indexed: 10/27/2022]
Abstract
T helper 17 (Th17) cells protect against infection but also promote inflammation and autoimmunity. Therefore, the factors that govern Th17 cell differentiation are of special interest. The CD27 and CD70 costimulatory pathway impeded Th17 effector cell differentiation and associated autoimmunity in a mouse model of multiple sclerosis. CD27 or CD70 deficiency exacerbated disease, whereas constitutive CD27 signaling strongly reduced disease incidence and severity. CD27 signaling did not impact master regulators of T helper cell lineage commitment but selectively repressed transcription of the key effector molecules interleukin-17 (IL-17) and the chemokine receptor CCR6 in differentiating Th17 cells. CD27 mediated this repression at least in part via the c-Jun N-terminal kinase (JNK) pathway that restrained IL-17 and CCR6 expression in differentiating Th17 cells. CD27 signaling also resulted in epigenetic silencing of the Il17a gene. Thus, CD27 costimulation via JNK signaling, transcriptional, and epigenetic effects suppresses Th17 effector cell function and associated pathological consequences.
Collapse
Affiliation(s)
- Jonathan M Coquet
- Division of Immunology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, 1066 CX Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
T cell receptor/CARMA1/NF-κB signaling controls T-helper (Th) 17 differentiation. Proc Natl Acad Sci U S A 2012; 109:18529-34. [PMID: 23091043 DOI: 10.1073/pnas.1204557109] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
IL-17-producing CD4 T cells play a key role in immune responses against extracellular bacteria and autoimmunity. Nuclear factor κB (NF-κB) is required for T-cell activation and selected effector functions, but its role in Th17 differentiation is controversial. Using genetic mouse models that impede T-cell-NF-κB signaling either downstream of the T-cell receptor (TCR) or of IκB kinase β (IKKβ), we demonstrate that NF-κB signaling controls not only survival and proliferation of activated T cells, but, if cell survival and cell-cycle progression are enabled, has an additional role in promoting completion of Th17 differentiation. CARD-containing MAGUK protein 1 (CARMA1), an adapter required for TCR/NF-κB signaling, was necessary for acquisition of IL-17A, IL-17F, IL-21, IL-22, IL-23R, and CCR6 expression in T cells cultured under Th17 conditions. In proliferating cells, lack of CARMA1 selectively prevented Th17, but not Th1 or Th2 differentiation, in a cell-intrinsic manner. Consistent with these data, CARMA1-KO mice were resistant to experimental autoimmune encephalomyelitis. Surprisingly, transcription factors essential for Th17 differentiation such as RORγt, AHR, and IRF4 were normally induced in CARMA1-KO T cells activated under Th17 conditions, suggesting that the Th17 differentiation program was initiated normally. Instead, chromatin loci of Th17 effector molecules failed to acquire an open conformation in CARMA1-KO T cells. Our results demonstrate that TCR/CARMA1/NF-κB controls completion of Th17 differentiation by enabling chromatin accessibility of Th17 effector molecule loci.
Collapse
|
50
|
Hermann-Kleiter N, Meisel M, Fresser F, Thuille N, Müller M, Roth L, Katopodis A, Baier G. Nuclear orphan receptor NR2F6 directly antagonizes NFAT and RORγt binding to the Il17a promoter. J Autoimmun 2012; 39:428-40. [PMID: 22921335 PMCID: PMC3516707 DOI: 10.1016/j.jaut.2012.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/19/2012] [Accepted: 07/19/2012] [Indexed: 12/20/2022]
Abstract
Interleukin-17A (IL-17A) is the signature cytokine produced by Th17 CD4(+) T cells and has been tightly linked to autoimmune pathogenesis. In particular, the transcription factors NFAT and RORγt are known to activate Il17a transcription, although the detailed mechanism of action remains incompletely understood. Here, we show that the nuclear orphan receptor NR2F6 can attenuate the capacity of NFAT to bind to critical regions of the Il17a gene promoter. In addition, because NR2F6 binds to defined hormone response elements (HREs) within the Il17a locus, it interferes with the ability of RORγt to access the DNA. Consistently, NFAT and RORγt binding within the Il17a locus were enhanced in Nr2f6-deficient CD4(+) Th17 cells but decreased in Nr2f6-overexpressing transgenic CD4(+) Th17 cells. Taken together, our findings uncover an example of antagonistic regulation of Il17a transcription through the direct reciprocal actions of NR2F6 versus NFAT and RORγt.
Collapse
Affiliation(s)
- Natascha Hermann-Kleiter
- Department for Pharmacology and Genetics, Medical University Innsbruck, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | |
Collapse
|