1
|
Moon CY, Belabed M, Park MD, Mattiuz R, Puleston D, Merad M. Dendritic cell maturation in cancer. Nat Rev Cancer 2025; 25:225-248. [PMID: 39920276 PMCID: PMC11954679 DOI: 10.1038/s41568-024-00787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 02/09/2025]
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that are present at low abundance in the circulation and tissues; they serve as crucial immune sentinels by continually sampling their environment, migrating to secondary lymphoid organs and shaping adaptive immune responses through antigen presentation. Owing to their ability to orchestrate tolerogenic or immunogenic responses to a specific antigen, DCs have a pivotal role in antitumour immunity and the response to immune checkpoint blockade and other immunotherapeutic approaches. The multifaceted functions of DCs are acquired through a complex, multistage process called maturation. Although the role of inflammatory triggers in driving DC maturation was established decades ago, less is known about DC maturation in non-inflammatory contexts, such as during homeostasis and in cancer. The advent of single-cell technologies has enabled an unbiased, high-dimensional characterization of various DC states, including mature DCs. This approach has clarified the molecular programmes associated with DC maturation and also revealed how cancers exploit these pathways to subvert immune surveillance. In this Review, we discuss the mechanisms by which cancer disrupts DC maturation and highlight emerging therapeutic opportunities to modulate DC states. These insights could inform the development of DC-centric immunotherapies, expanding the arsenal of strategies to enhance antitumour immunity.
Collapse
Affiliation(s)
- Chang Yoon Moon
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meriem Belabed
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D Park
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raphaël Mattiuz
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Puleston
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Gopal Krishnan PD, Lee WX, Goh KY, Choy SM, Turqueza LRR, Lim ZH, Tang HW. Transcriptional regulation of autophagy in skeletal muscle stem cells. Dis Model Mech 2025; 18:DMM052007. [PMID: 39925192 PMCID: PMC11849978 DOI: 10.1242/dmm.052007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Muscle stem cells (MuSCs) are essential for the regenerative capabilities of skeletal muscles. MuSCs are maintained in a quiescent state, but, when activated, can undergo proliferation and differentiation into myocytes, which fuse and mature to generate muscle fibers. The maintenance of MuSC quiescence and MuSC activation are processes that are tightly regulated by autophagy, a conserved degradation system that removes unessential or dysfunctional cellular components via lysosomes. Both the upregulation and downregulation of autophagy have been linked to impaired muscle regeneration, causing myopathies such as cancer cachexia, sarcopenia and Duchenne muscular dystrophy. In this Review, we highlight the importance of autophagy in regulating MuSC activity during muscle regeneration. Additionally, we summarize recent studies that link the transcriptional dysregulation of autophagy to muscle atrophy, emphasizing the dominant roles that transcription factors play in myogenic programs. Deciphering and understanding the roles of these transcription factors in the regulation of autophagy during myogenesis could advance the development of regenerative medicine.
Collapse
Affiliation(s)
- Priya D. Gopal Krishnan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wen Xing Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Kah Yong Goh
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Sze Mun Choy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | | | - Zhuo Han Lim
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Hong-Wen Tang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| |
Collapse
|
3
|
Liu AR, Sarkar N, Cress JD, de Jesus TJ, Vadlakonda A, Centore JT, Griffith AD, Rohr B, McCormick TS, Cooper KD, Ramakrishnan P. NF-κB c-Rel is a critical regulator of TLR7-induced inflammation in psoriasis. EBioMedicine 2024; 110:105452. [PMID: 39586195 PMCID: PMC11625363 DOI: 10.1016/j.ebiom.2024.105452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/28/2024] [Accepted: 10/30/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Nuclear factor kappa B (NF-κB) c-Rel is a psoriasis susceptibility locus, however mechanisms underlying c-Rel transactivation during disease are poorly understood. Inflammation in psoriasis can be triggered following Toll-like Receptor 7 (TLR7) signalling in dendritic cells (DCs), and c-Rel is a critical regulator of DC function. Here, we studied the mechanism of TLR7-induced c-Rel-mediated inflammation in DCs. METHODS The overall expression of c-Rel was analysed in skin sections from patients with psoriasis in human transcriptomics datasets as well as the imiquimod-induced psoriasis mouse model. The function of c-Rel in DCs following TLR7 stimulation was determined by c-Rel CRISPR/Cas9 knockout DC2.4 immortalised cells and primary bone marrow derived dendritic cells from c-Rel knockout C57BL6/J mice. FINDINGS c-Rel is highly expressed in lesional skin of patients with psoriasis and TLR7-induced psoriatic lesions in mice. c-Rel deficiency protected mice from the disease, and specifically compromised TLR7-induced, and not TLR9- or TLR3-induced, inflammation in dendritic cells. Mechanistically, c-Rel deficiency disrupted activating NF-κB dimers and allowed binding of inhibitory NF-κB homodimers to the IL-1β and IL-6 promoters thus inhibiting their expression. This functionally compromises the ability of c-Rel deficient DCs to induce Th17 polarisation, which is critical in psoriasis pathogenesis. INTERPRETATION Our findings reveal that c-Rel is a key regulator of TLR7-mediated dendritic cell-dependent inflammation, and that targeting c-Rel-dependent signalling could prove an effective strategy to dampen excessive inflammation in TLR7-related skin inflammation. FUNDING A complete list of funding sources that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Angela Rose Liu
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA
| | - Nandini Sarkar
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA
| | - Jordan D Cress
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA
| | - Tristan J de Jesus
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA
| | - Ananya Vadlakonda
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA
| | - Joshua T Centore
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA
| | - Alexis D Griffith
- Department of Dermatology, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, USA
| | - Bethany Rohr
- Department of Dermatology, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, USA; University Hospitals-Cleveland Medical Center, 11100 Euclid Ave, Cleveland, Ohio 44106, USA
| | - Thomas S McCormick
- Department of Dermatology, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, USA; University Hospitals-Cleveland Medical Center, 11100 Euclid Ave, Cleveland, Ohio 44106, USA
| | - Kevin D Cooper
- Department of Dermatology, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, USA; University Hospitals-Cleveland Medical Center, 11100 Euclid Ave, Cleveland, Ohio 44106, USA
| | - Parameswaran Ramakrishnan
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA; The Case Comprehensive Cancer Center, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA; Department of Biochemistry, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, USA; University Hospitals-Cleveland Medical Center, 11100 Euclid Ave, Cleveland, Ohio 44106, USA; Louis Stokes Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, Ohio 44106, USA.
| |
Collapse
|
4
|
Rodriguez BN, Huang H, Chia JJ, Hoffmann A. The noncanonical NFκB pathway: Regulatory mechanisms in health and disease. WIREs Mech Dis 2024; 16:e1646. [PMID: 38634218 PMCID: PMC11486840 DOI: 10.1002/wsbm.1646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
The noncanonical NFκB signaling pathway mediates the biological functions of diverse cell survival, growth, maturation, and differentiation factors that are important for the development and maintenance of hematopoietic cells and immune organs. Its dysregulation is associated with a number of immune pathologies and malignancies. Originally described as the signaling pathway that controls the NFκB family member RelB, we now know that noncanonical signaling also controls NFκB RelA and cRel. Here, we aim to clarify our understanding of the molecular network that mediates noncanonical NFκB signaling and review the human diseases that result from a deficient or hyper-active noncanonical NFκB pathway. It turns out that dysregulation of RelA and cRel, not RelB, is often implicated in mediating the resulting pathology. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Cancer > Molecular and Cellular Physiology Immune System Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Benancio N. Rodriguez
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, CA; Molecular Biology Institute, Los Angeles, CA
| | - Helen Huang
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, CA; Institute for Quantitative and Computational Biosciences, Los Angeles, CA
| | - Jennifer J. Chia
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, CA; Molecular Biology Institute, Los Angeles, Calif; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics; Molecular Biology Institute; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA
| |
Collapse
|
5
|
Wang C, Liu X, Ren Z, Du X, Li N, Song X, Wu W, Qu L, Zhu H, Hua J. The Goat Cytotoxic T Lymphocyte-Associated Antigen-4 Gene: mRNA Expression and Association Analysis of Insertion/Deletion Variants with the Risk of Brucellosis. Int J Mol Sci 2024; 25:10948. [PMID: 39456732 PMCID: PMC11506940 DOI: 10.3390/ijms252010948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The cytotoxic T lymphocyte-associated antigen-4 (CTLA4) gene, a member of the immunoglobulin superfamily, is crucial for maintaining immune homeostasis and preventing autoimmune diseases. Studies have shown that polymorphisms in the CTLA4 gene are linked to an increased risk of brucellosis in humans, but its association with brucellosis in goats remains unexplored. In this study, the tissue expression profile of CTLA4 in goats was investigated, and the correlation between InDel polymorphisms in the CTLA4 gene and susceptibility to brucellosis in goats was examined. The findings reveal the widespread expression of CTLA4 in goat tissues, particularly in the spleen and testes. The tested goat populations presented genotypes insertion/insertion (II), insertion/deletion (ID), and deletion/deletion (DD) at both the P1 and P2 loci, and an association analysis revealed significant differences in the distribution of genotypes and allele frequencies at the P1 and P2 loci of the CTLA4 gene between the Brucella goat case and the control groups (p < 0.05). Specifically, compared with the II genotype, the P1 and P2 loci were significantly associated with an elevated risk of brucellosis development in goats under both the codominant (ID/II) and dominant (ID + DD/II) models (P1, p = 0.042, p = 0.016; P2, p = 0.011, p = 0.014). Additionally, haplotype analysis indicated that haplotypes IP1DP2, DP1IP2, and DP1DP2 were significantly associated with an increased risk of brucellosis in goats compared to the reference haplotype IP1IP2 (p = 0.029, p = 0.012, p = 0.034). Importantly, the Lipopolysaccharide (LPS) stimulation of peripheral blood monocytes and/or macrophages from goats with the II, ID, and DD genotypes resulted in increased CTLA4 expression levels in the II genotype, leading to a robust LPS-induced inflammatory response. Through bioinformatic analysis, the observed effect of the InDel locus on Brucella pathogenesis risk in goats could be attributed to the differential binding of the transcription factors nuclear factor kappaB (NF-κB) and CCAAT/enhancer-binding protein α (C/EBPα). These findings offer potential insights for breeding strategies against brucellosis.
Collapse
Affiliation(s)
- Congliang Wang
- Shaanxi Centre of Stem Cells Engineering & Technology, College of Veterinary Medicine, Northwest Agriculture & Forestry University, Xianyang 712100, China; (C.W.); (N.L.)
| | - Xiaoyu Liu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Life Science Research Center, Yulin University, Yulin 719000, China; (X.L.); (Z.R.); (X.S.); (L.Q.)
| | - Zhaofei Ren
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Life Science Research Center, Yulin University, Yulin 719000, China; (X.L.); (Z.R.); (X.S.); (L.Q.)
| | - Xiaomin Du
- Key Laboratory of Livestock Biology, Northwest Agriculture & Forestry University, Xianyang 712100, China;
| | - Na Li
- Shaanxi Centre of Stem Cells Engineering & Technology, College of Veterinary Medicine, Northwest Agriculture & Forestry University, Xianyang 712100, China; (C.W.); (N.L.)
- Key Laboratory of Livestock Biology, Northwest Agriculture & Forestry University, Xianyang 712100, China;
| | - Xiaoyue Song
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Life Science Research Center, Yulin University, Yulin 719000, China; (X.L.); (Z.R.); (X.S.); (L.Q.)
| | - Weiwei Wu
- Institute of Animal Science, Xinjiang Academy of Animal Husbandry Sciences, Urumqi 830000, China;
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Life Science Research Center, Yulin University, Yulin 719000, China; (X.L.); (Z.R.); (X.S.); (L.Q.)
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Life Science Research Center, Yulin University, Yulin 719000, China; (X.L.); (Z.R.); (X.S.); (L.Q.)
| | - Jinlian Hua
- Shaanxi Centre of Stem Cells Engineering & Technology, College of Veterinary Medicine, Northwest Agriculture & Forestry University, Xianyang 712100, China; (C.W.); (N.L.)
- Key Laboratory of Livestock Biology, Northwest Agriculture & Forestry University, Xianyang 712100, China;
| |
Collapse
|
6
|
Kerschbaum-Gruber S, Kleinwächter A, Popova K, Kneringer A, Appel LM, Stasny K, Röhrer A, Dias AB, Benedum J, Walch L, Postl A, Barna S, Kratzer B, Pickl WF, Akalin A, Horvat F, Franke V, Widder J, Georg D, Slade D. Cytosolic nucleic acid sensors and interferon beta-1 activation drive radiation-induced anti-tumour immune effects in human pancreatic cancer cells. Front Immunol 2024; 15:1286942. [PMID: 39372406 PMCID: PMC11449851 DOI: 10.3389/fimmu.2024.1286942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 08/05/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) remains a leading cause of cancer-related deaths worldwide with limited treatment options due to extensive radiation and chemotherapy resistance. Monotherapy with immune checkpoint blockade showed no survival benefit. A combination of immunomodulation and radiotherapy may offer new treatment strategies, as demonstrated for non-small cell lung cancer. Radiation-induced anti-tumour immunity is mediated through cytosolic nucleic acid sensing pathways that drive the expression of interferon beta-1 (IFNB1) and proinflammatory cytokines. Methods Human PDAC cell lines (PANC-1, MIA PaCa-2, BxPC-3) were treated with X-rays and protons. Immunogenic cell death was measured based on HMGB1 release. Cytosolic dsDNA and dsRNA were analysed by immunofluorescence microscopy. Cell cycle progression, MHC-I and PD-L1 expression were determined by flow cytometry. Galectin-1 and IFNB1 were measured by ELISA. The expression levels and the phosphorylation status of the cGAS/STING and RIG-I/MAVS signalling pathways were analysed by western blotting, the expression of IFNB1 and proinflammatory cytokines was determined by RT-qPCR and genome-wide by RNA-seq. CRISPR-Cas9 knock-outs and inhibitors were used to elucidate the relevance of STING, MAVS and NF-κB for radiation-induced IFNB1 activation. Results We demonstrate that a clinically relevant X-ray hypofractionation regimen (3x8 Gy) induces immunogenic cell death and activates IFNB1 and proinflammatory cytokines. Fractionated radiation induces G2/M arrest and accumulation of cytosolic DNA in PDAC cells, which partly originates from mitochondria. RNA-seq analysis shows a global upregulation of type I interferon response and NF-κB signalling in PDAC cells following 3x8 Gy. Radiation-induced immunogenic response is regulated by STING, MAVS and NF-κB. In addition to immunostimulation, radiation also induces immunosuppressive galectin-1. No significant changes in MHC-I or PD-L1 expression were observed. Moreover, PDAC cell lines show similar radiation-induced immune effects when exposed to single-dose protons or photons. Conclusion Our findings provide a rationale for combinatorial radiation-immunomodulatory treatment approaches in PDAC using conventional photon-based or proton beam radiotherapy.
Collapse
Affiliation(s)
- Sylvia Kerschbaum-Gruber
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Ava Kleinwächter
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Katerina Popova
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Alexandra Kneringer
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Lisa-Marie Appel
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | | | - Anna Röhrer
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Ana Beatriz Dias
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Johannes Benedum
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Lena Walch
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Andreas Postl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Sandra Barna
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Bernhard Kratzer
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F. Pickl
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Altuna Akalin
- Max Delbrück Center, The Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Filip Horvat
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Vedran Franke
- Max Delbrück Center, The Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Joachim Widder
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dea Slade
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Deka A, Kumar N, Basu S, Chawla M, Bhattacharya N, Ali SA, Bhawna, Madan U, Kumar S, Das B, Sengupta D, Awasthi A, Basak S. Non-canonical NF-κB signaling limits the tolerogenic β-catenin-Raldh2 axis in gut dendritic cells to exacerbate intestinal pathologies. EMBO J 2024; 43:3895-3915. [PMID: 39060515 PMCID: PMC11405688 DOI: 10.1038/s44318-024-00182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Dendritic cell (DC) dysfunction is known to exacerbate intestinal pathologies, but the mechanisms compromising DC-mediated immune regulation in this context remain unclear. Here, we show that intestinal dendritic cells from a mouse model of experimental colitis exhibit significant levels of noncanonical NF-κB signaling, which activates the RelB:p52 heterodimer. Genetic inactivation of this pathway in DCs alleviates intestinal pathologies in mice suffering from colitis. Deficiency of RelB:p52 diminishes transcription of Axin1, a critical component of the β-catenin destruction complex, reinforcing β-catenin-dependent expression of Raldh2, which imparts tolerogenic DC attributes by promoting retinoic acid synthesis. DC-specific impairment of noncanonical NF-κB signaling leads to increased colonic numbers of Tregs and IgA+ B cells, which promote luminal IgA production and foster eubiosis. Experimentally introduced β-catenin haploinsufficiency in DCs with deficient noncanonical NF-κB signaling moderates Raldh2 activity, reinstating colitogenic sensitivity in mice. Finally, inflammatory bowel-disease patients also display a deleterious noncanonical NF-κB signaling signature in intestinal DCs. In sum, we establish how noncanonical NF-κB signaling in dendritic cells can subvert retinoic acid synthesis to fuel intestinal inflammation.
Collapse
Affiliation(s)
- Alvina Deka
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Naveen Kumar
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Swapnava Basu
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Meenakshi Chawla
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Namrata Bhattacharya
- Indraprastha Institute of Information Technology Delhi, New Delhi, India
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Sk Asif Ali
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Bhawna
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Upasna Madan
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Shakti Kumar
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Bhabatosh Das
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Debarka Sengupta
- Indraprastha Institute of Information Technology Delhi, New Delhi, India
| | - Amit Awasthi
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
8
|
Al-Rawi DH, Lettera E, Li J, DiBona M, Bakhoum SF. Targeting chromosomal instability in patients with cancer. Nat Rev Clin Oncol 2024; 21:645-659. [PMID: 38992122 DOI: 10.1038/s41571-024-00923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and a driver of metastatic dissemination, therapeutic resistance, and immune evasion. CIN is present in 60-80% of human cancers and poses a formidable therapeutic challenge as evidenced by the lack of clinically approved drugs that directly target CIN. This limitation in part reflects a lack of well-defined druggable targets as well as a dearth of tractable biomarkers enabling direct assessment and quantification of CIN in patients with cancer. Over the past decade, however, our understanding of the cellular mechanisms and consequences of CIN has greatly expanded, revealing novel therapeutic strategies for the treatment of chromosomally unstable tumours as well as new methods of assessing the dynamic nature of chromosome segregation errors that define CIN. In this Review, we describe advances that have shaped our understanding of CIN from a translational perspective, highlighting both challenges and opportunities in the development of therapeutic interventions for patients with chromosomally unstable cancers.
Collapse
Affiliation(s)
- Duaa H Al-Rawi
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emanuele Lettera
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melody DiBona
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel F Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
9
|
Vijayakumar P, Mishra A, Deka RP, Pinto SM, Subbannayya Y, Sood R, Prasad TSK, Raut AA. Proteomics Analysis of Duck Lung Tissues in Response to Highly Pathogenic Avian Influenza Virus. Microorganisms 2024; 12:1288. [PMID: 39065055 PMCID: PMC11278641 DOI: 10.3390/microorganisms12071288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 07/28/2024] Open
Abstract
Domestic ducks (Anas platyrhynchos domesticus) are resistant to most of the highly pathogenic avian influenza virus (HPAIV) infections. In this study, we characterized the lung proteome and phosphoproteome of ducks infected with the HPAI H5N1 virus (A/duck/India/02CA10/2011/Agartala) at 12 h, 48 h, and 5 days post-infection. A total of 2082 proteins were differentially expressed and 320 phosphorylation sites mapping to 199 phosphopeptides, corresponding to 129 proteins were identified. The functional annotation of the proteome data analysis revealed the activation of the RIG-I-like receptor and Jak-STAT signaling pathways, which led to the induction of interferon-stimulated gene (ISG) expression. The pathway analysis of the phosphoproteome datasets also confirmed the activation of RIG-I, Jak-STAT signaling, NF-kappa B signaling, and MAPK signaling pathways in the lung tissues. The induction of ISG proteins (STAT1, STAT3, STAT5B, STAT6, IFIT5, and PKR) established a protective anti-viral immune response in duck lung tissue. Further, the protein-protein interaction network analysis identified proteins like AKT1, STAT3, JAK2, RAC1, STAT1, PTPN11, RPS27A, NFKB1, and MAPK1 as the main hub proteins that might play important roles in disease progression in ducks. Together, the functional annotation of the proteome and phosphoproteome datasets revealed the molecular basis of the disease progression and disease resistance mechanism in ducks infected with the HPAI H5N1 virus.
Collapse
Affiliation(s)
- Periyasamy Vijayakumar
- Pathogenomics Laboratory, WOAH Reference Lab for Avian Influenza, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, Madhya Pradesh, India; (P.V.); (A.M.); (R.S.)
- Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Salem 600051, Tamil Nadu, India
| | - Anamika Mishra
- Pathogenomics Laboratory, WOAH Reference Lab for Avian Influenza, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, Madhya Pradesh, India; (P.V.); (A.M.); (R.S.)
| | - Ram Pratim Deka
- International Livestock Research Institute, National Agricultural Science Complex, Pusa 110012, New Delhi, India;
| | - Sneha M. Pinto
- Centre for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India; (S.M.P.); (Y.S.)
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Yashwanth Subbannayya
- Centre for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India; (S.M.P.); (Y.S.)
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Richa Sood
- Pathogenomics Laboratory, WOAH Reference Lab for Avian Influenza, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, Madhya Pradesh, India; (P.V.); (A.M.); (R.S.)
| | | | - Ashwin Ashok Raut
- Pathogenomics Laboratory, WOAH Reference Lab for Avian Influenza, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, Madhya Pradesh, India; (P.V.); (A.M.); (R.S.)
| |
Collapse
|
10
|
Morrison HA, Eden K, Trusiano B, Rothschild DE, Qin Y, Wade PA, Rowe AJ, Mounzer C, Stephens MC, Hanson KM, Brown SL, Holl EK, Allen IC. NF-κB Inducing Kinase Attenuates Colorectal Cancer by Regulating Noncanonical NF-κB Mediated Colonic Epithelial Cell Regeneration. Cell Mol Gastroenterol Hepatol 2024; 18:101356. [PMID: 38750899 PMCID: PMC11278896 DOI: 10.1016/j.jcmgh.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND & AIMS Dysregulated colonic epithelial cell (CEC) proliferation is a critical feature in the development of colorectal cancer. We show that NF-κB-inducing kinase (NIK) attenuates colorectal cancer through coordinating CEC regeneration/differentiation via noncanonical NF-κB signaling that is unique from canonical NF-kB signaling. METHODS Initial studies evaluated crypt morphology/functionality, organoid generation, transcriptome profiles, and the microbiome. Inflammation and inflammation-induced tumorigenesis were initiated in whole-body NIK knockout mice (Nik-/-) and conditional-knockout mice following administration of azoxymethane and dextran sulfate sodium. RESULTS Human transcriptomic data revealed dysregulated noncanonical NF-kB signaling. In vitro studies evaluating Nik-/- crypts and organoids derived from mature, nondividing CECs, and colonic stem cells exhibited increased accumulation and stunted growth, respectively. Transcriptomic analysis of Nik-/- cells revealed gene expression signatures associated with altered differentiation-regeneration. When assessed in vivo, Nik-/- mice exhibited more severe colitis with dextran sulfate sodium administration and an altered microbiome characterized by increased colitogenic microbiota. In the inflammation-induced tumorigenesis model, we observed both increased tumor burdens and inflammation in mice where NIK is knocked out in CECs (NikΔCEC). Interestingly, this was not recapitulated when NIK was conditionally knocked out in myeloid cells (NikΔMYE). Surprisingly, conditional knockout of the canonical pathway in myeloid cells (RelAΔMYE) revealed decreased tumor burden and inflammation and no significant changes when conditionally knocked out in CECs (RelAΔCEC). CONCLUSIONS Dysregulated noncanonical NF-κB signaling is associated with the development of colorectal cancer in a tissue-dependent manner and defines a critical role for NIK in regulating gastrointestinal inflammation and regeneration associated with colorectal cancer.
Collapse
Affiliation(s)
- Holly A Morrison
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg, Virginia
| | - Kristin Eden
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg, Virginia; Virginia Tech, Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| | - Brie Trusiano
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg, Virginia
| | - Daniel E Rothschild
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg, Virginia
| | - Yufeng Qin
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Paul A Wade
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Audrey J Rowe
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg, Virginia
| | - Christina Mounzer
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg, Virginia
| | - Morgan C Stephens
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg, Virginia
| | - Katherine M Hanson
- Via College of Osteopathic Medicine, Department of Cell Biology and Physiology, Spartanburg, South Carolina
| | - Stephan L Brown
- Via College of Osteopathic Medicine, Department of Cell Biology and Physiology, Spartanburg, South Carolina
| | - Eda K Holl
- Duke University, Department of Surgery, Durham, North Carolina
| | - Irving C Allen
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg, Virginia; Virginia Tech, Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, Virginia; Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia.
| |
Collapse
|
11
|
Wu W, Arunagiri V, Do-Umehara HC, Chen C, Gu S, Biswas I, Ridge KM, Budinger GRS, Liu S, Liu J. Miz1 represses type I interferon production and limits viral clearance during influenza A virus infection. Sci Signal 2024; 17:eadg7867. [PMID: 38593156 PMCID: PMC11182629 DOI: 10.1126/scisignal.adg7867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Type I interferons (IFNs) are critical for the antiviral immune response, and fine-tuning type I IFN production is critical to effectively clearing viruses without causing harmful immunopathology. We showed that the transcription factor Miz1 epigenetically repressed the expression of genes encoding type I IFNs in mouse lung epithelial cells by recruiting histone deacetylase 1 (HDAC1) to the promoters of Ifna and Ifnb. Loss of function of Miz1 resulted in augmented production of these type I IFNs during influenza A virus (IAV) infection, leading to improved viral clearance in vitro and in vivo. IAV infection induced Miz1 accumulation by promoting the cullin-4B (CUL4B)-mediated ubiquitylation and degradation of the E3 ubiquitin ligase Mule (Mcl-1 ubiquitin ligase E3; also known as Huwe1 or Arf-BP1), which targets Miz1 for degradation. As a result, Miz1 accumulation limited type I IFN production and favored viral replication. This study reveals a previously unrecognized function of Miz1 in regulating antiviral defense and a potential mechanism for influenza viruses to evade host immune defense.
Collapse
Affiliation(s)
- Wenjiao Wu
- Department of Surgery, College of Medicine; Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Department of Pharmacy, Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou, 510317, Guangdong, China
| | - Vinothini Arunagiri
- Department of Surgery, College of Medicine; Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hanh Chi Do-Umehara
- Department of Surgery, College of Medicine; Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Cong Chen
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shuyin Gu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Indrani Biswas
- Department of Surgery, College of Medicine; Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Karen M. Ridge
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - G. R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510515, China
| | - Jing Liu
- Department of Surgery, College of Medicine; Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
12
|
Aghasadeghi MR, Zaheri Birgani MA, Jamalimoghadamsiyahkali S, Hosamirudsari H, Moradi A, Jafari-Sabet M, Sadigh N, Rahimi P, Tavakoli R, Hamidi-Fard M, Bahramali G, Parmoon Z, Arjmand Hashjin S, Mirzajani G, Kouhkheil R, Roshangaran S, Khalaf S, Khademi Nadoushan M, Gholamiyan Yousef Abad G, Shahryarpour N, Izadi M, Zendedel A, Jahanfar S, Dadras O, SeyedAlinaghi S, Hackett D. Effect of high-dose Spirulina supplementation on hospitalized adults with COVID-19: a randomized controlled trial. Front Immunol 2024; 15:1332425. [PMID: 38655258 PMCID: PMC11036872 DOI: 10.3389/fimmu.2024.1332425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Objective Spirulina (arthrospira platensis) is a cyanobacterium proven to have anti-inflammatory, antiviral, and antioxidant effects. However, the effect of high-dose Spirulina supplementation on hospitalized adults with COVID-19 is currently unclear. This study aimed to evaluate the efficacy and safety of high-dose Spirulina platensis for SARS-CoV-2 infection. Study Design We conducted a randomized, controlled, open-label trial involving 189 patients with COVID-19 who were randomly assigned in a 1:1 ratio to an experimental group that received 15.2g of Spirulina supplement plus standard treatment (44 non-intensive care unit (non-ICU) and 47 ICU), or to a control group that received standard treatment alone (46 non-ICU and 52 ICU). The study was conducted over six days. Immune mediators were monitored on days 1, 3, 5, and 7. The primary outcome of this study was mortality or hospital discharge within seven days, while the overall discharge or mortality was considered the secondary outcome. Results Within seven days, there were no deaths in the Spirulina group, while 15 deaths (15.3%) occurred in the control group. Moreover, within seven days, there was a greater number of patients discharged in the Spirulina group (97.7%) in non-ICU compared to the control group (39.1%) (HR, 6.52; 95% CI, 3.50 to 12.17). Overall mortality was higher in the control group (8.7% non-ICU, 28.8% ICU) compared to the Spirulina group (non-ICU HR, 0.13; 95% CI, 0.02 to 0.97; ICU, HR, 0.16; 95% CI, 0.05 to 0.48). In non-ICU, patients who received Spirulina showed a significant reduction in the levels of IL-6, TNF-α, IL-10, and IP-10 as intervention time increased. Furthermore, in ICU, patients who received Spirulina showed a significant decrease in the levels of MIP-1α and IL-6. IFN-γ levels were significantly higher in the intervention group in both ICU and non-ICU subgroups as intervention time increased. No side effects related to Spirulina supplements were observed during the trial. Conclusion High-dose Spirulina supplements coupled with the standard treatment of COVID-19 may improve recovery and remarkably reduce mortality in hospitalized patients with COVID-19. Clinical Trial Registration https://irct.ir/trial/54375, Iranian Registry of Clinical Trials number (IRCT20210216050373N1).
Collapse
Affiliation(s)
- Mohammad Reza Aghasadeghi
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, Iran
- Viral Vaccine Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Ali Zaheri Birgani
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, Iran
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hadiseh Hosamirudsari
- Department of Infectious Disease, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Moradi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nooshin Sadigh
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooneh Rahimi
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, Iran
- Viral Vaccine Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Rezvan Tavakoli
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, Iran
- Viral Vaccine Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mojtaba Hamidi-Fard
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, Iran
- Viral Vaccine Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Golnaz Bahramali
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, Iran
- Viral Vaccine Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Zohal Parmoon
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ghasem Mirzajani
- Laboratory Department, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Kouhkheil
- Emergency Department, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Roshangaran
- Intensive Care Unit, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Samineh Khalaf
- Intensive Care Unit, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Khademi Nadoushan
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Gholamiyan Yousef Abad
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Shahryarpour
- Emergency Department, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Izadi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Zendedel
- Department of Internal Medicine, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Family Medicine Department, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayesteh Jahanfar
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, United States
| | - Omid Dadras
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - SeyedAhmad SeyedAlinaghi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Daniel Hackett
- Physical Activity, Lifestyle, Ageing and Wellbeing Faculty Research Group, School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Tan W, Zhang J, Dai F, Yang D, Gu R, Tang L, Liu H, Cheng YX. Insights on the NF-κB system in polycystic ovary syndrome, attractive therapeutic targets. Mol Cell Biochem 2024; 479:467-486. [PMID: 37097332 DOI: 10.1007/s11010-023-04736-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/07/2023] [Indexed: 04/26/2023]
Abstract
The nuclear factor κappa B (NF-κB) signaling plays a well-known function in inflammation and regulates a wide variety of biological processes. Low-grade chronic inflammation is gradually considered to be closely related to the pathogenesis of Polycystic ovary syndrome (PCOS). In this review, we provide an overview on the involvement of NF-κB in the progression of PCOS particularly, such as hyperandrogenemia, insulin resistance, cardiovascular diseases, and endometrial dysfunction. From a clinical perspective, progressive recognition of NF-κB pathway provides opportunities for therapeutic interventions aimed at inhibiting pathway-specific mechanisms. With the accumulation of basic experimental and clinical data, NF-κB signaling pathway was recognized as a therapeutic target. Although there have been no specific small molecule NF-κB inhibitors in PCOS, a plethora of natural and synthetic compound have emerged for the pharmacologic intervention of the pathway. The traditional herbs developed for NF-κB pathway have become increasingly popular in recent years. Abundant evidence elucidated that NF-κB inhibitors can significantly improve the symptoms of PCOS. Herein, we summarized evidence relating to how NF-κB pathway is involved in the development and progression of PCOS. Furthermore, we present an in-depth overview of NF-κB inhibitors for therapy interventions of PCOS. Taken together, the NF-κB signaling may be a futuristic treatment strategy for PCOS.
Collapse
Affiliation(s)
- Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Jie Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Ran Gu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Lujia Tang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China.
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
14
|
Giannuzzi D, Capra E, Bisutti V, Vanzin A, Marsan PA, Cecchinato A, Pegolo S. Methylome-wide analysis of milk somatic cells upon subclinical mastitis in dairy cattle. J Dairy Sci 2024; 107:1805-1820. [PMID: 37939836 DOI: 10.3168/jds.2023-23821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
Better understanding of the molecular mechanisms behind bovine mastitis is fundamental for improving the management of this disease, which continues to be of major concern for the dairy industry, especially in its subclinical form. Disease severity and progression depend on numerous aspects, such as livestock genetics, and the interaction between the causative agent, the host, and the environment. In this context, epigenetic mechanisms have proven to have a role in controlling the response of the animal to inflammation. Therefore, in this study we aimed to explore genome-wide DNA methylation of milk somatic cells (SC) in healthy cows (n = 15) and cows affected by naturally occurring subclinical mastitis by Streptococcus agalactiae (n = 12) and Prototheca spp. (n = 11), to better understand the role of SC methylome in the host response to disease. Differentially methylated regions (DMR) were evaluated comparing: (1) Strep. agalactiae-infected versus healthy; (2) Prototheca-infected versus healthy, and (3) mastitis versus healthy and (4) Strep. agalactiae-infected versus Prototheca-infected. The functional analysis was performed at 2 levels. To begin with, we extracted differentially methylated genes (DMG) from promoter DMR, which were analyzed using the Cytoscape ClueGO plug-in. Coupled with this DMG-driven approach, all the genes associated with promoter-methylated regions were fed to the Pathifier algorithm. From the DMR analysis, we identified 1,081 hypermethylated and 361 hypomethylated promoter regions in Strep. agalactiae-infected animals, while 1,514 hypermethylated and 358 hypomethylated promoter regions were identified in Prototheca-infected animals, when compared with the healthy controls. When considering infected animals as a whole group (regardless of the pathogen), we found 1,576 hypermethylated and 460 hypomethylated promoter regions. Both pathogens were associated with methylation differences in genes involved in pathways related to meiosis, reproduction and tissue remodeling. Exploring the whole methylome, in subclinically infected cows we observed a strong deregulation of immune-related pathways, such as nuclear factor kB and toll-like receptors signaling pathways, and of energy-related pathways such as the tricarboxylic acid cycle and unsaturated fatty acid biosynthesis. In conclusion, no evident pathogen-specific SC methylome signature was detected in the present study. Overall, we observed a clear regulation of host immune response driven by DNA methylation upon subclinical mastitis. Further studies on a larger cohort of animals are needed to validate our results and to possibly identify a unique SC methylome that signifies pathogen-specific alterations.
Collapse
Affiliation(s)
- D Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro, Italy
| | - E Capra
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA CNR), 26900, Lodi, Italy
| | - V Bisutti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro, Italy.
| | - A Vanzin
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro, Italy
| | - P Ajmone Marsan
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - A Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro, Italy
| | - S Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro, Italy
| |
Collapse
|
15
|
Zhao M, Wang T, Gleber-Netto FO, Chen Z, McGrail DJ, Gomez JA, Ju W, Gadhikar MA, Ma W, Shen L, Wang Q, Tang X, Pathak S, Raso MG, Burks JK, Lin SY, Wang J, Multani AS, Pickering CR, Chen J, Myers JN, Zhou G. Mutant p53 gains oncogenic functions through a chromosomal instability-induced cytosolic DNA response. Nat Commun 2024; 15:180. [PMID: 38167338 PMCID: PMC10761733 DOI: 10.1038/s41467-023-44239-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Inactivating TP53 mutations leads to a loss of function of p53, but can also often result in oncogenic gain-of-function (GOF) of mutant p53 (mutp53) proteins which promotes tumor development and progression. The GOF activities of TP53 mutations are well documented, but the mechanisms involved remain poorly understood. Here, we study the mutp53 interactome and find that by targeting minichromosome maintenance complex components (MCMs), GOF mutp53 predisposes cells to replication stress and chromosomal instability (CIN), leading to a tumor cell-autonomous and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-dependent cytosolic DNA response that activates downstream non-canonical nuclear factor kappa light chain enhancer of activated B cell (NC-NF-κB) signaling. Consequently, GOF mutp53-MCMs-CIN-cytosolic DNA-cGAS-STING-NC-NF-κB signaling promotes tumor cell metastasis and an immunosuppressive tumor microenvironment through antagonizing interferon signaling and regulating genes associated with pro-tumorigenic inflammation. Our findings have important implications for understanding not only the GOF activities of TP53 mutations but also the genome-guardian role of p53 and its inactivation during tumor development and progression.
Collapse
Affiliation(s)
- Mei Zhao
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tianxiao Wang
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Head and Neck Surgery, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Frederico O Gleber-Netto
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Daniel J McGrail
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, 44195, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Javier A Gomez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wutong Ju
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mayur A Gadhikar
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wencai Ma
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Li Shen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ximing Tang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sen Pathak
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jared K Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Asha S Multani
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Surgery-Otolaryngology, Yale School of Medicine, New Haven, CT, 06250, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Ge Zhou
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Martinez GJ, Appleton M, Kipp ZA, Loria AS, Min B, Hinds TD. Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries. Physiol Rev 2024; 104:473-532. [PMID: 37732829 PMCID: PMC11281820 DOI: 10.1152/physrev.00021.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/07/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRβ). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRβ has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.
Collapse
Affiliation(s)
- Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Malik Appleton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
17
|
Mitra B, Beri NR, Guo R, Burton EM, Murray-Nerger LA, Gewurz BE. Characterization of target gene regulation by the two Epstein-Barr virus oncogene LMP1 domains essential for B-cell transformation. mBio 2023; 14:e0233823. [PMID: 38009935 PMCID: PMC10746160 DOI: 10.1128/mbio.02338-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/09/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Epstein-Barr virus (EBV) causes multiple human cancers, including B-cell lymphomas. In cell culture, EBV converts healthy human B-cells into immortalized ones that grow continuously, which model post-transplant lymphomas. Constitutive signaling from two cytoplasmic tail domains of the EBV oncogene latent membrane protein 1 (LMP1) is required for this transformation, yet there has not been systematic analysis of their host gene targets. We identified that only signaling from the membrane proximal domain is required for survival of these EBV-immortalized cells and that its loss triggers apoptosis. We identified key LMP1 target genes, whose abundance changed significantly with loss of LMP1 signals, or that were instead upregulated in response to switching on signaling by one or both LMP1 domains in an EBV-uninfected human B-cell model. These included major anti-apoptotic factors necessary for EBV-infected B-cell survival. Bioinformatics analyses identified clusters of B-cell genes that respond differently to signaling by either or both domains.
Collapse
Affiliation(s)
- Bidisha Mitra
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nina Rose Beri
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric M. Burton
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura A. Murray-Nerger
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin E. Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Navarro HI, Liu Y, Fraser A, Lefaudeux D, Chia JJ, Vong L, Roifman CM, Hoffmann A. RelB-deficient autoinflammatory pathology presents as interferonopathy, but in mice is interferon-independent. J Allergy Clin Immunol 2023; 152:1261-1272. [PMID: 37460023 PMCID: PMC10858800 DOI: 10.1016/j.jaci.2023.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/19/2023] [Accepted: 06/13/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Autoimmune diseases are leading causes of ill health and morbidity and have diverse etiology. Two signaling pathways are key drivers of autoimmune pathology, interferon and nuclear factor-κB (NF-κB)/RelA, defining the 2 broad labels of interferonopathies and relopathies. Prior work has established that genetic loss of function of the NF-κB subunit RelB leads to autoimmune and inflammatory pathology in mice and humans. OBJECTIVE We sought to characterize RelB-deficient autoimmunity by unbiased profiling of the responses of immune sentinel cells to stimulus and to determine the functional role of dysregulated gene programs in the RelB-deficient pathology. METHODS Transcriptomic profiling was performed on fibroblasts and dendritic cells derived from patients with RelB deficiency and knockout mice, and transcriptomic responses and pathology were assessed in mice deficient in both RelB and the type I interferon receptor. RESULTS We found that loss of RelB in patient-derived fibroblasts and mouse myeloid cells results in elevated induction of hundreds of interferon-stimulated genes. Removing hyperexpression of the interferon-stimulated gene program did not ameliorate the autoimmune pathology of RelB knockout mice. Instead, we found that RelB suppresses a different set of inflammatory response genes in a manner that is independent of interferon signaling but associated with NF-κB binding motifs. CONCLUSION Although transcriptomic profiling would describe RelB-deficient autoimmune disease as an interferonopathy, the genetic evidence indicates that the pathology in mice is interferon-independent.
Collapse
Affiliation(s)
- Héctor I Navarro
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, Calif; Molecular Biology Institute, Los Angeles, Calif
| | - Yi Liu
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, Calif; Molecular Biology Institute, Los Angeles, Calif; DeepKinase Biotechnologies, Ltd, Beijing, China
| | - Anna Fraser
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, Calif; Molecular Biology Institute, Los Angeles, Calif; Institute for Quantitative and Computational Biosciences, Los Angeles, Calif
| | - Diane Lefaudeux
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, Calif; Institute for Quantitative and Computational Biosciences, Los Angeles, Calif
| | - Jennifer J Chia
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, Calif; Molecular Biology Institute, Los Angeles, Calif; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Calif
| | - Linda Vong
- Canadian Centre for Primary Immunodeficiency, Immunogenomic Laboratory, Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Division of Immunology/Allergy, Department of Pediatrics, Hospital for Sick Children, and the University of Toronto, Toronto, Canada
| | - Chaim M Roifman
- Canadian Centre for Primary Immunodeficiency, Immunogenomic Laboratory, Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Division of Immunology/Allergy, Department of Pediatrics, Hospital for Sick Children, and the University of Toronto, Toronto, Canada
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, Calif; Molecular Biology Institute, Los Angeles, Calif; Institute for Quantitative and Computational Biosciences, Los Angeles, Calif.
| |
Collapse
|
19
|
Mitra B, Beri NR, Guo R, Burton EM, Murray-Nerger LA, Gewurz BE. Characterization of Target Gene Regulation by the Two Epstein-Barr Virus Oncogene LMP1 Domains Essential for B-cell Transformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536234. [PMID: 37090591 PMCID: PMC10120669 DOI: 10.1101/2023.04.10.536234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The Epstein-Barr virus (EBV) oncogene latent membrane protein 1 (LMP1) mimics CD40 signaling and is expressed by multiple malignancies. Two LMP1 C-terminal cytoplasmic tail regions, termed transformation essential sites (TES) 1 and 2, are critical for EBV transformation of B lymphocytes into immortalized lymphoblastoid cell lines (LCL). However, TES1 versus TES2 B-cell target genes have remained incompletely characterized, and whether both are required for LCL survival has remained unknown. To define LCL LMP1 target genes, we profiled transcriptome-wide effects of acute LMP1 CRISPR knockout (KO) prior to cell death. To then characterize specific LCL TES1 and TES2 roles, we conditionally expressed wildtype, TES1 null, TES2 null or double TES1/TES2 null LMP1 alleles upon endogenous LMP1 KO. Unexpectedly, TES1 but not TES2 signaling was critical for LCL survival. The LCL dependency factor cFLIP, which plays obligatory roles in blockade of LCL apoptosis, was highly downmodulated by loss of TES1 signaling. To further characterize TES1 vs TES2 roles, we conditionally expressed wildtype, TES1 and/or TES2 null LMP1 alleles in two Burkitt models. Systematic RNAseq analyses revealed gene clusters that responded more strongly to TES1 versus TES2, that respond strongly to both or that are oppositely regulated. Robust TES1 effects on cFLIP induction were again noted. TES1 and 2 effects on expression of additional LCL dependency factors, including BATF and IRF4, and on EBV super-enhancers were identified. Collectively, these studies suggest a model by which LMP1 TES1 and TES2 jointly remodel the B-cell transcriptome and highlight TES1 as a key therapeutic target.
Collapse
Affiliation(s)
- Bidisha Mitra
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nina Rose Beri
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Eric M. Burton
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Laura A. Murray-Nerger
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Benjamin E. Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
20
|
Bisom TC, Smelser H, Lanchy JM, Lodmell JS. Alternative Splicing of RIOK3 Engages the Noncanonical NFκB Pathway during Rift Valley Fever Virus Infection. Viruses 2023; 15:1566. [PMID: 37515252 PMCID: PMC10383813 DOI: 10.3390/v15071566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Although the noncanonical NFκB pathway was originally identified as a cellular pathway contributing to lymphoid organogenesis, in the past 20 years, its involvement in innate immunity has become more appreciated. In particular, the noncanonical NFκB pathway has been found to be activated and even exploited by some RNA viruses during infection. Intriguingly, activation of this pathway has been shown to have a role in disrupting transcription of type 1 interferon (IFN), suggesting a rationale for why this response could be co-opted by some viruses. Rift Valley fever virus (RVFV) is a trisegmented ambisense RNA virus that poses a considerable threat to domestic livestock and human health. Previously, we showed the atypical kinase RIOK3 is important for mounting an IFN response to RVFV infection of human epithelial cells, and shortly following infection with RVFV (MP12 strain), RIOK3 mRNA is alternatively spliced to its X2 isoform that encodes a truncated RIOK3 protein. Alternative splicing of RIOK3 mRNA has an inhibitory effect on the IFN response but also stimulates an NFκB-mediated inflammatory response. Here, we demonstrate alternative splicing of RIOK3 mRNA is associated with activation of the noncanonical NFκB pathway and suggest this pathway is co-opted by RVFV (MP12) to enhance viral success during infection.
Collapse
Affiliation(s)
- Thomas Charles Bisom
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59801, USA; (T.C.B.); (H.S.)
| | - Hope Smelser
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59801, USA; (T.C.B.); (H.S.)
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, MT 59801, USA;
| | - J. Stephen Lodmell
- Division of Biological Sciences, University of Montana, Missoula, MT 59801, USA;
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59801, USA
| |
Collapse
|
21
|
Qu L, Yin T, Zhao Y, Lv W, Liu Z, Chen C, Liu K, Shan S, Zhou R, Li X, Dong H. Histone demethylases in the regulation of immunity and inflammation. Cell Death Discov 2023; 9:188. [PMID: 37353521 DOI: 10.1038/s41420-023-01489-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
Pathogens or danger signals trigger the immune response. Moderate immune response activation removes pathogens and avoids excessive inflammation and tissue damage. Histone demethylases (KDMs) regulate gene expression and play essential roles in numerous physiological processes by removing methyl groups from lysine residues on target proteins. Abnormal expression of KDMs is closely associated with the pathogenesis of various inflammatory diseases such as liver fibrosis, lung injury, and autoimmune diseases. Despite becoming exciting targets for diagnosing and treating these diseases, the role of these enzymes in the regulation of immune and inflammatory response is still unclear. Here, we review the underlying mechanisms through which KDMs regulate immune-related pathways and inflammatory responses. In addition, we also discuss the future applications of KDMs inhibitors in immune and inflammatory diseases.
Collapse
Affiliation(s)
- Lihua Qu
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Tong Yin
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yijin Zhao
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wenting Lv
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ziqi Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Chao Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Kejun Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Shigang Shan
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Rui Zhou
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiaoqing Li
- Biological Targeted Therapy Key Laboratory in Hubei, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Huifen Dong
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China.
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
22
|
Fan J, Li Q, Liang J, Chen Z, Chen L, Lai J, Chen Q. Regulation of IFNβ expression: focusing on the role of its promoter and transcription regulators. Front Microbiol 2023; 14:1158777. [PMID: 37396372 PMCID: PMC10309559 DOI: 10.3389/fmicb.2023.1158777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
IFNβ is a single-copy gene without an intron. Under normal circumstances, it shows low or no expression in cells. It is upregulated only when the body needs it or is stimulated. Stimuli bind to the pattern recognition receptors (PRRs) and pass via various signaling pathways to several basic transcriptional regulators, such as IRFs, NF-кB, and AP-1. Subsequently, the transcriptional regulators enter the nucleus and bind to regulatory elements of the IFNβ promoter. After various modifications, the position of the nucleosome is altered and the complex is assembled to activate the IFNβ expression. However, IFNβ regulation involves a complex network. For the study of immunity and diseases, it is important to understand how transcription factors bind to regulatory elements through specific forms, which elements in cells are involved in regulation, what regulation occurs during the assembly of enhancers and transcription complexes, and the possible regulatory mechanisms after transcription. Thus, this review focuses on the various regulatory mechanisms and elements involved in the activation of IFNβ expression. In addition, we discuss the impact of this regulation in biology.
Collapse
Affiliation(s)
- Jiqiang Fan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Qiumei Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Jiadi Liang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Zhirong Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Linqin Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Junzhong Lai
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| |
Collapse
|
23
|
Thomas K, Tsioulos G, Kotsogianni C, Banos A, Niemela JE, Cheng A, DiMaggio T, Holland S, Rosenzweig SD, Tziolos N, Papadopoulos A, Lionakis MS, Boumpas DT. NF-kappa-B essential modulator (NEMO) gene polymorphism in an adult woman with systemic lupus erythematosus and recurrent non-tuberculous mycobacterial disseminated infections. RMD Open 2023; 9:e003149. [PMID: 37364928 PMCID: PMC10410970 DOI: 10.1136/rmdopen-2023-003149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023] Open
Abstract
Infections are among the most serious complications in patients with systemic lupus erythematosus (SLE), with bacterial and viral infections being the most common. Non-tuberculous mycobacterial (NTM) infections are quite rare and are typically seen in older patients with SLE with longstanding disease duration treated with corticosteroids. Here, we describe a 39-year-old woman with SLE and an unusual pattern of recurrent NTM disseminated infections. After excluding the presence of autoantibodies against interferon-γ, whole exome sequencing revealed a homozygous polymorphism in the NF-kappa-B essential modulator (NEMO) gene. Primary immunodeficiencies should be included in the differential diagnosis of patients with recurrent opportunistic infections, even in those with iatrogenic immunosuppression.
Collapse
Affiliation(s)
- Konstantinos Thomas
- 4th Department of Internal Medicine, University of Athens School of Medicine, Attikon University General Hospital, Chaidari, Attica, Greece
| | - Georgios Tsioulos
- 4th Department of Internal Medicine, University of Athens School of Medicine, Attikon University General Hospital, Chaidari, Attica, Greece
| | - Christina Kotsogianni
- 4th Department of Internal Medicine, University of Athens School of Medicine, Attikon University General Hospital, Chaidari, Attica, Greece
| | - Agellos Banos
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Julie E Niemela
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Aristine Cheng
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tom DiMaggio
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Nikolaos Tziolos
- 4th Department of Internal Medicine, University of Athens School of Medicine, Attikon University General Hospital, Chaidari, Attica, Greece
| | - Antonios Papadopoulos
- 4th Department of Internal Medicine, University of Athens School of Medicine, Attikon University General Hospital, Chaidari, Attica, Greece
| | - Michail S Lionakis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Dimitrios T Boumpas
- 4th Department of Internal Medicine, University of Athens School of Medicine, Attikon University General Hospital, Chaidari, Attica, Greece
| |
Collapse
|
24
|
Bao J, Yan Y, Zuo D, Zhuo Z, Sun T, Lin H, Han Z, Zhao Z, Yu H. Iron metabolism and ferroptosis in diabetic bone loss: from mechanism to therapy. Front Nutr 2023; 10:1178573. [PMID: 37215218 PMCID: PMC10196368 DOI: 10.3389/fnut.2023.1178573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/07/2023] [Indexed: 05/24/2023] Open
Abstract
Osteoporosis, one of the most serious and common complications of diabetes, has affected the quality of life of a large number of people in recent years. Although there are many studies on the mechanism of diabetic osteoporosis, the information is still limited and there is no consensus. Recently, researchers have proven that osteoporosis induced by diabetes mellitus may be connected to an abnormal iron metabolism and ferroptosis inside cells under high glucose situations. However, there are no comprehensive reviews reported. Understanding these mechanisms has important implications for the development and treatment of diabetic osteoporosis. Therefore, this review elaborates on the changes in bones under high glucose conditions, the consequences of an elevated glucose microenvironment on the associated cells, the impact of high glucose conditions on the iron metabolism of the associated cells, and the signaling pathways of the cells that may contribute to diabetic bone loss in the presence of an abnormal iron metabolism. Lastly, we also elucidate and discuss the therapeutic targets of diabetic bone loss with relevant medications which provides some inspiration for its cure.
Collapse
Affiliation(s)
- Jiahao Bao
- Department of Oral & Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yixuan Yan
- Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Daihui Zuo
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhiyong Zhuo
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Tianhao Sun
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Hongli Lin
- School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Zheshen Han
- School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Zhiyang Zhao
- Department of Oral & Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hongbo Yu
- Department of Oral & Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
25
|
Chen W, Xu D, Liu Q, Wu Y, Wang Y, Yang J. Unraveling the heterogeneity of cholangiocarcinoma and identifying biomarkers and therapeutic strategies with single-cell sequencing technology. Biomed Pharmacother 2023; 162:114697. [PMID: 37060660 DOI: 10.1016/j.biopha.2023.114697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a common malignant tumor of the biliary tract that carries a high burden of morbidity and a poor prognosis. Due to the lack of precise diagnostic methods, many patients are often diagnosed at advanced stages of the disease. The current treatment options available are of varying efficacy, underscoring the urgency for the discovery of more effective biomarkers for early diagnosis and improved treatment. Recently, single-cell sequencing (SCS) technology has gained popularity in cancer research. This technology has the ability to analyze tumor tissues at the single-cell level, thus providing insights into the genomics and epigenetics of tumor cells. It also serves as a practical approach to study the mechanisms of cancer progression and to explore therapeutic strategies. In this review, we aim to assess the heterogeneity of CCA using single-cell sequencing technology, with the ultimate goal of identifying possible biomarkers and potential treatment targets.
Collapse
Affiliation(s)
- Wangyang Chen
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Dongchao Xu
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Qiang Liu
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Yirong Wu
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China
| | - Yu Wang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China.
| | - Jianfeng Yang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Zhejiang Provincial Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research, Hangzhou, Zhejiang Province 310003, China.
| |
Collapse
|
26
|
Zhang X, Zhang H, Zhang J, Yang M, Zhu M, Yin Y, Fan X, Yu F. The paradoxical role of radiation-induced cGAS-STING signalling network in tumour immunity. Immunology 2023; 168:375-388. [PMID: 36217274 DOI: 10.1111/imm.13592] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/06/2022] [Indexed: 11/27/2022] Open
Abstract
The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is an essential component of the innate immune system and is central to the identification of abnormal DNA leakage caused by ionising radiation (IR) damage. Cell-intrinsic cGAS-STING initiation has been revealed to have tremendous potential for facilitating interferon synthesis and T-cell priming. Targeting the cGAS-STING axis has been proposed as a strategy to improve radiosensitivity or enhance immunosurveillance. However, due to the complex biology of the irradiated tumour microenvironment and the extensive involvement of the cGAS-STING pathway in various physiological and pathological processes, many defects in this strategy limit the therapeutic effect. Here, we outline the molecular mechanisms by which IR activates the cGAS-STING pathway and analyse the dichotomous roles of the cGAS-STING pathway in modulating cancer immunity after radiotherapy (RT). Then, based on the crosstalk between the cGAS-STING pathway and other signalling events induced by IR, such as necroptosis, autophagy and other cellular effects, we discuss the immunomodulatory actions of the broad cGAS-STING signalling network in RT and their potential therapeutic applications. Finally, recent advances in combination therapeutic strategies targeting cGAS-STING in RT are explored.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Han Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Jiajia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Mengdie Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Mengqin Zhu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Yuzhen Yin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Xin Fan
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Exosomal miRNA-155 and miRNA-146a are promising prognostic biomarkers of the severity of hemorrhagic fever with renal syndrome. Noncoding RNA Res 2023; 8:75-82. [DOI: 10.1016/j.ncrna.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/14/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
|
28
|
TRAF3 activates STING-mediated suppression of EV-A71 and target of viral evasion. Signal Transduct Target Ther 2023; 8:79. [PMID: 36823147 PMCID: PMC9950063 DOI: 10.1038/s41392-022-01287-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/17/2022] [Accepted: 12/14/2022] [Indexed: 02/25/2023] Open
Abstract
Innate immunity represents one of the main host responses to viral infection.1-3 STING (Stimulator of interferon genes), a crucial immune adapter functioning in host cells, mediates cGAS (Cyclic GMP-AMP Synthase) sensing of exogenous and endogenous DNA fragments and generates innate immune responses.4 Whether STING activation was involved in infection and replication of enterovirus remains largely unknown. In the present study, we discovered that human enterovirus A71 (EV-A71) infection triggered STING activation in a cGAS dependent manner. EV-A71 infection caused mitochondrial damage and the discharge of mitochondrial DNA into the cytosol of infected cells. However, during EV-A71 infection, cGAS-STING activation was attenuated. EV-A71 proteins were screened and the viral protease 2Apro had the greatest capacity to inhibit cGAS-STING activation. We identified TRAF3 as an important factor during STING activation and as a target of 2Apro. Supplement of TRAF3 rescued cGAS-STING activation suppression by 2Apro. TRAF3 supported STING activation mediated TBK1 phosphorylation. Moreover, we found that 2Apro protease activity was essential for inhibiting STING activation. Furthermore, EV-D68 and CV-A16 infection also triggered STING activation. The viral protease 2Apro from EV-D68 and CV-A16 also had the ability to inhibit STING activation. As STING activation prior to EV-A71 infection generated cellular resistance to EV-A71 replication, blocking EV-A71-mediated STING suppression represents a new anti-viral target.
Collapse
|
29
|
Dai J, Zhou P, Li S, Qiu HJ. New Insights into the Crosstalk among the Interferon and Inflammatory Signaling Pathways in Response to Viral Infections: Defense or Homeostasis. Viruses 2022; 14:v14122798. [PMID: 36560803 PMCID: PMC9783938 DOI: 10.3390/v14122798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Innate immunity plays critical roles in eliminating viral infections, healing an injury, and restoring tissue homeostasis. The signaling pathways of innate immunity, including interferons (IFNs), nuclear factor kappa B (NF-κB), and inflammasome responses, are activated upon viral infections. Crosstalk and interplay among signaling pathways are involved in the complex regulation of antiviral activity and homeostasis. To date, accumulating evidence has demonstrated that NF-κB or inflammasome signaling exhibits regulatory effects on IFN signaling. In addition, several adaptors participate in the crosstalk between IFNs and the inflammatory response. Furthermore, the key adaptors in innate immune signaling pathways or the downstream cytokines can modulate the activation of other signaling pathways, leading to excessive inflammatory responses or insufficient antiviral effects, which further results in tissue injury. This review focuses on the crosstalk between IFN and inflammatory signaling to regulate defense and homeostasis. A deeper understanding of the functional aspects of the crosstalk of innate immunity facilitates the development of targeted treatments for imbalanced homeostasis.
Collapse
Affiliation(s)
- Jingwen Dai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Pingping Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Department of Immunology, School of Basic Medicine, Harbin Medical University, Harbin 150081, China
| | - Su Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Correspondence: (S.L.); (H.-J.Q.)
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Correspondence: (S.L.); (H.-J.Q.)
| |
Collapse
|
30
|
Wang NH, Lei Z, Yang HN, Tang Z, Yang MQ, Wang Y, Sui JD, Wu YZ. Radiation-induced PD-L1 expression in tumor and its microenvironment facilitates cancer-immune escape: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1406. [PMID: 36660640 PMCID: PMC9843429 DOI: 10.21037/atm-22-6049] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022]
Abstract
Background and Objective Radiotherapy (RT) is one of the fundamental anti-cancer regimens by means of inducing in situ tumor vaccination and driving a systemic anti-tumor immune response. It can affect the tumor microenvironment (TME) components consisting of blood vessels, immunocytes, fibroblasts, and extracellular matrix (ECM), and might subsequently suppress anti-tumor immunity through expression of molecules such as programmed death ligand-1 (PD-L1). Immune checkpoint inhibitors (ICIs), especially anti-programmed cell death 1 (PD-1)/PD-L1 therapies, have been regarded as effective in the reinvigoration of the immune system and another major cancer treatment. Experimentally, combination of RT and ICIs therapy shows a greater synergistic effect than either therapy alone. Methods We performed a narrative review of the literature in the PubMed database. The research string comprised various combinations of "radiotherapy", "programmed death-ligand 1", "microenvironment", "exosome", "myeloid cell", "tumor cell", "tumor immunity". The database was searched independently by two authors. A third reviewer mediated any discordance of the results of the two screeners. Key Content and Findings RT upregulates PD-L1 expression in tumor cells, tumor-derived exosomes (TEXs), myeloid-derived suppressor cells (MDSCs), and macrophages. The signaling pathways correlated to PD-L1 expression in tumor cells include the DNA damage signaling pathway, epidermal growth factor receptor (EGFR) pathway, interferon gamma (IFN-γ) pathway, cGAS-STING pathway, and JAK/STATs pathway. Conclusions PD-L1 upregulation post-RT is found not only in tumor cells but also in the TME and is one of the mechanisms of tumor evasion. Therefore, further studies are necessary to fully comprehend this biological process. Meanwhile, combination of therapies has been shown to be effective, and novel approaches are to be developed as adjuvant to RT and ICIs therapy.
Collapse
Affiliation(s)
- Nuo-Han Wang
- College of Medicine, Chongqing University, Chongqing, China
| | - Zheng Lei
- College of Medicine, Chongqing University, Chongqing, China
| | - Hao-Nan Yang
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Zheng Tang
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Meng-Qi Yang
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Ying Wang
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Jiang-Dong Sui
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Yong-Zhong Wu
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
31
|
Kenaston MW, Pham OH, Petit MJ, Shah PS. Transcriptomic profiling implicates PAF1 in both active and repressive immune regulatory networks. BMC Genomics 2022; 23:787. [PMID: 36451099 PMCID: PMC9713194 DOI: 10.1186/s12864-022-09013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Sitting at the interface of gene expression and host-pathogen interaction, polymerase associated factor 1 complex (PAF1C) is a rising player in the innate immune response. The complex localizes to the nucleus and associates with chromatin to modulate RNA polymerase II (RNAPII) elongation of gene transcripts. Performing this function at both proximal and distal regulatory elements, PAF1C interacts with many host factors across such sites, along with several microbial proteins during infection. Therefore, translating the ubiquity of PAF1C into specific impacts on immune gene expression remains especially relevant. RESULTS Advancing past work, we treat PAF1 knockout cells with a slate of immune stimuli to identify key trends in PAF1-dependent gene expression with broad analytical depth. From our transcriptomic data, we confirm PAF1 is an activator of traditional immune response pathways as well as other cellular pathways correlated with pathogen defense. With this model, we employ computational approaches to refine how PAF1 may contribute to both gene activation and suppression. Specifically focusing on transcriptional motifs and regulons, we predict gene regulatory elements strongly associated with PAF1, including those implicated in an immune response. Overall, our results suggest PAF1 is involved in innate immunity at several distinct axes of regulation. CONCLUSIONS By identifying PAF1-dependent gene expression across several pathogenic contexts, we confirm PAF1C to be a key mediator of innate immunity. Combining these transcriptomic profiles with potential regulatory networks corroborates the previously identified functions of PAF1C. With this, we foster new avenues for its study as a regulator of innate immunity, and our results will serve as a basis for targeted study of PAF1C in future validation studies.
Collapse
Affiliation(s)
- Matthew W. Kenaston
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Oanh H. Pham
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Marine J. Petit
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA ,grid.301713.70000 0004 0393 3981MRC-University of Glasgow, Centre for Virus Research, G61 1HQ, Glasgow, UK
| | - Priya S. Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA ,Department of Chemical Engineering, University of California, Davis, Davis, California, USA
| |
Collapse
|
32
|
Regulatory Networks, Management Approaches, and Emerging Treatments of Nonalcoholic Fatty Liver Disease. Can J Gastroenterol Hepatol 2022; 2022:6799414. [PMID: 36397950 PMCID: PMC9666027 DOI: 10.1155/2022/6799414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
The pathogenesis of NAFLD is complex and diverse, involving multiple signaling pathways and cytokines from various organs. Hepatokines, stellakines, adipokines, and myokines secreted by hepatocytes, hepatic stellate cells, adipose tissue, and myocytes play an important role in the occurrence and development of nonalcoholic fatty liver disease (NAFLD). The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) contributes to the progression of NAFLD by mediating liver inflammation, immune response, hepatocyte death, and later compensatory proliferation. In this review, we first discuss the crosstalk and interaction between hepatokines, stellakines, adipokines, and myokines and NF-κB in NAFLD. The characterization of the crosstalk of NF-κB with these factors will provide a better understanding of the molecular mechanisms involved in the progression of NAFLD. In addition, we examine new expert management opinions for NAFLD and explore the therapeutic potential of silymarin in NAFLD/NASH.
Collapse
|
33
|
Reus JB, Rex EA, Gammon DB. How to Inhibit Nuclear Factor-Kappa B Signaling: Lessons from Poxviruses. Pathogens 2022; 11:pathogens11091061. [PMID: 36145493 PMCID: PMC9502310 DOI: 10.3390/pathogens11091061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The Nuclear Factor-kappa B (NF-κB) family of transcription factors regulates key host inflammatory and antiviral gene expression programs, and thus, is often activated during viral infection through the action of pattern-recognition receptors and cytokine–receptor interactions. In turn, many viral pathogens encode strategies to manipulate and/or inhibit NF-κB signaling. This is particularly exemplified by vaccinia virus (VV), the prototypic poxvirus, which encodes at least 18 different inhibitors of NF-κB signaling. While many of these poxviral NF-κB inhibitors are not required for VV replication in cell culture, they virtually all modulate VV virulence in animal models, underscoring the important influence of poxvirus–NF-κB pathway interactions on viral pathogenesis. Here, we review the diversity of mechanisms through which VV-encoded antagonists inhibit initial NF-κB pathway activation and NF-κB signaling intermediates, as well as the activation and function of NF-κB transcription factor complexes.
Collapse
|
34
|
Ratra Y, Kumar N, Saha MK, Bharadwaj C, Chongtham C, Bais SS, Medigeshi G, Arimbasseri GA, Basak S. A Vitamin D-RelB/NF-κB Pathway Limits Chandipura Virus Multiplication by Rewiring the Homeostatic State of Autoregulatory Type 1 IFN-IRF7 Signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:559-568. [PMID: 35851541 DOI: 10.4049/jimmunol.2101054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/20/2022] [Indexed: 10/17/2023]
Abstract
Besides its functions in the skeletomuscular system, vitamin D is known to alleviate viral-inflicted pathologies. However, the mechanism underlying protective vitamin D function remains unclear. We examined the role of vitamin D in controlling cellular infections by Chandipura virus, an RNA virus implicated in human epidemics. How immune signaling pathways, including those regulating NF-κB and IFN regulatory factors (IRFs), are activated in virus-infected cells has been well studied. Our investigation involving human- and mouse-derived cells revealed that vitamin D instructs the homeostatic state of these antiviral pathways, leading to cellular resilience to subsequent viral infections. In particular, vitamin D provoked autoregulatory type 1 IFN-IRF7 signaling even in the absence of virus infection by downmodulating the expression of the IFN-inhibitory NF-κB subunit RelB. Indeed, RelB deficiency rendered vitamin D treatment redundant, whereas IRF7 depletion abrogated antiviral vitamin D action. In sum, immune signaling homeostasis appears to connect micronutrients to antiviral immunity at the cellular level. The proposed link may have a bearing on shaping public health policy during an outbreak.
Collapse
Affiliation(s)
- Yashika Ratra
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Naveen Kumar
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Manti K Saha
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Chandrima Bharadwaj
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Chen Chongtham
- Molecular Genetics Laboratory, National Institute of Immunology, New Delhi, India; and
| | - Sachendra S Bais
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | | | | | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
35
|
Chen F, Chen L, Li Y, Sang H, Zhang C, Yuan S, Yang J. TRAF3 Positively Regulates Host Innate Immune Resistance to Influenza A Virus Infection. Front Cell Infect Microbiol 2022; 12:839625. [PMID: 35573779 PMCID: PMC9093644 DOI: 10.3389/fcimb.2022.839625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor necrosis factor receptor-associated factor 3 (TRAF3) is one of the intracellular adaptor proteins for the innate immune response, which is involved in signaling regulation in various cellular processes, including the immune responses defending against invading pathogens. However, the defense mechanism of TRAF3 against influenza virus infection remains elusive. In this study, we found that TRAF3 could positively regulate innate antiviral response. Overexpression of TRAF3 significantly enhanced virus-induced IRF3 activation, IFN-β production, and antiviral response, while TRAF3 knockdown promoted influenza A virus replication. Moreover, we clarified that inhibiting ubiquitinated degradation of TRAF3 was associated with anti-influenza effect, thereby facilitating antiviral immunity upon influenza A virus infection. We further demonstrated the key domains of TRAF3 involved in anti-influenza effect. Taken together, these results suggested that TRAF3 performs a vital role in host defense against influenza A virus infection by the type-I IFN signaling pathway. Our findings provide insights into the development of drugs to prevent TRAF3 degradation, which could be a novel therapeutic approach for treatment of influenza A virus infection.
Collapse
Affiliation(s)
- Fangzhao Chen
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Department of Pharmacy, Shenzhen Children’s Hospital, Shenzhen, China
| | - Liurong Chen
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yinyan Li
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Huiting Sang
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Chunyu Zhang
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shuofeng Yuan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jie Yang
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
36
|
Nie F, Zhang J, Li M, Chang X, Duan H, Li H, Zhou J, Ji Y, Guo L. Transcriptome analysis of thymic tissues from Chinese Partridge Shank chickens with or without Newcastle disease virus LaSota vaccine injection via high-throughput RNA sequencing. Bioengineered 2022; 13:9131-9144. [PMID: 35403571 PMCID: PMC9161911 DOI: 10.1080/21655979.2021.2008737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Furong Nie
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Jingfeng Zhang
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Mengyun Li
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xuanniu Chang
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Haitao Duan
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Haoyan Li
- Henan Chenxia Biomedical Co., Ltd, Zhengzhou, China
| | - Jia Zhou
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yudan Ji
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Liangxing Guo
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| |
Collapse
|
37
|
Bourseguin J, Cheng W, Talbot E, Hardy L, Lai J, Jeffries A, Lodato MA, Lee EA, Khoronenkova S. Persistent DNA damage associated with ATM kinase deficiency promotes microglial dysfunction. Nucleic Acids Res 2022; 50:2700-2718. [PMID: 35212385 PMCID: PMC8934660 DOI: 10.1093/nar/gkac104] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 01/21/2023] Open
Abstract
The autosomal recessive genome instability disorder Ataxia-telangiectasia, caused by mutations in ATM kinase, is characterized by the progressive loss of cerebellar neurons. We find that DNA damage associated with ATM loss results in dysfunctional behaviour of human microglia, immune cells of the central nervous system. Microglial dysfunction is mediated by the pro-inflammatory RELB/p52 non-canonical NF-κB transcriptional pathway and leads to excessive phagocytic clearance of neuronal material. Activation of the RELB/p52 pathway in ATM-deficient microglia is driven by persistent DNA damage and is dependent on the NIK kinase. Activation of non-canonical NF-κB signalling is also observed in cerebellar microglia of individuals with Ataxia-telangiectasia. These results provide insights into the underlying mechanisms of aberrant microglial behaviour in ATM deficiency, potentially contributing to neurodegeneration in Ataxia-telangiectasia.
Collapse
Affiliation(s)
- Julie Bourseguin
- Department of Biochemistry, University of Cambridge, 80 Tennis Court road, CambridgeCB2 1GA, UK
| | - Wen Cheng
- Department of Biochemistry, University of Cambridge, 80 Tennis Court road, CambridgeCB2 1GA, UK
| | - Emily Talbot
- Department of Biochemistry, University of Cambridge, 80 Tennis Court road, CambridgeCB2 1GA, UK
| | - Liana Hardy
- Department of Biochemistry, University of Cambridge, 80 Tennis Court road, CambridgeCB2 1GA, UK
| | - Jenny Lai
- Division of Genetics and Genomics, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Neuroscience, Harvard University, Boston, MA 02115, USA
| | - Ailsa M Jeffries
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael A Lodato
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Svetlana V Khoronenkova
- Department of Biochemistry, University of Cambridge, 80 Tennis Court road, CambridgeCB2 1GA, UK
| |
Collapse
|
38
|
Ritchie C, Carozza JA, Li L. Biochemistry, Cell Biology, and Pathophysiology of the Innate Immune cGAS-cGAMP-STING Pathway. Annu Rev Biochem 2022; 91:599-628. [PMID: 35287475 DOI: 10.1146/annurev-biochem-040320-101629] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the decade since the discovery of the innate immune cyclic GMP-AMP synthase (cGAS)- 2'3'-cyclic GMP-AMP (cGAMP)- stimulator of interferon genes (STING) pathway, its proper activation and dysregulation have been rapidly implicated in many aspects of human disease. Understanding the biochemical, cellular, and regulatory mechanisms of this pathway is critical to developing therapeutic strategies that either harness it to boost defense or inhibit it to prevent unwanted inflammation. In this review, we first discuss how the second messenger cGAMP is synthesized by cGAS in response to double-stranded DNA and cGAMP's subsequent activation of cell-type-dependent STING signaling cascades with differential physiological consequences. We then review how cGAMP as an immunotransmitter mediates tightly controlled cell-cell communication by being exported from producing cells and imported into responding cells via cell-type-specific transporters. Finally, we review mechanisms by which the cGAS-cGAMP-STING pathway responds to different sources of mislocalized double-stranded DNA in pathogen defense, cancer, and autoimmune diseases. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Christopher Ritchie
- Department of Biochemistry, Stanford University, Stanford, California, USA.,ChEM-H Institute, Stanford University, Stanford, California, USA;
| | - Jacqueline A Carozza
- ChEM-H Institute, Stanford University, Stanford, California, USA; .,Department of Chemistry, Stanford University, Stanford, California, USA
| | - Lingyin Li
- Department of Biochemistry, Stanford University, Stanford, California, USA.,ChEM-H Institute, Stanford University, Stanford, California, USA;
| |
Collapse
|
39
|
Murphy CE, Walker AK, O'Donnell M, Galletly C, Lloyd AR, Liu D, Weickert CS, Weickert TW. Peripheral NF-κB dysregulation in people with schizophrenia drives inflammation: putative anti-inflammatory functions of NF-κB kinases. Transl Psychiatry 2022; 12:21. [PMID: 35027554 PMCID: PMC8758779 DOI: 10.1038/s41398-021-01764-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
Elevations in plasma levels of pro-inflammatory cytokines and C-reactive protein (CRP) in patient blood have been associated with impairments in cognitive abilities and more severe psychiatric symptoms in people with schizophrenia. The transcription factor nuclear factor kappa B (NF-κB) regulates the gene expression of pro-inflammatory factors whose protein products trigger CRP release. NF-κB activation pathway mRNAs are increased in the brain in schizophrenia and are strongly related to neuroinflammation. Thus, it is likely that this central immune regulator is also dysregulated in the blood and associated with cytokine and CRP levels. We measured levels of six pro-inflammatory cytokine mRNAs and 18 mRNAs encoding NF-κB pathway members in peripheral blood leukocytes from 87 people with schizophrenia and 83 healthy control subjects. We then assessed the relationships between the alterations in NF-κB pathway genes, pro-inflammatory cytokine and CRP levels, psychiatric symptoms and cognition in people with schizophrenia. IL-1β and IFN-γ mRNAs were increased in patients compared to controls (both p < 0.001), while IL-6, IL-8, IL-18, and TNF-α mRNAs did not differ. Recursive two-step cluster analysis revealed that high levels of IL-1β mRNA and high levels of plasma CRP defined 'high inflammation' individuals in our cohort, and a higher proportion of people with schizophrenia were identified as displaying 'high inflammation' compared to controls using this method (p = 0.03). Overall, leukocyte expression of the NF-κB-activating receptors, TLR4 and TNFR2, and the NF-κB subunit, RelB, was increased in people with schizophrenia compared to healthy control subjects (all p < 0.01), while NF-κB-inducing kinase mRNAs IKKβ and NIK were downregulated in patients (all p < 0.05). We found that elevations in TLR4 and RelB appear more related to inflammatory status than to a diagnosis of schizophrenia, but changes in TNFR2 occur in both the high and low inflammation patients (but were exaggerated in high inflammation patients). Further, decreased leukocyte expression of IKKβ and NIK mRNAs was unique to high inflammation patients, which may represent schizophrenia-specific dysregulation of NF-κB that gives rise to peripheral inflammation in a subset of patients.
Collapse
Affiliation(s)
- Caitlin E Murphy
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Adam K Walker
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Psychiatry, University of New South Wales, Sydney, Australia
- Drug Discovery Biology Theme, Monash University, Parkville, Australia
| | | | - Cherrie Galletly
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Northern Adelaide Local Health Network, Adelaide, South Australia, Australia
- Ramsay Health Care (SA) Mental Health, Adelaide, South Australia, Australia
| | - Andrew R Lloyd
- Kirby Institute, University of New South Wales, Sydney, Australia
| | - Dennis Liu
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Northern Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Sydney, New South Wales, Australia.
- School of Psychiatry, University of New South Wales, Sydney, Australia.
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, New York, NY, USA.
| | - Thomas W Weickert
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Psychiatry, University of New South Wales, Sydney, Australia
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, New York, NY, USA
| |
Collapse
|
40
|
Long S, Yang L, Dang W, Xin S, Jiang M, Zhang W, Li J, Wang Y, Zhang S, Lu J. Cellular Deubiquitylating Enzyme: A Regulatory Factor of Antiviral Innate Immunity. Front Microbiol 2021; 12:805223. [PMID: 34966378 PMCID: PMC8710732 DOI: 10.3389/fmicb.2021.805223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Deubiquitylating enzymes (DUBs) are proteases that crack the ubiquitin code from ubiquitylated substrates to reverse the fate of substrate proteins. Recently, DUBs have been found to mediate various cellular biological functions, including antiviral innate immune response mediated by pattern-recognition receptors (PRRs) and NLR Family pyrin domain containing 3 (NLRP3) inflammasomes. So far, many DUBs have been identified to exert a distinct function in fine-tuning antiviral innate immunity and are utilized by viruses for immune evasion. Here, the recent advances in the regulation of antiviral responses by DUBs are reviewed. We also discussed the DUBs-mediated interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and antiviral innate immunity. The understanding of the mechanisms on antiviral innate immunity regulated by DUBs may provide therapeutic opportunities for viral infection.
Collapse
Affiliation(s)
- Sijing Long
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Li Yang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Wei Dang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Shuyu Xin
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Mingjuan Jiang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Wentao Zhang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jing Li
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Yiwei Wang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Senmiao Zhang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jianhong Lu
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
41
|
Sansico F, Miroballo M, Bianco DS, Tamiro F, Colucci M, Santis ED, Rossi G, Rosati J, Di Mauro L, Miscio G, Mazza T, Vescovi AL, Mazzoccoli G, Giambra V. COVID-19 Specific Immune Markers Revealed by Single Cell Phenotypic Profiling. Biomedicines 2021; 9:biomedicines9121794. [PMID: 34944610 PMCID: PMC8698462 DOI: 10.3390/biomedicines9121794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023] Open
Abstract
COVID-19 is a viral infection, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and characterized by a complex inflammatory process and clinical immunophenotypes. Nowadays, several alterations of immune response within the respiratory tracts as well as at the level of the peripheral blood have been well documented. Nonetheless, their effects on COVID-19-related cell heterogeneity and disease progression are less defined. Here, we performed a single-cell RNA sequencing of about 400 transcripts relevant to immune cell function including surface markers, in mononuclear cells (PBMCs) from the peripheral blood of 50 subjects, infected with SARS-CoV-2 at the diagnosis and 27 healthy blood donors as control. We found that patients with COVID-19 exhibited an increase in COVID-specific surface markers in different subsets of immune cell composition. Interestingly, the expression of cell receptors, such as IFNGR1 and CXCR4, was reduced in response to the viral infection and associated with the inhibition of the related signaling pathways and immune functions. These results highlight novel immunoreceptors, selectively expressed in COVID-19 patients, which affect the immune functionality and are correlated with clinical outcomes.
Collapse
Affiliation(s)
- Francesca Sansico
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.T.); (M.C.); (E.D.S.); (A.L.V.)
- Correspondence: (F.S.); (M.M.); (G.M.); (V.G.); Tel.: +39-0882-410255 (G.M.); +39-0882-416574 (V.G.)
| | - Mattia Miroballo
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.T.); (M.C.); (E.D.S.); (A.L.V.)
- Correspondence: (F.S.); (M.M.); (G.M.); (V.G.); Tel.: +39-0882-410255 (G.M.); +39-0882-416574 (V.G.)
| | - Daniele Salvatore Bianco
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (D.S.B.); (T.M.)
| | - Francesco Tamiro
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.T.); (M.C.); (E.D.S.); (A.L.V.)
| | - Mattia Colucci
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.T.); (M.C.); (E.D.S.); (A.L.V.)
| | - Elisabetta De Santis
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.T.); (M.C.); (E.D.S.); (A.L.V.)
| | - Giovanni Rossi
- Department of Hematology and Stem Cell TraNSPlant Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione I.R.C.C.S. Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013 San Giovanni Rotondo, Italy;
| | - Lazzaro Di Mauro
- Clinical Laboratory Analysis and Transfusional Medicine, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (L.D.M.); (G.M.)
| | - Giuseppe Miscio
- Clinical Laboratory Analysis and Transfusional Medicine, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (L.D.M.); (G.M.)
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (D.S.B.); (T.M.)
| | - Angelo Luigi Vescovi
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.T.); (M.C.); (E.D.S.); (A.L.V.)
- Cellular Reprogramming Unit, Fondazione I.R.C.C.S. Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013 San Giovanni Rotondo, Italy;
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Correspondence: (F.S.); (M.M.); (G.M.); (V.G.); Tel.: +39-0882-410255 (G.M.); +39-0882-416574 (V.G.)
| | - Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.T.); (M.C.); (E.D.S.); (A.L.V.)
- Correspondence: (F.S.); (M.M.); (G.M.); (V.G.); Tel.: +39-0882-410255 (G.M.); +39-0882-416574 (V.G.)
| | | |
Collapse
|
42
|
Stasko N, Kocher JF, Annas A, Henson I, Seitz TS, Miller JM, Arwood L, Roberts RC, Womble TM, Keller EG, Emerson S, Bergmann M, Sheesley ANY, Strong RJ, Hurst BL, Emerson D, Tarbet EB, Bradrick SS, Cockrell AS. Visible blue light inhibits infection and replication of SARS-CoV-2 at doses that are well-tolerated by human respiratory tissue. Sci Rep 2021; 11:20595. [PMID: 34663881 PMCID: PMC8523529 DOI: 10.1038/s41598-021-99917-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
The delivery of safe, visible wavelengths of light can be an effective, pathogen-agnostic, countermeasure that would expand the current portfolio of SARS-CoV-2 intervention strategies beyond the conventional approaches of vaccine, antibody, and antiviral therapeutics. Employing custom biological light units, that incorporate optically engineered light-emitting diode (LED) arrays, we harnessed monochromatic wavelengths of light for uniform delivery across biological surfaces. We demonstrated that primary 3D human tracheal/bronchial-derived epithelial tissues tolerated high doses of a narrow spectral band of visible light centered at a peak wavelength of 425 nm. We extended these studies to Vero E6 cells to understand how light may influence the viability of a mammalian cell line conventionally used for assaying SARS-CoV-2. The exposure of single-cell monolayers of Vero E6 cells to similar doses of 425 nm blue light resulted in viabilities that were dependent on dose and cell density. Doses of 425 nm blue light that are well-tolerated by Vero E6 cells also inhibited infection and replication of cell-associated SARS-CoV-2 by > 99% 24 h post-infection after a single five-minute light exposure. Moreover, the 425 nm blue light inactivated cell-free betacoronaviruses including SARS-CoV-1, MERS-CoV, and SARS-CoV-2 up to 99.99% in a dose-dependent manner. Importantly, clinically applicable doses of 425 nm blue light dramatically inhibited SARS-CoV-2 infection and replication in primary human 3D tracheal/bronchial tissue. Safe doses of visible light should be considered part of the strategic portfolio for the development of SARS-CoV-2 therapeutic countermeasures to mitigate coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Nathan Stasko
- EmitBio Inc., 4222 Emperor Blvd, Suite 470, Durham, NC, 27703, USA
| | - Jacob F Kocher
- EmitBio Inc., 4222 Emperor Blvd, Suite 470, Durham, NC, 27703, USA
| | - Abigail Annas
- EmitBio Inc., 4222 Emperor Blvd, Suite 470, Durham, NC, 27703, USA
| | - Ibrahim Henson
- EmitBio Inc., 4222 Emperor Blvd, Suite 470, Durham, NC, 27703, USA
| | - Theresa S Seitz
- Division of Infectious Diseases, Surveillance and Diagnostics, MRIGlobal, Kansas City, MO, 64110, USA
| | - Joy M Miller
- Division of Infectious Diseases, Surveillance and Diagnostics, MRIGlobal, Kansas City, MO, 64110, USA
| | - Leslee Arwood
- EmitBio Inc., 4222 Emperor Blvd, Suite 470, Durham, NC, 27703, USA
| | - Rachel C Roberts
- EmitBio Inc., 4222 Emperor Blvd, Suite 470, Durham, NC, 27703, USA
| | - Thomas M Womble
- EmitBio Inc., 4222 Emperor Blvd, Suite 470, Durham, NC, 27703, USA
| | - Emily G Keller
- EmitBio Inc., 4222 Emperor Blvd, Suite 470, Durham, NC, 27703, USA
| | - Soren Emerson
- EmitBio Inc., 4222 Emperor Blvd, Suite 470, Durham, NC, 27703, USA
| | - Michael Bergmann
- EmitBio Inc., 4222 Emperor Blvd, Suite 470, Durham, NC, 27703, USA
| | - Ashley N Y Sheesley
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84321, USA
| | - Rebecca J Strong
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84321, USA
| | - Brett L Hurst
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84321, USA
| | - David Emerson
- EmitBio Inc., 4222 Emperor Blvd, Suite 470, Durham, NC, 27703, USA
| | - E Bart Tarbet
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84321, USA
| | - Shelton S Bradrick
- Division of Infectious Diseases, Surveillance and Diagnostics, MRIGlobal, Kansas City, MO, 64110, USA
| | - Adam S Cockrell
- EmitBio Inc., 4222 Emperor Blvd, Suite 470, Durham, NC, 27703, USA.
| |
Collapse
|
43
|
Transposon-triggered innate immune response confers cancer resistance to the blind mole rat. Nat Immunol 2021; 22:1219-1230. [PMID: 34556881 PMCID: PMC8488014 DOI: 10.1038/s41590-021-01027-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/11/2021] [Indexed: 02/05/2023]
Abstract
Blind mole rats (BMRs) are small rodents, characterized by exceptionally long lifespan (> 21 years) and resistance to both spontaneous and induced tumorigenesis. Here we report that cancer resistance in the BMR is mediated by retrotransposable elements (RTEs). BMR cells and tissues express very low levels of DNA methyltransferase 1 (DNMT1). Upon cell hyperplasia, the BMR genome DNA loses methylation, resulting in activation of RTEs. Up-regulated RTEs form cytoplasmic RNA/DNA hybrids, which activate cGAS-STING pathway to induce cell death. Although this mechanism is enhanced in the BMR, we show that it functions in mice and human. We propose that RTEs were coopted to serve as tumor suppressors that monitor cell proliferation and are activated in premalignant cells to trigger cell death via activation of innate immune response. RTEs activation is a double-edged sword, serving as a tumor suppressor but in late life contributing to aging via induction of sterile inflammation.
Collapse
|
44
|
Ryan FJ, Carr JM, Furtado JM, Ma Y, Ashander LM, Simões M, Oliver GF, Granado GB, Dawson AC, Michael MZ, Appukuttan B, Lynn DJ, Smith JR. Zika Virus Infection of Human Iris Pigment Epithelial Cells. Front Immunol 2021; 12:644153. [PMID: 33968035 PMCID: PMC8100333 DOI: 10.3389/fimmu.2021.644153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
During recent Zika epidemics, adults infected with Zika virus (ZIKV) have developed organ-specific inflammatory complications. The most serious Zika-associated inflammatory eye disease is uveitis, which is commonly anterior in type, affecting both eyes and responding to corticosteroid eye drops. Mechanisms of Zika-associated anterior uveitis are unknown, but ZIKV has been identified in the aqueous humor of affected individuals. The iris pigment epithelium is a target cell population in viral anterior uveitis, and it acts to maintain immune privilege within the anterior eye. Interactions between ZIKV and human iris pigment epithelial cells were investigated with infectivity assays and RNA-sequencing. Primary cell isolates were prepared from eyes of 20 cadaveric donors, and infected for 24 hours with PRVABC59 strain ZIKV or incubated uninfected as control. Cytoimmunofluorescence, RT-qPCR on total cellular RNA, and focus-forming assays of culture supernatant showed cell isolates were permissive to infection, and supported replication and release of infectious ZIKV. To explore molecular responses of cell isolates to ZIKV infection at the whole transcriptome level, RNA was sequenced on the Illumina NextSeq 500 platform, and results were aligned to the human GRCh38 genome. Multidimensional scaling showed clear separation between transcriptomes of infected and uninfected cell isolates. Differential expression analysis indicated a vigorous molecular response of the cell to ZIKV: 7,935 genes were differentially expressed between ZIKV-infected and uninfected cells (FDR < 0.05), and 99% of 613 genes that changed at least two-fold were up-regulated. Reactome and KEGG pathway and Gene Ontology enrichment analyses indicated strong activation of viral recognition and defense, in addition to biosynthesis processes. A CHAT network included 6275 molecular nodes and 24 contextual hubs in the cell response to ZIKV infection. Receptor-interacting serine/threonine kinase 1 (RIPK1) was the most significantly connected contextual hub. Correlation of gene expression with read counts assigned to the ZIKV genome identified a negative correlation between interferon signaling and viral load across isolates. This work represents the first investigation of mechanisms of Zika-associated anterior uveitis using an in vitro human cell model. The results suggest the iris pigment epithelium mounts a molecular response that limits intraocular pathology in most individuals.
Collapse
Affiliation(s)
- Feargal J Ryan
- Precision Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA, Australia
| | - Jillian M Carr
- Flinders University College of Medicine and Public Health, Bedford Park, SA, Australia
| | - João M Furtado
- Ophthalmology Division, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Yuefang Ma
- Flinders University College of Medicine and Public Health, Bedford Park, SA, Australia
| | - Liam M Ashander
- Flinders University College of Medicine and Public Health, Bedford Park, SA, Australia
| | - Milena Simões
- Ophthalmology Division, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Genevieve F Oliver
- Flinders University College of Medicine and Public Health, Bedford Park, SA, Australia
| | - G Bracho Granado
- Flinders University College of Medicine and Public Health, Bedford Park, SA, Australia
| | - Abby C Dawson
- Flinders University College of Medicine and Public Health, Bedford Park, SA, Australia
| | - Michael Z Michael
- Flinders University College of Medicine and Public Health, Bedford Park, SA, Australia
| | - Binoy Appukuttan
- Flinders University College of Medicine and Public Health, Bedford Park, SA, Australia
| | - David J Lynn
- Precision Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA, Australia.,Flinders University College of Medicine and Public Health, Bedford Park, SA, Australia
| | - Justine R Smith
- Precision Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA, Australia.,Flinders University College of Medicine and Public Health, Bedford Park, SA, Australia
| |
Collapse
|
45
|
Mohebiany AN, Ramphal NS, Karram K, Di Liberto G, Novkovic T, Klein M, Marini F, Kreutzfeldt M, Härtner F, Lacher SM, Bopp T, Mittmann T, Merkler D, Waisman A. Microglial A20 Protects the Brain from CD8 T-Cell-Mediated Immunopathology. Cell Rep 2021; 30:1585-1597.e6. [PMID: 32023471 DOI: 10.1016/j.celrep.2019.12.097] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/04/2019] [Accepted: 12/27/2019] [Indexed: 12/29/2022] Open
Abstract
Tumor-necrosis-factor-alpha-induced protein 3 (TNFAIP3), or A20, is a ubiquitin-modifying protein and negative regulator of canonical nuclear factor κB (NF-κB) signaling. Several single-nucleotide polymorphisms in TNFAIP3 are associated with autoimmune diseases, suggesting a role in tissue inflammation. While the role of A20 in peripheral immune cells has been well investigated, less is known about its role in the central nervous system (CNS). Here, we show that microglial A20 is crucial for maintaining brain homeostasis. Without microglial A20, CD8+ T cells spontaneously infiltrate the CNS and acquire a viral response signature. The combination of infiltrating CD8+ T cells and activated A20-deficient microglia leads to an increase in VGLUT1+ terminals and frequency of spontaneous excitatory currents. Ultimately, A20-deficient microglia upregulate genes associated with the antiviral response and neurodegenerative diseases. Together, our data suggest that microglial A20 acts as a sensor for viral infection and a master regulator of CNS homeostasis.
Collapse
Affiliation(s)
- Alma Nazlie Mohebiany
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Nishada Shakunty Ramphal
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Khalad Karram
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Giovanni Di Liberto
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Tanja Novkovic
- Institute for Physiology, University Medical Center, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Federico Marini
- Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Franziska Härtner
- Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Sonja Maria Lacher
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Thomas Mittmann
- Institute for Physiology, University Medical Center, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany.
| |
Collapse
|
46
|
Gao ZJ, Li WP, Mao XT, Huang T, Wang HL, Li YN, Liu BQ, Zhong JY, Renjie C, Jin J, Li YY. Single-nucleotide methylation specifically represses type I interferon in antiviral innate immunity. J Exp Med 2021; 218:e20201798. [PMID: 33616624 PMCID: PMC7903198 DOI: 10.1084/jem.20201798] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/26/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Frequent outbreaks of viruses have caused a serious threat to public health. Previous evidence has revealed that DNA methylation is correlated with viral infections, but its role in innate immunity remains poorly investigated. Additionally, DNA methylation inhibitors promote IFN-I by upregulating endogenous retrovirus; however, studies of intrinsically demethylated tumors do not support this conclusion. This study found that Uhrf1 deficiency in myeloid cells significantly upregulated Ifnb expression, increasing resistance to viral infection. We performed whole-genome bisulfite sequencing and found that a single-nucleotide methylation site in the Ifnb promoter region disrupted IRF3 recruitment. We used site-specific mutant knock-in mice and a region-specific demethylation tool to confirm that this methylated site plays a critical role in regulating Ifnb expression and antiviral responses. These findings provide essential insight into DNA methylation in the regulation of the innate antiviral immune response.
Collapse
Affiliation(s)
- Zheng-jun Gao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, China
| | - Wen-ping Li
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin-tao Mao
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Huang
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao-li Wang
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi-ning Li
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bao-qin Liu
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiang-yan Zhong
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chai Renjie
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Jin Jin
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
- Sir Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yi-yuan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
47
|
Abstract
The innate immune response is a rapid response to pathogens or danger signals. It is precisely activated not only to efficiently eliminate pathogens but also to avoid excessive inflammation and tissue damage. cis-Regulatory element-associated chromatin architecture shaped by epigenetic factors, which we define as the epiregulome, endows innate immune cells with specialized phenotypes and unique functions by establishing cell-specific gene expression patterns, and it also contributes to resolution of the inflammatory response. In this review, we focus on two aspects: (a) how niche signals during lineage commitment or following infection and pathogenic stress program epiregulomes by regulating gene expression levels, enzymatic activities, or gene-specific targeting of chromatin modifiers and (b) how the programed epiregulomes in turn mediate regulation of gene-specific expression, which contributes to controlling the development of innate cells, or the response to infection and inflammation, in a timely manner. We also discuss the effects of innate immunometabolic rewiring on epiregulomes and speculate on several future challenges to be encountered during the exploration of the master regulators of epiregulomes in innate immunity and inflammation.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; , .,National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Military Medical University, Shanghai 200433, China
| | - Xuetao Cao
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; , .,National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Military Medical University, Shanghai 200433, China.,Laboratory of Immunity and Inflammation, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
48
|
Yu JS, Huang T, Zhang Y, Mao XT, Huang LJ, Li YN, Wu TT, Zhong JY, Cao Q, Li YY, Jin J. Substrate-specific recognition of IKKs mediated by USP16 facilitates autoimmune inflammation. SCIENCE ADVANCES 2021; 7:7/3/eabc4009. [PMID: 33523871 PMCID: PMC7806237 DOI: 10.1126/sciadv.abc4009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/22/2020] [Indexed: 05/11/2023]
Abstract
The classic NF-κB pathway plays crucial roles in various immune responses and inflammatory diseases. Its key kinase, IKKβ, participates in a variety of pathological and physiological processes by selectively recognizing its downstream substrates, including p105, p65, and IκBα, but the specific mechanisms of these substrates are unclear. Hyperactivation of one of the substrates, p105, is closely related to the onset of inflammatory bowel disease (IBD) in Nfkb1-deficient mice. In this study, we found that IKKβ ubiquitination on lysine-238 was substantially increased during inflammation. Using mass spectrometry, we identified USP16 as an essential regulator of the IKKβ ubiquitination level that selectively affected p105 phosphorylation without directly affecting p65 or IκBα phosphorylation. Furthermore, USP16 was highly expressed in colon macrophages in patients with IBD, and myeloid-conditional USP16-knockout mice exhibited reduced IBD severity. Our study provides a new theoretical basis for IBD pathogenesis and targeted precision intervention therapy.
Collapse
Affiliation(s)
- Jian-Shuai Yu
- MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Tao Huang
- MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yu Zhang
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xin-Tao Mao
- MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ling-Jie Huang
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Yi-Ning Li
- MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ting-Ting Wu
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jiang-Yan Zhong
- MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Qian Cao
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Yi-Yuan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China.
| | - Jin Jin
- MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
49
|
A Kinase Assay for Measuring the Activity of the NIK-IKK1 Complex Induced via the Noncanonical NF-κB Pathway. Methods Mol Biol 2021; 2366:165-181. [PMID: 34236638 DOI: 10.1007/978-1-0716-1669-7_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear factor-kappa B (NF-κB) inducing kinase (NIK), a key component of the noncanonical NF-κB pathway, directs a range of physiological processes, such as lymphoid organogenesis, immune cell differentiation, and immune responses. Aberrant noncanonical NF-κΒ signaling also causes human ailments, including autoimmune and neoplastic diseases. As such, NIK is constitutively degraded in resting cells, and accumulates upon noncanonical NF-κB signaling. NIK then associates with and phosphorylates IkappaB kinase 1 (IKK1, alternately IKKα). Subsequently, the NIK-IKK1 complex mediates the phosphorylation of p100 that triggers partial proteolysis of p100 into p52. Typically, accumulation of NIK or processing of p100 is estimated by immunoblot analyses, and these indirect measurements are used as a surrogate for cellular NIK activity. However, studies involving knockout and cancerous cells indicated that the activity of NIK-IKK1 might not always correlate with the abundance of NIK or with the relative level of p52 and p100. In this report, we describe a specific and sensitive assay for direct evaluation of cellular NIK-IKK1 activity. Here, NIK immunoprecipitates are examined for the presence of IKK1-dependent kinase activity toward p100. The NIK-IKK1 assay captured selectively noncanonical NF-κB activation in the context of multiple cell activating stimuli and cell types, including patient-derived myeloma cells. We suggest that our assay may help advance our understanding of the role of NIK in health and diseases.
Collapse
|
50
|
Mohallem R, Aryal UK. Regulators of TNFα mediated insulin resistance elucidated by quantitative proteomics. Sci Rep 2020; 10:20878. [PMID: 33257747 PMCID: PMC7705713 DOI: 10.1038/s41598-020-77914-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
Obesity is a growing epidemic worldwide and is a major risk factor for several chronic diseases, including diabetes, kidney disease, heart disease, and cancer. Obesity often leads to type 2 diabetes mellitus, via the increased production of proinflammatory cytokines such as tumor necrosis factor-α (TNFα). Our study combines different proteomic techniques to investigate the changes in the global proteome, secretome and phosphoproteome of adipocytes under chronic inflammation condition, as well as fundamental cross-talks between different cellular pathways regulated by chronic TNFα exposure. Our results show that many key regulator proteins of the canonical and non-canonical NF-κB pathways, such as Nfkb2, and its downstream effectors, including Csf-1 and Lgals3bp, directly involved in leukocyte migration and invasion, were significantly upregulated at the intra and extracellular proteomes suggesting the progression of inflammation. Our data provides evidence of several key proteins that play a role in the development of insulin resistance.
Collapse
Affiliation(s)
- Rodrigo Mohallem
- Department of Comparative Pathobiology, Purdue University, West Lafayette, USA
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, USA
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, USA.
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, USA.
| |
Collapse
|