1
|
Eun Y, Culpepper-Morgan J, Akanmode AM, Thu MB, Sta Lucia AA, Thearle MS, Trousdale RK. Comorbidities and systemic steroids drive pneumonia risk in inflammatory bowel disease: Propensity score-matched cohort study. World J Gastrointest Pharmacol Ther 2025; 16:105335. [DOI: 10.4292/wjgpt.v16.i2.105335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/10/2025] [Accepted: 05/13/2025] [Indexed: 06/03/2025] Open
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD) are at an increased risk of bacterial pneumonia, contributing to significant morbidity and mortality. While previous studies have identified various risk factors, including medications and comorbidities, the independent contribution of IBD to pneumonia risk remains unclear. We hypothesized that the increased pneumonia risk is primarily driven by factors other than IBD itself.
AIM To investigate the relative contributions of IBD, comorbidities, and medications to pneumonia risk in patients with IBD.
METHODS We conducted a retrospective cohort study using the All of Us Research Program database (2010-2022). We matched 2810 participants with IBD 1:1 with controls using four propensity score models: (1) Demographics/Lifestyle only; (2) Plus comorbidities; (3) Plus medications; and (4) All factors combined. Then we used Cox proportional hazards models to assess pneumonia risk and logistic regression to evaluate risk factors.
RESULTS In the primary analysis of 5620 matched participants, IBD was not independently associated with increased pneumonia risk [hazard ratio (HR) = 1.07, 95%CI: 0.84-1.35] when matched for all factors. However, participants with IBD had significantly higher risk (HR = 2.08, 95%CI: 1.56-2.78) when matched only for demographics and lifestyle factors. Within the IBD cohort, a high comorbidity burden (Charlson Comorbidity Index ≥ 10) [odds ratio (OR) = 12.20, 95%CI: 6.69-23.00] and systemic steroid use (OR = 2.26, 95%CI: 1.21-4.64) were independently associated with increased pneumonia risk.
CONCLUSION Comorbidities and systemic steroids, rather than IBD itself, drive pneumonia risk. Management should focus on these factors and prioritize vaccination in high-risk patients.
Collapse
Affiliation(s)
- Yong Eun
- Department of Medicine, NYC Health + Hospitals/Harlem, New York, NY 10037, United States
| | - Joan Culpepper-Morgan
- Division of Gastroenterology, Department of Medicine, NYC Health + Hospitals/Harlem, New York, NY 10037, United States
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - Abiodun M Akanmode
- Department of Medicine, NYC Health + Hospitals/Harlem, New York, NY 10037, United States
| | - Myint B Thu
- Department of Medicine, NYC Health + Hospitals/Harlem, New York, NY 10037, United States
| | - Aprilee A Sta Lucia
- Department of Medicine, NYC Health + Hospitals/Harlem, New York, NY 10037, United States
| | - Marie S Thearle
- Department of Medicine, NYC Health + Hospitals/Harlem, New York, NY 10037, United States
| | - Rhonda K Trousdale
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
- Division of Endocrinology, Department of Medicine, NYC Health + Hospitals/Harlem, New York, NY 10037, United States
| |
Collapse
|
2
|
Zhang M, Dai G, Smith DL, Zacco E, Shimoda M, Kumar N, Girling V, Gardner K, Hunt PW, Huang L, Lin J. Interferon-signaling pathways are upregulated in people with HIV with abnormal pulmonary diffusing capacity (DL CO ). AIDS 2024; 38:1523-1532. [PMID: 38819840 PMCID: PMC11239097 DOI: 10.1097/qad.0000000000003946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE People with HIV (PWH) are at greater risk of developing lung diseases even when they are antiretroviral therapy (ART)-adherent and virally suppressed. The most common pulmonary function abnormality in PWH is that of impaired diffusing capacity of the lungs for carbon monoxide (DL CO ), which is an independent risk factor for increased mortality in PWH. Earlier work has identified several plasma biomarkers of inflammation and immune activation to be associated with decreased DL CO . However, the underpinning molecular mechanisms of HIV-associated impaired DL CO are largely unknown. DESIGN Cross-sectional pilot study with PWH with normal DL CO (values greater than or equal to the lower limit of normal, DL CO ≥ LLN, N = 9) or abnormal DL CO (DL CO < LLN, N = 9). METHODS We compared the gene expression levels of over 900 inflammation and immune exhaustion genes in PBMCs from PWH with normal vs. abnormal DL CO using the NanoString technology. RESULTS We found that 26 genes were differentially expressed in the impaired DL CO group. These genes belong to 4 categories: 1. Nine genes in inflammation and immune activation pathways, 2. seven upregulated genes that are direct targets of the interferon signaling pathway, 3. seven B-cell specific genes that are downregulated, and 4. three miscellaneous genes. These results were corroborated using the bioinformatics tools DAVID (Database for Annotation, Visualization and Integrated Discovery) and GSEA (Gene Sets Enrichment Analysis). CONCLUSION The data provides preliminary evidence for the involvement of sustained interferon signaling as a molecular mechanism for impaired DL CO in PWH.
Collapse
Affiliation(s)
- Michelle Zhang
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine
| | - Guorui Dai
- Department of Biochemistry and Biophysics
| | | | - Emanuela Zacco
- Laboratory for Cell Analysis, Helen Diller Comprehensive Cancer Center
| | | | - Nitasha Kumar
- Core Immunology Lab, Division of Experimental Medicine
| | | | - Kendall Gardner
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine
| | | | - Laurence Huang
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics
| |
Collapse
|
3
|
Nascimento LS, de Castro YS, Figueira JDA, Souza RDC, da Silva JA, Nahn EP, Peixoto-Rangel AL. Toxoplasma gondii infection and high levels of IgE are associated to erythema nodosum leprosy (ENL). PLoS One 2024; 19:e0300704. [PMID: 38865430 PMCID: PMC11168690 DOI: 10.1371/journal.pone.0300704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/04/2024] [Indexed: 06/14/2024] Open
Abstract
Leprosy is a chronic infectious disease caused by the bacillus Mycobacterium leprae. The disease may evolve for inflammatory reactions, reversal reaction (RR) and erythema nodosum leprosum (ENL), the major cause of irreversible neuropathy in leprosy, which occur in 1 in 3 people with leprosy, even with effective treatment of M. leprae. Leprosy remains persistently endemic in our region where it predominantly affects lowest socioeconomic conditions people, as Toxoplasma gondii infection in the municipality studied. Previously, we have shown T. gondii coinfection as a risk marker for leprosy, mainly in its severe form. This present study assessed whether T. gondii infection is also a risk factor for leprosy reactions and the predictive value of immunoglobulin production prior to development of leprosy reactions. Patients with leprosy (n = 180), co-infected or not with T. gondii, had their serum investigated for levels of IgA, IgE, IgG1, IgG2, IgG3 and IgG4 anti-PGL-1 by ELISA prior to development of leprosy reactions. The serologic prevalence for T. gondii infection was 87.7% in leprosy reaction patients reaching 90.9% in those with ENL. The leprosy reaction risk increased in T. gondii seropositive individuals was two-fold ([OR] = 2.366; 95% confidence interval [CI 95%]: 1.024-5.469) higher than those seronegative, and considering the risk of ENL, this increase was even more evident (OR = 6.753; 95% CI: 1.050-72.85) in coinfected individuals. When evaluated the prediction of anti-PGL-1 immunoglobulin levels for development of leprosy reactions in patients coinfected or not with T. gondii, only the increase IgE levels were associated to occurrence of reactional episodes of leprosy, specifically ENL type, in patients coinfected with T. gondii, compared to those not coinfected or no reaction. Thus, the immunomodulation in co-parasitism T. gondii-M. leprae suggest increased levels of IgE as a biomarker for early detection of these acute inflammatory episodes and thereby help prevent permanent neuropathy and disability in leprosy patients.
Collapse
Affiliation(s)
- Leticia Silva Nascimento
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Yuri Scheidegger de Castro
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Jessany de Aquino Figueira
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Rebeka da Conceição Souza
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Juliana Azevedo da Silva
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Edilbert Pellegrini Nahn
- Faculdade de Medicina de Campos, Campos dos Goytacazes, Rio de Janeiro, Brazil
- Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Alba Lucínia Peixoto-Rangel
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Setoguchi R, Sengiku T, Kono H, Kawakami E, Kubo M, Yamamoto T, Hori S. Memory CD8 T cells are vulnerable to chronic IFN-γ signals but not to CD4 T cell deficiency in MHCII-deficient mice. Nat Commun 2024; 15:4418. [PMID: 38806459 PMCID: PMC11133459 DOI: 10.1038/s41467-024-48704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
The mechanisms by which the number of memory CD8 T cells is stably maintained remains incompletely understood. It has been postulated that maintaining them requires help from CD4 T cells, because adoptively transferred memory CD8 T cells persist poorly in MHC class II (MHCII)-deficient mice. Here we show that chronic interferon-γ signals, not CD4 T cell-deficiency, are responsible for their attrition in MHCII-deficient environments. Excess IFN-γ is produced primarily by endogenous colonic CD8 T cells in MHCII-deficient mice. IFN-γ neutralization restores the number of memory CD8 T cells in MHCII-deficient mice, whereas repeated IFN-γ administration or transduction of a gain-of-function STAT1 mutant reduces their number in wild-type mice. CD127high memory cells proliferate actively in response to IFN-γ signals, but are more susceptible to attrition than CD127low terminally differentiated effector memory cells. Furthermore, single-cell RNA-sequencing of memory CD8 T cells reveals proliferating cells that resemble short-lived, terminal effector cells and documents global downregulation of gene signatures of long-lived memory cells in MHCII-deficient environments. We propose that chronic IFN-γ signals deplete memory CD8 T cells by compromising their long-term survival and by diverting self-renewing CD127high cells toward terminal differentiation.
Collapse
Affiliation(s)
- Ruka Setoguchi
- Formerly Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan.
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Tomoya Sengiku
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hiroki Kono
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Eiryo Kawakami
- Advanced Data Science Project (ADSP), RIKEN Information R&D and Strategy Headquarters, RIKEN, Yokohama City, Kanagawa, 230-0045, Japan
- Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
- Institute for Advanced Academic Research (IAAR), Chiba University, Chiba, 260-8670, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, 260-8670, Japan
| | - Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba, 278-0022, Japan
- Laboratory for Cytokine Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan
| | - Tadashi Yamamoto
- Formerly Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Shohei Hori
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Formerly Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan
| |
Collapse
|
5
|
Kristensen NP, Dionisio E, Bentzen AK, Tamhane T, Kemming JS, Nos G, Voss LF, Hansen UK, Lauer GM, Hadrup SR. Simultaneous analysis of pMHC binding and reactivity unveils virus-specific CD8 T cell immunity to a concise epitope set. SCIENCE ADVANCES 2024; 10:eadm8951. [PMID: 38608022 PMCID: PMC11014448 DOI: 10.1126/sciadv.adm8951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/12/2024] [Indexed: 04/14/2024]
Abstract
CD8 T cells provide immunity to virus infection through recognition of epitopes presented by peptide major histocompatibility complexes (pMHCs). To establish a concise panel of widely recognized T cell epitopes from common viruses, we combined analysis of TCR down-regulation upon stimulation with epitope-specific enumeration based on barcode-labeled pMHC multimers. We assess CD8 T cell binding and reactivity for 929 previously reported epitopes in the context of 1 of 25 HLA alleles representing 29 viruses. The prevalence and magnitude of CD8 T cell responses were evaluated in 48 donors and reported along with 137 frequently recognized virus epitopes, many of which were underrepresented in the public domain. Eighty-four percent of epitope-specific CD8 T cell populations demonstrated reactivity to peptide stimulation, which was associated with effector and long-term memory phenotypes. Conversely, nonreactive T cell populations were associated primarily with naive phenotypes. Our analysis provides a reference map of epitopes for characterizing CD8 T cell responses toward common human virus infections.
Collapse
Affiliation(s)
- Nikolaj Pagh Kristensen
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Edoardo Dionisio
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Amalie Kai Bentzen
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Tripti Tamhane
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Janine Sophie Kemming
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Grigorii Nos
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Lasse Frank Voss
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Ulla Kring Hansen
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Georg Michael Lauer
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Sine Reker Hadrup
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| |
Collapse
|
6
|
Lavelle EC, McEntee CP. Vaccine adjuvants: Tailoring innate recognition to send the right message. Immunity 2024; 57:772-789. [PMID: 38599170 DOI: 10.1016/j.immuni.2024.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Adjuvants play pivotal roles in vaccine development, enhancing immunization efficacy through prolonged retention and sustained release of antigen, lymph node targeting, and regulation of dendritic cell activation. Adjuvant-induced activation of innate immunity is achieved via diverse mechanisms: for example, adjuvants can serve as direct ligands for pathogen recognition receptors or as inducers of cell stress and death, leading to the release of immunostimulatory-damage-associated molecular patterns. Adjuvant systems increasingly stimulate multiple innate pathways to induce greater potency. Increased understanding of the principles dictating adjuvant-induced innate immunity will subsequently lead to programming specific types of adaptive immune responses. This tailored optimization is fundamental to next-generation vaccines capable of inducing robust and sustained adaptive immune memory across different cohorts.
Collapse
Affiliation(s)
- Ed C Lavelle
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| | - Craig P McEntee
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Yang C, Liu Z, Yang Y, Cocka LJ, Li Y, Zeng W, Shen H. Chronic viral infection impairs immune memory to a different pathogen. PLoS Pathog 2024; 20:e1012113. [PMID: 38547316 PMCID: PMC11003680 DOI: 10.1371/journal.ppat.1012113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/09/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Chronic viral infections cause T cell dysfunction in both animal models and human clinical settings, thereby affecting the ability of the host immune system to clear viral pathogens and develop proper virus-specific immune memory. However, the impact of chronic viral infections on the host's immune memory to other pathogens has not been well described. In this study, we immunized mice with recombinant Listeria monocytogenes expressing OVA (Lm-OVA) to generate immunity to Lm and allow analysis of OVA-specific memory T (Tm) cells. We then infected these mice with lymphocytic choriomeningitis virus (LCMV) strain Cl-13 which establishes a chronic infection. We found that chronically infected mice were unable to protect against Listeria re-challenge. OVA-specific Tm cells showed a progressive loss in total numbers and in their ability to produce effector cytokines in the context of chronic LCMV infection. Unlike virus-specific T cells, OVA-specific Tm cells from chronically infected mice did not up-regulate the expression of inhibitory receptors, a hallmark feature of exhaustion in virus-specific T cells. Finally, OVA-specific Tm cells failed to mount a robust recall response after bacteria re-challenge both in the chronically infected and adoptively transferred naïve hosts. These results show that previously established bacteria-specific Tm cells become functionally impaired in the setting of an unrelated bystander chronic viral infection, which may contribute to poor immunity against other pathogens in the host with chronic viral infection.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
| | - Zhicui Liu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
- Department of Dermatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Yang
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
- Hainan Academy of Medical Sciences, Hainan Medical University, Hainan, China
| | - Luis J. Cocka
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
| | - Yongguo Li
- Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Zeng
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Shen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
| |
Collapse
|
8
|
Ma F, Wang S, Xu L, Huang W, Shi G, Sun Z, Cai W, Wu Z, Huang Y, Meng J, Sun Y, Fang M, Cheng M, Ji Y, Hu T, Zhang Y, Gu B, Zhang J, Song S, Sun Y, Yan W. Single-cell profiling of the microenvironment in human bone metastatic renal cell carcinoma. Commun Biol 2024; 7:91. [PMID: 38216635 PMCID: PMC10786927 DOI: 10.1038/s42003-024-05772-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Bone metastasis is of common occurrence in renal cell carcinoma with poor prognosis, but no optimal treatment approach has been established for bone metastatic renal cell carcinoma. To explore the potential therapeutic targets for bone metastatic renal cell carcinoma, we profile single cell transcriptomes of 6 primary renal cell carcinoma and 9 bone metastatic renal cell carcinoma. We also include scRNA-seq data of early-stage renal cell carcinoma, late-stage renal cell carcinoma, normal kidneys and healthy bone marrow samples in the study to better understand the bone metastasis niche. The molecular properties and dynamic changes of major cell lineages in bone metastatic environment of renal cell carcinoma are characterized. Bone metastatic renal cell carcinoma is associated with multifaceted immune deficiency together with cancer-associated fibroblasts, specifically appearance of macrophages exhibiting malignant and pro-angiogenic features. We also reveal the dominance of immune inhibitory T cells in the bone metastatic renal cell carcinoma which can be partially restored by the treatment. Trajectory analysis showes that myeloid-derived suppressor cells are progenitors of macrophages in the bone metastatic renal cell carcinoma while monocytes are their progenitors in primary tumors and healthy bone marrows. Additionally, the infiltration of immune inhibitory CD47+ T cells is observed in bone metastatic tumors, which may be a result of reduced phagocytosis by SIRPA-expressing macrophages in the bone microenvironment. Together, our results provide a systematic view of various cell types in bone metastatic renal cell carcinoma and suggest avenues for therapeutic solutions.
Collapse
Affiliation(s)
- Fen Ma
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, 201203, Shanghai, China
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Shuoer Wang
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Lun Xu
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Wending Huang
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Guohai Shi
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
- Department of Urology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
| | - Zhengwang Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Weiluo Cai
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Zhiqiang Wu
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Yiming Huang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Juan Meng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Yining Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Meng Fang
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Mo Cheng
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Yingzheng Ji
- Department of Orthopedic, Naval Medical Center of PLA, Second Military Medical University, 338 Huaihai West Road, Shanghai, China
| | - Tu Hu
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Yunkui Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
| | - Bingxin Gu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Jiwei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, 201203, Shanghai, China.
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China.
| | - Yidi Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China.
| | - Wangjun Yan
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China.
| |
Collapse
|
9
|
Yin X, He L, Guo Z. T-cell exhaustion in CAR-T-cell therapy and strategies to overcome it. Immunology 2023. [PMID: 36942414 DOI: 10.1111/imm.13642] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Tumour immunotherapy has achieved good therapeutic effects in clinical practice and has received increased attention. Cytotoxic T cells undoubtedly play an important role in tumour immunotherapy. As a revolutionary tumour immunotherapy approach, chimeric antigen receptor T-cell (CAR-T-cell) therapy has made breakthroughs in the treatment of haematological cancers. However, T cells are easily exhausted in vivo, especially after they enter solid tumours. The exhaustion of T cells can lead to poor results of CAR-T-cell therapy in the treatment of solid tumours. Here, we review the reasons for T-cell exhaustion and how T-cell exhaustion develops. We also review and discuss ways to improve CAR-T-cell therapy effects by regulating T-cell exhaustion.
Collapse
Affiliation(s)
- Xuechen Yin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- CAR-T R&D, Nanjing Blue Shield Biotechnology Co., Ltd., Nanjing, 210023, China
| |
Collapse
|
10
|
Wallace Z, Kopycinski J, Yang H, McCully ML, Eggeling C, Chojnacki J, Dorrell L. Immune mobilising T cell receptors redirect polyclonal CD8 + T cells in chronic HIV infection to form immunological synapses. Sci Rep 2022; 12:18366. [PMID: 36319836 PMCID: PMC9626491 DOI: 10.1038/s41598-022-23228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022] Open
Abstract
T cell exhaustion develops in human immunodeficiency virus (HIV) infection due to chronic viral antigenic stimulation. This adaptive response primarily affects virus-specific CD8+ T cells, which may remain dysfunctional despite viral load-reducing antiretroviral therapy; however, abnormalities may also be evident in non-HIV-specific populations. Both could limit the efficacy of cell therapies against viral reservoirs. Here, we show that bulk (polyclonal) CD8+ T cells from people living with HIV (PLWH) express proposed markers of dysfunctional HIV-specific T cells at high levels yet form lytic immunological synapses (IS) and eliminate primary resting infected (HIV Gaglo) CD4+ T cells, when redirected by potent bispecific T cell-retargeting molecules, Immune mobilising monoclonal T cell receptors (TCR) Against Virus (ImmTAV). While PLWH CD8+ T cells are functionally impaired when compared to CD8+ T cells from HIV-naïve donors, ImmTAV redirection enables them to eliminate Gaglo CD4+ T cells that are insensitive to autologous HIV-specific cytolytic T cells. ImmTAV molecules may therefore be able to target HIV reservoirs, which represent a major barrier to a cure.
Collapse
Affiliation(s)
- Zoë Wallace
- Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK. .,Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, UK.
| | - Jakub Kopycinski
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Hongbing Yang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | | | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.,Leibniz Institute of Photonic Technology & Institute of Applied Optics and Biophysics, Friedrich-Schiller University, Jena, Germany
| | - Jakub Chojnacki
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK.,Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, UK
| |
Collapse
|
11
|
Stelekati E, Cai Z, Manne S, Chen Z, Beltra JC, Buchness LA, Leng X, Ristin S, Nzingha K, Ekshyyan V, Niavi C, Abdel-Hakeem MS, Ali MA, Drury S, Lau CW, Gao Z, Ban Y, Zhou SK, Ansel KM, Kurachi M, Jordan MS, Villarino AV, Ngiow SF, Wherry EJ. MicroRNA-29a attenuates CD8 T cell exhaustion and induces memory-like CD8 T cells during chronic infection. Proc Natl Acad Sci U S A 2022; 119:e2106083119. [PMID: 35446623 PMCID: PMC9169946 DOI: 10.1073/pnas.2106083119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 02/02/2022] [Indexed: 11/18/2022] Open
Abstract
CD8 T cells mediate protection against intracellular pathogens and tumors. However, persistent antigen during chronic infections or cancer leads to T cell exhaustion, suboptimal functionality, and reduced protective capacity. Despite considerable work interrogating the transcriptional regulation of exhausted CD8 T cells (TEX), the posttranscriptional control of TEX remains poorly understood. Here, we interrogated the role of microRNAs (miRs) in CD8 T cells responding to acutely resolved or chronic viral infection and identified miR-29a as a key regulator of TEX. Enforced expression of miR-29a improved CD8 T cell responses during chronic viral infection and antagonized exhaustion. miR-29a inhibited exhaustion-driving transcriptional pathways, including inflammatory and T cell receptor signaling, and regulated ribosomal biogenesis. As a result, miR-29a fostered a memory-like CD8 T cell differentiation state during chronic infection. Thus, we identify miR-29a as a key regulator of TEX and define mechanisms by which miR-29a can divert exhaustion toward a more beneficial memory-like CD8 T cell differentiation state.
Collapse
Affiliation(s)
- Erietta Stelekati
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Zhangying Cai
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jean-Christophe Beltra
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lance Alec Buchness
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Xuebing Leng
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Svetlana Ristin
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Kito Nzingha
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Viktoriya Ekshyyan
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Christina Niavi
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Mohamed S. Abdel-Hakeem
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Mohammed-Alkhatim Ali
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Sydney Drury
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Chi Wai Lau
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Zhen Gao
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
- Division of Surgical Oncology, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Yuguang Ban
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Simon K. Zhou
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA 94143
- Department of Microbiology & Immunology, University of California, San Francisco, CA 94143
| | - K. Mark Ansel
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA 94143
- Department of Microbiology & Immunology, University of California, San Francisco, CA 94143
| | - Makoto Kurachi
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Martha S. Jordan
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Alejandro V. Villarino
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - E. John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
12
|
Hu H, Mei J, Lin M, Wu X, Lin H, Chen G. The causal relationship between obesity and skin and soft tissue infections: A two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2022; 13:996863. [PMID: 36568121 PMCID: PMC9768473 DOI: 10.3389/fendo.2022.996863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Many observational studies have shown that obesity strongly affects skin and soft tissue infections (SSTIs). However, whether a causal genetic relationship exists between obesity and SSTIs is unclear. METHODS A two-sample Mendelian randomization (MR) study was used to explore whether obesity is causally associated with SSTIs using a publicly released genome-wide association study (GWAS). An inverse-variance weighted (IVW) analysis was used as the primary analysis, and the results are reported as the odds ratios (ORs). Heterogeneity was tested using Cochran's Q test and the I2 statistic, and horizontal pleiotropy was tested using the MR-Egger intercept and MR pleiotropy residual sum and outlier (MR-PRESSO). RESULTS The results of the MR analysis showed a positive effect of BMI on SSTIs (OR 1.544, 95% CI 1.399-1.704, P= 5.86 × 10-18). After adjusting for the effect of type 2 diabetes (T2D) and peripheral vascular disease (PVD), the positive effect still existed. Then, we further assessed the effect of BMI on different types of SSTIs. The results showed that BMI caused an increased risk of impetigo, cutaneous abscess, furuncle and carbuncle, cellulitis, pilonidal cyst, and other local infections of skin and subcutaneous tissues, except for acute lymphadenitis. However, the associations disappeared after adjusting for the effect of T2D and PVD, and the associations between BMI and impetigo or cellulitis disappeared. Finally, we assessed the effects of several obesity-related characteristics on SSTIs. Waist circumference, hip circumference, body fat percentage, and whole-body fat mass, excluding waist-to-hip ratio, had a causal effect on an increased risk of SSTIs. However, the associations disappeared after adjusting for the effect of BMI. CONCLUSION This study found that obesity had a positive causal effect on SSTIs. Reasonable weight control is a possible way to reduce the occurrence of SSTIs, especially in patients undergoing surgery.
Collapse
Affiliation(s)
- Hongxin Hu
- Department of Orthopedic Surgery, Affiliated Hospital of Putian University, Putian, China
| | - Jian Mei
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Regensburg, Germany
| | - Mei Lin
- Department of Surgery, Affiliated Hospital of Putian University, Putian, China
| | - Xianwei Wu
- Department of Orthopedic Surgery, Affiliated Hospital of Putian University, Putian, China
| | - Haibin Lin
- Department of Orthopedic Surgery, Affiliated Hospital of Putian University, Putian, China
| | - Guoli Chen
- Department of Orthopedic Surgery, Affiliated Hospital of Putian University, Putian, China
- *Correspondence: Guoli Chen,
| |
Collapse
|
13
|
Zheng L, Qin S, Si W, Wang A, Xing B, Gao R, Ren X, Wang L, Wu X, Zhang J, Wu N, Zhang N, Zheng H, Ouyang H, Chen K, Bu Z, Hu X, Ji J, Zhang Z. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science 2021; 374:abe6474. [PMID: 34914499 DOI: 10.1126/science.abe6474] [Citation(s) in RCA: 710] [Impact Index Per Article: 177.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Liangtao Zheng
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shishang Qin
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wen Si
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Anqiang Wang
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Baocai Xing
- Department of Hepatopancreatobiliary Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Ranran Gao
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xianwen Ren
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Li Wang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaojiang Wu
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Ji Zhang
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Nan Wu
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Ning Zhang
- Department of Urology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Hong Zheng
- Department of Gynecologic Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Hanqiang Ouyang
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing 100191, China
| | - Keyuan Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing 100191, China
| | - Zhaode Bu
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xueda Hu
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China.,Analytical Biosciences Limited, Beijing 100084, China
| | - Jiafu Ji
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China.,Department of Biobank, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Zemin Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Smith PL, Piadel K, Dalgleish AG. Directing T-Cell Immune Responses for Cancer Vaccination and Immunotherapy. Vaccines (Basel) 2021; 9:1392. [PMID: 34960140 PMCID: PMC8708201 DOI: 10.3390/vaccines9121392] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer vaccination and immunotherapy revolutionised the treatment of cancer, a result of decades of research into the immune system in health and disease. However, despite recent breakthroughs in treating otherwise terminal cancer, only a minority of patients respond to cancer immunotherapy and some cancers are largely refractive to immunotherapy treatment. This is due to numerous issues intrinsic to the tumour, its microenvironment, or the immune system. CD4+ and CD8+ αβ T-cells emerged as the primary effector cells of the anti-tumour immune response but their function in cancer patients is often compromised. This review details the mechanisms by which T-cell responses are hindered in the setting of cancer and refractive to immunotherapy, and details many of the approaches under investigation to direct T-cell function and improve the efficacy of cancer vaccination and immunotherapy.
Collapse
Affiliation(s)
- Peter Lawrence Smith
- Institute of Infection and Immunity, St. Georges University of London, London SW17 0RE, UK; (K.P.); (A.G.D.)
| | | | | |
Collapse
|
15
|
Kefalakes H, Horgan XJ, Jung MK, Amanakis G, Kapuria D, Bolte FJ, Kleiner DE, Koh C, Heller T, Rehermann B. Liver-Resident Bystander CD8 + T Cells Contribute to Liver Disease Pathogenesis in Chronic Hepatitis D Virus Infection. Gastroenterology 2021; 161:1567-1583.e9. [PMID: 34302839 DOI: 10.1053/j.gastro.2021.07.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 06/29/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The hepatitis D virus (HDV) causes the most severe form of chronic hepatitis, often progressing to cirrhosis within 5 to 10 years. There is no curative treatment, and the mechanisms underlying the accelerated liver disease progression are unknown. METHODS Innate and adaptive immune responses were studied in blood and liver of 24 patients infected with HDV and 30 uninfected controls by multiparameter flow cytometry in correlation with disease severity and stage. RESULTS The 2 main intrahepatic innate immune-cell populations, mucosal-associated invariant T cells and natural killer (NK) cells, were reduced in the livers of patients infected with HDV compared with those of uninfected controls but were more frequently activated in the liver compared with the blood. Most intrahepatic cluster of differentiation (CD) 8-positive (CD8+) T cells were memory cells or terminal effector memory cells, and most of the activated and degranulating (CD107a+) HDV-specific and total CD8+ T cells were liver-resident (CD69+C-X-C motif chemokine receptor 6+). Unsupervised analysis of flow cytometry data identified an activated, memory-like, tissue-resident HDV-specific CD8+ T-cell cluster with expression of innate-like NK protein 30 (NKp30) and NK group 2D (NKG2D) receptors. The size of this population correlated with liver enzyme activity (r = 1.0). NKp30 and NKG2D expression extended beyond the HDV-specific to the total intrahepatic CD8+ T-cell population, suggesting global bystander activation. This was supported by the correlations between (i) NKG2D expression with degranulation of intrahepatic CD8+ T cells, (ii) frequency of degranulating CD8+ T cells with liver enzyme activity and the aspartate aminotransferase-to-platelet ratio index score, and by the in vitro demonstration of cytokine-induced NKG2D-dependent cytotoxicity. CONCLUSION Antigen-nonspecific activation of liver-resident CD8+ T cells may contribute to inflammation and disease stage in HDV infection.
Collapse
Affiliation(s)
- Helenie Kefalakes
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Xylia J Horgan
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Min Kyung Jung
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Georgios Amanakis
- Laboratory of Cardiac Physiology, Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Devika Kapuria
- Clinical Research Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Fabian J Bolte
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Christopher Koh
- Clinical Research Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Theo Heller
- Translational Hepatology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland.
| |
Collapse
|
16
|
Dijkgraaf FE, Kok L, Schumacher TNM. Formation of Tissue-Resident CD8 + T-Cell Memory. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a038117. [PMID: 33685935 PMCID: PMC8327830 DOI: 10.1101/cshperspect.a038117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Resident memory CD8+ T (Trm) cells permanently reside in nonlymphoid tissues where they act as a first line of defense against recurrent pathogens. How and when antigen-inexperienced CD8+ T cells differentiate into Trm has been a topic of major interest, as knowledge on how to steer this process may be exploited in the development of vaccines and anticancer therapies. Here, we first review the current understanding of the early signals that CD8+ T cells receive before they have entered the tissue and that govern their capacity to develop into tissue-resident memory T cells. Subsequently, we discuss the tissue-derived factors that promote Trm maturation in situ. Combined, these data sketch a model in which a subset of responding T cells develops a heightened capacity to respond to local cues present in the tissue microenvironment, which thereby imprints their ability to contribute to the tissue-resident memory CD8+ T-cell pool that provide local control against pathogens.
Collapse
Affiliation(s)
- Feline E Dijkgraaf
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066 Amsterdam, the Netherlands
| | - Lianne Kok
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066 Amsterdam, the Netherlands
| | - Ton N M Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066 Amsterdam, the Netherlands
| |
Collapse
|
17
|
Macleod BL, Elsaesser HJ, Snell LM, Dickson RJ, Guo M, Hezaveh K, Xu W, Kothari A, McGaha TL, Guidos CJ, Brooks DG. A network of immune and microbial modifications underlies viral persistence in the gastrointestinal tract. J Exp Med 2021; 217:152068. [PMID: 32880629 PMCID: PMC7953734 DOI: 10.1084/jem.20191473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/04/2019] [Accepted: 01/21/2020] [Indexed: 12/22/2022] Open
Abstract
Many pathogens subvert intestinal immunity to persist within the gastrointestinal tract (GIT); yet, the underlying mechanisms that enable sanctuary specifically in this reservoir are unclear. Using mass cytometry and network analysis, we demonstrate that chronic LCMV infection of the GIT leads to dysregulated microbial composition, a cascade of metabolic alterations, increased susceptibility to GI disease, and a system-wide recalibration of immune composition that defines viral persistence. Chronic infection led to outgrowth of activated Tbet–expressing T reg cell populations unique to the GIT and the rapid erosion of pathogen-specific CD8 tissue-resident memory T cells. Mechanistically, T reg cells and coinhibitory receptors maintained long-term viral sanctuary within the GIT, and their targeting reactivated T cells and eliminated this viral reservoir. Thus, our data provide a high-dimensional definition of the mechanisms of immune regulation that chronic viruses implement to exploit the unique microenvironment of the GIT and identify T reg cells as key modulators of viral persistence in the intestinal tract.
Collapse
Affiliation(s)
- Bethany L Macleod
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Heidi J Elsaesser
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Laura M Snell
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Russell J Dickson
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Mengdi Guo
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Kebria Hezaveh
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Wenxi Xu
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Akash Kothari
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Tracy L McGaha
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia J Guidos
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - David G Brooks
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Deschler S, Kager J, Erber J, Fricke L, Koyumdzhieva P, Georgieva A, Lahmer T, Wiessner JR, Voit F, Schneider J, Horstmann J, Iakoubov R, Treiber M, Winter C, Ruland J, Busch DH, Knolle PA, Protzer U, Spinner CD, Schmid RM, Quante M, Böttcher K. Mucosal-Associated Invariant T (MAIT) Cells Are Highly Activated and Functionally Impaired in COVID-19 Patients. Viruses 2021; 13:241. [PMID: 33546489 PMCID: PMC7913667 DOI: 10.3390/v13020241] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), comprises mild courses of disease as well as progression to severe disease, characterised by lung and other organ failure. The immune system is considered to play a crucial role for the pathogenesis of COVID-19, although especially the contribution of innate-like T cells remains poorly understood. Here, we analysed the phenotype and function of mucosal-associated invariant T (MAIT) cells, innate-like T cells with potent antimicrobial effector function, in patients with mild and severe COVID-19 by multicolour flow cytometry. Our data indicate that MAIT cells are highly activated in patients with COVID-19, irrespective of the course of disease, and express high levels of proinflammatory cytokines such as IL-17A and TNFα ex vivo. Of note, expression of the activation marker HLA-DR positively correlated with SAPS II score, a measure of disease severity. Upon MAIT cell-specific in vitro stimulation, MAIT cells however failed to upregulate expression of the cytokines IL-17A and TNFα, as well as cytolytic proteins, that is, granzyme B and perforin. Thus, our data point towards an altered cytokine expression profile alongside an impaired antibacterial and antiviral function of MAIT cells in COVID-19 and thereby contribute to the understanding of COVID-19 immunopathogenesis.
Collapse
Affiliation(s)
- Sebastian Deschler
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| | - Juliane Kager
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| | - Johanna Erber
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| | - Lisa Fricke
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| | - Plamena Koyumdzhieva
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| | - Alexandra Georgieva
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| | - Tobias Lahmer
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| | - Johannes R. Wiessner
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| | - Florian Voit
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| | - Jochen Schneider
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| | - Julia Horstmann
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| | - Roman Iakoubov
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| | - Matthias Treiber
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| | - Christof Winter
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (C.W.); (J.R.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (C.W.); (J.R.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, 81675 Munich, Germany;
| | - Percy A. Knolle
- Institute of Molecular Immunology and Experimental Oncology, University Hospital Rechts der Isar, Technical University of Munich, 81675 Munich, Germany;
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, 81675 Munich, Germany;
- German Center for Infection Research (DZIF), 38124 Braunschweig, Partner Site Munich, Germany
| | - Christoph D. Spinner
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
- German Center for Infection Research (DZIF), 38124 Braunschweig, Partner Site Munich, Germany
| | - Roland M. Schmid
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| | - Michael Quante
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
- Freiburg University Medical Center, Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Katrin Böttcher
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.D.); (J.K.); (J.E.); (L.F.); (P.K.); (A.G.); (T.L.); (J.R.W.); (F.V.); (J.S.); (J.H.); (R.I.); (M.T.); (C.D.S.); (R.M.S.); (M.Q.)
| |
Collapse
|
19
|
Kim DS, Rowland-Jones S, Gea-Mallorquí E. Will SARS-CoV-2 Infection Elicit Long-Lasting Protective or Sterilising Immunity? Implications for Vaccine Strategies (2020). Front Immunol 2020; 11:571481. [PMID: 33362759 PMCID: PMC7756008 DOI: 10.3389/fimmu.2020.571481] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
In December 2019, an outbreak of a novel coronavirus (SARS-CoV-2) in Wuhan, China resulted in the current COVID-19 global pandemic. The human immune system has not previously encountered this virus, raising the important question as to whether or not protective immunity is generated by infection. Growing evidence suggests that protective immunity can indeed be acquired post-infection-although a handful of reinfection cases have been reported. However, it is still unknown whether the immune response to SARS-CoV-2 leads to some degree of long-lasting protection against the disease or the infection. This review draws insights from previous knowledge regarding the nature and longevity of immunity to the related virus, SARS-CoV, to fill the gaps in our understanding of the immune response to SARS-CoV-2. Deciphering the immunological characteristics that give rise to protective immunity against SARS-CoV-2 is critical to guiding vaccine development and also predicting the course of the pandemic. Here we discuss the recent evidence that characterises the adaptive immune response against SARS-CoV-2 and its potential implications for the generation of memory responses and long-term protection.
Collapse
Affiliation(s)
- David S. Kim
- Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Sarah Rowland-Jones
- Viral Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ester Gea-Mallorquí
- Viral Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Barnstorf I, Welten SPM, Borsa M, Baumann NS, Pallmer K, Joller N, Spörri R, Oxenius A. Chronic viral infections impinge on naive bystander CD8 T cells. Immun Inflamm Dis 2020; 8:249-257. [PMID: 32220007 PMCID: PMC7416038 DOI: 10.1002/iid3.300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Epidemiological data suggest that persistent viral infections impair immune homeostasis and immune responsiveness. Previous studies showed that chronic virus infections negatively impact bystander T-cell differentiation and memory formation but there is limited knowledge of how chronic virus infections impinge on heterologous naive T-cell populations. METHODS We used adoptive transfer of naive CD8 T cells with defined nonviral specificity into hosts, which were subsequently chronically infected with lymphocytic choriomeningitis virus, followed by analyses of numeric, phenotypic, and functional changes provoked in the chronically infected host. RESULTS We demonstrate that chronic virus infections have a profound effect on the number and phenotype of naive bystander CD8 T cells. Moreover, primary expansion upon antigen encounter was severely compromised in chronically infected hosts. However, when naive bystander CD8 T cells were transferred from the chronically infected mice into naive hosts, they regained their expansion potential. Conversely, when chronically infected hosts were supplied with additional antigen-presenting cells (APCs), primary expansion of the naive CD8 T cells was restored to levels of the uninfected hosts. CONCLUSIONS Our results document numeric, phenotypic, and functional adaptation of bystander naive CD8 T cells during nonrelated chronic viral infection. Their functional impairment was only evident in the chronically infected host, indicating that T-cell extrinsic factors, in particular the quality of priming APCs, are responsible for the impaired function of naive bystander T cells in the chronically infected hosts.
Collapse
Affiliation(s)
- Isabel Barnstorf
- Institute of Microbiology, Department of BiologyETH ZürichZürichSwitzerland
| | | | - Mariana Borsa
- Institute of Microbiology, Department of BiologyETH ZürichZürichSwitzerland
| | - Nicolas S. Baumann
- Institute of Microbiology, Department of BiologyETH ZürichZürichSwitzerland
| | - Katharina Pallmer
- Institute of Microbiology, Department of BiologyETH ZürichZürichSwitzerland
| | - Nicole Joller
- Institute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| | - Roman Spörri
- Institute of Microbiology, Department of BiologyETH ZürichZürichSwitzerland
| | - Annette Oxenius
- Institute of Microbiology, Department of BiologyETH ZürichZürichSwitzerland
| |
Collapse
|
21
|
Guerrera G, Ruggieri S, Picozza M, Piras E, Gargano F, Placido R, Gasperini C, Salvetti M, Buscarinu MC, Battistini L, Borsellino G, Angelini DF. EBV-specific CD8 T lymphocytes and B cells during glatiramer acetate therapy in patients with MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/6/e876. [PMID: 32817203 PMCID: PMC7455312 DOI: 10.1212/nxi.0000000000000876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/08/2020] [Indexed: 12/31/2022]
Abstract
Objective Infection with Epstein-Barr virus (EBV) has been associated with clinical activity and risk of developing MS. The purpose of this study is to investigate the impact of glatiramer acetate (GA) therapy on EBV-specific immune responses and disease course. Methods We characterized EBV-specific CD8 T lymphocytes and B cells during disease-modifying treatments in 2 groups of patients with MS. We designed a 2-pronged approach consisting of a cross-sectional study (39 untreated patients, 38 patients who had undergone 12 months of GA treatment, and 48 healthy donors compatible for age and sex with the patients with MS) and a 12-month longitudinal study (35 patients treated with GA). CD8 EBV-specific T cells and B lymphocytes were studied using pentamers and multiparametric flow cytometry. Results We find that treatment with GA enhances viral recognition by inducing an increased number of circulating virus-specific CD8 T cells (p = 0.0043) and by relieving their features of exhaustion (p = 0.0053) and senescence (p < 0.0001, p = 0.0001). B cells, phenotypically and numerically tracked along the 1-year follow-up study, show a steady decrease in memory B-cell frequencies (p = 0.025), paralleled by an increase of the naive B subset. Conclusion GA therapy acts as a disease-modifying therapy restoring homeostasis in the immune system, including anti-EBV responses.
Collapse
Affiliation(s)
- Gisella Guerrera
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Serena Ruggieri
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Mario Picozza
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Eleonora Piras
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Francesca Gargano
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Roberta Placido
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Claudio Gasperini
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Marco Salvetti
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Maria Chiara Buscarinu
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Luca Battistini
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Giovanna Borsellino
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Daniela F Angelini
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy.
| |
Collapse
|
22
|
Wijaya RS, Read SA, Selvamani SP, Schibeci S, Azardaryany MK, Ong A, van der Poorten D, Lin R, Douglas MW, George J, Ahlenstiel G. Hepatitis C Virus (HCV) Eradication With Interferon-Free Direct-Acting Antiviral-Based Therapy Results in KLRG1+ HCV-Specific Memory Natural Killer Cells. J Infect Dis 2020; 223:1183-1195. [PMID: 32777077 DOI: 10.1093/infdis/jiaa492] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022] Open
Abstract
Direct acting antiviral therapies rapidly clear chronic hepatitis C virus (HCV) infection and restore natural killer (NK) cell function. We investigated NK-cell memory formation following HCV clearance by examining NK-cell phenotype and responses from control and chronic HCV patients before and after therapy following sustained virologic response at 12 weeks post therapy (SVR12). NK-cell phenotype at SVR12 differed significantly from paired pretreatment samples, with an increase in maturation markers CD16, CD57, and KLRG1. HCV patients possessed stronger cytotoxic responses against HCV-infected cells as compared to healthy controls; a response that further increased following SVR12. The antigen-specific response was mediated by KLRG1+ NK cells, as demonstrated by increased degranulation and proliferation in response to HCV antigen only. Our data suggest that KLRG1+ HCV-specific memory NK cells develop following viral infection, providing insight into their role in HCV clearance and relevance with regard to vaccine design.
Collapse
Affiliation(s)
- Ratna S Wijaya
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine, Pelita Harapan University, Tangerang, Indonesia
| | - Scott A Read
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia.,Blacktown Medical School, Western Sydney University, Blacktown, New South Wales, Australia.,Blacktown Hospital, Blacktown, New South Wales, Australia
| | - Sakthi P Selvamani
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Stephen Schibeci
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Mahmoud K Azardaryany
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Adrian Ong
- Blacktown Hospital, Blacktown, New South Wales, Australia
| | | | - Rita Lin
- Westmead Hospital, University of Sydney, New South Wales, Australia
| | - Mark W Douglas
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia.,Westmead Hospital, University of Sydney, New South Wales, Australia.,Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia.,Westmead Hospital, University of Sydney, New South Wales, Australia
| | - Golo Ahlenstiel
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia.,Blacktown Medical School, Western Sydney University, Blacktown, New South Wales, Australia.,Blacktown Hospital, Blacktown, New South Wales, Australia
| |
Collapse
|
23
|
Hamilton SE, Badovinac VP, Beura LK, Pierson M, Jameson SC, Masopust D, Griffith TS. New Insights into the Immune System Using Dirty Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:3-11. [PMID: 32571979 PMCID: PMC7316151 DOI: 10.4049/jimmunol.2000171] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
The mouse (Mus musculus) is the dominant organism used to investigate the mechanisms behind complex immunological responses because of their genetic similarity to humans and our ability to manipulate those genetics to understand downstream function. Indeed, our knowledge of immune system development, response to infection, and ways to therapeutically manipulate the immune response to combat disease were, in large part, delineated in the mouse. Despite the power of mouse-based immunology research, the translational efficacy of many new therapies from mouse to human is far from ideal. Recent data have highlighted how the naive, neonate-like immune system of specific pathogen-free mice differs dramatically in composition and function to mice living under barrier-free conditions (i.e., "dirty" mice). In this review, we discuss major findings to date and challenges faced when using dirty mice and specific areas of immunology research that may benefit from using animals with robust and varied microbial exposure.
Collapse
Affiliation(s)
- Sara E Hamilton
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN 55455
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA 52242
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
| | - Lalit K Beura
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912
| | - Mark Pierson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Stephen C Jameson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN 55455
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - David Masopust
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN 55455
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Thomas S Griffith
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN 55455;
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Urology, University of Minnesota, Minneapolis, MN 55455; and
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN 55417
| |
Collapse
|
24
|
Vardhana SA, Wolchok JD. The many faces of the anti-COVID immune response. J Exp Med 2020; 217:e20200678. [PMID: 32353870 PMCID: PMC7191310 DOI: 10.1084/jem.20200678] [Citation(s) in RCA: 384] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 01/08/2023] Open
Abstract
The novel 2019 strain of coronavirus is a source of profound morbidity and mortality worldwide. Compared with recent viral outbreaks, COVID-19 infection has a relatively high mortality rate, the reasons for which are not entirely clear. Furthermore, treatment options for COVID-19 infection are currently limited. In this Perspective, we explore the contributions of the innate and adaptive immune systems to both viral control as well as toxicity during COVID-19 infections and offer suggestions to both understand and therapeutically modulate anti-COVID immunity.
Collapse
Affiliation(s)
- Santosha A. Vardhana
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
| | - Jedd D. Wolchok
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
- Human Oncology Pathogenesis Program, Department of Medicine and Ludwig Center, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medicine and Graduate School of Biomedical Sciences, New York, NY
| |
Collapse
|
25
|
Vardhana SA, Wolchok JD. The many faces of the anti-COVID immune response. THE JOURNAL OF EXPERIMENTAL MEDICINE 2020. [PMID: 32353870 DOI: 10.1084/jem.20200678.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The novel 2019 strain of coronavirus is a source of profound morbidity and mortality worldwide. Compared with recent viral outbreaks, COVID-19 infection has a relatively high mortality rate, the reasons for which are not entirely clear. Furthermore, treatment options for COVID-19 infection are currently limited. In this Perspective, we explore the contributions of the innate and adaptive immune systems to both viral control as well as toxicity during COVID-19 infections and offer suggestions to both understand and therapeutically modulate anti-COVID immunity.
Collapse
Affiliation(s)
- Santosha A Vardhana
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY.,Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY.,Parker Institute for Cancer Immunotherapy, San Francisco, CA
| | - Jedd D Wolchok
- Parker Institute for Cancer Immunotherapy, San Francisco, CA.,Human Oncology Pathogenesis Program, Department of Medicine and Ludwig Center, Memorial Sloan Kettering Cancer Center, New York, NY.,Weill Cornell Medicine and Graduate School of Biomedical Sciences, New York, NY
| |
Collapse
|
26
|
Mohanty S, Barik P, Debata N, Nagarajan P, Devadas S. iCa 2+ Flux, ROS and IL-10 Determines Cytotoxic, and Suppressor T Cell Functions in Chronic Human Viral Infections. Front Immunol 2020; 11:83. [PMID: 32210950 PMCID: PMC7068714 DOI: 10.3389/fimmu.2020.00083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Exhaustion of CD8+ T cells and increased IL-10 production is well-known in chronic viral infections but mechanisms leading to loss of their cytotoxic capabilities and consequent exhaustion remain unclear. Exhausted CD8+T cells also called T suppressors are highly immune suppressive with altered T cell receptor signaling characteristics that mark it exclusively from their cytotoxic counterparts. Our study found that iCa2+ flux is reduced following T cell receptor activation in T suppressor cells when compared to their effector counterpart. Importantly chronic activation of murine cytotoxic CD8+ T cells lead to reduced iCa2+ influx, decreased IFN-γ and enhanced IL-10 production and this profile is mimicked in Tc1 cells upon reduction of iCa2+ flux by extracellular calcium channel inhibitors. Further reduced iCa2+ flux induced ROS which lead to IFN-γ reduction and increased IL-10 producing T suppressors through the STAT3—STAT5 axis. The above findings were substantiated by our human data where reduced iCa2+ flux in chronic Hepatitis infections displayed CD8+ T cells with low IFN-γ and increased IL-10 production. Importantly treatment with an antioxidant led to increased IFN-γ and reduced IL-10 production in human chronic Hep-B/C samples suggesting overall a proximal regulatory role for iCa2+ influx, ROS, and IL-10 in determining the effector/ suppressive axis of CD8+ T cells.
Collapse
Affiliation(s)
- Subhasmita Mohanty
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Prakash Barik
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Nagen Debata
- Department of Pathology, Institute of Medical Sciences and SUM Hospital, Bhubaneswar, India
| | - Perumal Nagarajan
- Experimental Animal Facility, National Institute of Immunology, New Delhi, India
| | - Satish Devadas
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
27
|
Chronic Lymphocytic Choriomeningitis Infection Causes Susceptibility to Mousepox and Impairs Natural Killer Cell Maturation and Function. J Virol 2020; 94:JVI.01831-19. [PMID: 31776282 DOI: 10.1128/jvi.01831-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/25/2019] [Indexed: 11/20/2022] Open
Abstract
Chronic viral infections. like those of humans with cytomegalovirus, human immunodeficiency virus (even when under antiretroviral therapy), and hepatitis C virus or those of mice with lymphocytic choriomeningitis virus (LCMV) clone 13 (CL13), result in immune dysfunction that predisposes the host to severe infections with unrelated pathogens. It is known that C57BL/6 (B6) mice are resistant to mousepox, a lethal disease caused by the orthopoxvirus ectromelia virus (ECTV), and that this resistance requires natural killer (NK) cells and other immune cells. We show that most B6 mice chronically infected with CL13 succumb to mousepox but that most of those that recovered from acute infection with the LCMV Armstrong (Arm) strain survive. We also show that B6 mice chronically infected with CL13 and those that recovered from Arm infection have a reduced frequency and a reduced number of NK cells. However, at steady state, NK cells in mice that have recovered from Arm infection mature normally and, in response to ECTV, get activated, become more mature, proliferate, and increase their cytotoxicity in vivo Conversely, in mice chronically infected with CL13, NK cells are immature and residually activated, and following ECTV infection, they do not mature, proliferate, or increase their cytotoxicity. Given the well-established importance of NK cells in resistance to mousepox, these data suggest that the NK cell dysfunction caused by CL13 persistence may contribute to the susceptibility of CL13-infected mice to mousepox. Whether chronic infections similarly affect NK cells in humans should be explored.IMPORTANCE Infection of adult mice with the clone 13 (CL13) strain of lymphocytic choriomeningitis virus (LCMV) is extensively used as a model of chronic infection. In this paper, we show that mice chronically infected with CL13 succumb to challenge with ectromelia virus (ECTV; the agent of mousepox) and that natural killer (NK) cells in CL13-infected mice are reduced in numbers and have an immature and partially activated phenotype but do respond to ECTV. These data may provide additional clues why humans chronically infected with certain pathogens are less resistant to viral diseases.
Collapse
|
28
|
Wattenberg MM, Beatty GL. Overcoming immunotherapeutic resistance by targeting the cancer inflammation cycle. Semin Cancer Biol 2020; 65:38-50. [PMID: 31954172 DOI: 10.1016/j.semcancer.2020.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Inflammation is a hallmark of cancer and supports tumor growth, proliferation, and metastasis, but also inhibits T cell immunosurveillance and the efficacy of immunotherapy. The biology of cancer inflammation is defined by a cycle of distinct immunological steps that begins during disease conception with the release of inflammatory soluble factors. These factors communicate with host organs to trigger bone marrow mobilization of myeloid cells, trafficking of myeloid cells to the tumor, and differentiation of myeloid cells within the tumor bed. Tumor-infiltrating myeloid cells then orchestrate an immunosuppressive microenvironment and assist in sustaining a vicious cycle of inflammation that co-evolves with tumor cells. This Cancer-Inflammation Cycle acts as a rheostat or "inflammostat" that impinges upon T cell immunosurveillance and prevents the development of productive anti-tumor immunity. Here, we define the major nodes of the Cancer-Inflammation Cycle and describe their impact on T cell immunosurveillance in cancer. Additionally, we discuss emerging pre-clinical and clinical data suggesting that intervening upon the Cancer-Inflammation Cycle will be a necessary step for broadening the potential of immunotherapy in cancer.
Collapse
Affiliation(s)
- Max M Wattenberg
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Gregory L Beatty
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
| |
Collapse
|
29
|
Klarquist J, Chitrakar A, Pennock ND, Kilgore AM, Blain T, Zheng C, Danhorn T, Walton K, Jiang L, Sun J, Hunter CA, D'Alessandro A, Kedl RM. Clonal expansion of vaccine-elicited T cells is independent of aerobic glycolysis. Sci Immunol 2019; 3:3/27/eaas9822. [PMID: 30194241 DOI: 10.1126/sciimmunol.aas9822] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/27/2018] [Indexed: 12/16/2022]
Abstract
In contrast to responses against infectious challenge, T cell responses induced via adjuvanted subunit vaccination are dependent on interleukin-27 (IL-27). We show that subunit vaccine-elicited cellular responses are also dependent on IL-15, again in contrast to the infectious response. Early expression of interferon regulatory factor 4 (IRF4) was compromised in either IL-27- or IL-15-deficient environments after vaccination but not infection. Because IRF4 facilitates metabolic support of proliferating cells via aerobic glycolysis, we expected this form of metabolic activity to be reduced in the absence of IL-27 or IL-15 signaling after vaccination. Instead, metabolic flux analysis indicated that vaccine-elicited T cells used only mitochondrial function to support their clonal expansion. Loss of IL-27 or IL-15 signaling during vaccination resulted in a reduction in mitochondrial function, with no corresponding increase in aerobic glycolysis. Consistent with these observations, the T cell response to vaccination was unaffected by in vivo treatment with the glycolytic inhibitor 2-deoxyglucose, whereas the response to viral challenge was markedly lowered. Collectively, our data identify IL-27 and IL-15 as critical to vaccine-elicited T cell responses because of their capacity to fuel clonal expansion through a mitochondrial metabolic program previously thought only capable of supporting quiescent naïve and memory T cells.
Collapse
Affiliation(s)
- Jared Klarquist
- Department of Immunology and Microbiology, University of Colorado Denver, Denver, CO 80045, USA
| | - Alisha Chitrakar
- Department of Immunology and Microbiology, University of Colorado Denver, Denver, CO 80045, USA
| | - Nathan D Pennock
- Department of Immunology and Microbiology, University of Colorado Denver, Denver, CO 80045, USA
| | - Augustus M Kilgore
- Department of Immunology and Microbiology, University of Colorado Denver, Denver, CO 80045, USA
| | - Trevor Blain
- Department of Immunology and Microbiology, University of Colorado Denver, Denver, CO 80045, USA
| | - Connie Zheng
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Denver, CO 80045, USA
| | - Thomas Danhorn
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA
| | - Kendra Walton
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA
| | - Li Jiang
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Jie Sun
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Christopher A Hunter
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Denver, CO 80045, USA
| | - Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado Denver, Denver, CO 80045, USA.
| |
Collapse
|
30
|
Xu MM, Murphy PA, Vella AT. Activated T-effector seeds: cultivating atherosclerotic plaque through alternative activation. Am J Physiol Heart Circ Physiol 2019; 316:H1354-H1365. [PMID: 30925075 PMCID: PMC6620674 DOI: 10.1152/ajpheart.00148.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a chronic inflammatory pathology that precipitates substantial morbidity and mortality. Although initiated by physiological patterns of low and disturbed flow that differentially prime endothelial cells at sites of vessel branch points and curvature, the chronic, smoldering inflammation of atherosclerosis is accelerated by comorbidities involving inappropriate activation of the adaptive immune system, such as autoimmunity. The innate contributions to atherosclerosis, especially in the transition of monocyte to lipid-laden macrophage, are well established, but the mechanisms underpinning the infiltration, persistence, and effector dynamics of CD8 T cells in particular are not well understood. Adaptive immunity is centered on a classical cascade of antigen recognition and activation, costimulation, and effector cytokine secretion upon recall of antigen. However, chronic inflammation can generate alternative cues that supplant this behavior pattern and promote the retention and activation of peripherally activated T cells. Furthermore, the atherogenic foci that activated immune cell infiltrate are unique lipid-laden environments that offer a diverse array of stimuli, including those of survival, antigen hyporesponsiveness, and inflammatory cytokine expression. This review will focus on how known cardiovascular comorbidities may be influencing CD8 T-cell activation and how, once infiltrated within atherogenic foci, these T cells face a multitude of cues that skew the classical cascade of T-cell behavior, highlighting alternative modes of activation that may help contextualize associations of autoimmunity, viral infection, and immunotherapy with cardiovascular morbidity.
Collapse
Affiliation(s)
- Maria M Xu
- Department of Immunology, School of Medicine, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Patrick A Murphy
- Center for Vascular Biology, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Anthony T Vella
- Department of Immunology, School of Medicine, University of Connecticut Health School of Medicine , Farmington, Connecticut
| |
Collapse
|
31
|
Abstract
CD8+ T cells are important for the protective immunity against intracellular pathogens and tumor. In the case of chronic infection or cancer, CD8+ T cells are exposed to persistent antigen and/or inflammatory signals. This excessive amount of signals often leads CD8+ T cells to gradual deterioration of T cell function, a state called "exhaustion." Exhausted T cells are characterized by progressive loss of effector functions (cytokine production and killing function), expression of multiple inhibitory receptors (such as PD-1 and LAG3), dysregulated metabolism, poor memory recall response, and homeostatic proliferation. These altered functions are closely related with altered transcriptional program and epigenetic landscape that clearly distinguish exhausted T cells from normal effector and memory T cells. T cell exhaustion is often associated with inefficient control of persisting infections and cancers, but re-invigoration of exhausted T cells with inhibitory receptor blockade can promote improved immunity and disease outcome. Accumulating evidences support the therapeutic potential of targeting exhausted T cells. However, exhausted T cells comprise heterogenous cell population with distinct responsiveness to intervention. Understanding molecular mechanism of T cell exhaustion is essential to establish rational immunotherapeutic interventions.
Collapse
|
32
|
TCF1 expression marks self-renewing human CD8 + T cells. Blood Adv 2019; 2:1685-1690. [PMID: 30021780 DOI: 10.1182/bloodadvances.2018016279] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/28/2018] [Indexed: 12/26/2022] Open
Abstract
Expression of the transcription factor T-cell factor 1 (TCF1) identifies antigen-experienced murine CD8+ T cells that retain potential for lymphoid recirculation and the ability to self-renew while producing more differentiated effector cells. We found that CD8+ T cells in the blood of both healthy and chronically infected humans expressed TCF1 at 3 distinct levels: high (TCF1-hi), intermediate (TCF1-int), and low (TCF1-lo). TCF1-hi cells could be found within both the naive and memory compartments and were characterized by relative quiescence and lack of immediate effector function. A substantial fraction of TCF1-int cells were found among memory cells, and TCF1-int cells exhibited robust immediate effector functions. TCF1-lo cells were most enriched in effector memory cells that expressed the senescence marker CD57. Following reactivation, TCF1-hi cells gave rise to TCF1-lo descendants while self-renewing the TCF1-hi progenitor. By contrast, reactivation of TCF1-lo cells produced more TCF1-lo cells without evidence of de-differentiating into TCF1-hi cells. Flow cytometric analyses of TCF1 expression from patient specimens may become a useful biomarker for adaptive immune function in response to vaccination, infection, autoimmunity, and cancer.
Collapse
|
33
|
Lang PA, Lang KS. Stand by me(mory): Chronic infection diminishes memory pool via IL-6/STAT1. J Exp Med 2019; 216:474-475. [PMID: 30782615 PMCID: PMC6400542 DOI: 10.1084/jem.20190066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Despite great efforts to eradicate chronic viral infections, they still remain a global health problem. In this issue, Barnstorf et al. (2019. J. Exp. Med. https://doi.org/10.1084/jem.20181589) show that virus-unspecific bystander memory T cells are highly affected during chronic viral infection via IL-6/STAT1. Bystander memory T cells are strongly decimated in numbers and change in phenotype and function during chronic viral infection. These data provide new explanations for immune-mediated problems during chronic virus infections.
Collapse
Affiliation(s)
- Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Karl S Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
34
|
Barnstorf I, Borsa M, Baumann N, Pallmer K, Yermanos A, Joller N, Spörri R, Welten SPM, Kräutler NJ, Oxenius A. Chronic virus infection compromises memory bystander T cell function in an IL-6/STAT1-dependent manner. J Exp Med 2019; 216:571-586. [PMID: 30745322 PMCID: PMC6400541 DOI: 10.1084/jem.20181589] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/05/2018] [Accepted: 01/22/2019] [Indexed: 12/29/2022] Open
Abstract
Chronic viral infections are widespread among humans, with ∼8-12 chronic viral infections per individual, and there is epidemiological proof that these impair heterologous immunity. We studied the impact of chronic LCMV infection on the phenotype and function of memory bystander CD8+ T cells. Active chronic LCMV infection had a profound effect on total numbers, phenotype, and function of memory bystander T cells in mice. The phenotypic changes included up-regulation of markers commonly associated with effector and exhausted cells and were induced by IL-6 in a STAT1-dependent manner in the context of chronic virus infection. Furthermore, bystander CD8 T cell functions were reduced with respect to their ability to produce inflammatory cytokines and to undergo secondary expansion upon cognate antigen challenge with major cell-extrinsic contributions responsible for the diminished memory potential of bystander CD8+ T cells. These findings open new perspectives for immunity and vaccination during chronic viral infections.
Collapse
Affiliation(s)
| | - Mariana Borsa
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | | | | | | - Nicole Joller
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Roman Spörri
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | | | | | |
Collapse
|
35
|
Teo TH, Howland SW, Claser C, Gun SY, Poh CM, Lee WW, Lum FM, Ng LF, Rénia L. Co-infection with Chikungunya virus alters trafficking of pathogenic CD8 + T cells into the brain and prevents Plasmodium-induced neuropathology. EMBO Mol Med 2019; 10:121-138. [PMID: 29113976 PMCID: PMC5760855 DOI: 10.15252/emmm.201707885] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Arboviral diseases have risen significantly over the last 40 years, increasing the risk of co-infection with other endemic disease such as malaria. However, nothing is known about the impact arboviruses have on the host response toward heterologous pathogens during co-infection. Here, we investigate the effects of Chikungunya virus (CHIKV) co-infection on the susceptibility and severity of malaria infection. Using the Plasmodium berghei ANKA (PbA) experimental cerebral malaria (ECM) model, we show that concurrent co-infection induced the most prominent changes in ECM manifestation. Concurrent co-infection protected mice from ECM mortality without affecting parasite development in the blood. This protection was mediated by the alteration of parasite-specific CD8+ T-cell trafficking through an IFNγ-mediated mechanism. Co-infection with CHIKV induced higher splenic IFNγ levels that lead to high local levels of CXCL9 and CXCL10. This induced retention of CXCR3-expressing pathogenic CD8+ T cells in the spleen and prevented their migration to the brain. This then averts all downstream pathogenic events such as parasite sequestration in the brain and disruption of blood-brain barrier that prevents ECM-induced mortality in co-infected mice.
Collapse
Affiliation(s)
- Teck-Hui Teo
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Shanshan W Howland
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Carla Claser
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sin Yee Gun
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chek Meng Poh
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wendy Wl Lee
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Fok-Moon Lum
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Lisa Fp Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore .,Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
36
|
Abstract
Exhausted CD8 T (Tex) cells are a distinct cell lineage that arise during chronic infections and cancers in animal models and humans. Tex cells are characterized by progressive loss of effector functions, high and sustained inhibitory receptor expression, metabolic dysregulation, poor memory recall and homeostatic self-renewal, and distinct transcriptional and epigenetic programs. The ability to reinvigorate Tex cells through inhibitory receptor blockade, such as αPD-1, highlights the therapeutic potential of targeting this population. Emerging insights into the mechanisms of exhaustion are informing immunotherapies for cancer and chronic infections. However, like other immune cells, Tex cells are heterogeneous and include progenitor and terminal subsets with unique characteristics and responses to checkpoint blockade. Here, we review our current understanding of Tex cell biology, including the developmental paths, transcriptional and epigenetic features, and cell intrinsic and extrinsic factors contributing to exhaustion and how this knowledge may inform therapeutic targeting of Tex cells in chronic infections, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Laura M McLane
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mohamed S Abdel-Hakeem
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
37
|
Bystander T Cells: A Balancing Act of Friends and Foes. Trends Immunol 2018; 39:1021-1035. [PMID: 30413351 DOI: 10.1016/j.it.2018.10.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/27/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023]
Abstract
T cell responses are essential for appropriate protection against pathogens. T cell immunity is achieved through the ability to discriminate between foreign and self-molecules, and this relies heavily on stringent T cell receptor (TCR) specificity. Recently, bystander activated T lymphocytes, that are specific for unrelated epitopes during an antigen-specific response, have been implicated in diverse diseases. Numerous infection models have challenged the classic dogma of T cell activation as being solely dependent on TCR and major histocompatibility complex (MHC) interactions, indicating an unappreciated role for pathogen-associated receptors on T cells. We discuss here the specific roles of bystander activated T cells in pathogenesis, shedding light on the ability of these cells to modulate disease severity independently from TCR recognition.
Collapse
|
38
|
Böttcher K, Rombouts K, Saffioti F, Roccarina D, Rosselli M, Hall A, Luong T, Tsochatzis EA, Thorburn D, Pinzani M. MAIT cells are chronically activated in patients with autoimmune liver disease and promote profibrogenic hepatic stellate cell activation. Hepatology 2018; 68:172-186. [PMID: 29328499 DOI: 10.1002/hep.29782] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/13/2017] [Accepted: 01/09/2018] [Indexed: 12/12/2022]
Abstract
UNLABELLED Autoimmune liver diseases (AILDs) are chronic liver pathologies characterized by fibrosis and cirrhosis due to immune-mediated liver damage. In this study, we addressed the question whether mucosal-associated invariant T (MAIT) cells, innate-like T cells, are functionally altered in patients with AILD and whether MAIT cells can promote liver fibrosis through activation of hepatic stellate cells (HSCs). We analyzed the phenotype and function of MAIT cells from AILD patients and healthy controls by multicolor flow cytometry and investigated the interaction between human MAIT cells and primary human hepatic stellate cells (hHSCs). We show that MAIT cells are significantly decreased in peripheral blood and liver tissue of patients with AILD. Notably, MAIT cell frequency tended to decrease with increasing fibrosis stage. MAIT cells from AILD patients showed signs of exhaustion, such as impaired interferon-γ (IFN-γ) production and high ex vivo expression of the activation and exhaustion markers CD38, HLA-DR, and CTLA-4. Mechanistically, this exhausted state could be induced by repetitive stimulation of MAIT cells with the cytokines interleukin (IL)-12 and IL-18, leading to decreased IFN-γ and increased exhaustion marker expression. Of note, repetitive stimulation with IL-12 further resulted in expression of the profibrogenic cytokine IL-17A by otherwise exhausted MAIT cells. Accordingly, MAIT cells from both healthy controls and AILD patients were able to induce an activated, proinflammatory and profibrogenic phenotype in hHSCs in vitro that was partly mediated by IL-17. CONCLUSION Our data provide evidence that MAIT cells in AILD patients have evolved towards an exhausted, profibrogenic phenotype and can contribute to the development of HSC-mediated liver fibrosis. These findings reveal a cellular and molecular pathway for fibrosis development in AILD that could be exploited for antifibrotic therapy. (Hepatology 2018;68:172-186).
Collapse
Affiliation(s)
- Katrin Böttcher
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom
| | - Francesca Saffioti
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom.,Department of Clinical and Experimental Medicine, Division of Clinical and Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Davide Roccarina
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Matteo Rosselli
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Andrew Hall
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom
| | - TuVinh Luong
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Emmanuel A Tsochatzis
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Douglas Thorburn
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Massimo Pinzani
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
39
|
Souquette A, Thomas PG. Past Life and Future Effects-How Heterologous Infections Alter Immunity to Influenza Viruses. Front Immunol 2018; 9:1071. [PMID: 29872429 PMCID: PMC5972221 DOI: 10.3389/fimmu.2018.01071] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Influenza virus frequently mutates due to its error-prone polymerase. This feature contributes to influenza virus’s ability to evade pre-existing immunity, leading to annual epidemics and periodic pandemics. T cell memory plays a key protective role in the face of an antigenically distinct influenza virus strain because T cell targets are often derived from conserved internal proteins, whereas humoral immunity targets are often sites of increased mutation rates that are tolerated by the virus. Most studies of influenza T cell memory are conducted in naive, specific pathogen free mice and do not account for repetitive influenza infection throughout a lifetime, sequential acute heterologous infections between influenza infections, or heterologous chronic co-infections. By contrast to these mouse models, humans often experience numerous influenza infections, encounter heterologous acute infections between influenza infections, and are infected with at least one chronic virus. In this review, we discuss recent advances in understanding the effects of heterologous infections on the establishment and maintenance of CD8+ T cell immunological memory. Understanding the various factors that affect immune memory can provide insights into the development of more effective vaccines and increase reproducibility of translational studies between animal models and clinical results.
Collapse
Affiliation(s)
- Aisha Souquette
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
40
|
Stelekati E, Chen Z, Manne S, Kurachi M, Ali MA, Lewy K, Cai Z, Nzingha K, McLane LM, Hope JL, Fike AJ, Katsikis PD, Wherry EJ. Long-Term Persistence of Exhausted CD8 T Cells in Chronic Infection Is Regulated by MicroRNA-155. Cell Rep 2018; 23:2142-2156. [PMID: 29768211 PMCID: PMC5986283 DOI: 10.1016/j.celrep.2018.04.038] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 02/05/2018] [Accepted: 04/06/2018] [Indexed: 12/16/2022] Open
Abstract
Persistent viral infections and tumors drive development of exhausted T (TEX) cells. In these settings, TEX cells establish an important host-pathogen or host-tumor stalemate. However, TEX cells erode over time, leading to loss of pathogen or cancer containment. We identified microRNA (miR)-155 as a key regulator of sustained TEX cell responses during chronic lymphocytic choriomeningitis virus (LCMV) infection. Genetic deficiency of miR-155 ablated CD8 T cell responses during chronic infection. Conversely, enhanced miR-155 expression promoted expansion and long-term persistence of TEX cells. However, rather than strictly antagonizing exhaustion, miR-155 promoted a terminal TEX cell subset. Transcriptional profiling identified coordinated control of cell signaling and transcription factor pathways, including the key AP-1 family member Fosl2. Overexpression of Fosl2 reversed the miR-155 effects, identifying a link between miR-155 and the AP-1 transcriptional program in regulating TEX cells. Thus, we identify a mechanism of miR-155 regulation of TEX cells and a key role for Fosl2 in T cell exhaustion.
Collapse
Affiliation(s)
- Erietta Stelekati
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Zeyu Chen
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Sasikanth Manne
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Makoto Kurachi
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Mohammed-Alkhatim Ali
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Keith Lewy
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Zhangying Cai
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA; College of Life Sciences, Peking University, Beijing, China
| | - Kito Nzingha
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Laura M McLane
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Jennifer L Hope
- Department of Microbiology and Immunology, Drexel University College of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Immunology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Adam J Fike
- Department of Microbiology and Immunology, Drexel University College of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter D Katsikis
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - E John Wherry
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
41
|
Alari-Pahissa E, Moreira A, Zabalza A, Alvarez-Lafuente R, Munteis E, Vera A, Arroyo R, Alvarez-Cermeño JC, Villar LM, López-Botet M, Martínez-Rodríguez JE. Low cytomegalovirus seroprevalence in early multiple sclerosis: a case for the 'hygiene hypothesis'? Eur J Neurol 2018. [PMID: 29528545 DOI: 10.1111/ene.13622] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE Cytomegalovirus (CMV) infection has recently been associated with a lower multiple sclerosis (MS) susceptibility, although it remains controversial whether it has a protective role or is merely an epiphenomenon related to westernization and early-life viral infections. We aimed to evaluate whether CMV serostatus may differ in patients with early MS as compared with patients with non-early MS, analyzing the putative association of this virus with MS clinical course and humoral immune responses against other herpesviruses. METHODS Multicentric analysis was undertaken of 310 patients with MS (early MS, disease duration ≤5 years, n = 127) and controls (n = 155), evaluating specific humoral responses to CMV, Epstein-Barr virus and human herpesvirus-6, as well as T-cell and natural killer (NK)-cell immunophenotypes. RESULTS Cytomegalovirus seroprevalence in early MS was lower than in non-early MS or controls (P < 0.01), being independently associated with disease duration (odds ratio, 1.04; 95% confidence interval, 1.01-1.08, P < 0.05). CMV+ patients with MS displayed increased proportions of differentiated T-cells (CD27-CD28-, CD57+, LILRB1+) and NKG2C+ NK-cells, which were associated with a lower disability in early MS (P < 0.05). CMV+ patients with early MS had an age-related decline in serum anti-EBNA-1 antibodies (P < 0.01), but no CMV-related differences in anti-human herpesvirus-6 humoral responses. CONCLUSIONS Low CMV seroprevalence was observed in patients with early MS. Modification of MS risk attributed to CMV might be related to the induction of differentiated T-cell and NK-cell subsets and/or modulation of Epstein-Barr virus-specific immune responses at early stages of the disease.
Collapse
Affiliation(s)
- E Alari-Pahissa
- Neurology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona
| | - A Moreira
- Neurology Department, Universitat Autònoma de Barcelona, Hospital del Mar Medical Research Institute (IMIM), Barcelona
| | - A Zabalza
- Neurology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona
| | - R Alvarez-Lafuente
- Neurology Service, Instituto de Investigación Sanitaria del Hospital Clínico de San Carlos, Madrid
| | - E Munteis
- Neurology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona
| | - A Vera
- Neurology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona
| | - R Arroyo
- Neurology Service, Hospital Universitario Quirónsaluld, Madrid
| | | | - L M Villar
- Immunology Department, Hospital Universitario Ramón y Cajal, Madrid
| | - M López-Botet
- Immunology Unit, University Pompeu Fabra, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | | |
Collapse
|
42
|
Herati RS, Wherry EJ. What Is the Predictive Value of Animal Models for Vaccine Efficacy in Humans? Consideration of Strategies to Improve the Value of Animal Models. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031583. [PMID: 28348037 DOI: 10.1101/cshperspect.a031583] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Animal models are an essential feature of the vaccine design toolkit. Although animal models have been invaluable in delineating the mechanisms of immune function, their precision in predicting how well specific vaccines work in humans is often suboptimal. There are, of course, many obvious species differences that may limit animal models from predicting all details of how a vaccine works in humans. However, careful consideration of which animal models may have limitations should also allow more accurate interpretations of animal model data and more accurate predictions of what is to be expected in clinical trials. In this article, we examine some of the considerations that might be relevant to cross-species extrapolation of vaccine-related immune responses for the prediction of how vaccines will perform in humans.
Collapse
Affiliation(s)
- Ramin Sedaghat Herati
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - E John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104.,Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
43
|
Patel SA, Minn AJ. Combination Cancer Therapy with Immune Checkpoint Blockade: Mechanisms and Strategies. Immunity 2018; 48:417-433. [PMID: 29562193 PMCID: PMC6948191 DOI: 10.1016/j.immuni.2018.03.007] [Citation(s) in RCA: 427] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022]
Abstract
The success of immune checkpoint blockade in patients with a wide variety of malignancies has changed the treatment paradigm in oncology. However, combination therapies with immune checkpoint blockade will be needed to overcome resistance and broaden the clinical utility of immunotherapy. Here we discuss a framework for rationally designing combination therapy strategies based on enhancing major discriminatory functions of the immune system that are corrupted by cancer-namely, antigenicity, adjuvanticity, and homeostatic feedback inhibition. We review recent advances on how conventional genotoxic cancer therapies, molecularly targeted therapies, epigenetic agents, and immune checkpoint inhibitors can restore these discriminatory functions. Potential barriers that can impede response despite combination therapy are also discussed.
Collapse
Affiliation(s)
- Shetal A Patel
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andy J Minn
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Litjens NHR, van der Wagen L, Kuball J, Kwekkeboom J. Potential Beneficial Effects of Cytomegalovirus Infection after Transplantation. Front Immunol 2018; 9:389. [PMID: 29545802 PMCID: PMC5838002 DOI: 10.3389/fimmu.2018.00389] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/12/2018] [Indexed: 01/03/2023] Open
Abstract
Cytomegalovirus (CMV) infection can cause significant complications after transplantation, but recent emerging data suggest that CMV may paradoxically also exert beneficial effects in two specific allogeneic transplant settings. These potential benefits have been underappreciated and are therefore highlighted in this review. First, after allogeneic hematopoietic stem cell transplantation (HSCT) for acute myeloid leukemia (AML) using T-cell and natural killer (NK) cell-replete grafts, CMV reactivation is associated with protection from leukemic relapse. This association was not observed for other hematologic malignancies. This anti-leukemic effect might be mediated by CMV-driven expansion of donor-derived memory-like NKG2C+ NK and Vδ2negγδ T-cells. Donor-derived NK cells probably recognize recipient leukemic blasts by engagement of NKG2C with HLA-E and/or by the lack of donor (self) HLA molecules. Vδ2negγδ T cells probably recognize as yet unidentified antigens on leukemic blasts via their TCR. Second, immunological imprints of CMV infection, such as expanded numbers of Vδ2negγδ T cells and terminally differentiated TCRαβ+ T cells, as well as enhanced NKG2C gene expression in peripheral blood of operationally tolerant liver transplant patients, suggest that CMV infection or reactivation may be associated with liver graft acceptance. Mechanistically, poor alloreactivity of CMV-induced terminally differentiated TCRαβ+ T cells and CMV-induced IFN-driven adaptive immune resistance mechanisms in liver grafts may be involved. In conclusion, direct associations indicate that CMV reactivation may protect against AML relapse after allogeneic HSCT, and indirect associations suggest that CMV infection may promote allograft acceptance after liver transplantation. The causative mechanisms need further investigations, but are probably related to the profound and sustained imprint of CMV infection on the immune system.
Collapse
Affiliation(s)
- Nicolle H R Litjens
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, University Medical Center, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Lotte van der Wagen
- Laboratory of Translational Immunology, Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jurgen Kuball
- Laboratory of Translational Immunology, Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Erasmus University Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
45
|
Shin H. Formation and function of tissue-resident memory T cells during viral infection. Curr Opin Virol 2017; 28:61-67. [PMID: 29175730 DOI: 10.1016/j.coviro.2017.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/13/2017] [Accepted: 11/02/2017] [Indexed: 02/08/2023]
Abstract
Memory T cells are an important component of the adaptive immune response. Tissue-resident memory T cells (TRM) are a recently described subset of memory T cells that reside in peripheral tissues and are maintained independently of circulating subsets of memory T cells. Importantly, TRM are frequently found in barrier tissues that commonly serve as entry portals for pathogens such as viruses. Mounting evidence shows that TRM are superior to their circulating counterparts in conferring protective immunity against a wide range of viruses. In this review, we will discuss the role of TRM in controlling viral infection with a focus on CD8+ TRM, the factors that regulate differentiation and a potential role for TRM in future vaccine development.
Collapse
Affiliation(s)
- Haina Shin
- Department of Medicine/Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
46
|
Kohlhapp FJ, Huelsmann EJ, Lacek AT, Schenkel JM, Lusciks J, Broucek JR, Goldufsky JW, Hughes T, Zayas JP, Dolubizno H, Sowell RT, Kühner R, Burd S, Kubasiak JC, Nabatiyan A, Marshall S, Bommareddy PK, Li S, Newman JH, Monken CE, Shafikhani SH, Marzo AL, Guevara-Patino JA, Lasfar A, Thomas PG, Lattime EC, Kaufman HL, Zloza A. Non-oncogenic Acute Viral Infections Disrupt Anti-cancer Responses and Lead to Accelerated Cancer-Specific Host Death. Cell Rep 2017; 17:957-965. [PMID: 27760326 DOI: 10.1016/j.celrep.2016.09.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/07/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023] Open
Abstract
In light of increased cancer prevalence and cancer-specific deaths in patients with infections, we investigated whether infections alter anti-tumor immune responses. We report that acute influenza infection of the lung promotes distal melanoma growth in the dermis and leads to accelerated cancer-specific host death. Furthermore, we show that during influenza infection, anti-melanoma CD8+ T cells are shunted from the tumor to the infection site, where they express high levels of the inhibitory receptor programmed cell death protein 1 (PD-1). Immunotherapy to block PD-1 reverses this loss of anti-tumor CD8+ T cells from the tumor and decreases infection-induced tumor growth. Our findings show that acute non-oncogenic infection can promote cancer growth, raising concerns regarding acute viral illness sequelae. They also suggest an unexpected role for PD-1 blockade in cancer immunotherapy and provide insight into the immune response when faced with concomitant challenges.
Collapse
Affiliation(s)
- Frederick J Kohlhapp
- Section of Surgical Oncology, Division of Surgical Oncology Research, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Erica J Huelsmann
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Andrew T Lacek
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jason M Schenkel
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jevgenijs Lusciks
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA; Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Joseph R Broucek
- Department of General Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Josef W Goldufsky
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Tasha Hughes
- Department of General Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Janet P Zayas
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Hubert Dolubizno
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ryan T Sowell
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Regina Kühner
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sarah Burd
- University of Oxford, Oxford OX1 2JD, UK
| | - John C Kubasiak
- Department of General Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Arman Nabatiyan
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA; Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sh'Rae Marshall
- Section of Surgical Oncology, Division of Surgical Oncology Research, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Praveen K Bommareddy
- Section of Surgical Oncology, Division of Surgical Oncology Research, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Shengguo Li
- Section of Surgical Oncology, Division of Surgical Oncology Research, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Jenna H Newman
- Section of Surgical Oncology, Division of Surgical Oncology Research, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Claude E Monken
- Section of Surgical Oncology, Division of Surgical Oncology Research, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Sasha H Shafikhani
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Amanda L Marzo
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA; Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jose A Guevara-Patino
- Department of Surgery, Immunology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Ahmed Lasfar
- Section of Surgical Oncology, Division of Surgical Oncology Research, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Edmund C Lattime
- Section of Surgical Oncology, Division of Surgical Oncology Research, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Howard L Kaufman
- Section of Surgical Oncology, Division of Surgical Oncology Research, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Andrew Zloza
- Section of Surgical Oncology, Division of Surgical Oncology Research, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA.
| |
Collapse
|
47
|
Condotta SA, Richer MJ. The immune battlefield: The impact of inflammatory cytokines on CD8+ T-cell immunity. PLoS Pathog 2017; 13:e1006618. [PMID: 29073270 PMCID: PMC5658174 DOI: 10.1371/journal.ppat.1006618] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Stephanie A. Condotta
- Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre, Rosalind and Morris Goodman Cancer Research Centre McGill University, Montreal, Quebec, Canada
| | - Martin J. Richer
- Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre, Rosalind and Morris Goodman Cancer Research Centre McGill University, Montreal, Quebec, Canada
| |
Collapse
|
48
|
Pastille E, Frede A, McSorley HJ, Gräb J, Adamczyk A, Kollenda S, Hansen W, Epple M, Buer J, Maizels RM, Klopfleisch R, Westendorf AM. Intestinal helminth infection drives carcinogenesis in colitis-associated colon cancer. PLoS Pathog 2017; 13:e1006649. [PMID: 28938014 PMCID: PMC5627963 DOI: 10.1371/journal.ppat.1006649] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/04/2017] [Accepted: 09/15/2017] [Indexed: 12/26/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the gastrointestinal tract, strongly associated with an increased risk of colorectal cancer development. Parasitic infections caused by helminths have been shown to modulate the host’s immune response by releasing immunomodulatory molecules and inducing regulatory T cells (Tregs). This immunosuppressive state provoked in the host has been considered as a novel and promising approach to treat IBD patients and alleviate acute intestinal inflammation. On the contrary, specific parasite infections are well known to be directly linked to carcinogenesis. Whether a helminth infection interferes with the development of colitis-associated colon cancer (CAC) is not yet known. In the present study, we demonstrate that the treatment of mice with the intestinal helminth Heligmosomoides polygyrus at the onset of tumor progression in a mouse model of CAC does not alter tumor growth and distribution. In contrast, H. polygyrus infection in the early inflammatory phase of CAC strengthens the inflammatory response and significantly boosts tumor development. Here, H. polygyrus infection was accompanied by long-lasting alterations in the colonic immune cell compartment, with reduced frequencies of colonic CD8+ effector T cells. Moreover, H. polygyrus infection in the course of dextran sulfate sodium (DSS) mediated colitis significantly exacerbates intestinal inflammation by amplifying the release of colonic IL-6 and CXCL1. Thus, our findings indicate that the therapeutic application of helminths during CAC might have tumor-promoting effects and therefore should be well-considered. Evidence from epidemiological studies indicates an inverse correlation between the incidence of certain immune-mediated diseases, including inflammatory bowel diseases, and exposure to helminths. As a consequence, helminth parasites were tested for treating IBD patients, resulting in clinical amelioration of the disease due to the induction of an immunosuppressive microenvironment. However, some infection–related cancers can be attributed to helminth infection, probably due to the generation of a microenvironment that might be conductive to the initiation and development of cancer. In the present study, we aimed to unravel the apparently controversial function of helminths in a mouse model of colitis-associated colon cancer. We show that helminth infection in the onset of colitis and colitis-associated colon cancer does not ameliorate colonic inflammation but activates intestinal immune cells that further facilitate tumor development. Therefore, a better understanding of mechanisms by which helminths modulate host immune responses in the gut should be defined precisely before application of helminths in autoimmune diseases like IBD.
Collapse
Affiliation(s)
- Eva Pastille
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Annika Frede
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Henry J. McSorley
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Jessica Gräb
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Alexandra Adamczyk
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sebastian Kollenda
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Duisburg, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Matthias Epple
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Duisburg, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Rick M. Maizels
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universitaet Berlin, Berlin, Germany
| | - Astrid M. Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
49
|
The nonspecific face of adaptive immunity. Curr Opin Immunol 2017; 48:38-43. [PMID: 28823577 DOI: 10.1016/j.coi.2017.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/11/2017] [Accepted: 08/01/2017] [Indexed: 11/21/2022]
Abstract
Memory T cells generated by infection or immunization persist in the organism and mediate specific protection upon rechallenge with microbial pathogens expressing the same molecular structures. However, multiple lines of evidence indicate that previously encountered or persisting pathogens influence the immune response to unrelated pathogens. We describe the acquisition of non-antigen specific memory features by both innate and adaptive immune cells explaining these phenomena. We also focus on the different mechanisms (homeostatic or inflammatory cytokine-driven) that lead to acquisition of memory phenotype and functions by antigen-inexperienced T lymphocytes. We discuss the implications of these new concepts for host defense, auto-immunity and vaccination strategies.
Collapse
|
50
|
Fu SH, Yeh LT, Chu CC, Yen BLJ, Sytwu HK. New insights into Blimp-1 in T lymphocytes: a divergent regulator of cell destiny and effector function. J Biomed Sci 2017; 24:49. [PMID: 28732506 PMCID: PMC5520377 DOI: 10.1186/s12929-017-0354-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/12/2017] [Indexed: 12/14/2022] Open
Abstract
B lymphocyte-induced maturation protein-1 (Blimp-1) serves as a master regulator of the development and function of antibody-producing B cells. Given that its function in T lymphocytes has been identified within the past decade, we review recent findings with emphasis on its role in coordinated control of gene expression during the development, differentiation, and function of T cells. Expression of Blimp-1 is mainly confined to activated T cells and is essential for the production of interleukin (IL)-10 by a subset of forkhead box (Fox)p3+ regulatory T cells with an effector phenotype. Blimp-1 is also required to induce cell elimination in the thymus and critically modulates peripheral T cell activation and proliferation. In addition, Blimp-1 promotes T helper (Th) 2 lineage commitment and limits Th1, Th17 and follicular helper T cell differentiation. Furthermore, Blimp-1 coordinates with other transcription factors to regulate expression of IL-2, IL-21 and IL-10 in effector T lymphocytes. In CD8+ T cells, Blimp-1 expression is distinct in heterogeneous populations at the stages of clonal expansion, differentiation, contraction and memory formation when they encounter antigens. Moreover, Blimp-1 plays a fundamental role in coordinating cytokine receptor signaling networks and transcriptional programs to regulate diverse aspects of the formation and function of effector and memory CD8+ T cells and their exhaustion. Blimp-1 also functions as a gatekeeper of T cell activation and suppression to prevent or dampen autoimmune disease, antiviral responses and antitumor immunity. In this review, we discuss the emerging roles of Blimp-1 in the complex regulation of gene networks that regulate the destiny and effector function of T cells and provide a Blimp-1-dominated transcriptional framework for T lymphocyte homeostasis.
Collapse
Affiliation(s)
- Shin-Huei Fu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, 161, Section 6, Min-Chuan East Road, Neihu District, Taipei, 11490, Taiwan
| | - Li-Tzu Yeh
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, 161, Section 6, Min-Chuan East Road, Neihu District, Taipei, 11490, Taiwan
| | - Chin-Chen Chu
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, 71104, Taiwan. .,Department of Recreation and Health-Care Management, Chia Nan University of Pharmacy and Science, Tainan, 71104, Taiwan.
| | - B Lin-Ju Yen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Huey-Kang Sytwu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, 161, Section 6, Min-Chuan East Road, Neihu District, Taipei, 11490, Taiwan.
| |
Collapse
|