1
|
Abba Moussa D, Vazquez M, Chable-Bessia C, Roux-Portalez V, Tamagnini E, Pedotti M, Simonelli L, Ngo G, Souchard M, Lyonnais S, Chentouf M, Gros N, Marsile-Medun S, Dinter H, Pugnière M, Martineau P, Varani L, Juan M, Calderon H, Naranjo-Gomez M, Pelegrin M. Discovery of a pan anti-SARS-CoV-2 monoclonal antibody with highly efficient infected cell killing capacity for novel immunotherapeutic approaches. Emerg Microbes Infect 2025; 14:2432345. [PMID: 39584380 PMCID: PMC11632933 DOI: 10.1080/22221751.2024.2432345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/24/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Unlocking the potential of broadly reactive coronavirus monoclonal antibodies (mAbs) and their derivatives offers a transformative therapeutic avenue against severe COVID-19, especially crucial for safeguarding high-risk populations. Novel mAb-based immunotherapies may help address the reduced efficacy of current vaccines and neutralizing mAbs caused by the emergence of variants of concern (VOCs). Using phage display technology, we discovered a pan-SARS-CoV-2 mAb (C10) that targets a conserved region within the receptor-binding domain (RBD) of the virus. Noteworthy, C10 demonstrates exceptional efficacy in recognizing all assessed VOCs, including recent Omicron variants. While C10 lacks direct neutralization capacity, it efficiently binds to infected lung epithelial cells and induces their lysis via natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC). Building upon this pan-SARS-CoV-2 mAb, we engineered C10-based, Chimeric Antigen Receptor (CAR)-T cells endowed with efficient killing capacity against SARS-CoV-2-infected lung epithelial cells. Notably, NK and CAR-T-cell mediated killing of lung infected cells effectively reduces viral titers. These findings highlight the potential of non-neutralizing mAbs in providing immune protection against emerging infectious diseases. Our work reveals a pan-SARS-CoV-2 mAb effective in targeting infected cells and demonstrates the proof-of-concept for the potential application of CAR-T cell therapy in combating SARS-CoV-2 infections. Furthermore, it holds promise for the development of innovative antibody-based and cell-based therapeutic strategies against severe COVID-19 by expanding the array of therapeutic options available for high-risk populations.Trial registration: ClinicalTrials.gov identifier: NCT04093596.
Collapse
Affiliation(s)
| | - Mario Vazquez
- IDIBAPS, Immunogenetics and Immunotherapy in Autoinflammatory and Immune Responses, Barcelona, Spain
- Department of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Vincent Roux-Portalez
- IRCM, University of Montpellier, ICM, INSERM, Montpellier, France
- GenAc, Siric Plateform, INSERM, Montpellier, France
| | - Elia Tamagnini
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Mattia Pedotti
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Luca Simonelli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Giang Ngo
- IRCM, University of Montpellier, ICM, INSERM, Montpellier, France
- PPM, BioCampus Plateforme de Protéomique de Montpellier CNRS, Montpellier, France
| | - Manon Souchard
- IRMB, University of Montpellier, INSERM, CNRS, Montpellier, France
| | | | - Myriam Chentouf
- IRCM, University of Montpellier, ICM, INSERM, Montpellier, France
- GenAc, Siric Plateform, INSERM, Montpellier, France
| | - Nathalie Gros
- CEMIPAI, University of Montpellier, UAR3725 CNRS, Montpellier, France
| | | | - Heiko Dinter
- IRMB, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Martine Pugnière
- IRCM, University of Montpellier, ICM, INSERM, Montpellier, France
- PPM, BioCampus Plateforme de Protéomique de Montpellier CNRS, Montpellier, France
| | - Pierre Martineau
- IRCM, University of Montpellier, ICM, INSERM, Montpellier, France
- GenAc, Siric Plateform, INSERM, Montpellier, France
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Manel Juan
- IDIBAPS, Immunogenetics and Immunotherapy in Autoinflammatory and Immune Responses, Barcelona, Spain
- Department of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Hugo Calderon
- IDIBAPS, Immunogenetics and Immunotherapy in Autoinflammatory and Immune Responses, Barcelona, Spain
- Department of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Mireia Pelegrin
- IRMB, University of Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
2
|
Bhutani B, Sharma V, Ganguly NK, Rana R. Unravelling the modified T cell receptor through Gen-Next CAR T cell therapy in Glioblastoma: Current status and future challenges. Biomed Pharmacother 2025; 186:117987. [PMID: 40117901 DOI: 10.1016/j.biopha.2025.117987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025] Open
Abstract
PURPOSE Despite current technological advancements in the treatment of glioma, immediate alleviation of symptoms can be catered by therapeutic modalities, including surgery, chemotherapy, and combinatorial radiotherapy that exploit aberrations of glioma. Additionally, a small number of target antigens, their heterogeneity, and immune evasion are the potential reasons for developing targeted therapies. This oncologic milestone has catalyzed interest in developing immunotherapies against Glioblastoma to improve overall survival and cure patients with high-grade glioma. The next-gen CAR-T Cell therapy is one of the effective immunotherapeutic strategies in which autologous T cells have been modified to express receptors against GBM and it modulates cytotoxicity. METHODS In this review article, we examine preclinical and clinical outcomes, and limitations as well as present cutting-edge techniques to improve the function of CAR-T cell therapy and explore the possibility of combination therapy. FINDINGS To date, several CAR T-cell therapies are being evaluated in clinical trials for GBM and other brain malignancies and multiple preclinical studies have demonstrated encouraging outcomes. IMPLICATIONS CAR-T cell therapy represents a promising therapeutic paradigm in the treatment of solid tumors but a few limitations include, the blood-brain barrier (BBB), antigen escape, tumor microenvironment (TME), tumor heterogeneity, and its plasticity that suppresses immune responses weakens the ability of this therapy. Additional investigation is required that can accurately identify the targets and reflect the similar architecture of glioblastoma, thus optimizing the efficiency of CAR-T cell therapy; allowing for the selection of patients most likely to benefit from immuno-based treatments.
Collapse
Affiliation(s)
- Bhavya Bhutani
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Vyoma Sharma
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Nirmal Kumar Ganguly
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| |
Collapse
|
3
|
Werner J, Lee AG, Zhang C, Abelson S, Xirenayi S, Rivera J, Yousuf K, Shin H, Patiño-Escobar B, Bachl S, Mandal K, Barpanda A, Ramos E, Izgutdina A, Chaudhuri S, Temple WC, Bhatnagar S, Dardis JK, Meyer J, Morales C, Meshinchi S, Loh ML, Braun B, Tasian SK, Wiita AP, Stieglitz E. Cellular immunotherapy targeting CLL-1 for juvenile myelomonocytic leukemia. Nat Commun 2025; 16:3804. [PMID: 40268927 PMCID: PMC12019388 DOI: 10.1038/s41467-025-59040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 04/07/2025] [Indexed: 04/25/2025] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a myeloproliferative disorder that predominantly affects infants and young children. Hematopoietic stem cell transplantation (HSCT) is standard of care, but post-HSCT relapse is common, highlighting the need for innovative therapies. While adoptive immunotherapy with chimeric antigen receptor (CAR) T cells has improved outcomes for patients with advanced lymphoid malignancies, it has not been comprehensively evaluated in JMML. In the present study, we use bulk and single-cell RNA sequencing, mass spectrometry, and flow cytometry to identify overexpression of CLL-1 (encoded by CLEC12A) on the cell surface of cells from patients with JMML. We develop immunotherapy with CLL-1 CAR T cells (CLL1CART) for preclinical testing and report in vitro and in vivo anti-leukemia activity. Notably, CLL1CART reduce the number of leukemic stem cells and serial transplantability in vivo. These preclinical data support the development and clinical investigation of CLL-1-targeting immunotherapy in children with relapsed/refractory JMML.
Collapse
MESH Headings
- Humans
- Leukemia, Myelomonocytic, Juvenile/therapy
- Leukemia, Myelomonocytic, Juvenile/immunology
- Leukemia, Myelomonocytic, Juvenile/genetics
- Leukemia, Myelomonocytic, Juvenile/pathology
- Animals
- Mice
- Immunotherapy, Adoptive/methods
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Receptors, Mitogen/genetics
- Receptors, Mitogen/immunology
- Receptors, Mitogen/metabolism
- Female
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Male
- Xenograft Model Antitumor Assays
- Child
- Mice, SCID
- Neoplastic Stem Cells/immunology
- Infant
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
Collapse
Affiliation(s)
- Juwita Werner
- Department of Pediatrics, Benioff Children's Hospitals, University of California, San Francisco, CA, USA
- Department of Pediatric Hematology and Oncology and Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Alex G Lee
- Department of Pediatrics, Benioff Children's Hospitals, University of California, San Francisco, CA, USA
| | - Chujing Zhang
- Department of Pediatrics, Benioff Children's Hospitals, University of California, San Francisco, CA, USA
| | - Sydney Abelson
- Department of Pediatrics, Benioff Children's Hospitals, University of California, San Francisco, CA, USA
| | - Sherin Xirenayi
- Department of Pediatrics, Benioff Children's Hospitals, University of California, San Francisco, CA, USA
| | - Jose Rivera
- Department of Pediatrics, Benioff Children's Hospitals, University of California, San Francisco, CA, USA
| | - Khadija Yousuf
- Department of Pediatrics, Benioff Children's Hospitals, University of California, San Francisco, CA, USA
| | - Hanna Shin
- Department of Pediatrics, Benioff Children's Hospitals, University of California, San Francisco, CA, USA
| | | | - Stefanie Bachl
- Department of Medicine, University of California, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Kamal Mandal
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
- Department of Animal Biotechnology, Gujarat Biotechnology University, Gandhinagar, India
| | - Abhilash Barpanda
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Emilio Ramos
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Adila Izgutdina
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Sibapriya Chaudhuri
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - William C Temple
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplant, University of California, San Francisco, CA, USA
- Division of Pediatric Oncology, University of California, San Francisco, CA, USA
| | - Shubhmita Bhatnagar
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jackson K Dardis
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julia Meyer
- Department of Pediatrics, Benioff Children's Hospitals, University of California, San Francisco, CA, USA
| | - Carolina Morales
- Department of Pediatrics, Benioff Children's Hospitals, University of California, San Francisco, CA, USA
| | - Soheil Meshinchi
- Clinical Research Division, Department of Pediatrics, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mignon L Loh
- Seattle Children's Hospital, The Ben Towne Center for Childhood Cancer Research, University of Washington, Seattle, WA, USA
| | - Benjamin Braun
- Department of Pediatrics, Benioff Children's Hospitals, University of California, San Francisco, CA, USA
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospitals, University of California, San Francisco, CA, USA.
| |
Collapse
|
4
|
Stewart CM, Siegler EL, Kenderian SS. The road ahead for chimeric antigen receptor T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf047. [PMID: 40209174 DOI: 10.1093/jimmun/vkaf047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/25/2025] [Indexed: 04/12/2025]
Abstract
Chimeric antigen receptor T (CART) cell therapy is an innovative form of immunotherapy that has shown remarkable and long-term responses in patients with B-cell malignancies. Over the years, the field has made significant progress in our understanding of the successes and challenges associated with CART cell therapy. In this review, we provide an overview of the current state of CART cell therapy in the clinic. We detail current challenges including patient access, CART-associated toxicity, tumor heterogeneity, CART cell trafficking, the tumor microenvironment, and different CART cell fates. With each challenge, we review lessons learned, potential solutions and outline areas for future development. Finally, we discuss how the field of engineered cell therapy is moving into the treatment of solid tumors and other diseases beyond cancer.
Collapse
Affiliation(s)
- Carli M Stewart
- T Cell Engineering, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Elizabeth L Siegler
- T Cell Engineering, Mayo Clinic, Rochester, MN, United States
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
| | - Saad S Kenderian
- T Cell Engineering, Mayo Clinic, Rochester, MN, United States
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
5
|
Perez CR, Garmilla A, Nilsson A, Baghdassarian HM, Gordon KS, Lima LG, Smith BE, Maus MV, Lauffenburger DA, Birnbaum ME. Library-based single-cell analysis of CAR signaling reveals drivers of in vivo persistence. Cell Syst 2025:101260. [PMID: 40215972 DOI: 10.1016/j.cels.2025.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/27/2024] [Accepted: 03/17/2025] [Indexed: 04/25/2025]
Abstract
The anti-tumor function of engineered T cells expressing chimeric antigen receptors (CARs) is dependent on signals transduced through intracellular signaling domains (ICDs). Different ICDs are known to drive distinct phenotypes, but systematic investigations into how ICD architectures direct T cell function-particularly at the molecular level-are lacking. Here, we use single-cell sequencing to map diverse signaling inputs to transcriptional outputs, focusing on a defined library of clinically relevant ICD architectures. Informed by these observations, we functionally characterize transcriptionally distinct ICD variants across various contexts to build comprehensive maps from ICD composition to phenotypic output. We identify a unique tonic signaling signature associated with a subset of ICD architectures that drives durable in vivo persistence and efficacy in liquid, but not solid, tumors. Our findings work toward decoding CAR signaling design principles, with implications for the rational design of next-generation ICD architectures optimized for in vivo function.
Collapse
Affiliation(s)
- Caleb R Perez
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Andrea Garmilla
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore; Program in Immunology, Harvard Medical School, Boston, MA, USA; Kranz Family Center for Cancer Research and Cellular Immunotherapy Program, Massachusetts General Hospital, Charlestown, MA, USA
| | - Avlant Nilsson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Hratch M Baghdassarian
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Khloe S Gordon
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Louise G Lima
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Blake E Smith
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Program in Immunology, Harvard Medical School, Boston, MA, USA
| | - Marcela V Maus
- Kranz Family Center for Cancer Research and Cellular Immunotherapy Program, Massachusetts General Hospital, Charlestown, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of MIT, MGH and Harvard, Cambridge, MA, USA
| | - Michael E Birnbaum
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore; Ragon Institute of MIT, MGH and Harvard, Cambridge, MA, USA.
| |
Collapse
|
6
|
Roex G, Gordon KS, Lion E, Birnbaum ME, Anguille S. Expanding the CAR toolbox with high throughput screening strategies for CAR domain exploration: a comprehensive review. J Immunother Cancer 2025; 13:e010658. [PMID: 40210240 PMCID: PMC11987143 DOI: 10.1136/jitc-2024-010658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/06/2025] [Indexed: 04/12/2025] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy has been highly successful in the treatment of B-cell hematological malignancies. CARs are modular synthetic molecules that can redirect immune cells towards target cells with antibody-like specificity. Despite their modularity, CARs used in the clinic are currently composed of a limited set of domains, mostly derived from IgG, CD8α, 4-1BB, CD28 and CD3ζ. The current low throughput CAR screening workflows are labor-intensive and time-consuming, and lie at the basis of the limited toolbox of CAR building blocks available. High throughput screening methods facilitate simultaneous investigation of hundreds of thousands of CAR domain combinations, allowing discovery of novel domains and increasing our understanding of how they behave in the context of a CAR. Here we review the growing body of reports that employ these high throughput screening and computational methods to advance CAR design. We summarize and highlight the important differences between the different studies and discuss their limitations and future considerations for further improvements. In conclusion, while still in its infancy, high throughput screening of CARs has the capacity to vastly expand the CAR domain toolbox and improve our understanding of CAR design. This knowledge could be foundational for translating CAR therapy beyond hematological malignancies and push the frontiers in personalized medicine.
Collapse
Affiliation(s)
- Gils Roex
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Khloe S Gordon
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology Centre, Singapore
| | - Eva Lion
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
- Center for Cell Therapy and Regenerative Medicine, University Hospital Antwerp, Edegem, Belgium
| | - Michael E Birnbaum
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology Centre, Singapore
- Ragon Institute of Mass General MIT and Harvard, Cambridge, Massachusetts, USA
| | - Sébastien Anguille
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
- Center for Cell Therapy and Regenerative Medicine, University Hospital Antwerp, Edegem, Belgium
- Division of Hematology, University Hospital Antwerp, Edegem, Belgium
| |
Collapse
|
7
|
Watts TH, Yeung KKM, Yu T, Lee S, Eshraghisamani R. TNF/TNFR Superfamily Members in Costimulation of T Cell Responses-Revisited. Annu Rev Immunol 2025; 43:113-142. [PMID: 39745933 DOI: 10.1146/annurev-immunol-082423-040557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Prosurvival tumor necrosis factor receptor (TNFR) superfamily (TNFRSF) members on T cells, including 4-1BB, CD27, GITR, and OX40, support T cell accumulation during clonal expansion, contributing to T cell memory. During viral infection, tumor necrosis factor superfamily (TNFSF) members on inflammatory monocyte-derived antigen-presenting cells (APCs) provide a postpriming signal (signal 4) for T cell accumulation, particularly in the tissues. Patients with loss-of-function mutations in TNFR/TNFSF members reveal a critical role for 4-1BB and CD27 in CD8 T cell control of Epstein-Barr virus and other childhood infections and of OX40 in CD4 T cell responses. Here, on the 20th anniversary of a previous Annual Review of Immunology article about TNFRSF signaling in T cells, we discuss the effects of endogenous TNFRSF signals in T cells upon recognition of TNFSF members on APCs; the role of TNFRSF members, including TNFR2, on regulatory T cells; and recent advances in the incorporation of TNFRSF signaling in T cells into immunotherapeutic strategies for cancer.
Collapse
Affiliation(s)
- Tania H Watts
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| | - Karen K M Yeung
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| | - Tianning Yu
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| | - Seungwoo Lee
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| | | |
Collapse
|
8
|
Zhang Q, Dai J, Liu T, Rao W, Li D, Gu Z, Huang L, Wang J, Hou X. Targeting cardiac fibrosis with Chimeric Antigen Receptor-Engineered Cells. Mol Cell Biochem 2025; 480:2103-2116. [PMID: 39460827 DOI: 10.1007/s11010-024-05134-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Cardiac fibrosis poses a significant challenge in cardiovascular diseases due to its intricate pathogenesis, and there is currently no standardized and effective treatment approach. The fibrotic process entails the involvement of various cell types and molecular mechanisms, such as fibroblast activation and proliferation, increased collagen synthesis, and extracellular matrix rearrangement. Traditional therapies often fall short in efficacy or carry substantial side effects. However, recent studies have shown that Chimeric Antigen Receptor T (CAR-T) cells can selectively target and eliminate activated cardiac fibroblasts (CFs) in mice, leading to reduced cardiac fibrosis and improved myocardial tissue compliance. This breakthrough presents a new and promising avenue for treating cardiac fibrosis. Currently, CAR-T cell-based therapy for cardiac fibrosis is undergoing animal experimentation, indicating ample scope for enhancement. Future investigations could explore the application of CAR cell therapy in cardiac fibrosis treatment, including the potential of CAR-natural killer (CAR-NK) cells and CAR macrophages (CAR-M), offering novel insights and strategies for combating cardiac fibrosis.
Collapse
Affiliation(s)
- Qinghang Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200030, China
| | - Jinjie Dai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200030, China
| | - Tianbao Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200030, China
| | - Wutian Rao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200030, China
| | - Dan Li
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhengying Gu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xumin Hou
- Hospital's Office, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
9
|
Salzler R, DiLillo DJ, Saotome K, Bray K, Mohrs K, Hwang H, Cygan KJ, Shah D, Rye-Weller A, Kundu K, Badithe A, Zhang X, Garnova E, Torres M, Dhanik A, Babb R, Delfino FJ, Thwaites C, Dudgeon D, Moore MJ, Meagher TC, Decker CE, Owczarek T, Gleason JA, Yang X, Suh D, Lee WY, Welsh R, MacDonald D, Hansen J, Guo C, Kirshner JR, Thurston G, Huang T, Franklin MC, Yancopoulos GD, Lin JC, Macdonald LE, Murphy AJ, Chen G, Olsen O, Olson WC. CAR T cells based on fully human T cell receptor-mimetic antibodies exhibit potent antitumor activity in vivo. Sci Transl Med 2025; 17:eado9371. [PMID: 40138458 DOI: 10.1126/scitranslmed.ado9371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/19/2024] [Accepted: 02/19/2025] [Indexed: 03/29/2025]
Abstract
Monoclonal antibody therapies have transformed the lives of patients across a diverse range of diseases. However, antibodies can usually only access extracellular proteins, including the extracellular portions of membrane proteins that are expressed on the cell surface. In contrast, T cell receptors (TCRs) survey the entire cellular proteome when processed and presented as peptides in association with human leukocyte antigen (pHLA complexes). Antibodies that mimic TCRs by recognizing pHLA complexes have the potential to extend the reach of antibodies to this larger pool of targets and provide increased binding affinity and specificity. A major challenge in developing TCR mimetic (TCRm) antibodies is the limited sequence differences between the target pHLA complex relative to the large global repertoire of pHLA complexes. Here, we provide a comprehensive strategy for generating fully human TCRm antibodies across multiple HLA alleles, beginning with pHLA target discovery and validation and culminating in the engineering of TCRm-based chimeric antigen receptor T cells with potent antitumor activity. By incorporating mass spectrometry, bioinformatic predictions, HLA-humanized mice, antibody screening, and cryo-electron microscopy, we have established a pipeline to identify additional pHLA complex-specific antibodies with therapeutic potential.
Collapse
Affiliation(s)
- Robert Salzler
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - David J DiLillo
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Kei Saotome
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Kevin Bray
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Katja Mohrs
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Haun Hwang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Kamil J Cygan
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Darshit Shah
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Anna Rye-Weller
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Kunal Kundu
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Ashok Badithe
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Xiaoqin Zhang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Elena Garnova
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Marcela Torres
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Ankur Dhanik
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Robert Babb
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Frank J Delfino
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Courtney Thwaites
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Drew Dudgeon
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Michael J Moore
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Thomas Craig Meagher
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Corinne E Decker
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Tomasz Owczarek
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - John A Gleason
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Xiaoran Yang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - David Suh
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Wen-Yi Lee
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Richard Welsh
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Douglas MacDonald
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Johanna Hansen
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Chunguang Guo
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jessica R Kirshner
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Gavin Thurston
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Tammy Huang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Matthew C Franklin
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - George D Yancopoulos
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - John C Lin
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Lynn E Macdonald
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Andrew J Murphy
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Gang Chen
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Olav Olsen
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - William C Olson
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| |
Collapse
|
10
|
Huang Y, Wang H. Tonic signaling in CAR-T therapy: the lever long enough to move the planet. Front Med 2025:10.1007/s11684-025-1130-x. [PMID: 40117019 DOI: 10.1007/s11684-025-1130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/16/2024] [Indexed: 03/23/2025]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has shown remarkable efficacy in treating hematological malignancies and is expanding into other indications such as autoimmune diseases, fibrosis, aging and viral infection. However, clinical challenges persist in treating solid tumors, including physical barriers, tumor heterogeneity, poor in vivo persistence, and T-cell exhaustion, all of which hinder therapeutic efficacy. This review focuses on the critical role of tonic signaling in CAR-T therapy. Tonic signaling is a low-level constitutive signaling occurring in both natural and engineered antigen receptors without antigen stimulation. It plays a pivotal role in regulating immune cell homeostasis, exhaustion, persistence, and effector functions. The "Peak Theory" suggests an optimal level of tonic signaling for CAR-T function: while weak tonic signaling may result in poor proliferation and persistence, excessively strong signaling can cause T cell exhaustion. This review also summarizes the recent progress in mechanisms underlying the tonic signaling and strategies to fine-tune the CAR tonic signaling. By understanding and precisely modulating tonic signaling, the efficacy of CAR-T therapies can be further optimized, offering new avenues for treatment across a broader spectrum of diseases. These findings have implications beyond CAR-T cells, potentially impacting other engineered immune cell therapies such as CAR-NK and CAR-M.
Collapse
Affiliation(s)
- Yuwei Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China.
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
11
|
Zur RT, Zurinam SD, Radman M, Funaro Balouka E, Borodianskiy-Shteinberg T, Saur D, Cohen CJ. Hexokinase2-engineered T cells display increased anti-tumor function. Front Immunol 2025; 16:1477929. [PMID: 40181966 PMCID: PMC11965122 DOI: 10.3389/fimmu.2025.1477929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/11/2025] [Indexed: 04/05/2025] Open
Abstract
Background T cells face significant metabolic challenges in the tumor microenvironment (TME), where cancer cells monopolize critical nutrients like glucose and amino acids. This metabolic competition supports tumor growth while impairing T-cell anti-tumor responses, partly by reducing glycolytic function. Hexokinase 2 (HK2), a key enzyme in glycolysis, plays a pivotal role in maintaining T-cell functionality. Methods To enhance T-cell function, primary human T cells were genetically engineered to overexpress HK2 alongside a tumor-specific receptor. These engineered T cells were tested in vitro and in vivo to evaluate their metabolic and therapeutic efficacy. Results HK2-engineered T cells exhibited increased glycolytic capacity, leading to enhanced cytokine secretion, activation marker expression, and metabolic activity compared to controls. In vivo studies using a human tumor xenograft model demonstrated the superior therapeutic efficacy of HK2-engineered T cells, including delayed tumor growth and improved survival. Conclusion HK2 overexpression improves T-cell metabolic fitness and functionality in hostile TMEs, offering a promising foundation for the development of next-generation immunotherapies targeting T-cell metabolism.
Collapse
Affiliation(s)
- Raphaëlle Toledano Zur
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Shiran Didi Zurinam
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Maria Radman
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Elia Funaro Balouka
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Tatiana Borodianskiy-Shteinberg
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, Heidelberg and Center for Translational Cancer Research (TranslaTUM), Institute of Experimental Cancer Therapy, Klinikum Rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
| | - Cyrille J. Cohen
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
12
|
Cao G, Hu Y, Pan T, Tang E, Asby N, Althaus T, Wan J, Riedell PA, Bishop MR, Kline JP, Huang J. Two-Stage CD8 + CAR T-Cell Differentiation in Patients with Large B-Cell Lymphoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.05.641715. [PMID: 40161759 PMCID: PMC11952315 DOI: 10.1101/2025.03.05.641715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has expanded therapeutic options for patients with diffuse large B-cell lymphoma (DLBCL). However, progress in improving clinical outcomes has been limited by an incomplete understanding of CAR T-cell differentiation in patients. To comprehensively investigate CAR T-cell differentiation in vivo, we performed single-cell, multimodal, and longitudinal analyses of CD28-costimulated CAR T cells from infusion product and peripheral blood (day 8-28) of patients with DLBCL who were successfully treated with axicabtagene ciloleucel. Here, we show that CD8+ CAR T cells undergo two distinct waves of clonal expansion. The first wave is dominated by CAR T cells with an exhausted-like effector memory phenotype during the peak expansion period (day 8-14). The second wave is dominated by CAR T cells with a terminal effector phenotype during the post-peak persistence period (day 21-28). Importantly, the two waves have distinct ontogeny and are biologically uncoupled. Furthermore, lineage tracing analysis via each CAR T cell's endogenous TCR clonotype demonstrates that the two waves originate from different effector precursors in the infusion product. Precursors of the first wave exhibit more effector-like signatures, whereas precursors of the second wave exhibit more stem-like signatures. These findings suggest that pre-infusion heterogeneity mediates the two waves of in vivo clonal expansion. Our findings provide evidence against the intuitive idea that the post-peak contraction in CAR abundance is solely apoptosis or extravasation of short-lived CAR T cells from peak expansion. Rather, our findings demonstrate that CAR T-cell expansion and persistence are mediated by clonally, phenotypically, and ontogenically distinct CAR T-cell populations that serve complementary clinical purposes.
Collapse
Affiliation(s)
- Guoshuai Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Yifei Hu
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Tony Pan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Erting Tang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Nick Asby
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Thomas Althaus
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Peter A. Riedell
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Michael R. Bishop
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Justin P. Kline
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
13
|
Li S, Zhou Y, Wang H, Qu G, Zhao X, Wang X, Hou R, Guan Z, Liu D, Zheng J, Shi M. Advances in CAR optimization strategies based on CD28. Front Immunol 2025; 16:1548772. [PMID: 40181986 PMCID: PMC11966486 DOI: 10.3389/fimmu.2025.1548772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/26/2025] [Indexed: 04/05/2025] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy, which utilizes genetic engineering techniques to modify T-cells to achieve specific targeting of cancer cells, has made significant breakthroughs in cancer treatment in recent years. All marketed CAR-T products are second-generation CAR-T cells containing co-stimulatory structural domains, and co-stimulatory molecules are critical for CAR-T cell activation and function. Although CD28-based co-stimulatory molecules have demonstrated potent cytotoxicity in the clinical application of CAR-T cells, they still suffer from high post-treatment relapse rates, poor efficacy durability, and accompanying severe adverse reactions. In recent years, researchers have achieved specific results in enhancing the anti-tumor function of CD28 by mutating its signaling motifs, combining the co-stimulatory structural domains, and modifying other CAR components besides co-stimulation. This paper reviewed the characteristics and roles of CD28 in CAR-T cell-mediated anti-tumor signaling and activation. We explored potential strategies to enhance CAR-T cell efficacy and reduce side effects by optimizing CD28 motifs and CAR structures, aiming to provide a theoretical basis for further clinical CAR-T cell therapy development.
Collapse
Affiliation(s)
- Sijin Li
- Country Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Yusi Zhou
- Country Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Hairong Wang
- Country Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Gexi Qu
- Country Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Xuan Zhao
- Country Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Xu Wang
- Country Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Rui Hou
- College of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhangchun Guan
- Country Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Dan Liu
- Country Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Ming Shi
- Country Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
14
|
Guo S, Xi X. Nanobody-enhanced chimeric antigen receptor T-cell therapy: overcoming barriers in solid tumors with VHH and VNAR-based constructs. Biomark Res 2025; 13:41. [PMID: 40069884 PMCID: PMC11899093 DOI: 10.1186/s40364-025-00755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
CAR-T cells are genetically modified T lymphocytes that express chimeric antigen receptors (CAR) on their surfaces. These receptors enable T lymphocytes to recognize specific antigens on target cells, triggering a response that leads to targeted cytotoxicity. While CAR-T therapy has effectively treated various blood cancers, it faces significant challenges in addressing solid tumors. These challenges include identifying precise tumor antigens, overcoming antigen evasion, and enhancing the function of CAR-T cells within the tumor microenvironment. Single domain antibody, versatile tools with low immunogenicity, high stability, and strong affinity, show promise for improving the efficacy of CAR-T cells against solid tumors. By addressing these challenges, single domain antibody has the potential to overcome the limitations associated with ScFv antibody-based CAR-T therapies. This review highlights the benefits of utilizing single domain antibody in CAR-T therapy, particularly in targeting tumor antigens, and explores development strategies that could advance the field.
Collapse
Affiliation(s)
- Shasha Guo
- Shandong Women's University, Jinan, 250300, People's Republic of China.
| | - Xiaozhi Xi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, People's Republic of China.
- Oncology Department, Shandong Second Provincial General Hospital, Jinan, 250023, People's Republic of China.
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
15
|
Ouladan S, Orouji E. Chimeric Antigen Receptor-T Cells in Colorectal Cancer: Pioneering New Avenues in Solid Tumor Immunotherapy. J Clin Oncol 2025; 43:994-1005. [PMID: 39805063 PMCID: PMC11895826 DOI: 10.1200/jco-24-02081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Colorectal cancer (CRC) remains a major global health burden, being one of the most prevalent cancers with high mortality rates. Despite advances in conventional treatment modalities, patients with metastatic CRC often face limited options and poor outcomes. Chimeric antigen receptor-T (CAR-T) cell therapy, initially successful in hematologic malignancies, presents a promising avenue for treating solid tumors, including CRC. This review explores the potential of CAR-T cell therapy in CRC by analyzing clinical trials and highlighting prominent CRC-specific targets. We discuss the challenges such as immunosuppressive microenvironment, tumor heterogeneity, and physical barriers that limit CAR-T efficacy. Emerging strategies, such as logic-gated and dual-targeting CAR-T cells, offer practical solutions to overcome these hurdles. Furthermore, we explore the combination of CAR-T cell therapy with immune checkpoint inhibitors to enhance T-cell persistence and tumor infiltration. As the field continues to evolve, CAR-T cell therapies hold significant potential for revolutionizing the treatment landscape of CRC.
Collapse
Affiliation(s)
- Shaida Ouladan
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Elias Orouji
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
16
|
Krawczyk M, Fernandez-Fuentes N, Fidyt K, Winiarski T, Pepek M, Graczyk-Jarzynka A, Davis J, Bousquets-Muñoz P, Puente XS, Menendez P, Benard E, Wälchli S, Thomas-Tikhonenko A, Winiarska M. The costimulatory domain influences CD19 CAR-T cell resistance development in B-cell malignancies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640707. [PMID: 40093096 PMCID: PMC11908201 DOI: 10.1101/2025.02.28.640707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
CD19-CAR-T-cells emerge as a major therapeutic option for relapsed/refractory B-cell-derived malignancies, however approximately half of patients eventually relapse. To identify resistance-driving factors, we repeatedly exposed B-cell lymphoma/B-cell acute lymphoblastic leukemia to 4-1BB/CD28-based CD19-CAR-T-cells in vitro. Generated models revealed costimulatory domain-dependent differences in CD19 loss. While CD19-4-1BB-CAR-T-cells induced combination epitope/total CD19 protein loss, CD19-CD28-CAR-T-cells did not drive antigen-escape. Consistent with observations in patients relapsing after CD19-4-1BB-CAR-T-cells, we identified CD19 frameshift/missense mutations affecting residues critical for FMC63 epitope recognition. Mathematical simulations revealed that differences between CD19-4-1BB- and CD19-CD28-CAR-T-cells activity against low-antigen-expressing tumor contribute to heterogeneous therapeutic responses. By integrating in vitro and in silico data, we propose a biological scenario where CD19-4-1BB-CAR-T-cells fail to eliminate low-antigen tumor cells, fostering CAR-resistance. These findings offer mechanistic insight into the observed clinical differences between axi-cel (CD28-based) and tisa-cel (4-1BB-based)-treated B-cell lymphoma patients and advance our understanding on CAR-T resistance. Furthermore, we underscore the need for specific FMC63 epitope detection to deliver information on antigen levels accessible for CD19-CAR-T-cells.
Collapse
Affiliation(s)
- Marta Krawczyk
- Department of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School of Translational Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Narcis Fernandez-Fuentes
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Klaudyna Fidyt
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Tomasz Winiarski
- Warsaw University of Technology, Institute of Control and Computation Engineering, Warsaw, Poland
| | - Monika Pepek
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Graczyk-Jarzynka
- Department of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Jacinta Davis
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Pablo Bousquets-Muñoz
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Xose S Puente
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Red Española de Terapias Avanzadas (TERAV) - Instituto de Salud Carlos III (ISCII)
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Institut de Recerca Hospital Sant Joan de Déu-Pediatric Cancer Center Barcelona (SJD-PCCB), Barcelona, Spain
| | - Emmanuelle Benard
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Magdalena Winiarska
- Department of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
17
|
Song Y, Wang Y, Man J, Xu Y, Zhou G, Shen W, Chao Y, Yang K, Pei P, Hu L. Chimeric Antigen Receptor Cells Solid Tumor Immunotherapy Assisted by Biomaterials Tools. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10246-10264. [PMID: 39903799 DOI: 10.1021/acsami.4c20275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Chimeric antigen receptor (CAR) immune cell therapies have revolutionized oncology, particularly in hematological malignancies, yet their efficacy against solid tumors remains limited due to challenges such as dense stromal barriers and immunosuppressive microenvironments. With advancements in nanobiotechnology, researchers have developed various strategies and methods to enhance the CAR cell efficacy in solid tumor treatment. In this Review, we first outline the structure and mechanism of CAR-T (T, T cell), CAR-NK (NK, natural killer), and CAR-M (M, macrophage) cell therapies and deeply analyze the potential of these cells in the treatment of solid tumors and the challenges they face. Next, we explore how biomaterials can optimize these treatments by improving the tumor microenvironment, controlling CAR cell release, promoting cell infiltration, and enhancing efficacy. Finally, we summarize the current challenges and potential solutions, emphasize the effective combination of biomaterials and CAR cell therapy, and look forward to its future clinical application and treatment strategies. This Review provides important theoretical perspectives and practical guidance for the future development of more effective solid tumor treatment strategies.
Collapse
Affiliation(s)
- Yujie Song
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yifan Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianping Man
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yihua Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Wenhao Shen
- Department of Oncology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, Jiangsu 225300, China
| | - Yu Chao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
18
|
Caratelli S, De Paolis F, Silvestris DA, Baldari S, Salvatori I, Tullo A, Lanzilli G, Gurtner A, Ferri A, Valle C, Padovani S, Cesarini V, Sconocchia T, Cifaldi L, Arriga R, Spagnoli GC, Ferrone S, Venditti A, Rossi P, Pesole G, Toietta G, Sconocchia G. The CD64/CD28/CD3ζ chimeric receptor reprograms T-cell metabolism and promotes T-cell persistence and immune functions while triggering antibody-independent and antibody-dependent cytotoxicity. Exp Hematol Oncol 2025; 14:17. [PMID: 39962623 PMCID: PMC11834217 DOI: 10.1186/s40164-025-00601-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/19/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Recent studies have shown that CD32/CD8a/CD28/CD3ζ chimeric receptor cells directly kill breast cancer cells, suggesting the existence of cell surface myeloid FcγR alternative ligands (ALs). Here, we investigated the metabolism, ALs, cytotoxicity, and immunoregulatory functions of CD64/CD28/CD3ζ in colorectal cancer (CRC) and squamous cell carcinoma of the head and neck. METHODS The CD64/CD28/CD3ζ -SFG retroviral vector was used to produce viruses for T-cell transduction. T-cell expansion and differentiation were monitored via flow cytometry. Gene expression was assessed by RNA-seq. Bioenergetics were documented on a Seahorse extracellular flux analyzer. CD64/CD28/CD3ζ polarization was identified via confocal microscopy. Cytotoxicity was determined by MTT assay and bioluminescent imaging, and flow cytometry. Tridimensional antitumor activity of CD64/CD28/CD3ζ T cells was achieved by utilizing HCT116-GFP 3D spheroids via the IncuCyte S3 Live-Cell Analysis system. The intraperitoneal distribution and antitumor activity of NIR-CD64/CD28/CD3ζ and NIR-nontransduced T cells were investigated in CB17-SCID mice bearing subcutaneous FaDu Luc + cells by bioluminescent and fluorescent imaging. IFNγ was assessed by ELISA. RESULTS Compared to CD16/CD8a/CD28/CD3ζ T cells, CD32/CD8a/CD28/CD3ζ T cells, and non-transduced T cells, CD64/CD28/CD3ζ T cells exhibited the highest levels of cell expansion and persistence capacity. A total of 235 genes linked to cell division and 52 genes related to glycolysis were overexpressed. The glycolytic phenotype was confirmed by functional in vitro studies accompanied by preferential T-cell effector memory differentiation. Interestingly, oxamic acid was found to inhibit CD64-CR T cell proliferation, indicating the involvement of lactate. Upon CD64/CD28/CD3ζ T-cell conjugation with CRC cells, CD64/CD28/CD3ζ cells polarize at immunological synapses, leading to CRC cell death. CD64/CD28/CD3ζ T cells kill SCCHN cells, and in combination with the anti-B7-H3 mAb (376.96) or anti-EGFR mAb, these cells trigger antibody-dependent cellular cytotoxicity (ADCC) in vitro under 2D and 3D conditions. The 376.96 mAb combined with CD64/CD28/CD3ζ T cells had anti-SCCHN activity in vivo. In addition, they induce the upregulation of PD-L1 and HLA-DR expression in cancer cells via IFNγ. PD-L1 positive SCCHN cells in combination with anti-PD-L1 mAb and CD64-CR T cells were killed by ADCC, which enhanced direct cytotoxicity. These findings indicate that the glycolytic phenotype is involved in CD64-CR T cell proliferation/expansion. These cells mediate long-lasting HLA-independent cytotoxicity and ADCC in CRC and SCCHN cells. CONCLUSIONS CD64/CD28/CD3ζ T cells could significantly impact the rational design of personalized studies to treat CRC and SCCHN and the identification of novel FcγR ALs in cancer and healthy cells.
Collapse
Affiliation(s)
- Sara Caratelli
- Department of Biomedicine, Institute of Translational Pharmacology, Italian National Research Council (CNR), Via Fosso del Cavaliere 100, Rome, 00133, Italy
| | - Francesca De Paolis
- Department of Biomedicine, Institute of Translational Pharmacology, Italian National Research Council (CNR), Via Fosso del Cavaliere 100, Rome, 00133, Italy
| | | | - Silvia Baldari
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Apollonia Tullo
- Department of Biomedicine, Institute of Biomembranes Bioenergetics and Molecular Biotechnologies, National Research Council (CNR), Bari, Italy
| | - Giulia Lanzilli
- Department of Biomedicine, Institute of Translational Pharmacology, Italian National Research Council (CNR), Via Fosso del Cavaliere 100, Rome, 00133, Italy
| | - Aymone Gurtner
- Department of Biomedicine, Institute of Translational Pharmacology, Italian National Research Council (CNR), Via Fosso del Cavaliere 100, Rome, 00133, Italy
| | - Alberto Ferri
- Department of Biomedicine, Institute of Translational Pharmacology, Italian National Research Council (CNR), Via Fosso del Cavaliere 100, Rome, 00133, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Cristiana Valle
- Department of Biomedicine, Institute of Translational Pharmacology, Italian National Research Council (CNR), Via Fosso del Cavaliere 100, Rome, 00133, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Simona Padovani
- Department of Biomedicine, Institute of Translational Pharmacology, Italian National Research Council (CNR), Via Fosso del Cavaliere 100, Rome, 00133, Italy
| | - Valeriana Cesarini
- Department of Biomedicine, Institute of Translational Pharmacology, Italian National Research Council (CNR), Via Fosso del Cavaliere 100, Rome, 00133, Italy
- Saint Camillus, International Medical University (UNICAMILLUS), Rome, Italy
| | - Tommaso Sconocchia
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Roberto Arriga
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Giulio Cesare Spagnoli
- Department of Biomedicine, Institute of Translational Pharmacology, Italian National Research Council (CNR), Via Fosso del Cavaliere 100, Rome, 00133, Italy
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, NA, USA
| | - Adriano Venditti
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Piero Rossi
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Graziano Pesole
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, University of Bari, Bari, Italy
- Department of Biomedicine, Institute of Biomembranes Bioenergetics and Molecular Biotechnologies, National Research Council (CNR), Bari, Italy
| | - Gabriele Toietta
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giuseppe Sconocchia
- Department of Biomedicine, Institute of Translational Pharmacology, Italian National Research Council (CNR), Via Fosso del Cavaliere 100, Rome, 00133, Italy.
- Saint Camillus, International Medical University (UNICAMILLUS), Rome, Italy.
| |
Collapse
|
19
|
Castellanos-Rueda R, Wang KLK, Forster JL, Driessen A, Frank JA, Martínez MR, Reddy ST. Dissecting the role of CAR signaling architectures on T cell activation and persistence using pooled screens and single-cell sequencing. SCIENCE ADVANCES 2025; 11:eadp4008. [PMID: 39951542 PMCID: PMC11827634 DOI: 10.1126/sciadv.adp4008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 01/10/2025] [Indexed: 02/16/2025]
Abstract
Chimeric antigen receptor (CAR) T cells offer a promising cancer treatment, yet challenges such as limited T cell persistence hinder efficacy. Given its critical role in modulating T cell responses, it is crucial to understand how the CAR signaling architecture influences T cell function. Here, we designed a combinatorial CAR signaling domain library and performed repeated antigen stimulation assays, pooled screens, and single-cell sequencing to systematically investigate the impact of modifying CAR signaling domains on T cell activation and persistence. Our data reveal the predominant influence of membrane-proximal domains in driving T cell phenotype. Notably, CD40 costimulation was crucial for fostering robust and lasting T cell responses. Furthermore, we correlated in vitro generated CAR T cell phenotypes with clinical outcomes in patients treated with CAR T therapy, establishing the foundation for a clinically informed screening approach. This work deepens our understanding of CAR T cell biology and may guide future CAR engineering efforts.
Collapse
MESH Headings
- Humans
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Lymphocyte Activation/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Single-Cell Analysis/methods
- Signal Transduction
- Immunotherapy, Adoptive/methods
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Neoplasms/immunology
- Neoplasms/therapy
- Neoplasms/genetics
- CD40 Antigens/metabolism
- CD40 Antigens/genetics
- Animals
Collapse
Affiliation(s)
- Rocío Castellanos-Rueda
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
- Life Science Zurich Graduate School, Systems Biology, ETH Zürich, University of Zurich, 8057 Zürich, Switzerland
| | - Kai-Ling K. Wang
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
| | - Juliette L. Forster
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
| | - Alice Driessen
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
- IBM Research Europe, Zurich, Switzerland
| | - Jessica A. Frank
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
| | | | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
| |
Collapse
|
20
|
Mohamed AO, Boone DT, Ferry SL, Peck MC, Santos AM, Soderholm HE, Wittling MC, Paulos C, Turk MJ, Huang YH. CD4 T cell depletion increases memory differentiation of endogenous and CAR T cells and enhances the efficacy of Super2 and IL-33-armored CAR T cells against solid tumors. J Immunother Cancer 2025; 13:e009994. [PMID: 39933839 DOI: 10.1136/jitc-2024-009994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Responsiveness to chimeric antigen receptor (CAR) T cell therapy correlates with CAR T cell expansion and persistence in vivo. Multiple strategies improve persistence by increasing stem-like properties or sustaining CAR T cell activity with combination therapies. Here, we describe the intrinsic ability of CAR T cells to differentiate into memory T cells, the effect of cytokine armoring, and neoadjuvant CD4 depletion therapy on CAR and tumor-specific endogenous memory T cells. METHODS TRP1-specific or NKG2D CAR T cells alone or with Super2+IL-33 (S233) armoring and/or CD4 depletion were evaluated in immunocompetent B16F10 melanoma or MC38 colon cell carcinoma models without preconditioning. We characterized CAR and endogenous tumor-specific memory T cell precursors, establishment of circulating (TCIRC) and resident (TRM) memory T cell subsets, and ability to protect against secondary tumors. RESULTS TRP1-specific or NKG2D CAR T cells had no effect on primary tumor growth in immunocompetent mice unless they were combined with S233 armoring or CD4 depletion. Unarmored CAR T cells expressed a stem-like phenotype in the tumor-draining lymph node and differentiated into CAR TCIRC memory cells in lymphoid organs and CAR TRM cells in the skin. In contrast, S233-armored CAR T cells exhibited an activated effector phenotype and differentiated inefficiently into CAR effector and central memory T cells. Combining CD4 therapy with unarmored CAR T cells increased CAR TCIRC and TRM memory T cells. Either CD4 depletion therapy or S233-armored CAR T cells induced activation of tumor-specific endogenous T cells that differentiated into both TCIRC and TRM memory T cells. CD4 depletion and S233-armored CAR T cell combination therapy synergized to increase endogenous memory T cells. CONCLUSIONS Unarmored TRP-1-specific or NKG2D CAR T cells have intrinsic stem-like properties and differentiate into memory T cell subsets but are non-protective against primary or secondary tumors. S233 cytokine armoring alone or with CD4 depletion improved effector responses but limited CAR memory T cell generation. S233-armored CAR T cells or CD4 depletion therapy induced endogenous tumor-specific TCIRC and TRM T cells, but the combination potentiated endogenous memory T cell generation and resulted in improved protection against B16F10 rechallenge.
Collapse
Affiliation(s)
- Asmaa O Mohamed
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - David Tyler Boone
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Shannon L Ferry
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Melanie C Peck
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Alicia M Santos
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Haille E Soderholm
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | | | - Chrystal Paulos
- Department of Surgery, Emory University, Atlanta, Georgia, USA
- Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Mary Jo Turk
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
- Dartmouth Cancer Center, Lebanon, New Hampshire, USA
| | - Yina H Huang
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
- Dartmouth Cancer Center, Lebanon, New Hampshire, USA
- Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, New Hampshire, USA
| |
Collapse
|
21
|
Cardle II, Scherer DR, Jensen MC, Pun SH, Sellers DL. In Situ Bioconjugation of Synthetic Peptides onto Universal Chimeric Antigen Receptor T Cells for Targeted Cancer Immunotherapies. ACS NANO 2025; 19:5750-5768. [PMID: 39869930 DOI: 10.1021/acsnano.4c16824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The recent development of modular universal chimeric antigen receptor (CAR) T-cell platforms that use bifunctional adaptor intermediates to redirect engineered T-cell effector function has greatly expanded the capabilities of adoptive T-cell therapy, enabling safer and more comprehensive cancer treatment. However, universal CAR receptor systems rely on unstable transient recognition of tag-coupled intermediates for T-cell activation, and the array of targeting intermediates has been limited to antibodies and small molecules. Addressing these shortcomings, we engineered universal CAR T-cell receptors that can be covalently modified with synthetic biomaterials in vivo by accelerated SpyCatcher003-SpyTag003 chemistry for cancer-cell targeting. SpyCatcher003-modified CARs, nicknamed DB5 CARs, displayed fast, low-nanomolar reaction kinetics with a synthetic αvβ6-binding peptide that incorporates a SpyTag003 peptide via branched peptide synthesis to comprise a bifunctional intermediate. Prearming DB5 CAR T cells or prelabeling target cells with the bifunctional peptide produced selective CD4+ and CD8+ CAR T-cell responses against αvβ6+ cancer cells in vitro. Furthermore, the synthetic targeting intermediate showed robust DB5 CAR T-cell arming in vivo and selectively reduced αvβ6+ tumor progression in a dual flank xenograft model. We demonstrate the versatility and therapeutic potential of "Cyborg" CAR T-cell therapies that utilize synthetic biomaterials to direct CAR T-cell activity via highly selective bioconjugation that occurs in vivo.
Collapse
Affiliation(s)
- Ian I Cardle
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
- Seattle Children's Therapeutics, Seattle, Washington 98101, United States
| | - Dylan R Scherer
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| | - Michael C Jensen
- Seattle Children's Therapeutics, Seattle, Washington 98101, United States
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| | - Suzie H Pun
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| | - Drew L Sellers
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| |
Collapse
|
22
|
Gallus M, Young JS, Cook Quackenbush S, Khasraw M, de Groot J, Okada H. Chimeric antigen receptor T-cell therapy in patients with malignant glioma-From neuroimmunology to clinical trial design considerations. Neuro Oncol 2025; 27:352-368. [PMID: 39450490 PMCID: PMC11812040 DOI: 10.1093/neuonc/noae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Clinical trials evaluating chimeric antigen receptor (CAR) T-cell therapy in patients with malignant gliomas have shown some early promise in pediatric and adult patients. However, the long-term benefits and safety for patients remain to be established. The ultimate success of CAR T-cell therapy for malignant glioma will require the integration of an in-depth understanding of the immunology of the central nervous system (CNS) parenchyma with strategies to overcome the paucity and heterogeneous expression of glioma-specific antigens. We also need to address the cold (immunosuppressive) microenvironment, exhaustion of the CAR T-cells, as well as local and systemic immunosuppression. Here, we discuss the basics and scientific considerations for CAR T-cell therapies and highlight recent clinical trials. To help identify optimal CAR T-cell administration routes, we summarize our current understanding of CNS immunology and T-cell homing to the CNS. We also discuss challenges and opportunities related to clinical trial design and patient safety/monitoring. Finally, we provide our perspective on future prospects in CAR T-cell therapy for malignant gliomas by discussing combinations and novel engineering strategies to overcome immuno-regulatory mechanisms. We hope this review will serve as a basis for advancing the field in a multiple discipline-based and collaborative manner.
Collapse
Affiliation(s)
- Marco Gallus
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| | - Jacob S Young
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| | | | - Mustafa Khasraw
- The Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - John de Groot
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| | - Hideho Okada
- The Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| |
Collapse
|
23
|
Staudt S, Nikolka F, Perl M, Franz J, Leblay N, Yuan XK, Larrayoz M, Lozano T, Warmuth L, Fante MA, Skorpskaite A, Fei T, Bromberg M, San Martin-Uriz P, Rodriguez-Madoz JR, Ziegler-Martin K, Adil-Gholam N, Benz P, Tran Huu P, Freitag F, Riester Z, Stein-Thoeringer C, Schmitt M, Kleigrewe K, Weber J, Mangold K, Ho P, Einsele H, Prosper F, Ellmeier W, Busch D, Visekruna A, Slingerland J, Shouval R, Hiller K, Lasarte JJ, Martinez-Climent JA, Pausch P, Neri P, van den Brink M, Poeck H, Hudecek M, Luu M. Metabolization of microbial postbiotic pentanoate drives anti-cancer CAR T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.19.608538. [PMID: 39314273 PMCID: PMC11418944 DOI: 10.1101/2024.08.19.608538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The microbiome is a complex host factor and key determinant of the outcome of antibody-based and cellular immunotherapy. Its postbiotics are a blend of soluble commensal byproducts that are released into the host environment and have been associated with the regulation of immune homeostasis, particularly through impacts on epigenetics and cell signaling. In this study, we show that the postbiotic pentanoate is metabolized to citrate within the TCA cycle via both the acetyl- and succinyl-CoA entry points, a feature uniquely enabled by the chemical structure of the C5 aliphatic chain. We identified ATP-citrate lyase as the crucial factor that redirects pentanoate-derived citrate from the succinyl-CoA route to the nucleus, thereby linking metabolic output and histone acetylation. This epigenetic-metabolic crosstalk mitigated T cell exhaustion and promoted naive-like differentiation in pentanoate-programmed chimeric antigen receptor (CAR) T cells. The predictive and therapeutic potential of pentanoate was corroborated in two independent patient cohorts and three syngeneic models of CAR T adoptive therapy. Our data demonstrate that postbiotics are integrated into mitochondrial metabolism and subsequently incorporated as epigenetic imprints. This bridge between microbial and mammalian interspecies communication can ultimately impact T cell differentiation and efficacy.
Collapse
Affiliation(s)
- Sarah Staudt
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Fabian Nikolka
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Markus Perl
- University Hospital Regensburg, Department of Internal Medicine III, Hematology & Internal Oncology, Regensburg, Germany
| | - Julia Franz
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Noemie Leblay
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Xiaoli-Kat Yuan
- Precision Oncology Hub, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Marta Larrayoz
- Hemato-Oncology Program, Cima Universidad de Navarra, Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Cancer Center Clinica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
| | - Teresa Lozano
- Program of Immunology and Immunotherapy, Center for Applied Medical Research CIMA, University of Navarra, IDISNA, CIBEREHD, Pamplona, Spain
| | - Linda Warmuth
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Matthias A. Fante
- University Hospital Regensburg, Department of Internal Medicine III, Hematology & Internal Oncology, Regensburg, Germany
| | - Aiste Skorpskaite
- Life Sciences Center - European Molecular Biology Laboratory (LSC-EMBL) Partnership for Genome Editing Technologies, Vilnius University - Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Teng Fei
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maria Bromberg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Patxi San Martin-Uriz
- Hemato-Oncology Program, Cima Universidad de Navarra, Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Cancer Center Clinica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
| | - Juan Roberto Rodriguez-Madoz
- Hemato-Oncology Program, Cima Universidad de Navarra, Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Cancer Center Clinica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
| | - Kai Ziegler-Martin
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Nazdar Adil-Gholam
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Pascal Benz
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Phuc Tran Huu
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Fabian Freitag
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Zeno Riester
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | | | - Michael Schmitt
- Department of Hematology, Oncology and Rheumatology, University Clinic Heidelberg, Heidelberg, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| | - Justus Weber
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Kira Mangold
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Patrick Ho
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
- National Center for Tumor Therapy (NCT WERA), Würzburg, Germany
| | - Felipe Prosper
- Hematology and Cell Therapy Department, Clinica Universidad de Navarra (CUN), Hemato-Oncology Program, Cima Universidad de Navarra. Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Cancer Center Clinica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
| | - Wilfried Ellmeier
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Dirk Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | | | - Roni Shouval
- Adult Bone Marrow Transplantation Service and Cellular Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Juan Jose Lasarte
- Program of Immunology and Immunotherapy, Center for Applied Medical Research CIMA, University of Navarra, IDISNA, CIBEREHD, Pamplona, Spain
| | - Jose Angel Martinez-Climent
- Hemato-Oncology Program, Cima Universidad de Navarra, Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Cancer Center Clinica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
| | - Patrick Pausch
- Life Sciences Center - European Molecular Biology Laboratory (LSC-EMBL) Partnership for Genome Editing Technologies, Vilnius University - Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Paola Neri
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | | | - Hendrik Poeck
- University Hospital Regensburg, Department of Internal Medicine III, Hematology & Internal Oncology, Regensburg, Germany
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg & Würzburg, Germany
| | - Michael Hudecek
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
- National Center for Tumor Therapy (NCT WERA), Würzburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg & Würzburg, Germany
| | - Maik Luu
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
- National Center for Tumor Therapy (NCT WERA), Würzburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg & Würzburg, Germany
| |
Collapse
|
24
|
Buono G, Capozzi M, Caputo R, Lauro VD, Cianniello D, Piezzo M, Cocco S, Martinelli C, Verrazzo A, Tafuro M, Calderaio C, Calabrese A, Nuzzo F, Pagliuca M, Laurentiis MD. CAR-T cell therapy for breast cancer: Current status and future perspective. Cancer Treat Rev 2025; 133:102868. [PMID: 39798230 DOI: 10.1016/j.ctrv.2024.102868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/15/2025]
Abstract
Within the expanding therapeutic landscape for breast cancer (BC), metastatic breast cancer (MBC) remains virtually incurable and tend to develop resistance to conventional treatments ultimately leading to metastatic progression and death. Cellular immunotherapy (CI), particularly chimeric antigen receptor-engineered T (CAR-T) cells, has emerged as a promising approach for addressing this challenge. In the wake of their striking efficacy against hematological cancers, CAR-T cells have also been used where the clinical need is greatest - in patients with aggressive BCs. Unfortunately, current outcomes fall considerably short of replicating that success, primarily owing to the scarcity of tumor-specific antigens and the immunosuppressive microenvironment within BC. Herein, we provide an up-to-date overview of both preclinical and clinical data concerning the application of CAR-T cell therapy in BC. By surveying the existing literature, we discuss the prevailing constrains of this therapeutic approach and overview possible strategies to advance it in the context of breast malignancies. Possible approaches include employing synthetic biology to refine antigen targeting and mitigate off-target toxicity, utilizing logic-gated CAR constructs to enhance specificity, and leveraging armored CARs to remodel the tumor micro-environment. Temporal and spatial regulation of CAR-T cells using inducible gene switches and external triggers further improves safety and functionality. In addition, promoting T cell homing through chemokine receptor engineering and enhancing manufacturing processes with universal CAR platforms expand therapeutic applicability. These innovations not only address antigen escape and T cell exhaustion but also optimize the efficacy and safety profile of CAR-T cell therapy. We, therefore, outline a trajectory wherein CAR-T cells may evolve from a promising experimental approach to a standard modality in BC therapy.
Collapse
Affiliation(s)
- Giuseppe Buono
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Monica Capozzi
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Roberta Caputo
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Vincenzo Di Lauro
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | | | - Michela Piezzo
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Stefania Cocco
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Claudia Martinelli
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy
| | - Annarita Verrazzo
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy
| | - Margherita Tafuro
- Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy; Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Claudia Calderaio
- Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy; Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | | | - Francesco Nuzzo
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Martina Pagliuca
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy; Université Paris-Saclay, Gustave Roussy, INSERM, Molecular Predictors and New Targets in Oncology, Villejuif, France.
| | | |
Collapse
|
25
|
Ren T, Huang Y. Recent advancements in improving the efficacy and safety of chimeric antigen receptor (CAR)-T cell therapy for hepatocellular carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1433-1446. [PMID: 39316087 DOI: 10.1007/s00210-024-03443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
The liver is one of the most frequent sites of primary malignancies in humans. Hepatocellular carcinoma (HCC) is one of the most prevalent solid tumors with poor prognosis. Current treatments showed limited efficacy in some patients, and, therefore, alternative strategies, such as immunotherapy, cancer vaccines, adoptive cell therapy (ACT), and recently chimeric antigen receptors (CAR)-T cells, are developed to offer better efficacy and safety profile in patients with HCC. Unlike other ACTs like tumor-infiltrating lymphocytes (TILs), CAR-T cells are equipped with engineered CAR receptors that effectively identify tumor antigens and eliminate cancer cells without major histocompatibility complex (MHC) restriction. This process induces intracellular signaling, leading to T lymphocyte recruitment and subsequent activation of other effector cells in the tumor microenvironment (TME). Until today, novel approaches have been used to develop more potent CAR-T cells with robust persistence, specificity, trafficking, and safety. However, the clinical application of CAR-T cells in solid tumors is still challenging. Therefore, this study aims to review the advancement, prospects, and possible avenues of CAR-T cell application in HCC following an outline of the CAR structure and function.
Collapse
Affiliation(s)
- Tuo Ren
- Department of Interventional Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongsahn 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Yonghui Huang
- Department of Interventional Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongsahn 2nd Road, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
26
|
Kushwaha N, Panjwani D, Patel S, Ahlawat P, Yadav MR, Patel AS. Emerging advances in nano-biomaterial assisted amyloid beta chimeric antigen receptor macrophages (CAR-M) therapy: reducing plaque burden in Alzheimer's disease. J Drug Target 2025; 33:185-205. [PMID: 39403775 DOI: 10.1080/1061186x.2024.2417012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Alzheimer's disease is the most common form, accounting for 60-70% of 55 million dementia cases. Even though the precise pathophysiology of AD is not completely understood, clinical trials focused on antibodies targeting aggregated forms of β amyloid (Aβ) have demonstrated that reducing amyloid plaques can arrest cognitive decline in patients in the early stages of AD. In this study, we provide an overview of current research and innovations for controlled release from nano-biomaterial-assisted chimeric antigen receptor macrophage (CAR-M) therapeutic strategies targeted at AD. Nano-bio materials, such as iron-oxide nanoparticles (IONPs), can be made selectively (Hp-Hb/mannose) to bind and take up Aβ plaques like CAR-M cells. By using nano-bio materials, both the delivery and stability of CAR-M cells in brain tissue can be improved to overcome the barriers of the BBB and enhance therapeutic effects. By enhancing the targeting capabilities and stability of CAR-M cells, mRNA-loaded nano-biomaterials can significantly improve the efficacy of immunotherapy for plaque reduction in AD. This novel strategy holds promise for translating preclinical successes into clinical applications, potentially revolutionising the management of AD.
Collapse
Affiliation(s)
- Nishabh Kushwaha
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Drishti Panjwani
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Shruti Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Priyanka Ahlawat
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Mange Ram Yadav
- Research and Development Cell, Parul University, Vadodara, India
| | - Asha S Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| |
Collapse
|
27
|
Vallet N, Drieu Larochelle L, Santiago‐Ribeiro M, Villate A, Eloit M, Cirée A, Zaragoza L, André V, Prat‐Lepesant M, Hérault O, Arbion F, Blasco H, Gyan E. Glycolytic activity following anti-CD19 CAR-T cell infusion in non-Hodgkin lymphoma. Eur J Clin Invest 2025; 55:e14342. [PMID: 39487603 PMCID: PMC11744912 DOI: 10.1111/eci.14342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
Energy metabolism of chimeric antigen receptor-T cells (CAR-T) activation in humans remains unexplored. As a glycolytic activity surrogate, we investigated the dynamics of peripheral blood (PB) lactate in the first weeks post-CAR-T infusion. In 17 patients treated with CD28 harbording anti-CD19 CAR-T for relapsed/refractory non-Hodgkin lymphomas, PB lactate levels increased following CAR-T infusion. Elevated lactate levels correlated with longer CAR-T persistence and higher CD8+/CD4+ ratio. Peripheral blood lactate kinetics may reflect immune cells activation and be useful for bedside monitoring.
Collapse
Affiliation(s)
- Nicolas Vallet
- Hematology and Cell TherapyUniversity Hospital ToursToursFrance
- Inserm U1069 N2COxUniversity of ToursToursFrance
| | | | | | - Alban Villate
- Hematology and Cell TherapyUniversity Hospital ToursToursFrance
| | - Martin Eloit
- Hematology and Cell TherapyUniversity Hospital ToursToursFrance
| | - Arnaud Cirée
- Department of Biological ImmunologyUniversity Hospital ToursToursFrance
| | - Laura Zaragoza
- Department of PharmacyUniversity Hospital ToursToursFrance
| | - Virginie André
- Department of PharmacyUniversity Hospital ToursToursFrance
| | | | - Olivier Hérault
- Inserm U1069 N2COxUniversity of ToursToursFrance
- Department of Biological HematologyUniversity Hospital ToursToursFrance
| | - Flavie Arbion
- Department of PathologyUniversity Hospital ToursToursFrance
| | - Hélène Blasco
- Department of BiochemistryUniversity Hospital ToursToursFrance
| | - Emmanuel Gyan
- Hematology and Cell TherapyUniversity Hospital ToursToursFrance
- Inserm U1069 N2COxUniversity of ToursToursFrance
| |
Collapse
|
28
|
Ortí G, Peczynski C, Boreland W, O'Reilly M, von Bonin M, Balduzzi A, Besley C, Kalwak K, Ryhänen S, Güngör T, Wynn RF, Bader P, Mielke S, Blaise D, Amrolia P, Yakoub-Agha I, Calkoen F, Schubert ML, Potter V, Pichler H, Kröger N, Kwon M, Sengeloev H, Torrent A, Chalandon Y, van Gorkom G, Koenecke C, Graham C, Schoemans H, Moiseev I, Penack O, Peric Z. Graft-versus-host disease after anti-CD19 chimeric antigen receptor T-cell therapy following allogeneic hematopoietic cell transplantation: a transplant complications and paediatric diseases working parties joint EBMT study. Leukemia 2025; 39:431-437. [PMID: 39562721 DOI: 10.1038/s41375-024-02467-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/25/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024]
Abstract
In patients diagnosed with B-acute lymphoblastic leukemia (B-ALL) or B-non-Hodgkin's lymphoma (B-NHL) relapsing after allogeneic stem cell transplantation (allo-HCT), it is a standard practice to perform anti-CD19 chimeric antigen receptor (CAR) T-cell therapy. When collected from the patient after allo-HCT, the produced CAR-T cells are likely to be donor T-cell-derived, creating unknown safety risks due to their potential allo-reactivity. We therefore performed an EBMT registry-based study on the incidence of graft-versus-host disease (GvHD) in this setting. We included 257 allo-HCT patients (n = 172 ≥ 18 years) with B-ALL or B-NHL, treated with anti-CD19 CAR T-cells (tisagenlecleucel n = 184, brexucabtagene autoleucel n = 43 and axicabtagene ciloleucel n = 30), between 2018 and 2022. Three patients developed aGvHD, whereas 6 patients developed cGvHD after CAR T-cell. The 100-day cumulative incidence (CI) of new aGvHD was 1.6% and the 12-month CI of new cGvHD was 2.8%. The 1-year GvHD relapse-free survival and non-relapse mortality were 52.1% and 4.7%, respectively. Last, with a median follow up of 18.8 months, the 1-year overall survival was 76.8%. In summary, the GvHD rate in allo-HCT patients treated with CAR T-cell therapy is relatively low. Our data support the view that GvHD is not a major safety issue in this setting.
Collapse
Affiliation(s)
- Guillermo Ortí
- Department of Hematology, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| | | | | | | | | | - Adriana Balduzzi
- Pediatric Hematopoietic Transplant Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, Milano-Bicocca University, Milan, Italy
| | | | - Krzysztof Kalwak
- Department of Pediatric Hematology, Oncology and BMT, Wroclaw Medical University, Wroclaw, Poland
| | - Samppa Ryhänen
- University of Helsinki and Helsinki University Hospital, Children´s Hospital, and Pediatric Research CenterDivision of Hematology, Oncology, and Stem Cell Transplantation, Helsinki, Finland
| | - Tayfun Güngör
- Division of Hematology/Oncology/Immunology, Gene-therapy, and Stem Cell Transplantation, University Children's Hospital - Eleonore Foundation & Children's Research Center (CRC), Zürich, Switzerland
| | - Robert F Wynn
- Royal Manchester Children's Hospital, Manchester, UK
| | - Peter Bader
- Goethe University, University Hospital, Department of Pediatrics, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Frankfurt Main, Germany
| | | | - Didier Blaise
- Programme de Transplantation & Therapie Cellulaire, Marseille, France
| | - Persis Amrolia
- Department of Bone Marrow Transplant, Great Ormond St Children's Hospital, London, UK
| | | | - Friso Calkoen
- Princess Maxima Center. University Hospital for Children (WKZ), Utrecht, Netherlands
| | | | | | - Herbert Pichler
- Department of Pediatrics and Adolescent Medicine, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
- Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria
| | | | - Mi Kwon
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | | | - Anna Torrent
- ICO-Badalona. Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Yves Chalandon
- Hôpitaux Universitaires de Genève, Hematology Division and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Christian Koenecke
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | | | - Helene Schoemans
- Department of Hematology, University Hospitals Leuven and Department of Public Health and Primary Care, ACCENT VV, KU Leuven - University of Leuven, Leuven, Belgium
| | - Ivan Moiseev
- RM Gorbacheva Research Institute, Pavlov University, St Petersburg, Russia
| | - Olaf Penack
- Medical Clinic, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology and Tumorimmunology, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Zinaida Peric
- University Hospital Centre Zagreb and School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
29
|
Khalifeh M, Salman H. Engineering resilient CAR T cells for immunosuppressive environment. Mol Ther 2025:S1525-0016(25)00039-5. [PMID: 39863931 DOI: 10.1016/j.ymthe.2025.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/29/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized cancer treatment and is now being explored for other diseases, such as autoimmune disorders. While the tumor microenvironment (TME) in cancer is often immunosuppressive, in autoimmune diseases, the environment is typically inflammatory. Both environments can negatively impact CAR T cell survival: the former through direct suppression, hypoxia, and nutrient deprivation, and the latter through chronic T cell receptor (TCR) engagement, risking exhaustion. Mechanisms of resistance include T cell exhaustion, dysfunction, and the impact of the TME. Chronic antigenic stimulation leads to CAR T cell exhaustion. CAR construct design, including co-stimulatory domains, hinge, transmembrane regions, promoters, the affinity of the binder site, and on/off rate plays a crucial role in modulating CAR T cell function and resistance. This review discusses the impact of the in vitro development of CAR T cells, albeit in relation to the TME, on therapeutic outcomes. The use of alternative cell sources, multi-antigen targeting, and reengineering the TME, are discussed. The review emphasizes the need for continued innovation in CAR T cell design and manufacturing to optimize therapeutic efficacy and durability, especially in the face of varying environmental challenges.
Collapse
Affiliation(s)
- Malak Khalifeh
- Brown Center for Immunotherapy. IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, 975 W. Walnut St., IB554A, Indianapolis, IN 46202, USA
| | - Huda Salman
- Brown Center for Immunotherapy. IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, 975 W. Walnut St., IB554A, Indianapolis, IN 46202, USA.
| |
Collapse
|
30
|
Hu W, Li F, Liang Y, Liu S, Wang S, Shen C, Zhao Y, Wang H, Zhang Y. Glut3 overexpression improves environmental glucose uptake and antitumor efficacy of CAR-T cells in solid tumors. J Immunother Cancer 2025; 13:e010540. [PMID: 39824530 PMCID: PMC11749199 DOI: 10.1136/jitc-2024-010540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Glucose deprivation inhibits T-cell metabolism and function. Glucose levels are low in the tumor microenvironment of solid tumors and insufficient glucose uptake limits the antitumor response of T cells. Furthermore, glucose restriction can contribute to the failure of chimeric antigen receptor T (CAR-T) cell therapy for solid tumors. However, the impact of glucose restriction remains unknown in CAR-T cell therapy. METHODS Glucose transporters were detected and overexpressed in CAR-T cells. The impacts of glucose restriction on CAR-T cells were checked in vitro and in vivo. RESULTS Glucose restriction significantly decreased CAR-T cell activation, effector function, and expansion. CAR-T cells expressed high levels of the glucose transporter Glut1, which has a low affinity for glucose. Overexpression of Glut1 failed to improve CAR-T cell function under glucose-restricted conditions. In contrast, the function and antitumor potential of CAR-T cells was enhanced by the overexpression of Glut3, which has the highest affinity for glucose among the Glut transporter family and is expressed in minor parts of CAR-T cells. Glut3-overexpressing CAR-T cells demonstrated increased tumoricidal efficacy in multiple xenografts and syngenetic mouse models. Furthermore, Glut3 overexpression activated the PI3K/Akt pathway and increased OXPHOS and mitochondrial fitness. CONCLUSIONS We provide a direct and effective approach to enhance low glucose uptake levels by CAR-T cells and improve their antitumor efficacy against solid tumors.
Collapse
Affiliation(s)
- Wenhao Hu
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Feng Li
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- Zhongyuan Cell Therapy and Immunotherapy Laboratory, Henan Academy of Innovations in Medical Science, Zhengzhou, People's Republic of China
| | - Yue Liang
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Shasha Liu
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Shumin Wang
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Chunyi Shen
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yuyu Zhao
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- Zhongyuan Cell Therapy and Immunotherapy Laboratory, Henan Academy of Innovations in Medical Science, Zhengzhou, People's Republic of China
| | - Hui Wang
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yi Zhang
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- Zhongyuan Cell Therapy and Immunotherapy Laboratory, Henan Academy of Innovations in Medical Science, Zhengzhou, People's Republic of China
- School of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
31
|
Majumdar S, Echelibe H, Bettini M, Bettini ML. The impact of CD3ζ ITAM multiplicity and sequence on CAR T-cell survival and function. Front Immunol 2025; 15:1509980. [PMID: 39885989 PMCID: PMC11779709 DOI: 10.3389/fimmu.2024.1509980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025] Open
Abstract
Introduction Chimeric antigen receptor (CAR) expressing T-cells have shown great promise for the future of cancer immunotherapy with the recent clinical successes achieved in treating different hematologic cancers. Despite these early successes, several challenges remain in the field that require to be solved for the therapy to be more efficacious. One such challenge is the lack of long-term persistence of CD28 based CAR T-cells in patients. Although, CD28 based CAR T-cells elicit a robust acute anti-tumor response, they are more prone to early exhaustion, terminal differentiation and cell death due to their strong signaling patterns. Hence attenuation of signaling strength in CD28 based CARs is an accepted strategy to improve long-term CAR T-cell function and persistence in patients. Previous studies with the conventional T-cell receptor (TCR) have suggested that manipulation of CD3 immunoreceptor tyrosine-based activation motif (ITAM) sequences can alter TCR signaling strength. Based on these studies, we have designed 2nd generation murine anti-CD19 CD28 based CARs with restricted CD3ζ ITAM sequence diversity while maintaining a multiplicity of three. They are called ζAAA, ζBBB and ζCCC based on which CD3ζ ITAM they express. The goal of the study is to understand the non-redundant signaling properties of the individual CD3ζ ITAMs and their effect on CAR T-cell function. We hypothesized that the individual CD3ζ ITAMs will exhibit unique signaling properties in the ITAM restricted CARs which may allow for optimization of CAR signaling and improve CAR T-cell persistence and function. Method We subjected the ITAM restricted CAR T cells to various conditions of in vitro stimulation using CD19+ tumor cells or CD19-coated magnetic beads. Immunoblotting and flow cytometry based Ca2+ signaling assays were used to quantify signaling differences. Functional differences were studied using in vitro cytotoxicity, degranulation and cytokine expression assays. CAR T cell exhaustion and differentiation were studied using an in vitro exhaustion assay. Results We observed that ζAAA CARs had stronger signaling strength compared to ζBBB and ζCCC CARs. The signaling differences were reflected in their functional activation profiles with T-cells expressing ζAAA CARs having a strong activation profile and ζCCC CARs having a weak activation profile. ζCCC CAR T cells were less prone to differentiation and exhaustion. Discussion Since, weaker signaling ζCCC CARs favored less cell death, exhaustion and differentiation, they might be better candidates for improving long term survival and persistence of CAR T cells in patients.
Collapse
Affiliation(s)
- Shubhabrata Majumdar
- Immunology Graduate Program, Baylor College of Medicine, Houston, TX, United States
| | - Hilda Echelibe
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Maria Bettini
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Matthew L. Bettini
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
32
|
Gad AZ, Morris JS, Godret-Miertschin L, Montalvo MJ, Kerr SS, Berger H, Lee JCH, Saadeldin AM, Abu-Arja MH, Xu S, Vasileiou S, Brock RM, Fousek K, Sheha MF, Srinivasan M, Li Y, Saeedi A, R. Levental K, Leen AM, Mamonkin M, Carisey A, Varadarajan N, Hegde M, Joseph SK, Levental I, Mukherjee M, Ahmed N. Molecular dynamics at immune synapse lipid rafts influence the cytolytic behavior of CAR T cells. SCIENCE ADVANCES 2025; 11:eadq8114. [PMID: 39792660 PMCID: PMC11721525 DOI: 10.1126/sciadv.adq8114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025]
Abstract
Chimeric antigen receptor T cells (CART) targeting CD19 through CD28.ζ signaling induce rapid lysis of leukemic blasts, contrasting with persistent tumor control exhibited by 4-1BB.ζ-CART. We reasoned that molecular dynamics at the CART immune synapse (CARIS) could explain differences in their tumor rejection kinetics. We observed that CD28.ζ-CART engaged in brief highly lethal CARIS and mastered serial killing, whereas 4-1BB.ζ-CART formed lengthy CARIS and relied on robust expansion and cooperative killing. We analyzed CARIS membrane lipid rafts (mLRs) and found that, upon tumor engagement, CD28.ζ-CAR molecules rapidly but transiently translocated into mLRs, mobilizing the microtubular organizing center and lytic granules to the CARIS. This enabled fast CART recovery and sensitivity to low target site density. In contrast, gradual accumulation of 4-1BB.ζ-CAR and LFA-1 molecules at mLRs built mechanically tonic CARIS mediating chronic Fas ligand-based killing. The differences in CD28.ζ- and 4-1BB.ζ-CARIS dynamics explain the distinct cytolytic behavior of CART and can guide engineering of more adaptive effective cellular products.
Collapse
Affiliation(s)
- Ahmed Z. Gad
- Interdepartmental Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jessica S. Morris
- Interdepartmental Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lea Godret-Miertschin
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Melisa J. Montalvo
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Sybrina S. Kerr
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harrison Berger
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jessica C. H. Lee
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital William T. Shearer Center for Human Immunobiology, Houston, TX 77030, USA
| | - Amr M. Saadeldin
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mohammad H. Abu-Arja
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shuo Xu
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Spyridoula Vasileiou
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rebecca M. Brock
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kristen Fousek
- Interdepartmental Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mohamed F. Sheha
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Madhuwanti Srinivasan
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yongshuai Li
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Arash Saeedi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Kandice R. Levental
- Department of Molecular Physiology and Biological Physics, Center for Molecular and Cell Physiology, University of Virginia, Charlottesville, VA 22903, USA
| | - Ann M. Leen
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maksim Mamonkin
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexandre Carisey
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital William T. Shearer Center for Human Immunobiology, Houston, TX 77030, USA
| | - Navin Varadarajan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Meenakshi Hegde
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sujith K. Joseph
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, Center for Molecular and Cell Physiology, University of Virginia, Charlottesville, VA 22903, USA
| | - Malini Mukherjee
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital William T. Shearer Center for Human Immunobiology, Houston, TX 77030, USA
| | - Nabil Ahmed
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
33
|
Sun DY, Hu YJ, Li X, Peng J, Dai ZJ, Wang S. Unlocking the full potential of memory T cells in adoptive T cell therapy for hematologic malignancies. Int Immunopharmacol 2025; 144:113392. [PMID: 39608170 DOI: 10.1016/j.intimp.2024.113392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 11/30/2024]
Abstract
In recent years, immune cell therapy, particularly adoptive cell therapy (ACT), has shown superior therapeutic effects on hematologic malignancies. However, a challenge lies in ensuring that genetically engineered specific T cells maintain lasting anti-tumor effects within the host. The enduring success of ACT therapy hinges on the persistence of memory T (TM) cells, a diverse cell subset crucial for tumor immune response and immune memory upkeep. Notably, TM cell subsets at varying differentiation stages exhibit distinct biological traits and anti-tumor capabilities. Poorly differentiated TM cells are pivotal for favorable clinical outcomes in ACT. The differentiation of TM cells is influenced by multiple factors, including metabolism and cytokines. Consequently, current research focuses on investigating the differentiation patterns of TM cells and enhancing the production of poorly differentiated TM cells with potent anti-tumor properties in vitro, which is a prominent area of interest globally. This review delves into the differentiation features of TM cells, outlining their distribution in patients and their impact on ACT treatment. It comprehensively explores cutting-edge strategies to boost ACT efficacy through TM cell differentiation induction, aiming to unlock the full potential of TM cells in treating hematologic malignancies and offering novel insights for tumor immune cell therapy.
Collapse
Affiliation(s)
- Ding-Ya Sun
- Xiangya School of Pharmaceutical Sciences, Department of Pharmacology, Central South University, Changsha, China
| | - Yi-Jie Hu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Xin Li
- International Medicine Institute, Changsha Medical University, Changsha, China
| | - Jun Peng
- Xiangya School of Pharmaceutical Sciences, Department of Pharmacology, Central South University, Changsha, China.
| | - Zhi-Jie Dai
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Shan Wang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China.
| |
Collapse
|
34
|
Kong Y, Li J, Zhao X, Wu Y, Chen L. CAR-T cell therapy: developments, challenges and expanded applications from cancer to autoimmunity. Front Immunol 2025; 15:1519671. [PMID: 39850899 PMCID: PMC11754230 DOI: 10.3389/fimmu.2024.1519671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Chimeric Antigen Receptor (CAR)-T cell therapy has rapidly emerged as a groundbreaking approach in cancer treatment, particularly for hematologic malignancies. However, the application of CAR-T cell therapy in solid tumors remains challenging. This review summarized the development of CAR-T technologies, emphasized the challenges and solutions in CAR-T cell therapy for solid tumors. Also, key innovations were discussed including specialized CAR-T, combination therapies and the novel use of CAR-Treg, CAR-NK and CAR-M cells. Besides, CAR-based cell therapy have extended its reach beyond oncology to autoimmune disorders. We reviewed preclinical experiments and clinical trials involving CAR-T, Car-Treg and CAAR-T cell therapies in various autoimmune diseases. By highlighting these cutting-edge developments, this review underscores the transformative potential of CAR technologies in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Yanwei Wu
- School of Medicine, Shanghai University, Shanghai, China
| | - Liang Chen
- School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
35
|
Khan SH, Choi Y, Veena M, Lee JK, Shin DS. Advances in CAR T cell therapy: antigen selection, modifications, and current trials for solid tumors. Front Immunol 2025; 15:1489827. [PMID: 39835140 PMCID: PMC11743624 DOI: 10.3389/fimmu.2024.1489827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/02/2024] [Indexed: 01/22/2025] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of hematologic malignancies, achieving remarkable clinical success with FDA-approved therapies targeting CD19 and BCMA. However, the extension of these successes to solid tumors remains limited due to several intrinsic challenges, including antigen heterogeneity and immunosuppressive tumor microenvironments. In this review, we provide a comprehensive overview of recent advances in CAR T cell therapy aimed at overcoming these obstacles. We discuss the importance of antigen identification by emphasizing the identification of tumor-specific and tumor-associated antigens and the development of CAR T therapies targeting these antigens. Furthermore, we highlight key structural innovations, including cytokine-armored CARs, protease-regulated CARs, and CARs engineered with chemokine receptors, to enhance tumor infiltration and activity within the immunosuppressive microenvironment. Additionally, novel manufacturing approaches, such as the Sleeping Beauty transposon system, mRNA-based CAR transfection, and in vivo CAR T cell production, are discussed as scalable solution to improve the accessibility of CAR T cell therapies. Finally, we address critical therapeutic limitations, including cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and suboptimal persistence of CAR T cells. An examination of emerging strategies for countering these limitations reveals that CRISPR-Cas9-mediated genetic modifications and combination therapies utilizing checkpoint inhibitors can improve CAR T cell functionality and durability. By integrating insights from preclinical models, clinical trials, and innovative engineering approaches, this review addresses advances in CAR T cell therapies and their performance in solid tumors.
Collapse
Affiliation(s)
- Safwaan H. Khan
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Yeonjoo Choi
- Division of Hematology/Oncology, Veterans Affairs (VA) Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Mysore Veena
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Division of Hematology/Oncology, Veterans Affairs (VA) Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - John K. Lee
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel Sanghoon Shin
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Division of Hematology/Oncology, Veterans Affairs (VA) Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
36
|
Pinto E, Lione L, Compagnone M, Paccagnella M, Salvatori E, Greco M, Frezza V, Marra E, Aurisicchio L, Roscilli G, Conforti A. From ex vivo to in vivo chimeric antigen T cells manufacturing: new horizons for CAR T-cell based therapy. J Transl Med 2025; 23:10. [PMID: 39755643 PMCID: PMC11700462 DOI: 10.1186/s12967-024-06052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025] Open
Abstract
In the past decades, Chimeric Antigen Receptor (CAR)-T cell therapy has achieved remarkable success, leading to the approval of six therapeutic products for haematological malignancies. Recently, the therapeutic potential of this therapy has also been demonstrated in non-tumoral diseases. Currently, the manufacturing process to produce clinical-grade CAR-T cells is complex, time-consuming, and highly expensive. It involves multiple steps, including the collection of T cells from patients or healthy donors, in vitro engineering and expansion, and finally reinfusion into patients. Therefore, despite the impressive clinical outcomes, ex vivo manufacturing process makes CAR-T cells out of reach for many cancer patients. Direct in vivo engineering of T cells could be a more rapid solution able to circumvent both the complexity and the costs associated with ex vivo manufactured CAR-T cells. This novel approach allows to completely eliminate ex vivo cell manipulation and expansion while producing therapeutic cell populations directly in vivo. To date, several studies have demonstrated the feasibility of in vivo T cell reprogramming, by employing injectable viral- or nanocarrier-based delivery platforms in tumour animal models. Additionally, in vivo production of CAR-T cells might reduce the incidence, or at least the severity, of systemic toxicities frequently occurring with ex vivo produced CAR-T cells, such as cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. In this review, we highlight the challenges associated with the current ex vivo manufacturing protocols and review the latest progresses in the emerging field of in vivo CAR-T therapy, by comparing the various platforms so far investigated. Moreover, we offer an overview of the advantages deriving from in vivo reprogramming of other immune cell types, such as Natural Killer and macrophages, with CAR constructs.
Collapse
Affiliation(s)
- E Pinto
- Evvivax Biotech, Via Castel Romano 100, 00128, Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - L Lione
- Takis Biotech, Via Castel Romano 100, 00128, Rome, Italy
| | - M Compagnone
- Evvivax Biotech, Via Castel Romano 100, 00128, Rome, Italy
| | - M Paccagnella
- Takis Biotech, Via Castel Romano 100, 00128, Rome, Italy
| | - E Salvatori
- Takis Biotech, Via Castel Romano 100, 00128, Rome, Italy
| | - M Greco
- Takis Biotech, Via Castel Romano 100, 00128, Rome, Italy
| | - V Frezza
- Takis Biotech, Via Castel Romano 100, 00128, Rome, Italy
| | - E Marra
- Takis Biotech, Via Castel Romano 100, 00128, Rome, Italy
| | - L Aurisicchio
- Evvivax Biotech, Via Castel Romano 100, 00128, Rome, Italy
- Takis Biotech, Via Castel Romano 100, 00128, Rome, Italy
| | - G Roscilli
- Takis Biotech, Via Castel Romano 100, 00128, Rome, Italy
| | - A Conforti
- Evvivax Biotech, Via Castel Romano 100, 00128, Rome, Italy.
- Takis Biotech, Via Castel Romano 100, 00128, Rome, Italy.
| |
Collapse
|
37
|
Nakayama I, Shitara K. Cell-Based Therapies in GI Cancers: Current Landscape and Future Directions. Am Soc Clin Oncol Educ Book 2025; 45:e471716. [PMID: 39841955 DOI: 10.1200/edbk-25-471716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Cell-based therapies have become integral to the routine clinical management of hematologic malignancies. Tumor-infiltrating lymphocyte (TIL) therapy has demonstrated efficacy in immunogenic solid tumors, such as melanoma. However, in the GI field, evidence supporting the clinical success of cell-based therapies is still awaited. CLDN18.2, a key tight junction molecule in stomach epithelium, has emerged as a promising target for gastric cancer (GC) treatment. Because of its lineage-specific expression, significant efforts have been made to develop chimeric antigen receptor T-cell (CAR-T) therapies targeting CLDN18.2. These therapies have shown encouraging tumor shrinkage in patients with heavily pretreated GC. However, durable responses remain uncommon. CAR-T exhaustion driven by immune-suppressive cells in the tumor microenvironment, along with the heterogeneous expression of target molecules, poses significant challenges. In addition, managing on-target, off-tumor toxicities remains a critical issue in therapies targeting tissue-associated antigens. Next-generation CARs are expected to address these resistance mechanisms. Furthermore, adoptive macrophage and natural killer cell therapies hold promise for not only their efficacy but also for the ease off-the-shelf production. Advanced neoantigen prediction and identification of optimal T-cell activation targets could facilitate the clinical application of TIL and T-cell receptor-T therapies in GI cancers. Cell-based therapies might have the potential to transform the treatment landscape for GI cancers.
Collapse
Affiliation(s)
- Izuma Nakayama
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kohei Shitara
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
38
|
Mobark N, Hull CM, Maher J. Optimising CAR T therapy for the treatment of solid tumors. Expert Rev Anticancer Ther 2025; 25:9-25. [PMID: 39466110 DOI: 10.1080/14737140.2024.2421194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
INTRODUCTION Adoptive immunotherapy using chimeric antigen receptor (CAR)-engineered T cells has proven transformative in the management of B cell and plasma cel derived malignancies. However, solid tumors have largely proven to be resistant to this therapeutic modality. Challenges include the paucity of safe target antigens, heterogeneity of target expression within the tumor, difficulty in delivery of CAR T cells to the site of disease, poor penetration within solid tumor deposits and inability to circumvent the array of immunosuppressive and biophysical barriers imposed by the solid tumor microenvironment. AREAS COVERED Literature was reviewed on the PubMed database, excluding occasional papers which were not available as open access publications or through other means. EXPERT OPINION Here, we have surveyed the large body of technological advances that have been made in the quest to bridge the gap toward successful deployment of CAR T cells for the treatment of solid tumors. These encompass the development of more sophisticated targeting strategies to engage solid tumor cells safely and comprehensively, improved drug delivery solutions, design of novel CAR architectures that achieve improved functional persistence and which resist physical, chemical and biological hurdles present in tumor deposits. Prospects for combination therapies that incorporate CAR T cells are also considered.
Collapse
Affiliation(s)
- Norhan Mobark
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, UK
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - John Maher
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, UK
- Leucid Bio Ltd., Guy's Hospital, London, UK
- Department of Immunology, Eastbourne Hospital, Eastbourne, East Sussex, UK
| |
Collapse
|
39
|
Agliardi G, Dias J, Rampotas A, Garcia J, Roddie C. Accelerating and optimising CAR T-cell manufacture to deliver better patient products. Lancet Haematol 2025; 12:e57-e67. [PMID: 39510106 DOI: 10.1016/s2352-3026(24)00273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 11/15/2024]
Abstract
Autologous chimeric antigen receptor (CAR) T-cell therapy has transformed the management of B-cell leukaemia and lymphoma. However, current manufacturing processes present logistical hurdles, restricting broader application. As clinical outcomes can be heavily influenced by the quality of autologous starting materials and production processes, strategies to improve product phenotype are crucial. Short manufacturing processes have the advantage of bringing products to patients more quickly and, in parallel, avoiding the highly differentiated and exhausted CAR T-cell phenotypes associated with prolonged ex vivo manufacture. This Review examines advances in our understanding of what constitutes an effective CAR T-cell product and approaches to improve product quality. Historically, strategies have relied on adjustments in medium composition and selection of less differentiated cell subtypes. Since 2020, the field has been shifting towards reduced-expansion protocols, no-activation protocols, and point-of-care manufacturing. These approaches have the advantage of a rapid turnaround while maintaining a less differentiated and exhausted phenotype. These efforts are leading to ultrarapid production methods and even elimination of ex vivo manipulation with the use of in vivo manufacturing approaches. In this Review, we focus on the advances needed to accelerate CAR T-cell manufacture (including near-patient methods), with an emphasis on improved therapeutic efficacy and rapid turnaround time, and simplified quality control procedures required to fully realise the clinical potential of CAR T-cell therapies.
Collapse
Affiliation(s)
- Giulia Agliardi
- Cancer Institute, University College London, London, UK; Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital London, NHS Foundation Trust, London, UK
| | - Juliana Dias
- Cancer Institute, University College London, London, UK; Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital London, NHS Foundation Trust, London, UK
| | - Alexandros Rampotas
- Cancer Institute, University College London, London, UK; Department of Haematology, University College London Hospitals, London, UK
| | - John Garcia
- Cancer Institute, University College London, London, UK; Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital London, NHS Foundation Trust, London, UK
| | - Claire Roddie
- Cancer Institute, University College London, London, UK; Department of Haematology, University College London Hospitals, London, UK.
| |
Collapse
|
40
|
Aniogo E, Kujawski M, Awuah D, Cha SE, Espinosa R, Hui S, Ghimire H, Yazaki PJ, Brown CE, Wang X, Shively JE. Targeting CEA in metastatic triple negative breast cancer with image-guided radiation followed by Fab-mediated chimeric antigen receptor (CAR) T-cell therapy. Front Immunol 2024; 15:1499471. [PMID: 39759518 PMCID: PMC11695362 DOI: 10.3389/fimmu.2024.1499471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Introduction Although CAR-T cell therapy has limited efficacy against solid tumors, it has been hypothesized that prior treatment with Image-Guided Radiation Therapy (IGRT) would increase CAR-T cell tumor infiltration, leading to improved antigen specific expansion of CAR-T cells. Methods To test this hypothesis in a metastatic triple negative breast cancer (TNBC) model, we engineered two anti-CEA single-chain Fab (scFab) CAR-T cells with signaling domains from CD28zeta and 4-1BBzeta, and tested them in vitro and in vivo. Results The anti-CEA scFab CAR-T cells generated from three different human donors demonstrated robust in vitro expression, expansion, and lysis of only CEA-positive TNBC cells, with the CD28z-CAR-T cells showing the highest cytotoxicity. IFN-γ and granzyme B release assays revealed significantly higher IFN-γ production at a 4:1 effector-to-target (E:T) ratio in CD28z-CAR-T cells compared to 4-1BBz-CAR-T cells. Treatment of CEA-positive TNBC MDA-MB231 xenografts in the mammary fat pads of NSG mice, that produced spontaneous lung metastases over time, resulted in significant tumor growth reduction compared to either therapy alone (p<0.01). Immunohistochemical (IHC) analysis revealed that only combined IGRT and CAR-T therapy resulted in the elimination of lung metastases. Discussion These findings demonstrate that the combination of IGRT and anti-CEA scFab CAR-T therapy induces a strong antitumor response, effectively targeting both the primary tumor and distant metastatic lesions in the lungs, thus demonstrating that IGRT enhances CAR-T cell infiltration, persistence, and overall efficacy within both primary and metastatic lesions.
Collapse
Affiliation(s)
- Eric Aniogo
- Department of Immunology and Theranostics, City of Hope, Duarte, CA, United States
| | - Maciej Kujawski
- Department of Immunology and Theranostics, City of Hope, Duarte, CA, United States
| | - Dennis Awuah
- T-Cell Therapeutic Laboratory, City of Hope, Duarte, CA, United States
| | - Seung E. Cha
- Department of Immunology and Theranostics, City of Hope, Duarte, CA, United States
| | - Ruby Espinosa
- T-Cell Therapeutic Laboratory, City of Hope, Duarte, CA, United States
| | - Susanta Hui
- Department of Radiation Oncology, City of Hope, Duarte, CA, United States
| | - Hemendra Ghimire
- Department of Radiation Oncology, City of Hope, Duarte, CA, United States
| | - Paul J. Yazaki
- Department of Immunology and Theranostics, City of Hope, Duarte, CA, United States
| | - Christine E. Brown
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Beckman Research Institute and Medical Center, Duarte, CA, United States
| | - Xiuli Wang
- T-Cell Therapeutic Laboratory, City of Hope, Duarte, CA, United States
| | - John E. Shively
- Department of Immunology and Theranostics, City of Hope, Duarte, CA, United States
| |
Collapse
|
41
|
Arana C, Garcia-Busquets A, Nicoli M, Betriu S, Gille I, Heemskerk MHM, Heidt S, Palou E, Rovira J, Diekmann F. Chimeric HLA antibody receptor T cell therapy for humoral transplant rejection. Nephrol Dial Transplant 2024; 40:19-26. [PMID: 39025810 DOI: 10.1093/ndt/gfae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Indexed: 07/20/2024] Open
Abstract
Antibody-mediated rejection (ABMR) is a significant obstacle to achieving optimal long-term outcomes after solid organ transplantation. The presence of donor-specific antibodies (DSAs), particularly against human leucocyte antigen (HLA), increases the risk of allograft rejection and subsequent graft loss. No effective treatment for ABMR currently exists, warranting novel approaches to target the HLA-specific humoral alloimmune response. Cellular therapies may hold promise to this end. According to publicly available sources as of now, three independent laboratories have genetically engineered a chimeric HLA antibody receptor (CHAR) and transduced it into human T cells, based on the demonstrated efficacy of chimeric antigen receptor T cell therapies in malignancies. These CHAR-T cells are designed to exclusively eliminate B cells that produce donor-specific HLA antibodies, which form the cornerstone of ABMR. CHAR technology generates potent and functional human cytotoxic T cells to target alloreactive HLA-specific B cells, sparing B cells with other specificities. Thus CHAR technology may be used as a selective desensitization protocol and to treat ABMR after solid organ transplantation.
Collapse
Affiliation(s)
- Carolt Arana
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Nephrology and Kidney Transplantation. Institut Clínic de Nefrologia i Urologia (ICNU), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Ainhoa Garcia-Busquets
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Michael Nicoli
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sergi Betriu
- Department of Immunology, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Ilse Gille
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eduard Palou
- Department of Immunology, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Fritz Diekmann
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Nephrology and Kidney Transplantation. Institut Clínic de Nefrologia i Urologia (ICNU), Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
42
|
Viel S, Vivier E, Walzer T, Marçais A. Targeting metabolic dysfunction of CD8 T cells and natural killer cells in cancer. Nat Rev Drug Discov 2024:10.1038/s41573-024-01098-w. [PMID: 39668206 DOI: 10.1038/s41573-024-01098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 12/14/2024]
Abstract
The importance of metabolic pathways in regulating immune responses is now well established, and a mapping of the bioenergetic metabolism of different immune cell types is under way. CD8 T cells and natural killer (NK) cells contribute to cancer immunosurveillance through their cytotoxic functions and secretion of cytokines and chemokines, complementing each other in target recognition mechanisms. Several immunotherapies leverage these cell types by either stimulating their activity or redirecting their specificity against tumour cells. However, the anticancer activity of CD8 T cells and NK cells is rapidly diminished in the tumour microenvironment, closely linked to a decline in their metabolic capacities. Various strategies have been developed to restore cancer immunosurveillance, including targeting bioenergetic metabolism or genetic engineering. This Review provides an overview of metabolic dysfunction in CD8 T cells and NK cells within the tumour microenvironment, highlighting current therapies aiming to overcome these issues.
Collapse
Affiliation(s)
- Sébastien Viel
- Plateforme de Biothérapie et de Production de Médicaments de Thérapie Innovante, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
- APHM, Hôpital de la Timone, Marseille, France
- Paris Saclay Cancer Cluster, Villejuif, France
- Université Paris-Saclay, Gustave Roussy, Inserm, Prédicteurs moléculaires et nouvelles cibles en oncologie, Villejuif, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie, (Team Lyacts), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS UMR5308 ENS de Lyon, Lyon, France
| | - Antoine Marçais
- CIRI, Centre International de Recherche en Infectiologie, (Team Lyacts), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS UMR5308 ENS de Lyon, Lyon, France.
| |
Collapse
|
43
|
Sima H, Shao W. Advancements in the design and function of bispecific CAR-T cells targeting B Cell-Associated tumor antigens. Int Immunopharmacol 2024; 142:113166. [PMID: 39298818 DOI: 10.1016/j.intimp.2024.113166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Single-targeted CAR-T has exhibited notable success in treating B-cell tumors, effectively improving patient outcomes. However, the recurrence rate among patients remains above fifty percent, primarily attributed to antigen escape and the diminished immune persistence of CAR-T cells. Over recent years, there has been a surge of interest in bispecific CAR-T cell therapies, marked by an increasing number of research articles and clinical applications annually. This paper undertakes a comprehensive review of influential studies on the design of bispecific CAR-T in recent years, examining their impact on bispecific CAR-T efficacy concerning disease classification, targeted antigens, and CAR design. Notable distinctions in antigen targeting within B-ALL, NHL, and MM are explored, along with an analysis of how CAR scFv, transmembrane region, hinge region, and co-stimulatory region design influence Bi-CAR-T efficacy across different tumors. The summary provided aims to serve as a reference for designing novel and improved CAR-Ts, facilitating more efficient treatment for B-cell malignant tumors.
Collapse
Affiliation(s)
- Helin Sima
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Medical School of Tianjin University, Tianjin, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, China.
| |
Collapse
|
44
|
Yao P, Liu YG, Huang G, Hao L, Wang R. The development and application of chimeric antigen receptor natural killer (CAR-NK) cells for cancer therapy: current state, challenges and emerging therapeutic advances. Exp Hematol Oncol 2024; 13:118. [PMID: 39633491 PMCID: PMC11616395 DOI: 10.1186/s40164-024-00583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
Immunotherapy has transformed the landscape of cancer treatment, with chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy emerging as a front runner in addressing some hematological malignancies. Despite its considerable efficacy, the occurrence of severe adverse effects associated with CAR-T cell therapy has limited their scope and prompted the exploration of alternative therapeutic strategies. Natural killer (NK) cells, characterized by both their innate cytotoxicity and ability to lyse target cells without the constraint of peptide specificity conferred by a major histocompatibility complex (MHC), have similarly garnered attention as a viable immunotherapy. As such, another therapeutic approach has recently emerged that seeks to combine the continued success of CAR-T cell therapy with the flexibility of NK cells. Clinical trials involving CAR-engineered NK (CAR-NK) cell therapy have exhibited promising efficacy with fewer deleterious side effects. This review aims to provide a concise overview of the cellular and molecular basis of NK cell biology, facilitating a better understanding of advancements in CAR design and manufacturing. The focus is on current approaches and strategies employed in CAR-NK cell development, exploring at both preclinical and clinical settings. We will reflect upon the achievements, advantages, and challenges intrinsic to CAR-NK cell therapy. Anticipating the maturation of CAR-NK cell therapy technology, we foresee its encouraging prospects for a broader range of cancer patients and other conditions. It is our belief that this CAR-NK progress will bring us closer to making significant strides in the treatment of refractory and recurrent cancers, as well as other immune-mediated disorders.
Collapse
Affiliation(s)
- Pin Yao
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Ya-Guang Liu
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Gang Huang
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Liangchun Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Runan Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
45
|
Sin WX, Jagannathan NS, Teo DBL, Kairi F, Fong SY, Tan JHL, Sandikin D, Cheung KW, Luah YH, Wu X, Raymond JJ, Lim FLWI, Lee YH, Seng MSF, Soh SY, Chen Q, Ram RJ, Tucker-Kellogg L, Birnbaum ME. A high-density microfluidic bioreactor for the automated manufacturing of CAR T cells. Nat Biomed Eng 2024; 8:1571-1591. [PMID: 38834752 DOI: 10.1038/s41551-024-01219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/20/2024] [Indexed: 06/06/2024]
Abstract
The manufacturing of autologous chimaeric antigen receptor (CAR) T cells largely relies either on fed-batch and manual processes that often lack environmental monitoring and control or on bioreactors that cannot be easily scaled out to meet patient demands. Here we show that human primary T cells can be activated, transduced and expanded to high densities in a 2 ml automated closed-system microfluidic bioreactor to produce viable anti-CD19 CAR T cells (specifically, more than 60 million CAR T cells from donor cells derived from patients with lymphoma and more than 200 million CAR T cells from healthy donors). The in vitro secretion of cytokines, the short-term cytotoxic activity and the long-term persistence and proliferation of the cell products, as well as their in vivo anti-leukaemic activity, were comparable to those of T cells produced in a gas-permeable well. The manufacturing-process intensification enabled by the miniaturized perfusable bioreactor may facilitate the analysis of the growth and metabolic states of CAR T cells during ex vivo culture, the high-throughput optimization of cell-manufacturing processes and the scale out of cell-therapy manufacturing.
Collapse
Affiliation(s)
- Wei-Xiang Sin
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - N Suhas Jagannathan
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Denise Bei Lin Teo
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - Faris Kairi
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - Shin Yie Fong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Joel Heng Loong Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dedy Sandikin
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - Ka-Wai Cheung
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - Yen Hoon Luah
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - Xiaolin Wu
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - Joshua Jebaraj Raymond
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - Francesca Lorraine Wei Inng Lim
- Advanced Cell Therapy and Research Institute, Singapore (ACTRIS), Consortium for Clinical Research and Innovation, Singapore (CRIS), Singapore, Singapore
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- SingHealth Duke-NUS Cell Therapy Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Yie Hou Lee
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
- SingHealth Duke-NUS Cell Therapy Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Michaela Su-Fern Seng
- SingHealth Duke-NUS Oncology Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- SingHealth Duke-NUS Cell Therapy Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Department of Paediatric Haematology and Oncology, KK Women's and Children's Hospital, Singapore, Singapore
| | - Shui Yen Soh
- SingHealth Duke-NUS Oncology Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- SingHealth Duke-NUS Cell Therapy Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Department of Paediatric Haematology and Oncology, KK Women's and Children's Hospital, Singapore, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Rajeev J Ram
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Lisa Tucker-Kellogg
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore.
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.
| | - Michael E Birnbaum
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
46
|
Xu M, Pan Y. Chimeric Antigen Receptor (CAR)-T Cells: A New Era for Hepatocellular Carcinoma Treatment. J Biochem Mol Toxicol 2024; 38:e70091. [PMID: 39664011 DOI: 10.1002/jbt.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/24/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers and a worldwide health concern that requires novel treatment approaches. Tyrosine kinase inhibitors (TKIs) and immune checkpoint blockades (ICBs) are the current standard of care; however, their clinical benefits are limited in some advanced and metastatic patients. With the help of gene engineering techniques, a novel adoptive cellular therapy (ACT) called chimeric antigen receptor (CAR)-T cells was recently introduced for treating HCC. A plethora of current clinical and preclinical studies are attempting to improve the efficacy of CAR-T cells by dominating the immunosuppressive environment of HCC and finding the best tumor-specific antigens (TSAs). The future of care for HCC patients might be drastically improved due to the convergence of novel therapeutic methods and the continuous progress in ACT research. However, the clinical application of CAR-T cells in solid tumors is still facing several challenges. In this study, we provide an overview of the advancement and prospects of CAR-T cell immunotherapy in HCC, as well as an investigation of how cutting-edge engineering could improve CAR-T cell efficacy and safety profile.
Collapse
Affiliation(s)
- Ming Xu
- Department of Liver, Gallbladder, Spleen and Stomach, Heilongjiang Academy of Chinese Mediceal Sciences, Harbin, Heilongjiang, China
| | - Yang Pan
- Department of Liver, Gallbladder, Spleen and Stomach, Heilongjiang Academy of Chinese Mediceal Sciences, Harbin, Heilongjiang, China
| |
Collapse
|
47
|
Chang Y, Chang M, Bao X, Dong C. Advancements in adoptive CAR immune cell immunotherapy synergistically combined with multimodal approaches for tumor treatment. Bioact Mater 2024; 42:379-403. [PMID: 39308543 PMCID: PMC11415837 DOI: 10.1016/j.bioactmat.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Adoptive immunotherapy, notably involving chimeric antigen receptor (CAR)-T cells, has obtained Food and Drug Administration (FDA) approval as a treatment for various hematological malignancies, demonstrating promising preclinical efficacy against cancers. However, the intricate and resource-intensive autologous cell processing, encompassing collection, expansion, engineering, isolation, and administration, hamper the efficacy of this therapeutic modality. Furthermore, conventional CAR T therapy is presently confined to addressing solid tumors due to impediments posed by physical barriers, the potential for cytokine release syndrome, and cellular exhaustion induced by the immunosuppressive and heterogeneous tumor microenvironment. Consequently, a strategic integration of adoptive immunotherapy with synergistic multimodal treatments, such as chemotherapy, radiotherapy, and vaccine therapy etc., emerges as a pivotal approach to surmount these inherent challenges. This collaborative strategy holds the key to addressing the limitations delineated above, thereby facilitating the realization of more precise personalized therapies characterized by heightened therapeutic efficacy. Such synergistic strategy not only serves to mitigate the constraints associated with adoptive immunotherapy but also fosters enhanced clinical applicability, thereby advancing the frontiers of therapeutic precision and effectiveness.
Collapse
Affiliation(s)
- Yun Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| | - Mingyang Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
| | - Cheng Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| |
Collapse
|
48
|
James SE, Chen S, Ng BD, Fischman JS, Jahn L, Boardman AP, Rajagopalan A, Elias HK, Massa A, Manuele D, Nichols KB, Lazrak A, Lee N, Roche AM, McFarland AG, Petrichenko A, Everett JK, Bushman FD, Fei T, Kousa AI, Lemarquis AL, DeWolf S, Peled JU, Vardhana SA, Klebanoff CA, van den Brink MRM. Leucine zipper-based immunomagnetic purification of CAR T cells displaying multiple receptors. Nat Biomed Eng 2024; 8:1592-1614. [PMID: 39715901 PMCID: PMC11917073 DOI: 10.1038/s41551-024-01287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/26/2024] [Indexed: 12/25/2024]
Abstract
Resistance to chimaeric antigen receptor (CAR) T cell therapy develops through multiple mechanisms, most notably antigen loss and tumour-induced immune suppression. It has been suggested that T cells expressing multiple CARs may overcome the resistance of tumours and that T cells expressing receptors that switch inhibitory immune-checkpoint signals into costimulatory signals may enhance the activity of the T cells in the tumour microenvironment. However, engineering multiple features into a single T cell product is difficult because of the transgene-packaging constraints of current gene-delivery vectors. Here we describe a cell-sorting method that leverages leucine zippers for the selective single-step immunomagnetic purification of cells co-transduced with two vectors. Such 'Zip sorting' facilitated the generation of T cells simultaneously expressing up to four CARs and coexpressing up to three 'switch' receptors. In syngeneic mouse models, T cells with multiple CARs and multiple switch receptors eliminated antigenically heterogeneous populations of leukaemia cells coexpressing multiple inhibitory ligands. By combining diverse therapeutic strategies, Zip-sorted multi-CAR multi-switch-receptor T cells can overcome multiple mechanisms of CAR T cell resistance.
Collapse
Affiliation(s)
- Scott E James
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, USA.
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA.
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- City of Hope National Medical Center, Duarte, CA, USA.
| | - Sophia Chen
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
- City of Hope National Medical Center, Duarte, CA, USA
| | - Brandon D Ng
- Weill Cornell Medical College, New York, NY, USA
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
| | - Jacob S Fischman
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorenz Jahn
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
| | - Alexander P Boardman
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adhithi Rajagopalan
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
- City of Hope National Medical Center, Duarte, CA, USA
| | - Harold K Elias
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alyssa Massa
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
- City of Hope National Medical Center, Duarte, CA, USA
| | - Dylan Manuele
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
| | | | - Amina Lazrak
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
| | - Nicole Lee
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
| | - Aoife M Roche
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander G McFarland
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Angelina Petrichenko
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John K Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Teng Fei
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anastasia I Kousa
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
- City of Hope National Medical Center, Duarte, CA, USA
| | - Andri L Lemarquis
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
- City of Hope National Medical Center, Duarte, CA, USA
| | - Susan DeWolf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan U Peled
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Santosha A Vardhana
- Weill Cornell Medical College, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher A Klebanoff
- Weill Cornell Medical College, New York, NY, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marcel R M van den Brink
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, USA.
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA.
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
49
|
Dimitri AJ, Baxter AE, Chen GM, Hopkins CR, Rouin GT, Huang H, Kong W, Holliday CH, Wiebking V, Bartoszek R, Drury S, Dalton K, Koucky OM, Chen Z, Giles JR, Dils AT, Jung IY, O’Connor R, Collins S, Everett JK, Amses K, Sherrill-Mix S, Chandra A, Goldman N, Vahedi G, Jadlowsky JK, Young RM, Melenhorst JJ, Maude SL, Levine BL, Frey NV, Berger SL, Grupp SA, Porter DL, Herbst F, Porteus MH, Carty SA, Bushman FD, Weber EW, Wherry EJ, Jordan MS, Fraietta JA. TET2 regulates early and late transitions in exhausted CD8 + T cell differentiation and limits CAR T cell function. SCIENCE ADVANCES 2024; 10:eadp9371. [PMID: 39536093 PMCID: PMC11559603 DOI: 10.1126/sciadv.adp9371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
CD8+ T cell exhaustion hampers control of cancer and chronic infections and limits chimeric antigen receptor (CAR) T cell efficacy. Targeting TET2 in CAR T cells provides therapeutic benefit; however, TET2's role in exhausted T cell (TEX) development is unclear. In chronic lymphocytic choriomeningitis virus (LCMV) infection, TET2 drove conversion from stem cell-like TEX progenitors toward terminally differentiated and effector (TEFF)-like TEX. TET2 also enforced a terminally differentiated state in the early bifurcation between TEFF and TEX, indicating broad roles for TET2 in acquisition of effector biology. To exploit the therapeutic potential of TET2, we developed clinically actionable TET2-targeted CAR T cells by disrupting TET2 via knock-in of a safety switch alongside CAR knock-in at the TRAC locus. TET2-targeted CAR T cells exhibited restrained terminal exhaustion in vitro and enhanced antitumor responses in vivo. Thus, TET2 regulates fate transitions in TEX differentiation and can be targeted with a safety mechanism in CAR T cells for improved tumor control.
Collapse
Affiliation(s)
- Alexander J. Dimitri
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amy E. Baxter
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department for Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gregory M. Chen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Caitlin R. Hopkins
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Geoffrey T. Rouin
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hua Huang
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department for Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weimin Kong
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher H. Holliday
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Volker Wiebking
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics,, Stanford University, Palo Alto, CA 94304, USA
| | - Robert Bartoszek
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sydney Drury
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine Dalton
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Owen M. Koucky
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zeyu Chen
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department for Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Josephine R. Giles
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department for Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander T. Dils
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - In-Young Jung
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roddy O’Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sierra Collins
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John K. Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin Amses
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott Sherrill-Mix
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI 48824, USA
| | - Aditi Chandra
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Naomi Goldman
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Golnaz Vahedi
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julie K. Jadlowsky
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Regina M. Young
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jan Joseph Melenhorst
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | - Shannon L. Maude
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bruce L. Levine
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Noelle V. Frey
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | - Shelley L. Berger
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephan A. Grupp
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David L. Porter
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Friederike Herbst
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew H. Porteus
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics,, Stanford University, Palo Alto, CA 94304, USA
| | - Shannon A. Carty
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Evan W. Weber
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E. John Wherry
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department for Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Martha S. Jordan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph A. Fraietta
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
50
|
Oswald BM, DeCamp LM, Longo J, Dahabieh MS, Bunda N, Ma S, Watson MJ, Sheldon RD, Vincent MP, Johnson BK, Ellis AE, Soper-Hopper MT, Isaguirre CN, Shen H, Williams KS, Crawford PA, Kaech S, Jang HJ, Krawczyk CM, Jones RG. Dietary Restriction Enhances CD8 + T Cell Ketolysis to Limit Exhaustion and Boost Anti-Tumor Immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.621733. [PMID: 39605550 PMCID: PMC11601469 DOI: 10.1101/2024.11.14.621733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Reducing calorie intake without malnutrition limits tumor progression but the underlying mechanisms are poorly understood. Here we show that dietary restriction (DR) suppresses tumor growth by enhancing CD8+ T cell-mediated anti-tumor immunity. DR reshapes CD8+ T cell differentiation within the tumor microenvironment (TME), promoting the development of effector T cell subsets while limiting the accumulation of exhausted T (Tex) cells, and synergizes with anti-PD1 immunotherapy to restrict tumor growth. Mechanistically, DR enhances CD8+ T cell metabolic fitness through increased ketone body oxidation (ketolysis), which boosts mitochondrial membrane potential and fuels tricarboxylic acid (TCA) cycle-dependent pathways essential for T cell function. T cells deficient for ketolysis exhibit reduced mitochondrial function, increased exhaustion, and fail to control tumor growth under DR conditions. Our findings reveal a critical role for the immune system in mediating the anti-tumor effects of DR, highlighting nutritional modulation of CD8+ T cell fate in the TME as a critical determinant of anti-tumor immunity.
Collapse
Affiliation(s)
- Brandon M. Oswald
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Lisa M. DeCamp
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Joseph Longo
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Michael S. Dahabieh
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Nicholas Bunda
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | | | - McLane J Watson
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Ryan D. Sheldon
- Mass Spectrometry Core Facility, Van Andel Institute, Grand Rapids, MI, USA
| | - Michael P. Vincent
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
- Mass Spectrometry Core Facility, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Abigail E Ellis
- Mass Spectrometry Core Facility, Van Andel Institute, Grand Rapids, MI, USA
| | | | | | - Hui Shen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Kelsey S. Williams
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Peter A. Crawford
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - H. Josh Jang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Connie M. Krawczyk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Russell G. Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|