1
|
Li A, Yi Z, Ma C, Sun B, Zhao L, Cheng X, Hui L, Xia Y. Innate immune recognition in hepatitis B virus infection. Virulence 2025; 16:2492371. [PMID: 40253712 PMCID: PMC12013422 DOI: 10.1080/21505594.2025.2492371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/19/2025] [Accepted: 04/02/2025] [Indexed: 04/22/2025] Open
Abstract
Hepatitis B virus (HBV) remains a major global public health challenge, with approximately 254 million individuals chronically infected worldwide. The interaction between HBV and the innate immune system has garnered significant attention within the scientific community, with numerous studies exploring this relationship over the past several decades. While some research suggests that HBV infection activates the host's innate immune response, other studies indicate that HBV suppresses innate immune signaling pathways. These conflicting findings underscore the complexity of the HBV-innate immunity interaction, which remains inadequately understood. This review aims to clarify this interplay by examining it from three perspectives: (a) studies showing HBV activation of innate immunity; (b) evidence suggesting HBV suppression of innate immunity; and (c) findings that support HBV's role as a stealth virus. By synthesizing these perspectives, we aim to deepen the understanding of virus-host interactions that are crucial to HBV persistence and immune evasion, with potential implications for developing new therapeutic strategies for chronic HBV infection.
Collapse
Affiliation(s)
- Aixin Li
- School of Laboratory Medicine, Shandong Second Medical University, Weifang, China
| | - Zhengjun Yi
- School of Laboratory Medicine, Shandong Second Medical University, Weifang, China
| | - Chunqiang Ma
- School of Laboratory Medicine, Shandong Second Medical University, Weifang, China
| | - Bangyao Sun
- School of Laboratory Medicine, Shandong Second Medical University, Weifang, China
| | - Li Zhao
- School of Laboratory Medicine, Shandong Second Medical University, Weifang, China
| | - Xiaoming Cheng
- State Key Laboratory of Virology and Biosafety, Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
- Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Lixia Hui
- School of Laboratory Medicine, Shandong Second Medical University, Weifang, China
| | - Yuchen Xia
- State Key Laboratory of Virology and Biosafety, Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
- Pingyuan Laboratory, Henan, China
| |
Collapse
|
2
|
Xiao Q, Liu Y, Li T, Wang C, He S, Zhai L, Yang Z, Zhang X, Wu Y, Liu Y. Viral oncogenesis in cancer: from mechanisms to therapeutics. Signal Transduct Target Ther 2025; 10:151. [PMID: 40350456 PMCID: PMC12066790 DOI: 10.1038/s41392-025-02197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/22/2025] [Accepted: 03/03/2025] [Indexed: 05/14/2025] Open
Abstract
The year 2024 marks the 60th anniversary of the discovery of the Epstein-Barr virus (EBV), the first virus confirmed to cause human cancer. Viral infections significantly contribute to the global cancer burden, with seven known Group 1 oncogenic viruses, including hepatitis B virus (HBV), human papillomavirus (HPV), EBV, Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV), human T-cell leukemia virus type 1 (HTLV-1), and human immunodeficiency virus (HIV). These oncogenic viruses induce cellular transformation and cancer development by altering various biological processes within host cells, particularly under immunosuppression or co-carcinogenic exposures. These viruses are primarily associated with hepatocellular carcinoma, gastric cancer, cervical cancer, nasopharyngeal carcinoma, Kaposi sarcoma, lymphoma, and adult T-cell leukemia/lymphoma. Understanding the mechanisms of viral oncogenesis is crucial for identifying and characterizing the early biological processes of virus-related cancers, providing new targets and strategies for treatment or prevention. This review first outlines the global epidemiology of virus-related tumors, milestone events in research, and the process by which oncogenic viruses infect target cells. It then focuses on the molecular mechanisms by which these viruses induce tumors directly or indirectly, including the regulation of oncogenes or tumor suppressor genes, induction of genomic instability, disruption of regular life cycle of cells, immune suppression, chronic inflammation, and inducing angiogenesis. Finally, current therapeutic strategies for virus-related tumors and recent advances in preclinical and clinical research are discussed.
Collapse
Affiliation(s)
- Qing Xiao
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yi Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Tingting Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Chaoyu Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Sanxiu He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Liuyue Zhai
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Zailin Yang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaomei Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| | - Yongzhong Wu
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| | - Yao Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
3
|
Chuang YC, Ou JHJ. Effects of cellular membranes and the precore protein on hepatitis B virus core particle assembly and DNA replication. mBio 2025; 16:e0397224. [PMID: 40042302 PMCID: PMC11980540 DOI: 10.1128/mbio.03972-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/07/2025] [Indexed: 04/10/2025] Open
Abstract
Hepatitis B virus (HBV) core particle is critical for the transport and replication of the viral DNA genome. By characterizing HBV core particles in different subcellular compartments, we found that when the HBV core protein was expressed by itself, it formed core particles with a uniform and fast mobility on a non-denaturing agarose gel. However, when the core protein was expressed from a replication-competent 1.3mer HBV genome, it formed particles with more heterogeneous structures. The presence of the precore protein, a protein related to the core protein, led to the formation of chimeric particles in the cytoplasm that consisted of both precore and core proteins. When the precore protein was expressed by itself, it could also form particulate structures in association with cellular RNAs in the nucleus. Our further analysis revealed that, in cells with replicating HBV, only the fast-migrating core particles on the gel contained the viral RNA and DNA, and the membrane-associated core particles contained more mature HBV DNA than the cytosolic core particles. In addition, the precore protein reduced the level of core particle-associated HBV DNA. Interestingly, the precore protein level in the cells could be increased by the degradative autophagy inhibitor bafilomycin A1 but not by the proteasome inhibitor MG132, suggesting that autophagy might regulate the biological activities of the precore protein. In conclusion, our results indicated that membranes and the precore protein could regulate HBV core particle assembly and DNA replication and suggested a role of autophagy in the regulation of HBV precore protein activities. IMPORTANCE Hepatitis B virus (HBV) is an important human pathogen that chronically infects 254 million people in the world. This virus contains a core particle, which plays an important role in the transport and replication of the viral DNA genome. The major protein constituent of this particle is the viral core protein. In this report, we examined how the subcellular compartments and the related precore protein might affect the core particle structure and viral DNA replication. We found that the subcellular localizations could affect the core particle assembly, and membranes and the precore protein could regulate HBV DNA replication. We also found that the inhibition of autophagic degradation increased the precore protein level, suggesting a role of autophagy in the regulation of precore protein activities. These findings provided important information for further understanding the HBV life cycle, which will aid in the development of novel drugs for the treatment of HBV patients.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Jing-hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
4
|
Liu Z, Li G, Li X, Wang Y, Liao L, Yang T, Han C, Huang K, Chen C, Li X, Liu H, Zhang X. CD163 impairs HBV clearance in mice by regulating intrahepatic T cell immune response via an IL-10-dependent mechanism. Antiviral Res 2025; 235:106093. [PMID: 39855274 DOI: 10.1016/j.antiviral.2025.106093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/05/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND & AIMS Chronic hepatitis B (CHB) arises from a persistent hepatitis B virus (HBV) infection, complicating efforts for a functional cure. Kupffer cells (KCs), liver-resident macrophages, are pivotal in mediating immune tolerance to HBV. Although CD163 marks M2-polarized KCs, its precise role in HBV infection remains unclear and warrants further investigation. METHODS CD163 expression in liver tissues of patients with CHB was analyzed using the Gene Expression Omnibus (GEO) database. Cd163 knockout mice were utilized to establish HBV-persistent mouse model, and CD163 deficiency effect on HBV viral markers and T cell immune responses were examined in vivo and in vitro. RESULTS CD163 expression was elevated and correlated with ALT levels in the liver of patients with CHB. In HBV-persistent mouse model, CD163 deficiency facilitated the clearance of HBsAg, HBeAg, HBV DNA, and HBcAg. Additionally, CD163 deficiency promoted the differentiation of naïve T cells into HBV-specific effector T cells. Further, we found that CD163 deficiency reduces KCs-derived IL-10 secretion, and blocking IL-10 further strengthens the enhanced HBV-specific T cell response due to CD163 deficiency. CONCLUSIONS Our findings indicate that CD163 deficiency enhances the HBV-specific T cell response, thereby facilitating HBV clearance through reducing KCs-derived IL-10 secretion. This suggests that CD163 may serve as a potential target for the restoration of exhausted T cell function.
Collapse
MESH Headings
- Animals
- CD163 Antigen
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Hepatitis B virus/immunology
- Interleukin-10/immunology
- Interleukin-10/metabolism
- Mice
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Mice, Knockout
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/virology
- T-Lymphocytes/immunology
- Humans
- Disease Models, Animal
- Liver/immunology
- Liver/virology
- Kupffer Cells/immunology
- Male
- Female
- Mice, Inbred C57BL
- Hepatitis B Surface Antigens
Collapse
Affiliation(s)
- Ziying Liu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangdong Institute of Hepatology, Guangdong Provincial Research Center for Liver Fibrosis Engineering and Technology, Guangzhou, China
| | - Guiping Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangdong Institute of Hepatology, Guangdong Provincial Research Center for Liver Fibrosis Engineering and Technology, Guangzhou, China
| | - Xiaoran Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangdong Institute of Hepatology, Guangdong Provincial Research Center for Liver Fibrosis Engineering and Technology, Guangzhou, China
| | - Yiran Wang
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangdong Institute of Hepatology, Guangdong Provincial Research Center for Liver Fibrosis Engineering and Technology, Guangzhou, China
| | - Leyi Liao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Ti Yang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chao Han
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangdong Institute of Hepatology, Guangdong Provincial Research Center for Liver Fibrosis Engineering and Technology, Guangzhou, China
| | - Kuiyuan Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Chuyuan Chen
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangdong Institute of Hepatology, Guangdong Provincial Research Center for Liver Fibrosis Engineering and Technology, Guangzhou, China
| | - Xuanyi Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangdong Institute of Hepatology, Guangdong Provincial Research Center for Liver Fibrosis Engineering and Technology, Guangzhou, China
| | - Hongyan Liu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangdong Institute of Hepatology, Guangdong Provincial Research Center for Liver Fibrosis Engineering and Technology, Guangzhou, China
| | - Xiaoyong Zhang
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangdong Institute of Hepatology, Guangdong Provincial Research Center for Liver Fibrosis Engineering and Technology, Guangzhou, China.
| |
Collapse
|
5
|
Gu Y, Gu L, Chen L, Li J, Liao C, Bi Y, Huang Z, Cai W, Wei J, Huang Y. Immunotherapy Using HBV Vaccine Pulsed DCs and Induced T-Cells Combined Antiviral Drugs in Treatment Naive CHB Patients-A Multi-Centre Phase II Study. J Viral Hepat 2025; 32:e14045. [PMID: 39815989 DOI: 10.1111/jvh.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/20/2024] [Accepted: 11/30/2024] [Indexed: 01/18/2025]
Abstract
Dendritic cells are the most potent antigen-presenting cells in immune therapeutic approaches for chronic hepatitis B (CHB) infection. Here, we developed a clinical trial to evaluate the efficacy and safety of autologous HBV vaccine-pulsed DCs and their induced T cells (HPDCT) in CHB patients. This was a randomised, prospective, open-label, multicentre, superiority study and 309 treatment-naive CHB patients were divided into HPDCT plus nucleos(t)ide analogues (NAs) group (n = 84), NAs mono-therapy group (n = 82), HPDCT plus Peg-interferon (Peg-IFN) group (n = 69), Peg-IFN mono-therapy group (n = 74). Twelve times of HPDCT vaccinations were given intravenously, and all the patients were followed up for 72 weeks. In total, 1836 HPDCT infusions were administered with no obvious toxicity and side effect although few patients had self-limited low fever. More patients got HBsAg loss in those receiving HPDCT therapy. Patients of HPDCT plus Peg-IFN group with HBV DNA < 1 × 107 IU/mL at baseline exhibited earlier, stronger and longer lasting of viral response, especially HBV DNA < 20 IU/mL, than those patients of Peg-IFN mono-therapy group, from week 24 till week 72 (p < 0.05). Comparable efficacy was observed between the patients of HPDCT plus NAs group and NAs mono-therapy groups. In addition, CD25 on CD8+ T cells and HBV-specific CD8+ T cell increased significantly in patients of HPDCT combined antiviral drugs therapy. HPDCT combined with antiviral drugs was safe and able to enhance T cell immunity. Furthermore, HPDCT combined with Peg-IFN could provide an incremental benefit to patients with baseline levels of lower HBV DNA. Trial Registration: ClinicalTrials.gov identifier: NCT01935635.
Collapse
Affiliation(s)
- Yurong Gu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lin Gu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lubiao Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chunhong Liao
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yanhua Bi
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zexuan Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wei Cai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jia Wei
- Department of Infectious Diseases and Hepatology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Yuehua Huang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
6
|
Ford JS, Debes JD. Hepatitis B virus. TREATMENT AND MANAGEMENT OF TROPICAL LIVER DISEASE 2025:8-16. [DOI: 10.1016/b978-0-323-87031-3.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
7
|
Inoue J, Akahane T, Miyazaki Y, Ninomiya M, Sano A, Tsuruoka M, Sato K, Onuki M, Sawahashi S, Ouchi K, Masamune A. Long-read deep sequencing analysis of hepatitis B virus quasispecies in two elderly cases of interspousal transmission. J Infect Chemother 2025; 31:102521. [PMID: 39270848 DOI: 10.1016/j.jiac.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/19/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Hepatitis B virus (HBV) can be transmitted within a family, but an interspousal transmission in elderly cases is rare and the change of viral quasispecies during the event is unclear. We experienced two acute hepatitis B males (AH1 and AH2, 67 and 71 years old, respectively) whose HBV was transmitted from their wives with chronic HBV infection (CH1 and CH2, 67 and 66 years old, respectively). To clarify the characteristics of HBV quasispecies in such cases, we performed long-read deep sequencing of HBV preS1/preS2/S domain using samples from the 2 couples. HBV full-genome sequences determined with direct sequencing showed that the HBV sequences belonged to subgenotype B1. AH1 was 98.0-99.2 % identical to CH1, and AH2 was 98.5-99.5 % identical to CH2, whereas the identity between AH1 and AH2 was 96.9 %. The long-read deep sequencing of amplicons including preS1/preS2/S domains with PacBio Sequel IIe showed the numbers of nucleotides with >5 % substitution frequencies in AH1, AH2, CH1 and CH2 were 0 (0 %), 4 (0.31 %), 39 (3.06 %) and 28 (2.20 %), respectively, indicating that CH1 and CH2 were more heterogeneous than AH1 and AH2. From a phylogenetic analysis based on the deep sequencing, minor CH1/CH2 clones that were close to AH1/AH2 clones were considered to be substantially distinct from the major populations in CH1/CH2. The major population formed during chronic infection under the immune pressure might not be suitable to establish new infection and this might be one of the reasons why the transmission had not occurred for a long time after marriage.
Collapse
Affiliation(s)
- Jun Inoue
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Takehiro Akahane
- Department of Gastroenterology, Japanese Red Cross Ishinomaki Hospital, Ishinomaki, Japan
| | - Yutaka Miyazaki
- Department of Gastroenterology, Tohoku Kosai Hospital, Sendai, Japan
| | - Masashi Ninomiya
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akitoshi Sano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mio Tsuruoka
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kosuke Sato
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masazumi Onuki
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoko Sawahashi
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keishi Ouchi
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
8
|
Bertoletti A. The immune response in chronic HBV infection. J Viral Hepat 2024; 31 Suppl 2:43-55. [PMID: 38845402 DOI: 10.1111/jvh.13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 12/06/2024]
Abstract
Hepatitis B virus (HBV) is an ancient virus that has evolved unique strategies to persist as a chronic infection in humans. Here, I summarize the innate and adaptive features of the HBV-host interaction, and I discuss how different profiles of antiviral immunity cannot be predicted only on the basis of virological and clinical parameters.
Collapse
Affiliation(s)
- Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
9
|
Ma L, Han Q, Cheng L, Song H, Qiang R, Xu P, Gao F, Zhu L, Xu J. Altered mitochondrial mass and low mitochondrial membrane potential of immune cells in patients with HBV infection and correlation with liver inflammation. Front Immunol 2024; 15:1477646. [PMID: 39650657 PMCID: PMC11621101 DOI: 10.3389/fimmu.2024.1477646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/04/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction Mitochondrial membrane potential (MMP) and mitochondrial mass (MM) affect mitochondrial function and lymphocyte activation, but few studies on HBV infection exist. This study aimed to investigate the regulatory mechanism of mitochondrial dysfunction during HBV infection and its clinical significance by analyzing the alterations of MM and MMPlow in peripheral blood immune cells. Methods The study enrolled 90 participants, including healthy volunteers(HC) and patients with HBV infection, HBV patients were divided into chronic hepatitis B patients (CHB) and liver cirrhosis (LC) according to the study, and CHB was also divided into an inflammation group and a non-inflammation group. Flow cytometry was used to analyze the changes of MM and MMPlow in peripheral blood immune cells. These analyses were correlated with the presence of CHB and LC and indexes related to liver inflammation. Results The study revealed significant variations in the percentage of MMPlow and MM of CD8+T cells associated with the progression of the disease. The MMPlow percentage of CD8+T cells in the LC group exhibited a notable decrease compared to the HC group and CHB groups. Moreover, MMPlow of CD8+T cells demonstrated potential in distinguishing CHB and LC (AUC=0.7341, P=0.0032). Furthermore, in exploring the link between mitochondrial function of immune cells and liver inflammation, the study found a negative correlation between the MMPlow ratio of CD4+T and CD8+T cells and AST (p=0.0039 and P=0.0070, r=-0.4405 and r=-0.4146), while the MM of CD8+T cells displayed a positive correlation with AST (p=0.0013, r=0.4865). In CHB patients with normal ALT but liver inflammation detected on B-scan ultrasonography, a significant decrease was observed in the MMPlow percentage of CD8+T (66.13 ± 14.27), CD56+NK(57.77 ± 17.40) and CD4-CD8-T (61.98 ± 15.98) cells. Furthermore, it was also found that the percentage of MMPlow in CD4-CD8-T cells could serve as an indicator for early liver inflammation and injury (AUC=0.8408, P=0.0052). Discussion In this study, we conducted a systematic analysis of the percentage of lymphocyte MMPlow and MM in various stages of HBV infection. Our findings revealed a correlation between MMPlow and MM and early liver inflammation, as well as the progression of the infection. This study marked the first demonstration of the clinical diagnostic value of MMPlow and MM in HBV infection. Furthermore, this was the first study to discuss the mitochondria of lymphocytes and liver inflammation in HBV infection. It enhanced the understanding of the role of T cells in liver inflammation, and elucidated potential markers for the early detection of liver injury and clinical cirrhosis.
Collapse
Affiliation(s)
- Liling Ma
- Department of Clinical Laboratory, The Affiliated Infectious Diseases Hospital of Soochow University, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Qingzhen Han
- Center of Clinical Laboratory and Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, China
| | - Longji Cheng
- Department of Clinical Laboratory, The Affiliated Infectious Diseases Hospital of Soochow University, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Huafeng Song
- Department of Clinical Laboratory, The Affiliated Infectious Diseases Hospital of Soochow University, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Rui Qiang
- Department of Clinical Laboratory, The Affiliated Infectious Diseases Hospital of Soochow University, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Ping Xu
- Department of Clinical Laboratory, The Affiliated Infectious Diseases Hospital of Soochow University, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Fei Gao
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Li Zhu
- Department of Clinical Laboratory, The Affiliated Infectious Diseases Hospital of Soochow University, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Junchi Xu
- Department of Clinical Laboratory, The Affiliated Infectious Diseases Hospital of Soochow University, The Fifth People's Hospital of Suzhou, Suzhou, China
| |
Collapse
|
10
|
Echevarria-Lima J, Moles R. Monocyte and Macrophage Functions in Oncogenic Viral Infections. Viruses 2024; 16:1612. [PMID: 39459945 PMCID: PMC11512331 DOI: 10.3390/v16101612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Monocytes and macrophages are part of innate immunity and constitute the first line of defense against pathogens. Bone marrow-derived monocytes circulate in the bloodstream for one to three days and then typically migrate into tissues, where they differentiate into macrophages. Circulatory monocytes represent 5% of the nucleated cells in normal adult blood. Following differentiation, macrophages are distributed into various tissues and organs to take residence and maintain body homeostasis. Emerging evidence has highlighted the critical role of monocytes/macrophages in oncogenic viral infections, mainly their crucial functions in viral persistence and disease progression. These findings open opportunities to target innate immunity in the context of oncogenic viruses and to explore their potential as immunotherapies.
Collapse
Affiliation(s)
- Juliana Echevarria-Lima
- Laboratório de Imunologia Básica e Aplicada, Department of Immunology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil;
| | - Ramona Moles
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
11
|
Rehermann B. Toward a better understanding of chronic hepatitis B virus infection. J Clin Invest 2024; 134:e185568. [PMID: 39352391 PMCID: PMC11444154 DOI: 10.1172/jci185568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
|
12
|
Quirino A, Marascio N, Branda F, Ciccozzi A, Romano C, Locci C, Azzena I, Pascale N, Pavia G, Matera G, Casu M, Sanna D, Giovanetti M, Ceccarelli G, Alaimo di Loro P, Ciccozzi M, Scarpa F, Maruotti A. Viral Hepatitis: Host Immune Interaction, Pathogenesis and New Therapeutic Strategies. Pathogens 2024; 13:766. [PMID: 39338957 PMCID: PMC11435051 DOI: 10.3390/pathogens13090766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Viral hepatitis is a major cause of liver illness worldwide. Despite advances in the understanding of these infections, the pathogenesis of hepatitis remains a complex process driven by intricate interactions between hepatitis viruses and host cells at the molecular level. This paper will examine in detail the dynamics of these host-pathogen interactions, highlighting the key mechanisms that regulate virus entry into the hepatocyte, their replication, evasion of immune responses, and induction of hepatocellular damage. The unique strategies employed by different hepatitis viruses, such as hepatitis B, C, D, and E viruses, to exploit metabolic and cell signaling pathways to their advantage will be discussed. At the same time, the innate and adaptive immune responses put in place by the host to counter viral infection will be analyzed. Special attention will be paid to genetic, epigenetic, and environmental factors that modulate individual susceptibility to different forms of viral hepatitis. In addition, this work will highlight the latest findings on the mechanisms of viral persistence leading to the chronic hepatitis state and the potential implications for the development of new therapeutic strategies. Fully understanding the complex host-pathogen interactions in viral hepatitis is crucial to identifying new therapeutic targets, developing more effective approaches for treatment, and shedding light on the mechanisms underlying progression to more advanced stages of liver damage.
Collapse
Affiliation(s)
- Angela Quirino
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (A.Q.); (N.M.); (G.P.); (G.M.)
| | - Nadia Marascio
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (A.Q.); (N.M.); (G.P.); (G.M.)
| | - Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (C.R.); (M.C.)
| | - Alessandra Ciccozzi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.); (F.S.)
| | - Chiara Romano
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (C.R.); (M.C.)
| | - Chiara Locci
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.); (F.S.)
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Ilenia Azzena
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Noemi Pascale
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
- Department of Chemical Physical Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Grazia Pavia
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (A.Q.); (N.M.); (G.P.); (G.M.)
| | - Giovanni Matera
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (A.Q.); (N.M.); (G.P.); (G.M.)
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.); (F.S.)
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, MG, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Brasilia 70070-130, GO, Brazil
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University Hospital Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy;
| | | | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (C.R.); (M.C.)
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.); (F.S.)
| | - Antonello Maruotti
- Department GEPLI, Libera Università Maria Ss Assunta, 00193 Rome, Italy;
| |
Collapse
|
13
|
Tarasova O, Petrou A, Ivanov SM, Geronikaki A, Poroikov V. Viral Factors in Modulation of Host Immune Response: A Route to Novel Antiviral Agents and New Therapeutic Approaches. Int J Mol Sci 2024; 25:9408. [PMID: 39273355 PMCID: PMC11395507 DOI: 10.3390/ijms25179408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Viruses utilize host cells at all stages of their life cycle, from the transcription of genes and translation of viral proteins to the release of viral copies. The human immune system counteracts viruses through a variety of complex mechanisms, including both innate and adaptive components. Viruses have an ability to evade different components of the immune system and affect them, leading to disruption. This review covers contemporary knowledge about the virus-induced complex interplay of molecular interactions, including regulation of transcription and translation in host cells resulting in the modulation of immune system functions. Thorough investigation of molecular mechanisms and signaling pathways that are involved in modulating of host immune response to viral infections can help to develop novel approaches for antiviral therapy. In this review, we consider new therapeutic approaches for antiviral treatment. Modern therapeutic strategies for the treatment and cure of human immunodeficiency virus (HIV) are considered in detail because HIV is a unique example of a virus that leads to host T lymphocyte deregulation and significant modulation of the host immune response. Furthermore, peculiarities of some promising novel agents for the treatment of various viral infections are described.
Collapse
Affiliation(s)
- Olga Tarasova
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Anthi Petrou
- School of Pharmacy, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | | | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | | |
Collapse
|
14
|
Yue B, Gao Y, Hu Y, Zhan M, Wu Y, Lu L. Harnessing CD8 + T cell dynamics in hepatitis B virus-associated liver diseases: Insights, therapies and future directions. Clin Transl Med 2024; 14:e1731. [PMID: 38935536 PMCID: PMC11210506 DOI: 10.1002/ctm2.1731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
Hepatitis B virus (HBV) infection playsa significant role in the etiology and progression of liver-relatedpathologies, encompassing chronic hepatitis, fibrosis, cirrhosis, and eventual hepatocellularcarcinoma (HCC). Notably, HBV infection stands as the primary etiologicalfactor driving the development of HCC. Given the significant contribution ofHBV infection to liver diseases, a comprehensive understanding of immunedynamics in the liver microenvironment, spanning chronic HBV infection,fibrosis, cirrhosis, and HCC, is essential. In this review, we focused on thefunctional alterations of CD8+ T cells within the pathogenic livermicroenvironment from HBV infection to HCC. We thoroughly reviewed the roles ofhypoxia, acidic pH, metabolic reprogramming, amino acid deficiency, inhibitory checkpointmolecules, immunosuppressive cytokines, and the gut-liver communication in shapingthe dysfunction of CD8+ T cells in the liver microenvironment. Thesefactors significantly impact the clinical prognosis. Furthermore, we comprehensivelyreviewed CD8+ T cell-based therapy strategies for liver diseases,encompassing HBV infection, fibrosis, cirrhosis, and HCC. Strategies includeimmune checkpoint blockades, metabolic T-cell targeting therapy, therapeuticT-cell vaccination, and adoptive transfer of genetically engineered CD8+ T cells, along with the combined usage of programmed cell death protein-1/programmeddeath ligand-1 (PD-1/PD-L1) inhibitors with mitochondria-targeted antioxidants.Given that targeting CD8+ T cells at various stages of hepatitis Bvirus-induced hepatocellular carcinoma (HBV + HCC) shows promise, we reviewedthe ongoing need for research to elucidate the complex interplay between CD8+ T cells and the liver microenvironment in the progression of HBV infection toHCC. We also discussed personalized treatment regimens, combining therapeuticstrategies and harnessing gut microbiota modulation, which holds potential forenhanced clinical benefits. In conclusion, this review delves into the immunedynamics of CD8+ T cells, microenvironment changes, and therapeuticstrategies within the liver during chronic HBV infection, HCC progression, andrelated liver diseases.
Collapse
Affiliation(s)
- Bing Yue
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yuxia Gao
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yi Hu
- Microbiology and Immunology DepartmentSchool of MedicineFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| |
Collapse
|
15
|
Shi J, Li Q, Li J, Zhou J, Zhang X, Wang S, Guo L. Single-Cell RNA Sequencing Reveals the Spatial Heterogeneity and Functional Alteration of Endothelial Cells in Chronic Hepatitis B Infection. Int J Mol Sci 2024; 25:7016. [PMID: 39000126 PMCID: PMC11241719 DOI: 10.3390/ijms25137016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Chronic Hepatitis B virus (CHB) infection is a global health challenge, causing damage ranging from hepatitis to cirrhosis and hepatocellular carcinoma. In our study, single-cell RNA sequencing (scRNA-seq) analysis was performed in livers from mice models with chronic inflammation induced by CHB infection and we found that endothelial cells (ECs) exhibited the largest number of differentially expressed genes (DEGs) among all ten cell types. NF-κB signaling was activated in ECs to induce cell dysfunction and subsequent hepatic inflammation, which might be mediated by the interaction of macrophage-derived and cholangiocyte-derived VISFATIN/Nampt signaling. Moreover, we divided ECs into three subclusters, including periportal ECs (EC_Z1), midzonal ECs (EC_Z2), and pericentral ECs (EC_Z3) according to hepatic zonation. Functional analysis suggested that pericentral ECs and midzonal ECs, instead of periportal ECs, were more vulnerable to HBV infection, as the VISFATIN/Nampt- NF-κB axis was mainly altered in these two subpopulations. Interestingly, pericentral ECs showed increasing communication with macrophages and cholangiocytes via the Nampt-Insr and Nampt-Itga5/Itgb1 axis upon CHB infection, which contribute to angiogenesis and vascular capillarization. Additionally, ECs, especially pericentral ECs, showed a close connection with nature killer (NK) cells and T cells via the Cxcl6-Cxcr6 axis, which is involved in shaping the microenvironment in CHB mice livers. Thus, our study described the heterogeneity and functional alterations of three subclusters in ECs. We revealed the potential role of VISFATIN/Nampt signaling in modulating ECs characteristics and related hepatic inflammation, and EC-derived chemokine Cxcl16 in shaping NK and T cell recruitment, providing key insights into the multifunctionality of ECs in CHB-associated pathologies.
Collapse
Affiliation(s)
- Jingqi Shi
- Bioinformatics Center of AMMS, Beijing 100039, China
| | - Qingyu Li
- Bioinformatics Center of AMMS, Beijing 100039, China
| | - Jian Li
- Bioinformatics Center of AMMS, Beijing 100039, China
| | - Jianglin Zhou
- Bioinformatics Center of AMMS, Beijing 100039, China
| | | | - Shengqi Wang
- Bioinformatics Center of AMMS, Beijing 100039, China
| | - Liang Guo
- Bioinformatics Center of AMMS, Beijing 100039, China
| |
Collapse
|
16
|
Gao F, Li X, Wang X, Liu H, Zhang W, Zhang Y, Jia Y, Zhao Z, Bai G. Differences between Chronically Hepatitis B Virus-Infected Pregnant Women with and without Intrafamilial Infection: From Viral Gene Sequences to Clinical Manifestations. Intervirology 2024; 67:72-82. [PMID: 38934174 DOI: 10.1159/000539994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION This study aimed to investigate the differences between pregnant women with chronic hepatitis B virus (HBV) infection and intrafamilial infection and those without intrafamilial infection. METHODS HBV-DNA was extracted from the sera of 16 pregnant women with chronic hepatitis B (CHB) and their family members for gene sequencing and phylogenetic analyses. A total of 74 pregnant women with CHB were followed up from the second trimester to 3 months postpartum. Viral markers and other laboratory indicators were compared between pregnant women with CHB with and without intrafamilial infection. RESULTS The phylogenetic tree showed that HBV lines in the mother-spread pedigree shared a node, whereas there was an unrelated genetic background for HBV lines in individuals without intrafamilial infection. From delivery to 3 months postpartum, compared with those without intrafamilial infection, pregnant women with intrafamilial infection were related negatively to HBV-DNA (β = -0.43, 95% confidence interval [CI]: -0.76 to -0.12, p = 0.009), HBeAg (β = -195.15, 95% CI: -366.35 to -23.96, p = 0.027), and hemoglobin changes (β = -8.09, 95% CI: -15.54 to -0.64, p = 0.035) and positively to changes in the levels of alanine aminotransferase (β = 73.9, 95% CI: 38.92-108.95, p < 0.001) and albumin (β = 2.73, 95% CI: 0.23-5.23, p = 0.033). CONCLUSION The mother-spread pedigree spread model differs from that of non-intrafamilial infections. Pregnant women with intrafamilial HBV infection have less hepatitis flares and liver damage, but their HBV-DNA and HBeAg levels rebound faster after delivery, than those without intrafamilial infection by the virus.
Collapse
Affiliation(s)
- Fan Gao
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xia Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaona Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hankui Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Wentao Zhang
- Department of Gynaecology and Obstetrrics, Xi'an No. 3 Hospital, Xi'an, China
| | - Yidan Zhang
- Department of Gynaecology and Obstetrrics, Xi'an Fourth Hospital, Xi'an, China
| | - Yanju Jia
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ziyan Zhao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guiqin Bai
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Gene Joint Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
17
|
Gehring AJ, Salimzadeh L. Current and future use of antibody-based passive immunity to prevent or control HBV/HDV infections. Antiviral Res 2024; 226:105893. [PMID: 38679166 DOI: 10.1016/j.antiviral.2024.105893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
With the increasing momentum and success of monoclonal antibody therapy in conventional medical practices, there is a revived emphasis on the development of monoclonal antibodies targeting the hepatitis B surface antigen (anti-HBs) for the treatment of chronic hepatitis B (HBV) and hepatitis D (HDV). Combination therapies of anti-HBs monoclonal antibodies, and novel anti-HBV compounds and immunomodulatory drugs presenting a promising avenue to enhanced therapeutic outcomes in HBV/HDV cure regimens. In this review, we will cover the role of antibodies in the protection and clearance of HBV infection, the association of anti-HBV surface antigen antibodies (anti-HBs) in protection against HBV and how antibody effector functions, beyond neutralization, are likely necessary. Lastly, we will review clinical data from previous and ongoing clinical trials of passive antibody therapy to provide a state-of-the-are perspective on passive antibody therapies in combinations with additional novel agents.
Collapse
Affiliation(s)
- Adam J Gehring
- Schwartz-Reisman Liver Research Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada.
| | - Loghman Salimzadeh
- Schwartz-Reisman Liver Research Centre, University Health Network, Toronto, ON, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
18
|
Wang L, Wang J, Zhao K, Jiang L, Zhang X, Zhao J, Li J, Lu F. The Relationship between Viral Replication and the Severity of Hepatic Necroinflammatory Damage Changed before HBeAg Loss in Patients with Chronic Hepatitis B Virus Infection. J Clin Transl Hepatol 2024; 12:381-388. [PMID: 38638381 PMCID: PMC11022060 DOI: 10.14218/jcth.2023.00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 04/20/2024] Open
Abstract
Background and Aims Disease progression of chronic hepatitis B virus (HBV) infection is driven by the interactions between viral replication and the host immune response against the infection. This study aimed to clarify the relationship between HBV replication and hepatic inflammation during disease progression. Methods Two cross-sectional, one validation cohort, and meta-analyses were used to explore the relationship between HBV replication and liver inflammation. Spearman analysis, multiple linear regression, and logistic regression were used to explore the relationship between variables. Results In the cross-sectional cohorts A and B including 1,350 chronic hepatitis B patients, Spearman analysis revealed a negative relationship between HBV replication (such as HBV DNA) and liver inflammation (such as ALT) in HBeAg-positive patients with higher HBV DNA >2×106 IU/mL (rho=-0.160 and -0.042) which turned to be positive in HBeAg-positive patients with HBV DNA ≤2×106 IU/mL (rho=0.278 and 0.260) and HBeAg-negative patients (rho=0.450 and 0.363). After adjustment for sex, age, and anti-HBe, results from logistic regression and multiple linear regression showed the opposite relationship still existed in HBeAg-positive patients with different DNA levels; the opposite relationship in HBeAg-positive patients with different DNA levels was validated in a third cohort; the opposite relationship in patients with different HBeAg status was partially confirmed by meta-analysis (overall R: -0.004 vs 0.481). Conclusions These results suggested a negative relationship between viral replication and liver inflammation in HBeAg-positive patients with high HBV DNA, which changed to a positive relationship for those HBeAg-positive patients with DNA less than 2×106 IU/mL and HBeAg-negative patients.
Collapse
Affiliation(s)
- Leijie Wang
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jian Wang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Kunyu Zhao
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Lina Jiang
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xinxin Zhang
- Department of Infectious Diseases, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingming Zhao
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
19
|
Wang R, Tan G, Lei D, Li Y, Gong J, Tang Y, Pang H, Luo H, Qin B. Risk of HBV reactivation in HCC patients undergoing combination therapy of PD-1 inhibitors and angiogenesis inhibitors in the antiviral era. J Cancer Res Clin Oncol 2024; 150:158. [PMID: 38530426 PMCID: PMC10965597 DOI: 10.1007/s00432-024-05677-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/01/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Although routine antiviral therapy has been implemented in HCC patients, the risk of HBV reactivation (HBVr) remains with the use of programmed cell death-1(PD-1) blockade-based combination immunotherapy and the relevant risk factors are also unclear. Therefore, we aimed to identify the incidence and risk factors of HBVr in HCC patients undergoing combination therapy of PD-1 inhibitors and angiogenesis inhibitors and concurrent first-line antivirals. METHODS We included a total of 218 HBV-related HCC patients with first-line antivirals who received PD-1 inhibitors alone or together with angiogenesis inhibitors. According to the anti-tumor therapy modalities, patients were divided into PD-1 inhibitors monotherapy group (anti-PD-1 group) and combination therapy group (anti-PD-1 plus angiogenesis inhibitors group). The primary study endpoint was the incidence of HBVr. RESULTS HBVr occurred in 16 (7.3%) of the 218 patients, 2 cases were found in the anti-PD-1 group and the remaining 14 cases were in the combination group. The Cox proportional hazard model identified 2 independent risk factors for HBVr: combination therapy (hazard ratio [HR], 4.608, 95%CI 1.010-21.016, P = 0.048) and hepatitis B e antigen (HBeAg) positive (HR, 3.695, 95%CI 1.246-10.957, P = 0.018). Based on the above results, we developed a simple risk-scoring system and found that the high-risk group (score = 2) developed HBVr more frequently than the low-risk group (score = 0) (Odds ratio [OR], 17.000, 95%CI 1.946-148.526, P = 0.01). The area under the ROC curve (AUC-ROC) was 7.06 (95%CI 0.581-0.831, P = 0.006). CONCLUSION HBeAg-positive patients receiving combination therapy have a 17-fold higher risk of HBVr than HBeAg-negative patients with PD-1 inhibitors monotherapy.
Collapse
Affiliation(s)
- Rui Wang
- Department of Infectious Diseases, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Guili Tan
- Department of Infectious Diseases, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dingjia Lei
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
| | - Yadi Li
- Department of Infectious Diseases, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - JiaoJiao Gong
- Department of Infectious Diseases, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yao Tang
- Department of Infectious Diseases, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hao Pang
- Department of Infectious Diseases, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Huating Luo
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Bo Qin
- Department of Infectious Diseases, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
20
|
Li Y, Wu C, Lee J, Ning Q, Lim J, Eoh H, Wang S, Hurrell BP, Akbari O, Ou JHJ. Hepatitis B virus e antigen induces atypical metabolism and differentially regulates programmed cell deaths of macrophages. PLoS Pathog 2024; 20:e1012079. [PMID: 38466743 PMCID: PMC10957081 DOI: 10.1371/journal.ppat.1012079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/21/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
Macrophages can undergo M1-like proinflammatory polarization with low oxidative phosphorylation (OXPHOS) and high glycolytic activities or M2-like anti-inflammatory polarization with the opposite metabolic activities. Here we show that M1-like macrophages induced by hepatitis B virus (HBV) display high OXPHOS and low glycolytic activities. This atypical metabolism induced by HBV attenuates the antiviral response of M1-like macrophages and is mediated by HBV e antigen (HBeAg), which induces death receptor 5 (DR5) via toll-like receptor 4 (TLR4) to induce death-associated protein 3 (DAP3). DAP3 then induces the expression of mitochondrial genes to promote OXPHOS. HBeAg also enhances the expression of glutaminases and increases the level of glutamate, which is converted to α-ketoglutarate, an important metabolic intermediate of the tricarboxylic acid cycle, to promote OXPHOS. The induction of DR5 by HBeAg leads to apoptosis of M1-like and M2-like macrophages, although HBeAg also induces pyroptosis of the former. These findings reveal novel activities of HBeAg, which can reprogram mitochondrial metabolism and trigger different programmed cell death responses of macrophages depending on their phenotypes to promote HBV persistence.
Collapse
Affiliation(s)
- Yumei Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Christine Wu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jiyoung Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Qiqi Ning
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Juhyeon Lim
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Hyungjin Eoh
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Sean Wang
- Michael Amini Transfusion Medicine Center, City of Hope, Duarte, California, United States of America
| | - Benjamin P. Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jing-hsiung James Ou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
21
|
Wang Z, Liu N, Yang Y, Tu Z. The novel mechanism facilitating chronic hepatitis B infection: immunometabolism and epigenetic modification reprogramming. Front Immunol 2024; 15:1349867. [PMID: 38288308 PMCID: PMC10822934 DOI: 10.3389/fimmu.2024.1349867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
Hepatitis B Virus (HBV) infections pose a global public health challenge. Despite extensive research on this disease, the intricate mechanisms underlying persistent HBV infection require further in-depth elucidation. Recent studies have revealed the pivotal roles of immunometabolism and epigenetic reprogramming in chronic HBV infection. Immunometabolism have identified as the process, which link cell metabolic status with innate immunity functions in response to HBV infection, ultimately contributing to the immune system's inability to resolve Chronic Hepatitis B (CHB). Within hepatocytes, HBV replication leads to a stable viral covalently closed circular DNA (cccDNA) minichromosome located in the nucleus, and epigenetic modifications in cccDNA enable persistence of infection. Additionally, the accumulation or depletion of metabolites not only directly affects the function and homeostasis of immune cells but also serves as a substrate for regulating epigenetic modifications, subsequently influencing the expression of antiviral immune genes and facilitating the occurrence of sustained HBV infection. The interaction between immunometabolism and epigenetic modifications has led to a new research field, known as metabolic epigenomics, which may form a mutually reinforcing relationship with CHB. Herein, we review the recent studies on immunometabolism and epigenetic reprogramming in CHB infection and discuss the potential mechanisms of persistent HBV infection. A deeper understanding of these mechanisms will offer novel insights and targets for intervention strategies against chronic HBV infection, thereby providing new hope for the treatment of related diseases.
Collapse
Affiliation(s)
- Zhengmin Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Nan Liu
- Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun, China
| | - Yang Yang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhengkun Tu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China
- Institute of Liver Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
22
|
Li Y, Ou JHJ. Regulation of Mitochondrial Metabolism by Hepatitis B Virus. Viruses 2023; 15:2359. [PMID: 38140600 PMCID: PMC10747323 DOI: 10.3390/v15122359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Mitochondria play important roles in the synthesis of ATP, the production of reactive oxygen species, and the regulation of innate immune response and apoptosis. Many viruses perturb mitochondrial activities to promote their replication and cause cell damage. Hepatitis B virus (HBV) is a hepatotropic virus that can cause severe liver diseases, including cirrhosis and hepatocellular carcinoma (HCC). This virus can also alter mitochondrial functions and metabolism to promote its replication and persistence. In this report, we summarize recent research progress on the interaction between HBV and mitochondrial metabolism, as well as the effect this interaction has on HBV replication and persistence.
Collapse
Affiliation(s)
| | - Jing-hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA;
| |
Collapse
|
23
|
Zhao B, Qiao H, Zhao Y, Gao Z, Wang W, Cui Y, Li J, Guo Z, Chuai X, Chiu S. HBV precore G1896A mutation promotes growth of hepatocellular carcinoma cells by activating ERK/MAPK pathway. Virol Sin 2023; 38:680-689. [PMID: 37331658 PMCID: PMC10590694 DOI: 10.1016/j.virs.2023.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is one of the leading causes of hepatocellular carcinoma (HCC). The HBV genome is prone to mutate and several variants are closely related to the malignant transformation of liver disease. G1896A mutation (G to A mutation at nucleotide 1896) is one of the most frequently observed mutations in the precore region of HBV, which prevents HBeAg expression and is strongly associated with HCC. However, the mechanisms by which this mutation causes HCC are unclear. Here, we explored the function and molecular mechanisms of the G1896A mutation during HBV-associated HCC. G1896A mutation remarkably enhanced the HBV replication in vitro. Moreover, it increased tumor formation and inhibited apoptosis of hepatoma cells, and decreased the sensitivity of HCC to sorafenib. Mechanistically, the G1896A mutation could activate ERK/MAPK pathway to enhanced sorafenib resistance in HCC cells and augmented cell survival and growth. Collectively, our study demonstrates for the first time that the G1896A mutation has a dual regulatory role in exacerbating HCC severity and sheds some light on the treatment of G1896A mutation-associated HCC patients.
Collapse
Affiliation(s)
- Baoxin Zhao
- Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Hongxiu Qiao
- Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yan Zhao
- Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhiyun Gao
- Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Weijie Wang
- Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yan Cui
- Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jian Li
- Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhanjun Guo
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| | - Xia Chuai
- Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, 050017, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, 430207, China.
| | - Sandra Chiu
- Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
24
|
Yang D, Zou J, Guan G, Feng X, Zhang T, Li G, Liu H, Zheng H, Xi J, Yu G, Dai L, Lu F, Chen X. The A1762T/G1764A mutations enhance HBV replication by alternating viral transcriptome. J Med Virol 2023; 95:e29129. [PMID: 37772469 DOI: 10.1002/jmv.29129] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
The A1762T/G1764A mutations, one of the most common mutations in the hepatitis B virus basal core promoter, are associated with the progression of chronic HBV infection. However, effects of these mutations on HBV replication remains controversial. This study aimed to systematically investigate the effect of the mutations on HBV replication and its underlying mechanisms. Using the prcccDNA/pCMV-Cre recombinant plasmid system, a prcccDNA-A1762T/G1764A mutant plasmid was constructed. Compared with wild-type HBV, A1762T/G1764A mutant HBV showed enhanced replication ability with higher secreted HBV DNA and RNA levels, while Southern and Northern blot indicated higher intracellular levels of relaxed circular DNA, single-stranded DNA, and 3.5 kb RNA. Meanwhile, the mutations increased expression of intracellular core protein and decreased the production of HBeAg and HBsAg. In vitro infection based on HepG2-NTCP cells and mice hydrodynamic injection experiment also proved that these mutations promote HBV replication. 5'-RACE assays showed that these mutations upregulated transcription of pregenomic RNA (pgRNA) while downregulating that of preC RNA, which was further confirmed by full-length transcriptome sequencing. Moreover, a proportion of sub-pgRNAs with the potential to express polymerase were also upregulated by these mutations. The ChIP-qPCR assay showed that A1762T/G1764A mutations created a functional HNF1α binding site in the BCP region, and its overexpression enhanced the effect of A1762T/G1764A mutations on HBV. Our findings revealed the mechanism and importance of A1762T/G1764A mutations as an indicator for management of CHB patients, and provided HNF1α as a new target for curing HBV-infected patients.
Collapse
Affiliation(s)
- Danli Yang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jun Zou
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
- Research and Development Center, Shenzhen Sanyuansheng Biotechnology Co., Ltd, Shenzhen, China
| | - Guiwen Guan
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaoyu Feng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ting Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Guixin Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hui Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Huiling Zheng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Jingyuan Xi
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Clinical Laboratory Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Guangxin Yu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lizhong Dai
- Peking University-Sansure Biotech Joint Laboratory of Molecular Medicine, Sansure Biotech Co., LTD, Changsha, China
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
- Hepatology Institute, Peking University People's Hospital, Beijing, China
| | - Xiangmei Chen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
25
|
Shi Y, Wang Z, Ge S, Xia N, Yuan Q. Hepatitis B Core Antibody Level: A Surrogate Marker for Host Antiviral Immunity in Chronic Hepatitis B Virus Infections. Viruses 2023; 15:1111. [PMID: 37243197 PMCID: PMC10221631 DOI: 10.3390/v15051111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
The hepatitis B virus core protein (HBcAg) is a highly immunogenic particulate antigen. Nearly all patients with persistent or resolved hepatitis B virus (HBV) infection show seropositivity for hepatitis B core antibody (anti-HBc), which appears in the early stage of infection and is mostly present for life. Traditionally, the anti-HBc is regarded as an evidential serological marker of HBV infections. In the last ten years, several studies revealed the predictive value of quantitative anti-HBc (qAnti-HBc) level in the treatment response and clinical outcome of chronic HBV infections, implying new insights into this classic marker. Overall, qAnti-HBc should be regarded as an indicator of the host's immune response specific to HBV, which correlates with HBV-related hepatitis activity and liver pathology. This review summarized the latest understanding of the clinical values of qAnti-HBc for differentiating the CHB phase, predicting treatment response, and providing disease prognosis. Moreover, we also discussed the possible mechanism of qAnti-HBc regulation during different courses of HBV infection.
Collapse
Affiliation(s)
- Yang Shi
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; (Y.S.); (Z.W.); (S.G.); (N.X.)
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, National Institute of Diagnostics Vaccine Development in Infectious Diseases, School of Public Health, Xiamen 361102, China
| | - Zihan Wang
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; (Y.S.); (Z.W.); (S.G.); (N.X.)
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, National Institute of Diagnostics Vaccine Development in Infectious Diseases, School of Public Health, Xiamen 361102, China
| | - Shengxiang Ge
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; (Y.S.); (Z.W.); (S.G.); (N.X.)
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, National Institute of Diagnostics Vaccine Development in Infectious Diseases, School of Public Health, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; (Y.S.); (Z.W.); (S.G.); (N.X.)
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, National Institute of Diagnostics Vaccine Development in Infectious Diseases, School of Public Health, Xiamen 361102, China
| | - Quan Yuan
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; (Y.S.); (Z.W.); (S.G.); (N.X.)
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, National Institute of Diagnostics Vaccine Development in Infectious Diseases, School of Public Health, Xiamen 361102, China
| |
Collapse
|
26
|
di Filippo Villa D, Navas MC. Vertical Transmission of Hepatitis B Virus-An Update. Microorganisms 2023; 11:1140. [PMID: 37317114 DOI: 10.3390/microorganisms11051140] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 06/16/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a major public health problem in the world. Approximately 296 million people are chronically infected. In endemic areas, vertical transmission is a common route of transmission. There are several strategies for the prevention of HBV vertical transmission, such as antiviral treatment during the third trimester of pregnancy and immunoprophylaxis to newborns that includes the administration of hepatitis B immune globulin (HBIG) and an HBV vaccine. Despite this, immunoprophylaxis failure can occur in up to 30% of infants born to HBeAg-positive mothers and/or with high viral load. Therefore, management and prevention of HBV vertical transmission is of paramount significance. In this article, we provided a review of the epidemiology, mechanisms of pathogenesis and risk factors of vertical transmission, as well as the strategies implemented to prevent the infection.
Collapse
Affiliation(s)
- Diana di Filippo Villa
- Gastrohepatology Group, Faculty of Medicine, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin 050010, Colombia
| | - Maria-Cristina Navas
- Gastrohepatology Group, Faculty of Medicine, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin 050010, Colombia
| |
Collapse
|
27
|
Nevola R, Beccia D, Rosato V, Ruocco R, Mastrocinque D, Villani A, Perillo P, Imbriani S, Delle Femine A, Criscuolo L, Alfano M, La Montagna M, Russo A, Marfella R, Cozzolino D, Sasso FC, Rinaldi L, Marrone A, Adinolfi LE, Claar E. HBV Infection and Host Interactions: The Role in Viral Persistence and Oncogenesis. Int J Mol Sci 2023; 24:7651. [PMID: 37108816 PMCID: PMC10145402 DOI: 10.3390/ijms24087651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatitis B virus (HBV) is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Despite the advent of vaccines and potent antiviral agents able to suppress viral replication, recovery from chronic HBV infection is still an extremely difficult goal to achieve. Complex interactions between virus and host are responsible for HBV persistence and the risk of oncogenesis. Through multiple pathways, HBV is able to silence both innate and adaptive immunological responses and become out of control. Furthermore, the integration of the viral genome into that of the host and the production of covalently closed circular DNA (cccDNA) represent reservoirs of viral persistence and account for the difficult eradication of the infection. An adequate knowledge of the virus-host interaction mechanisms responsible for viral persistence and the risk of hepatocarcinogenesis is necessary for the development of functional cures for chronic HBV infection. The purpose of this review is, therefore, to analyze how interactions between HBV and host concur in the mechanisms of infection, persistence, and oncogenesis and what are the implications and the therapeutic perspectives that follow.
Collapse
Affiliation(s)
- Riccardo Nevola
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Domenico Beccia
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Valerio Rosato
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| | - Rachele Ruocco
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Davide Mastrocinque
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| | - Angela Villani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Pasquale Perillo
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| | - Simona Imbriani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Augusto Delle Femine
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Livio Criscuolo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Marco La Montagna
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Antonio Russo
- Department of Mental Health and Public Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Domenico Cozzolino
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Aldo Marrone
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Luigi Elio Adinolfi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Ernesto Claar
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| |
Collapse
|
28
|
You H, Wang X, Ma L, Zhang F, Zhang H, Wang Y, Pan X, Zheng K, Kong F, Tang R. Insights into the impact of hepatitis B virus on hepatic stellate cell activation. Cell Commun Signal 2023; 21:70. [PMID: 37041599 PMCID: PMC10088164 DOI: 10.1186/s12964-023-01091-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/26/2023] [Indexed: 04/13/2023] Open
Abstract
During chronic hepatitis B virus (HBV) infection, hepatic fibrosis is a serious pathological condition caused by virus-induced liver damage. The activation of hepatic stellate cells (HSCs) is a central event in the occurrence and progression of liver fibrosis. Although accumulating evidence has shown that HBV directly stimulates HSC activation, whether the virus infects and replicates in HSCs remains controversial. Inflammation is one of the obvious characteristics of chronic HBV infection, and it has been demonstrated that persistent inflammation has a predominant role in triggering and maintaining liver fibrosis. In particular, the regulation of HSC activation by HBV-related hepatocytes via various inflammatory modulators, including TGF-β and CTGF, in a paracrine manner has been reported. In addition to these inflammation-related molecules, several inflammatory cells are essential for the progression of HBV-associated liver fibrosis. Monocytes, macrophages, Th17 cells, NK cells, as well as NKT cells, participate in the modulation of HBV-related liver fibrosis by interacting with HSCs. This review summarizes current findings on the effects of HBV and the relevant molecular mechanisms involved in HSC activation. Because HSC activation is essential for liver fibrosis, targeting HSCs is an attractive therapeutic strategy to prevent and reverse hepatic fibrosis induced by HBV infection. Video abstract.
Collapse
Affiliation(s)
- Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xing Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lihong Ma
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fulong Zhang
- Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Huanyang Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuxin Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiucheng Pan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
29
|
Padarath K, Deroubaix A, Kramvis A. The Complex Role of HBeAg and Its Precursors in the Pathway to Hepatocellular Carcinoma. Viruses 2023; 15:v15040857. [PMID: 37112837 PMCID: PMC10144019 DOI: 10.3390/v15040857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Hepatitis B virus (HBV) is one of the seven known human oncogenic viruses and has adapted to coexist with a single host for prolonged periods, requiring continuous manipulation of immunity and cell fate decisions. The persistence of HBV infection is associated with the pathogenesis of hepatocellular carcinoma, and various HBV proteins have been implicated in promoting this persistence. The precursor of hepatitis e antigen (HBeAg), is translated from the precore/core region and is post-translationally modified to yield HBeAg, which is secreted in the serum. HBeAg is a non-particulate protein of HBV and can act as both a tolerogen and an immunogen. HBeAg can protect hepatocytes from apoptosis by interfering with host signalling pathways and acting as a decoy to the immune response. By evading the immune response and interfering with apoptosis, HBeAg has the potential to contribute to the hepatocarcinogenic potential of HBV. In particular, this review summarises the various signalling pathways through which HBeAg and its precursors can promote hepatocarcinogenesis via the various hallmarks of cancer.
Collapse
|
30
|
Characterization of Intracellular Precore-Derived Proteins and Their Functions in Hepatitis B Virus-Infected Human Hepatocytes. mBio 2023; 14:e0350122. [PMID: 36715515 PMCID: PMC9973328 DOI: 10.1128/mbio.03501-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Hepatitis B virus (HBV) precore protein is not essential for viral replication but is thought to facilitate chronic infection. In addition to the secreted precore products, including the hepatitis B e antigen (HBeAg) and PreC protein, intracellular precore-derived proteins in HBV-infected human hepatocytes remain poorly characterized, and their roles, if any, remain largely unknown. Here, we detected multiple precore derivatives, including the nonprocessed precursor p25 and the processing intermediate p22, in HBV-infected human hepatocytes as well as human hepatoma cells overexpressing the HBV precore protein. Both p25 and p22 showed phosphorylated and unphosphorylated forms, which were located in different intracellular compartments. Interestingly, precore expression was associated with decreases in intracellular HBV core protein (HBc) and secreted DNA-containing virions but was also associated with an increase in secreted empty virions. The decrease in HBc by precore could be attributed to cytosolic p22, which caused HBc degradation, at least in part by the proteasome, and consequently decreased HBV pregenomic RNA packaging and DNA synthesis. In addition, cytosolic p22 formed chimeric capsids with HBc in the cell, which were further secreted in virions. In contrast, the PreC antigen, like HBeAg, was secreted via the endoplasmic reticulum (ER)-Golgi secretory pathway and was thus unable to form capsids in the cell or be secreted in virions. Furthermore, p25, as well as p22, were secreted in virions from HBV-infected human hepatocytes and were detected in the sera of HBV-infected chimpanzees. In summary, we have detected multiple intracellular precore-derived proteins in HBV-infected human hepatocytes and revealed novel precore functions in the viral life cycle. IMPORTANCE Chronic hepatitis B remains a worldwide public health issue. The hepatitis B virus (HBV) precore protein is not essential for HBV replication but may facilitate viral persistence. In this study, we have detected multiple precore protein species in HBV-infected human hepatocytes and studied their functions in the HBV life cycle. We found that the HBV precore proteins decreased intracellular HBV core protein and reduced secretion of complete virions but enhanced secretion of empty virions. Interestingly, the cytosolic precore protein species formed chimeric capsids with the core protein and were secreted in virions. Our results shed new light on the functions of intracellular precore protein species in the HBV life cycle and have implications for the roles of precore proteins in HBV persistence and pathogenesis.
Collapse
|
31
|
Lu H, Cao W, Zhang L, Yang L, Bi X, Lin Y, Deng W, Jiang T, Sun F, Zeng Z, Lu Y, Zhang L, Liu R, Gao Y, Wu S, Hao H, Chen X, Hu L, Xu M, Xiong Q, Dong J, Song R, Li M, Xie Y. Effects of hepatitis B virus infection and strategies for preventing mother-to-child transmission on maternal and fetal T-cell immunity. Front Immunol 2023; 14:1122048. [PMID: 36875136 PMCID: PMC9978148 DOI: 10.3389/fimmu.2023.1122048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
One of the most common routes of chronic hepatitis B virus (HBV) infection is mother-to-child transmission (MTCT). Approximately 6.4 million children under the age of five have chronic HBV infections worldwide. HBV DNA high level, HBeAg positivity, placental barrier failure, and immaturity of the fetal immune are the possible causes of chronic HBV infection. The passive-active immune program for children, which consists of the hepatitis B vaccine and hepatitis B immunoglobulin, and antiviral therapy for pregnant women who have a high HBV DNA load (greater than 2 × 105 IU/ml), are currently two of the most important ways to prevent the transmission of HBV from mother to child. Unfortunately, some infants still have chronic HBV infections. Some studies have also found that some supplementation during pregnancy can increase cytokine levels and then affect the level of HBsAb in infants. For example, IL-4 can mediate the beneficial effect on infants' HBsAb levels when maternal folic acid supplementation. In addition, new research has indicated that HBV infection in the mother may also be linked to unfavorable outcomes such as gestational diabetes mellitus, intrahepatic cholestasis of pregnancy, and premature rupture of membranes. The changes in the immune environment during pregnancy and the hepatotropic nature of HBV may be the main reasons for the adverse maternal outcomes. It is interesting to note that after delivery, the women who had a chronic HBV infection may spontaneously achieve HBeAg seroconversion and HBsAg seroclearance. The maternal and fetal T-cell immunity in HBV infection is important because adaptive immune responses, especially virus-specific CD8 T-cell responses, are largely responsible for viral clearance and disease pathogenesis during HBV infection. Meanwhile, HBV humoral and T-cell responses are important for the durability of protection after fetal vaccination. This article reviews the literature on immunological characteristics of chronic HBV-infected patients during pregnancy and postpartum, blocking mother-to-child transmissions and related immune mechanisms, hoping to provide new insights for the prevention of HBV MTCT and antiviral intervention during pregnancy and postpartum.
Collapse
Affiliation(s)
- Huihui Lu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Obstetrics and Gynecology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihua Cao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Infectious Diseases, Miyun Teaching Hospital, Capital Medical University, Beijing, China
| | - Luxue Zhang
- Infectious Disease Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liu Yang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyue Bi
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lin
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Wen Deng
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Tingting Jiang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Fangfang Sun
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhan Zeng
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Yao Lu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ruyu Liu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuanjiao Gao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shuling Wu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongxiao Hao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoxue Chen
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Leiping Hu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Mengjiao Xu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qiqiu Xiong
- Department of General Surgery, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jianping Dong
- Department of Infectious Disease, Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital, Beijing, China
| | - Rui Song
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
32
|
Ward JW, Wanlapakorn N, Poovorawan Y, Shouval D. Hepatitis B Vaccines. PLOTKIN'S VACCINES 2023:389-432.e21. [DOI: 10.1016/b978-0-323-79058-1.00027-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
33
|
Chen X, Liu X, Jiang Y, Xia N, Liu C, Luo W. Abnormally primed CD8 T cells: The Achilles' heel of CHB. Front Immunol 2023; 14:1106700. [PMID: 36936922 PMCID: PMC10014547 DOI: 10.3389/fimmu.2023.1106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection continues to be a significant public health challenge, and more than 250 million people around world are infected with HBV. The clearance of HBV with virus-specific CD8 T cells is critical for a functional cure. However, naïve HBV-specific CD8 T cells are heavily hindered during the priming process, and this phenomenon is closely related to abnormal cell and signal interactions in the complex immune microenvironment. Here, we briefly summarize the recent progress in understanding the abnormal priming of HBV-specific CD8 T cells and some corresponding immunotherapies to facilitate their functional recovery, which provides a novel perspective for the design and development of immunotherapy for chronic HBV infection (CHB). Finally, we also highlight the balance between viral clearance and pathological liver injury induced by CD8 T-cell activation that should be carefully considered during drug development.
Collapse
Affiliation(s)
- Xiaoqing Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Xue Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Yichao Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
- The Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, Fujian, China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
- *Correspondence: Wenxin Luo, ; Chao Liu,
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
- *Correspondence: Wenxin Luo, ; Chao Liu,
| |
Collapse
|
34
|
Tourkochristou E, Assimakopoulos SF, Thomopoulos K, Marangos M, Triantos C. NAFLD and HBV interplay - related mechanisms underlying liver disease progression. Front Immunol 2022; 13:965548. [PMID: 36544761 PMCID: PMC9760931 DOI: 10.3389/fimmu.2022.965548] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/15/2022] [Indexed: 12/08/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and Hepatitis B virus infection (HBV) constitute common chronic liver diseases with worldwide distribution. NAFLD burden is expected to grow in the coming decade, especially in western countries, considering the increased incidence of diabetes and obesity. Despite the organized HBV vaccinations and use of anti-viral therapies globally, HBV infection remains endemic and challenging public health issue. As both NAFLD and HBV have been associated with the development of progressive fibrosis, cirrhosis and hepatocellular carcinoma (HCC), the co-occurrence of both diseases has gained great research and clinical interest. The causative relationship between NAFLD and HBV infection has not been elucidated so far. Dysregulated fatty acid metabolism and lipotoxicity in NAFLD disease seems to initiate activation of signaling pathways that enhance pro-inflammatory responses and disrupt hepatocyte cell homeostasis, promoting progression of NAFLD disease to NASH, fibrosis and HCC and can affect HBV replication and immune encountering of HBV virus, which may further have impact on liver disease progression. Chronic HBV infection is suggested to have an influence on metabolic changes, which could lead to NAFLD development and the HBV-induced inflammatory responses and molecular pathways may constitute an aggravating factor in hepatic steatosis development. The observed altered immune homeostasis in both HBV infection and NAFLD could be associated with progression to HCC development. Elucidation of the possible mechanisms beyond HBV chronic infection and NAFLD diseases, which could lead to advanced liver disease or increase the risk for severe complications, in the case of HBV-NAFLD co-existence is of high clinical significance in the context of designing effective therapeutic targets.
Collapse
Affiliation(s)
- Evanthia Tourkochristou
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Stelios F. Assimakopoulos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Konstantinos Thomopoulos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Markos Marangos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
35
|
Ning J, Wang J, Zheng H, Peng S, Mao T, Wang L, Yu G, Liu J, Liu S, Zhang T, Ding S, Lu F, Chen X. Solely HBsAg intrauterine exposure accelerates HBV clearance by promoting HBs-specific immune response in the mouse pups. Emerg Microbes Infect 2022; 11:1356-1370. [PMID: 35538876 PMCID: PMC9132461 DOI: 10.1080/22221751.2022.2071172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chronic hepatitis B virus (HBV) infection due to perinatal mother-to-infant transmission (MTIT) remains a serious global public health problem. It has been shown that intrauterine exposure to HBV antigens might account for the MTIT-related chronic infection. However, whether hepatitis B surface antigen (HBsAg) intrauterine exposure affected the offspring’s immune response against HBV and MTIT of HBV has not been fully clarified. In this study, we investigated the effects and the potential mechanisms of the HBsAg intrauterine exposure on the persistence of HBV replication using a solely HBsAg intrauterine exposure mice model. Our results revealed that solely HBsAg intrauterine exposure significantly accelerated the clearance of HBV when these mice were hydrodynamically injected with pBB4.5-HBV1.2 plasmids after birth, which may be due to the increased number of HBs-specific CD8+ T cells and interferon-gamma secretion in the liver of mice. Mechanismly, HBsAg intrauterine exposure activated antigen-presenting dendritic cells, which led to the generation of antigen-specific cellular immunological memory. Our data provide an important experimental evidence for the activation of neonatal immune response by HBsAg intrauterine exposure.
Collapse
Affiliation(s)
- Jing Ning
- Department of Gastroenterology, Peking University Third Hospital, Beijing, People's Republic of China.,Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Jianwen Wang
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Huiling Zheng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Siwen Peng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Tianhao Mao
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Lu Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Guangxin Yu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Jia Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Shuang Liu
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ting Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China.,Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Beijing, People's Republic of China
| | - Xiangmei Chen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| |
Collapse
|
36
|
Cao G, Jing W, Liu J, Liu M. Countdown on hepatitis B elimination by 2030: the global burden of liver disease related to hepatitis B and association with socioeconomic status. Hepatol Int 2022; 16:1282-1296. [PMID: 36048317 DOI: 10.1007/s12072-022-10410-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Hepatitis B virus (HBV) infection causes both acute and chronic liver disease, performing the key driver toward the global elimination of viral hepatitis by 2030. We used data from Global Burden of Disease (GBD) study to quantify the burden of liver disease due to hepatitis B at the global, regional and national levels. METHODS Annual incident cases and age-standardized incidence rates (ASIRs) of liver disease due to hepatitis B between 1990 and 2019 were collected from GBD study 2019. Percentage changes of incident cases and estimated annual percentage changes (EAPCs) of ASIRs were calculated to quantify their temporal trends. Correlations between EAPC and socio-demographic index (SDI) and universal health coverage index (UHCI) were evaluated by Pearson correlation analyses. RESULTS Globally, the incident cases of liver disease due to hepatitis B decreased by 4.51% from 84.45 million in 1990 to 80.65 million in 2019 and ASIR decreased by an average of 1.52% (95%CI - 1.66%, - 1.37%) per year in this period. For the spectrum of liver disease due to hepatitis B, ASIR of cirrhosis and other chronic liver diseases increased by an average of 0.13% (95%CI 0.04%, 0.22%) per year in low SDI region and 0.24% (95%CI 0.04%, 0.34%) per year in low-middle SDI region, and ASIR of liver cancer increased by an average of 0.91% (95%CI 0.37%, 1.46%) per year in high SDI region in 1990-2019. Positive correlations of EAPC in ASIR of liver cancer with SDI and UHCI were observed in nations with SDI ≥ 0.7 or UHCI ≥ 70. CONCLUSION HBV infection remains a global health problem, causing low and low-middle SDI regions with an increasing trend of cirrhosis and other chronic liver diseases, and high SDI region with an increasing trend of liver cancer. Efforts to eliminate hepatitis B by 2030 needs to focus on not only developing regions but also developed regions.
Collapse
Affiliation(s)
- Guiying Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Wenzhan Jing
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Jue Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Min Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
37
|
Bonino F, Colombatto P, Brunetto MR. HBeAg-Negative/Anti-HBe-Positive Chronic Hepatitis B: A 40-Year-Old History. Viruses 2022; 14:1691. [PMID: 36016312 PMCID: PMC9416321 DOI: 10.3390/v14081691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/03/2022] Open
Abstract
Hepatitis B "e" antigen (HBeAg) negative chronic hepatitis B (CHB), 40 years since discovery in the Mediterranean area, has become the most prevalent form of HBV-induced liver disease worldwide and a major health care burden caused by HBV infection. A great deal of knowledge accumulated over the last decades provides consistent evidence on the bimodal dynamics of the expression of structural and non-structural forms of the viral core proteins which associate with different virologic and clinic-pathologic outcomes of HBV infection. In absence of serum HBeAg, the presence and persistence of HBV replication causes and maintains virus-related liver injury. Thus, in clinical practice it is mandatory to screen HBV carriers with HBeAg-negative infection for the early diagnosis of HBeAg-negative CHB since antiviral therapy can cure HBV-induced liver disease when started at early stages.
Collapse
Affiliation(s)
- Ferruccio Bonino
- Institute of Biostructure and Bioimaging, National Research Council, Via De Amicis 95, 80145 Naples, Italy;
| | - Piero Colombatto
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Reference Center of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, Via Paradisa 2, 56124 Pisa, Italy;
| | - Maurizia R. Brunetto
- Institute of Biostructure and Bioimaging, National Research Council, Via De Amicis 95, 80145 Naples, Italy;
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Reference Center of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, Via Paradisa 2, 56124 Pisa, Italy;
| |
Collapse
|
38
|
Hong X, Menne S, Hu J. Constrained evolution of overlapping genes in viral host adaptation: Acquisition of glycosylation motifs in hepadnaviral precore/core genes. PLoS Pathog 2022; 18:e1010739. [PMID: 35901192 PMCID: PMC9362955 DOI: 10.1371/journal.ppat.1010739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/09/2022] [Accepted: 07/13/2022] [Indexed: 11/19/2022] Open
Abstract
Hepadnaviruses use extensively overlapping genes to expand their coding capacity, especially the precore/core genes encode the precore and core proteins with mostly identical sequences but distinct functions. The precore protein of the woodchuck hepatitis virus (WHV) is N-glycosylated, in contrast to the precore of the human hepatitis B virus (HBV) that lacks N-glycosylation. To explore the roles of the N-linked glycosylation sites in precore and core functions, we substituted T77 and T92 in the WHV precore/core N-glycosylation motifs (75NIT77 and 90NDT92) with the corresponding HBV residues (E77 and N92) to eliminate the sequons. Conversely, these N-glycosylation sequons were introduced into the HBV precore/core gene by E77T and N92T substitutions. We found that N-glycosylation increased the levels of secreted precore gene products from both HBV and WHV. However, the HBV core (HBc) protein carrying the E77T substitution was defective in supporting virion secretion, and during infection, the HBc E77T and N92T substitutions impaired the formation of the covalently closed circular DNA (cccDNA), the critical viral DNA molecule responsible for establishing and maintaining infection. In cross-species complementation assays, both HBc and WHV core (WHc) proteins supported all steps of intracellular replication of the heterologous virus while WHc, with or without the N-glycosylation sequons, failed to interact with HBV envelope proteins for virion secretion. Interestingly, WHc supported more efficiently intracellular cccDNA amplification than HBc in the context of either HBV or WHV. These findings reveal novel determinants of precore secretion and core functions and illustrate strong constraints during viral host adaptation resulting from their compact genome and extensive use of overlapping genes. Hepadnaviruses infect a wide range of hosts. The human hepatitis B virus (HBV) and woodchuck hepatitis virus (WHV) are two closely related hepadnaviruses. In contrast to the WHV precore protein, which is N-glycosylated, the HBV precore protein lacks N-glycosylation. As precore and core proteins expressed from the overlapping precore/core genes share most of their sequences but have distinct functions, we investigated the roles of the N-linked glycosylation sequons in HBV and WHV precore/core genes. Our results revealed an important role of the N-linked glycosylation sequons in enhancing precore secretion levels and regulating core protein functions in virion secretion and infection. Furthermore, cross-species complementation assays using HBV and WHV core proteins and HBV or WHV genomes defective in core protein expression indicated that both HBV and WHV core proteins could support intracellular viral replication but not virion secretion of the heterologous virus. These results provide novel insights into the evolution of overlapping genes during host adaptation of hepadnaviruses.
Collapse
Affiliation(s)
- Xupeng Hong
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Stephan Menne
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Jianming Hu
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
39
|
Chu JYK, Chuang YC, Tsai KN, Pantuso J, Ishida Y, Saito T, Ou JHJ. Autophagic membranes participate in hepatitis B virus nucleocapsid assembly, precore and core protein trafficking, and viral release. Proc Natl Acad Sci U S A 2022; 119:e2201927119. [PMID: 35858426 PMCID: PMC9335259 DOI: 10.1073/pnas.2201927119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/05/2022] [Indexed: 01/21/2023] Open
Abstract
Hepatitis B virus (HBV) DNA replication takes place inside the viral core particle and is dependent on autophagy. Here we show that HBV core particles are associated with autophagosomes and phagophores in cells that productively replicate HBV. These autophagic membrane-associated core particles contain almost entirely the hypophosphorylated core protein and are DNA replication competent. As the hyperphosphorylated core protein can be localized to phagophores and the dephosphorylation of the core protein is associated with the packaging of viral pregenomic RNA (pgRNA), these results are in support of the model that phagophores can serve as the sites for the packaging of pgRNA. In contrast, in cells that replicate HBV, the precore protein derivatives, which are related to the core protein, are associated with autophagosomes but not with phagophores via a pathway that is independent of its signal peptide. Interestingly, when the core protein is expressed by itself, it is associated with phagophores but not with autophagosomes. These observations indicate that autophagic membranes are differentially involved in the trafficking of precore and core proteins. HBV induces the fusion of autophagosomes and multivesicular bodies and the silencing of Rab11, a regulator of this fusion, is associated with the reduction of release of mature HBV particles. Our studies thus indicate that autophagic membranes participate in the assembly of HBV nucleocapsids, the trafficking of HBV precore and core proteins, and likely also the egress of HBV particles.
Collapse
Affiliation(s)
- Ja Yeon Kim Chu
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
| | - Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
| | - Kuen-Nan Tsai
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
| | - Jessica Pantuso
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
| | - Yuji Ishida
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
- Research and Development Department, PhoenixBio, Co., Ltd, Kagamiyama, Higashi-Hiroshima City, 739-0046 Japan
| | - Takeshi Saito
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
| | - Jing-hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
| |
Collapse
|
40
|
Geng A, Flint E, Bernsmeier C. Plasticity of monocytes and macrophages in cirrhosis of the liver. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:937739. [PMID: 36926073 PMCID: PMC10013015 DOI: 10.3389/fnetp.2022.937739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/27/2022] [Indexed: 06/06/2023]
Abstract
Cirrhosis of the liver is a systemic condition with raising prevalence worldwide. Patients with cirrhosis are highly susceptible to develop bacterial infections leading to acute decompensation and acute-on-chronic liver failure both associated with a high morbidity and mortality and sparse therapeutic options other than transplantation. Mononuclear phagocytes play a central role in innate immune responses and represent a first line of defence against pathogens. Their function includes phagocytosis, killing of bacteria, antigen presentation, cytokine production as well as recruitment and activation of immune effector cells. Liver injury and development of cirrhosis induces activation of liver resident Kupffer cells and recruitment of monocytes to the liver. Damage- and pathogen-associated molecular patterns promote systemic inflammation which involves multiple compartments besides the liver, such as the circulation, gut, peritoneal cavity and others. The function of circulating monocytes and tissue macrophages is severely impaired and worsens along with cirrhosis progression. The underlying mechanisms are complex and incompletely understood. Recent 'omics' technologies help to transform our understanding of cellular diversity and function in health and disease. In this review we point out the current state of knowledge on phenotypical and functional changes of monocytes and macrophages during cirrhosis evolution in different compartments and their role in disease progression. We also discuss the value of potential prognostic markers for cirrhosis-associated immuneparesis, and future immunotherapeutic strategies that may reduce the need for transplantation and death.
Collapse
Affiliation(s)
- Anne Geng
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Emilio Flint
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Christine Bernsmeier
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| |
Collapse
|
41
|
Liu Y, Qin L, Wang J, Xie X, Zhang Y, Li C, Guan Z, Qian L, Chen L, Hu J, Meng S. miR-146a Maintains Immune Tolerance of Kupffer Cells and Facilitates Hepatitis B Virus Persistence in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2558-2572. [PMID: 35562117 DOI: 10.4049/jimmunol.2100618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Kupffer cells (KCs), the largest tissue-resident macrophage population in the body, play a central role in maintaining a delicate balance between immune tolerance and immunity in the liver. However, the underlying molecular mechanism remains elusive. In this study, we show that KCs express high levels of miR-146a, which is under control of the PU.1 transcription factor. miR-146a deficiency promoted KCs differentiation toward a proinflammatory phenotype; conversely, miR-146a overexpression suppressed this phenotypic differentiation. We found that hepatitis B virus (HBV) persistence or HBV surface Ag treatment significantly upregulated miR-146a expression and thereby impaired polarization of KCs toward a proinflammatory phenotype. Furthermore, in an HBV carrier mouse model, KCs depletion by clodronate liposomes dramatically promoted HBV clearance and enhanced an HBV-specific hepatic CD8+ T cell and CD4+ T cell response. Consistent with this finding, miR-146a knockout mice cleared HBV faster and elicited a stronger adaptive antiviral immunity than wild-type mice. In vivo IL-12 blockade promoted HBV persistence and tempered the HBV-specific CTL response in the liver of miR-146a knockout mice. Taken together, our results identified miR-146a as a critical intrinsic regulator of an immunosuppressive phenotype in KCs under inflammatory stimuli, which may be beneficial in maintenance of liver homeostasis under physiological condition. Meanwhile, during HBV infection, miR-146a contributed to viral persistence by inhibiting KCs proinflammatory polarization, highlighting its potential as a therapeutic target in HBV infection.
Collapse
Affiliation(s)
- Yongai Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lijuan Qin
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiuru Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xialin Xie
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Zhang
- Department of Pathology and Hepatology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China; and
| | - Changfei Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zeliang Guan
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liyuan Qian
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bio-Engineering, Beijing University of Technology, Beijing, China
| | - Lizhao Chen
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Hu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China;
| | - Songdong Meng
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China;
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Proliferation of CD11b+ myeloid cells induced by TLR4 signaling promotes hepatitis B virus clearance. Cytokine 2022; 153:155867. [PMID: 35390759 DOI: 10.1016/j.cyto.2022.155867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 02/10/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUNDS AND AIMS Effective immune response plays a key role in the clearance of hepatitis B virus (HBV). However, the specific role of innate immune response in the clearance of virus is still unclear. Here we investigated the effect of TLR4 signaling on the proliferation and differentiation of CD11b+ myeloid cells, which contributes to virus clearance. METHODS C57BL/6 mice were pretreated with TLR4 ligand lipopolysaccharide by intraperitoneal injection. Hydrodynamic injection (HI) was performed to establish HBV-replicated mice. The viremia was monitored. The immune cells were isolated from liver and spleen of the mice. The proliferation and differentiation of CD11b+ myeloid cells were analyzed by flow cytometry. The changes of CD11b+ myeloid cells and its role in virus clearance during HBV infection after LPS stimulation were analyzed. RESULTS LPS stimulation induced the proliferation of CD11b+ myeloid cells which differentiated into neutrophils and inflammatory mononuclear macrophages. The expression of F4/80 protein on the surface of mononuclear macrophages in the liver of LPS-stimulated mice was significantly lower than that of control. It indicated that intrahepatic Kupffer cells were significantly decreased in the LPS-stimulated mice, which promoted the clearance of virus. CONCLUSION LPS stimulation induces the proliferation of CD11b+ myeloid cells that differentiate into inflammatory neutrophils and monocytes, which inhibits HBV replication. And the decrease of intrahepatic Kupffer cells also contributes to the clearance of HBV during HBV infection.
Collapse
|
43
|
Fang Z, Zhang Y, Zhu Z, Wang C, Hu Y, Peng X, Zhang D, Zhao J, Shi B, Shen Z, Wu M, Xu C, Chen J, Zhou X, Xie Y, Yu H, Zhang X, Li J, Hu Y, Kozlowski M, Bertoletti A, Yuan Z. Monocytic MDSCs homing to thymus contribute to age-related CD8+ T cell tolerance of HBV. J Exp Med 2022; 219:213051. [PMID: 35254403 PMCID: PMC8906470 DOI: 10.1084/jem.20211838] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus exposure in children usually develops into chronic hepatitis B (CHB). Although hepatitis B surface antigen (HBsAg)–specific CD8+ T cells contribute to resolve HBV infection, they are preferentially undetected in CHB patients. Moreover, the mechanism for this rarely detected HBsAg-specific CD8+ T cells remains unexplored. We herein found that the frequency of HBsAg-specific CD8+ T cells was inversely correlated with expansion of monocytic myeloid-derived suppressor cells (mMDSCs) in young rather than in adult CHB patients, and CCR9 was upregulated by HBsAg on mMDSCs via activation of ERK1/2 and IL-6. Sequentially, the interaction between CCL25 and CCR9 mediated thymic homing of mMDSCs, which caused the cross-presentation, transferring of peripheral HBsAg into the thymic medulla, and then promoted death of HBsAg-specific CD8+ thymocytes. In mice, adoptive transfer of mMDSCs selectively obliterated HBsAg-specific CD8+ T cells and facilitated persistence of HBV in a CCR9-dependent manner. Taken together, our results uncovered a novel mechanism for establishing specific CD8+ tolerance to HBsAg in chronic HBV infection.
Collapse
Affiliation(s)
- Zhong Fang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Liver Cancer Institute of Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Yi Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhaoqin Zhu
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Cong Wang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yao Hu
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Xiuhua Peng
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Dandan Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jun Zhao
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Bisheng Shi
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhongliang Shen
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Min Wu
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Chunhua Xu
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaohui Zhou
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Hui Yu
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaonan Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jianhua Li
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yunwen Hu
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Maya Kozlowski
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | | | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China.,Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai, China
| |
Collapse
|
44
|
Kumar M, Abbas Z, Azami M, Belopolskaya M, Dokmeci AK, Ghazinyan H, Jia J, Jindal A, Lee HC, Lei W, Lim SG, Liu CJ, Li Q, Al Mahtab M, Muljono DH, Niriella MA, Omata M, Payawal DA, Sarin SK, Ségéral O, Tanwandee T, Trehanpati N, Visvanathan K, Yang JM, Yuen MF, Zheng Y, Zhou YH. Asian Pacific association for the study of liver (APASL) guidelines: hepatitis B virus in pregnancy. Hepatol Int 2022; 16:211-253. [PMID: 35113359 DOI: 10.1007/s12072-021-10285-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022]
Abstract
Hepatitis B virus (HBV) infection still remains a major public health issue in the Asia-Pacific region. Most of the burden of HBV-related disease results from infections acquired in infancy through perinatal or early childhood exposure to HBV in Asia-Pacific. Hepatitis B during pregnancy presents unique management issues for both the mother and fetus. These APASL guidelines provide a comprehensive review and recommendations based on available evidence in the literature, for the management of females with HBV infection through every stage of pregnancy and postpartum. These also address the concerns, management challenges, and required follow-up of children born to hepatitis B-positive mothers.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Hepatology and Liver Transplantation, Institute of Liver and Biliary Sciences, D1 Vasant Kunj, New Delhi, 110070, India.
| | - Zaigham Abbas
- Department of Medicine, Ziauddin University Hospital, Karachi, Pakistan
| | - Milad Azami
- Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | | | - A K Dokmeci
- Department of Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
| | - Hasmik Ghazinyan
- Department of Hepatology, Nork Clinical Hospital of Infectious Disease, Yerevan, Armenia
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medial University, Beijing, China
| | - Ankur Jindal
- Department of Hepatology and Liver Transplantation, Institute of Liver and Biliary Sciences, D1 Vasant Kunj, New Delhi, 110070, India
| | - Han Chu Lee
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Wei Lei
- Hepatopancreatobiliary Center, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Seng Gee Lim
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chun-Jen Liu
- Department of Internal Medicine and Hepatitis Research Center, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Qiang Li
- Division of Liver Diseases Jinan Infectious Disease Hospital, Shandong University, Jinan, China
| | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | | | - Madunil Anuk Niriella
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Colombo, Sri Lanka
| | - Masao Omata
- Department of Gastroenterology, Yamanashi Central Hospital, Yamanashi, Japan
- University of Tokyo, Tokyo, Japan
| | - Diana A Payawal
- Fatima University Medical Center Manila, Manila, Philippines
| | - Shiv K Sarin
- Department of Hepatology and Liver Transplantation, Institute of Liver and Biliary Sciences, D1 Vasant Kunj, New Delhi, 110070, India.
| | - Olivier Ségéral
- French Agency for Research on AIDS and Viral Hepatitis, University of Health Science, Phnom Penh, Cambodia
| | - Tawesak Tanwandee
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nirupma Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Kumar Visvanathan
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Jin Mo Yang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Man-Fung Yuen
- Li Shu Fan Medical Foundation Professor in Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yingjie Zheng
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Y H Zhou
- Department of Laboratory Medicine, Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
45
|
Li J, Yu M, Zong R, Fan C, Ren F, Wu W, Li C. Deacetylation of Notch1 by SIRT1 contributes to HBsAg- and HBeAg-mediated M2 macrophage polarization. Am J Physiol Gastrointest Liver Physiol 2022; 322:G459-G471. [PMID: 35234049 DOI: 10.1152/ajpgi.00338.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatic macrophages are involved in both pathogen clearance and immunopathogenesis. Emerging evidence demonstrates that macrophage polarization plays a critical role in hepatitis B virus (HBV)-induced immune impairment and liver pathology. However, it remains largely unknown as to how HBV infection facilitates M2 macrophage polarization. Here, a mouse HBV infection model was established by hydrodynamic injection with a vector containing 1.3-fold overlength HBV genome via the tail vein. Coculture experiments with HBV-producing HepG2.2.15 cells and macrophages were established in vitro. We found that HBV-inhibited M1 while enhancing M2 markers, which was accompanied by decreased proinflammatory tumor necrosis factor-α (TNF-α) and augmented anti-inflammatory IL-10 expression. Furthermore, both hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) secretion contributed to HBV-triggered macrophage polarization from M1 toward M2 phenotype. Mechanistically, HBsAg and HBeAg could upregulate the sirtuins 1 (SIRT1) deacetylase expression, which in turn promote deacetylation of the Notch1 intracellular domain (NICD), leading to increased Akt phosphorylation and decreased NF-κB nuclear translocation in macrophages. Our findings suggest that NICD deacetylation by SIRT1 contributes to HBsAg- and HBeAg-mediated M2 macrophage polarization, raising the possibility of targeting SIRT1/Notch1 pathway in macrophages to treat HBV immune evasion and chronic HBV infection.NEW & NOTEWORTHY This study identified a previously unrecognized molecular mechanism of HBV-mediated suppression of innate immune responses. We demonstrate that deacetylation of NICD by SIRT1 contributes to HBsAg- and HBeAg-mediated M2 macrophage polarization, which may aid in the development of new macrophage-based immunotherapy for chronic HBV infection and related diseases.
Collapse
Affiliation(s)
- Jiahui Li
- Department of Anatomy and Histology Embryology, Jinzhou Medical University, Jinzhou, People's Republic of China.,Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China.,Department of Anatomy, Youjiang Medical University for Nationalities, Baise, People's Republic of China
| | - Mengxue Yu
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Ruobin Zong
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Chengpeng Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Fu Ren
- Department of Anatomy, Shenyang Medical College, Shenyang, People's Republic of China
| | - Wei Wu
- Institute of Humanities and Social Sciences, Shenyang University, Shenyang, People's Republic of China
| | - Changyong Li
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
46
|
Zhao HJ, Hu YF, Han QJ, Zhang J. Innate and adaptive immune escape mechanisms of hepatitis B virus. World J Gastroenterol 2022; 28:881-896. [PMID: 35317051 PMCID: PMC8908287 DOI: 10.3748/wjg.v28.i9.881] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/09/2021] [Accepted: 01/29/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is an international health problem with extremely high mortality and morbidity rates. Although current clinical chronic hepatitis B (CHB) treatment strategies can partly inhibit and eliminate HBV, viral breakthrough may result due to non-adherence to treatment, the emergence of viral resistance, and a long treatment cycle. Persistent CHB infection arises as a consequence of complex interactions between the virus and the host innate and adaptive immune systems. Therefore, understanding the immune escape mechanisms involved in persistent HBV infection is important for designing novel CHB treatment strategies to clear HBV and achieve long-lasting immune control. This review details the immunological and biological characteristics and escape mechanisms of HBV and the novel immune-based therapies that are currently used for treating HBV.
Collapse
Affiliation(s)
- Hua-Jun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Yi-Fei Hu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Qiu-Ju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
47
|
Xie X, Luo J, Zhu D, Zhou W, Yang X, Feng X, Lu M, Zheng X, Dittmer U, Yang D, Liu J. HBeAg Is Indispensable for Inducing Liver Sinusoidal Endothelial Cell Activation by Hepatitis B Virus. Front Cell Infect Microbiol 2022; 12:797915. [PMID: 35174107 PMCID: PMC8842949 DOI: 10.3389/fcimb.2022.797915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background and AimsLiver sinusoidal endothelial cells (LSECs) serve as sentinel cells to detect microbial infection and actively contribute to regulating immune responses for surveillance against intrahepatic pathogens. We recently reported that hepatitis B e antigen (HBeAg) stimulation could induce LSEC maturation and abrogate LSEC-mediated T cell suppression in a TNF-α and IL27 dependent manner. However, it remains unclear how HBeAg deficiency during HBV infection influences LSEC immunoregulation function and intrahepatic HBV-specific CD8 T cell responses.MethodsThe function of LSECs in regulating effector T cell response, intrahepatic HBV-specific CD8 T cell responses and HBV viremia were characterized in both HBeAg-deficient and -competent HBV hydrodynamic injection (HDI) mouse models.ResultsLSECs isolated from HBeAg-deficient HBV HDI mice showed a reduced capacity to promote T cell immunity in vitro compared with those isolated from wild-type HBV HDI mice. HBeAg expression replenishment in HBeAg-deficient HBV HDI mice restored the HBV-induced LSEC maturation, and resulted in potent intrahepatic anti-HBV CD8 T cell responses and efficient control of HBV replication. Moreover, in vivo TNF-α, but not IL27 blockade in HBV HDI mice impaired HBV-specific CD8 T cell immunity and delayed HBV clearance.ConclusionOur study underlines that HBeAg is indispensable for HBV-induced LSEC maturation to trigger intrahepatic HBV-specific T cell activation, and provides a new mechanism to elucidate the intrahepatic immune microenvironment regulation upon HBV exposure.
Collapse
Affiliation(s)
- Xiaohong Xie
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinzhuo Luo
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Zhu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqing Zhou
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuecheng Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuemei Feng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ulf Dittmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jia Liu,
| |
Collapse
|
48
|
Abstract
Hepatitis B virus (HBV) is a hepatotropic virus and an important human pathogen. There are an estimated 296 million people in the world that are chronically infected by this virus, and many of them will develop severe liver diseases including hepatitis, cirrhosis and hepatocellular carcinoma (HCC). HBV is a small DNA virus that replicates via the reverse transcription pathway. In this review, we summarize the molecular pathways that govern the replication of HBV and its interactions with host cells. We also discuss viral and non-viral factors that are associated with HBV-induced carcinogenesis and pathogenesis, as well as the role of host immune responses in HBV persistence and liver pathogenesis.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Kuen-Nan Tsai
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| |
Collapse
|
49
|
Macrophages activated by hepatitis B virus have distinct metabolic profiles and suppress the virus via IL-1β to downregulate PPARα and FOXO3. Cell Rep 2022; 38:110284. [PMID: 35081341 PMCID: PMC8830375 DOI: 10.1016/j.celrep.2021.110284] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/30/2021] [Accepted: 12/28/2021] [Indexed: 01/15/2023] Open
Abstract
Macrophages display phenotypic plasticity and can be induced by hepatitis B virus (HBV) to undergo either M1-like pro-inflammatory or M2-like anti-inflammatory polarization. Here, we report that M1-like macrophages stimulated by HBV exhibit a strong HBV-suppressive effect, which is diminished in M2-like macrophages. Transcriptomic analysis reveals that HBV induces the expression of interleukin-1β (IL-1β) in M1-like macrophages, which display a high oxidative phosphorylation (OXPHOS) activity distinct from that of conventional M1-like macrophages. Further analysis indicates that OXPHOS attenuates the expression of IL-1β, which suppresses the expression of peroxisome proliferator-activated receptor α (PPARα) and forkhead box O3 (FOXO3) in hepatocytes to suppress HBV gene expression and replication. Moreover, multiple HBV proteins can induce the expression of IL-1β in macrophages. Our results thus indicate that macrophages can respond to HBV by producing IL-1β to suppress HBV replication. However, HBV can also metabolically reprogram macrophages to enhance OXPHOS to minimize this host antiviral response.
Collapse
|
50
|
Papachristoforou E, Ramachandran P. Macrophages as key regulators of liver health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:143-212. [PMID: 35636927 DOI: 10.1016/bs.ircmb.2022.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Macrophages are a heterogeneous population of innate immune cells and key cellular components of the liver. Hepatic macrophages consist of embryologically-derived resident Kupffer cells (KC), recruited monocyte-derived macrophages (MDM) and capsular macrophages. Both the diversity and plasticity of hepatic macrophage subsets explain their different functions in the maintenance of hepatic homeostasis and in injury processes in acute and chronic liver diseases. In this review, we assess the evidence for macrophage involvement in regulating both liver health and injury responses in liver diseases including acute liver injury (ALI), chronic liver disease (CLD) (including liver fibrosis) and hepatocellular carcinoma (HCC). In healthy livers, KC display critical functions such as phagocytosis, danger signal recognition, cytokine release, antigen processing and the ability to orchestrate immune responses and maintain immunological tolerance. However, in most liver diseases there is a striking hepatic MDM expansion, which orchestrate both disease progression and regression. Single-cell approaches have transformed our understanding of liver macrophage heterogeneity, dynamics, and functions in both human samples and preclinical models. We will further discuss the new insights provided by these approaches and how they are enabling high-fidelity work to specifically identify pathogenic macrophage subpopulations. Given the important role of macrophages in regulating injury responses in a broad range of settings, there is now a huge interest in developing new therapeutic strategies aimed at targeting macrophages. Therefore, we also review the current approaches being used to modulate macrophage function in liver diseases and discuss the therapeutic potential of targeting macrophage subpopulations as a novel treatment strategy for patients with liver disorders.
Collapse
Affiliation(s)
- Eleni Papachristoforou
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Prakash Ramachandran
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom.
| |
Collapse
|