1
|
Ge Z, Wu Q, Lv C, He Q. The Roles of T Cells in the Development of Metabolic Dysfunction-Associated Steatohepatitis. Immunology 2025. [PMID: 40414629 DOI: 10.1111/imm.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/28/2025] [Accepted: 04/28/2025] [Indexed: 05/27/2025] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH), the progressed period of metabolic dysfunction-associated steatotic liver disease (MASLD), is a multifaceted liver disease characterised by inflammation and fibrosis that develops from simple steatosis, even contributing to hepatocellular carcinoma and death. MASH involves several immune cell-mediated inflammation and fibrosis, where T cells play a crucial role through the release of pro-inflammatory cytokines and pro-fibrotic factors. This review discusses the complex role of various T cell subsets in the pathogenesis of MASH and highlights the progress of ongoing clinical trials involving T cell-targeted MASH therapies.
Collapse
Affiliation(s)
- Zhifa Ge
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qingwei Wu
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chengyu Lv
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qifeng He
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Nater M, Brügger M, Cecconi V, Pereira P, Forni G, Köksal H, Dimakou D, Herbst M, Calvanese AL, Lucchiari G, Schneider C, Valenta T, van den Broek M. Hepatic iNKT cells facilitate colorectal cancer metastasis by inducing a fibrotic niche in the liver. iScience 2025; 28:112364. [PMID: 40292307 PMCID: PMC12032931 DOI: 10.1016/j.isci.2025.112364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/05/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
The liver is an important metastatic organ that contains many innate immune cells, yet little is known about their role in anti-metastatic defense. We investigated how invariant natural killer T (iNKT) cells influence colorectal cancer-derived liver metastasis using different models in immunocompetent mice. We found that hepatic iNKT cells promote metastasis by creating a supportive niche for disseminated cancer cells. Mechanistically, iNKT cells respond to disseminating cancer cells by producing the fibrogenic cytokines interleukin-4 (IL-4) and IL-13 in a T cell receptor-independent manner. Selective abrogation of IL-4 and IL-13 sensing in hepatic stellate cells prevented their transdifferentiation into extracellular matrix-producing myofibroblasts, which hindered metastatic outgrowth of disseminated cancer cells. This study highlights a novel tumor-promoting axis driven by iNKT cells in the initial stages of metastasis.
Collapse
Affiliation(s)
- Marc Nater
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Michael Brügger
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Virginia Cecconi
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Paulo Pereira
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Geo Forni
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Hakan Köksal
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Despoina Dimakou
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Michael Herbst
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Giulia Lucchiari
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Tomas Valenta
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
3
|
Rieder F, Nagy LE, Maher TM, Distler JHW, Kramann R, Hinz B, Prunotto M. Fibrosis: cross-organ biology and pathways to development of innovative drugs. Nat Rev Drug Discov 2025:10.1038/s41573-025-01158-9. [PMID: 40102636 DOI: 10.1038/s41573-025-01158-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 03/20/2025]
Abstract
Fibrosis is a pathophysiological mechanism involved in chronic and progressive diseases that results in excessive tissue scarring. Diseases associated with fibrosis include metabolic dysfunction-associated steatohepatitis (MASH), inflammatory bowel diseases (IBDs), chronic kidney disease (CKD), idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc), which are collectively responsible for substantial morbidity and mortality. Although a few drugs with direct antifibrotic activity are approved for pulmonary fibrosis and considerable progress has been made in the understanding of mechanisms of fibrosis, translation of this knowledge into effective therapies continues to be limited and challenging. With the aim of assisting developers of novel antifibrotic drugs, this Review integrates viewpoints of biologists and physician-scientists on core pathways involved in fibrosis across organs, as well as on specific characteristics and approaches to assess therapeutic interventions for fibrotic diseases of the lung, gut, kidney, skin and liver. This discussion is used as a basis to propose strategies to improve the translation of potential antifibrotic therapies.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA.
- Program for Global Translational Inflammatory Bowel Diseases (GRID), Chicago, IL, USA.
| | - Laura E Nagy
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Toby M Maher
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- National Heart and Lung Institute, Imperial College, London, UK
| | - Jörg H W Distler
- Department of Rheumatology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Hiller Research Center, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology, RWTH Aachen; Medical Faculty, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, Netherlands
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St Michael's Hospital, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Marco Prunotto
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
4
|
Hopkins CM, Wilks BT, Morgan JR. TGF-β1 requires IL-13 to sustain collagen accumulation and increasing tissue strength and stiffness. Connect Tissue Res 2025; 66:107-120. [PMID: 40013741 DOI: 10.1080/03008207.2025.2469575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/27/2024] [Accepted: 02/15/2025] [Indexed: 02/28/2025]
Abstract
AIMS Fibrosis is a multifactorial process characterized by the excessive accumulation of extracellular matrix (ECM), increased tissue stiffness, and decreased elasticity. This study examined how individual cytokines and a cytokine combination alter collagen production and biomechanics in a 3D in vitro model of the human ECM. METHODS Cultured human fibroblasts were seeded into a circular agarose trough molded in 24 well plates. The fibroblasts aggregated and formed a 3D ring-shaped tissue that synthesized de novo a collagen-rich human ECM complete with collagen fibrils. Unlike existing models, no macromolecular crowders were added, nor artificial scaffolds or exogenous ECM proteins. Rings were treated with TGF-β1, IL-13 or the combination of TGF-β1 and IL-13 for up to 3 weeks. Morphology, histology, collagen, DNA, fibril formation, gene expression and tensile properties of the rings were measured. RESULTS As the rings compacted, cellularity and total DNA decreased, whereas total collagen accumulated. TGF-β1 stimulated collagen accumulation and increased ring biomechanics at day 7, but these increases stalled and declined by day 21. When treated with IL-13, a cytokine exclusive to the immune system, there were no significant differences from control. However, when TGF-β1 was combined with IL-13, collagen levels and ring biomechanics increased over the entire three weeks to levels higher than TGF-β1 alone. Gene expression was differentially regulated by cytokine treatment over the entire three weeks suggesting that increased collagen accumulation was not due to upregulation of collagen gene expression. CONCLUSIONS These results suggest that TGF-β1 requires a second signal, such as IL-13, to sustain the long-term pathological increases in collagen accumulation and biomechanics that can compromise the function of fibrotic tissues.
Collapse
Affiliation(s)
- Caitlin M Hopkins
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
- Center for Alternatives to Animals in Testing, Brown University, Providence, RI, USA
| | - Benjamin T Wilks
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
- Center for Alternatives to Animals in Testing, Brown University, Providence, RI, USA
| | - Jeffrey R Morgan
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
- Center for Alternatives to Animals in Testing, Brown University, Providence, RI, USA
| |
Collapse
|
5
|
Wagner M, Nishikawa H, Koyasu S. Reinventing type 2 immunity in cancer. Nature 2025; 637:296-303. [PMID: 39780006 DOI: 10.1038/s41586-024-08194-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/10/2024] [Indexed: 01/11/2025]
Abstract
Our understanding of type 2 immunity has undergone a substantial transformation in recent years, revealing previously unknown functions. Beyond its canonical role in defence against parasitic helminth infections, type 2 immunity safeguards the host through additional mechanisms, including the suppression of excessive type 1 immune responses, regulation of tissue repair and maintenance of adipose tissue homeostasis. However, unlike type 1 immune responses, type 2 immunity is perceived as a potential promoter of tumorigenesis. Emerging evidence challenges this perspective, painting a more nuanced picture in which type 2 immunity might protect against or even actively suppress tumour growth and progression. In this Review, we explore discoveries that highlight the potential of type 2 immunity in reshaping the landscape of cancer immunotherapies.
Collapse
Affiliation(s)
- Marek Wagner
- Innate Immunity Research Group, Life Sciences and Biotechnology Center, Łukasiewicz Research Network-PORT Polish Center for Technology Development, Wrocław, Poland.
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Cancer Immunology, Research Institute/EPOC, National Cancer Center, Tokyo, Japan
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- National Institutes for Quantum Science and Technology (QST), Chiba, Japan.
| |
Collapse
|
6
|
de Farias JB, de Lima Vitorino ML, Martins Esteves FA, da Fonseca Lima EJ, da Silva RA, de Lima Filho JL. Label-Free Proteomics of Severe Acute Hepatitis of Unknown Origin in Children by High-Resolution Mass Spectrometry. ACS OMEGA 2024; 9:50685-50694. [PMID: 39741806 PMCID: PMC11684528 DOI: 10.1021/acsomega.4c08745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/17/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025]
Abstract
Acute hepatitis of unknown etiology (non-HepA-E hepatitis) emerged affecting children in 2021 and in parallel with the COVID-19 pandemic. In the present article, we performed an analysis between two plasma samples from pediatric patients, one with non-HepA-E hepatitis and the other healthy, to evaluate possible proteomic alterations associated with viral targets as possible causative agents and pathophysiological processes using the high-resolution and label-free LC-MS/MS technique. We identified 72 altered differentially expressed proteins, 45 upregulated and 27 downregulated. Gremlin-1, a protein associated with tissue fibrosis, was detected exclusively in the positive sample. Proteins involved in immunological processes, coagulation cascade, complement cascade, lipid transport, oxidative stress, acute inflammatory response, and those related to extracellular matrix deposition were also identified. In addition, some proteins of viral origin were detected, mainly from respiratory viruses. Proteomic studies of diseases such as hepatitis and other hepatopathologies have become essential for understanding pathophysiological processes and detecting molecular triggers.
Collapse
Affiliation(s)
- Josivan Barbosa de Farias
- Universidade
Federal de Pernambuco—Instituto Keizo Asami iLIKA. Av. Prof.
Moraes Rego, 1235-Cidade
Universitária, 50670-901 Recife, Pernambuco, Brazil
| | - Maria Luiza de Lima Vitorino
- Universidade
Federal de Pernambuco—Instituto Keizo Asami iLIKA. Av. Prof.
Moraes Rego, 1235-Cidade
Universitária, 50670-901 Recife, Pernambuco, Brazil
| | | | - Eduardo Jorge da Fonseca Lima
- IMIP
Hospital—Instituto de Medicina Integral Professor Fernando
Figueira. Rua dos Coelhos, 300-Boa Vista, 50070-902 Recife, Pernambuco, Brazil
| | - Roberto Afonso da Silva
- Universidade
Federal de Pernambuco—Instituto Keizo Asami iLIKA. Av. Prof.
Moraes Rego, 1235-Cidade
Universitária, 50670-901 Recife, Pernambuco, Brazil
| | - José Luiz de Lima Filho
- Universidade
Federal de Pernambuco—Instituto Keizo Asami iLIKA. Av. Prof.
Moraes Rego, 1235-Cidade
Universitária, 50670-901 Recife, Pernambuco, Brazil
| |
Collapse
|
7
|
Anderson G, Cosway EJ, James KD, Ohigashi I, Takahama Y. Generation and repair of thymic epithelial cells. J Exp Med 2024; 221:e20230894. [PMID: 38980292 PMCID: PMC11232892 DOI: 10.1084/jem.20230894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
In the vertebrate immune system, thymus stromal microenvironments support the generation of αβT cells from immature thymocytes. Thymic epithelial cells are of particular importance, and the generation of cortical and medullary epithelial lineages from progenitor stages controls the initiation and maintenance of thymus function. Here, we discuss the developmental pathways that regulate thymic epithelial cell diversity during both the embryonic and postnatal periods. We also examine how thymus microenvironments respond to injury, with particular focus on mechanisms that ensure regeneration of thymic epithelial cells for the restoration of thymus function.
Collapse
Affiliation(s)
- Graham Anderson
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Emilie J. Cosway
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Kieran D. James
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Yousuke Takahama
- Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Gu Q, Yin S, Tong X, Rui F, Zhu Y, Ma X, Huang R, Wu C, Li J. Current research insights into the role of CTLA-4 in hepatitis B virus (HBV) infection. J Viral Hepat 2024; 31:557-564. [PMID: 38771314 DOI: 10.1111/jvh.13958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Chronic hepatitis B virus (HBV) infection is a significant global public health concern, and the clearance of HBV is closely linked to the activity of HBV-specific T cells, which is regulated by various co-suppressor molecules. Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) is among these co-suppressor molecules which induces T cell exhaustion by competitively inhibiting CD28 and dampening the function of HBV-specific T cells. CTLA-4 also plays a role in the regulation of T helper (Th) cell differentiation and influences cytokine release. In addition, CTLA-4 can impact glucose metabolism in hepatocellular carcinoma through its interaction with T regulatory (Treg) cells. This review aims to provide a comprehensive overview of the existing literature related to the role of CTLA-4 in HBV patients across different subsets of T cells. Additionally, we propose a discussion on the possible mechanisms through which CTLA-4 may contribute to HBV infection, as well as the development of HBV-induced cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Qi Gu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Shengxia Yin
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Xin Tong
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Fajuan Rui
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yixuan Zhu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyan Ma
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Rui Huang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Seidelin JB, Bronze M, Poulsen A, Attauabi M, Woetmann A, Mead BE, Karp JM, Riis LB, Bjerrum JT. Non-TGFβ profibrotic signaling in ulcerative colitis after in vivo experimental intestinal injury in humans. Am J Physiol Gastrointest Liver Physiol 2024; 327:G70-G79. [PMID: 38713614 DOI: 10.1152/ajpgi.00074.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/09/2024]
Abstract
Although impaired regeneration is important in many gastrointestinal diseases including ulcerative colitis (UC), the dynamics of mucosal regeneration in humans are poorly investigated. We have developed a model to study these processes in vivo in humans. Epithelial restitution (ER) and extracellular matrix (ECM) regulation after an experimental injury of the sigmoid colonic mucosa was assessed by repeated high-resolution endoscopic imaging, histological assessment, RNA sequencing, deconvolution analysis, and 16S rDNA sequencing of the injury niche microbiome of 19 patients with UC in remission and 20 control subjects. Human ER had a 48-h lag before induction of regenerative epithelial cells [wound-associated epithelial (WAE) and transit amplifying (TA) cells] along with the increase of fibroblast-derived stem cell growth factor gremlin 1 mRNA (GREM1). However, UC deconvolution data showed rapid induction of inflammatory fibroblasts and upregulation of major structural ECM collagen mRNAs along with tissue inhibitor of metalloproteinase 1 (TIMP1), suggesting increased profibrotic ECM deposition. No change was seen in transforming growth factor β (TGFβ) mRNA, whereas the profibrotic cytokines interleukin 13 (IL13) and IL11 were upregulated in UC, suggesting that human postinjury responses could be TGFβ-independent. In conclusion, we found distinct regulatory layers of regeneration in the normal human colon and a potential targetable profibrotic dysregulation in UC that could lead to long-term end-organ failure, i.e., intestinal damage.NEW & NOTEWORTHY The study reveals the regulatory dynamics of epithelial regeneration and extracellular matrix remodeling after experimental injury of the human colon in vivo and shows that human intestinal regeneration is different from data obtained from animals. A lag phase in epithelial restitution is associated with induction of stromal cell-derived epithelial growth factors. Postinjury regeneration is transforming growth factor β-independent, and we find a profibrotic response in patients with ulcerative colitis despite being in remission.
Collapse
Affiliation(s)
- Jakob B Seidelin
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mariana Bronze
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Anja Poulsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mohamed Attauabi
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin E Mead
- Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Department of Chemistry; Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts, United States
| | - Jeffrey M Karp
- Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
- Department of Anesthesiology, Perioperative and Pain Medicine,Brigham and Women's Hospital, Cambridge, Massachusetts, United States
| | - Lene B Riis
- Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jacob T Bjerrum
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Wang L, Cheng J, Huang J, Xiao T, Tang Z. The mechanism of IL-13 targeting IL-13Rα2 in regulating oral mucosal FBs through PI3K/AKT/mTOR. Oral Dis 2024; 30:3142-3154. [PMID: 37897109 DOI: 10.1111/odi.14760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/30/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023]
Abstract
OBJECTIVE The objective of this investigation was to examine the presence of interleukin (IL)-13 and its receptor IL-13Rα2 in the tissues of oral submucous fibrosis (OSF), investigate their biological functions, and explore the underlying mechanisms involved in the development of OSF. MATERIALS AND METHODS The expression of IL-13 and IL-13Rα2 in the oral mucosa of patients with OSF and normal individuals was determined through immunohistochemistry and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Primary fibroblasts (FBs) were extracted through enzymatic digestion and then cultured. Immunofluorescence was employed to identify the FB cultures and the location of IL-13Rα2. The effects of IL-13/IL-13Rα2/PI3K/AKT/mTOR on the migration, proliferation, and secretion of fiber-related proteins of FBs were explored via the wound healing assay, CCK-8 assay, EDU assay, and RT-qPCR. The impact of IL-13Rα2 silencing and PI3K/AKT inhibition on the effect of IL-13 on FBs was analyzed by RT-qPCR and Western blotting. RESULTS IL-13 and IL-13Rα2 were highly expressed in OSF. Primary FBs were successfully extracted and cultured. IL-13Rα2 was found to be localized in myofibroblasts. IL-13 promoted the proliferation, migration, and secretion of fibril-associated proteins in FBs. The proliferation, migration, and secretion of fibril-associated proteins of FBs were decreased following IL-13Rα2 silencing and inhibition of the PI3K/AKT/mTOR pathway. CONCLUSION IL-13 may promote the proliferation, migration, and secretion of fiber-related proteins of FBs through the PI3K/AKT/mTOR pathway by targeting IL-13Rα2.
Collapse
Affiliation(s)
- Liping Wang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Academician Workstation for Oral-maxilofacial and Regenerative Medicine & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Jingyi Cheng
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Academician Workstation for Oral-maxilofacial and Regenerative Medicine & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Junhui Huang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Academician Workstation for Oral-maxilofacial and Regenerative Medicine & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Ting Xiao
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Academician Workstation for Oral-maxilofacial and Regenerative Medicine & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Zhangui Tang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Academician Workstation for Oral-maxilofacial and Regenerative Medicine & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
11
|
Nishikawa Y. Aberrant differentiation and proliferation of hepatocytes in chronic liver injury and liver tumors. Pathol Int 2024; 74:361-378. [PMID: 38837539 PMCID: PMC11551836 DOI: 10.1111/pin.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/29/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
Chronic liver injury induces liver cirrhosis and facilitates hepatocarcinogenesis. However, the effects of this condition on hepatocyte proliferation and differentiation are unclear. We showed that rodent hepatocytes display a ductular phenotype when they are cultured within a collagenous matrix. This process involves transdifferentiation without the emergence of hepatoblastic features and is at least partially reversible. During the ductular reaction in chronic liver diseases with progressive fibrosis, some hepatocytes, especially those adjacent to ectopic ductules, demonstrate ductular transdifferentiation, but the majority of increased ductules originate from the existing bile ductular system that undergoes extensive remodeling. In chronic injury, hepatocyte proliferation is weak but sustained, and most regenerative nodules in liver cirrhosis are composed of clonally proliferating hepatocytes, suggesting that a small fraction of hepatocytes maintain their proliferative capacity in chronic injury. In mouse hepatocarcinogenesis models, hepatocytes activate the expression of various fetal/neonatal genes, indicating that these cells undergo dedifferentiation. Hepatocyte-specific somatic integration of various oncogenes in mice demonstrated that hepatocytes may be the cells of origin for a broad spectrum of liver tumors through transdifferentiation and dedifferentiation. In conclusion, the phenotypic plasticity and heterogeneity of mature hepatocytes are important for understanding the pathogenesis of chronic liver diseases and liver tumors.
Collapse
Affiliation(s)
- Yuji Nishikawa
- President's OfficeAsahikawa Medical UniversityAsahikawaHokkaidoJapan
| |
Collapse
|
12
|
Alvarez-Argote S, Almeida VA, Knas MC, Buday SL, Patterson M, O'Meara CC. Global IL4Rα blockade exacerbates heart failure after an ischemic event in mice and humans. Am J Physiol Heart Circ Physiol 2024; 326:H1080-H1093. [PMID: 38426866 PMCID: PMC11380969 DOI: 10.1152/ajpheart.00010.2024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Ischemic heart failure continues to be a highly prevalent disease among westernized countries and there is great interest in understanding the mechanisms preventing or exacerbating disease progression. The literature suggests an important role for the activation of interleukin-13 or interleukin-4 signaling in improving ischemic heart failure outcomes after myocardial infarction in mice. Dupilumab, a neutralizing antibody that inhibits the shared IL13/IL4 receptor subunit IL4Rα, is widely used for conditions such as ectopic dermatitis in humans. If global depletion of IL4Rα influences ischemic heart failure, either in mice or in humans taking dupilumab, is unknown. Here, we investigated the pathophysiological effects of global IL4Rα genetic deletion in adult mice after surgically induced myocardial infarction (MI). We also determined heart failure risk in patients with ischemic heart disease and concomitant usage of dupilumab using the collaborative patient data network TriNetX. Global deletion of IL4Rα results in exacerbated cardiac dysfunction associated with reduced capillary size after myocardial infarction in mice. In agreement with our findings in mice, dupilumab treatment significantly increased the risk of heart failure development in patients with preexisting diagnosis of ischemic heart disease. Our results indicate that systemic IL4Rα signaling is protective against heart failure development in adult mice and human patients specifically following an ischemic event. Thus, the compelling evidence presented hereby advocates for the development of a randomized clinical trial specifically investigating heart failure development after myocardial ischemia in patients taking dupilumab for another underlying condition.NEW & NOTEWORTHY A body of literature suggests a protective role for IL4Rα signaling postmyocardial infarction in mice. Here, our observational study demonstrates that humans taking the IL4Rα neutralizing antibody, dupilumab, have increased incidence of heart failure following an ischemic event. Similarly, global IL4Rα deletion in mice exacerbates heart failure postinfarct. To our knowledge, this is the first study reporting an adverse association in humans of dupilumab use with heart failure following a cardiac ischemic event.
Collapse
Affiliation(s)
- Santiago Alvarez-Argote
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Victor A Almeida
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Makenna C Knas
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Sydney L Buday
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Michaela Patterson
- Department of Cell Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Caitlin C O'Meara
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
13
|
Jiao M, Zhang Y, Song X, Xu B. The role and mechanism of TXNDC5 in disease progression. Front Immunol 2024; 15:1354952. [PMID: 38629066 PMCID: PMC11019510 DOI: 10.3389/fimmu.2024.1354952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Thioredoxin domain containing protein-5 (TXNDC5), also known as endothelial protein-disulfide isomerase (Endo-PDI), is confined to the endoplasmic reticulum through the structural endoplasmic reticulum retention signal (KDEL), is a member of the PDI protein family and is highly expressed in the hypoxic state. TXNDC5 can regulate the rate of disulfide bond formation, isomerization and degradation of target proteins through its function as a protein disulfide isomerase (PDI), thereby altering protein conformation, activity and improving protein stability. Several studies have shown that there is a significant correlation between TXNDC5 gene polymorphisms and genetic susceptibility to inflammatory diseases such as rheumatoid, fibrosis and tumors. In this paper, we detail the expression characteristics of TXNDC5 in a variety of diseases, summarize the mechanisms by which TXNDC5 promotes malignant disease progression, and summarize potential therapeutic strategies to target TXNDC5 for disease treatment.
Collapse
Affiliation(s)
- Mingxia Jiao
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Province Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yeyong Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, China
| | - Xie Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bing Xu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Province Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
14
|
Takano K, Kamekura R, Okuni T, Yamamoto K. New insights into chronic rhinosinusitis associated with IgG4-related disease. Auris Nasus Larynx 2024; 51:356-360. [PMID: 37973437 DOI: 10.1016/j.anl.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
IgG4-related disease (IgG4-RD) is a chronic inflammatory disorder characterized by elevated IgG4 serum levels, abundant IgG4-positive plasmacyte infiltration, and fibrosis of various organs, including the head and neck. We aimed to provide an overall review of IgG4-RD in the sinonasal region and propose a novel entity and criteria of chronic rhinosinusitis (CRS) associated with IgG4-RD as "IgG4-CRS," a distinct manifestation of IgG4-RD in the sinonasal region. Sinonasal involvement has been increasingly recognized; however, this region is not included in the classic IgG4-RD-affected organs. The clinical features of IgG4-CRS, including its prevalence and relationship with allergies and olfactory disturbances, have also been explored. Serum IgG4 levels and IgG4-positive plasma cell infiltrations, crucial diagnostic factors, have been discussed in association with IgG4-CRS pathogenesis. Fibrosis, a hallmark of IgG4-RD, is observed in sinonasal tissues; however, typical fibrosis, such as storiform fibrosis, is not usually found. Mimics or complications in eosinophilic CRS (ECRS) and antineutrophil cytoplasmic antibody-associated vasculitis (AAV) are highlighted. Treatment often involves typically effective glucocorticoids. Organ-specific diagnostic criteria for the sinonasal region have not currently been established. Hence, this review aims to foster awareness and understanding of IgG4-CRS among ENT physicians and to provide a basis for future research and diagnostic refinement.
Collapse
Affiliation(s)
- Kenichi Takano
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, S1W17, Chuo-ku, Sapporo 060-8556, Japan.
| | - Ryuta Kamekura
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Tsuyoshi Okuni
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Keisuke Yamamoto
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| |
Collapse
|
15
|
Li Z, Wang S, Xu Q, Su X, Wang Y, Wang L, Zhang Y. The double roles of T cell-mediated immune response in the progression of MASLD. Biomed Pharmacother 2024; 173:116333. [PMID: 38479177 DOI: 10.1016/j.biopha.2024.116333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease(MASLD), formerly known as non-alcoholic fatty liver disease(NAFLD), has become a major cause of chronic liver disease and a significant risk factor for hepatocellular carcinoma, which poses a huge burden on global public health and economy. MASLD includes steatotic liver disease, steatohepatitis, and cirrhosis, and the latter two cause great harm to human health and life, even complicated with liver cancer. Immunologic mechanism plays a major role in promoting its development into hepatitis and cirrhosis. Now more and more evidences show that T cells play an important role in the progression of MASLD. In this review, we discuss the double roles of T cells in MASLD from the perspective of T cell response pathways, as well as new evidences regarding the possible application of immunomodulatory therapy in MASH.
Collapse
Affiliation(s)
- Zigan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Shujun Wang
- Department of Medical Parasitology, Wannan Medical College, Wuhu 241000, China
| | - Qinchen Xu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Xin Su
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, China
| | - Lina Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China.
| | - Yong Zhang
- Shandong Provincial Third Hospital Affiliated to Shandong University, Jinan, Shandong Province 250031, China.
| |
Collapse
|
16
|
Alvarez-Argote S, Paddock SJ, Flinn MA, Moreno CW, Knas MC, Almeida VA, Buday SL, Bakhshian Nik A, Patterson M, Chen YG, Lin CW, O’Meara CC. IL-13 promotes functional recovery after myocardial infarction via direct signaling to macrophages. JCI Insight 2024; 9:e172702. [PMID: 38051583 PMCID: PMC10906228 DOI: 10.1172/jci.insight.172702] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023] Open
Abstract
There is great interest in identifying signaling pathways that promote cardiac repair after myocardial infarction (MI). Prior studies suggest a beneficial role for IL-13 signaling in neonatal heart regeneration; however, the cell types mediating cardiac regeneration and the extent of IL-13 signaling in the adult heart after injury are unknown. We identified an abundant source of IL-13 and the related cytokine, IL-4, in neonatal cardiac type 2 innate lymphoid cells, but this phenomenon declined precipitously in adult hearts. Moreover, IL-13 receptor deletion in macrophages impaired cardiac function and resulted in larger scars early after neonatal MI. By using a combination of recombinant IL-13 administration and cell-specific IL-13 receptor genetic deletion models, we found that IL-13 signaling specifically to macrophages mediated cardiac functional recovery after MI in adult mice. Single transcriptomics revealed a subpopulation of cardiac macrophages in response to IL-13 administration. These IL-13-induced macrophages were highly efferocytotic and were identified by high IL-1R2 expression. Collectively, we elucidated a strongly proreparative role for IL-13 signaling directly to macrophages following cardiac injury. While this pathway is active in proregenerative neonatal stages, reactivation of macrophage IL-13 signaling is required to promote cardiac functional recovery in adults.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sydney L. Buday
- Department of Physiology
- Cardiovascular Research Center
- Department of Cell Biology, Neurobiology, and Anatomy
| | | | - Michaela Patterson
- Cardiovascular Research Center
- Department of Cell Biology, Neurobiology, and Anatomy
| | - Yi-Guang Chen
- Department of Pediatrics
- Department of Microbiology and Immunology, and
| | - Chien-Wei Lin
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
17
|
Yu W, Ding J, Chen J, Jiang Y, Zhao J, Liu J, Zhou J, Liu J. Magnesium Ion-Doped Mesoporous Bioactive Glasses Loaded with Gallic Acid Against Myocardial Ischemia/Reperfusion Injury by Affecting the Biological Functions of Multiple Cells. Int J Nanomedicine 2024; 19:347-366. [PMID: 38229705 PMCID: PMC10790657 DOI: 10.2147/ijn.s444751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024] Open
Abstract
Introduction Excessive generation of reactive oxygen species (ROS) following myocardial ischemia-reperfusion (I/R) can result in additional death of myocardial cells. The rapid clearance of ROS after reperfusion injury and intervention during subsequent cardiac repair stages are crucial for the ultimate recovery of cardiac function. Methods Magnesium-doped mesoporous bioactive glasses were prepared and loaded with the antioxidant drug gallic acid into MgNPs by sol-gel method. The antioxidant effects of MgNPs/GA were tested for their pro-angiogenic and anti-inflammatory effects based on the release characteristics of GA and Mg2+ from MgNPs/GA. Later, we confirmed in our in vivo tests through immunofluorescence staining of tissue sections at various time points that MgNPs/GA exhibited initial antioxidant effects and had both pro-angiogenic and anti-inflammatory effects during the cardiac repair phase. Finally, we evaluated the cardiac function in mice treated with MgNPs/GA. Results We provide evidence that GA released by MgNPs/GA can effectively eliminate ROS in the early stage, decreasing myocardial cell apoptosis. During the subsequent cardiac repair phase, the gradual release of Mg2+ from MgNPs/GA stimulated angiogenesis and promoted M2 macrophage polarization, thereby reducing the release of inflammatory factors. Conclusion MgNPs/GA acting on multiple cell types is an integrated solution for comprehensive attenuation of myocardial ischaemia-reperfusion injury and cardiac function protection.
Collapse
Affiliation(s)
- Wenpeng Yu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People’s Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, People’s Republic of China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, People’s Republic of China
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Jingli Ding
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People’s Republic of China
| | - Jianfeng Chen
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People’s Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, People’s Republic of China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, People’s Republic of China
| | - Ying Jiang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Jinping Zhao
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People’s Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, People’s Republic of China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, People’s Republic of China
| | - Jichun Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People’s Republic of China
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Jianliang Zhou
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People’s Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, People’s Republic of China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, People’s Republic of China
| | - Jinping Liu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People’s Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, People’s Republic of China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, People’s Republic of China
| |
Collapse
|
18
|
M. S. Barron A, Fabre T, De S. Distinct fibroblast functions associated with fibrotic and immune-mediated inflammatory diseases and their implications for therapeutic development. F1000Res 2024; 13:54. [PMID: 38681509 PMCID: PMC11053351 DOI: 10.12688/f1000research.143472.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 05/01/2024] Open
Abstract
Fibroblasts are ubiquitous cells that can adopt many functional states. As tissue-resident sentinels, they respond to acute damage signals and shape the earliest events in fibrotic and immune-mediated inflammatory diseases. Upon sensing an insult, fibroblasts produce chemokines and growth factors to organize and support the response. Depending on the size and composition of the resulting infiltrate, these activated fibroblasts may also begin to contract or relax thus changing local stiffness within the tissue. These early events likely contribute to the divergent clinical manifestations of fibrotic and immune-mediated inflammatory diseases. Further, distinct changes to the cellular composition and signaling dialogue in these diseases drive progressive fibroblasts specialization. In fibrotic diseases, fibroblasts support the survival, activation and differentiation of myeloid cells, granulocytes and innate lymphocytes, and produce most of the pathogenic extracellular matrix proteins. Whereas, in immune-mediated inflammatory diseases, sequential accumulation of dendritic cells, T cells and B cells programs fibroblasts to support local, destructive adaptive immune responses. Fibroblast specialization has clear implications for the development of effective induction and maintenance therapies for patients with these clinically distinct diseases.
Collapse
Affiliation(s)
- Alexander M. S. Barron
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Thomas Fabre
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Saurav De
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
19
|
Tornai D, Mitchell M, McClain CJ, Dasarathy S, McCullough A, Radaeva S, Kroll-Desrosiers A, Lee J, Barton B, Szabo G. A novel score of IL-13 and age predicts 90-day mortality in severe alcohol-associated hepatitis: A multicenter plasma biomarker analysis. Hepatol Commun 2023; 7:e0296. [PMID: 37994498 PMCID: PMC10666984 DOI: 10.1097/hc9.0000000000000296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/15/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Severe alcoholic hepatitis (AH) has a high short-term mortality rate. The MELD assesses disease severity and mortality; however, it is not specific for AH. We screened plasma samples from patients with severe AH for biomarkers of multiple pathological processes and identified predictors of short-term mortality. METHODS Plasma was collected at baseline from 85 patients with severe AH (MELD≥20, Maddrey's discriminant function≥32) enrolled in the Defeat Alcoholic Steatohepatitis clinical trial (investigating IL-1 receptor antagonist+pentoxifylline+zinc vs. methylprednisolone+placebo). Samples were analyzed for 43 biomarkers and the markers' association with 28- and 90-day mortalities was assessed. RESULTS Thirty-one (36.5%) patients died during the 90-day follow-up with similar ratios in the treatment groups. Eight biomarkers showed an association with mortality. IL-6, IL-22, interferon-α2, soluble TNF receptor 1, lipocalin-2, and α-fetoprotein levels were associated with 28-day mortality, while IL-6, IL-13, and endotoxin levels with 90-day mortality. In multivariable Cox regression, encephalopathy, lipocalin-2, and α-fetoprotein levels were independent predictors of 28-day mortality, and IL-6, IL-13, international normalized ratio levels, and age were independent predictors of 90-day mortality. The combination of IL-13 and age had superior performance in predicting 90-day mortality compared with MELD in the total cohort and the individual treatment groups. CONCLUSIONS We identified predictors of short-term mortality in a cohort exclusively involving patients with severe AH. We created a composite score of IL-13 and age that predicts 90-day mortality regardless of the treatment type with a performance superior to MELD in severe AH.
Collapse
Affiliation(s)
- David Tornai
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Department of Internal Medicine, Division of Gastroenterology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mack Mitchell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Craig J. McClain
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Srinivasan Dasarathy
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
- Department of Inflammation and Immunity, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
| | - Arthur McCullough
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
- Department of Inflammation and Immunity, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
| | - Svetlana Radaeva
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Marylansd, USA
| | - Aimee Kroll-Desrosiers
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- VA Central Western Massachusetts Healthcare System, Leeds, Massachusetts, USA
| | - JungAe Lee
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Bruce Barton
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Sikking MA, Stroeks SL, Marelli-Berg F, Heymans SR, Ludewig B, Verdonschot JA. Immunomodulation of Myocardial Fibrosis. JACC Basic Transl Sci 2023; 8:1477-1488. [PMID: 38093747 PMCID: PMC10714184 DOI: 10.1016/j.jacbts.2023.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/27/2024]
Abstract
Immunotherapy is a potential cornerstone in the treatment of myocardial fibrosis. During a myocardial insult or heart failure, danger signals stimulate innate immune cells to produce chemokines and profibrotic cytokines, which initiate self-escalating inflammatory processes by attracting and stimulating adaptive immune cells. Stimulation of fibroblasts by inflammatory processes and the need to replace damaged cardiomyocytes fosters reshaping of the cardiac fibroblast landscape. In this review, we discuss new immunomodulatory strategies that manipulate and direct cardiac fibroblast activation and differentiation. In particular, we highlight immunomodulatory strategies that target fibroblasts such as chimeric antigen receptor T cells, interleukin-11, and invariant natural killer T-cells. Moreover, we discuss the potential of manipulating both innate and adaptive immune system components for the translation into clinical validation. Clearly, multiple pathways should be considered to develop innovative approaches to ameliorate myocardial fibrosis and hence to reduce the risk of heart failure.
Collapse
Affiliation(s)
- Maurits A. Sikking
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - Sophie L.V.M. Stroeks
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - Federica Marelli-Berg
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Stephane R.B. Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
- Department of Cardiovascular Research, University of Leuven, Leuven, Belgium
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Job A.J. Verdonschot
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| |
Collapse
|
21
|
Russi AE, Shivakumar P, Luo Z, Bezerra J. Plasticity between type 2 innate lymphoid cell subsets and amphiregulin expression regulates epithelial repair in biliary atresia. Hepatology 2023; 78:1035-1049. [PMID: 37078450 PMCID: PMC10524120 DOI: 10.1097/hep.0000000000000418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/22/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND AND AIMS Although a dysregulated type 1 immune response is integral to the pathogenesis of biliary atresia, studies in both humans and mice have uncovered a type 2 response, primarily driven by type 2 innate lymphoid cells. In nonhepatic tissues, natural type 2 innate lymphoid cell (nILC2s) regulate epithelial proliferation and tissue repair, whereas inflammatory ILC2s (iIlC2s) drive tissue inflammation and injury. The aim of this study is to determine the mechanisms used by type 2 innate lymphoid cell (ILC2) subpopulations to regulate biliary epithelial response to an injury. APPROACH AND RESULTS Using Spearman correlation analysis, nILC2 transcripts, but not those of iILC2s, are positively associated with cholangiocyte abundance in biliary atresia patients at the time of diagnosis. nILC2s are identified in the mouse liver through flow cytometry. They undergo expansion and increase amphiregulin production after IL-33 administration. This drives epithelial proliferation dependent on the IL-13/IL-4Rα/STAT6 pathway as determined by decreased nILC2s and reduced epithelial proliferation in knockout strains. The addition of IL-2 promotes inter-lineage plasticity towards a nILC2 phenotype. In experimental biliary atresia induced by rotavirus, this pathway promotes epithelial repair and tissue regeneration. The genetic loss or molecular inhibition of any part of this circuit switches nILC2s to inflammatory type 2 innate lymphoid cell-like, resulting in decreased amphiregulin production, decreased epithelial proliferation, and the full phenotype of experimental biliary atresia. CONCLUSIONS These findings identify a key function of the IL-13/IL-4Rα/STAT6 pathway in ILC2 plasticity and an alternate circuit driven by IL-2 to promote nILC2 stability and amphiregulin expression. This pathway induces epithelial homeostasis and repair in experimental biliary atresia.
Collapse
Affiliation(s)
- Abigail E Russi
- Division of Gastroenterology, Hepatology and Nutrition at Cincinnati Children’s Hospital Medical Center; Cincinnati OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine; Cincinnati OH, USA
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition at Cincinnati Children’s Hospital Medical Center; Cincinnati OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine; Cincinnati OH, USA
| | - Zhenhua Luo
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China, 510080
| | - Jorge Bezerra
- Department of Pediatrics, University of Texas Southwestern Medical Center and Children’s Health of Dallas, TX, USA
| |
Collapse
|
22
|
Abstract
Chronic liver diseases such as nonalcoholic fatty liver disease (NAFLD) or viral hepatitis are characterized by persistent inflammation and subsequent liver fibrosis. Liver fibrosis critically determines long-term morbidity (for example, cirrhosis or liver cancer) and mortality in NAFLD and nonalcoholic steatohepatitis (NASH). Inflammation represents the concerted response of various hepatic cell types to hepatocellular death and inflammatory signals, which are related to intrahepatic injury pathways or extrahepatic mediators from the gut-liver axis and the circulation. Single-cell technologies have revealed the heterogeneity of immune cell activation concerning disease states and the spatial organization within the liver, including resident and recruited macrophages, neutrophils as mediators of tissue repair, auto-aggressive features of T cells as well as various innate lymphoid cell and unconventional T cell populations. Inflammatory responses drive the activation of hepatic stellate cells (HSCs), and HSC subsets, in turn, modulate immune mechanisms via chemokines and cytokines or transdifferentiate into matrix-producing myofibroblasts. Current advances in understanding the pathogenesis of inflammation and fibrosis in the liver, mainly focused on NAFLD or NASH owing to the high unmet medical need, have led to the identification of several therapeutic targets. In this Review, we summarize the inflammatory mediators and cells in the diseased liver, fibrogenic pathways and their therapeutic implications.
Collapse
Affiliation(s)
- Linda Hammerich
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
23
|
Kumar V, Hertz M, Agro A, Byrne AJ. Type 1 invariant natural killer T cells in chronic inflammation and tissue fibrosis. Front Immunol 2023; 14:1260503. [PMID: 37818376 PMCID: PMC10561218 DOI: 10.3389/fimmu.2023.1260503] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
Chronic tissue inflammation often results in fibrosis characterized by the accumulation of extracellular matrix components remodeling normal tissue architecture and function. Recent studies have suggested common immune mechanisms despite the complexity of the interactions between tissue-specific fibroblasts, macrophages, and distinct immune cell populations that mediate fibrosis in various tissues. Natural killer T (NKT) cells recognizing lipid antigens bound to CD1d molecules have been shown to play an important role in chronic inflammation and fibrosis. Here we review recent data in both experimental models and in humans that suggest a key role of type 1 invariant NKT (iNKT) cell activation in the progression of inflammatory cascades leading to recruitment of neutrophils and activation of the inflammasome, macrophages, fibroblasts, and, ultimately, fibrosis. Emerging evidence suggests that iNKT-associated mechanisms contribute to type 1, type 2 and type 3 immune pathways mediating tissue fibrosis, including idiopathic pulmonary fibrosis (IPF). Thus, targeting a pathway upstream of these immune mechanisms, such as the inhibition of iNKT activation, may be important in modulating various fibrotic conditions.
Collapse
Affiliation(s)
- Vipin Kumar
- Laboratory of Immune Regulation, Department of Medicine, University of California San Diego, La Jolla, CA, United States
- GRI Bio, La Jolla, CA, United States
| | | | | | - Adam J. Byrne
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- School of Medicine and Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
24
|
Ghonim MA, Boyd DF, Flerlage T, Thomas PG. Pulmonary inflammation and fibroblast immunoregulation: from bench to bedside. J Clin Invest 2023; 133:e170499. [PMID: 37655660 PMCID: PMC10471178 DOI: 10.1172/jci170499] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
In recent years, there has been an explosion of interest in how fibroblasts initiate, sustain, and resolve inflammation across disease states. Fibroblasts contain heterogeneous subsets with diverse functionality. The phenotypes of these populations vary depending on their spatial distribution within the tissue and the immunopathologic cues contributing to disease progression. In addition to their roles in structurally supporting organs and remodeling tissue, fibroblasts mediate critical interactions with diverse immune cells. These interactions have important implications for defining mechanisms of disease and identifying potential therapeutic targets. Fibroblasts in the respiratory tract, in particular, determine the severity and outcome of numerous acute and chronic lung diseases, including asthma, chronic obstructive pulmonary disease, acute respiratory distress syndrome, and idiopathic pulmonary fibrosis. Here, we review recent studies defining the spatiotemporal identity of the lung-derived fibroblasts and the mechanisms by which these subsets regulate immune responses to insult exposures and highlight past, current, and future therapeutic targets with relevance to fibroblast biology in the context of acute and chronic human respiratory diseases. This perspective highlights the importance of tissue context in defining fibroblast-immune crosstalk and paves the way for identifying therapeutic approaches to benefit patients with acute and chronic pulmonary disorders.
Collapse
Affiliation(s)
- Mohamed A. Ghonim
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al Azhar University, Cairo, Egypt
| | - David F. Boyd
- Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Tim Flerlage
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
25
|
Raabe J, Kaiser KM, ToVinh M, Finnemann C, Lutz P, Hoffmeister C, Bischoff J, Goeser F, Kaczmarek DJ, Glowka TR, Manekeller S, Charpentier A, Langhans B, Nischalke HD, Toma M, Strassburg CP, Spengler U, Abdallah AT, Krämer B, Nattermann J. Identification and characterization of a hepatic IL-13-producing ILC3-like population potentially involved in liver fibrosis. Hepatology 2023; 78:787-802. [PMID: 37029085 DOI: 10.1097/hep.0000000000000350] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/12/2022] [Indexed: 04/09/2023]
Abstract
BACKGROUND AND AIMS Human innate lymphoid cells (ILCs) are critically involved in the modulation of homeostatic and inflammatory processes in various tissues. However, only little is known about the composition of the intrahepatic ILC pool and its potential role in chronic liver disease. Here, we performed a detailed characterization of intrahepatic ILCs in both healthy and fibrotic livers. APPROACH AND RESULTS A total of 50 livers (nonfibrotic = 22, and fibrotic = 29) were analyzed and compared with colon and tonsil tissue (each N = 14) and peripheral blood (N = 32). Human intrahepatic ILCs were characterized ex vivo and on stimulation using flow cytometry and single-cell RNA sequencing. ILC differentiation and plasticity were analyzed by both bulk and clonal expansion experiments. Finally, the effects of ILC-derived cytokines on primary human HSteCs were studied. Unexpectedly, we found that an "unconventional" ILC3-like cell represented the major IL-13-producing liver ILC subset. IL-13 + ILC3-like cells were specifically enriched in the human liver, and increased frequencies of this cell type were found in fibrotic livers. ILC3-derived IL-13 production induced upregulation of proinflammatory genes in HSteCs, indicating a potential role in the regulation of hepatic fibrogenesis. Finally, we identified KLRG1-expressing ILC precursors as the potential progenitor of hepatic IL-13 + ILC3-like cells. CONCLUSIONS We identified a formerly undescribed subset of IL-13-producing ILC3-like cells that is enriched in the human liver and may be involved in the modulation of chronic liver disease.
Collapse
Affiliation(s)
- Jan Raabe
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Kim M Kaiser
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Michael ToVinh
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Claudia Finnemann
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Philipp Lutz
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | | | - Jenny Bischoff
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Felix Goeser
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | | | - Tim R Glowka
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | | | - Arthur Charpentier
- Department of Otorhinolaryngology, University Hospital Bonn, Bonn, Germany
| | - Bettina Langhans
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | | | - Marieta Toma
- Department of Pathology, University Hospital Bonn, Bonn, Germany
| | | | - Ulrich Spengler
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Ali T Abdallah
- Interdisciplinary Center for Clinical Research, RWTH Aachen University, Aachen, Germany
- The German Center for Infection Research (DZIF)
| | - Benjamin Krämer
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
- The German Center for Infection Research (DZIF)
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
- The German Center for Infection Research (DZIF)
| |
Collapse
|
26
|
Roeb E. Interleukin-13 (IL-13)-A Pleiotropic Cytokine Involved in Wound Healing and Fibrosis. Int J Mol Sci 2023; 24:12884. [PMID: 37629063 PMCID: PMC10454844 DOI: 10.3390/ijms241612884] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The liver, as a central metabolic organ, is systemically linked to metabolic-inflammatory diseases. In the pathogenesis of the metabolic syndrome, inflammatory and metabolic interactions between the intestine, liver, and adipose tissue lead to the progression of hepatic steatosis to metabolic-dysfunction-associated steatohepatitis (MASH) and consecutive MASH-induced fibrosis. Clinical and animal studies revealed that IL-13 might be protective in the development of MASH through both the preservation of metabolic functions and Th2-polarized inflammation in the liver and the adipose tissue. In contrast, IL-13-associated loss of mucosal gut barrier function and IL-13-associated enhanced hepatic fibrosis may contribute to the progression of MASH. However, there are only a few publications on the effect of IL-13 on metabolic diseases and possible therapies to influence them. In this review article, different aspects of IL-13-associated effects on the liver and metabolic liver diseases, which are partly contradictory, are summarized and discussed on the basis of the recent literature.
Collapse
Affiliation(s)
- Elke Roeb
- Department of Gastroenterology, Justus Liebig University Giessen, Klinikstr. 33, 35392 Giessen, Germany
| |
Collapse
|
27
|
Lurje I, Gaisa NT, Weiskirchen R, Tacke F. Mechanisms of organ fibrosis: Emerging concepts and implications for novel treatment strategies. Mol Aspects Med 2023; 92:101191. [PMID: 37236017 DOI: 10.1016/j.mam.2023.101191] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Fibrosis, or tissue scarring, develops as a pathological deviation from the physiological wound healing response and can occur in various organs such as the heart, lung, liver, kidney, skin, and bone marrow. Organ fibrosis significantly contributes to global morbidity and mortality. A broad spectrum of etiologies can cause fibrosis, including acute and chronic ischemia, hypertension, chronic viral infection (e.g., viral hepatitis), environmental exposure (e.g., pneumoconiosis, alcohol, nutrition, smoking) and genetic diseases (e.g., cystic fibrosis, alpha-1-antitrypsin deficiency). Common mechanisms across organs and disease etiologies involve a sustained injury to parenchymal cells that triggers a wound healing response, which becomes deregulated in the disease process. A transformation of resting fibroblasts into myofibroblasts with excessive extracellular matrix production constitutes the hallmark of disease, however, multiple other cell types such as immune cells, predominantly monocytes/macrophages, endothelial cells, and parenchymal cells form a complex network of profibrotic cellular crosstalk. Across organs, leading mediators include growth factors like transforming growth factor-β and platelet-derived growth factor, cytokines like interleukin-10, interleukin-13, interleukin-17, and danger-associated molecular patterns. More recently, insights into fibrosis regression and resolution of chronic conditions have deepened our understanding of beneficial, protective effects of immune cells, soluble mediators and intracellular signaling. Further in-depth insights into the mechanisms of fibrogenesis can provide the rationale for therapeutic interventions and the development of targeted antifibrotic agents. This review gives insight into shared responses and cellular mechanisms across organs and etiologies, aiming to paint a comprehensive picture of fibrotic diseases in both experimental settings and in human pathology.
Collapse
Affiliation(s)
- Isabella Lurje
- Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nadine T Gaisa
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
28
|
Guadalupi G, Contini C, Iavarone F, Castagnola M, Messana I, Faa G, Onali S, Chessa L, Vitorino R, Amado F, Diaz G, Manconi B, Cabras T, Olianas A. Combined Salivary Proteome Profiling and Machine Learning Analysis Provides Insight into Molecular Signature for Autoimmune Liver Diseases Classification. Int J Mol Sci 2023; 24:12207. [PMID: 37569584 PMCID: PMC10418803 DOI: 10.3390/ijms241512207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Autoimmune hepatitis (AIH) and primary biliary cholangitis (PBC) are autoimmune liver diseases that target the liver and have a wide spectrum of presentation. A global overview of quantitative variations on the salivary proteome in presence of these two pathologies is investigated in this study. The acid-insoluble salivary fraction of AIH and PBC patients, and healthy controls (HCs), was analyzed using a gel-based bottom-up proteomic approach combined with a robust machine learning statistical analysis of the dataset. The abundance of Arginase, Junction plakoglobin, Desmoplakin, Hexokinase-3 and Desmocollin-1 decreased, while that of BPI fold-containing family A member 2 increased in AIHp compared to HCs; the abundance of Gelsolin, CD14, Tumor-associated calcium signal transducer 2, Clusterin, Heterogeneous nuclear ribonucleoproteins A2/B1, Cofilin-1 and BPI fold-containing family B member 2 increased in PBCp compared to HCs. The abundance of Hornerin decreased in both AIHp and PBCp with respect to HCs and provided an area under the ROC curve of 0.939. Machine learning analysis confirmed the feasibility of the salivary proteome to discriminate groups of subjects based on AIH or PBC occurrence as previously suggested by our group. The topology-based functional enrichment analysis performed on these potential salivary biomarkers highlights an enrichment of terms mostly related to the immune system, but also with a strong involvement in liver fibrosis process and with antimicrobial activity.
Collapse
Affiliation(s)
- Giulia Guadalupi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09124 Cagliari, Italy; (G.G.); (C.C.); (T.C.); (A.O.)
| | - Cristina Contini
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09124 Cagliari, Italy; (G.G.); (C.C.); (T.C.); (A.O.)
| | - Federica Iavarone
- Fondazione Policlinico Universitario IRCCS “A. Gemelli”, 00168 Rome, Italy;
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Massimo Castagnola
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, 00168 Rome, Italy;
| | - Irene Messana
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy;
| | - Gavino Faa
- Division of Pathology, Department of Medical Sciences and Public Health, University Hospital, 09124 Cagliari, Italy;
| | - Simona Onali
- Liver Unit, University Hospital of Cagliari, 09124 Cagliari, Italy; (S.O.); (L.C.)
| | - Luchino Chessa
- Liver Unit, University Hospital of Cagliari, 09124 Cagliari, Italy; (S.O.); (L.C.)
| | - Rui Vitorino
- iBiMED, Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Francisco Amado
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Giacomo Diaz
- Dipartimento di Scienze Biomediche, Università di Cagliari, 09124 Cagliari, Italy;
| | - Barbara Manconi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09124 Cagliari, Italy; (G.G.); (C.C.); (T.C.); (A.O.)
| | - Tiziana Cabras
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09124 Cagliari, Italy; (G.G.); (C.C.); (T.C.); (A.O.)
| | - Alessandra Olianas
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09124 Cagliari, Italy; (G.G.); (C.C.); (T.C.); (A.O.)
| |
Collapse
|
29
|
Zhang J, Lyu Z, Li B, You Z, Cui N, Li Y, Li Y, Huang B, Chen R, Chen Y, Peng Y, Fang J, Wang Q, Miao Q, Tang R, Gershwin ME, Lian M, Xiao X, Ma X. P4HA2 induces hepatic ductular reaction and biliary fibrosis in chronic cholestatic liver diseases. Hepatology 2023; 78:10-25. [PMID: 36799463 DOI: 10.1097/hep.0000000000000317] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 01/06/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUNDS Prolyl-4-hydroxylases (P4Hs) are key enzymes in collagen synthesis. The P4HA subunit (P4HA1, P4HA2, and P4HA3) contains a substrate binding and catalyzation domain. We postulated that P4HA2 would play a key role in the cholangiocyte pathology of cholestatic liver diseases. METHODS We studied humans with primary biliary cholangitis (PBC) and Primary sclerosing cholangitis (PSC), P4HA2 -/- mice injured by DDC, and P4HA2 -/- /MDR2 -/- double knockout mice. A parallel study was performed in patients with PBC, PSC, and controls using immunohistochemistry and immunofluorescence. In the murine model, the level of ductular reaction and biliary fibrosis were monitored by histology, qPCR, immunohistochemistry, and Western blotting. Expression of Yes1 Associated Transcriptional Regulator (YAP) phosphorylation was measured in isolated mouse cholangiocytes. The mechanism of P4HA2 was explored in RBE and 293T cell lines by using qPCR, Western blot, immunofluorescence, and co-immunoprecipitation. RESULTS The hepatic expression level of P4HA2 was highly elevated in patients with PBC or PSC. Ductular reactive cholangiocytes predominantly expressed P4HA2. Cholestatic patients with more severe liver injury correlated with levels of P4HA2 in the liver. In P4HA2 -/- mice, there was a significantly reduced level of ductular reaction and fibrosis compared with controls in the DDC-induced chronic cholestasis. Decreased liver fibrosis and ductular reaction were observed in P4HA2 -/- /MDR2 -/- mice compared with MDR2 -/- mice. Cholangiocytes isolated from P4HA2 -/- /MDR2 -/- mice displayed a higher level of YAP phosphorylation, resulting in cholangiocytes proliferation inhibition. In vitro studies showed that P4HA2 promotes RBE cell proliferation by inducing SAV1 degradation, eventually resulting in the activation of YAP. CONCLUSIONS P4HA2 promotes hepatic ductular reaction and biliary fibrosis by regulating the SAV1-mediated Hippo signaling pathway. P4HA2 is a potential therapeutic target for PBC and PSC.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Zhuwan Lyu
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Bo Li
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Zhengrui You
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Nana Cui
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - You Li
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Yikang Li
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Bingyuan Huang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Ruiling Chen
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Yong Chen
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Yanshen Peng
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Qixia Wang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Qi Miao
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, California, USA
| | - Min Lian
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Xiao Xiao
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| |
Collapse
|
30
|
He YH, Pan JX, Xu LM, Gu T, Chen YW. Ductular reaction in non-alcoholic fatty liver disease: When Macbeth is perverted. World J Hepatol 2023; 15:725-740. [PMID: 37397935 PMCID: PMC10308290 DOI: 10.4254/wjh.v15.i6.725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 06/25/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) or metabolic (dysfunction)-associated fatty liver disease is the leading cause of chronic liver diseases defined as a disease spectrum comprising hepatic steatosis, non-alcoholic steatohepatitis (NASH), liver fibrosis, cirrhosis, and hepatic carcinoma. NASH, characterized by hepatocyte injury, steatosis, inflammation, and fibrosis, is associated with NAFLD prognosis. Ductular reaction (DR) is a common compensatory reaction associated with liver injury, which involves the hepatic progenitor cells (HPCs), hepatic stellate cells, myofibroblasts, inflammatory cells (such as macrophages), and their secreted substances. Recently, several studies have shown that the extent of DR parallels the stage of NASH and fibrosis. This review summarizes previous research on the correlation between DR and NASH, the potential interplay mechanism driving HPC differentiation, and NASH progression.
Collapse
Affiliation(s)
- Yang-Huan He
- Department of Gastroenterology and Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Jia-Xing Pan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lei-Ming Xu
- Department of Gastroenterology, School of Medicine, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200092, China
| | - Ting Gu
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Yuan-Wen Chen
- Department of Gastroenterology and Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| |
Collapse
|
31
|
Göcebe D, Jansakun C, Zhang Y, Staffer S, Tuma-Kellner S, Altamura S, Muckenthaler MU, Merle U, Herrmann T, Chamulitrat W. Myeloid-specific fatty acid transport protein 4 deficiency induces a sex-dimorphic susceptibility for nonalcoholic steatohepatitis in mice fed a high-fat, high-cholesterol diet. Am J Physiol Gastrointest Liver Physiol 2023; 324:G389-G403. [PMID: 36881564 PMCID: PMC10085558 DOI: 10.1152/ajpgi.00181.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023]
Abstract
Newborns with FATP4 mutations exhibit ichthyosis prematurity syndrome (IPS), and adult patients show skin hyperkeratosis, allergies, and eosinophilia. We have previously shown that the polarization of macrophages is altered by FATP4 deficiency; however, the role of myeloid FATP4 in the pathogenesis of nonalcoholic steatohepatitis (NASH) is not known. We herein phenotyped myeloid-specific Fatp4-deficient (Fatp4M-/-) mice under chow and high-fat, high-cholesterol (HFHC) diet. Bone-marrow-derived macrophages (BMDMs) from Fatp4M-/- mice showed significant reduction in cellular sphingolipids in males and females, and additionally phospholipids in females. BMDMs and Kupffer cells from Fatp4M-/- mice exhibited increased LPS-dependent activation of proinflammatory cytokines and transcription factors PPARγ, CEBPα, and p-FoxO1. Correspondingly, these mutants under chow diet displayed thrombocytopenia, splenomegaly, and elevated liver enzymes. After HFHC feeding, Fatp4M-/- mice showed increased MCP-1 expression in livers and subcutaneous fat. Plasma MCP-1, IL4, and IL13 levels were elevated in male and female mutants, and female mutants additionally showed elevation of IL5 and IL6. After HFHC feeding, male mutants showed an increase in hepatic steatosis and inflammation, whereas female mutants showed a greater severity in hepatic fibrosis associated with immune cell infiltration. Thus, myeloid-FATP4 deficiency led to steatotic and inflammatory NASH in males and females, respectively. Our work offers some implications for patients with FATP4 mutations and also highlights considerations in the design of sex-targeted therapies for NASH treatment.NEW & NOTEWORTHY FATP4 deficiency in BMDMs and Kupffer cells led to increased proinflammatory response. Fatp4M-/- mice displayed thrombocytopenia, splenomegaly, and elevated liver enzymes. In response to HFHC feeding, male mutants were prone to hepatic steatosis, whereas female mutants showed exaggerated fibrosis. Our study provides insights into a sex-dimorphic susceptibility to NASH by myeloid-FATP4 deficiency.
Collapse
Affiliation(s)
- Deniz Göcebe
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Chutima Jansakun
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
- School of Allied Health Sciences, Walailak University, Nakhonsrithammarat, Thailand
| | - Yuling Zhang
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Simone Staffer
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Sabine Tuma-Kellner
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), German Centre for Cardiovascular Research, Partner Site, University of Heidelberg, Heidelberg, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Walee Chamulitrat
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
32
|
Sbierski-Kind J, Cautivo KM, Wagner JC, Dahlgren MW, Nilsson J, Krasilnikov M, Mroz NM, Lizama CO, Gan AL, Matatia PR, Taruselli MT, Chang AA, Caryotakis S, O'Leary CE, Kotas M, Mattis AN, Peng T, Locksley RM, Molofsky AB. Group 2 innate lymphoid cells constrain type 3/17 lymphocytes in shared stromal niches to restrict liver fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.537913. [PMID: 37163060 PMCID: PMC10168323 DOI: 10.1101/2023.04.26.537913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) cooperate with adaptive Th2 cells as key organizers of tissue type 2 immune responses, while a spectrum of innate and adaptive lymphocytes coordinate early type 3/17 immunity. Both type 2 and type 3/17 lymphocyte associated cytokines are linked to tissue fibrosis, but how their dynamic and spatial topographies may direct beneficial or pathologic organ remodelling is unclear. Here we used volumetric imaging in models of liver fibrosis, finding accumulation of periportal and fibrotic tract IL-5 + lymphocytes, predominantly ILC2s, in close proximity to expanded type 3/17 lymphocytes and IL-33 high niche fibroblasts. Ablation of IL-5 + lymphocytes worsened carbon tetrachloride-and bile duct ligation-induced liver fibrosis with increased niche IL-17A + type 3/17 lymphocytes, predominantly γδ T cells. In contrast, concurrent ablation of IL-5 + and IL-17A + lymphocytes reduced this progressive liver fibrosis, suggesting a cross-regulation of type 2 and type 3 lymphocytes at specialized fibroblast niches that tunes hepatic fibrosis.
Collapse
|
33
|
Abstract
Type 2 immunity mediates protective responses to helminths and pathological responses to allergens, but it also has broad roles in the maintenance of tissue integrity, including wound repair. Type 2 cytokines are known to promote fibrosis, an overzealous repair response, but their contribution to healthy wound repair is less well understood. This review discusses the evidence that the canonical type 2 cytokines, IL-4 and IL-13, are integral to the tissue repair process through two main pathways. First, essential for the progression of effective tissue repair, IL-4 and IL-13 suppress the initial inflammatory response to injury. Second, these cytokines regulate how the extracellular matrix is modified, broken down, and rebuilt for effective repair. IL-4 and/or IL-13 amplifies multiple aspects of the tissue repair response, but many of these pathways are highly redundant and can be induced by other signals. Therefore, the exact contribution of IL-4Rα signaling remains difficult to unravel.
Collapse
Affiliation(s)
- Judith E Allen
- Lydia Becker Institute for Immunology and Inflammation and Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom;
| |
Collapse
|
34
|
Bell S, Young JA, List EO, Basu R, Geitgey DK, Lach G, Lee K, Swegan D, Caggiano LJ, Okada S, Kopchick JJ, Berryman DE. Increased Fibrosis in White Adipose Tissue of Male and Female bGH Transgenic Mice Appears Independent of TGF-β Action. Endocrinology 2023; 164:7069260. [PMID: 36869769 DOI: 10.1210/endocr/bqad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
Fibrosis is a pathological state caused by excess deposition of extracellular matrix proteins in a tissue. Male bovine growth hormone (bGH) transgenic mice experience metabolic dysfunction with a marked decrease in lifespan and with increased fibrosis in several tissues including white adipose tissue (WAT), which is more pronounced in the subcutaneous (Sc) depot. The current study expanded on these initial findings to evaluate WAT fibrosis in female bGH mice and the role of transforming growth factor (TGF)-β in the development of WAT fibrosis. Our findings established that female bGH mice, like males, experience a depot-dependent increase in WAT fibrosis, and bGH mice of both sexes have elevated circulating levels of several markers of collagen turnover. Using various methods, TGF-β signaling was found unchanged or decreased-as opposed to an expected increase-despite the marked fibrosis in WAT of bGH mice. However, acute GH treatments in vivo, in vitro, or ex vivo did elicit a modest increase in TGF-β signaling in some experimental systems. Finally, single nucleus RNA sequencing confirmed no perturbation in TGF-β or its receptor gene expression in any WAT cell subpopulations of Sc bGH WAT; however, a striking increase in B lymphocyte infiltration in bGH WAT was observed. Overall, these data suggest that bGH WAT fibrosis is independent of the action of TGF-β and reveals an intriguing shift in immune cells in bGH WAT that should be further explored considering the increasing importance of B cell-mediated WAT fibrosis and pathology.
Collapse
Affiliation(s)
- Stephen Bell
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Jonathan A Young
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | | | - Grace Lach
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Kevin Lee
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - Deborah Swegan
- College of Arts and Sciences, Ohio University, Athens, OH 45701, USA
| | | | - Shigeru Okada
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - Darlene E Berryman
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
35
|
Kanda M, Kamekura R, Sugawara M, Nagahata K, Suzuki C, Takano K, Takahashi H. IgG4-related disease administered dupilumab: case series and review of the literature. RMD Open 2023; 9:rmdopen-2023-003026. [PMID: 36894196 PMCID: PMC10008221 DOI: 10.1136/rmdopen-2023-003026] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Dupilumab (DUP) is a monoclonal antibody that acts on the interleukin (IL)-4 receptor alpha, which inhibits IL-4 and IL-13 signalling and is approved for type 2 inflammatory diseases such as asthma, chronic rhinosinusitis with nasal polyposis and atopic dermatitis; however, the efficacy of DUP to IgG4-related disease (IgG4-RD) is under discussion due to the controversial outcomes based on the several case reports. Here, we reviewed the efficacy of DUP in four consecutive patients with IgG4-RD in our institute and the previous literature.All patients administered DUP fulfilled the 2019 ACR/EULAR classification criteria for IgG4-RD complicated with severe asthma and chronic rhinosinusitis with nasal polyposis. Two cases were administered DUP without systemic glucocorticoids (GCs), and in 6 months, the volume of swollen submandibular glands (SMGs) was reduced by approximately 70%. Two cases receiving GCs successfully reduced their daily dose of GCs (10 and 50% reduction, respectively) with dupilumab in 6 months. In all four cases, serum IgG4 concentration and IgG4-RD responder index decreased in 6 months.DUP reduced the volume of the swollen SMGs, serum IgG4 levels, responder index and the daily dose of GCs in patients with IgG4-RD with severe asthma or eosinophilic rhinosinusitis in 6 months.The efficacy of DUP to IgG4-RD is under discussion due to the limited case reports with controversial outcomes. Here, we demonstrated that two patients with IgG4-RD treated by DUP without systemic GCs, showed volume reduction of swollen SMGs and two cases showed GC-sparing effects by DUP. DUP can ameliorate the disease activity and be a steroid-sparing agent in patients with IgG4-RD.
Collapse
Affiliation(s)
- Masatoshi Kanda
- Department of Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryuta Kamekura
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masanari Sugawara
- Department of Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ken Nagahata
- Department of Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Chisako Suzuki
- Department of Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kenichi Takano
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroki Takahashi
- Department of Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
36
|
Sutherland TE, Dyer DP, Allen JE. The extracellular matrix and the immune system: A mutually dependent relationship. Science 2023; 379:eabp8964. [PMID: 36795835 DOI: 10.1126/science.abp8964] [Citation(s) in RCA: 182] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/22/2022] [Indexed: 02/18/2023]
Abstract
For decades, immunologists have studied the role of circulating immune cells in host protection, with a more recent appreciation of immune cells resident within the tissue microenvironment and the intercommunication between nonhematopoietic cells and immune cells. However, the extracellular matrix (ECM), which comprises at least a third of tissue structures, remains relatively underexplored in immunology. Similarly, matrix biologists often overlook regulation of complex structural matrices by the immune system. We are only beginning to understand the scale at which ECM structures determine immune cell localization and function. Additionally, we need to better understand how immune cells dictate ECM complexity. This review aims to highlight the potential for biological discovery at the interface of immunology and matrix biology.
Collapse
Affiliation(s)
- Tara E Sutherland
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Center, University of Manchester, Manchester M13 9PT, UK
- School of Medicine, Medical Sciences and Dentistry, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Douglas P Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Center, University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Salford M6 8HD, UK
| | - Judith E Allen
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Center, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
37
|
Tang L, Kang S, Yan W, Yu Y, Li J, Wang W, Ma Z, Fan X, Sun L. Low intensity pulsed ultrasound reduces liver inflammation caused by fatigue exercise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:1375. [PMID: 36859127 DOI: 10.1121/10.0017355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Low-intensity pulsed ultrasound (LIPUS) has been shown to have many benefits, such as inhibiting inflammation, stimulating cell proliferation and differentiation, promoting angiogenesis, and so on. So, can exercise fatigue induced liver inflammation be effectively relieved by LIPUS? If possible, what is the possible mechanism? This study first investigated the effect of different intensity exercise on liver inflammation. Rats were divided into three groups: normal control group, exercise fatigue group, and aerobic exercise group. The results showed that aerobic exercise increases both anti-inflammatory factors and pro-inflammatory factors, while fatigue exercise decreases anti-inflammatory factors and increases pro-inflammatory factors, leading to severe liver injury and fibrosis. Then, we investigated the therapeutic effect of LIPUS on liver inflammation caused by exercise fatigue. Starting from the 6th week, the liver was irradiated with LIPUS of 80 mW/cm2 for 20 min/d after daily exercise for 7 weeks. The results showed that LIPUS significantly decreased liver injury and fibrosis, significantly up-regulated the expression of STAT6, IL-13, and its receptors IL-13Rα1, and down regulated the expression of NF-κBp65 in exercise fatigue rats. These results indicate that LIPUS can reduce fatigue-induced liver inflammation, and the mechanism is related to the regulation of the IL-13/STAT6/NF-κBp65 pathway.
Collapse
Affiliation(s)
- Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Sufang Kang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Wenkang Yan
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yanan Yu
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Jiaxiang Li
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Wanzhao Wang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhanke Ma
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiushan Fan
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
38
|
Liu J, Ding M, Bai J, Luo R, Liu R, Qu J, Li X. Decoding the role of immune T cells: A new territory for improvement of metabolic-associated fatty liver disease. IMETA 2023; 2:e76. [PMID: 38868343 PMCID: PMC10989916 DOI: 10.1002/imt2.76] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/14/2024]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a new emerging concept and is associated with metabolic dysfunction, generally replacing the name of nonalcoholic fatty liver disease (NAFLD) due to heterogeneous liver condition and inaccuracies in definition. The prevalence of MAFLD is rising by year due to dietary changes, metabolic disorders, and no approved therapy, affecting a quarter of the global population and representing a major economic problem that burdens healthcare systems. Currently, in addition to the common causative factors like insulin resistance, oxidative stress, and lipotoxicity, the role of immune cells, especially T cells, played in MAFLD is increasingly being emphasized by global scholars. Based on the diverse classification and pathophysiological effects of immune T cells, we comprehensively analyzed their bidirectional regulatory effects on the hepatic inflammatory microenvironment and MAFLD progression. This interaction between MAFLD and T cells was also associated with hepatic-intestinal immune crosstalk and gut microbiota homeostasis. Moreover, we pointed out several T-cell-based therapeutic approaches including but not limited to adoptive transfer of T cells, fecal microbiota transplantation, and drug therapy, especially for natural products and Chinese herbal prescriptions. Overall, this study contributes to a better understanding of the important role of T cells played in MAFLD progression and corresponding therapeutic options and provides a potential reference for further drug development.
Collapse
Affiliation(s)
- Jia Liu
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Mingning Ding
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Jinzhao Bai
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Ranyi Luo
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Runping Liu
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Jiaorong Qu
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Xiaojiaoyang Li
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
39
|
Qin L, Liu N, Bao CLM, Yang DZ, Ma GX, Yi WH, Xiao GZ, Cao HL. Mesenchymal stem cells in fibrotic diseases-the two sides of the same coin. Acta Pharmacol Sin 2023; 44:268-287. [PMID: 35896695 PMCID: PMC9326421 DOI: 10.1038/s41401-022-00952-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023]
Abstract
Fibrosis is caused by extensive deposition of extracellular matrix (ECM) components, which play a crucial role in injury repair. Fibrosis attributes to ~45% of all deaths worldwide. The molecular pathology of different fibrotic diseases varies, and a number of bioactive factors are involved in the pathogenic process. Mesenchymal stem cells (MSCs) are a type of multipotent stem cells that have promising therapeutic effects in the treatment of different diseases. Current updates of fibrotic pathogenesis reveal that residential MSCs may differentiate into myofibroblasts which lead to the fibrosis development. However, preclinical and clinical trials with autologous or allogeneic MSCs infusion demonstrate that MSCs can relieve the fibrotic diseases by modulating inflammation, regenerating damaged tissues, remodeling the ECMs, and modulating the death of stressed cells after implantation. A variety of animal models were developed to study the mechanisms behind different fibrotic tissues and test the preclinical efficacy of MSC therapy in these diseases. Furthermore, MSCs have been used for treating liver cirrhosis and pulmonary fibrosis patients in several clinical trials, leading to satisfactory clinical efficacy without severe adverse events. This review discusses the two opposite roles of residential MSCs and external MSCs in fibrotic diseases, and summarizes the current perspective of therapeutic mechanism of MSCs in fibrosis, through both laboratory study and clinical trials.
Collapse
Affiliation(s)
- Lei Qin
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Nian Liu
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Chao-le-meng Bao
- CASTD Regengeek (Shenzhen) Medical Technology Co. Ltd, Shenzhen, 518000 China
| | - Da-zhi Yang
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Gui-xing Ma
- grid.263817.90000 0004 1773 1790Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055 China
| | - Wei-hong Yi
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Guo-zhi Xiao
- grid.263817.90000 0004 1773 1790Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055 China
| | - Hui-ling Cao
- grid.263817.90000 0004 1773 1790Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055 China
| |
Collapse
|
40
|
Schuster R, Younesi F, Ezzo M, Hinz B. The Role of Myofibroblasts in Physiological and Pathological Tissue Repair. Cold Spring Harb Perspect Biol 2023; 15:a041231. [PMID: 36123034 PMCID: PMC9808581 DOI: 10.1101/cshperspect.a041231] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Myofibroblasts are the construction workers of wound healing and repair damaged tissues by producing and organizing collagen/extracellular matrix (ECM) into scar tissue. Scar tissue effectively and quickly restores the mechanical integrity of lost tissue architecture but comes at the price of lost tissue functionality. Fibrotic diseases caused by excessive or persistent myofibroblast activity can lead to organ failure. This review defines myofibroblast terminology, phenotypic characteristics, and functions. We will focus on the central role of the cell, ECM, and tissue mechanics in regulating tissue repair by controlling myofibroblast action. Additionally, we will discuss how therapies based on mechanical intervention potentially ameliorate wound healing outcomes. Although myofibroblast physiology and pathology affect all organs, we will emphasize cutaneous wound healing and hypertrophic scarring as paradigms for normal tissue repair versus fibrosis. A central message of this review is that myofibroblasts can be activated from multiple cell sources, varying with local environment and type of injury, to either restore tissue integrity and organ function or create an inappropriate mechanical environment.
Collapse
Affiliation(s)
- Ronen Schuster
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
| | - Fereshteh Younesi
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Maya Ezzo
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| |
Collapse
|
41
|
Bakhshian Nik A, Alvarez-Argote S, O'Meara CC. Interleukin 4/13 signaling in cardiac regeneration and repair. Am J Physiol Heart Circ Physiol 2022; 323:H833-H844. [PMID: 36149768 PMCID: PMC9602781 DOI: 10.1152/ajpheart.00310.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022]
Abstract
Interleukin 4 (IL4) and interleukin 13 (IL13) are closely related cytokines that have been classically attributed to type II immunity, namely, differentiation of T-helper 2 (TH2) cells and alternative activation of macrophages. Although the role of IL4/13 has been well described in various contexts such as defense against helminth parasites, pathogenesis of allergic disease, and several models of wound healing, relatively little is known about the role of IL4/13 in the heart following injury. Emerging literature has identified various roles for IL4/13 in animal models of cardiac regeneration as well as in the adult mammalian heart following myocardial injury. Notably, although IL4 and IL13 signal to hematopoietic cell types following myocardial infarction (MI) to promote wound healing phenotypes, there is substantial evidence that these cytokines can signal directly to non-hematopoietic cell types in the heart during development, homeostasis, and following injury. Comprehensive understanding of the molecular and cellular actions of IL4/13 in the heart is still lacking, but overall evidence to date suggests that activation of these cytokines results in beneficial outcomes with respect to cardiac repair. Here, we aim to comprehensively review the role of IL4 and IL13 and their prospective mechanisms in cardiac regeneration and repair.
Collapse
Affiliation(s)
- Amirala Bakhshian Nik
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Santiago Alvarez-Argote
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Caitlin C O'Meara
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
42
|
Al-Hetty HRAK, Ismaeel GL, Mohammad WT, Toama MA, Kandeel M, Saleh MM, Turki Jalil A. SRF/MRTF-A and liver cirrhosis: Pathologic associations. J Dig Dis 2022; 23:614-619. [PMID: 36601855 DOI: 10.1111/1751-2980.13150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Liver cirrhosis results from prolonged and extensive liver fibrosis in which fibrotic tissues replace functional hepatic cells. Chronic liver disease due to various viral, chemical, or metabolic factors initiates hepatic fibrogenesis. Cirrhosis is associated with multiple clinical complications and a poor patient prognosis; therefore, developing novel antifibrotic therapies to prevent cirrhosis is of high priority. Mounting evidence points to the key role of serum response factor (SRF) and myocardin-related transcription factor (MRTF)-A in the pathogenesis of liver fibrosis. SRF is a transcription factor and MRTF-A is a co-activator of SRF and normally resides in the cytoplasm. Upon the induction of fibrotic pathways, MRTF-A translocates into the nucleus and forms the active SRF/MRTF-A complex, leading to the expression of a multitude of fibrotic proteins and components of extracellular matrix. Silencing or inhibiting MRTF-A impedes hepatic stellate cell transdifferentiation into myofibroblasts and slows down the deposition of extracellular matrix in the liver, making it a potential therapeutic target. Here, we review the recent findings regarding the role of the SRF/MRTF-A complex in liver fibrosis and its therapeutic potential for the management of cirrhosis.
Collapse
Affiliation(s)
| | | | | | - Mariam Alaa Toama
- College of Health and Medical Technologies, National University of Science and Technology, Dhi-Qar, Iraq
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, Egypt
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Anbar, Iraq
| | | |
Collapse
|
43
|
Liu JX, Liu M, Yu GZ, Zhao QQ, Wang JL, Sun YH, Koda S, Zhang B, Yu Q, Yan C, Tang RX, Jiang ZH, Zheng KY. Clonorchis sinensis infection induces hepatobiliary injury via disturbing sphingolipid metabolism and activating sphingosine 1-phosphate receptor 2. Front Cell Infect Microbiol 2022; 12:1011378. [PMID: 36339341 PMCID: PMC9627039 DOI: 10.3389/fcimb.2022.1011378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/20/2022] [Indexed: 01/31/2024] Open
Abstract
Clonorchis sinensis (C. sinensis) infection induces severe hepatobiliary injuries, which can cause inflammation, periductal fibrosis, and even cholangiocarcinoma. Sphingolipid metabolic pathways responsible for the generation of sphingosine-1-phosphate (S1P) and its receptor S1P receptors (S1PRs) have been implicated in many liver-related diseases. However, the role of S1PRs in C. sinensis-mediated biliary epithelial cells (BECs) proliferation and hepatobiliary injury has not been elucidated. In the present study, we found that C. sinensis infection resulted in alteration of bioactive lipids and sphingolipid metabolic pathways in mice liver. Furthermore, S1PR2 was predominantly activated among these S1PRs in BECs both in vivo and in vitro. Using JTE-013, a specific antagonist of S1PR2, we found that the hepatobiliary pathological injuries, inflammation, bile duct hyperplasia, and periductal fibrosis can be significantly inhibited in C. sinensis-infected mice. In addition, both C. sinensis excretory-secretory products (CsESPs)- and S1P-induced activation of AKT and ERK1/2 were inhibited by JTE-013 in BECs. Therefore, the sphingolipid metabolism pathway and S1PR2 play an important role, and may serve as potential therapeutic targets in hepatobiliary injury caused by C. sinensis-infection.
Collapse
Affiliation(s)
- Ji-Xin Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- Department of Clinical Pathogen Biology, Qiqihaer Medical University, Qiqihaer, China
| | - Man Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Guo-Zhi Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Qian-Qian Zhao
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Jian-Ling Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yan-Hong Sun
- Department of Pathogen Biology, Qiqihaer Medical University, Qiqihaer, China
| | - Stephane Koda
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Beibei Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Qian Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Ren-Xian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Zhi-Hua Jiang
- Institute of Parasitic Disease Control and Prevention, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
44
|
Cheng C, Zhang Q, Li Y, Jiang J, Xie L, Shen H, Wu D, Zhang H, Zhang H, Wang X, Wu H, Xu J, Gui L, Li B, Ju C, Peng H, Yin S, Xu L. Interplay Between Liver Type 1 Innate Lymphoid Cells and NK Cells Drives the Development of Alcoholic Steatohepatitis. Cell Mol Gastroenterol Hepatol 2022; 15:261-274. [PMID: 36174925 PMCID: PMC9676399 DOI: 10.1016/j.jcmgh.2022.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Liver contains high frequency of group 1 innate lymphoid cells (ILC), which are composed of comparable number of type 1 ILC (ILC1) and natural killer (NK) cells in steady state. Little is known about whether and how the interaction between ILC1 and NK cells affects the development of alcoholic liver disease. METHODS A mouse model of chronic alcohol abuse plus single-binge (Gao-Binge model) was established. The levels of alanine aminotransferase/aspartate aminotransferase, hepatic lipid, and inflammatory cytokines or neutrophils were measured to evaluate the degree of liver injury, steatosis, and inflammation. Flow cytometric analysis, cell depletion, or adoptive transfer were used to interrogate the interaction between ILC1 and NK cells. RESULTS Upon chronic alcohol consumption, NK cells, but not ILC1, underwent apoptosis, resulting in ILC1 dominance among group 1 ILC. Interleukin (IL) 17A expression was up-regulated, and increased IL17A was mainly derived from liver ILC1 after chronic alcohol feeding. Either depletion of ILC1 or neutralization of IL17A could significantly attenuate liver steatosis, inflammation, and injury in alcohol-fed mice. In contrast, normalization of the ILC1/NK cells ratio through NK cells transfer or expanding NK cells had a significant hepatoprotection against alcohol-induced steatohepatitis. Furthermore, NK cell-derived interferon gamma exerted a protective function via inhibiting IL17A production by liver ILC1 during alcoholic steatohepatitis. CONCLUSIONS This is the first study showing that the interplay between liver ILC1 and NK cells occurs and drives the development of alcoholic steatohepatitis. Our findings support further exploration of liver ILC1 or NK cells as a therapeutic target for the treatment of alcohol-associated liver disease.
Collapse
Affiliation(s)
- Chen Cheng
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Qian Zhang
- The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yue Li
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China; Clinical Laboratory of Xinyang Central Hospital, Xinyang, Henan, China
| | - Jiali Jiang
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Linxi Xie
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Haiyuan Shen
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dongqing Wu
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui, China
| | - Hejiao Zhang
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Huiru Zhang
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Xuan Wang
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Hongyu Wu
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Jingjing Xu
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, China
| | - Li Gui
- The Comprehensive Experiment Center, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Bao Li
- The Comprehensive Experiment Center, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Hui Peng
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China
| | - Shi Yin
- The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Long Xu
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
45
|
Kokubo K, Onodera A, Kiuchi M, Tsuji K, Hirahara K, Nakayama T. Conventional and pathogenic Th2 cells in inflammation, tissue repair, and fibrosis. Front Immunol 2022; 13:945063. [PMID: 36016937 PMCID: PMC9395650 DOI: 10.3389/fimmu.2022.945063] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022] Open
Abstract
Type 2 helper T (Th2) cells, a subset of CD4+ T cells, play an important role in the host defense against pathogens and allergens by producing Th2 cytokines, such as interleukin-4 (IL-4), IL-5, and IL-13, to trigger inflammatory responses. Emerging evidence reveals that Th2 cells also contribute to the repair of injured tissues after inflammatory reactions. However, when the tissue repair process becomes chronic, excessive, or uncontrolled, pathological fibrosis is induced, leading to organ failure and death. Thus, proper control of Th2 cells is needed for complete tissue repair without the induction of fibrosis. Recently, the existence of pathogenic Th2 (Tpath2) cells has been revealed. Tpath2 cells produce large amounts of Th2 cytokines and induce type 2 inflammation when activated by antigen exposure or tissue injury. In recent studies, Tpath2 cells are suggested to play a central role in the induction of type 2 inflammation whereas the role of Tpath2 cells in tissue repair and fibrosis has been less reported in comparison to conventional Th2 cells. In this review, we discuss the roles of conventional Th2 cells and pathogenic Th2 cells in the sequence of tissue inflammation, repair, and fibrosis.
Collapse
Affiliation(s)
- Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
| | - Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kaori Tsuji
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- *Correspondence: Kiyoshi Hirahara, ; Toshinori Nakayama,
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- AMED-CREST, AMED, Chiba, Japan
- *Correspondence: Kiyoshi Hirahara, ; Toshinori Nakayama,
| |
Collapse
|
46
|
Finding a Niche: Tissue Immunity and Innate Lymphoid Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:57-73. [PMID: 35567741 DOI: 10.1007/978-981-16-8387-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The immune system plays essential roles in maintaining homeostasis in mammalian tissues that extend beyond pathogen clearance and host defense. Recently, several homeostatic circuits comprised of paired hematopoietic and non-hematopoietic cells have been described to influence tissue composition and turnover in development and after perturbation. Crucial circuit components include innate lymphoid cells (ILCs), which seed developing organs and shape their resident tissues by influencing progenitor fate decisions, microbial interactions, and neuronal activity. As they develop in tissues, ILCs undergo transcriptional imprinting that encodes receptivity to corresponding signals derived from their resident tissues but ILCs can also shift their transcriptional profiles to adapt to specific types of tissue perturbation. Thus, ILC functions are embedded within their resident tissues, where they constitute key regulators of homeostatic responses that can lead to both beneficial and pathogenic outcomes. Here, we examine the interactions between ILCs and various non-hematopoietic tissue cells, and discuss how specific ILC-tissue cell circuits form essential elements of tissue immunity.
Collapse
|
47
|
Lan T, Qian S, Tang C, Gao J. Role of Immune Cells in Biliary Repair. Front Immunol 2022; 13:866040. [PMID: 35432349 PMCID: PMC9005827 DOI: 10.3389/fimmu.2022.866040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
The biliary system is comprised of cholangiocytes and plays an important role in maintaining liver function. Under normal conditions, cholangiocytes remain in the stationary phase and maintain a very low turnover rate. However, the robust biliary repair is initiated in disease conditions, and different repair mechanisms can be activated depending on the pathological changes. During biliary disease, immune cells including monocytes, lymphocytes, neutrophils, and mast cells are recruited to the liver. The cellular interactions between cholangiocytes and these recruited immune cells as well as hepatic resident immune cells, including Kupffer cells, determine disease outcomes. However, the role of immune cells in the initiation, regulation, and suspension of biliary repair remains elusive. The cellular processes of cholangiocyte proliferation, progenitor cell differentiation, and hepatocyte-cholangiocyte transdifferentiation during biliary diseases are reviewed to manifest the underlying mechanism of biliary repair. Furthermore, the potential role of immune cells in crucial biliary repair mechanisms is highlighted. The mechanisms of biliary repair in immune-mediated cholangiopathies, inherited cholangiopathies, obstructive cholangiopathies, and cholangiocarcinoma are also summarized. Additionally, novel techniques that could clarify the underlying mechanisms of biliary repair are displayed. Collectively, this review aims to deepen the understanding of the mechanisms of biliary repair and contributes potential novel therapeutic methods for treating biliary diseases.
Collapse
Affiliation(s)
- Tian Lan
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuaijie Qian
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chengwei Tang
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Mao T, Yang R, Luo Y, He K. Crucial role of T cells in NAFLD-related disease: A review and prospect. Front Endocrinol (Lausanne) 2022; 13:1051076. [PMID: 36457551 PMCID: PMC9705593 DOI: 10.3389/fendo.2022.1051076] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) includes a series of hepatic manifestations, starting with liver steatosis and potentially evolving towards nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis or even hepatocellular carcinoma (HCC). Its incidence is increasing worldwide. Several factors including metabolic dysfunction, oxidative stress, lipotoxicity contribute to the liver inflammation. Several immune cell-mediated inflammatory processes are involved in NAFLD in which T cells play a crucial part in the progression of the disease. In this review, we focus on the role of different subsets of both conventional and unconventional T cells in pathogenesis of NAFLD. Factors regarding inflammation and potential therapeutic approaches targeting immune cells in NASH are also discussed.
Collapse
Affiliation(s)
- Tianyu Mao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Rui Yang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Yi Luo
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
- *Correspondence: Kang He, ; Yi Luo,
| | - Kang He
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
- *Correspondence: Kang He, ; Yi Luo,
| |
Collapse
|
49
|
Merlio JP, Kadin ME. Cytokines, Genetic Lesions and Signaling Pathways in Anaplastic Large Cell Lymphomas. Cancers (Basel) 2021; 13:4256. [PMID: 34503066 PMCID: PMC8428234 DOI: 10.3390/cancers13174256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022] Open
Abstract
ALCL is a tumor of activated T cells and possibly innate lymphoid cells with several subtypes according to clinical presentation and genetic lesions. On one hand, the expression of transcription factors and cytokine receptors triggers signaling pathways. On the other hand, ALCL tumor cells also produce many proteins including chemokines, cytokines and growth factors that affect patient symptoms. Examples are accumulation of granulocytes stimulated by IL-8, IL-17, IL-9 and IL-13; epidermal hyperplasia and psoriasis-like skin lesions due to IL-22; and fever and weight loss in response to IL-6 and IFN-γ. In this review, we focus on the biology of the main ALCL subtypes as the identification of signaling pathways and ALCL-derived cytokines offers opportunities for targeted therapies.
Collapse
Affiliation(s)
- Jean-Philippe Merlio
- Tumor Biology and Tumor Bank Laboratory, Centre Hospitalier et Universitaire de Bordeaux, 33600 Pessac, France
- INSERM U1053, University Bordeaux, 33000 Bordeaux, France
| | - Marshall E. Kadin
- Department of Pathology and Laboratory Medicine, Brown University Alpert School of Medicine, Providence, RI 02903, USA
- Department of Dermatology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
50
|
Chenery AL, Rosini S, Parkinson JE, Ajendra J, Herrera JA, Lawless C, Chan BHK, Loke P, MacDonald AS, Kadler KE, Sutherland TE, Allen JE. IL-13 deficiency exacerbates lung damage and impairs epithelial-derived type 2 molecules during nematode infection. Life Sci Alliance 2021; 4:4/8/e202001000. [PMID: 34127548 PMCID: PMC8321663 DOI: 10.26508/lsa.202001000] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023] Open
Abstract
IL-13 is implicated in effective repair after acute lung injury and the pathogenesis of chronic diseases such as allergic asthma. Both these processes involve matrix remodelling, but understanding the specific contribution of IL-13 has been challenging because IL-13 shares receptors and signalling pathways with IL-4. Here, we used Nippostrongylus brasiliensis infection as a model of acute lung damage comparing responses between WT and IL-13-deficient mice, in which IL-4 signalling is intact. We found that IL-13 played a critical role in limiting tissue injury and haemorrhaging in the lung, and through proteomic and transcriptomic profiling, identified IL-13-dependent changes in matrix and associated regulators. We further showed a requirement for IL-13 in the induction of epithelial-derived type 2 effector molecules such as RELM-α and surfactant protein D. Pathway analyses predicted that IL-13 induced cellular stress responses and regulated lung epithelial cell differentiation by suppression of Foxa2 pathways. Thus, in the context of acute lung damage, IL-13 has tissue-protective functions and regulates epithelial cell responses during type 2 immunity.
Collapse
Affiliation(s)
- Alistair L Chenery
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Silvia Rosini
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - James E Parkinson
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Jesuthas Ajendra
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Jeremy A Herrera
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Craig Lawless
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Brian HK Chan
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - P’ng Loke
- Department of Microbiology, NYU Langone Health, New York, NY, USA
| | - Andrew S MacDonald
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Karl E Kadler
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Tara E Sutherland
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Judith E Allen
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK .,Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|