1
|
Chen X, Zheng Y, Man X, Li W. Tissue-resident memory T cells and their function in skin diseases. Chin Med J (Engl) 2025; 138:1175-1183. [PMID: 40066785 PMCID: PMC12091617 DOI: 10.1097/cm9.0000000000003499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Indexed: 05/21/2025] Open
Abstract
ABSTRACT Tissue-resident memory T (TRM) cells are a recently defined subtype of non-recirculating memory T cells with longevity and protective functions in peripheral tissues. As an essential frontline defense against infections, TRM cells have been reported to robustly patrol the tissue microenvironment in malignancies. Accumulating evidence also implicates that TRM cells in the relapse of chronic inflammatory skin diseases such as psoriasis and vitiligo. In light of these developments, this review aims to synthesize these recent findings to enhance our understanding of TRM cell characteristics and actions. Therefore, after providing a brief overview of the general features of the TRM cells, including precursors, homing, retention, and maintenance, we discuss recent insights gained into their heterogeneous functions in skin diseases. Specifically, we explore their involvement in conditions such as psoriasis, vitiligo, fixed drug eruption - dermatological manifestations of drug reactions at the same spot, cutaneous T cell lymphoma, and melanoma. By integrating these diverse perspectives, this review develops a comprehensive model of TRM cell behavior in various skin-related pathologies. In conclusion, our review emphasizes that deciphering the characteristics and mechanisms of TRM cell actions holds potential not only for discovering methods to slow cancer growth but also for reducing the frequency of recurrent chronic inflammation in skin tissue.
Collapse
Affiliation(s)
- Xibei Chen
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Yuxin Zheng
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Xiaoyong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Wei Li
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
2
|
Reagin KL, Oliva KE, Hansen MR, Slade CD, Watford WT, Klonowski KD. Regulation of respiratory CD8+ T-cell immunity by suppressive monocyte-like dendritic cells (MCs). JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:977-994. [PMID: 40163680 PMCID: PMC12123217 DOI: 10.1093/jimmun/vkae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/12/2024] [Indexed: 04/02/2025]
Abstract
Active immune suppression can mediate the balance between protective cellular immunity and harmful immunopathology. This suppression can occur locally, at an infection site, or in regional draining lymph nodes (dLNs). Immune regulation is of particular importance in sites such as the lung where aberrant immunopathology can result in loss of tissue function and respiratory failure. We have recently identified a novel population of CD11b+CD103+CCR2+ monocyte-like dendritic cells (MCs) which directly suppress CD8+ T-cell proliferation in vitro. Respiratory infection of mice with RNA viruses recruits these MCs either exclusively to the dLN (after vesicular stomatitis virus infection) or both the dLN and site of viral replication (after influenza infection). Here we show that depletion of MCs from the dLN of mice using CCR2-DTR bone marrow chimeras results in enhanced respiratory CD8+ T-cell responses and lung tissue-resident memory cell (TRM) formation which correlated with enhanced antiviral responses upon heterologous VSV challenge. Conversely, depletion of MCs from both the dLN and respiratory tract following influenza infection results in enhanced respiratory CD8+ T-cell responses coupled with fatal immunopathology. Together, these data suggest that suppressive MCs govern key aspects of respiratory CD8+ T-cell immunity, thereby balancing immunity and adverse pathology in the context of viral infection.
Collapse
Affiliation(s)
- Katie L Reagin
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Kimberly E Oliva
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Matthew R Hansen
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Chris D Slade
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Wendy T Watford
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Kimberly D Klonowski
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
3
|
Golob JL, Hou G, Swanson BJ, Berinstein JA, Bishu S, Grasberger H, Zataari ME, Lee A, Kao JY, Kamada N, Bishu S. Inflammation-Induced Th17 Cells Synergize with the Inflammation-Trained Microbiota to Mediate Host Resiliency Against Intestinal Injury. Inflamm Bowel Dis 2025; 31:1082-1094. [PMID: 39851236 DOI: 10.1093/ibd/izae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Indexed: 01/26/2025]
Abstract
BACKGROUND AND AIMS Inflammation can generate pathogenic Th17 cells and cause an inflammatory dysbiosis. In the context of inflammatory bowel disease (IBD), these inflammatory Th17 cells and dysbiotic microbiota may perpetuate injury to intestinal epithelial cells. However, many models of IBD like T-cell transfer colitis and IL-10-/- mice rely on the absence of regulatory pathways, so it is difficult to tell if inflammation can also induce protective Th17 cells. METHODS We subjected C57BL6, RAG1-/-, or JH-/- mice to systemic or gastrointestinal (GI) Citrobacter rodentium (Cr). Mice were then subjected to 2.5% dextran sodium sulfate (DSS) to cause epithelial injury. Fecal microbiota transfer was performed by bedding transfer and co-housing. Flow cytometry, qPCR, and histology were used to assess mucosal and systemic immune responses, cytokines, and tissue inflammation. 16s sequencing was used to assess gut bacterial taxonomy. RESULTS Transient inflammation with GI but not systemic Cr was protective against subsequent intestinal injury. This was replicated with sequential DSS collectively indicating that transient inflammation provides tissue-specific protection. Inflammatory Th17 cells that have a tissue-resident memory (TRM) signature expanded in the intestine. Experiments with reconstituted RAG1-/-, JH-/- mice, and cell trafficking inhibitors showed that inflammation-induced Th17 cells were required for protection. Fecal microbiota transfer showed that the inflammation-trained microbiota was necessary for protection, likely by maintaining protective Th17 cells in situ. CONCLUSION Inflammation can generate protective Th17 cells that synergize with the inflammation-trained microbiota to provide host resiliency against subsequent injury, indicating that inflammation-induced Th17 TRM T cells are heterogenous and contain protective subsets.
Collapse
Affiliation(s)
- Jonathan L Golob
- Division of Infectious Diseases, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Guoqing Hou
- Division of Gastroenterology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Benjamin J Swanson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 42 and Emile, Omaha, NE 68198, USA
| | - Jeffrey A Berinstein
- Division of Gastroenterology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Shreenath Bishu
- Laboratory and Pathology Diagnostics LLC, 1220 Hobson Road, Suite 244, Naperville, IL 60540, USA
| | - Helmut Grasberger
- Division of Gastroenterology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Mohamed El Zataari
- Division of Gastroenterology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Allen Lee
- Division of Infectious Diseases, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - John Y Kao
- Division of Gastroenterology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Shrinivas Bishu
- Division of Gastroenterology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Yang X, Yang S, Luo Y, Chan S, Xue M, Wang Y, Xue P, Zha C, Huang N, Xie F, Yang L, Yu R, Wang H, Lan Y, Zhang L, Jia S, Fang M. Single-cell transcriptional footprint for pseudogene SsCLEC9A is associated with antigen processing and presentation in Sus scrofa. Int J Biol Macromol 2025; 302:140629. [PMID: 39904428 DOI: 10.1016/j.ijbiomac.2025.140629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/06/2025]
Abstract
The C-type lectin domain family 9 member A (CLEC9A) is widely recognized as the most critical receptor protein for cross presentation of dead cell associated antigens in animal dendritic cells (DCs). Surprisingly, we revealed for the first time that the sole CLEC9A (SsCLEC9A) in pigs becomes a pseudogene due to three causal mutations that occurred approximately 29.8-44.7 million years ago, challenging the significance of CLEC9A in immune cross-presentation across mammals. Interestingly, we found that SsCLEC9A can transcribe a mutated transcript encoding a truncated protein. Through fluorescence-activated cell sorting and single-cell RNA sequencing, we observed that SsCLEC9A mutant transcript is mainly expressed in DCs and correlated with the expression of its homolog CLEC7A. Further data showed that DCs with SsCLEC9A mutant transcripts exhibited reduced cellular interaction ability and downregulation of antigen presentation function, displaying the characteristics of mature DCs. In addition, introducing the conserved sequence of CLEC9A gene into FLT3L-induced bone marrow hematopoietic cells significantly increased the expression of genes involved in antigen processing and presentation. This study presents a natural mutation model of pseudogenes to understand its transcriptional adation, and provides a fundamental basis for rescuing SsCLEC9A to promote immunity in pigs in the future.
Collapse
Affiliation(s)
- Xiaoyang Yang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shaojun Yang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yabiao Luo
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuheng Chan
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mingming Xue
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yubei Wang
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Pengxiang Xue
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chengwan Zha
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ning Huang
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Fuyin Xie
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lixian Yang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Runjie Yu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hao Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yezhi Lan
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Liguo Zhang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China.
| |
Collapse
|
5
|
Gilboa E, Gupta V, Muharemagic D, Ham S, Stelekati E, Clark E. KLF2 inhibition expands tumor-resident T cells and enhances tumor immunity. RESEARCH SQUARE 2025:rs.3.rs-5966555. [PMID: 40162209 PMCID: PMC11952643 DOI: 10.21203/rs.3.rs-5966555/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Tissue resident memory CD8+ T cells (Trm) constitute a distinct population of non-circulating memory T cells1-5 vastly exceeding the number of circulating T cells5, and play a pivotal role in protective immunity against pathogens6-8. How to promote the generation of vaccine specific Trm remains an important challenge. Whether Trm contribute also to immune control of tumors or just correlate with an unrelated process linked to clinical outcome has not been unequivocally established9,10, and phenotypic markers such as co-expression of CD69 and CD103 or CD49a integrins commonly used to monitor tumor infiltrating Trm do not unambiguously define this subset. Here we tested the hypothesis that transient downregulation of KLF2, the most conserved feature of Trm ontogeny4,11,12, will promote the differentiation of vaccine activated CD8+ T cells into Trm and enhance antitumor immunity. We show that 4-1BB antibody targeted delivery of a KLF2 siRNA to tumor bearing mice led to the downregulation of KLF2 in vaccine activated CD8+ T cells and the accumulation of phenotypically defined intratumoral CD69+CD103+ and CD69+CD49a+ CD8+ T cells which correlated with enhanced control of tumor growth. This study could serve as the foundation of a broadly applicable and clinically useful way to promote the generation of vaccine specific Trm and provides direct evidence that intratumoral CD8+CD69+CD103+ and CD8+CD69+CD49a+ cells are indeed Trm and that Trm contribute to tumor immunity.
Collapse
|
6
|
Ferry A, Mempel KM, Monell A, Reina-Campos M, Scharping NE, Heeg M, Takehara KK, Schokrpur S, Kuo N, Saddawi-Konefka R, Gutkind JS, Goldrath AW. The XCL1-XCR1 axis supports intestinal tissue residency and antitumor immunity. J Exp Med 2025; 222:e20240776. [PMID: 39841133 PMCID: PMC11753173 DOI: 10.1084/jem.20240776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/21/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
Tissue-resident memory T cells (TRM) provide frontline protection against pathogens and emerging malignancies. Tumor-infiltrating lymphocytes (TIL) with TRM features are associated with improved clinical outcomes. However, the cellular interactions that program TRM differentiation and function are not well understood. Using murine genetic models and targeted spatial transcriptomics, we found that the CD8+ T cell-derived chemokine XCL1 is critical for TRM formation and conventional DC1 (cDC1) supported the positioning of intestinal CD8+ T cells during acute viral infection. In tumors, enforced Xcl1 expression by antigen-specific CD8+ T cells promoted intratumoral cDC1 accumulation and T cell persistence, leading to improved overall survival. Notably, analysis of human TIL and TRM revealed conserved expression of XCL1 and XCL2. Thus, we have shown that the XCL1-XCR1 axis plays a non-cell autonomous role in guiding intestinal CD8+ TRM spatial differentiation and tumor control.
Collapse
Affiliation(s)
- Amir Ferry
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kianoosh M. Mempel
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Alexander Monell
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Miguel Reina-Campos
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Nicole E. Scharping
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Maximilian Heeg
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kennidy K. Takehara
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Shiruyeh Schokrpur
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Ning Kuo
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | | | - J. Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Ananda W. Goldrath
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Allen Institute for Immunology, Seattle, WA, USA
| |
Collapse
|
7
|
Chen X, Wang Y, Xu T, Liu H, Ye X, Wang P, Qin X, Yang S, Ning W, Zeng H, Xu L, Fang M, Tang J, Ren Y, Chen Y, Xia N, Liu C, Liu X, Luo W. A bioengineered antibody conjugate reshape dendritic cell viability for immune-tolerance modulation. CHEMICAL ENGINEERING JOURNAL 2025; 507:160431. [DOI: 10.1016/j.cej.2025.160431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
8
|
Chua YC, Draper SL, Le S, de Menezes MN, Ganley M, Ge Z, Lee A, Phabmixay T, Hirschmann D, Robinson SA, Tan PS, Tullett KM, Anderson RJ, Jayasinghe D, Cozijnsen A, Lahoud MH, Caminschi I, Beattie L, McFadden GI, Larsen DS, Kaisho T, Gras S, Hermans IF, Compton BJ, Heath WR, Painter GF, Holz LE. Mechanistic insight into the induction of liver tissue-resident memory CD8 + T cells by glycolipid-peptide vaccination. Cell Rep 2025; 44:115295. [PMID: 39946236 DOI: 10.1016/j.celrep.2025.115295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/12/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
We recently demonstrated that vaccines comprising antigenic peptides conjugated to a glycolipid agonist, termed glycolipid-peptide (GLP) vaccines, efficiently generate substantial numbers of long-lived CD8+ liver-resident memory T (Trm) cells that are crucial for protection against malaria liver-stage infection. To understand the underlying mechanism, we examined the prerequisites for priming, differentiation, and secondary boosting of liver Trm cells using these GLP vaccines. Our study revealed that generation of long-lived liver Trm cells relies on CD8+ T cell priming by type 1 conventional dendritic (cDC1) cells, followed by post-priming exposure to a combination of vaccine-derived inflammatory and antigenic signals. Boosting of liver Trm cells is feasible using the same GLP vaccine, but a substantial delay is required for optimal responses due to natural killer T (NKT) cell anergy. Overall, our study unveils key requirements for the development of long-lived liver Trm cells, offering valuable insights for future vaccine design.
Collapse
Affiliation(s)
- Yu Cheng Chua
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Sarah L Draper
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Shirley Le
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Maria N de Menezes
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Mitch Ganley
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Zhengyu Ge
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Ariane Lee
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Taylah Phabmixay
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Daria Hirschmann
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Sage A Robinson
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Peck Szee Tan
- Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3168, Australia
| | - Kirsteen M Tullett
- Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3168, Australia
| | - Regan J Anderson
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Dhilshan Jayasinghe
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia
| | - Anton Cozijnsen
- School of BioSciences, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Mireille H Lahoud
- Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3168, Australia
| | - Irina Caminschi
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3168, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Geoffrey I McFadden
- School of BioSciences, The University of Melbourne, Parkville, VIC 3052, Australia
| | - David S Larsen
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Stephanie Gras
- Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3168, Australia; Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia
| | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Benjamin J Compton
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - William R Heath
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Lauren E Holz
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia.
| |
Collapse
|
9
|
Hussain Z, Zhang Y, Qiu L, Gou S, Liu K. Exploring Clec9a in dendritic cell-based tumor immunotherapy for molecular insights and therapeutic potentials. NPJ Vaccines 2025; 10:27. [PMID: 39920156 PMCID: PMC11806010 DOI: 10.1038/s41541-025-01084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025] Open
Abstract
The pivotal role of type 1 conventional dendritic cells (cDC1s) in the field of dendritic cell (DC)-based tumor immunotherapies has been gaining increasing recognition due to their superior antigen cross-presentation abilities and essential role in modulating immune responses. This review specifically highlights the C-type lectin receptor family 9 member A (Clec9a or DNGR-1), which is exclusively expressed on cDC1s and plays a pivotal role in augmenting antigen cross-presentation and cytotoxic T lymphocyte (CTL) responses while simultaneously mitigating off-target effects. These effects include the enhancement of the cDC1s cross-presentation, reducing autoimmune responses and systemic inflammation, as well as preventing the non-specific activation of other immune cells. Consequently, these actions may contribute to reduced toxicity and enhanced treatment efficacy in immunotherapy. The exceptional ability of Clec9a to cross-present dead cell-associated antigens and enhance both humoral and CTL responses makes it an optimal receptor for DC-based strategies aimed at strengthening antitumor immunity. This review provides a comprehensive overview of the molecular characterization, expression, and signaling mechanisms of Clec9a. Furthermore, it discusses the role of Clec9a in the induction and functional activation of Clec9a+ cDC1s, with a particular focus on addressing the challenges related to off-target effects and immune tolerance in the development of tumor vaccines. Additionally, this review explores the potential of Clec9a-targeted approaches to enhance the immunogenicity of tumor vaccines and addresses the utilization of Clec9a as a delivery target for specific agonists (such as STING agonists and αGC) to enhance their therapeutic effects. This novel approach leverages Clec9a's capacity to improve the precision and efficacy of these immunomodulatory molecules in tumor treatment. In summary, this review presents compelling evidence positioning Clec9a as a promising target for DC-based tumor immunotherapy, capable of enhancing the efficacy of vaccines and immune responses while minimizing adverse effects.
Collapse
Affiliation(s)
- Zubair Hussain
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Metabolic dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China
| | - Yueteng Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Lu Qiu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shanshan Gou
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- State Key Laboratory of Metabolic dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
- China‒US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.
| |
Collapse
|
10
|
León B. Type 2 conventional dendritic cell functional heterogeneity: ontogenically committed or environmentally plastic? Trends Immunol 2025; 46:104-120. [PMID: 39843310 PMCID: PMC11835539 DOI: 10.1016/j.it.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 01/24/2025]
Abstract
Conventional dendritic cells (cDCs) are sentinels of the mammalian immune system that sense a wide range of danger and homeostatic signals to induce appropriately targeted T cell immune responses. Traditionally classified into two main subsets, cDC1 and cDC2, recent research shows that cDC2s exhibit significant heterogeneity and can be further subdivided. Studies in mice and humans show that, beyond their ontogeny, cDC2s acquire dynamic and tissue-specific characteristics that are influenced by local environmental signals, which impact on their functions during homeostasis, inflammation, and infection. The novel concept is proposed that tissue-derived signals and tissue plasticity can override preestablished developmental programming, thereby redefining developmental trajectories and cDC2 functionality. Ultimately, understanding cDC2 heterogeneity and plasticity has important implications for modulating T cell immunity in health and disease.
Collapse
Affiliation(s)
- Beatriz León
- Innate Cells and Th2 Immunity Section, National Institute of Allergy and Infectious Diseases/National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Li S, Yao ZC, Wang H, Ecker JA, Omotoso MO, Lee J, Kong J, Feng H, Chaisawangwong W, Kang SS, Shannon SR, Livingston NK, Bieler JG, Singh S, Zhang ML, O’Neal P, Ariail E, Biggs B, Hickey JW, Mao HQ, Schneck JP. Ex vivo expansion and hydrogel-mediated in vivo delivery of tissue-resident memory T cells for immunotherapy. SCIENCE ADVANCES 2024; 10:eadm7928. [PMID: 39671478 PMCID: PMC11641059 DOI: 10.1126/sciadv.adm7928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/06/2024] [Indexed: 12/15/2024]
Abstract
Tissue-resident memory T (TRM) cells preferentially reside in peripheral tissues, serving as key players in tumor immunity and immunotherapy. The lack of effective approaches for expanding TRM cells and delivering these cells in vivo hinders the exploration of TRM cell-mediated cancer immunotherapy. Here, we report a nanoparticle artificial antigen-presenting cell (nano-aAPC) ex vivo expansion approach and an in vivo delivery system for TRM cells. Using the nano-aAPC platform, we expanded functional antigen-specific murine and human TRM-like CD8+ T cells ex vivo. We also developed an injectable macroporous hyaluronic acid (HA) hydrogel to deliver TRM-like cells. TRM-like cells delivered in the optimized HA hydrogel trigger robust local and systemic antitumor immunity and show synergistic effects with anti-PD-1 treatment. Our findings suggest that nano-aAPC-induced TRM-like cells, coupled with a hydrogel delivery system, offer an efficient way to advance the understanding of TRM cell-mediated cancer therapy.
Collapse
Affiliation(s)
- Shuyi Li
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Johns Hopkins Translational Immunoengineering Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Zhi-Cheng Yao
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hanzhi Wang
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jonathan A. Ecker
- Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Mary O. Omotoso
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jaechan Lee
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jiayuan Kong
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hexiang Feng
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Si-Sim Kang
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sydney R. Shannon
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Natalie K. Livingston
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joan G. Bieler
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Shweta Singh
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Maya L. Zhang
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Pilar O’Neal
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Emily Ariail
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Benjamin Biggs
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - John W. Hickey
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Hai-Quan Mao
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Johns Hopkins Translational Immunoengineering Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jonathan P. Schneck
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Johns Hopkins Translational Immunoengineering Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Sen Chaudhuri A, Sun J. Lung-resident lymphocytes and their roles in respiratory infections and chronic respiratory diseases. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:214-223. [PMID: 39834580 PMCID: PMC11742555 DOI: 10.1016/j.pccm.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 01/22/2025]
Abstract
Recent scientific breakthroughs have blurred traditional boundaries between innate and adaptive immunity, revealing a sophisticated network of tissue-resident cells that deliver immediate, localized immune responses. These lymphocytes not only provide rapid frontline defense but also present a paradoxical role in the pathogenesis of respiratory diseases such as asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and the long-term tissue consequences of viral infections including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This review traverses the intricate landscape of lung-resident lymphocytes, delving into their origins, diverse functions, and their dualistic impact on pulmonary health. We dissect their interactions with the microenvironment and the regulatory mechanisms guiding their activity, with an emphasis on their contribution to both immune protection and immunopathology. This review aims to elucidate the complex narrative of these cells, enhancing our understanding of the development of precise therapeutic strategies to combat acute and chronic pulmonary diseases. Through this exploration, the review aspires to shed light on the potential of harnessing lung-resident lymphocytes for the treatment of respiratory conditions.
Collapse
Affiliation(s)
- Arka Sen Chaudhuri
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jie Sun
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
13
|
Fernandes J, Veldhoen M, Ferreira C. Tissue-resident memory T cells: Harnessing their properties against infection for cancer treatment. Bioessays 2024; 46:e2400119. [PMID: 39258352 DOI: 10.1002/bies.202400119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024]
Abstract
We have rapidly gained insights into the presence and function of T lymphocytes in non-lymphoid tissues, the tissue-resident memory T (TRM) cells. The central pillar of adaptive immunity has been expanded from classic central memory T cells giving rise to progeny upon reinfection and effector memory cells circulating through the blood and patrolling the tissues to include TRM cells that reside and migrate inside solid organs and tissues. Their development and maintenance have been studied in detail, providing exciting clues on how their unique properties used to fight infections may benefit therapies against solid tumors. We provide an overview of CD8 TRM cells and the properties that make them of interest for vaccination and cancer therapies.
Collapse
Affiliation(s)
- João Fernandes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Marc Veldhoen
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Cristina Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
14
|
Zhang Y, Naderi Yeganeh P, Zhang H, Wang SY, Li Z, Gu B, Lee DJ, Zhang Z, Ploumakis A, Shi M, Wu H, Greer EL, Hide W, Lieberman J. Tumor editing suppresses innate and adaptive antitumor immunity and is reversed by inhibiting DNA methylation. Nat Immunol 2024; 25:1858-1870. [PMID: 39169233 DOI: 10.1038/s41590-024-01932-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/13/2024] [Indexed: 08/23/2024]
Abstract
Cancer cells edit gene expression to evade immunosurveillance. However, genome-wide studies of gene editing during early tumorigenesis are lacking. Here we used single-cell RNA sequencing in a breast cancer genetically engineered mouse model (GEMM) to identify edited genes without bias. Late tumors repressed antitumor immunity genes, reducing infiltrating immune cells and tumor-immune cell communications. Innate immune genes, especially interferon-stimulated genes, dominated the list of downregulated tumor genes, while genes that regulate cell-intrinsic malignancy were mostly unedited. Naive and activated CD8+ T cells in early tumors were replaced with exhausted or precursor-exhausted cells in late tumors. Repression of immune genes was reversed by inhibiting DNA methylation using low-dose decitabine, which suppressed tumor growth and restored immune control, increasing the number, functionality and memory of tumor-infiltrating lymphocytes and reducing the number of myeloid suppressor cells. Decitabine induced important interferon, pyroptosis and necroptosis genes, inflammatory cell death and immune control in GEMM and implanted breast and melanoma tumors.
Collapse
Affiliation(s)
- Ying Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Pourya Naderi Yeganeh
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Haiwei Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Simon Yuan Wang
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Zhouyihan Li
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bowen Gu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Dian-Jang Lee
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Zhibin Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Athanasios Ploumakis
- Harvard Medical School, Boston, MA, USA
- Spatial Technologies Unit, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ming Shi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Eric Lieberman Greer
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
- Departments of Pediatrics and Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Winston Hide
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Mosmann TR, McMichael AJ, LeVert A, McCauley JW, Almond JW. Opportunities and challenges for T cell-based influenza vaccines. Nat Rev Immunol 2024; 24:736-752. [PMID: 38698082 DOI: 10.1038/s41577-024-01030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/05/2024]
Abstract
Vaccination remains our main defence against influenza, which causes substantial annual mortality and poses a serious pandemic threat. Influenza virus evades immunity by rapidly changing its surface antigens but, even when the vaccine is well matched to the current circulating virus strains, influenza vaccines are not as effective as many other vaccines. Influenza vaccine development has traditionally focused on the induction of protective antibodies, but there is mounting evidence that T cell responses are also protective against influenza. Thus, future vaccines designed to promote both broad T cell effector functions and antibodies may provide enhanced protection. As we discuss, such vaccines present several challenges that require new strategic and economic considerations. Vaccine-induced T cells relevant to protection may reside in the lungs or lymphoid tissues, requiring more invasive assays to assess the immunogenicity of vaccine candidates. T cell functions may contain and resolve infection rather than completely prevent infection and early illness, requiring vaccine effectiveness to be assessed based on the prevention of severe disease and death rather than symptomatic infection. It can be complex and costly to measure T cell responses and infrequent clinical outcomes, and thus innovations in clinical trial design are needed for economic reasons. Nevertheless, the goal of more effective influenza vaccines justifies renewed and intensive efforts.
Collapse
Affiliation(s)
- Tim R Mosmann
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Andrew J McMichael
- Centre for Immuno-Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK
| | | | | | - Jeffrey W Almond
- The Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Herrero-Fernández B, Ortega-Zapero M, Gómez-Bris R, Sáez A, Iborra S, Zorita V, Quintas A, Vázquez E, Dopazo A, Sánchez-Madrid F, Arribas SM, González-Granado JM. Role of lamin A/C on dendritic cell function in antiviral immunity. Cell Mol Life Sci 2024; 81:400. [PMID: 39264480 PMCID: PMC11393282 DOI: 10.1007/s00018-024-05423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
Dendritic cells (DCs) play a crucial role in orchestrating immune responses, particularly in promoting IFNγ-producing-CD8 cytotoxic T lymphocytes (CTLs) and IFNγ-producing-CD4 T helper 1 (Th1) cells, which are essential for defending against viral infections. Additionally, the nuclear envelope protein lamin A/C has been implicated in T cell immunity. Nevertheless, the intricate interplay between innate and adaptive immunity in response to viral infections, particularly the role of lamin A/C in DC functions within this context, remains poorly understood. In this study, we demonstrate that mice lacking lamin A/C in myeloid LysM promoter-expressing cells exhibit a reduced capacity to induce Th1 and CD8 CTL responses, leading to impaired clearance of acute primary Vaccinia virus (VACV) infection. Remarkably, in vitro-generated granulocyte macrophage colony-stimulating factor bone marrow-derived DCs (GM-CSF BMDCs) show high levels of lamin A/C. Lamin A/C absence on GM-CSF BMDCs does not affect the expression of costimulatory molecules on the cell membrane but it reduces the cellular ability to form immunological synapses with naïve CD4 T cells. Lamin A/C deletion induces alterations in NFκB nuclear localization, thereby influencing NF-κB-dependent transcription. Furthermore, lamin A/C ablation modifies the gene accessibility of BMDCs, predisposing these cells to mount a less effective antiviral response upon TLR stimulation. This study highlights the critical role of DCs in interacting with CD4 T cells during antiviral responses and proposes some mechanisms through which lamin A/C may modulate DC function via gene accessibility and transcriptional regulation.
Collapse
Affiliation(s)
- Beatriz Herrero-Fernández
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, 28029, Spain
| | - Marina Ortega-Zapero
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Raquel Gómez-Bris
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, 28029, Spain
| | - Angela Sáez
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Spain
| | - Salvador Iborra
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
- Fundacion Inmunotek, Alcalá de Henares, 28805, Spain
| | - Virginia Zorita
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Ana Quintas
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Enrique Vázquez
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Ana Dopazo
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
- Immunology Unit, Medicine Department, Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Instituto Investigacion Sanitaria-Princesa IIS-IP, Madrid, Spain, Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Silvia Magdalena Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, 28029, Spain.
| | - Jose Maria González-Granado
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain.
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain.
- Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
17
|
Hsu J, Kim S, Anandasabapathy N. Vaccinia Virus: Mechanisms Supporting Immune Evasion and Successful Long-Term Protective Immunity. Viruses 2024; 16:870. [PMID: 38932162 PMCID: PMC11209207 DOI: 10.3390/v16060870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Vaccinia virus is the most successful vaccine in human history and functions as a protective vaccine against smallpox and monkeypox, highlighting the importance of ongoing research into vaccinia due to its genetic similarity to other emergent poxviruses. Moreover, vaccinia's ability to accommodate large genetic insertions makes it promising for vaccine development and potential therapeutic applications, such as oncolytic agents. Thus, understanding how superior immunity is generated by vaccinia is crucial for designing other effective and safe vaccine strategies. During vaccinia inoculation by scarification, the skin serves as a primary site for the virus-host interaction, with various cell types playing distinct roles. During this process, hematopoietic cells undergo abortive infections, while non-hematopoietic cells support the full viral life cycle. This differential permissiveness to viral replication influences subsequent innate and adaptive immune responses. Dendritic cells (DCs), key immune sentinels in peripheral tissues such as skin, are pivotal in generating T cell memory during vaccinia immunization. DCs residing in the skin capture viral antigens and migrate to the draining lymph nodes (dLN), where they undergo maturation and present processed antigens to T cells. Notably, CD8+ T cells are particularly significant in viral clearance and the establishment of long-term protective immunity. Here, we will discuss vaccinia virus, its continued relevance to public health, and viral strategies permissive to immune escape. We will also discuss key events and populations leading to long-term protective immunity and remaining key gaps.
Collapse
Affiliation(s)
- Joy Hsu
- Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Suyon Kim
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Niroshana Anandasabapathy
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
18
|
Murakami M. Tissue-resident memory T cells: decoding intra-organ diversity with a gut perspective. Inflamm Regen 2024; 44:19. [PMID: 38632596 PMCID: PMC11022361 DOI: 10.1186/s41232-024-00333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Tissue-resident memory T cells (TRM) serve as the frontline of host defense, playing a critical role in protection against invading pathogens. This emphasizes their role in providing rapid on-site immune responses across various organs. The physiological significance of TRM is not just confined to infection control; accumulating evidence has revealed that TRM also determine the pathology of diseases such as autoimmune disorders, inflammatory bowel disease, and cancer. Intensive studies on the origin, mechanisms of formation and maintenance, and physiological significance of TRM have elucidated the transcriptional and functional diversity of these cells, which are often affected by local cues associated with their presence. These were further confirmed by the recent remarkable advancements of next-generation sequencing and single-cell technologies, which allow the transcriptional and phenotypic characterization of each TRM subset induced in different microenvironments. This review first overviews the current knowledge of the cell fate, molecular features, transcriptional and metabolic regulation, and biological importance of TRM in health and disease. Finally, this article presents a variety of recent studies on disease-associated TRM, particularly focusing and elaborating on the TRM in the gut, which constitute the largest and most intricate immune network in the body, and their pathological relevance to gut inflammation in humans.
Collapse
Affiliation(s)
- Mari Murakami
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
- Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
19
|
Reschke R, Deitert B, Enk AH, Hassel JC. The role of tissue-resident memory T cells as mediators for response and toxicity in immunotherapy-treated melanoma-two sides of the same coin? Front Immunol 2024; 15:1385781. [PMID: 38562921 PMCID: PMC10982392 DOI: 10.3389/fimmu.2024.1385781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Tissue-resident memory T cells (TRM cells) have become an interesting subject of study for antitumor immunity in melanoma and other solid tumors. In the initial phases of antitumor immunity, they maintain an immune equilibrium and protect against challenges with tumor cells and the formation of primary melanomas. In metastatic settings, they are a prime target cell population for immune checkpoint inhibition (ICI) because they highly express inhibitory checkpoint molecules such as PD-1, CTLA-4, or LAG-3. Once melanoma patients are treated with ICI, TRM cells residing in the tumor are reactivated and expand. Tumor killing is achieved by secreting effector molecules such as IFN-γ. However, off-target effects are also observed. Immune-related adverse events, such as those affecting barrier organs like the skin, can be mediated by ICI-induced TRM cells. Therefore, a detailed understanding of this memory T-cell type is obligatory to better guide and improve immunotherapy regimens.
Collapse
Affiliation(s)
- Robin Reschke
- Department of Dermatology, National Center for Tumor Diseases Heidelberg (NCT), Heidelberg, Germany
| | - Benjamin Deitert
- Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alex H. Enk
- Department of Dermatology, National Center for Tumor Diseases Heidelberg (NCT), Heidelberg, Germany
| | - Jessica C. Hassel
- Department of Dermatology, National Center for Tumor Diseases Heidelberg (NCT), Heidelberg, Germany
| |
Collapse
|
20
|
Oltmanns F, Vieira Antão A, Irrgang P, Viherlehto V, Jörg L, Schmidt A, Wagner JT, Rückert M, Flohr AS, Geppert CI, Frey B, Bayer W, Gravekamp C, Tenbusch M, Gaipl U, Lapuente D. Mucosal tumor vaccination delivering endogenous tumor antigens protects against pulmonary breast cancer metastases. J Immunother Cancer 2024; 12:e008652. [PMID: 38458636 PMCID: PMC10921546 DOI: 10.1136/jitc-2023-008652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Generally, early-stage breast cancer has a good prognosis. However, if it spreads systemically, especially with pulmonary involvement, prospects worsen dramatically. Importantly, tumor-infiltrating T cells contribute to tumor control, particularly intratumoral T cells with a tissue-resident memory phenotype are associated with an improved clinical outcome. METHODS Here, we use an adenoviral vector vaccine encoding endogenous tumor-associated antigens adjuvanted with interleukin-1β to induce tumor-specific tissue-resident memory T cells (TRM) in the lung for the prevention and treatment of pulmonary metastases in the murine 4T1 breast cancer model. RESULTS The mucosal delivery of the vaccine was highly efficient in establishing tumor-specific TRM in the lung. Concomitantly, a single mucosal vaccination reduced the growth of pulmonary metastases and improved the survival in a prophylactic treatment. Vaccine-induced TRM contributed to these protective effects. In a therapeutic setting, the vaccination induced a pronounced T cell infiltration into metastases but resulted in only a minor restriction of the disease progression. However, in combination with stereotactic radiotherapy, the vaccine increased the survival time and rate of tumor-bearing mice. CONCLUSION In summary, our study demonstrates that mucosal vaccination is a promising strategy to harness the power of antitumor TRM and its potential combination with state-of-the-art treatments.
Collapse
Affiliation(s)
- Friederike Oltmanns
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Ana Vieira Antão
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Pascal Irrgang
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Vera Viherlehto
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Leticia Jörg
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Anna Schmidt
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jannik T Wagner
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Rückert
- Translational Radiobiology, Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Ann-Sophie Flohr
- Translational Radiobiology, Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Carol Imanuel Geppert
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC), University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Claudia Gravekamp
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, New York, New York, USA
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Udo Gaipl
- Translational Radiobiology, Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Dennis Lapuente
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
21
|
Migayron L, Merhi R, Seneschal J, Boniface K. Resident memory T cells in nonlesional skin and healed lesions of patients with chronic inflammatory diseases: Appearances can be deceptive. J Allergy Clin Immunol 2024; 153:606-614. [PMID: 37995858 DOI: 10.1016/j.jaci.2023.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Tissue-resident memory T (TRM) cells serve as a first line of defense in peripheral tissues to protect the organism against foreign pathogens. However, autoreactive TRM cells are increasingly implicated in autoimmunity, as evidenced in chronic autoimmune and inflammatory skin conditions. This highlights the need to characterize their phenotype and understand their role for the purpose of targeting them specifically without affecting local immunity. To date, the investigation of TRM cells in human skin diseases has focused mainly on lesional tissues of patients. Accumulating evidence suggests that self-reactive TRM cells are still present in clinically healed lesions of patients and play a role in disease flares, but TRM cells also populate skin that is apparently normal. This review discusses the ontogeny of TRM cells in the skin as well as recent insights regarding the presence of self-reactive TRM cells in both clinically healed skin and nonlesional skin of patients with autoimmune and inflammatory skin conditions, with a particular focus on psoriasis, atopic dermatitis, and vitiligo.
Collapse
Affiliation(s)
- Laure Migayron
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR5164, F-33000, Bordeaux, France; R&D Department, SILAB, Brive-la-Gaillarde, France
| | - Ribal Merhi
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR5164, F-33000, Bordeaux, France
| | - Julien Seneschal
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR5164, F-33000, Bordeaux, France; CHU de Bordeaux, Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Disorders, Hôpital Saint-André, UMR Bordeaux, Bordeaux, France
| | - Katia Boniface
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR5164, F-33000, Bordeaux, France.
| |
Collapse
|
22
|
Hato L, Vizcay A, Eguren I, Pérez-Gracia JL, Rodríguez J, Gállego Pérez-Larraya J, Sarobe P, Inogés S, Díaz de Cerio AL, Santisteban M. Dendritic Cells in Cancer Immunology and Immunotherapy. Cancers (Basel) 2024; 16:981. [PMID: 38473341 DOI: 10.3390/cancers16050981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Cancer immunotherapy modulates the immune system, overcomes immune escape and stimulates immune defenses against tumors. Dendritic cells (DCs) are professional promoters of immune responses against tumor antigens with the outstanding ability to coordinate the innate and adaptive immune systems. Evidence suggests that there is a decrease in both the number and function of DCs in cancer patients. Therefore, they represent a strong scaffold for therapeutic interventions. DC vaccination (DCV) is safe, and the antitumoral responses induced are well established in solid tumors. Although the addition of checkpoint inhibitors (CPIs) to chemotherapy has provided new options in the treatment of cancer, they have shown no clinical benefit in immune desert tumors or in those tumors with dysfunctional or exhausted T-cells. In this way, DC-based therapy has demonstrated the ability to modify the tumor microenvironment for immune enriched tumors and to potentiate systemic host immune responses as an active approach to treating cancer patients. Application of DCV in cancer seeks to obtain long-term antitumor responses through an improved T-cell priming by enhancing previous or generating de novo immune responses. To date, DCV has induced immune responses in the peripheral blood of patients without a significant clinical impact on outcome. Thus, improvements in vaccines formulations, selection of patients based on biomarkers and combinations with other antitumoral therapies are needed to enhance patient survival. In this work, we review the role of DCV in different solid tumors with their strengths and weaknesses, and we finally mention new trends to improve the efficacy of this immune strategy.
Collapse
Affiliation(s)
- Laura Hato
- Immunology, Riberalab, 03203 Alicante, Spain
| | - Angel Vizcay
- Medical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Iñaki Eguren
- Medical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | | | - Javier Rodríguez
- Medical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | | | - Pablo Sarobe
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- Program of Immunology and Immunotherapy, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
- CIBEREHD, 31008 Pamplona, Spain
| | - Susana Inogés
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- Cell Therapy Unit, Program of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Ascensión López Díaz de Cerio
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- Cell Therapy Unit, Program of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Marta Santisteban
- Medical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
23
|
Long B, Zhou S, Gao Y, Fan K, Lai J, Yao C, Li J, Xu X, Yu S. Tissue-Resident Memory T Cells in Allergy. Clin Rev Allergy Immunol 2024; 66:64-75. [PMID: 38381299 DOI: 10.1007/s12016-024-08982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Tissue-resident memory T (TRM) cells constitute a distinct subset within the memory T cell population, serving as the vanguard against invading pathogens and antigens in peripheral non-lymphoid tissues, including the respiratory tract, intestines, and skin. Notably, TRM cells adapt to the specific microenvironment of each tissue, predominantly maintaining a sessile state with distinctive phenotypic and functional attributes. Their role is to ensure continuous immunological surveillance and protection. Recent findings have highlighted the pivotal contribution of TRM cells to the modulation of adaptive immune responses in allergic disorders such as allergic rhinitis, asthma, and dermatitis. A comprehensive understanding of the involvement of TRM cells in allergic diseases bears profound implications for allergy prevention and treatment. This review comprehensively explores the phenotypic characteristics, developmental mechanisms, and functional roles of TRM cells, focusing on their intricate relationship with allergic diseases.
Collapse
Affiliation(s)
- Bojin Long
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Shican Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yawen Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Kai Fan
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Ju Lai
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Chunyan Yao
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Jingwen Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xiayue Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Shaoqing Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
24
|
Zhu C, Jiao S, Xu W. CD8 + Trms against malaria liver-stage: prospects and challenges. Front Immunol 2024; 15:1344941. [PMID: 38318178 PMCID: PMC10839007 DOI: 10.3389/fimmu.2024.1344941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Attenuated sporozoites provide a valuable model for exploring protective immunity against the malarial liver stage, guiding the design of highly efficient vaccines to prevent malaria infection. Liver tissue-resident CD8+ T cells (CD8+ Trm cells) are considered the host front-line defense against malaria and are crucial to developing prime-trap/target strategies for pre-erythrocytic stage vaccine immunization. However, the spatiotemporal regulatory mechanism of the generation of liver CD8+ Trm cells and their responses to sporozoite challenge, as well as the protective antigens they recognize remain largely unknown. Here, we discuss the knowledge gap regarding liver CD8+ Trm cell formation and the potential strategies to identify predominant protective antigens expressed in the exoerythrocytic stage, which is essential for high-efficacy malaria subunit pre-erythrocytic vaccine designation.
Collapse
Affiliation(s)
- Chengyu Zhu
- The School of Medicine, Chongqing University, Chongqing, China
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shiming Jiao
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenyue Xu
- The School of Medicine, Chongqing University, Chongqing, China
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
25
|
Fujii SI, Shimizu K. NKT-Licensed In Vivo Dendritic Cell-Based Immunotherapy as Cellular Immunodrugs for Cancer Treatment. Crit Rev Oncog 2024; 29:45-61. [PMID: 38421713 DOI: 10.1615/critrevoncog.2023048735] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
With the advent of new therapies, immunotherapy has gained attention as a critical modality. After the discovery of the natural killer T (NKT) cells ligand, ex vivo cultured dendritic cells (DCs) loaded with NKT ligand (especially α-galactosylceramide (α-GalCer) (DC/Gal) or ex vivo expanded NKT transfer studies were clinically examined in several institutes. To prevent tumoral immune escape, the link between innate and adaptive immunity, in situ selective targeting of DCs has been attempted; however, protocol optimization was required. As a type of DC targeting therapy that combines the benefits of invariant natural killer T (iNKT) cells, we established an all-in-one, off-the-shelf drug, named the artificial adjuvant vector cell (aAVC), which consists of the tumor antigen and the CD1d-iNKT ligand complex. Here, to our knowledge, we first demonstrate the DC/GalCer therapy and NKT transfer therapy. Next, we introduce and discuss the use of aAVC therapy not only for efficient innate and adaptive immunity induction using fully matured DC in situ but also the characterization necessary for locally reprogramming the tumor microenvironment and systemically inducing long-term memory in T cells. We also discuss how the immune network mechanism is controlled by DCs. Next, we performed the first human clinical trial using WT1 antigen-expressing aAVC against relapse and refractory acute myelogenous leukemia. Thus, we highlight the challenges of using aAVCs as prodrugs for actively energizing DCs in vivo, underpinning immunological networks, and developing strategies for providing maximal benefits for patients.
Collapse
Affiliation(s)
- Shin-Ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), and RIKEN Program for Drug Discovery and Medical Technology Platforms, Yokohama, Kanagawa, Japan
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), and RIKEN Program for Drug Discovery and Medical Technology Platforms, Yokohama, Kanagawa, Japan
| |
Collapse
|
26
|
Henry CM, Castellanos CA, Buck MD, Giampazolias E, Frederico B, Cardoso A, Rogers NC, Schulz O, Lee S, Canton J, Faull P, Snijders AP, Mohapatra B, Band H, Reis e Sousa C. SYK ubiquitination by CBL E3 ligases restrains cross-presentation of dead cell-associated antigens by type 1 dendritic cells. Cell Rep 2023; 42:113506. [PMID: 38019655 DOI: 10.1016/j.celrep.2023.113506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Cross-presentation of dead cell-associated antigens by conventional dendritic cells type 1 (cDC1s) is critical for CD8+ T cells response against many tumors and viral infections. It is facilitated by DNGR-1 (CLEC9A), an SYK-coupled cDC1 receptor that detects dead cell debris. Here, we report that DNGR-1 engagement leads to rapid activation of CBL and CBL-B E3 ligases to cause K63-linked ubiquitination of SYK and terminate signaling. Genetic deletion of CBL E3 ligases or charge-conserved mutation of target lysines within SYK abolishes SYK ubiquitination and results in enhanced DNGR-1-dependent antigen cross-presentation. We also find that cDC1 deficient in CBL E3 ligases are more efficient at cross-priming CD8+ T cells to dead cell-associated antigens and promoting host resistance to tumors. Our findings reveal a role for CBL-dependent ubiquitination in limiting cross-presentation of dead cell-associated antigens and highlight an axis of negative regulation of cDC1 activity that could be exploited to increase anti-tumor immunity.
Collapse
Affiliation(s)
- Conor M Henry
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Carlos A Castellanos
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael D Buck
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Evangelos Giampazolias
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Bruno Frederico
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ana Cardoso
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Neil C Rogers
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Oliver Schulz
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sonia Lee
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Johnathan Canton
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Peter Faull
- Protein Analysis and Proteomics Labaratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Labaratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Bhopal Mohapatra
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Caetano Reis e Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
27
|
Xu H, Zhou R, Chen Z. Tissue-Resident Memory T Cell: Ontogenetic Cellular Mechanism and Clinical Translation. Clin Exp Immunol 2023; 214:249-259. [PMID: 37586053 PMCID: PMC10719502 DOI: 10.1093/cei/uxad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/22/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023] Open
Abstract
Mounting evidence has indicated the essential role of tissue-resident memory T (TRM) cells for frontline protection against viral infection and for cancer immune surveillance (Mueller SN, Mackay LK. Tissue-resident memory T cells: local specialists in immune defense. Nat Rev Immunol 2016, 16, 79-89. doi:10.1038/nri.2015.3.). TRM cells are transcriptionally, phenotypically, and functionally distinct from circulating memory T (Tcirm) cells. It is necessary to understand the unique ontogenetic mechanism, migratory regulation, and biological function of TRM cells. In this review, we discuss recent insights into cellular mechanisms and discrete responsiveness in different tissue microenvironments underlying TRM cell development. We also emphasize the translational potential of TRM cells by focusing on their establishment in association with improved protection in mucosal tissues against various types of diseases and effective strategies for eliciting TRM cells in both pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Haoran Xu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Runhong Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Zhiwei Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- State Key Laboratory for Emerging Infectious Diseases, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| |
Collapse
|
28
|
Wu J, Lu Z, Zhao H, Lu M, Gao Q, Che N, Wang J, Ma T. The expanding Pandora's toolbox of CD8 +T cell: from transcriptional control to metabolic firing. J Transl Med 2023; 21:905. [PMID: 38082437 PMCID: PMC10714647 DOI: 10.1186/s12967-023-04775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
CD8+ T cells are the executor in adaptive immune response, especially in anti-tumor immunity. They are the subset immune cells that are of high plasticity and multifunction. Their development, differentiation, activation and metabolism are delicately regulated by multiple factors. Stimuli from the internal and external environment could remodel CD8+ T cells, and correspondingly they will also make adjustments to the microenvironmental changes. Here we describe the most updated progresses in CD8+ T biology from transcriptional regulation to metabolism mechanisms, and also their interactions with the microenvironment, especially in cancer and immunotherapy. The expanding landscape of CD8+ T cell biology and discovery of potential targets to regulate CD8+ T cells will provide new viewpoints for clinical immunotherapy.
Collapse
Affiliation(s)
- Jinghong Wu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Zhendong Lu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Hong Zhao
- Department of Pathology, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Mingjun Lu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Qing Gao
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Nanying Che
- Department of Pathology, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Jinghui Wang
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
| | - Teng Ma
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
29
|
Lázaro-Gorines R, Pérez P, Heras-Murillo I, Adán-Barrientos I, Albericio G, Astorgano D, Flores S, Luczkowiak J, Labiod N, Harwood SL, Segura-Tudela A, Rubio-Pérez L, Nugraha Y, Shang X, Li Y, Alfonso C, Adipietro KA, Abeyawardhane DL, Navarro R, Compte M, Yu W, MacKerell AD, Sanz L, Weber DJ, Blanco FJ, Esteban M, Pozharski E, Godoy-Ruiz R, Muñoz IG, Delgado R, Sancho D, García-Arriaza J, Álvarez-Vallina L. Dendritic Cell-Mediated Cross-Priming by a Bispecific Neutralizing Antibody Boosts Cytotoxic T Cell Responses and Protects Mice against SARS-CoV-2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304818. [PMID: 37863812 PMCID: PMC10700188 DOI: 10.1002/advs.202304818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/24/2023] [Indexed: 10/22/2023]
Abstract
Administration of neutralizing antibodies (nAbs) has proved to be effective by providing immediate protection against SARS-CoV-2. However, dual strategies combining virus neutralization and immune response stimulation to enhance specific cytotoxic T cell responses, such as dendritic cell (DC) cross-priming, represent a promising field but have not yet been explored. Here, a broadly nAb, TNT , are first generated by grafting an anti-RBD biparatopic tandem nanobody onto a trimerbody scaffold. Cryo-EM data show that the TNT structure allows simultaneous binding to all six RBD epitopes, demonstrating a high-avidity neutralizing interaction. Then, by C-terminal fusion of an anti-DNGR-1 scFv to TNT , the bispecific trimerbody TNT DNGR-1 is generated to target neutralized virions to type 1 conventional DCs (cDC1s) and promote T cell cross-priming. Therapeutic administration of TNT DNGR-1, but not TNT , protects K18-hACE2 mice from a lethal SARS-CoV-2 infection, boosting virus-specific humoral responses and CD8+ T cell responses. These results further strengthen the central role of interactions with immune cells in the virus-neutralizing antibody activity and demonstrate the therapeutic potential of the Fc-free strategy that can be used advantageously to provide both immediate and long-term protection against SARS-CoV-2 and other viral infections.
Collapse
Affiliation(s)
- Rodrigo Lázaro-Gorines
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, 28029, Spain
| | - Ignacio Heras-Murillo
- Immunobiology lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Irene Adán-Barrientos
- Immunobiology lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Guillermo Albericio
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
| | - Sara Flores
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
| | - Joanna Luczkowiak
- Virology and HIV/AIDS Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
| | - Nuria Labiod
- Virology and HIV/AIDS Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
| | - Seandean L Harwood
- Department of Molecular Biology and Genetics - Protein Science, Aarhus University, Aarhus, 80000, Denmark
| | - Alejandro Segura-Tudela
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
| | - Laura Rubio-Pérez
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
- Chair for Immunology UFV/Merck, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Yudhi Nugraha
- Protein Crystallography Unit, Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
| | - Xiaoran Shang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yuxing Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28040, Spain
| | - Kaylin A Adipietro
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
- Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dinendra L Abeyawardhane
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
- Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rocío Navarro
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, 28002, Spain
| | - Marta Compte
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, 28002, Spain
| | - Wenbo Yu
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
| | - Alexander D MacKerell
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
- Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, 28220, Spain
| | - David J Weber
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
| | - Francisco J Blanco
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28040, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
| | - Edwin Pozharski
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
| | - Raquel Godoy-Ruiz
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
| | - Inés G Muñoz
- Protein Crystallography Unit, Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
| | - Rafael Delgado
- Virology and HIV/AIDS Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
- Department of Microbiology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Department of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - David Sancho
- Immunobiology lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, 28029, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
- Chair for Immunology UFV/Merck, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Madrid, 28223, Spain
| |
Collapse
|
30
|
Rotrosen E, Kupper TS. Assessing the generation of tissue resident memory T cells by vaccines. Nat Rev Immunol 2023; 23:655-665. [PMID: 37002288 PMCID: PMC10064963 DOI: 10.1038/s41577-023-00853-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 04/03/2023]
Abstract
Vaccines have been a hugely successful public health intervention, virtually eliminating many once common diseases of childhood. However, they have had less success in controlling endemic pathogens including Mycobacterium tuberculosis, herpesviruses and HIV. A focus on vaccine-mediated generation of neutralizing antibodies, which has been a successful approach for some pathogens, has been complicated by the emergence of escape variants, which has been seen for pathogens such as influenza viruses and SARS-CoV-2, as well as for HIV-1. We discuss how vaccination strategies aimed at generating a broad and robust T cell response may offer superior protection against pathogens, particularly those that have been observed to mutate rapidly. In particular, we consider here how a focus on generating resident memory T cells may be uniquely effective for providing immunity to pathogens that typically infect (or become reactivated in) the skin, respiratory mucosa or other barrier tissues.
Collapse
Affiliation(s)
- Elizabeth Rotrosen
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Thomas S Kupper
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Damei I, Trickovic T, Mami-Chouaib F, Corgnac S. Tumor-resident memory T cells as a biomarker of the response to cancer immunotherapy. Front Immunol 2023; 14:1205984. [PMID: 37545498 PMCID: PMC10399960 DOI: 10.3389/fimmu.2023.1205984] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TIL) often include a substantial subset of CD8+ tissue-resident memory T (TRM) cells enriched in tumor-specific T cells. These TRM cells play a major role in antitumor immune response. They are identified on the basis of their expression of the CD103 (αE(CD103)β7) and/or CD49a (α1(CD49a)β1) integrins, and the C-type lectin CD69, which are involved in tissue residency. TRM cells express several T-cell inhibitory receptors on their surface but they nevertheless react strongly to malignant cells, exerting a strong cytotoxic function, particularly in the context of blocking interactions of PD-1 with PD-L1 on target cells. These TRM cells form stable conjugates with autologous tumor cells and interact with dendritic cells and other T cells within the tumor microenvironment to orchestrate an optimal in situ T-cell response. There is growing evidence to indicate that TGF-β is essential for the formation and maintenance of TRM cells in the tumor, through the induction of CD103 expression on activated CD8+ T cells, and for the regulation of TRM effector functions through bidirectional integrin signaling. CD8+ TRM cells were initially described as a prognostic marker for survival in patients with various types of cancer, including ovarian, lung and breast cancers and melanoma. More recently, these tumor-resident CD8+ T cells have been shown to be a potent predictive biomarker of the response of cancer patients to immunotherapies, including therapeutic cancer vaccines and immune checkpoint blockade. In this review, we will highlight the major characteristics of tumor TRM cell populations and the possibilities for their exploitation in the design of more effective immunotherapy strategies for cancer.
Collapse
|
32
|
Pritzl CJ, Luera D, Knudson KM, Quaney MJ, Calcutt MJ, Daniels MA, Teixeiro E. IKK2/NFkB signaling controls lung resident CD8 + T cell memory during influenza infection. Nat Commun 2023; 14:4331. [PMID: 37468506 DOI: 10.1038/s41467-023-40107-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/13/2023] [Indexed: 07/21/2023] Open
Abstract
CD8+ T cell tissue resident memory (TRM) cells are especially suited to control pathogen spread at mucosal sites. However, their maintenance in lung is short-lived. TCR-dependent NFkB signaling is crucial for T cell memory but how and when NFkB signaling modulates tissue resident and circulating T cell memory during the immune response is unknown. Here, we find that enhancing NFkB signaling in T cells once memory to influenza is established, increases pro-survival Bcl-2 and CD122 levels thus boosting lung CD8+ TRM maintenance. By contrast, enhancing NFkB signals during the contraction phase of the response leads to a defect in CD8+ TRM differentiation without impairing recirculating memory subsets. Specifically, inducible activation of NFkB via constitutive active IKK2 or TNF interferes with TGFβ signaling, resulting in defects of lung CD8+ TRM imprinting molecules CD69, CD103, Runx3 and Eomes. Conversely, inhibiting NFkB signals not only recovers but improves the transcriptional signature and generation of lung CD8+ TRM. Thus, NFkB signaling is a critical regulator of tissue resident memory, whose levels can be tuned at specific times during infection to boost lung CD8+ TRM.
Collapse
Affiliation(s)
- Curtis J Pritzl
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Building, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Dezzarae Luera
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Building, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Karin M Knudson
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Michael J Quaney
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Michael J Calcutt
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Mark A Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Building, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.
- Roy Blunt NextGen Precision Health Building, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
33
|
Cheon IS, Son YM, Sun J. Tissue-resident memory T cells and lung immunopathology. Immunol Rev 2023; 316:63-83. [PMID: 37014096 PMCID: PMC10524334 DOI: 10.1111/imr.13201] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Rapid reaction to microbes invading mucosal tissues is key to protect the host against disease. Respiratory tissue-resident memory T (TRM ) cells provide superior immunity against pathogen infection and/or re-infection, due to their presence at the site of pathogen entry. However, there has been emerging evidence that exuberant TRM -cell responses contribute to the development of various chronic respiratory conditions including pulmonary sequelae post-acute viral infections. In this review, we have described the characteristics of respiratory TRM cells and processes underlying their development and maintenance. We have reviewed TRM -cell protective functions against various respiratory pathogens as well as their pathological activities in chronic lung conditions including post-viral pulmonary sequelae. Furthermore, we have discussed potential mechanisms regulating the pathological activity of TRM cells and proposed therapeutic strategies to alleviate TRM -cell-mediated lung immunopathology. We hope that this review provides insights toward the development of future vaccines or interventions that can harness the superior protective abilities of TRM cells, while minimizing the potential for immunopathology, a particularly important topic in the era of coronavirus disease 2019 (COVID-19) pandemic.
Collapse
Affiliation(s)
- In Su Cheon
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea 17546
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
34
|
Viscidi RP, Rowley T, Bossis I. Bioengineered Bovine Papillomavirus L1 Protein Virus-like Particle (VLP) Vaccines for Enhanced Induction of CD8 T Cell Responses through Cross-Priming. Int J Mol Sci 2023; 24:9851. [PMID: 37372999 DOI: 10.3390/ijms24129851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Safe and effective T cell vaccines are needed for the treatment or prevention of cancers as well as infectious agents where vaccines for neutralizing antibodies have performed poorly. Recent research highlights an important role for tissue-resident memory T cells (TRM cells) in protective immunity and the role of a subset of dendritic cells that are capable of cross-priming for the induction of TRM cells. However, efficient vaccine technologies that operate through cross-priming and induce robust CD8+ T cell responses are lacking. We developed a platform technology by genetically engineering the bovine papillomavirus L1 major capsid protein to insert a polyglutamic acid/cysteine motif in place of wild-type amino acids in the HI loop. Virus-like particles (VLPs) are formed by self-assembly in insect cells infected with a recombinant baculovirus. Polyarginine/cysteine-tagged antigens are linked to the VLP by a reversible disulfide bond. The VLP possesses self-adjuvanting properties due to the immunostimulatory activity of papillomavirus VLPs. Polyionic VLP vaccines induce robust CD8+ T cell responses in peripheral blood and tumor tissues. A prostate cancer polyionic VLP vaccine was more efficacious than other vaccines and immunotherapies for the treatment of prostate cancer in a physiologically relevant murine model and successfully treated more advanced diseases than the less efficacious technologies. The immunogenicity of polyionic VLP vaccines is dependent on particle size, reversible linkage of the antigen to the VLP, and an interferon type 1 and Toll-like receptor (TLR)3/7-dependent mechanism.
Collapse
Affiliation(s)
- Raphael P Viscidi
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Treva Rowley
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Ioannis Bossis
- Department of Animal Production, School of Agricultural Sciences, Forestry & Natural Resources, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
35
|
Cheng H, Chen W, Lin Y, Zhang J, Song X, Zhang D. Signaling pathways involved in the biological functions of dendritic cells and their implications for disease treatment. MOLECULAR BIOMEDICINE 2023; 4:15. [PMID: 37183207 PMCID: PMC10183318 DOI: 10.1186/s43556-023-00125-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/02/2023] [Indexed: 05/16/2023] Open
Abstract
The ability of dendritic cells (DCs) to initiate and regulate adaptive immune responses is fundamental for maintaining immune homeostasis upon exposure to self or foreign antigens. The immune regulatory function of DCs is strictly controlled by their distribution as well as by cytokines, chemokines, and transcriptional programming. These factors work in conjunction to determine whether DCs exert an immunosuppressive or immune-activating function. Therefore, understanding the molecular signals involved in DC-dependent immunoregulation is crucial in providing insight into the generation of organismal immunity and revealing potential clinical applications of DCs. Considering the many breakthroughs in DC research in recent years, in this review we focused on three basic lines of research directly related to the biological functions of DCs and summarized new immunotherapeutic strategies involving DCs. First, we reviewed recent findings on DC subsets and identified lineage-restricted transcription factors that guide the development of different DC subsets. Second, we discussed the recognition and processing of antigens by DCs through pattern recognition receptors, endogenous/exogenous pathways, and the presentation of antigens through peptide/major histocompatibility complexes. Third, we reviewed how interactions between DCs and T cells coordinate immune homeostasis in vivo via multiple pathways. Finally, we summarized the application of DC-based immunotherapy for autoimmune diseases and tumors and highlighted potential research prospects for immunotherapy that targets DCs. This review provides a useful resource to better understand the immunomodulatory signals involved in different subsets of DCs and the manipulation of these immune signals can facilitate DC-based immunotherapy.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenjing Chen
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yubin Lin
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jianan Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaoshuang Song
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
36
|
Gocher-Demske AM, Cui J, Szymczak-Workman AL, Vignali KM, Latini JN, Pieklo GP, Kimball JC, Avery L, Cipolla EM, Huckestein BR, Hedden L, Meisel M, Alcorn JF, Kane LP, Workman CJ, Vignali DAA. IFNγ-induction of T H1-like regulatory T cells controls antiviral responses. Nat Immunol 2023; 24:841-854. [PMID: 36928412 PMCID: PMC10224582 DOI: 10.1038/s41590-023-01453-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/06/2023] [Indexed: 03/18/2023]
Abstract
Regulatory T (Treg) cells are an immunosuppressive population that are required to maintain peripheral tolerance and prevent tissue damage from immunopathology, via anti-inflammatory cytokines, inhibitor receptors and metabolic disruption. Here we show that Treg cells acquire an effector-like state, yet remain stable and functional, when exposed to interferon gamma (IFNγ) during infection with lymphocytic choriomeningitis and influenza A virus. Treg cell-restricted deletion of the IFNγ receptor (encoded by Ifngr1), but not the interleukin 12 (IL12) receptor (encoded by Il12rb2), prevented TH1-like polarization (decreased expression of T-bet, CXC motif chemokine receptor 3 and IFNγ) and promoted TH2-like polarization (increased expression of GATA-3, CCR4 and IL4). TH1-like Treg cells limited CD8+ T cell effector function, proliferation and memory formation during acute and chronic infection. These findings provide fundamental insights into how Treg cells sense inflammatory cues from the environment (such as IFNγ) during viral infection to provide guidance to the effector immune response. This regulatory circuit prevents prolonged immunoinflammatory responses and shapes the quality and quantity of the memory T cell response.
Collapse
Affiliation(s)
- Angela M Gocher-Demske
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Jian Cui
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | | - Kate M Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Julianna N Latini
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Gwen P Pieklo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Jesse C Kimball
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Lyndsay Avery
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Program in Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Ellyse M Cipolla
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Brydie R Huckestein
- Program in Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lee Hedden
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marlies Meisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - John F Alcorn
- Program in Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
37
|
Medler TR, Kramer G, Bambina S, Gunderson AJ, Alice A, Blair T, Zebertavage L, Duhen T, Duhen R, Young K, Crittenden MR, Gough MJ. Tumor resident memory CD8 T cells and concomitant tumor immunity develop independently of CD4 help. Sci Rep 2023; 13:6277. [PMID: 37072485 PMCID: PMC10113239 DOI: 10.1038/s41598-023-33508-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
Tissue resident memory (Trm) CD8 T cells infiltrating tumors represent an enriched population of tumor antigen-specific T cells, and their presence is associated with improved outcomes in patients. Using genetically engineered mouse pancreatic tumor models we demonstrate that tumor implantation generates a Trm niche that is dependent on direct antigen presentation by cancer cells. However, we observe that initial CCR7-mediated localization of CD8 T cells to tumor draining lymph nodes is required to subsequently generate CD103+ CD8 T cells in tumors. We observe that the formation of CD103+ CD8 T cells in tumors is dependent on CD40L but independent of CD4 T cells, and using mixed chimeras we show that CD8 T cells can provide their own CD40L to permit CD103+ CD8 T cell differentiation. Finally, we show that CD40L is required to provide systemic protection against secondary tumors. These data suggest that CD103+ CD8 T cell formation in tumors can occur independent of the two-factor authentication provided by CD4 T cells and highlight CD103+ CD8 T cells as a distinct differentiation decision from CD4-dependent central memory.
Collapse
Affiliation(s)
- Terry R Medler
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
| | - Gwen Kramer
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
| | - Shelly Bambina
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
| | - Andrew J Gunderson
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The OH State University, Columbus, OH, 43210, USA
| | - Alejandro Alice
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
| | - Tiffany Blair
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
| | - Lauren Zebertavage
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
| | - Thomas Duhen
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
| | - Rebekka Duhen
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
| | - Kristina Young
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
- The Oregon Clinic, Portland, OR, 97213, USA
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
- The Oregon Clinic, Portland, OR, 97213, USA
| | - Michael J Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA.
| |
Collapse
|
38
|
Chen K, Wang N, Zhang X, Wang M, Liu Y, Shi Y. Potentials of saponins-based adjuvants for nasal vaccines. Front Immunol 2023; 14:1153042. [PMID: 37020548 PMCID: PMC10067588 DOI: 10.3389/fimmu.2023.1153042] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/07/2023] [Indexed: 03/22/2023] Open
Abstract
Respiratory infections are a major public health concern caused by pathogens that colonize and invade the respiratory mucosal surface. Nasal vaccines have the advantage of providing protection at the primary site of pathogen infection, as they induce higher levels of mucosal secretory IgA antibodies and antigen-specific T and B cell responses. Adjuvants are crucial components of vaccine formulation that enhance the immunogenicity of the antigen to confer long-term and effective protection. Saponins, natural glycosides derived from plants, shown potential as vaccine adjuvants, as they can activate the mammalian immune system. Several licensed human vaccines containing saponins-based adjuvants administrated through intramuscular injection have demonstrated good efficacy and safety. Increasing evidence suggests that saponins can also be used as adjuvants for nasal vaccines, owing to their safety profile and potential to augment immune response. In this review, we will discuss the structure-activity-relationship of saponins, their important role in nasal vaccines, and future prospects for improving their efficacy and application in nasal vaccine for respiratory infection.
Collapse
Affiliation(s)
- Kai Chen
- Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ning Wang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaomin Zhang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meng Wang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanyu Liu
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yun Shi
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yun Shi,
| |
Collapse
|
39
|
Henry CM, Castellanos CA, Reis E Sousa C. DNGR-1-mediated cross-presentation of dead cell-associated antigens. Semin Immunol 2023; 66:101726. [PMID: 36758378 DOI: 10.1016/j.smim.2023.101726] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023]
Abstract
Conventional dendritic cells type 1 (cDC1) are critical for inducing protective CD8+ T cell responses to tumour and viral antigens. In many instances, cDC1 access those antigens in the form of material internalised from dying tumour or virally-infected cells. How cDC1 extract dead cell-associated antigens and cross-present them in the form of peptides bound to MHC class I molecules to CD8+ T cells remains unclear. Here we review the biology of dendritic cell natural killer group receptor-1 (DNGR-1; also known as CLEC9A), a C-type lectin receptor highly expressed on cDC1 that plays a key role in this process. We highlight recent advances that support a function for DNGR-1 signalling in promoting inducible rupture of phagocytic or endocytic compartments containing dead cell debris, thereby making dead cell-associated antigens accessible to the endogenous MHC class I processing and presentation machinery of cDC1. We further review how DNGR-1 detects dead cells, as well as the functions of the receptor in anti-viral and anti-tumour immunity. Finally, we highlight how the study of DNGR-1 has opened new perspectives into cross-presentation, some of which may have applications in immunotherapy of cancer and vaccination against viral diseases.
Collapse
Affiliation(s)
- Conor M Henry
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Carlos A Castellanos
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Caetano Reis E Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
40
|
Zagorulya M, Spranger S. Once upon a prime: DCs shape cancer immunity. Trends Cancer 2023; 9:172-184. [PMID: 36357313 PMCID: PMC10827483 DOI: 10.1016/j.trecan.2022.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
Cytotoxic CD8+ T cells are potent killers of diseased cells, but their functional capacity is often compromised in cancer. The quality of antitumor T cell immunity is determined during T cell priming in the lymph node and further influenced by the local microenvironment of the tumor. Increasing evidence indicates that dendritic cells (DCs) have the capacity to precisely regulate the functional quality of antitumor T cell responses in both locations. In this review, we discuss recent advances in our understanding of how distinct DC-derived signals influence CD8+ T cell differentiation and antitumor functions. Insight into the mechanisms of DC-mediated regulation of antitumor immunity could inspire the development of improved approaches to prevent and reverse T cell dysfunction in cancer.
Collapse
Affiliation(s)
- Maria Zagorulya
- Department of Biology, MIT, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Stefani Spranger
- Department of Biology, MIT, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Ludwig Center at MIT's Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
41
|
Redondo-Urzainqui A, Hernández-García E, Cook ECL, Iborra S. Dendritic cells in energy balance regulation. Immunol Lett 2023; 253:19-27. [PMID: 36586424 DOI: 10.1016/j.imlet.2022.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
Besides their well-known role in initiating adaptive immune responses, several groups have studied the role of dendritic cells (DCs) in the context of chronic metabolic inflammation, such as in diet-induced obesity (DIO) or metabolic-associated fatty liver disease. DCs also have an important function in maintaining metabolic tissue homeostasis in steady-state conditions. In this review, we will briefly describe the different DC subsets, the murine models available to assess their function, and discuss the role of DCs in regulating energy balance and maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Ana Redondo-Urzainqui
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Elena Hernández-García
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Emma Clare Laura Cook
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| | - Salvador Iborra
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| |
Collapse
|
42
|
Scur M, Parsons BD, Dey S, Makrigiannis AP. The diverse roles of C-type lectin-like receptors in immunity. Front Immunol 2023; 14:1126043. [PMID: 36923398 PMCID: PMC10008955 DOI: 10.3389/fimmu.2023.1126043] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
Our understanding of the C-type lectin-like receptors (CTLRs) and their functions in immunity have continued to expand from their initial roles in pathogen recognition. There are now clear examples of CTLRs acting as scavenger receptors, sensors of cell death and cell transformation, and regulators of immune responses and homeostasis. This range of function reflects an extensive diversity in the expression and signaling activity between individual CTLR members of otherwise highly conserved families. Adding to this diversity is the constant discovery of new receptor binding capabilities and receptor-ligand interactions, distinct cellular expression profiles, and receptor structures and signaling mechanisms which have expanded the defining roles of CTLRs in immunity. The natural killer cell receptors exemplify this functional diversity with growing evidence of their activity in other immune populations and tissues. Here, we broadly review select families of CTLRs encoded in the natural killer cell gene complex (NKC) highlighting key receptors that demonstrate the complex multifunctional capabilities of these proteins. We focus on recent evidence from research on the NKRP1 family of CTLRs and their interaction with the related C-type lectin (CLEC) ligands which together exhibit essential immune functions beyond their defined activity in natural killer (NK) cells. The ever-expanding evidence for the requirement of CTLR in numerous biological processes emphasizes the need to better understand the functional potential of these receptor families in immune defense and pathological conditions.
Collapse
Affiliation(s)
- Michal Scur
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Brendon D Parsons
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Sayanti Dey
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Andrew P Makrigiannis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
43
|
Chen X, Liu X, Jiang Y, Xia N, Liu C, Luo W. Abnormally primed CD8 T cells: The Achilles' heel of CHB. Front Immunol 2023; 14:1106700. [PMID: 36936922 PMCID: PMC10014547 DOI: 10.3389/fimmu.2023.1106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection continues to be a significant public health challenge, and more than 250 million people around world are infected with HBV. The clearance of HBV with virus-specific CD8 T cells is critical for a functional cure. However, naïve HBV-specific CD8 T cells are heavily hindered during the priming process, and this phenomenon is closely related to abnormal cell and signal interactions in the complex immune microenvironment. Here, we briefly summarize the recent progress in understanding the abnormal priming of HBV-specific CD8 T cells and some corresponding immunotherapies to facilitate their functional recovery, which provides a novel perspective for the design and development of immunotherapy for chronic HBV infection (CHB). Finally, we also highlight the balance between viral clearance and pathological liver injury induced by CD8 T-cell activation that should be carefully considered during drug development.
Collapse
Affiliation(s)
- Xiaoqing Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Xue Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Yichao Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
- The Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, Fujian, China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
- *Correspondence: Wenxin Luo, ; Chao Liu,
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
- *Correspondence: Wenxin Luo, ; Chao Liu,
| |
Collapse
|
44
|
Jin C, Ali A, Iskantar A, Fotaki G, Wang H, Essand M, Karlsson-Parra A, Yu D. Intratumoral administration of pro-inflammatory allogeneic dendritic cells improved the anti-tumor response of systemic anti-CTLA-4 treatment via unleashing a T cell-dependent response. Oncoimmunology 2022; 11:2099642. [PMID: 35859733 PMCID: PMC9291714 DOI: 10.1080/2162402x.2022.2099642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the oncology field. However, a significant number of patients do not respond, at least partly due to the lack of preexisting anti-tumor T-cell immunity. Therefore, it is emergent to add an immune-priming step to improve efficacy. Here, we report a combined approach consisting of intratumoral administration of pro-inflammatory allogeneic dendritic cells (AlloDCs) and systemic treatment with αCTLA-4 that can drastically improve the anti-tumor efficacy compared to αCTLA-4 monotherapy. When evaluated in mice with large established CT-26 tumors, monotherapy with αCTLA-4 neither delayed tumor progression nor improved mice survival. However, combination treatment of AlloDCs and αCTLA-4 drastically improved the effectiveness, with 70% of mice being cured. This effect was T cell-dependent, and all survived mice rejected a subsequent tumor re-challenge. Further investigation revealed an immune-inflamed tumor microenvironment (TME) in the combination treatment group characterized by enhanced infiltration of activated antigen-presenting endogenous DCs and CD8+ T cells with a tissue-resident memory (TRM) phenotype (CD49a+CD103+). This correlated with elevated levels of tumor-specific CD39+CD103+CD8+ T cells in the tumor and “tumor-matching” NKG2D+CD39+CX3CR1+CD8+ T cells in peripheral blood. Moreover, splenocytes from mice in the combination treatment group secreted significantly higher IFN-γ upon stimulation with the peptide from the endogenous CT-26 retroviral gp70 (model neoantigen), confirming the induction of a tumor-specific CD8+ T-cell response. Taken together, these data indicate a strong anti-tumor synergy between AlloDCs and αCTLA-4 that warrant further clinical investigation with the corresponding human AlloDC product (ilixadencel) for patients receiving αCTLA-4 therapy.
Collapse
Affiliation(s)
- Chuan Jin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Arwa Ali
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Alexandros Iskantar
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Grammatiki Fotaki
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Di Yu
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
45
|
Hackstein CP, Costigan D, Drexhage L, Pearson C, Bullers S, Ilott N, Akther HD, Gu Y, FitzPatrick MEB, Harrison OJ, Garner LC, Mann EH, Pandey S, Friedrich M, Provine NM, Uhlig HH, Marchi E, Powrie F, Klenerman P, Thornton EE. A conserved population of MHC II-restricted, innate-like, commensal-reactive T cells in the gut of humans and mice. Nat Commun 2022; 13:7472. [PMID: 36463279 PMCID: PMC9719512 DOI: 10.1038/s41467-022-35126-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022] Open
Abstract
Interactions with commensal microbes shape host immunity on multiple levels and play a pivotal role in human health and disease. Tissue-dwelling, antigen-specific T cells are poised to respond to local insults, making their phenotype important in the relationship between host and microbes. Here we show that MHC-II restricted, commensal-reactive T cells in the colon of both humans and mice acquire transcriptional and functional characteristics associated with innate-like T cells. This cell population is abundant and conserved in the human and murine colon and endowed with polyfunctional effector properties spanning classic Th1- and Th17-cytokines, cytotoxic molecules, and regulators of epithelial homeostasis. T cells with this phenotype are increased in ulcerative colitis patients, and their presence aggravates pathology in dextran sodium sulphate-treated mice, pointing towards a pathogenic role in colitis. Our findings add to the expanding spectrum of innate-like immune cells positioned at the frontline of intestinal immune surveillance, capable of acting as sentinels of microbes and the local cytokine milieu.
Collapse
Affiliation(s)
- Carl-Philipp Hackstein
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dana Costigan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Linnea Drexhage
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Claire Pearson
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Samuel Bullers
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Nicholas Ilott
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Hossain Delowar Akther
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yisu Gu
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Michael E B FitzPatrick
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Oliver J Harrison
- Center for Fundamental Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA
- Department of Immunology, University of Washington, 750 Republican St, Seattle, WA, 98108, USA
| | - Lucy C Garner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Elizabeth H Mann
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Sumeet Pandey
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Matthias Friedrich
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Nicholas M Provine
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, and Biomedical Research Centre, and Department of Paediatrics, University of Oxford, Oxford, OX39DU, UK
| | - Emanuele Marchi
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Emily E Thornton
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK.
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
46
|
Liu J, Du L, Yi S, Li L, Lin Y, Bi Y, Zhu G, Jing X, Song W, Tang H. Murine lung cDC1s inhibit memory Th2 cell generation by reducing CD62L + memory precursors via IL-12. Allergy 2022; 77:3467-3470. [PMID: 35933716 DOI: 10.1111/all.15470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/08/2022] [Accepted: 08/04/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Jianguo Liu
- Department of Rheumatology and Autoimmunology, Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Linqing Du
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shuying Yi
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Lina Li
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yan Lin
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yanan Bi
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Guangming Zhu
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiuli Jing
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wengang Song
- Department of Rheumatology and Autoimmunology, Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hua Tang
- Department of Rheumatology and Autoimmunology, Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Institute of Infection and Immunity, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
47
|
Advancements in the characterization of tissue resident memory T cells in skin disease. Clin Immunol 2022; 245:109183. [DOI: 10.1016/j.clim.2022.109183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
|
48
|
Al Moussawy M, Abdelsamed HA. Non-cytotoxic functions of CD8 T cells: “repentance of a serial killer”. Front Immunol 2022; 13:1001129. [PMID: 36172358 PMCID: PMC9511018 DOI: 10.3389/fimmu.2022.1001129] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/25/2022] [Indexed: 12/01/2022] Open
Abstract
Cytotoxic CD8 T cells (CTLs) are classically described as the “serial killers” of the immune system, where they play a pivotal role in protective immunity against a wide spectrum of pathogens and tumors. Ironically, they are critical drivers of transplant rejection and autoimmune diseases, a scenario very similar to the famous novel “The strange case of Dr. Jekyll and Mr. Hyde”. Until recently, it has not been well-appreciated whether CTLs can also acquire non-cytotoxic functions in health and disease. Several investigations into this question revealed their non-cytotoxic functions through interactions with various immune and non-immune cells. In this review, we will establish a new classification for CD8 T cell functions including cytotoxic and non-cytotoxic. Further, we will discuss this novel concept and speculate on how these functions could contribute to homeostasis of the immune system as well as immunological responses in transplantation, cancer, and autoimmune diseases.
Collapse
Affiliation(s)
- Mouhamad Al Moussawy
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hossam A. Abdelsamed
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Center, School of Medicine, Pittsburgh, PA, United States
- *Correspondence: Hossam A. Abdelsamed,
| |
Collapse
|
49
|
Yenyuwadee S, Sanchez-Trincado Lopez JL, Shah R, Rosato PC, Boussiotis VA. The evolving role of tissue-resident memory T cells in infections and cancer. SCIENCE ADVANCES 2022; 8:eabo5871. [PMID: 35977028 PMCID: PMC9385156 DOI: 10.1126/sciadv.abo5871] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/05/2022] [Indexed: 06/12/2023]
Abstract
Resident memory T cells (TRM) form a distinct type of T memory cells that stably resides in tissues. TRM form an integral part of the immune sensing network and have the ability to control local immune homeostasis and participate in immune responses mediated by pathogens, cancer, and possibly autoantigens during autoimmunity. TRM express residence gene signatures, functional properties of both memory and effector cells, and remarkable plasticity. TRM have a well-established role in pathogen immunity, whereas their role in antitumor immune responses and immunotherapy is currently evolving. As TRM form the most abundant T memory cell population in nonlymphoid tissues, they are attractive targets for therapeutic exploitation. Here, we provide a concise review of the development and physiological role of CD8+ TRM, their involvement in diseases, and their potential therapeutic exploitation.
Collapse
Affiliation(s)
- Sasitorn Yenyuwadee
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jose Luis Sanchez-Trincado Lopez
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Laboratory of Immunomedicine, School of Medicine, Complutense University of Madrid, Ave Complutense S/N, 28040 Madrid, Spain
| | - Rushil Shah
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Cornell University, Ithaca, NY 14850 , USA
| | - Pamela C Rosato
- The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
50
|
Zhang M, Li N, He Y, Shi T, Jie Z. Pulmonary resident memory T cells in respiratory virus infection and their inspiration on therapeutic strategies. Front Immunol 2022; 13:943331. [PMID: 36032142 PMCID: PMC9412965 DOI: 10.3389/fimmu.2022.943331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
The immune system generates memory cells on infection with a virus for the first time. These memory cells play an essential role in protection against reinfection. Tissue-resident memory T (TRM) cells can be generated in situ once attacked by pathogens. TRM cells dominate the defense mechanism during early stages of reinfection and have gradually become one of the most popular focuses in recent years. Here, we mainly reviewed the development and regulation of various TRM cell signaling pathways in the respiratory tract. Moreover, we explored the protective roles of TRM cells in immune response against various respiratory viruses, such as Respiratory Syncytial Virus (RSV) and influenza. The complex roles of TRM cells against SARS-CoV-2 infection are also discussed. Current evidence supports the therapeutic strategies targeting TRM cells, providing more possibilities for treatment. Rational utilization of TRM cells for therapeutics is vital for defense against respiratory viruses.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Na Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yanchao He
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Tianyun Shi
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
- *Correspondence: Zhijun Jie,
| |
Collapse
|