1
|
McNitt SA, Dick JK, Hernandez-Castaneda MA, Sangala J, Pierson M, Macchietto M, Burrack KS, Crompton PD, Seydel K, Hamilton SE, Hart GT. Phenotype and function of IL-10-producing NK cells in individuals with malaria experience. JCI Insight 2025; 10:e183076. [PMID: 40337867 DOI: 10.1172/jci.insight.183076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
P.falciparum infection can trigger high levels of inflammation that lead to fever and sometimes severe disease. People living in malaria-endemic areas gradually develop resistance to symptomatic malaria and control both parasite numbers and the inflammatory response. We previously found that adaptive NK cells correlated with reduced parasite load and protection from symptoms. We also found that murine NK cell production of IL-10 protected mice from experimental cerebral malaria. Human NK cells can also secrete IL-10, but it is unknown what NK cell subsets produce IL-10 or if this is affected by malaria experience. We hypothesized that NK cell immunoregulation may lower inflammation and reduce fever induction. Here, we showed that NK cells from participants with malaria experience make significantly more IL-10 than participants with no malaria experience. We then determined the proportions of NK cells that are cytotoxic and produce IFN-γ and/or IL-10 and identified a signature of adaptive and checkpoint molecules on IL-10-producing NK cells. Lastly, we found that coculture with primary monocytes, Plasmodium-infected RBCs, and antibody induced IL-10 production by NK cells. These data suggest that NK cells may contribute to protection from malaria symptoms via IL-10 production.
Collapse
Affiliation(s)
- Sarah A McNitt
- Department of Osteopathic Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Jenna K Dick
- Division of Infectious Disease and Internal Medicine, Department of Medicine
- Center for Immunology
| | | | - Jules Sangala
- Division of Infectious Disease and Internal Medicine, Department of Medicine
- Center for Immunology
| | - Mark Pierson
- Center for Immunology
- Department of Laboratory Medicine and Pathology, and
| | - Marissa Macchietto
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kristina S Burrack
- Center for Immunology
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Division of Intramural Research, National Institute of Allergy and Infectious Disease (NIAID), NIH, Rockville, Maryland, USA
| | - Karl Seydel
- Department of Osteopathic Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Sara E Hamilton
- Center for Immunology
- Department of Laboratory Medicine and Pathology, and
| | - Geoffrey T Hart
- Division of Infectious Disease and Internal Medicine, Department of Medicine
- Center for Immunology
| |
Collapse
|
2
|
Wu HH, Leng S, Eisenstat DD, Sergi C, Leng R. Targeting p53 for immune modulation: Exploring its functions in tumor immunity and inflammation. Cancer Lett 2025; 617:217614. [PMID: 40054656 DOI: 10.1016/j.canlet.2025.217614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/18/2025]
Abstract
p53, often referred to as the "guardian of the genome," is a critical regulator of cellular responses to stress. p53 plays a dual role in tumor suppression and immune regulation. In addition to its well-known functions of maintaining genomic stability and inducing apoptosis, p53 orchestrates a complex interaction between innate and adaptive immune responses. This involvement contributes to pathogen clearance, immune surveillance, and immunogenic cell death (ICD). This review explores the influence of p53 on immune dynamics, detailing its effects on macrophages, dendritic cells, natural killer cells (NK), T cells, and B cells. This review explains how mutations in p53 disrupt immune responses, promoting tumor immune evasion, and highlights its regulation of inflammatory cytokines and pattern recognition receptors. Furthermore, p53's role in ICD marks it as a key player in antitumor immunity, which has significant implications for cancer immunotherapy. The review also discusses the role of p53 in inflammation, autoimmune diseases, and chronic infections, revealing its dual function in promoting and suppressing inflammation through interactions with NF-κB signaling. Therapeutically, approaches that target p53, including wild-type p53 reactivation and combination therapies with immune checkpoint inhibitors, show considerable promise. Advances in high-throughput technologies, such as single-cell RNA sequencing and CRISPR screens, provide new insights into the immunological functions of p53, including its role in microbiome-immune interactions and immune senescence. This comprehensive review highlights the importance of incorporating immunological insights from p53 into innovative therapeutic strategies, addressing existing knowledge gaps, and paving the way for personalized medicine.
Collapse
Affiliation(s)
- H Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| | - Sarah Leng
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - David D Eisenstat
- Department of Oncology, Cross Cancer Institute, 11560 University Ave., University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada; Department of Pediatrics, University of Alberta, 11405 - 87 Ave., Edmonton, Alberta, T6G 1C9, Canada; Department of Medical Genetics, University of Alberta, 8613 114 Street, Edmonton, Alberta, T6G 2H7, Canada; Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville, Victoria, 3052, Australia
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB, T6G 2B7, Canada; Division of Anatomical Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road Ottawa, ON, K1H 8L1, Canada
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
3
|
Nideffer J, Bach F, Nankya F, Musinguzi K, Borna Š, Mantilla M, Zedi M, Garcia Romero A, Gerungan C, Yang N, Kim S, van der Ploeg K, Camanag K, Lopez L, Nansubuga E, Nankabirwa JI, Arinaitwe E, Boonrat P, Strubbe S, Cepika AM, Takahashi S, Dorsey G, Greenhouse B, Rodriguez-Barraquer I, Kamya MR, Bacchetta R, Ssewanyana I, Haque A, Roncarolo MG, Jagannathan P. Clone tracking through repeated malaria identifies high-fidelity memory CD4 T cell responses. Sci Immunol 2025; 10:eads2957. [PMID: 40279404 DOI: 10.1126/sciimmunol.ads2957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 04/02/2025] [Indexed: 04/27/2025]
Abstract
Few studies have tracked human CD4+ T cell clones through repeated infections. We used longitudinal single-cell RNA and T cell receptor (TCR) tracking to study the functional stability and memory potential of CD4+ T cell clonotypes during repeated Plasmodium falciparum (Pf) infections in Ugandan children and adults. Nearly all clonotypes displayed a strong preference for one of seven CD4+ subsets. This phenomenon of "clonal fidelity" was influenced by clonal expansion, linking T cell polarization and proliferation in vivo. Using clone tracking, we characterized subset-specific activation trajectories and identified antigen-specific clones. Type 1 regulatory T (TR1) cells accounted for nearly 90% of Pf-specific CD4+ T cells in blood. Tracking these clones longitudinally for hundreds of days, we observed malaria-induced expansion of TR1 effectors, long-term persistence of TR1 memory cells, and high-fidelity recall responses after reinfection. This work establishes clonal fidelity as a natural phenomenon and demonstrates the stable, long-term memory potential of TR1 cells.
Collapse
Affiliation(s)
- Jason Nideffer
- Department of Medicine, Stanford University, Stanford, CA, USA
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Florian Bach
- Department of Medicine, Stanford University, Stanford, CA, USA
| | | | | | - Šimon Borna
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Michelle Mantilla
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Maato Zedi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Chloe Gerungan
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Nora Yang
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Soyeon Kim
- Department of Medicine, Stanford University, Stanford, CA, USA
| | | | - Kylie Camanag
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Luis Lopez
- Department of Medicine, Stanford University, Stanford, CA, USA
| | | | | | | | | | - Steven Strubbe
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Alma-Martina Cepika
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Saki Takahashi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Grant Dorsey
- Department of Medicine, Division of HIV, ID, and Global Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Bryan Greenhouse
- Department of Medicine, Division of HIV, ID, and Global Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Isabel Rodriguez-Barraquer
- Department of Medicine, Division of HIV, ID, and Global Medicine, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, Kampala, Uganda
| | - Rosa Bacchetta
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | - Ashraful Haque
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Maria Grazia Roncarolo
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Prasanna Jagannathan
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| |
Collapse
|
4
|
Yoo R, Jore MM, Julien J. Targeting Bottlenecks in Malaria Transmission: Antibody-Epitope Descriptions Guide the Design of Next-Generation Biomedical Interventions. Immunol Rev 2025; 330:e70001. [PMID: 39907429 PMCID: PMC11796336 DOI: 10.1111/imr.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 02/06/2025]
Abstract
Malaria continues to pose a significant burden to global health. Thus, a strong need exists for the development of a diverse panel of intervention strategies and modalities to combat malaria and achieve elimination and eradication goals. Deploying interventions that target bottlenecks in the transmission life cycle of the causative agent of malaria, Plasmodium parasites, is an attractive strategy. The development of highly potent antibody-based biologics, including vaccines, can be greatly facilitated by an in-depth molecular understanding of antibody-epitope interactions. Here, we provide an overview of structurally characterized antibodies targeting lead vaccine candidates expressed during the bottlenecks of the Plasmodium life cycle which include the pre-erythrocytic and sexual stages. The repeat region of the circumsporozoite protein (CSP), domain 1 of Pfs230 and domains 1 and 3 of Pfs48/45 are critical Plasmodium regions targeted by the most potent antibodies at the two bottlenecks of transmission, with other promising targets emerging and requiring further characterization.
Collapse
Affiliation(s)
- Randy Yoo
- Program in Molecular MedicineThe Hospital for Sick Children Research InstituteTorontoOntarioCanada
- Department of BiochemistryUniversity of TorontoTorontoOntarioCanada
| | - Matthijs M. Jore
- Department of Medical MicrobiologyRadboudumcNijmegenThe Netherlands
| | - Jean‐Philippe Julien
- Program in Molecular MedicineThe Hospital for Sick Children Research InstituteTorontoOntarioCanada
- Department of BiochemistryUniversity of TorontoTorontoOntarioCanada
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
5
|
Morang’a CM, Drake RS, Miao VN, Nyakoe NK, Amuzu DSY, Appiah V, Aniweh Y, Bediako Y, Bah SY, Shalek AK, Awandare GA, Otto TD, Amenga-Etego L. scRNA-seq reveals elevated interferon responses and TNF-α signaling via NFkB in monocytes in children with uncomplicated malaria. Exp Biol Med (Maywood) 2025; 249:10233. [PMID: 39830896 PMCID: PMC11738629 DOI: 10.3389/ebm.2024.10233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Malaria causes significant morbidity and mortality worldwide, disproportionately impacting sub-Saharan Africa. Disease phenotypes associated with Plasmodium falciparum infection can vary widely, from asymptomatic to life-threatening. To date, prevention efforts, particularly those related to vaccine development, have been hindered by an incomplete understanding of which factors impact host immune responses resulting in these divergent outcomes. Here, we conducted a field study of 224 individuals to determine host-parasite factors associated with symptomatic malaria "patients" compared to asymptomatic malaria-positive "controls" at both the community and healthy facility levels. We further performed comprehensive immune profiling to obtain deeper insights into differences in response between the pair. First, we determined the relationship between host age and parasite density in patients (n = 134/224) compared to controls (n = 90/224). Then, we applied single-cell RNA sequencing to compare the immunological phenotypes of 18,176 peripheral blood mononuclear cells isolated from a subset of the participants (n = 11/224), matched on age, sex, and parasite density. Patients had higher parasite densities compared to the controls, although the levels had a negative correlation with age in both groups, suggesting that they are key indicators of disease pathogenesis. On average, patients were characterized by a higher fractional abundance of monocytes and an upregulation of innate immune responses, including those to type I and type II interferons and tumor necrosis factor-alpha signaling via NFκB. Further, in the patients, we identified more putative interactions between antigen-presenting cells and proliferating CD4 T cells, and naïve CD8 T cells driven by MHC-I and MHC-II signaling pathways, respectively. Together, these findings highlight transcriptional differences between immune cell subsets associated with disease phenotypes that may help guide the development of improved malaria vaccines and new therapeutic interventions.
Collapse
Affiliation(s)
- Collins M. Morang’a
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Riley S. Drake
- Program in Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Boston, MA, United States
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, United States
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Vincent N. Miao
- Program in Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Boston, MA, United States
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, United States
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Nancy K. Nyakoe
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Dominic S. Y. Amuzu
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Vincent Appiah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Yaw Bediako
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Saikou Y. Bah
- School of Infection and Immunity, Medical, Veterinary, and Life Sciences (MVLS), University of Glasgow, Glasgow, United Kingdom
| | - Alex K. Shalek
- Program in Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Boston, MA, United States
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, United States
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Thomas D. Otto
- School of Infection and Immunity, Medical, Veterinary, and Life Sciences (MVLS), University of Glasgow, Glasgow, United Kingdom
| | - Lucas Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| |
Collapse
|
6
|
Heintzman DR, Sinard RC, Fisher EL, Ye X, Patterson AR, Elasy JH, Voss K, Chi C, Sugiura A, Rodriguez-Garcia GJ, Chowdhury NU, Arner EN, Krystoviak ES, Mason FM, Toudji YT, Steiner KK, Khan W, Olson LM, Jones AL, Hong HS, Bass L, Beier KL, Deng W, Lyssiotis CA, Newcomb DC, Bick AG, Rathmell WK, Wilson JT, Rathmell JC. Subset-specific mitochondrial stress and DNA damage shape T cell responses to fever and inflammation. Sci Immunol 2024; 9:eadp3475. [PMID: 39303018 PMCID: PMC11607909 DOI: 10.1126/sciimmunol.adp3475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/05/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Heat is a cardinal feature of inflammation, yet its impacts on immune cells remain uncertain. We show that moderate-grade fever temperatures (39°C) increased murine CD4 T cell metabolism, proliferation, and inflammatory effector activity while decreasing regulatory T cell suppressive capacity. However, heat-exposed T helper 1 (TH1) cells selectively developed mitochondrial stress and DNA damage that activated Trp53 and stimulator of interferon genes pathways. Although many TH1 cells subjected to such temperatures died, surviving TH1 cells exhibited increased mitochondrial mass and enhanced activity. Electron transport chain complex 1 (ETC1) was rapidly impaired under fever-range temperatures, a phenomenon that was specifically detrimental to TH1 cells. TH1 cells with elevated DNA damage and ETC1 signatures were also detected in human chronic inflammation. Thus, fever-relevant temperatures disrupt ETC1 to selectively drive apoptosis or adaptation of TH1 cells to maintain genomic integrity and enhance effector functions.
Collapse
Affiliation(s)
- Darren R Heintzman
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachael C Sinard
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Emilie L Fisher
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew R Patterson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joel H Elasy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelsey Voss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Channing Chi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ayaka Sugiura
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gabriel J Rodriguez-Garcia
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nowrin U Chowdhury
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily N Arner
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Evan S Krystoviak
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Cell Imaging Shared Resource, Vanderbilt University, Nashville, TN, USA
| | - Frank M Mason
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yasmine T Toudji
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - KayLee K Steiner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wasay Khan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lana M Olson
- Vanderbilt Technologies for Advanced Genomics (VANTAGE), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Angela L Jones
- Vanderbilt Technologies for Advanced Genomics (VANTAGE), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hanna S Hong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Lindsay Bass
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katherine L Beier
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wentao Deng
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Dawn C Newcomb
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander G Bick
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - W Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
7
|
Wang LT, Cooper AJR, Farrell B, Miura K, Diouf A, Müller-Sienerth N, Crosnier C, Purser L, Kirtley PJ, Maciuszek M, Barrett JR, McHugh K, Ogwang R, Tucker C, Li S, Doumbo S, Doumtabe D, Pyo CW, Skinner J, Nielsen CM, Silk SE, Kayentao K, Ongoiba A, Zhao M, Nguyen DC, Lee FEH, Minassian AM, Geraghty DE, Traore B, Seder RA, Wilder BK, Crompton PD, Wright GJ, Long CA, Draper SJ, Higgins MK, Tan J. Natural malaria infection elicits rare but potent neutralizing antibodies to the blood-stage antigen RH5. Cell 2024; 187:4981-4995.e14. [PMID: 39059381 PMCID: PMC11383431 DOI: 10.1016/j.cell.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is the most advanced blood-stage malaria vaccine candidate and is being evaluated for efficacy in endemic regions, emphasizing the need to study the underlying antibody response to RH5 during natural infection, which could augment or counteract responses to vaccination. Here, we found that RH5-reactive B cells were rare, and circulating immunoglobulin G (IgG) responses to RH5 were short-lived in malaria-exposed Malian individuals, despite repeated infections over multiple years. RH5-specific monoclonal antibodies isolated from eight malaria-exposed individuals mostly targeted non-neutralizing epitopes, in contrast to antibodies isolated from five RH5-vaccinated, malaria-naive UK individuals. However, MAD8-151 and MAD8-502, isolated from two malaria-exposed Malian individuals, were among the most potent neutralizers out of 186 antibodies from both cohorts and targeted the same epitopes as the most potent vaccine-induced antibodies. These results suggest that natural malaria infection may boost RH5-vaccine-induced responses and provide a clear strategy for the development of next-generation RH5 vaccines.
Collapse
Affiliation(s)
- Lawrence T Wang
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Medical Scientist Training Program, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Andrew J R Cooper
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Brendan Farrell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | - Cécile Crosnier
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Lauren Purser
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Payton J Kirtley
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97006, USA
| | - Maciej Maciuszek
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jordan R Barrett
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Kirsty McHugh
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Rodney Ogwang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Courtney Tucker
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Shanping Li
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Point G, BP 1805 Bamako, Mali
| | - Didier Doumtabe
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Point G, BP 1805 Bamako, Mali
| | - Chul-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Carolyn M Nielsen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Sarah E Silk
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Point G, BP 1805 Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Point G, BP 1805 Bamako, Mali
| | - Ming Zhao
- Protein Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Doan C Nguyen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Angela M Minassian
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Point G, BP 1805 Bamako, Mali
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brandon K Wilder
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97006, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Gavin J Wright
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
8
|
Heruye SH, Myslinski J, Zeng C, Zollman A, Makino S, Nanamatsu A, Mir Q, Janga SC, Doud EH, Eadon MT, Maier B, Hamada M, Tran TM, Dagher PC, Hato T. Inflammation primes the murine kidney for recovery by activating AZIN1 adenosine-to-inosine editing. J Clin Invest 2024; 134:e180117. [PMID: 38954486 PMCID: PMC11364396 DOI: 10.1172/jci180117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
The progression of kidney disease varies among individuals, but a general methodology to quantify disease timelines is lacking. Particularly challenging is the task of determining the potential for recovery from acute kidney injury following various insults. Here, we report that quantitation of post-transcriptional adenosine-to-inosine (A-to-I) RNA editing offers a distinct genome-wide signature, enabling the delineation of disease trajectories in the kidney. A well-defined murine model of endotoxemia permitted the identification of the origin and extent of A-to-I editing, along with temporally discrete signatures of double-stranded RNA stress and adenosine deaminase isoform switching. We found that A-to-I editing of antizyme inhibitor 1 (AZIN1), a positive regulator of polyamine biosynthesis, serves as a particularly useful temporal landmark during endotoxemia. Our data indicate that AZIN1 A-to-I editing, triggered by preceding inflammation, primes the kidney and activates endogenous recovery mechanisms. By comparing genetically modified human cell lines and mice locked in either A-to-I-edited or uneditable states, we uncovered that AZIN1 A-to-I editing not only enhances polyamine biosynthesis but also engages glycolysis and nicotinamide biosynthesis to drive the recovery phenotype. Our findings implicate that quantifying AZIN1 A-to-I editing could potentially identify individuals who have transitioned to an endogenous recovery phase. This phase would reflect their past inflammation and indicate their potential for future recovery.
Collapse
Affiliation(s)
- Segewkal Hawaze Heruye
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jered Myslinski
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chao Zeng
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Amy Zollman
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shinichi Makino
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Azuma Nanamatsu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Quoseena Mir
- Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, Indiana, USA
| | - Sarath Chandra Janga
- Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, Indiana, USA
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael T. Eadon
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bernhard Maier
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michiaki Hamada
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
- AIST–Waseda University Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Tuan M. Tran
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| | - Pierre C. Dagher
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Takashi Hato
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
9
|
Boyle MJ, Engwerda CR, Jagannathan P. The impact of Plasmodium-driven immunoregulatory networks on immunity to malaria. Nat Rev Immunol 2024; 24:637-653. [PMID: 38862638 PMCID: PMC11688169 DOI: 10.1038/s41577-024-01041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Abstract
Malaria, caused by infection with Plasmodium parasites, drives multiple regulatory responses across the immune landscape. These regulatory responses help to protect against inflammatory disease but may in some situations hamper the acquisition of adaptive immune responses that clear parasites. In addition, the regulatory responses that occur during Plasmodium infection may negatively affect malaria vaccine efficacy in the most at-risk populations. Here, we discuss the specific cellular mechanisms of immunoregulatory networks that develop during malaria, with a focus on knowledge gained from human studies and studies that involve the main malaria parasite to affect humans, Plasmodium falciparum. Leveraging this knowledge may lead to the development of new therapeutic approaches to increase protective immunity to malaria during infection or after vaccination.
Collapse
Affiliation(s)
- Michelle J Boyle
- Life Sciences Division, Burnet Institute, Melbourne, Victoria, Australia.
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | | | - Prasanna Jagannathan
- Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Silva NI, Souza PFL, Silva BF, Fonseca SG, Gardinassi LG. Host Transcriptional Meta-signatures Reveal Diagnostic Biomarkers for Plasmodium falciparum Malaria. J Infect Dis 2024; 230:e474-e485. [PMID: 38271704 PMCID: PMC11326815 DOI: 10.1093/infdis/jiae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/28/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Transcriptomics has been used to evaluate immune responses during malaria in diverse cohorts worldwide. However, the high heterogeneity of cohorts and poor generalization of transcriptional signatures reported in each study limit their potential clinical applications. METHODS We compiled 28 public data sets containing 1556 whole-blood or peripheral blood mononuclear cell transcriptome samples. We estimated effect sizes with Hedge's g value and the DerSimonian-Laird random-effects model for meta-analyses of uncomplicated malaria. Random forest models identified gene signatures that discriminate malaria from bacterial infections or malaria severity. Parasitological, hematological, immunological, and metabolomics data were used for validation. RESULTS We identified 3 gene signatures: the uncomplicated Malaria Meta-Signature, which discriminates Plasmodium falciparum malaria from uninfected controls; the Malaria or Bacteria Signature, which distinguishes malaria from sepsis and enteric fever; and the cerebral Malaria Meta-Signature, which characterizes individuals with cerebral malaria. These signatures correlate with clinical hallmark features of malaria. Blood transcription modules indicate immune regulation by glucocorticoids, whereas cell development and adhesion are associated with cerebral malaria. CONCLUSIONS Transcriptional meta-signatures reflecting immune cell responses provide potential biomarkers for translational innovation and suggest critical roles for metabolic regulators of inflammation during malaria.
Collapse
Affiliation(s)
- Nágila Isleide Silva
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Pedro Felipe Loyola Souza
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Bárbara Fernandes Silva
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Simone Gonçalves Fonseca
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Luiz Gustavo Gardinassi
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
- Departamento de Enfermagem Materno-Infantil e Saúde Pública, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
11
|
Cáceres Carrera L, Santamaría AM, Castillo AM, Romero L, Urriola E, Torres-Cosme R, Calzada JE. Detection through the use of RT-MqPCR of asymptomatic reservoirs of malaria in samples of patients from the indigenous Comarca of Guna Yala, Panama: Essential method to achieve the elimination of malaria. PLoS One 2024; 19:e0305558. [PMID: 39046959 PMCID: PMC11268588 DOI: 10.1371/journal.pone.0305558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 06/02/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Plasmodium vivax is the main causative agent of malaria in Panama. However, the prevalence of asymptomatic infections in the different endemic regions remains unknown. Understanding the epidemiological behavior of asymptomatic infections is essential for the elimination of malaria. This study aimed to determine the prevalence of asymptomatic malarial infections in one of the main endemic regions of Panama using multiplex real-time reverse transcription RT-MqPCR. METHODS A cross-sectional study was conducted in three communities in the Guna Yala Comarca. A total of 551 thick blood smears and their respective samples on filter paper were collected from volunteers of different ages and sexes from June 20 to 25, 2016. Infections by the Plasmodium spp. were diagnosed using microscopy and RT-MqPCR. All statistical analyses were performed using the R software. RESULTS The average prevalence of asymptomatic infections by P. vivax in the three communities detected by RT-MqPCR was 9.3%, with Ukupa having the highest prevalence (13.4%), followed by Aidirgandi (11.1%) and Irgandi (3.3%). A total of 74 samples were diagnosed as asymptomatic infections using RT-MqPCR. Light microscopy (LM) detected that 17.6% (13/74) of the asymptomatic samples and 82.4% (61/74) were diagnosed as false negatives. A 100% correlation was observed between samples diagnosed using LM and RT-MqPCR. A total of 52.7% (39/74) of the asymptomatic patients were female and 85.1% (63/74) were registered between the ages of 1 and 21 years. Factors associated with asymptomatic infection were community (aOR = 0.38 (95% CI 0.17-0.83), p < 0.001) and age aOR = 0.98 (95% CI 0.97-1.00), p < 0.05); F = 5.38; p < 0.05). CONCLUSIONS This study provides novel evidence of the considerable prevalence of asymptomatic P. vivax infections in the endemic region of Kuna Yala, representing a new challenge that requires immediate attention from the National Malaria Program. The results of this study provide essential information for the health authorities responsible for developing new policies. Furthermore, it will allow program administrators to reorient and design effective malaria control strategies that consider asymptomatic infections as a fundamental part of malaria control and move towards fulfilling their commitment to eliminate it.
Collapse
Affiliation(s)
- Lorenzo Cáceres Carrera
- Departmento de Entomología Médica del Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panamá
| | - Ana María Santamaría
- Departmento de Parasitología del Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panamá
| | - Anakena Margarita Castillo
- Departmento de Entomología Médica del Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panamá
| | - Luis Romero
- Laboratorio Central de Referencia en Salud Pública del Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panamá
| | - Eduardo Urriola
- Facultad de Ciencias Biomédicas, Universidad Latina de Panamá, Ciudad de Panamá, Panamá
| | - Rolando Torres-Cosme
- Departmento de Entomología Médica del Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panamá
| | - José Eduardo Calzada
- Departmento de Parasitología del Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panamá
| |
Collapse
|
12
|
Holla P, Bhardwaj J, Tran TM. Mature beyond their years: young children who escape detection of parasitemia despite living in settings of intense malaria transmission. Biochem Soc Trans 2024; 52:1025-1034. [PMID: 38752830 PMCID: PMC11209762 DOI: 10.1042/bst20230401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Despite having the highest risk of progressing to severe disease due to lack of acquired immunity, the youngest children living in areas of highly intense malaria transmission have long been observed to be infected at lower rates than older children. Whether this observation is due to reduced exposure to infectious mosquito bites from behavioral and biological factors, maternally transferred immunity, genetic factors, or enhanced innate immunity in the young child has intrigued malaria researchers for over half a century. Recent evidence suggests that maternally transferred immunity may be limited to early infancy and that the young child's own immune system may contribute to control of malarial symptoms early in life and prior to the development of more effective adaptive immunity. Prospective studies of active and passive detection of Plasmodium falciparum blood-stage infections have identified young children (<5 years old) who remain uninfected through a defined surveillance period despite living in settings of highly intense malaria transmission. Yet, little is known about the potential immunological basis for this 'aparasitemic' phenotype. In this review, we summarize the observational evidence for this phenotype in field studies and examine potential reasons why these children escape detection of parasitemia, covering factors that are either extrinsic or intrinsic to their developing immune system. We discuss the challenges of distinguishing malaria protection from lack of malaria exposure in field studies. We also identify gaps in our knowledge regarding cellular immunity in the youngest age group and propose directions that researchers may take to address these gaps.
Collapse
Affiliation(s)
- Prasida Holla
- Ryan White Center for Global Health and Pediatric Infectious Diseases, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| | - Jyoti Bhardwaj
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| | - Tuan M. Tran
- Ryan White Center for Global Health and Pediatric Infectious Diseases, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| |
Collapse
|
13
|
Ferrer P, Berry AA, Bucsan AN, Prajapati SK, Krishnan K, Barbeau MC, Rickert DM, Guerrero SM, Usui M, Abebe Y, Patil A, Chakravarty S, Billingsley PF, Pa'ahana-Brown F, Strauss K, Shrestha B, Nomicos E, Deye GA, Sim BKL, Hoffman SL, Williamson KC, Lyke KE. Repeat controlled human Plasmodium falciparum infections delay bloodstream patency and reduce symptoms. Nat Commun 2024; 15:5194. [PMID: 38890271 PMCID: PMC11189388 DOI: 10.1038/s41467-024-49041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Resistance to clinical malaria takes years to develop even in hyperendemic regions and sterilizing immunity has rarely been observed. To evaluate the maturation of the host response against controlled repeat exposures to P. falciparum (Pf) NF54 strain-infected mosquitoes, we systematically monitored malaria-naïve participants through an initial exposure to uninfected mosquitoes and 4 subsequent homologous exposures to Pf-infected mosquitoes over 21 months (n = 8 males) (ClinicalTrials.gov# NCT03014258). The primary outcome was to determine whether protective immunity against parasite infection develops following repeat CHMI and the secondary outcomes were to track the clinical signs and symptoms of malaria and anti-Pf antibody development following repeat CHMI. After two exposures, time to blood stage patency increases significantly and the number of reported symptoms decreases indicating the development of clinical tolerance. The time to patency correlates positively with both anti-Pf circumsporozoite protein (CSP) IgG and CD8 + CD69+ effector memory T cell levels consistent with partial pre-erythrocytic immunity. IFNγ levels decrease significantly during the participants' second exposure to high blood stage parasitemia and could contribute to the decrease in symptoms. In contrast, CD4-CD8 + T cells expressing CXCR5 and the inhibitory receptor, PD-1, increase significantly after subsequent Pf exposures, possibly dampening the memory response and interfering with the generation of robust sterilizing immunity.
Collapse
Affiliation(s)
- Patricia Ferrer
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Andrea A Berry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Allison N Bucsan
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Surendra K Prajapati
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Karthik Krishnan
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Michelle C Barbeau
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - David M Rickert
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Sandra Mendoza Guerrero
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Miho Usui
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | | | | | | | | | - Faith Pa'ahana-Brown
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathy Strauss
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Biraj Shrestha
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Effie Nomicos
- Division of Microbiology and Infectious Diseases, Parasitology and International Programs Branch, NIAID, NIH, Bethesda, MD, USA
| | - Gregory A Deye
- Division of Microbiology and Infectious Diseases, Parasitology and International Programs Branch, NIAID, NIH, Bethesda, MD, USA
| | | | | | - Kim C Williamson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Prah DA, Laryea-Akrong E. Asymptomatic Low-Density Plasmodium falciparum Infections: Parasites Under the Host's Immune Radar? J Infect Dis 2024; 229:1913-1918. [PMID: 38349649 PMCID: PMC11175676 DOI: 10.1093/infdis/jiad581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/18/2023] [Indexed: 06/15/2024] Open
Abstract
A large body of evidence suggests that low parasite carriage in Plasmodium falciparum asymptomatic infection is required for the maintenance of malaria immunity. However, the fact that treating such infections has little to no impact on subsequent clinical malaria is rarely noted. In this paper, we review data and argue that low-density parasite carriage in asymptomatic infection may not support host immune processes and that parasites are virtually under the host's immunological radar. We also discuss factors that may be constraining parasitemia in asymptomatic infections from reaching the threshold required to cause clinical symptoms. A thorough understanding of this infectious reservoir is essential for malaria control and eradication because asymptomatic infections contribute significantly to Plasmodium transmission.
Collapse
Affiliation(s)
- Diana Ahu Prah
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
- Faculty of Applied Sciences, Department of Science Laboratory Technology, Accra Technical University, Accra, Ghana
| | - Elizabeth Laryea-Akrong
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
15
|
Johnson AE, Upadhye A, Knight V, Gaskin EL, Turnbull LB, Ayuku D, Nyalumbe M, Abuonji E, John CC, McHenry MS, Tran TM, Ayodo G. Subclinical Inflammation in Asymptomatic Schoolchildren With Plasmodium falciparum Parasitemia Correlates With Impaired Cognition. J Pediatric Infect Dis Soc 2024; 13:288-296. [PMID: 38512283 PMCID: PMC11520740 DOI: 10.1093/jpids/piae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Subclinical inflammation and cognitive deficits have been separately associated with asymptomatic Plasmodium falciparum infections in schoolchildren. However, whether parasite-induced inflammation is associated with worse cognition has not been addressed. We conducted a cross-sectional pilot study to better assess the effect of asymptomatic P. falciparum parasitemia and inflammation on cognition in Kenyan schoolchildren. METHODS We enrolled 240 children aged 7-14 years residing in high malaria transmission in Western Kenya. Children performed five fluid cognition tests from a culturally adapted NIH toolbox and provided blood samples for blood smears and laboratory testing. Parasite densities and plasma concentrations of 14 cytokines were determined by quantitative PCR and multiplex immunoassay, respectively. Linear regression models were used to determine the effects of parasitemia and plasma cytokine concentrations on each of the cognitive scores as well as a composite cognitive score while controlling for age, gender, maternal education, and an interaction between age and P. falciparum infection status. RESULTS Plasma concentrations of TNF, IL-6, IL-8, and IL-10 negatively correlated with the composite score and at least one of the individual cognitive tests. Parasite density in parasitemic children negatively correlated with the composite score and measures of cognitive flexibility and attention. In the adjusted model, parasite density and TNF, but not P. falciparum infection status, independently predicted lower cognitive composite scores. By mediation analysis, TNF significantly mediated ~29% of the negative effect of parasitemia on cognition. CONCLUSIONS Among schoolchildren with PCR-confirmed asymptomatic P. falciparum infections, the negative effect of parasitemia on cognition could be mediated, in part, by subclinical inflammation. Additional studies are needed to validate our findings in settings of lower malaria transmission and address potential confounders that could affect both inflammation and cognitive performance.
Collapse
Affiliation(s)
- Alexander E Johnson
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Aditi Upadhye
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Veronicah Knight
- Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Erik L Gaskin
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lindsey B Turnbull
- Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David Ayuku
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
- Department of Mental Health & Behavioral Sciences, Moi University School of Medicine, Eldoret, Kenya
| | - Mark Nyalumbe
- Department of Mental Health & Behavioral Sciences, Moi University School of Medicine, Eldoret, Kenya
| | - Emily Abuonji
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chandy C John
- Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Megan S McHenry
- Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
| | - Tuan M Tran
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - George Ayodo
- Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| |
Collapse
|
16
|
McNitt SA, Dick JK, Hernandez Castaneda M, Sangala JA, Pierson M, Macchietto M, Burrack KS, Crompton PD, Seydel KB, Hamilton SE, Hart GT. Phenotype and function of IL-10 producing NK cells in individuals with malaria experience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593687. [PMID: 38798324 PMCID: PMC11118352 DOI: 10.1101/2024.05.11.593687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Plasmodium falciparum infection can trigger high levels of inflammation that lead to fever and sometimes severe disease. People living in malaria-endemic areas gradually develop resistance to symptomatic malaria and control both parasite numbers and the inflammatory response. We previously found that adaptive natural killer (NK) cells correlate with reduced parasite load and protection from symptoms. We also previously found that murine NK cell production of IL-10 can protect mice from experimental cerebral malaria. Human NK cells can also secrete IL-10, but it was unknown what NK cell subsets produce IL-10 and if this is affected by malaria experience. We hypothesize that NK cell immunoregulation may lower inflammation and reduce fever induction. Here, we show that NK cells from subjects with malaria experience make significantly more IL-10 than subjects with no malaria experience. We then determined the proportions of NK cells that are cytotoxic and produce interferon gamma and/or IL-10 and identified a signature of adaptive and checkpoint molecules on IL-10-producing NK cells. Lastly, we find that co-culture with primary monocytes, Plasmodium -infected RBCs, and antibody induces IL-10 production by NK cells. These data suggest that NK cells may contribute to protection from malaria symptoms via IL-10 production.
Collapse
|
17
|
Senkpeil L, Bhardwaj J, Little MR, Holla P, Upadhye A, Fusco EM, Swanson PA, Wiegand RE, Macklin MD, Bi K, Flynn BJ, Yamamoto A, Gaskin EL, Sather DN, Oblak AL, Simpson E, Gao H, Haining WN, Yates KB, Liu X, Murshedkar T, Richie TL, Sim BKL, Otieno K, Kariuki S, Xuei X, Liu Y, Polidoro RB, Hoffman SL, Oneko M, Steinhardt LC, Schmidt NW, Seder RA, Tran TM. Innate immune activation restricts priming and protective efficacy of the radiation-attenuated PfSPZ malaria vaccine. JCI Insight 2024; 9:e167408. [PMID: 38687615 PMCID: PMC11382880 DOI: 10.1172/jci.insight.167408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
A systems analysis was conducted to determine the potential molecular mechanisms underlying differential immunogenicity and protective efficacy results of a clinical trial of the radiation-attenuated whole-sporozoite PfSPZ vaccine in African infants. Innate immune activation and myeloid signatures at prevaccination baseline correlated with protection from P. falciparum parasitemia in placebo controls. These same signatures were associated with susceptibility to parasitemia among infants who received the highest and most protective PfSPZ vaccine dose. Machine learning identified spliceosome, proteosome, and resting DC signatures as prevaccination features predictive of protection after highest-dose PfSPZ vaccination, whereas baseline circumsporozoite protein-specific (CSP-specific) IgG predicted nonprotection. Prevaccination innate inflammatory and myeloid signatures were associated with higher sporozoite-specific IgG Ab response but undetectable PfSPZ-specific CD8+ T cell responses after vaccination. Consistent with these human data, innate stimulation in vivo conferred protection against infection by sporozoite injection in malaria-naive mice while diminishing the CD8+ T cell response to radiation-attenuated sporozoites. These data suggest a dichotomous role of innate stimulation for malaria protection and induction of protective immunity by whole-sporozoite malaria vaccines. The uncoupling of vaccine-induced protective immunity achieved by Abs from more protective CD8+ T cell responses suggests that PfSPZ vaccine efficacy in malaria-endemic settings may be constrained by opposing antigen presentation pathways.
Collapse
Affiliation(s)
- Leetah Senkpeil
- Division of Infectious Diseases, Department of Medicine
- Department of Microbiology and Immunology, and
| | | | - Morgan R Little
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Prasida Holla
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aditi Upadhye
- Division of Infectious Diseases, Department of Medicine
| | | | - Phillip A Swanson
- Cellular Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Ryan E Wiegand
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Kevin Bi
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Barbara J Flynn
- Cellular Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Ayako Yamamoto
- Cellular Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Erik L Gaskin
- Division of Infectious Diseases, Department of Medicine
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | | | - Edward Simpson
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hongyu Gao
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - W Nicholas Haining
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kathleen B Yates
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Xiaowen Liu
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | | | | | | | - Kephas Otieno
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Simon Kariuki
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Xiaoling Xuei
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yunlong Liu
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Rafael B Polidoro
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Martina Oneko
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Laura C Steinhardt
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nathan W Schmidt
- Department of Microbiology and Immunology, and
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Robert A Seder
- Cellular Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Tuan M Tran
- Division of Infectious Diseases, Department of Medicine
- Department of Microbiology and Immunology, and
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
18
|
Dunican C, Andradi-Brown C, Ebmeier S, Georgiadou A, Cunnington AJ. The malarial blood transcriptome: translational applications. Biochem Soc Trans 2024; 52:651-660. [PMID: 38421063 PMCID: PMC11088907 DOI: 10.1042/bst20230497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
The blood transcriptome of malaria patients has been used extensively to elucidate the pathophysiological mechanisms and host immune responses to disease, identify candidate diagnostic and prognostic biomarkers, and reveal new therapeutic targets for drug discovery. This review gives a high-level overview of the three main translational applications of these studies (diagnostics, prognostics, and therapeutics) by summarising recent literature and outlining the main limitations and future directions of each application. It highlights the need for consistent and accurate definitions of disease states and subject groups and discusses how prognostic studies must distinguish clearly between analyses that attempt to predict future disease states and those which attempt to discriminate between current disease states (classification). Lastly it examines how many promising therapeutics fail due to the choice of imperfect animal models for pre-clinical testing and lack of appropriate validation studies in humans, and how future transcriptional studies may be utilised to overcome some of these limitations.
Collapse
Affiliation(s)
- Claire Dunican
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Clare Andradi-Brown
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Stefan Ebmeier
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Athina Georgiadou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Aubrey J. Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| |
Collapse
|
19
|
De Biasi S, Lo Tartaro D, Neroni A, Rau M, Paschalidis N, Borella R, Santacroce E, Paolini A, Gibellini L, Ciobanu AL, Cuccorese M, Trenti T, Rubio I, Vitetta F, Cardi M, Argüello RJ, Ferraro D, Cossarizza A. Immunosenescence and vaccine efficacy revealed by immunometabolic analysis of SARS-CoV-2-specific cells in multiple sclerosis patients. Nat Commun 2024; 15:2752. [PMID: 38553477 PMCID: PMC10980723 DOI: 10.1038/s41467-024-47013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/11/2024] [Indexed: 04/02/2024] Open
Abstract
Disease-modifying therapies (DMT) administered to patients with multiple sclerosis (MS) can influence immune responses to SARS-CoV-2 and vaccine efficacy. However, data on the detailed phenotypic, functional and metabolic characteristics of antigen (Ag)-specific cells following the third dose of mRNA vaccine remain scarce. Here, using flow cytometry and 45-parameter mass cytometry, we broadly investigate the phenotype, function and the single-cell metabolic profile of SARS-CoV-2-specific T and B cells up to 8 months after the third dose of mRNA vaccine in a cohort of 94 patients with MS treated with different DMT, including cladribine, dimethyl fumarate, fingolimod, interferon, natalizumab, teriflunomide, rituximab or ocrelizumab. Almost all patients display functional immune response to SARS-CoV-2. Different metabolic profiles characterize antigen-specific-T and -B cell response in fingolimod- and natalizumab-treated patients, whose immune response differs from all the other MS treatments.
Collapse
Affiliation(s)
- Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy.
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Anita Neroni
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Moritz Rau
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | | | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Annamaria Paolini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Alin Liviu Ciobanu
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Michela Cuccorese
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Unità Sanitaria Locale AUSL/AOU Policlinico, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Unità Sanitaria Locale AUSL/AOU Policlinico, Modena, Italy
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Francesca Vitetta
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, University of Modena and Reggio Emilia, Modena, Italy
| | - Martina Cardi
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, University of Modena and Reggio Emilia, Modena, Italy
| | - Rafael José Argüello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Diana Ferraro
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy.
- National Institute for Cardiovascular Research, Bologna, Italy.
| |
Collapse
|
20
|
Peuget S, Zhou X, Selivanova G. Translating p53-based therapies for cancer into the clinic. Nat Rev Cancer 2024; 24:192-215. [PMID: 38287107 DOI: 10.1038/s41568-023-00658-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/31/2024]
Abstract
Inactivation of the most important tumour suppressor gene TP53 occurs in most, if not all, human cancers. Loss of functional wild-type p53 is achieved via two main mechanisms: mutation of the gene leading to an absence of tumour suppressor activity and, in some cases, gain-of-oncogenic function; or inhibition of the wild-type p53 protein mediated by overexpression of its negative regulators MDM2 and MDMX. Because of its high potency as a tumour suppressor and the dependence of at least some established tumours on its inactivation, p53 appears to be a highly attractive target for the development of new anticancer drugs. However, p53 is a transcription factor and therefore has long been considered undruggable. Nevertheless, several innovative strategies have been pursued for targeting dysfunctional p53 for cancer treatment. In mutant p53-expressing tumours, the predominant strategy is to restore tumour suppressor function with compounds acting either in a generic manner or otherwise selective for one or a few specific p53 mutations. In addition, approaches to deplete mutant p53 or to target vulnerabilities created by mutant p53 expression are currently under development. In wild-type p53 tumours, the major approach is to protect p53 from the actions of MDM2 and MDMX by targeting these negative regulators with inhibitors. Although the results of at least some clinical trials of MDM2 inhibitors and mutant p53-restoring compounds are promising, none of the agents has yet been approved by the FDA. Alternative strategies, based on a better understanding of p53 biology, the mechanisms of action of compounds and treatment regimens as well as the development of new technologies are gaining interest, such as proteolysis-targeting chimeras for MDM2 degradation. Other approaches are taking advantage of the progress made in immune-based therapies for cancer. In this Review, we present these ongoing clinical trials and emerging approaches to re-evaluate the current state of knowledge of p53-based therapies for cancer.
Collapse
Affiliation(s)
- Sylvain Peuget
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xiaolei Zhou
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Galina Selivanova
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
21
|
Zhang YH, Xie LH, Li J, Qi YW, Shi JJ. Classification and clinical significance of immunogenic cell death-related genes in Plasmodium falciparum infection determined by integrated bioinformatics analysis and machine learning. Malar J 2024; 23:48. [PMID: 38360586 PMCID: PMC10868002 DOI: 10.1186/s12936-024-04877-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/10/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Immunogenic cell death (ICD) is a type of regulated cell death that plays a crucial role in activating the immune system in response to various stressors, including cancer cells and pathogens. However, the involvement of ICD in the human immune response against malaria remains to be defined. METHODS In this study, data from Plasmodium falciparum infection cohorts, derived from cross-sectional studies, were analysed to identify ICD subtypes and their correlation with parasitaemia and immune responses. Using consensus clustering, ICD subtypes were identified, and their association with the immune landscape was assessed by employing ssGSEA. Differentially expressed genes (DEGs) analysis, functional enrichment, protein-protein interaction networks, and machine learning (least absolute shrinkage and selection operator (LASSO) regression and random forest) were used to identify ICD-associated hub genes linked with high parasitaemia. A nomogram visualizing these genes' correlation with parasitaemia levels was developed, and its performance was evaluated using receiver operating characteristic (ROC) curves. RESULTS In the P. falciparum infection cohort, two ICD-associated subtypes were identified, with subtype 1 showing better adaptive immune responses and lower parasitaemia compared to subtype 2. DEGs analysis revealed upregulation of proliferative signalling pathways, T-cell receptor signalling pathways and T-cell activation and differentiation in subtype 1, while subtype 2 exhibited elevated cytokine signalling and inflammatory responses. PPI network construction and machine learning identified CD3E and FCGR1A as candidate hub genes. A constructed nomogram integrating these genes demonstrated significant classification performance of high parasitaemia, which was evidenced by AUC values ranging from 0.695 to 0.737 in the training set and 0.911 to 0.933 and 0.759 to 0.849 in two validation sets, respectively. Additionally, significant correlations between the expressions of these genes and the clinical manifestation of P. falciparum infection were observed. CONCLUSION This study reveals the existence of two ICD subtypes in the human immune response against P. falciparum infection. Two ICD-associated candidate hub genes were identified, and a nomogram was constructed for the classification of high parasitaemia. This study can deepen the understanding of the human immune response to P. falciparum infection and provide new targets for the prevention and control of malaria.
Collapse
Affiliation(s)
- Yan-Hui Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
| | - Li-Hua Xie
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Jian Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yan-Wei Qi
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jia-Jian Shi
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| |
Collapse
|
22
|
Kimenyi KM, Akinyi MY, Mwikali K, Gilmore T, Mwangi S, Omer E, Gichuki B, Wambua J, Njunge J, Obiero G, Bejon P, Langhorne J, Abdi A, Ochola-Oyier LI. Distinct transcriptomic signatures define febrile malaria depending on initial infective states, asymptomatic or uninfected. BMC Infect Dis 2024; 24:140. [PMID: 38287287 PMCID: PMC10823747 DOI: 10.1186/s12879-024-08973-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/01/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Cumulative malaria parasite exposure in endemic regions often results in the acquisition of partial immunity and asymptomatic infections. There is limited information on how host-parasite interactions mediate the maintenance of chronic symptomless infections that sustain malaria transmission. METHODS Here, we determined the gene expression profiles of the parasite population and the corresponding host peripheral blood mononuclear cells (PBMCs) from 21 children (< 15 years). We compared children who were defined as uninfected, asymptomatic and those with febrile malaria. RESULTS Children with asymptomatic infections had a parasite transcriptional profile characterized by a bias toward trophozoite stage (~ 12 h-post invasion) parasites and low parasite levels, while early ring stage parasites were characteristic of febrile malaria. The host response of asymptomatic children was characterized by downregulated transcription of genes associated with inflammatory responses, compared with children with febrile malaria,. Interestingly, the host responses during febrile infections that followed an asymptomatic infection featured stronger inflammatory responses, whereas the febrile host responses from previously uninfected children featured increased humoral immune responses. CONCLUSIONS The priming effect of prior asymptomatic infection may explain the blunted acquisition of antibody responses seen to malaria antigens following natural exposure or vaccination in malaria endemic areas.
Collapse
Affiliation(s)
- Kelvin M Kimenyi
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | | | - Kioko Mwikali
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Shaban Mwangi
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
| | - Elisha Omer
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | | - James Njunge
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
| | - George Obiero
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Philip Bejon
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
23
|
Sarhan MH, Felemban SG, Alelwani W, Sharaf HM, Abd El-Latif YA, Elgazzar E, Kandil AM, Tellez-Isaias G, Mohamed AA. Zinc Oxide and Magnesium-Doped Zinc Oxide Nanoparticles Ameliorate Murine Chronic Toxoplasmosis. Pharmaceuticals (Basel) 2024; 17:113. [PMID: 38256946 PMCID: PMC10819917 DOI: 10.3390/ph17010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Toxoplasma gondii causes a global parasitic disease. Therapeutic options for eradicating toxoplasmosis are limited. In this study, ZnO and Mg-doped ZnO NPs were prepared, and their structural and morphological chrematistics were investigated. The XRD pattern revealed that Mg-doped ZnO NPs have weak crystallinity and a small crystallite size. FTIR and XPS analyses confirmed the integration of Mg ions into the ZnO framework, producing the high-purity Mg-doped ZnO nanocomposite. TEM micrographs determined the particle size of un-doped ZnO in the range of 29 nm, reduced to 23 nm with Mg2+ replacements. ZnO and Mg-doped ZnO NPs significantly decreased the number of brain cysts (p < 0.05) by 29.30% and 35.08%, respectively, compared to the infected untreated group. The administration of ZnO and Mg-doped ZnO NPs revealed a marked histopathological improvement in the brain, liver, and spleen. Furthermore, ZnO and Mg-doped ZnO NPs reduced P53 expression in the cerebral tissue while inducing CD31 expression, which indicated a protective effect against the infection-induced apoptosis and the restoration of balance between free radicals and antioxidant defense activity. In conclusion, the study proved these nanoparticles have antiparasitic, antiapoptotic, and angiogenetic effects. Being nontoxic compounds, these nanoparticles could be promising adjuvants in treating chronic toxoplasmosis.
Collapse
Affiliation(s)
- Mohamed H. Sarhan
- Microbiology Section, Basic Medical Sciences Department, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
- Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Shatha G. Felemban
- Medical Laboratory Science Department, Fakeeh College for Medical Sciences, Jeddah 21461, Saudi Arabia;
| | - Walla Alelwani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 23890, Saudi Arabia;
| | - Hesham M. Sharaf
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (Y.A.A.E.-L.); (A.A.M.)
| | - Yasmin A. Abd El-Latif
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (Y.A.A.E.-L.); (A.A.M.)
| | - Elsayed Elgazzar
- Physics Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmad M. Kandil
- Pathology Department, Faculty of Medicine, Al-Azhar University, Cairo 11651, Egypt;
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Aya A. Mohamed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (Y.A.A.E.-L.); (A.A.M.)
| |
Collapse
|
24
|
Dooley NL, Chabikwa TG, Pava Z, Loughland JR, Hamelink J, Berry K, Andrew D, Soon MSF, SheelaNair A, Piera KA, William T, Barber BE, Grigg MJ, Engwerda CR, Lopez JA, Anstey NM, Boyle MJ. Single cell transcriptomics shows that malaria promotes unique regulatory responses across multiple immune cell subsets. Nat Commun 2023; 14:7387. [PMID: 37968278 PMCID: PMC10651914 DOI: 10.1038/s41467-023-43181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 11/02/2023] [Indexed: 11/17/2023] Open
Abstract
Plasmodium falciparum malaria drives immunoregulatory responses across multiple cell subsets, which protects from immunopathogenesis, but also hampers the development of effective anti-parasitic immunity. Understanding malaria induced tolerogenic responses in specific cell subsets may inform development of strategies to boost protective immunity during drug treatment and vaccination. Here, we analyse the immune landscape with single cell RNA sequencing during P. falciparum malaria. We identify cell type specific responses in sub-clustered major immune cell types. Malaria is associated with an increase in immunosuppressive monocytes, alongside NK and γδ T cells which up-regulate tolerogenic markers. IL-10-producing Tr1 CD4 T cells and IL-10-producing regulatory B cells are also induced. Type I interferon responses are identified across all cell types, suggesting Type I interferon signalling may be linked to induction of immunoregulatory networks during malaria. These findings provide insights into cell-specific and shared immunoregulatory changes during malaria and provide a data resource for further analysis.
Collapse
Affiliation(s)
- Nicholas L Dooley
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Environment and Sciences, Griffith University, Brisbane, QLD, Australia
| | | | - Zuleima Pava
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Julianne Hamelink
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- University of Queensland, Brisbane, QLD, Australia
| | - Kiana Berry
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Queensland University of Technology, Brisbane, QLD, Australia
| | - Dean Andrew
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Megan S F Soon
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Arya SheelaNair
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kim A Piera
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Timothy William
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Program, Kota Kinabalu, Sabah, Malaysia
- Subang Jaya Medical Centre, Selangor, Malaysia
| | - Bridget E Barber
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Program, Kota Kinabalu, Sabah, Malaysia
| | - Matthew J Grigg
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Program, Kota Kinabalu, Sabah, Malaysia
| | | | - J Alejandro Lopez
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Environment and Sciences, Griffith University, Brisbane, QLD, Australia
| | - Nicholas M Anstey
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Program, Kota Kinabalu, Sabah, Malaysia
| | - Michelle J Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- School of Environment and Sciences, Griffith University, Brisbane, QLD, Australia.
- University of Queensland, Brisbane, QLD, Australia.
- Queensland University of Technology, Brisbane, QLD, Australia.
- Burnet Institute, Melbourne, VIC, Australia.
| |
Collapse
|
25
|
Heruye S, Myslinski J, Zeng C, Zollman A, Makino S, Nanamatsu A, Mir Q, Janga SC, Doud EH, Eadon MT, Maier B, Hamada M, Tran TM, Dagher PC, Hato T. Inflammation primes the kidney for recovery by activating AZIN1 A-to-I editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566426. [PMID: 37986799 PMCID: PMC10659426 DOI: 10.1101/2023.11.09.566426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The progression of kidney disease varies among individuals, but a general methodology to quantify disease timelines is lacking. Particularly challenging is the task of determining the potential for recovery from acute kidney injury following various insults. Here, we report that quantitation of post-transcriptional adenosine-to-inosine (A-to-I) RNA editing offers a distinct genome-wide signature, enabling the delineation of disease trajectories in the kidney. A well-defined murine model of endotoxemia permitted the identification of the origin and extent of A-to-I editing, along with temporally discrete signatures of double-stranded RNA stress and Adenosine Deaminase isoform switching. We found that A-to-I editing of Antizyme Inhibitor 1 (AZIN1), a positive regulator of polyamine biosynthesis, serves as a particularly useful temporal landmark during endotoxemia. Our data indicate that AZIN1 A-to-I editing, triggered by preceding inflammation, primes the kidney and activates endogenous recovery mechanisms. By comparing genetically modified human cell lines and mice locked in either A-to-I edited or uneditable states, we uncovered that AZIN1 A-to-I editing not only enhances polyamine biosynthesis but also engages glycolysis and nicotinamide biosynthesis to drive the recovery phenotype. Our findings implicate that quantifying AZIN1 A-to-I editing could potentially identify individuals who have transitioned to an endogenous recovery phase. This phase would reflect their past inflammation and indicate their potential for future recovery.
Collapse
Affiliation(s)
- Segewkal Heruye
- Department of Medicine, Indiana University School of Medicine
| | - Jered Myslinski
- Department of Medicine, Indiana University School of Medicine
| | - Chao Zeng
- Faculty of Science and Engineering, Waseda University, Tokyo
| | - Amy Zollman
- Department of Medicine, Indiana University School of Medicine
| | - Shinichi Makino
- Department of Medicine, Indiana University School of Medicine
| | - Azuma Nanamatsu
- Department of Medicine, Indiana University School of Medicine
| | - Quoseena Mir
- Luddy School of Informatics, Computing, and Engineering, Indiana University
| | | | - Emma H Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine
| | - Michael T Eadon
- Department of Medicine, Indiana University School of Medicine
| | - Bernhard Maier
- Department of Medicine, Indiana University School of Medicine
| | - Michiaki Hamada
- Faculty of Science and Engineering, Waseda University, Tokyo
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo
- Graduate School of Medicine, Nippon Medical School, Tokyo
| | - Tuan M Tran
- Department of Medicine, Indiana University School of Medicine
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis
| | - Pierre C Dagher
- Department of Medicine, Indiana University School of Medicine
| | - Takashi Hato
- Department of Medicine, Indiana University School of Medicine
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis
- Department of Medical and Molecular Genetics, Indiana University School of Medicine
| |
Collapse
|
26
|
Cretin J, Adjemout M, Dieppois C, Gallardo F, Torres M, Merard Z, Sawadogo SA, Picard C, Rihet P, Paul P. A Non-Coding Fc Gamma Receptor Cis-Regulatory Variant within the 1q23 Gene Cluster Is Associated with Plasmodium falciparum Infection in Children Residing in Burkina Faso. Int J Mol Sci 2023; 24:15711. [PMID: 37958695 PMCID: PMC10650193 DOI: 10.3390/ijms242115711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 11/15/2023] Open
Abstract
Antibodies play a crucial role in activating protective immunity against malaria by interacting with Fc-gamma receptors (FcγRs). Genetic variations in genes encoding FcγRs can affect immune cell responses to the parasite. In this study, our aim was to investigate whether non-coding variants that regulate FcγR expression could influence the prevalence of Plasmodium falciparum infection. Through bioinformatics approaches, we selected expression quantitative trait loci (eQTL) for FCGR2A, FCGR2B, FCGR2C, FCGR3A, and FCGR3B genes encoding FcγRs (FCGR), in whole blood. We prioritized two regulatory variants, rs2099684 and rs1771575, located in open genomic regions. These variants were identified using RegVar, ImmuNexUT, and transcription factor annotations specific to immune cells. In addition to these, we genotyped the coding variants FCGR2A/rs1801274 and FCGR2B/rs1050501 in 234 individuals from a malaria-endemic area in Burkina Faso. We conducted age and family-based analyses to evaluate associations with the prevalence of malarial infection in both children and adults. The analysis revealed that the regulatory rs1771575-CC genotype was predicted to influence FCGR2B/FCGR2C/FCGR3A transcripts in immune cells and was the sole variant associated with a higher prevalence of malarial infection in children. In conclusion, this study identifies the rs1771575 cis-regulatory variant affecting several FcγRs in myeloid and neutrophil cells and associates it with the inter-individual capacity of children living in Burkina Faso to control malarial infection.
Collapse
Affiliation(s)
- Jules Cretin
- INSERM 1090, TAGC Theories and Approaches of Genomic Complexity, Campus de Luminy, Aix Marseille University, 13288 Marseille, France (M.A.); (C.D.); (F.G.); (M.T.)
- Institut MarMaRa, 13288 Marseille, France
| | - Mathieu Adjemout
- INSERM 1090, TAGC Theories and Approaches of Genomic Complexity, Campus de Luminy, Aix Marseille University, 13288 Marseille, France (M.A.); (C.D.); (F.G.); (M.T.)
- Institut MarMaRa, 13288 Marseille, France
| | - Christelle Dieppois
- INSERM 1090, TAGC Theories and Approaches of Genomic Complexity, Campus de Luminy, Aix Marseille University, 13288 Marseille, France (M.A.); (C.D.); (F.G.); (M.T.)
| | - Frederic Gallardo
- INSERM 1090, TAGC Theories and Approaches of Genomic Complexity, Campus de Luminy, Aix Marseille University, 13288 Marseille, France (M.A.); (C.D.); (F.G.); (M.T.)
| | - Magali Torres
- INSERM 1090, TAGC Theories and Approaches of Genomic Complexity, Campus de Luminy, Aix Marseille University, 13288 Marseille, France (M.A.); (C.D.); (F.G.); (M.T.)
| | - Zachary Merard
- ADES UMR, Aix Marseille University, 13288 Marseille, France (C.P.)
| | - Serge Aimé Sawadogo
- Unité de Formation en Sciences de la Santé (UFR/SDS), Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso;
- Centre PrïmO-Nelson Mandela, 84 rue Sao Tomé et Principe, Ouagadougou 09 BP 706, Burkina Faso
| | - Christophe Picard
- ADES UMR, Aix Marseille University, 13288 Marseille, France (C.P.)
- Immunogenetics Laboratory, Etablissement Français du Sang PACA-Corse, 13001 Marseille, France
| | - Pascal Rihet
- INSERM 1090, TAGC Theories and Approaches of Genomic Complexity, Campus de Luminy, Aix Marseille University, 13288 Marseille, France (M.A.); (C.D.); (F.G.); (M.T.)
| | - Pascale Paul
- INSERM 1090, TAGC Theories and Approaches of Genomic Complexity, Campus de Luminy, Aix Marseille University, 13288 Marseille, France (M.A.); (C.D.); (F.G.); (M.T.)
| |
Collapse
|
27
|
Mandal RK, Schmidt NW. Mechanistic insights into the interaction between the host gut microbiome and malaria. PLoS Pathog 2023; 19:e1011665. [PMID: 37824458 PMCID: PMC10569623 DOI: 10.1371/journal.ppat.1011665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Malaria is a devastating infectious disease and significant global health burden caused by the bite of a Plasmodium-infected female Anopheles mosquito. Gut microbiota was recently discovered as a risk factor of severe malaria. This review entails the recent advances on the impact of gut microbiota composition on malaria severity and consequence of malaria infection on gut microbiota in mammalian hosts. Additionally, this review provides mechanistic insight into interactions that might occur between gut microbiota and host immunity which in turn can modulate malaria severity. Finally, approaches to modulate gut microbiota composition are discussed. We anticipate this review will facilitate novel hypotheses to move the malaria-gut microbiome field forward.
Collapse
Affiliation(s)
- Rabindra K. Mandal
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indiana, United States of America
| | - Nathan W. Schmidt
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indiana, United States of America
| |
Collapse
|
28
|
Nziza N, Tran TM, DeRiso EA, Dolatshahi S, Herman JD, de Lacerda L, Junqueira C, Lieberman J, Ongoiba A, Doumbo S, Kayentao K, Traore B, Crompton PD, Alter G. Accumulation of Neutrophil Phagocytic Antibody Features Tracks With Naturally Acquired Immunity Against Malaria in Children. J Infect Dis 2023; 228:759-768. [PMID: 37150885 PMCID: PMC10503956 DOI: 10.1093/infdis/jiad115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 04/21/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Studies have demonstrated the protective role of antibodies against malaria. Young children are known to be particularly vulnerable to malaria, pointing to the evolution of naturally acquired clinical immunity over time. However, whether changes in antibody functionality track with the acquisition of naturally acquired malaria immunity remains incompletely understood. METHODS Using systems serology, we characterized sporozoite- and merozoite-specific antibody profiles of uninfected Malian children before the malaria season who differed in their ability to control parasitemia and fever following Plasmodium falciparum (Pf) infection. We then assessed the contributions of individual traits to overall clinical outcomes, focusing on the immunodominant sporozoite CSP and merozoite AMA1 and MSP1 antigens. RESULTS Humoral immunity evolved with age, with an expansion of both magnitude and functional quality, particularly within blood-stage phagocytic antibody activity. Moreover, concerning clinical outcomes postinfection, protected children had higher antibody-dependent neutrophil activity along with higher levels of MSP1-specific IgG3 and IgA and CSP-specific IgG3 and IgG4 prior to the malaria season. CONCLUSIONS These data point to the natural evolution of functional humoral immunity to Pf with age and highlight particular antibody Fc-effector profiles associated with the control of malaria in children, providing clues for the design of next-generation vaccines or therapeutics.
Collapse
Affiliation(s)
- Nadege Nziza
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA
| | - Tuan M Tran
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Elizabeth A DeRiso
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA
| | - Sepideh Dolatshahi
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA
| | - Jonathan D Herman
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA
| | - Luna de Lacerda
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| | - Caroline Junqueira
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Aissata Ongoiba
- Malaria Research and Training Centre, Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Safiatou Doumbo
- Malaria Research and Training Centre, Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Kassoum Kayentao
- Malaria Research and Training Centre, Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Boubacar Traore
- Malaria Research and Training Centre, Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
29
|
Jiang W, Wang L, Zhang Y, Li H. Identification and verification of novel immune-related ferroptosis signature with excellent prognostic predictive and clinical guidance value in hepatocellular carcinoma. Front Genet 2023; 14:1112744. [PMID: 37671041 PMCID: PMC10475594 DOI: 10.3389/fgene.2023.1112744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/25/2023] [Indexed: 09/07/2023] Open
Abstract
Background: Immunity and ferroptosis often play a synergistic role in the progression and treatment of hepatocellular carcinoma (HCC). However, few studies have focused on identifying immune-related ferroptosis gene biomarkers. Methods: We performed weighted gene co-expression network analysis (WGCNA) and random forest to identify prognostic differentially expressed immune-related genes (PR-DE-IRGs) highly related to HCC and characteristic prognostic differentially expressed ferroptosis-related genes (PR-DE-FRGs) respectively to run co-expression analysis for prognostic differentially expressed immune-related ferroptosis characteristic genes (PR-DE-IRFeCGs). Lasso regression finally identified 3 PR-DE-IRFeCGs for us to construct a prognostic predictive model. Differential expression and prognostic analysis based on shared data from multiple sources and experimental means were performed to further verify the 3 modeled genes' biological value in HCC. We ran various performance testing methods to test the model's performance and compare it with other similar signatures. Finally, we integrated composite factors to construct a comprehensive quantitative nomogram for accurate prognostic prediction and evaluated its performance. Results: 17 PR-DE-IRFeCGs were identified based on co-expression analysis between the screened 17 PR-DE-FRGs and 34 PR-DE-IRGs. Multi-source sequencing data, QRT-PCR, immunohistochemical staining and testing methods fully confirmed the upregulation and significant prognostic influence of the three PR-DE-IRFeCGs in HCC. The model performed well in the performance tests of multiple methods based on the 5 cohorts. Furthermore, our model outperformed other related models in various performance tests. The immunotherapy and chemotherapy guiding value of our signature and the comprehensive nomogram's excellent performance have also stood the test. Conclusion: We identified a novel PR-DE-IRFeCGs signature with excellent prognostic prediction and clinical guidance value in HCC.
Collapse
Affiliation(s)
- Wenxiu Jiang
- Department of Infectious Diseases, The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, China
| | - Lili Wang
- Department of Clinical Research, The Second Hospital of Nanjing, Nanjing Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Yajuan Zhang
- General Medicine, Pingjiang Xincheng Community Health Service Center, Suzhou, China
| | - Hongliang Li
- Department of Infectious Diseases, The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, China
| |
Collapse
|
30
|
Bhardwaj J, Upadhye A, Gaskin EL, Doumbo S, Kayentao K, Ongoiba A, Traore B, Crompton PD, Tran TM. Neither the African-Centric S47 Nor P72 Variant of TP53 Is Associated With Reduced Risk of Febrile Malaria in a Malian Cohort Study. J Infect Dis 2023; 228:202-211. [PMID: 36961831 PMCID: PMC10345479 DOI: 10.1093/infdis/jiad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND TP53 has been shown to play a role in inflammatory processes, including malaria. We previously found that p53 attenuates parasite-induced inflammation and predicts clinical protection to Plasmodium falciparum infection in Malian children. Here, we investigated whether p53 codon 47 and 72 polymorphisms are associated with differential risk of P. falciparum infection and uncomplicated malaria in a prospective cohort study of malaria immunity. METHODS p53 codon 47 and 72 polymorphisms were determined by sequencing TP53 exon 4 in 631 Malian children and adults enrolled in the Kalifabougou cohort study. The effects of these polymorphisms on the prospective risk of febrile malaria, incident parasitemia, and time to fever after incident parasitemia over 6 months of intense malaria transmission were assessed using Cox proportional hazards models. RESULTS Confounders of malaria risk, including age and hemoglobin S or C, were similar between individuals with or without p53 S47 and R72 polymorphisms. Relative to their respective common variants, neither S47 nor R72 was associated with differences in prospective risk of febrile malaria, incident parasitemia, or febrile malaria after parasitemia. CONCLUSIONS These findings indicate that p53 codon 47 and 72 polymorphisms are not associated with protection against incident P. falciparum parasitemia or uncomplicated febrile malaria.
Collapse
Affiliation(s)
- Jyoti Bhardwaj
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aditi Upadhye
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Erik L Gaskin
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Tuan M Tran
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
31
|
Mbambo G, Dwivedi A, Ifeonu OO, Munro JB, Shrestha B, Bromley RE, Hodges T, Adkins RS, Kouriba B, Diarra I, Niangaly A, Kone AK, Coulibaly D, Traore K, Dolo A, Thera MA, Laurens MB, Doumbo OK, Plowe CV, Berry AA, Travassos M, Lyke KE, Silva JC. Immunogenomic profile at baseline predicts host susceptibility to clinical malaria. Front Immunol 2023; 14:1179314. [PMID: 37465667 PMCID: PMC10351378 DOI: 10.3389/fimmu.2023.1179314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023] Open
Abstract
Introduction Host gene and protein expression impact susceptibility to clinical malaria, but the balance of immune cell populations, cytokines and genes that contributes to protection, remains incompletely understood. Little is known about the determinants of host susceptibility to clinical malaria at a time when acquired immunity is developing. Methods We analyzed peripheral blood mononuclear cells (PBMCs) collected from children who differed in susceptibility to clinical malaria, all from a small town in Mali. PBMCs were collected from children aged 4-6 years at the start, peak and end of the malaria season. We characterized the immune cell composition and cytokine secretion for a subset of 20 children per timepoint (10 children with no symptomatic malaria age-matched to 10 children with >2 symptomatic malarial illnesses), and gene expression patterns for six children (three per cohort) per timepoint. Results We observed differences between the two groups of children in the expression of genes related to cell death and inflammation; in particular, inflammatory genes such as CXCL10 and STAT1 and apoptotic genes such as XAF1 were upregulated in susceptible children before the transmission season began. We also noted higher frequency of HLA-DR+ CD4 T cells in protected children during the peak of the malaria season and comparable levels cytokine secretion after stimulation with malaria schizonts across all three time points. Conclusion This study highlights the importance of baseline immune signatures in determining disease outcome. Our data suggests that differences in apoptotic and inflammatory gene expression patterns can serve as predictive markers of susceptibility to clinical malaria.
Collapse
Affiliation(s)
- Gillian Mbambo
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ankit Dwivedi
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Olukemi O. Ifeonu
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - James B. Munro
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Biraj Shrestha
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robin E. Bromley
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Theresa Hodges
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ricky S. Adkins
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Bourema Kouriba
- Malaria Research and Training Center, International Centers for Excellence in Research (NIH), University of Science Techniques and Technologies of Bamako, Bamako, Mali
| | - Issa Diarra
- Malaria Research and Training Center, International Centers for Excellence in Research (NIH), University of Science Techniques and Technologies of Bamako, Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Center, International Centers for Excellence in Research (NIH), University of Science Techniques and Technologies of Bamako, Bamako, Mali
| | - Abdoulaye K. Kone
- Malaria Research and Training Center, International Centers for Excellence in Research (NIH), University of Science Techniques and Technologies of Bamako, Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, International Centers for Excellence in Research (NIH), University of Science Techniques and Technologies of Bamako, Bamako, Mali
| | - Karim Traore
- Malaria Research and Training Center, International Centers for Excellence in Research (NIH), University of Science Techniques and Technologies of Bamako, Bamako, Mali
| | - Amagana Dolo
- Malaria Research and Training Center, International Centers for Excellence in Research (NIH), University of Science Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamadou A. Thera
- Malaria Research and Training Center, International Centers for Excellence in Research (NIH), University of Science Techniques and Technologies of Bamako, Bamako, Mali
| | - Matthew B. Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, International Centers for Excellence in Research (NIH), University of Science Techniques and Technologies of Bamako, Bamako, Mali
| | - Christopher V. Plowe
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Andrea A. Berry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mark Travassos
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kirsten E. Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Joana C. Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Global Health and Tropical Medicine, Instituto deHigiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM, IHMT, UNL), Lisboa, Portugal
| |
Collapse
|
32
|
Song JK, Zhang Y, Fei XY, Chen YR, Luo Y, Jiang JS, Ru Y, Xiang YW, Li B, Luo Y, Kuai L. Classification and biomarker gene selection of pyroptosis-related gene expression in psoriasis using a random forest algorithm. Front Genet 2022; 13:850108. [PMID: 36110207 PMCID: PMC9468882 DOI: 10.3389/fgene.2022.850108] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Psoriasis is a chronic and immune-mediated skin disorder that currently has no cure. Pyroptosis has been proved to be involved in the pathogenesis and progression of psoriasis. However, the role pyroptosis plays in psoriasis remains elusive. Methods: RNA-sequencing data of psoriasis patients were obtained from the Gene Expression Omnibus (GEO) database, and differentially expressed pyroptosis-related genes (PRGs) between psoriasis patients and normal individuals were obtained. A principal component analysis (PCA) was conducted to determine whether PRGs could be used to distinguish the samples. PRG and immune cell correlation was also investigated. Subsequently, a novel diagnostic model comprising PRGs for psoriasis was constructed using a random forest algorithm (ntree = 400). A receiver operating characteristic (ROC) analysis was used to evaluate the classification performance through both internal and external validation. Consensus clustering analysis was used to investigate whether there was a difference in biological functions within PRG-based subtypes. Finally, the expression of the kernel PRGs were validated in vivo by qRT-PCR. Results: We identified a total of 39 PRGs, which could distinguish psoriasis samples from normal samples. The process of T cell CD4 memory activated and mast cells resting were correlated with PRGs. Ten PRGs, IL-1β, AIM2, CASP5, DHX9, CASP4, CYCS, CASP1, GZMB, CHMP2B, and CASP8, were subsequently screened using a random forest diagnostic model. ROC analysis revealed that our model has good diagnostic performance in both internal validation (area under the curve [AUC] = 0.930 [95% CI 0.877–0.984]) and external validation (mean AUC = 0.852). PRG subtypes indicated differences in metabolic processes and the MAPK signaling pathway. Finally, the qRT-PCR results demonstrated the apparent dysregulation of PRGs in psoriasis, especially AIM2 and GZMB. Conclusion: Pyroptosis may play a crucial role in psoriasis and could provide new insights into the diagnosis and underlying mechanisms of psoriasis.
Collapse
Affiliation(s)
- Jian-Kun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ying Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Ya Fei
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi-Ran Chen
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Si Jiang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Wei Xiang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yue Luo
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yue Luo, ; Le Kuai,
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yue Luo, ; Le Kuai,
| |
Collapse
|
33
|
Hopp CS, Skinner J, Anzick SL, Tipton CM, Peterson ME, Li S, Doumbo S, Kayentao K, Ongoiba A, Martens C, Traore B, Crompton PD. Atypical B cells up-regulate costimulatory molecules during malaria and secrete antibodies with T follicular helper cell support. Sci Immunol 2022; 7:eabn1250. [PMID: 35559666 PMCID: PMC11132112 DOI: 10.1126/sciimmunol.abn1250] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Several infectious and autoimmune diseases are associated with an expansion of CD21-CD27- atypical B cells (atBCs) that up-regulate inhibitory receptors and exhibit altered B cell receptor (BCR) signaling. The function of atBCs remains unclear, and few studies have investigated the biology of pathogen-specific atBCs during acute infection. Here, we performed longitudinal flow cytometry analyses and RNA sequencing of Plasmodium falciparum (Pf)-specific B cells isolated from study participants before and shortly after febrile malaria, with simultaneous analysis of influenza hemagglutinin (HA)-specific B cells as a comparator. At the healthy baseline before the malaria season, individuals had similar frequencies of Pf- and HA-specific atBCs that did not differ proportionally from atBCs within the total B cell population. BCR sequencing identified clonal relationships between Pf-specific atBCs, activated B cells (actBCs), and classical memory B cells (MBCs) and revealed comparable degrees of somatic hypermutation. At the healthy baseline, Pf-specific atBCs were transcriptionally distinct from Pf-specific actBCs and classical MBCs. In response to acute febrile malaria, Pf-specific atBCs and actBCs up-regulated similar intracellular signaling cascades. Pf-specific atBCs showed activation of pathways involved in differentiation into antibody-secreting cells and up-regulation of molecules that mediate B-T cell interactions, suggesting that atBCs respond to T follicular helper (TFH) cells. In the presence of TFH cells and staphylococcal enterotoxin B, atBCs of malaria-exposed individuals differentiated into CD38+ antibody-secreting cells in vitro, suggesting that atBCs may actively contribute to humoral immunity to infectious pathogens.
Collapse
Affiliation(s)
- Christine S. Hopp
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| | - Sarah L. Anzick
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, USA
| | - Christopher M. Tipton
- Lowance Center for Human Immunology, Division of Rheumatology, Department of Medicine, Emory University School of Medicine, Atlanta, USA
| | - Mary E. Peterson
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| | - Shanping Li
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| | - Safiatou Doumbo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Kassoum Kayentao
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Aissata Ongoiba
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Craig Martens
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, USA
| | - Boubacar Traore
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Peter D. Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| |
Collapse
|
34
|
Phalke S, Rivera-Correa J, Jenkins D, Flores Castro D, Giannopoulou E, Pernis AB. Molecular mechanisms controlling age-associated B cells in autoimmunity. Immunol Rev 2022; 307:79-100. [PMID: 35102602 DOI: 10.1111/imr.13068] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
Age-associated B cells (ABCs) have emerged as critical components of immune responses. Their inappropriate expansion and differentiation have increasingly been linked to the pathogenesis of autoimmune disorders, aging-associated diseases, and infections. ABCs exhibit a distinctive phenotype and, in addition to classical B cell markers, often express the transcription factor T-bet and myeloid markers like CD11c; hence, these cells are also commonly known as CD11c+ T-bet+ B cells. Formation of ABCs is promoted by distinctive combinations of innate and adaptive signals. In addition to producing antibodies, these cells display antigen-presenting and proinflammatory capabilities. It is becoming increasingly appreciated that the ABC compartment exhibits a high degree of heterogeneity, plasticity, and sex-specific regulation and that ABCs can differentiate into effector progeny via several routes particularly in autoimmune settings. In this review, we will discuss the initial insights that have been obtained on the molecular machinery that controls ABCs and we will highlight some of the unique aspects of this control system that may enable ABCs to fulfill their distinctive role in immune responses. Given the expanding array of autoimmune disorders and pathophysiological settings in which ABCs are being implicated, a deeper understanding of this machinery could have important and broad therapeutic implications for the successful, albeit daunting, task of targeting these cells.
Collapse
Affiliation(s)
- Swati Phalke
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Juan Rivera-Correa
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Daniel Jenkins
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Danny Flores Castro
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Evgenia Giannopoulou
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Alessandra B Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Immunology & Microbial Pathogenesis, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
35
|
Studniberg SI, Ioannidis LJ, Utami RAS, Trianty L, Liao Y, Abeysekera W, Li‐Wai‐Suen CSN, Pietrzak HM, Healer J, Puspitasari AM, Apriyanti D, Coutrier F, Poespoprodjo JR, Kenangalem E, Andries B, Prayoga P, Sariyanti N, Smyth GK, Cowman AF, Price RN, Noviyanti R, Shi W, Garnham AL, Hansen DS. Molecular profiling reveals features of clinical immunity and immunosuppression in asymptomatic P. falciparum malaria. Mol Syst Biol 2022; 18:e10824. [PMID: 35475529 PMCID: PMC9045086 DOI: 10.15252/msb.202110824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/12/2023] Open
Abstract
Clinical immunity to P. falciparum malaria is non-sterilizing, with adults often experiencing asymptomatic infection. Historically, asymptomatic malaria has been viewed as beneficial and required to help maintain clinical immunity. Emerging views suggest that these infections are detrimental and constitute a parasite reservoir that perpetuates transmission. To define the impact of asymptomatic malaria, we pursued a systems approach integrating antibody responses, mass cytometry, and transcriptional profiling of individuals experiencing symptomatic and asymptomatic P. falciparum infection. Defined populations of classical and atypical memory B cells and a TH2 cell bias were associated with reduced risk of clinical malaria. Despite these protective responses, asymptomatic malaria featured an immunosuppressive transcriptional signature with upregulation of pathways involved in the inhibition of T-cell function, and CTLA-4 as a predicted regulator in these processes. As proof of concept, we demonstrated a role for CTLA-4 in the development of asymptomatic parasitemia in infection models. The results suggest that asymptomatic malaria is not innocuous and might not support the induction of immune processes to fully control parasitemia or efficiently respond to malaria vaccines.
Collapse
Affiliation(s)
- Stephanie I Studniberg
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| | - Lisa J Ioannidis
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| | - Retno A S Utami
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia,Eijkman Institute for Molecular BiologyJakartaIndonesia
| | - Leily Trianty
- Eijkman Institute for Molecular BiologyJakartaIndonesia
| | - Yang Liao
- Olivia Newton‐John Cancer Research InstituteHeidelbergVic.Australia
| | - Waruni Abeysekera
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,School of Mathematics and StatisticsThe University of MelbourneParkvilleVic.Australia
| | - Connie S N Li‐Wai‐Suen
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,School of Mathematics and StatisticsThe University of MelbourneParkvilleVic.Australia
| | - Halina M Pietrzak
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| | - Julie Healer
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| | | | - Dwi Apriyanti
- Eijkman Institute for Molecular BiologyJakartaIndonesia
| | | | | | | | | | - Pak Prayoga
- Papuan Health and Community FoundationPapuaIndonesia
| | | | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,School of Mathematics and StatisticsThe University of MelbourneParkvilleVic.Australia
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| | - Ric N Price
- Global and Tropical Health DivisionMenzies School of Health Research and Charles Darwin UniversityDarwinNTAustralia,Centre for Tropical Medicine and Global HealthNuffield Department of MedicineUniversity of OxfordOxfordUK,Mahidol‐Oxford Tropical Medicine Research UnitMahidol UniversityBangkokThailand
| | | | - Wei Shi
- Olivia Newton‐John Cancer Research InstituteHeidelbergVic.Australia
| | - Alexandra L Garnham
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,School of Mathematics and StatisticsThe University of MelbourneParkvilleVic.Australia
| | - Diana S Hansen
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| |
Collapse
|
36
|
Lautenbach MJ, Yman V, Silva CS, Kadri N, Broumou I, Chan S, Angenendt S, Sondén K, Plaza DF, Färnert A, Sundling C. Systems analysis shows a role of cytophilic antibodies in shaping innate tolerance to malaria. Cell Rep 2022; 39:110709. [PMID: 35443186 DOI: 10.1016/j.celrep.2022.110709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022] Open
Abstract
Natural immunity to malaria develops over time with repeated malaria episodes, but protection against severe malaria and immune regulation limiting immunopathology, called tolerance, develops more rapidly. Here, we comprehensively profile the blood immune system in patients, with or without prior malaria exposure, over 1 year after acute symptomatic Plasmodium falciparum malaria. Using a data-driven analysis approach to describe the immune landscape over time, we show that a dampened inflammatory response is associated with reduced γδ T cell expansion, early expansion of CD16+ monocytes, and parasite-specific antibodies of IgG1 and IgG3 isotypes. This also coincided with reduced parasitemia and duration of hospitalization. Our data indicate that antibody-mediated phagocytosis during the blood stage infection leads to lower parasitemia and less inflammatory response with reduced γδ T cell expansion. This enhanced control and reduced inflammation points to a potential mechanism on how tolerance is established following repeated malaria exposure.
Collapse
Affiliation(s)
- Maximilian Julius Lautenbach
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Victor Yman
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, South Stockholm Hospital, Stockholm, Sweden
| | - Carolina Sousa Silva
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga, Portugal
| | - Nadir Kadri
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Solna, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Ioanna Broumou
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Sherwin Chan
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institutet, Stockholm, Sweden
| | - Sina Angenendt
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Klara Sondén
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - David Fernando Plaza
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
37
|
Valletta JJ, Addy JW, Reid AJ, Ndungu FM, Bediako Y, Mwacharo J, Mohammed KS, Musyoki J, Ngoi JM, Wambua J, Otieno E, Berriman M, Bejon P, Marsh K, Langhorne J, Newbold CI, Recker M. Individual-level variations in malaria susceptibility and acquisition of clinical protection. Wellcome Open Res 2022; 6:22. [PMID: 35310901 PMCID: PMC8914138 DOI: 10.12688/wellcomeopenres.16524.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 11/29/2022] Open
Abstract
After decades of research, our understanding of when and why individuals infected with Plasmodium falciparum develop clinical malaria is still limited. Correlates of immune protection are often sought through prospective cohort studies, where measured host factors are correlated against the incidence of clinical disease over a set period of time. However, robustly inferring individual-level protection from these population-level findings has proved difficult due to small effect sizes and high levels of variance underlying such data. In order to better understand the nature of these inter-individual variations, we analysed the long-term malaria epidemiology of children ≤12 years old growing up under seasonal exposure to the parasite in the sub-location of Junju, Kenya. Despite the cohort's limited geographic expanse (ca. 3km x 10km), our data reveal a high degree of spatial and temporal variability in malaria prevalence and incidence rates, causing individuals to experience varying levels of exposure to the parasite at different times during their life. Analysing individual-level infection histories further reveal an unexpectedly high variability in the rate at which children experience clinical malaria episodes. Besides exposure to the parasite, measured as disease prevalence in the surrounding area, we find that the birth time of year has an independent effect on the individual's risk of experiencing a clinical episode. Furthermore, our analyses reveal that those children with a history of an above average number of episodes are more likely to experience further episodes during the upcoming transmission season. These findings are indicative of phenotypic differences in the rates by which children acquire clinical protection to malaria and offer important insights into the natural variability underlying malaria epidemiology.
Collapse
Affiliation(s)
- John Joseph Valletta
- School of Mathematics and Statistics, University of St. Andrews, St. Andrews, UK
| | - John W.G. Addy
- Malaria Immunology Laboratory, Francis Crick Institute, London, UK
| | - Adam J. Reid
- Parasite Genomics, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Yaw Bediako
- Malaria Immunology Laboratory, Francis Crick Institute, London, UK
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | | | | | | | - Joyce Mwongeli Ngoi
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Joshua Wambua
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Edward Otieno
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Matt Berriman
- Parasite Genomics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Philip Bejon
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kevin Marsh
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Jean Langhorne
- Malaria Immunology Laboratory, Francis Crick Institute, London, UK
| | - Chris I. Newbold
- Parasite Genomics, Wellcome Trust Sanger Institute, Hinxton, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mario Recker
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| |
Collapse
|
38
|
Addy JW, Bediako Y, Ndungu FM, Valetta JJ, Reid AJ, Mwacharo J, Ngoi JM, Wambua J, Otieno E, Musyoki J, Said K, Berriman M, Marsh K, Bejon P, Recker M, Langhorne J. 10-year longitudinal study of malaria in children: Insights into acquisition and maintenance of naturally acquired immunity. Wellcome Open Res 2022; 6:79. [PMID: 35141425 PMCID: PMC8822141 DOI: 10.12688/wellcomeopenres.16562.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 01/26/2023] Open
Abstract
Background: Studies of long-term malaria cohorts have provided essential insights into how Plasmodium falciparum interacts with humans, and influences the development of antimalarial immunity. Immunity to malaria is acquired gradually after multiple infections, some of which present with clinical symptoms. However, there is considerable variation in the number of clinical episodes experienced by children of the same age within the same cohort. Understanding this variation in clinical symptoms and how it relates to the development of naturally acquired immunity is crucial in identifying how and when some children stop experiencing further malaria episodes. Where variability in clinical episodes may result from different rates of acquisition of immunity, or from variable exposure to the parasite. Methods: Using data from a longitudinal cohort of children residing in an area of moderate P. falciparum transmission in Kilifi district, Kenya, we fitted cumulative episode curves as monotonic-increasing splines, to 56 children under surveillance for malaria from the age of 5 to 15. Results: There was large variability in the accumulation of numbers of clinical malaria episodes experienced by the children, despite being of similar age and living in the same general location. One group of children from a particular sub-region of the cohort stopped accumulating clinical malaria episodes earlier than other children in the study. Despite lack of further clinical episodes of malaria, these children had higher asymptomatic parasite densities and higher antibody titres to a panel of P. falciparum blood-stage antigens. Conclusions: This suggests development of clinical immunity rather than lack of exposure to the parasite, and supports the view that this immunity to malaria disease is maintained by a greater exposure to P. falciparum, and thus higher parasite burdens. Our study illustrates the complexity of anti-malaria immunity and underscores the need for analyses which can sufficiently reflect the heterogeneity within endemic populations.
Collapse
Affiliation(s)
- John W.G. Addy
- Malaria Immunology Laboratory, Francis Crick Institute, London, UK
| | - Yaw Bediako
- Malaria Immunology Laboratory, Francis Crick Institute, London, UK
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | | | - John Joseph Valetta
- School of Mathematics and Statistics, University of St Andrews, St Andrews, UK
| | - Adam J. Reid
- Parasite Genomics, Wellcome Sanger Institute, Hixton, UK
| | | | | | - Joshua Wambua
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Edward Otieno
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Khadija Said
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Kevin Marsh
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Philip Bejon
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Mario Recker
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK
| | - Jean Langhorne
- Malaria Immunology Laboratory, Francis Crick Institute, London, UK
| |
Collapse
|
39
|
Juzenas S, Hübenthal M, Lindqvist CM, Kruse R, Steiert TA, Degenhardt F, Schulte D, Nikolaus S, Zeissig S, Bergemalm D, Almer S, Hjortswang H, Bresso F, SIC IBD Working Group, Strüning N, Kupcinskas J, Keller A, Lieb W, Rosenstiel P, Schreiber S, D’Amato M, Halfvarson J, Hemmrich-Stanisak G, Franke A. Detailed Transcriptional Landscape of Peripheral Blood Points to Increased Neutrophil Activation in Treatment-Naïve Inflammatory Bowel Disease. J Crohns Colitis 2022; 16:1097-1109. [PMID: 35022690 PMCID: PMC9351981 DOI: 10.1093/ecco-jcc/jjac003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/13/2021] [Accepted: 01/08/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Inflammatory bowel disease [IBD] is a chronic relapsing disorder of the gastrointestinal tract, which generally manifests as Crohn's disease [CD] or ulcerative colitis [UC]. These subtypes are heterogeneous in terms of disease location and histological features, while sharing common clinical presentation, genetic associations and, thus, common immune regulatory pathways. METHODS Using miRNA and mRNA coupled transcriptome profiling and systems biology approaches, we report a comprehensive analysis of blood transcriptomes from treatment-naïve [n = 110] and treatment-exposed [n = 177] IBD patients as well as symptomatic [n = 65] and healthy controls [n = 95]. RESULTS Broadly, the peripheral blood transcriptomes of CD and UC patients were similar. However, there was an extensive gene deregulation in the blood of IBD patients, while only a slight deregulation in symptomatic controls, when compared with healthy controls. The deregulated mRNAs and miRNAs are mainly involved in the innate immunity and are especially enriched in neutrophil activation-related pathways. Oxidative phosphorylation and neutrophil activation-related modules were found to be differentially co-expressed among treatment-naïve IBD as compared to healthy controls. In the deregulated neutrophil activation-related co-expression module, IL1B was identified as the central gene. Levels of co-expression among IL1B and chemosensing receptor [CXCR1/2 and FPR1/2] genes were reduced in the blood of IBD patients when compared with healthy controls. CONCLUSIONS Immune dysregulation seen in peripheral blood transcriptomes of treatment-naïve IBD patients is mainly driven by neutrophil activation.
Collapse
Affiliation(s)
- Simonas Juzenas
- Corresponding author: Simonas Juzenas, PhD, Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts-University of Kiel (CAU), Rosalind-Franklin-Str. 12, D-24105 Kiel, Germany.
| | - Matthias Hübenthal
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany,Department of Dermatology, Quincke Research Center, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Carl Mårten Lindqvist
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany,School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Robert Kruse
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden,iRiSC – Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Tim Alexander Steiert
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Dominik Schulte
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, University Hospital of Schleswig-Holstein, Kiel, Germany,Institute of Diabetes and Clinical Metabolic Research, Kiel University, Kiel, Germany
| | - Susanna Nikolaus
- Department of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sebastian Zeissig
- Medical Department 1, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany,Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Daniel Bergemalm
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Sven Almer
- Department of Medicine, Karolinska Institutet, Solna, and Division of Gastroenterology, Karolinska University Hospital, Stockholm, Sweden
| | - Henrik Hjortswang
- Department of Gastroenterology and Hepatology, Linköping University, Linköping, and Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Francesca Bresso
- Department of Medicine, Karolinska Institutet, Solna, and Division of Gastroenterology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Nina Strüning
- Department of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Juozas Kupcinskas
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Wolfgang Lieb
- Institute of Epidemiology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany,Department of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Mauro D’Amato
- Unit of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden,Gastrointestinal Genetics Lab, CIC bioGUNE – BRTA, Derio, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | | | | | | |
Collapse
|
40
|
Abstract
Coinfection with Plasmodium falciparum and helminths may impact the immune response to these parasites because they induce different immune profiles. We studied the effects of coinfections on the antibody profile in a cohort of 715 Mozambican children and adults using the Luminex technology with a panel of 16 antigens from P. falciparum and 11 antigens from helminths (Ascaris lumbricoides, hookworm, Trichuris trichiura, Strongyloides stercoralis, and Schistosoma spp.) and measured antigen-specific IgG and total IgE responses. We compared the antibody profile between groups defined by P. falciparum and helminth previous exposure (based on serology) and/or current infection (determined by microscopy and/or qPCR). In multivariable regression models adjusted by demographic, socioeconomic, water, and sanitation variables, individuals exposed/infected with P. falciparum and helminths had significantly higher total IgE and antigen-specific IgG levels, magnitude (sum of all levels) and breadth of response to both types of parasites compared to individuals exposed/infected with only one type of parasite (P ≤ 0.05). There was a positive association between exposure/infection with P. falciparum and exposure/infection with helminths or the number of helminth species, and vice versa (P ≤ 0.001). In addition, children coexposed/coinfected tended (P = 0.062) to have higher P. falciparum parasitemia than those single exposed/infected. Our results suggest that an increase in the antibody responses in coexposed/coinfected individuals may reflect higher exposure and be due to a more permissive immune environment to infection in the host. IMPORTANCE Coinfection with Plasmodium falciparum and helminths may impact the immune response to these parasites because they induce different immune profiles. We compared the antibody profile between groups of Mozambican individuals defined by P. falciparum and helminth previous exposure and/or current infection. Our results show a significant increase in antibody responses in individuals coexposed/coinfected with P. falciparum and helminths in comparison with individuals exposed/infected with only one of these parasites, and suggest that this increase is due to a more permissive immune environment to infection in the host. Importantly, this study takes previous exposure into account, which is particularly relevant in endemic areas where continuous infections imprint and shape the immune system. Deciphering the implications of coinfections deserves attention because accounting for the real interactions that occur in nature could improve the design of integrated disease control strategies.
Collapse
|
41
|
Addy JW, Bediako Y, Ndungu FM, Valetta JJ, Reid AJ, Mwacharo J, Ngoi JM, Wambua J, Otieno E, Musyoki J, Said K, Berriman M, Marsh K, Bejon P, Recker M, Langhorne J. 10-year longitudinal study of malaria in children: Insights into acquisition and maintenance of naturally acquired immunity. Wellcome Open Res 2021; 6:79. [PMID: 35141425 PMCID: PMC8822141 DOI: 10.12688/wellcomeopenres.16562.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 01/26/2023] Open
Abstract
Background: Studies of long-term malaria cohorts have provided essential insights into how Plasmodium falciparum interacts with humans, and influences the development of antimalarial immunity. Immunity to malaria is acquired gradually after multiple infections, some of which present with clinical symptoms. However, there is considerable variation in the number of clinical episodes experienced by children of the same age within the same cohort. Understanding this variation in clinical symptoms and how it relates to the development of naturally acquired immunity is crucial in identifying how and when some children stop experiencing further malaria episodes. Where variability in clinical episodes may result from different rates of acquisition of immunity, or from variable exposure to the parasite. Methods: Using data from a longitudinal cohort of children residing in an area of moderate P. falciparum transmission in Kilifi district, Kenya, we fitted cumulative episode curves as monotonic-increasing splines, to 56 children under surveillance for malaria from the age of 5 to 15. Results: There was large variability in the accumulation of numbers of clinical malaria episodes experienced by the children, despite being of similar age and living in the same general location. One group of children from a particular sub-region of the cohort stopped accumulating clinical malaria episodes earlier than other children in the study. Despite lack of further clinical episodes of malaria, these children had higher asymptomatic parasite densities and higher antibody titres to a panel of P. falciparum blood-stage antigens. Conclusions: This suggests development of clinical immunity rather than lack of exposure to the parasite, and supports the view that this immunity to malaria disease is maintained by a greater exposure to P. falciparum, and thus higher parasite burdens. Our study illustrates the complexity of anti-malaria immunity and underscores the need for analyses which can sufficiently reflect the heterogeneity within endemic populations.
Collapse
Affiliation(s)
- John W.G. Addy
- Malaria Immunology Laboratory, Francis Crick Institute, London, UK
| | - Yaw Bediako
- Malaria Immunology Laboratory, Francis Crick Institute, London, UK
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | | | - John Joseph Valetta
- School of Mathematics and Statistics, University of St Andrews, St Andrews, UK
| | - Adam J. Reid
- Parasite Genomics, Wellcome Sanger Institute, Hixton, UK
| | | | | | - Joshua Wambua
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Edward Otieno
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Khadija Said
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Kevin Marsh
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Philip Bejon
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Mario Recker
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK
| | - Jean Langhorne
- Malaria Immunology Laboratory, Francis Crick Institute, London, UK
| |
Collapse
|
42
|
Wang LT, Pereira LS, Kiyuka PK, Schön A, Kisalu NK, Vistein R, Dillon M, Bonilla BG, Molina-Cruz A, Barillas-Mury C, Tan J, Idris AH, Francica JR, Seder RA. Protective effects of combining monoclonal antibodies and vaccines against the Plasmodium falciparum circumsporozoite protein. PLoS Pathog 2021; 17:e1010133. [PMID: 34871332 PMCID: PMC8675929 DOI: 10.1371/journal.ppat.1010133] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/16/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022] Open
Abstract
Combinations of monoclonal antibodies (mAbs) against different epitopes on the same antigen synergistically neutralize many viruses. However, there are limited studies assessing whether combining human mAbs against distinct regions of the Plasmodium falciparum (Pf) circumsporozoite protein (CSP) enhances in vivo protection against malaria compared to each mAb alone or whether passive transfer of PfCSP mAbs would improve protection following vaccination against PfCSP. Here, we isolated a panel of human mAbs against the subdominant C-terminal domain of PfCSP (C-CSP) from a volunteer immunized with radiation-attenuated Pf sporozoites. These C-CSP-specific mAbs had limited binding to sporozoites in vitro that was increased by combination with neutralizing human "repeat" mAbs against the NPDP/NVDP/NANP tetrapeptides in the central repeat region of PfCSP. Nevertheless, passive transfer of repeat- and C-CSP-specific mAb combinations did not provide enhanced protection against in vivo sporozoite challenge compared to repeat mAbs alone. Furthermore, combining potent repeat-specific mAbs (CIS43, L9, and 317) that respectively target the three tetrapeptides (NPDP/NVDP/NANP) did not provide additional protection against in vivo sporozoite challenge. However, administration of either CIS43, L9, or 317 (but not C-CSP-specific mAbs) to mice that had been immunized with R21, a PfCSP-based virus-like particle vaccine that induces polyclonal antibodies against the repeat region and C-CSP, provided enhanced protection against sporozoite challenge when compared to vaccine or mAbs alone. Collectively, this study shows that while combining mAbs against the repeat and C-terminal regions of PfCSP provide no additional protection in vivo, repeat mAbs do provide increased protection when combined with vaccine-induced polyclonal antibodies. These data should inform the implementation of PfCSP human mAbs alone or following vaccination to prevent malaria infection.
Collapse
Affiliation(s)
- Lawrence T. Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lais S. Pereira
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Patience K. Kiyuka
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Neville K. Kisalu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rachel Vistein
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marlon Dillon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brian G. Bonilla
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Azza H. Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
| | - Joseph R. Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert A. Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
43
|
Anyona SB, Raballah E, Cheng Q, Hurwitz I, Ndege C, Munde E, Otieno W, Seidenberg PD, Schneider KA, Lambert CG, McMahon BH, Ouma C, Perkins DJ. Differential Gene Expression in Host Ubiquitination Processes in Childhood Malarial Anemia. Front Genet 2021; 12:764759. [PMID: 34880904 PMCID: PMC8646022 DOI: 10.3389/fgene.2021.764759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Malaria remains one of the leading global causes of childhood morbidity and mortality. In holoendemic Plasmodium falciparum transmission regions, such as western Kenya, severe malarial anemia [SMA, hemoglobin (Hb) < 6.0 g/dl] is the primary form of severe disease. Ubiquitination is essential for regulating intracellular processes involved in innate and adaptive immunity. Although dysregulation in ubiquitin molecular processes is central to the pathogenesis of multiple human diseases, the expression patterns of ubiquitination genes in SMA remain unexplored. Methods: To examine the role of the ubiquitination processes in pathogenesis of SMA, differential gene expression profiles were determined in Kenyan children (n = 44, aged <48 mos) with either mild malarial anemia (MlMA; Hb ≥9.0 g/dl; n = 23) or SMA (Hb <6.0 g/dl; n = 21) using the Qiagen Human Ubiquitination Pathway RT2 Profiler PCR Array containing a set of 84 human ubiquitination genes. Results: In children with SMA, 10 genes were down-regulated (BRCC3, FBXO3, MARCH5, RFWD2, SMURF2, UBA6, UBE2A, UBE2D1, UBE2L3, UBR1), and five genes were up-regulated (MDM2, PARK2, STUB1, UBE2E3, UBE2M). Enrichment analyses revealed Ubiquitin-Proteasomal Proteolysis as the top disrupted process, along with altered sub-networks involved in proteasomal, protein, and ubiquitin-dependent catabolic processes. Conclusion: Collectively, these novel results show that protein coding genes of the ubiquitination processes are involved in the pathogenesis of SMA.
Collapse
Affiliation(s)
- Samuel B. Anyona
- Department of Medical Biochemistry, School of Medicine, Maseno University, Maseno, Kenya,University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, Kenya,*Correspondence: Samuel B. Anyona,
| | - Evans Raballah
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, Kenya,Department of Medical Laboratory Sciences, School of Public Health Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Qiuying Cheng
- Center for Global Health, University of New Mexico, Albuquerque, NM, United States
| | - Ivy Hurwitz
- Center for Global Health, University of New Mexico, Albuquerque, NM, United States
| | - Caroline Ndege
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, Kenya
| | - Elly Munde
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, Kenya,Department of Clinical Medicine, School of Health Science, Kirinyaga University, Kerugoya, Kenya
| | - Walter Otieno
- Department of Pediatrics and Child Health, School of Medicine, Maseno University, Maseno, Kenya
| | - Philip D. Seidenberg
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Kristan A. Schneider
- Department Applied Computer and Bio-Sciences, University of Applied Sciences Mittweida, Mittweida, Germany
| | | | - Benjamin H. McMahon
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Collins Ouma
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, Kenya,Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | - Douglas J. Perkins
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, Kenya,Center for Global Health, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
44
|
Abstract
Host-directed therapy (HDT) is gaining traction as a strategy to combat infectious diseases caused by viruses and intracellular bacteria, but its implementation in the context of parasitic diseases has received less attention. Here, we provide a brief overview of this field and advocate HDT as a promising strategy for antimalarial intervention based on untapped targets. HDT provides a basis from which repurposed drugs could be rapidly deployed and is likely to strongly limit the emergence of resistance. This strategy can be applied to any intracellular pathogen and is particularly well placed in situations in which rapid identification of treatments is needed, such as emerging infections and pandemics, as starkly illustrated by the current COVID-19 crisis.
Collapse
|
45
|
Gupta A, Styczynski MP, Galinski MR, Voit EO, Fonseca LL. Dramatic transcriptomic differences in Macaca mulatta and Macaca fascicularis with Plasmodium knowlesi infections. Sci Rep 2021; 11:19519. [PMID: 34593836 PMCID: PMC8484567 DOI: 10.1038/s41598-021-98024-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/30/2021] [Indexed: 12/02/2022] Open
Abstract
Plasmodium knowlesi, a model malaria parasite, is responsible for a significant portion of zoonotic malaria cases in Southeast Asia and must be controlled to avoid disease severity and fatalities. However, little is known about the host-parasite interactions and molecular mechanisms in play during the course of P. knowlesi malaria infections, which also may be relevant across Plasmodium species. Here we contrast P. knowlesi sporozoite-initiated infections in Macaca mulatta and Macaca fascicularis using whole blood RNA-sequencing and transcriptomic analysis. These macaque hosts are evolutionarily close, yet malaria-naïve M. mulatta will succumb to blood-stage infection without treatment, whereas malaria-naïve M. fascicularis controls parasitemia without treatment. This comparative analysis reveals transcriptomic differences as early as the liver phase of infection, in the form of signaling pathways that are activated in M. fascicularis, but not M. mulatta. Additionally, while most immune responses are initially similar during the acute stage of the blood infection, significant differences arise subsequently. The observed differences point to prolonged inflammation and anti-inflammatory effects of IL10 in M. mulatta, while M. fascicularis undergoes a transcriptional makeover towards cell proliferation, consistent with its recovery. Together, these findings suggest that timely detection of P. knowlesi in M. fascicularis, coupled with control of inflammation while initiating the replenishment of key cell populations, helps contain the infection. Overall, this study points to specific genes and pathways that could be investigated as a basis for new drug targets that support recovery from acute malaria.
Collapse
Affiliation(s)
- Anuj Gupta
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Mark P Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mary R Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Eberhard O Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| | - Luis L Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
46
|
Salgado C, Ayodo G, Macklin MD, Gould MP, Nallandhighal S, Odhiambo EO, Obala A, O'Meara WP, John CC, Tran TM. The prevalence and density of asymptomatic Plasmodium falciparum infections among children and adults in three communities of western Kenya. Malar J 2021; 20:371. [PMID: 34535134 PMCID: PMC8447531 DOI: 10.1186/s12936-021-03905-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 09/03/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Further reductions in malaria incidence as more countries approach malaria elimination require the identification and treatment of asymptomatic individuals who carry mosquito-infective Plasmodium gametocytes that are responsible for furthering malaria transmission. Assessing the relationship between total parasitaemia and gametocytaemia in field surveys can provide insight as to whether detection of low-density, asymptomatic Plasmodium falciparum infections with sensitive molecular methods can adequately detect the majority of infected individuals who are potentially capable of onward transmission. METHODS In a cross-sectional survey of 1354 healthy children and adults in three communities in western Kenya across a gradient of malaria transmission (Ajigo, Webuye, and Kapsisywa-Kipsamoite), asymptomatic P. falciparum infections were screened by rapid diagnostic tests, blood smear, and quantitative PCR of dried blood spots targeting the varATS gene in genomic DNA. A multiplex quantitative reverse-transcriptase PCR assay targeting female and male gametocyte genes (pfs25, pfs230p), a gene with a transcriptional pattern restricted to asexual blood stages (piesp2), and human GAPDH was also developed to determine total parasite and gametocyte densities among parasitaemic individuals. RESULTS The prevalence of varATS-detectable asymptomatic infections was greatest in Ajigo (42%), followed by Webuye (10%). Only two infections were detected in Kapsisywa. No infections were detected in Kipsamoite. Across all communities, children aged 11-15 years account for the greatest proportion total and sub-microscopic asymptomatic infections. In younger age groups, the majority of infections were detectable by microscopy, while 68% of asymptomatically infected adults (> 21 years old) had sub-microscopic parasitaemia. Piesp2-derived parasite densities correlated poorly with microscopy-determined parasite densities in patent infections relative to varATS-based detection. In general, both male and female gametocytaemia increased with increasing varATS-derived total parasitaemia. A substantial proportion (41.7%) of individuals with potential for onward transmission had qPCR-estimated parasite densities below the limit of microscopic detection, but above the detectable limit of varATS qPCR. CONCLUSIONS This assessment of parasitaemia and gametocytaemia in three communities with different transmission intensities revealed evidence of a substantial sub-patent infectious reservoir among asymptomatic carriers of P. falciparum. Experimental studies are needed to definitively determine whether the low-density infections in communities such as Ajigo and Webuye contribute significantly to malaria transmission.
Collapse
Affiliation(s)
- Christina Salgado
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - George Ayodo
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.,Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Michael D Macklin
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Srinivas Nallandhighal
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eliud O Odhiambo
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.,Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Andrew Obala
- School of Medicine, Moi University College of Health Sciences, Eldoret, Kenya
| | | | - Chandy C John
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.,Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Tuan M Tran
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA. .,Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
47
|
Valletta JJ, Addy JW, Reid AJ, Ndungu FM, Bediako Y, Mwacharo J, Mohammed KS, Musyoki J, Ngoi JM, Wambua J, Otieno E, Berriman M, Bejon P, Marsh K, Langhorne J, Newbold CI, Recker M. Individual-level variations in malaria susceptibility and acquisition of clinical protection. Wellcome Open Res 2021; 6:22. [PMID: 35310901 PMCID: PMC8914138 DOI: 10.12688/wellcomeopenres.16524.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2021] [Indexed: 08/26/2024] Open
Abstract
After decades of research, our understanding of when and why individuals infected with Plasmodium falciparum develop clinical malaria is still limited. Correlates of immune protection are often sought through prospective cohort studies, where measured host factors are correlated against the incidence of clinical disease over a set period of time. However, robustly inferring individual-level protection from these population-level findings has proved difficult due to small effect sizes and high levels of variance underlying such data. In order to better understand the nature of these inter-individual variations, we analysed the long-term malaria epidemiology of children ≤12 years old growing up under seasonal exposure to the parasite in the sub-location of Junju, Kenya. Despite the cohort's limited geographic expanse (ca. 3km x 10km), our data reveal a high degree of spatial and temporal variability in malaria prevalence and incidence rates, causing individuals to experience varying levels of exposure to the parasite at different times during their life. Analysing individual-level infection histories further reveal an unexpectedly high variability in the rate at which children experience clinical malaria episodes. Besides exposure to the parasite, measured as disease prevalence in the surrounding area, we find that the birth time of year has an independent effect on the individual's risk of experiencing a clinical episode. Furthermore, our analyses reveal that those children with a history of an above average number of episodes are more likely to experience further episodes during the upcoming transmission season. These findings are indicative of phenotypic differences in the rates by which children acquire clinical protection to malaria and offer important insights into the natural variability underlying malaria epidemiology.
Collapse
Affiliation(s)
- John Joseph Valletta
- School of Mathematics and Statistics, University of St. Andrews, St. Andrews, UK
| | - John W.G. Addy
- Malaria Immunology Laboratory, Francis Crick Institute, London, UK
| | - Adam J. Reid
- Parasite Genomics, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Yaw Bediako
- Malaria Immunology Laboratory, Francis Crick Institute, London, UK
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | | | | | | | - Joyce Mwongeli Ngoi
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Joshua Wambua
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Edward Otieno
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Matt Berriman
- Parasite Genomics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Philip Bejon
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kevin Marsh
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Jean Langhorne
- Malaria Immunology Laboratory, Francis Crick Institute, London, UK
| | - Chris I. Newbold
- Parasite Genomics, Wellcome Trust Sanger Institute, Hinxton, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mario Recker
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| |
Collapse
|
48
|
Ricker E, Manni M, Flores-Castro D, Jenkins D, Gupta S, Rivera-Correa J, Meng W, Rosenfeld AM, Pannellini T, Bachu M, Chinenov Y, Sculco PK, Jessberger R, Prak ETL, Pernis AB. Altered function and differentiation of age-associated B cells contribute to the female bias in lupus mice. Nat Commun 2021; 12:4813. [PMID: 34376664 PMCID: PMC8355159 DOI: 10.1038/s41467-021-25102-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Differences in immune responses to viruses and autoimmune diseases such as systemic lupus erythematosus (SLE) can show sexual dimorphism. Age-associated B cells (ABC) are a population of CD11c+T-bet+ B cells critical for antiviral responses and autoimmune disorders. Absence of DEF6 and SWAP-70, two homologous guanine exchange factors, in double-knock-out (DKO) mice leads to a lupus-like syndrome in females marked by accumulation of ABCs. Here we demonstrate that DKO ABCs show sex-specific differences in cell number, upregulation of an ISG signature, and further differentiation. DKO ABCs undergo oligoclonal expansion and differentiate into both CD11c+ and CD11c- effector B cell populations with pathogenic and pro-inflammatory function as demonstrated by BCR sequencing and fate-mapping experiments. Tlr7 duplication in DKO males overrides the sex-bias and further augments the dissemination and pathogenicity of ABCs, resulting in severe pulmonary inflammation and early mortality. Thus, sexual dimorphism shapes the expansion, function and differentiation of ABCs that accompanies TLR7-driven immunopathogenesis.
Collapse
Affiliation(s)
- Edd Ricker
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Michela Manni
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
| | - Danny Flores-Castro
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
| | - Daniel Jenkins
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
| | - Sanjay Gupta
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
| | - Juan Rivera-Correa
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, PA, USA
| | - Aaron M Rosenfeld
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, PA, USA
| | - Tania Pannellini
- Research Division and Precision Medicine Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Mahesh Bachu
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY, USA
| | - Yurii Chinenov
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Peter K Sculco
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Technische Universitat, Dresden, Germany
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, PA, USA
| | - Alessandra B Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
49
|
Experience counts in the malaria response. Nat Immunol 2021; 22:537-539. [PMID: 33888897 DOI: 10.1038/s41590-021-00917-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Vijayan K, Wei L, Glennon EKK, Mattocks C, Bourgeois N, Staker B, Kaushansky A. Host-targeted Interventions as an Exciting Opportunity to Combat Malaria. Chem Rev 2021; 121:10452-10468. [PMID: 34197083 DOI: 10.1021/acs.chemrev.1c00062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Terminal and benign diseases alike in adults, children, pregnant women, and others are successfully treated by pharmacological inhibitors that target human enzymes. Despite extensive global efforts to fight malaria, the disease continues to be a massive worldwide health burden, and new interventional strategies are needed. Current drugs and vector control strategies have contributed to the reduction in malaria deaths over the past 10 years, but progress toward eradication has waned in recent years. Resistance to antimalarial drugs is a substantial and growing problem. Moreover, targeting dormant forms of the malaria parasite Plasmodium vivax is only possible with two approved drugs, which are both contraindicated for individuals with glucose-6-phosphate dehydrogenase deficiency and in pregnant women. Plasmodium parasites are obligate intracellular parasites and thus have specific and absolute requirements of their hosts. Growing evidence has described these host necessities, paving the way for opportunities to pharmacologically target host factors to eliminate Plasmodium infection. Here, we describe progress in malaria research and adjacent fields and discuss key challenges that remain in implementing host-directed therapy against malaria.
Collapse
Affiliation(s)
| | - Ling Wei
- Seattle Children's Research Institute, Seattle, Washington 98109, United States
| | | | - Christa Mattocks
- Department of Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Natasha Bourgeois
- Seattle Children's Research Institute, Seattle, Washington 98109, United States.,Department of Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Bart Staker
- Seattle Children's Research Institute, Seattle, Washington 98109, United States
| | - Alexis Kaushansky
- Seattle Children's Research Institute, Seattle, Washington 98109, United States.,Department of Global Health, University of Washington, Seattle, Washington 98195, United States.,Department of Pediatrics, University of Washington, Seattle, Washington 98105, United States.,Brotman Baty Institute for Precision Medicine, Seattle, Washington 98195, United States
| |
Collapse
|