1
|
Chenuet P, Mellier M, Messaoud-Nacer Y, Culerier E, Marquant Q, Fauconnier L, Rouxel N, Ledru A, Rose S, Ryffel B, Apetoh L, Quesniaux VF, Togbe D. Birch pollen allergen-induced dsDNA release activates cGAS-STING signaling and type 2 immune response in mice. iScience 2025; 28:112324. [PMID: 40276777 PMCID: PMC12018559 DOI: 10.1016/j.isci.2025.112324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Detecting cytoplasmic or extracellular DNA from host or pathogen origin by DNA sensor cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) triggers immune responses with secretion of type I interferons and inflammatory cytokines. However, STING agonists function as type-2 adjuvant promoting allergic asthma. Here, we asked how cGAS/STING signaling pathway influences allergen-induced type-2 immune responses in models of allergic airway diseases induced by birch pollen extract, house dust mite, or ovalbumin plus Alum. We report increased extracellular dsDNA in the airways, together with cGAS and STING gene expression, following allergen challenge in these models, correlating dsDNA and type-2 cytokine IL-4, IL-5, and IL-13 release. Allergen-induced type-2 immune responses were reduced in cGAS- or STING-deficient mice. Further, blocking cGAS function with the specific inhibitor RU.521 protected mice from birch pollen allergen-induced airway inflammation and type-2 immune responses. Thus, DNA sensing by cGAS contributes to type-2 immune responses and may represent a therapeutic target for allergic lung inflammation.
Collapse
Affiliation(s)
| | - Manon Mellier
- Artimmune SAS, 13 Avenue Buffon, 45100 Orléans, France
| | - Yasmine Messaoud-Nacer
- Laboratory of Immuno-Neuro Modulation (INEM), UMR 7355 CNRS and University of Orleans, 3B rue de la Ferollerie, 45071 Orleans-Cedex, France
| | - Elodie Culerier
- Laboratory of Immuno-Neuro Modulation (INEM), UMR 7355 CNRS and University of Orleans, 3B rue de la Ferollerie, 45071 Orleans-Cedex, France
| | - Quentin Marquant
- Laboratory of Immuno-Neuro Modulation (INEM), UMR 7355 CNRS and University of Orleans, 3B rue de la Ferollerie, 45071 Orleans-Cedex, France
| | | | | | - Aurélie Ledru
- Artimmune SAS, 13 Avenue Buffon, 45100 Orléans, France
| | - Stéphanie Rose
- Laboratory of Immuno-Neuro Modulation (INEM), UMR 7355 CNRS and University of Orleans, 3B rue de la Ferollerie, 45071 Orleans-Cedex, France
| | - Bernhard Ryffel
- Artimmune SAS, 13 Avenue Buffon, 45100 Orléans, France
- Laboratory of Immuno-Neuro Modulation (INEM), UMR 7355 CNRS and University of Orleans, 3B rue de la Ferollerie, 45071 Orleans-Cedex, France
| | - Lionel Apetoh
- Brown Center for Immunotherapy, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Valérie F.J. Quesniaux
- Laboratory of Immuno-Neuro Modulation (INEM), UMR 7355 CNRS and University of Orleans, 3B rue de la Ferollerie, 45071 Orleans-Cedex, France
| | - Dieudonnée Togbe
- Laboratory of Immuno-Neuro Modulation (INEM), UMR 7355 CNRS and University of Orleans, 3B rue de la Ferollerie, 45071 Orleans-Cedex, France
- University of Orleans, 45000 Orleans, France
| |
Collapse
|
2
|
Zhu L, Tang Z, Jiang W, Dong Y, Li X, Huang K, Wu T, Xu L, Guo W, Gu Y. Cholesterol biosynthesis induced by radiotherapy inhibits cGAS-STING activation and contributes to colorectal cancer treatment resistance. Exp Mol Med 2025:10.1038/s12276-025-01457-6. [PMID: 40355720 DOI: 10.1038/s12276-025-01457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 02/04/2025] [Accepted: 03/10/2025] [Indexed: 05/14/2025] Open
Abstract
Radiotherapy-induced DNA damage can lead to apoptotic cell death and trigger an anti-tumor immune response via the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway, which senses cytoplasmic double-stranded DNA. However, radiotherapy resistance poses a significant challenge in treating cancers, including colorectal cancer (CRC). Understanding the mechanisms underlying this resistance is crucial for developing effective therapies. Here we report that radiotherapy enhances cholesterol synthesis, which subsequently inhibits the cGAS-STING pathway, leading to radiotherapy resistance. Mechanistically, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) levels increase rapidly in response to radiation, resulting in increased cholesterol synthesis. This increased cholesterol sequesters STING in the endoplasmic reticulum, hindering its activation and downstream interferon signaling. Elevated HMGCR and cholesterol levels correlate with poor prognosis and reduced response to radiation therapy in patients with CRC. Importantly, pharmacological inactivation of HMGCR significantly enhanced radiotherapy responsiveness in animal models, dependent on cGAS-STING signaling-mediated anti-tumor responses. Our findings reveal that radiotherapy-induced cholesterol inhibits cGAS-STING signaling, facilitating tumor immune escape. Therefore, combining statins with radiotherapy represents a promising therapeutic strategy for treating CRC.
Collapse
Affiliation(s)
- Lijun Zhu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, The First Clinical Medical College of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Zhaohui Tang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, School of Life Science, Nanjing University, Nanjing, China
| | - Wen Jiang
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, The First Clinical Medical College of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yuwen Dong
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, The First Clinical Medical College of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xiaofei Li
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, The First Clinical Medical College of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Kai Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, School of Life Science, Nanjing University, Nanjing, China
| | - Tiancong Wu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Lingyan Xu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, The First Clinical Medical College of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, School of Life Science, Nanjing University, Nanjing, China.
| | - Yanhong Gu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, The First Clinical Medical College of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Yan Z, Wang C, Wu J, Wang J, Ma T. TIM-3 teams up with PD-1 in cancer immunotherapy: mechanisms and perspectives. MOLECULAR BIOMEDICINE 2025; 6:27. [PMID: 40332725 PMCID: PMC12058639 DOI: 10.1186/s43556-025-00267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025] Open
Abstract
Immunotherapy using immune checkpoint inhibitors (ICIs) has become a prominent strategy for cancer treatment over the past ten years. However, the efficacy of ICIs remains limited, with certain cancers exhibiting resistance to these therapeutic approaches. Consequently, several immune checkpoint proteins are presently being thoroughly screened and assessed in both preclinical and clinical studies. Among these candidates, T cell immunoglobulin and mucin-domain containing-3 (TIM-3) is considered a promising target. TIM-3 exhibits multiple immunosuppressive effects on various types of immune cells. Given its differential expression levels at distinct stages of T cell dysfunction in the tumor microenvironment (TME), TIM-3, along with programmed cell death protein 1 (PD-1), serves as indicators of T cell exhaustion. Moreover, it is crucial to carefully evaluate the impact of TIM-3 and PD-1 expression in cancer cells on the efficacy of immunotherapy. To increase the effectiveness of anti-TIM-3 and anti-PD-1 therapies, it is proposed to combine the inhibition of TIM-3, PD-1, and programmed death-ligand 1 (PD-L1). The efficacy of TIM-3 inhibition in conjunction with PD-1/PD-L1 inhibitors is being evaluated in a number of ongoing clinical trials for patients with various cancers. This study systematically investigates the fundamental biology of TIM-3 and PD-1, as well as the detailed mechanisms through which TIM-3 and PD-1/PD-L1 axis contribute to cancer immune evasion. Additionally, this article provides a thorough analysis of ongoing clinical trials evaluating the synergistic effects of combining PD-1/PD-L1 and TIM-3 inhibitors in anti-cancer treatment, along with an overview of the current status of TIM-3 and PD-1 antibodies.
Collapse
Affiliation(s)
- Zhuohong Yan
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Chunmao Wang
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Jinghong Wu
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Jinghui Wang
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Teng Ma
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
4
|
Chen S, Chen J, Kong Y, Li H, Chen Z, Luo L, Wu Y, Chen L. Knockdown of TIM3 Hampers Dendritic Cell Maturation and Induces Immune Suppression by Modulating T-Cell Responses. Int J Mol Sci 2025; 26:4332. [PMID: 40362568 PMCID: PMC12072576 DOI: 10.3390/ijms26094332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/16/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Various inhibitors targeting T-cell immunoglobulin and mucin-containing molecule 3 (TIM3) aimed at reversing T-cell exhaustion for better immunotherapy outcomes have demonstrated limited clinical efficacy as monotherapy, with the underlying mechanisms remaining ambiguous. TIM3 is markedly expressed in dendritic cells (DCs), and the inconsistent research findings on its role in myeloid cells underscore its vital function within DCs. Through the establishment of an in vitro differentiation model generating mature dendritic cells (mDCs) under TIM3-targeted interventions, combined with an RNA sequencing analysis, this investigation systematically examined TIM3-mediated regulation and ligand interactions in human primary DCs. The findings indicate that TIM3 inhibition hinders DC maturation, which subsequently diminishes the antigen-presenting capacity of DCs, ultimately leading to immune suppression in T cells. These findings collectively establish TIM3 as a regulator of DC differentiation that promotes DC maturation while optimizing the antigen-processing and presentation capacity. This study elucidates the rationale behind the suboptimal efficacy of TIM3 inhibitors and advocates for retaining TIM3 signaling pathways in DCs.
Collapse
Affiliation(s)
- Shirui Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi’an 710032, China
| | - Junjie Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi’an 710032, China
| | - Yaojie Kong
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi’an 710032, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Henghui Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi’an 710032, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Zhinan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi’an 710032, China
| | - Lingjie Luo
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yanwei Wu
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Liang Chen
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi’an 710032, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
5
|
Zhou XY, Zhang NC, Zhang XN, Sun XD, Ruan ZL, Yang Q, Hu MM, Shu HB. The carcinogenic metabolite acetaldehyde impairs cGAS activity to negatively regulate antiviral and antitumor immunity. Cancer Lett 2025; 617:217615. [PMID: 40056967 DOI: 10.1016/j.canlet.2025.217615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
The cGAS-MITA/STING pathway plays critical roles in both host defense against DNA virus and intrinsic antitumor immunity by sensing viral genomic DNA or dis-located mitochondrial/cellular DNA. Whether carcinogenic metabolites can target the cGAS-MITA axis to promote tumorigenesis is unknown. In this study, we identified acetaldehyde, a carcinogenic metabolite, as a suppressor of the cGAS-MITA pathway. Acetaldehyde inhibits the DNA virus herpes simplex virus 1 (HSV-1)- and transfected DNA-triggered but not cGAMP-induced activation of downstream components and induction of downstream effector genes. Mechanistically, acetaldehyde impairs the binding of cGAS to DNA as well as the phase separation of the cGAS-DNA complex in cells. In mouse models, acetaldehyde inhibits antiviral cytokine production, promotes viral replication and lethality upon HSV-1 infection. In a colorectal tumor xenograft model, acetaldehyde promotes tumor growth and inhibits CD8+ T cell infiltration by targeting cGAS in both the tumor cells and immune cells in mice. Bioinformatic analysis indicates that expression of acetaldehyde dehydrogenase 2 (ALDH2), which converts acetaldehyde to acetic acid, is negatively correlated with stimulatory immune signatures in clinical colorectal tumors, and higher ALDH2 expression exhibits better prognosis of colorectal cancer patients. Collectively, our results suggest that acetaldehyde impairs cGAS activity to inhibit the cGAS-MITA axis, which contributes to its effects on carcinogenesis.
Collapse
Affiliation(s)
- Xiao-Yue Zhou
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, China
| | - Nian-Chao Zhang
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, China
| | - Xia-Nan Zhang
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, China
| | - Xue-Dan Sun
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, China
| | - Zi-Lun Ruan
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, China
| | - Qing Yang
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, China
| | - Ming-Ming Hu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, China.
| | - Hong-Bing Shu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Shen M, Jiang X, Peng Q, Oyang L, Ren Z, Wang J, Peng M, Zhou Y, Deng X, Liao Q. The cGAS‒STING pathway in cancer immunity: mechanisms, challenges, and therapeutic implications. J Hematol Oncol 2025; 18:40. [PMID: 40188340 PMCID: PMC11972543 DOI: 10.1186/s13045-025-01691-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/17/2025] [Indexed: 04/07/2025] Open
Abstract
Innate immunity represents the body's first line of defense, effectively countering the invasion of external pathogens. Recent studies have highlighted the crucial role of innate immunity in antitumor defense, beyond its established function in protecting against external pathogen invasion. Enhancing innate immune signaling has emerged as a pivotal strategy in cancer therapy. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway is a key innate immune signal that activates the immune response and exerts antitumor effects; this is primarily attributed to the DNA receptor function of cGAS, which recognizes exogenous DNA to activate downstream STING signaling. This, in turn, promotes the activation of downstream targets such as IRF-3(Interferon Regulatory Factor 3) and NF-κB, leading to the secretion of type I interferons and proinflammatory cytokines, thereby increasing cellular immune activity. The activation of the cGAS-STING pathway may thus play a crucial role in enhancing anticancer immunity. In this paper, we reviewed the role of cGAS-STING signaling in anticancer immunity and its molecular mechanisms. Additionally, we briefly discuss the current applications of the cGAS-STING pathway in cancer immunity, summarize recent developments in STING agonists, and address the challenges facing the use of the cGAS-STING pathway in cancer therapy. Finally, we provide insights into the role of the cGAS‒STING pathway in cancer and propose new directions for cancer immunotherapy.
Collapse
Affiliation(s)
- Mengzhou Shen
- Department of Oncology, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Hunan Normal University Health Science Center, Changsha, Hunan, 410005, China
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Key Laboratory of Cancer Metabolism, Central South University, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Xianjie Jiang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Key Laboratory of Cancer Metabolism, Central South University, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Qiu Peng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Key Laboratory of Cancer Metabolism, Central South University, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Linda Oyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Key Laboratory of Cancer Metabolism, Central South University, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Zongyao Ren
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Key Laboratory of Cancer Metabolism, Central South University, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Jiewen Wang
- Department of Oncology, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Hunan Normal University Health Science Center, Changsha, Hunan, 410005, China
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Key Laboratory of Cancer Metabolism, Central South University, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Mingjing Peng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Key Laboratory of Cancer Metabolism, Central South University, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Yujuan Zhou
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Key Laboratory of Cancer Metabolism, Central South University, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, 410013, China
| | - Xiyun Deng
- School of Basic Medical Sciences, Hunan Normal University, Changsha, Hunan, 410013, China.
| | - Qianjin Liao
- Department of Oncology, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Hunan Normal University Health Science Center, Changsha, Hunan, 410005, China.
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, 410013, China.
| |
Collapse
|
7
|
Xia P, Qu C, Xu X, Tian M, Li Z, Ma J, Hou R, Li H, Rückert F, Zhong T, Zhao L, Yuan Y, Wang J, Li Z. Nanobody Engineered and Photosensitiser Loaded Bacterial Outer Membrane Vesicles Potentiate Antitumour Immunity and Immunotherapy. J Extracell Vesicles 2025; 14:e70069. [PMID: 40240911 PMCID: PMC12003094 DOI: 10.1002/jev2.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/12/2025] [Indexed: 04/18/2025] Open
Abstract
Bacterial outer membrane vesicles (OMVs) are promising as antitumour agents, but their clinical application is limited by toxicity concerns and unclear mechanisms. We engineered OMVs with cadherin 17 (CDH17) tumour-targeting nanobodies, enhancing tumour selectivity and efficacy while reducing adverse effects. These engineered OMVs function as natural stimulator of interferon genes (STING) agonists, activating the cyclic GMP-AMP synthase (cGAS)-STING pathway in cancer cells and tumour-associated macrophages (TAMs). Loading engineered OMVs with photoimmunotherapy photosensitisers further enhanced tumour inhibition and STING activation in TAMs. Combining nanobody-engineered OMV-mediated photoimmunotherapy with CD47 blockade effectively suppressed primary and metastatic tumours, establishing sustained antitumour immune memory. This study demonstrates the potential of nanobody-engineered OMVs as STING agonists and provides insights into novel OMV-based immunotherapeutic strategies harnessing the innate immune system against cancer. Our findings open new avenues for OMV applications in tumour immunotherapy, offering a promising approach to overcome current limitations in cancer treatment.
Collapse
Affiliation(s)
- Peng Xia
- Zhongnan Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei ProvinceWuhan UniversityWuhanHubeiP. R. China
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Department of Nuclear MedicineShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University)ShenzhenGuangdongP. R. China
- Department of ChemistryThe University of ChicagoChicagoIllinoisUSA
| | - Chengming Qu
- Zhongnan Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei ProvinceWuhan UniversityWuhanHubeiP. R. China
| | - Xiaolong Xu
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Department of Nuclear MedicineShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University)ShenzhenGuangdongP. R. China
| | - Ming Tian
- Zhongnan Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei ProvinceWuhan UniversityWuhanHubeiP. R. China
| | - Zhifen Li
- School of Chemistry and Chemical EngineeringShanxi Datong UniversityDatongShanxi ProvinceP. R. China
| | - Jingbo Ma
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Department of Nuclear MedicineShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University)ShenzhenGuangdongP. R. China
| | - Rui Hou
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical ResearchThe University of Western AustraliaNedlandsWAAustralia
| | - Han Li
- Department of ChemistryThe University of ChicagoChicagoIllinoisUSA
| | - Felix Rückert
- Department of Visceral SurgeryDiakonissen HospitalSpeyerGermany
| | - Tianyu Zhong
- Department of Laboratory MedicineHuadong Hospital, Fudan UniversityShanghaiP. R. China
| | - Liang Zhao
- Department of PathologyNanfang Hospital, Southern Medical UniversityGuangzhouP. R. China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouP. R. China
| | - Yufeng Yuan
- Zhongnan Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei ProvinceWuhan UniversityWuhanHubeiP. R. China
| | - Jigang Wang
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Department of Nuclear MedicineShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University)ShenzhenGuangdongP. R. China
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouGuangdongP. R. China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingP. R. China
- State Key Laboratory of Antiviral DrugsSchool of PharmacyHenan UniversityKaifengP. R. China
| | - Zhijie Li
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Department of Nuclear MedicineShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University)ShenzhenGuangdongP. R. China
| |
Collapse
|
8
|
Chu Z, Zheng W, Fu W, Liang J, Wang W, Xu L, Jiang X, Zha Z, Qian H. Implanted Microneedles Loaded with Sparfloxacin and Zinc-Manganese Sulfide Nanoparticles Activates Immunity for Postoperative Triple-Negative Breast Cancer to Prevent Recurrence and Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416270. [PMID: 40042034 PMCID: PMC12021102 DOI: 10.1002/advs.202416270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/15/2025] [Indexed: 04/26/2025]
Abstract
Recent investigations have underscored the significant role of manganese ions (Mn2+) in immunization, particularly through the activation of the cGAS-STING pathway, which enhances antitumor immune responses. However, the rapid metabolism of free Mn2+ following administration limits its effectiveness as an immune adjuvant. To address these challenges, microneedles (MNs) of hyaluronic acid containing Sparfloxacin (SP) and zinc-manganese sulfide (ZMS) are prepared for the postoperative in situ treatment of triple-negative breast cancer (TNBC) to prevent cancer recurrence and combat wound infection. ZMS/SP (ZS)-loaded MNs exhibit strong antimicrobial and antibiofilm properties that are crucial for preventing postoperative infections. Moreover, the generation of reactive oxygen species by these MNs disrupts the oxidative balance, effectively activating immunogenic cell death and facilitating the release of cytokines. ZS significantly suppressed tumor growth, reduced lung metastasis, and promoted wound healing. These effects are accompanied by notable increases in immune cell infiltration and activation, which is consistent with the gene sequencing results. Activation of the cGAS-STING pathway further improved antitumor immunity. These findings highlight the potential of ZS MNs as an effective and safe treatment that utilizes the immunostimulatory properties of Mn2+ to enhance local and systemic immune responses for the prevention of postoperative TNBC metastasis.
Collapse
Affiliation(s)
- Zhaoyou Chu
- School of Biomedical EngineeringAnhui Provincial Institute of Translational MedicineAnhui Medical UniversityHefeiAnhui230032P. R. China
- The First Affiliated Hospital of Anhui Medical UniversitHefeiAnhui230022P. R. China
| | - Wang Zheng
- School of Biomedical EngineeringAnhui Provincial Institute of Translational MedicineAnhui Medical UniversityHefeiAnhui230032P. R. China
| | - Wanyue Fu
- School of Biomedical EngineeringAnhui Provincial Institute of Translational MedicineAnhui Medical UniversityHefeiAnhui230032P. R. China
| | - Jun Liang
- School of Biomedical EngineeringAnhui Provincial Institute of Translational MedicineAnhui Medical UniversityHefeiAnhui230032P. R. China
| | - Wanni Wang
- School of Biomedical EngineeringAnhui Provincial Institute of Translational MedicineAnhui Medical UniversityHefeiAnhui230032P. R. China
| | - Lingling Xu
- School of Biomedical EngineeringAnhui Provincial Institute of Translational MedicineAnhui Medical UniversityHefeiAnhui230032P. R. China
| | - Xiaohua Jiang
- Department of Obstetrics and GynecologyCenter for Reproduction and GeneticsThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Zhengbao Zha
- School of Food and Biological EngineeringHefei University of TechnologyHefeiAnhui230009P. R. China
| | - Haisheng Qian
- School of Biomedical EngineeringAnhui Provincial Institute of Translational MedicineAnhui Medical UniversityHefeiAnhui230032P. R. China
| |
Collapse
|
9
|
Moon CY, Belabed M, Park MD, Mattiuz R, Puleston D, Merad M. Dendritic cell maturation in cancer. Nat Rev Cancer 2025; 25:225-248. [PMID: 39920276 PMCID: PMC11954679 DOI: 10.1038/s41568-024-00787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 02/09/2025]
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that are present at low abundance in the circulation and tissues; they serve as crucial immune sentinels by continually sampling their environment, migrating to secondary lymphoid organs and shaping adaptive immune responses through antigen presentation. Owing to their ability to orchestrate tolerogenic or immunogenic responses to a specific antigen, DCs have a pivotal role in antitumour immunity and the response to immune checkpoint blockade and other immunotherapeutic approaches. The multifaceted functions of DCs are acquired through a complex, multistage process called maturation. Although the role of inflammatory triggers in driving DC maturation was established decades ago, less is known about DC maturation in non-inflammatory contexts, such as during homeostasis and in cancer. The advent of single-cell technologies has enabled an unbiased, high-dimensional characterization of various DC states, including mature DCs. This approach has clarified the molecular programmes associated with DC maturation and also revealed how cancers exploit these pathways to subvert immune surveillance. In this Review, we discuss the mechanisms by which cancer disrupts DC maturation and highlight emerging therapeutic opportunities to modulate DC states. These insights could inform the development of DC-centric immunotherapies, expanding the arsenal of strategies to enhance antitumour immunity.
Collapse
Affiliation(s)
- Chang Yoon Moon
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meriem Belabed
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D Park
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raphaël Mattiuz
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Puleston
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
10
|
Parvanian S, Ge X, Garris CS. Recent developments in myeloid immune modulation in cancer therapy. Trends Cancer 2025; 11:365-375. [PMID: 39794212 DOI: 10.1016/j.trecan.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/13/2025]
Abstract
Myeloid cells play a crucial dual role in cancer progression and response to therapy, promoting tumor growth, enabling immune suppression, and contributing to metastatic spread. The ability of these cells to modulate the immune system has made them attractive targets for therapeutic strategies aimed at shifting their function from tumor promotion to fostering antitumor immunity. Therapeutic approaches targeting myeloid cells focus on modifying their numbers, genetics, metabolism, and interactions within the tumor microenvironment. These strategies aim to reverse their suppressive functions and redirect them to support antitumor immune responses by inhibiting immunosuppressive pathways, targeting specific receptors, and promoting their differentiation into less immunosuppressive phenotypes. Here, we discuss recent approaches to clinically target tumor myeloid cells, focusing on reprogramming myeloid cells to promote antitumor immunity.
Collapse
Affiliation(s)
- Sepideh Parvanian
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA
| | - Xinying Ge
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA; Master's Program in Immunology Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| | - Christopher S Garris
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, USA.
| |
Collapse
|
11
|
Beretta GL, Cassinelli G, Rossi G, Azzariti A, Corbeau I, Tosi D, Perego P. Novel insights into taxane pharmacology: An update on drug resistance mechanisms, immunomodulation and drug delivery strategies. Drug Resist Updat 2025; 81:101223. [PMID: 40086175 DOI: 10.1016/j.drup.2025.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
Taxanes are effective in several solid tumors. Paclitaxel, the main clinically available taxane, was approved in the early nineties, for the treatment of ovarian cancer and later on, together with the analogs docetaxel and cabazitaxel, for other malignancies. By interfering with microtubule function and impairing the separation of sister cells at mitosis, taxanes act as antimitotic agents, thereby counteracting the high proliferation rate of cancer cells. The action of taxanes goes beyond their antimitotic function because their main cellular targets, the microtubules, participate in multiple processes such as intracellular transport and cell shape maintenance. The clinical efficacy of taxanes is limited by the development of multiple resistance mechanisms. Among these, extracellular vesicles have emerged as new players. In addition, taxane metronomic schedules shows an impact on the tumor microenvironment reflected by antiangiogenic and immunomodulatory effects, an aspect of growing interest considering their inclusion in treatment regimens with immunotherapeutics. Preclinical studies have paved the bases for synergistic combinations of taxanes both with conventional and targeted agents. A variety of drug delivery strategies have provided novel opportunities to increase the drug activity. The ability of taxanes to orchestrate different cellular effects amenable to modulation suggests novel options to improve cures in lethal malignancies.
Collapse
Affiliation(s)
- Giovanni Luca Beretta
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133, Italy.
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133, Italy.
| | - Giacomina Rossi
- Unit of Neurology 8, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy.
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, Bari 70124, Italy.
| | - Iléana Corbeau
- Early Clinical Trial Unit, Medical Oncology Department, Institut régional du Cancer de Montpellier, Inserm U1194, Montpellier University, 208, rue de Apothicaires, 34298 Montpellier, France; Fondazione Gianni Bonadonna, via Bertani, 14, Milan 20154, Italy.
| | - Diego Tosi
- Early Clinical Trial Unit, Medical Oncology Department, Institut régional du Cancer de Montpellier, Inserm U1194, Montpellier University, 208, rue de Apothicaires, 34298 Montpellier, France; Fondazione Gianni Bonadonna, via Bertani, 14, Milan 20154, Italy.
| | - Paola Perego
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133, Italy.
| |
Collapse
|
12
|
Roussot N, Kaderbhai C, Ghiringhelli F. Targeting Immune Checkpoint Inhibitors for Non-Small-Cell Lung Cancer: Beyond PD-1/PD-L1 Monoclonal Antibodies. Cancers (Basel) 2025; 17:906. [PMID: 40075753 PMCID: PMC11898530 DOI: 10.3390/cancers17050906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Non-small-cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality worldwide. Immunotherapy targeting the PD-1/PD-L1 axis has revolutionized treatment, providing durable responses in a subset of patients. However, with fewer than 50% of patients achieving significant benefits, there is a critical need to expand therapeutic strategies. This review explores emerging targets in immune checkpoint inhibition beyond PD-1/PD-L1, including CTLA-4, TIGIT, LAG-3, TIM-3, NKG2A, and CD39/CD73. We highlight the biological basis of CD8 T cell exhaustion in shaping the antitumor immune response. Novel therapeutic approaches targeting additional inhibitory receptors (IR) are discussed, with a focus on their distinct mechanisms of action and combinatory potential with existing therapies. Despite significant advancements, challenges remain in overcoming resistance mechanisms and optimizing patient selection. This review underscores the importance of dual checkpoint blockade and innovative bispecific antibody engineering to maximize therapeutic outcomes for NSCLC patients.
Collapse
Affiliation(s)
- Nicolas Roussot
- Department of Medical Oncology, Centre Georges-François Leclerc, 21000 Dijon, France; (C.K.); (F.G.)
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, 21000 Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Team TIRECs: Therapies and Immune REsponse in CancerS, 21000 Dijon, France
- UFR Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
| | - Courèche Kaderbhai
- Department of Medical Oncology, Centre Georges-François Leclerc, 21000 Dijon, France; (C.K.); (F.G.)
| | - François Ghiringhelli
- Department of Medical Oncology, Centre Georges-François Leclerc, 21000 Dijon, France; (C.K.); (F.G.)
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, 21000 Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Team TIRECs: Therapies and Immune REsponse in CancerS, 21000 Dijon, France
- UFR Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
| |
Collapse
|
13
|
Senent Y, Remírez A, Repáraz D, Llopiz D, Celias DP, Sainz C, Entrialgo-Cadierno R, Suarez L, Rouzaut A, Alignani D, Tavira B, Lambris JD, Woodruff TM, de Andrea CE, Ruffell B, Sarobe P, Ajona D, Pio R. The C5a/C5aR1 Axis Promotes Migration of Tolerogenic Dendritic Cells to Lymph Nodes, Impairing the Anticancer Immune Response. Cancer Immunol Res 2025; 13:384-399. [PMID: 39666368 DOI: 10.1158/2326-6066.cir-24-0250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/30/2024] [Accepted: 12/10/2024] [Indexed: 12/13/2024]
Abstract
The precise mechanisms by which the complement system contributes to the establishment of an immunosuppressive tumor microenvironment and promotes tumor progression remain unclear. In this study, we investigated the expression and function of complement C5a receptor 1 (C5aR1) in human and mouse cancer-associated dendritic cells (DC). First, we observed an overexpression of C5aR1 in tumor-infiltrating DCs, compared with DCs from the blood or spleen. C5aR1 expression was restricted to type 2 conventional DCs and monocyte-derived DCs, which displayed a tolerogenic phenotype capable of inhibiting T-cell activation and promoting tumor growth. C5aR1 engagement in DCs drove their migration from tumors to tumor-draining lymph nodes, where C5a levels were higher. We used this knowledge to optimize an anticancer therapy aimed at enhancing DC activity. In three syngeneic tumor models, C5aR1 inhibition significantly enhanced the efficacy of poly I:C, a Toll-like receptor 3 agonist, in combination with PD-1/PD-L1 blockade. The contribution of C5aR1 inhibition to the antitumor activity of the combination treatment relied on type 1 conventional DCs and antigen-specific CD8+ T cells, required lymphocyte egress from secondary lymphoid organs, and was associated with an increase in IFNγ signaling. In conclusion, our study highlights the importance of the C5a/C5aR1 axis in the biology of cancer-associated DCs and provides compelling evidence for the therapeutic potential of modulating the complement system to enhance DC-mediated immune responses against tumors.
Collapse
Affiliation(s)
- Yaiza Senent
- Cancer Division, Program in Solid Tumors, Cancer Center Clínica Universidad de Navarra (CCUN), Cima Universidad de Navarra, Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
| | - Ana Remírez
- Cancer Division, Program in Solid Tumors, Cancer Center Clínica Universidad de Navarra (CCUN), Cima Universidad de Navarra, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - David Repáraz
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Program in Immunology and Immunotherapy, CCUN, Cima Universidad de Navarra, Pamplona, Spain
| | - Diana Llopiz
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Program in Immunology and Immunotherapy, CCUN, Cima Universidad de Navarra, Pamplona, Spain
| | - Daiana P Celias
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Cristina Sainz
- Cancer Division, Program in Solid Tumors, Cancer Center Clínica Universidad de Navarra (CCUN), Cima Universidad de Navarra, Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Rodrigo Entrialgo-Cadierno
- Cancer Division, Program in Solid Tumors, Cancer Center Clínica Universidad de Navarra (CCUN), Cima Universidad de Navarra, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Lucia Suarez
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain
| | - Ana Rouzaut
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
| | - Diego Alignani
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Cytometry Unit, Cima Universidad de Navarra, Pamplona, Spain
| | - Beatriz Tavira
- Cancer Division, Program in Solid Tumors, Cancer Center Clínica Universidad de Navarra (CCUN), Cima Universidad de Navarra, Pamplona, Spain
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Queensland, Australia
| | | | - Brian Ruffell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Pablo Sarobe
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Program in Immunology and Immunotherapy, CCUN, Cima Universidad de Navarra, Pamplona, Spain
| | - Daniel Ajona
- Cancer Division, Program in Solid Tumors, Cancer Center Clínica Universidad de Navarra (CCUN), Cima Universidad de Navarra, Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Ruben Pio
- Cancer Division, Program in Solid Tumors, Cancer Center Clínica Universidad de Navarra (CCUN), Cima Universidad de Navarra, Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
14
|
Xie H, Zhang K, Yin H, Zhang S, Pan S, Wu R, Han Y, Xu Y, Jiang W, You B. Acetyltransferase NAT10 inhibits T-cell immunity and promotes nasopharyngeal carcinoma progression through DDX5/HMGB1 axis. J Immunother Cancer 2025; 13:e010301. [PMID: 39939141 PMCID: PMC11822433 DOI: 10.1136/jitc-2024-010301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Immunosuppression significantly contributes to treatment failure in nasopharyngeal carcinoma (NPC). Messenger RNA (mRNA) modifications such as methylation and acetylation play crucial roles in immunosuppression. However, N4-acetylcytidine (ac4C), the only acetylation modification event has rarely been studied in NPC. METHODS First, clinical tissue samples and nude mouse models were used to explore the expression of N-acetyltransferase 10 (NAT10) in NPC and its influence on it. Second, The Cancer Genome Atlas immune database and transgenic mouse peripheral blood immune cell panel were used to verify the immune cells mainly affected by NAT10. Then, NAT10 ac4C acetylation modification and expression of significantly upregulated transcription factors were explored by acetylated RNA immunoprecipitation sequence binding to RNA sequencing. Then, the downstream regulatory genes of CCAAT enhancer binding protein γ (CEBPG), dead box helicase 5 (DDX5) and helicase-like transcription factors (HLTF) were analyzed by luciferase report and chromatin Immunoprecipitation. Finally, the effect of inhibition of NAT10 on anti-programmed cell death protein 1 (PD-1) treatment sensitivity was verified by animal models. RESULTS In this study, we aimed to explore the role of NAT10, the enzyme responsible for ac4C modification, in NPC progression and patient prognosis. Elevated NAT10 promoted NPC progression and correlated with poor prognosis in patients with NPC. NAT10-mediated ac4C modification of CEBPG, DDX5, and HLTF mRNA improved their stability and translation efficiency, with the NAT10/ac4C/DDX5 axis upregulating high mobility group box 1 (HMGB1) and inhibiting CD4+ and CD8+ T cells. Inhibition of NAT10 increased the sensitivity to PD-1 therapy. Additionally, HLTF was found to transcriptionally regulate NAT10, indicating the formation of an HLTF-NAT10 positive feedback loop. CONCLUSIONS Our study elucidates the mechanism by which the NAT10/DDX5/HMGB1 axis promotes the immunosuppression of NPC by promoting T-cell dysfunction. In addition, NAT10 knockdown can enhance anti-PD-1 treatment sensitivity as a combination therapy for NPC.
Collapse
Affiliation(s)
- Haijing Xie
- Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Kaiwen Zhang
- Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | | | - Siyu Zhang
- Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Si Pan
- Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Rui Wu
- Nantong University, Nantong, Jiangsu, China
| | - Yumo Han
- Nantong University, Nantong, Jiangsu, China
| | - Yi Xu
- Nantong University, Nantong, Jiangsu, China
| | - Weihong Jiang
- Department of Otolaryngology Head and Neck Surgery, Central South University, Changsha, Hunan, China
| | - Bo You
- Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| |
Collapse
|
15
|
Bian K, Yang C, Zhang F, Huang L. A Novel Prognostic Signature of Mitophagy-Related E3 Ubiquitin Ligases in Breast Cancer. Int J Mol Sci 2025; 26:1551. [PMID: 40004017 PMCID: PMC11855622 DOI: 10.3390/ijms26041551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Mitophagy plays a critical role in maintaining mitochondrial quality and cellular homeostasis. But the specific contribution of mitophagy-related E3 ubiquitin ligases to prognoses remains largely unexplored. In this study, we identified a novel mitophagy-related E3 ubiquitin ligase prognostic signature using least absolute shrinkage and selector operator (LASSO) and multivariate Cox regression analyses in breast cancer. Based on median risk scores, patients were divided into high-risk and low-risk groups. Functional enrichment analyses were conducted to explore the biological differences between the two groups. Immune infiltration, drug sensitivity, and mitochondrial-related phenotypes were also analyzed to evaluate the clinical implications of the model. A four-gene signature (ARIH1, SIAH2, UBR5, and WWP2) was identified, and Kaplan-Meier analysis demonstrated that the high-risk group had significantly worse overall survival (OS). The high-risk patients exhibited disrupted mitochondrial metabolism and immune dysregulation with upregulated immune checkpoint molecules. Additionally, the high-risk group exhibited higher sensitivity to several drugs targeting the Akt/PI3K/mTORC1 signaling axis. Accompanying mitochondrial metabolic dysregulation, mtDNA stress was elevated, contributing to activation of the senescence-associated secretory phenotype (SASP) in the high-risk group. In conclusion, the identified signature provides a robust tool for risk stratification and offers insights into the interplay between mitophagy, immune modulation, and therapeutic responses for breast cancer.
Collapse
Affiliation(s)
| | | | - Feng Zhang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Huang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
16
|
Wen XM, Xu ZJ, Ma JC, Zhang MJ, Jin Y, Lin J, Qian J, Fang YY, Luo SY, Mao ZW. Bioinformatic characterization of STING expression in hematological malignancies reveals association with prognosis and anti-tumor immunity. Front Immunol 2025; 16:1477100. [PMID: 39975558 PMCID: PMC11835856 DOI: 10.3389/fimmu.2025.1477100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
Introduction Stimulator of interferon response cGAMP interactor (STING) is essential for both innate and adaptive immunity. However, a comprehensive molecular characterization of STING expression across hematological malignancies is lacking. Methods In this study, the pan-blood-cancer landscape related to STING expression was identified using the GTEx, CCLE, Hemap, and TCGA databases, and the potential value for predicting prognosis was investigated. The relationship between STING expression and immune cell enrichment was assessed in the Hemap database. Moreover, the value of STING in predicting the efficacy of immunotherapy was validated using tumor immune dysfunction and exclusion (TIDE) biomarkers and real-world immunotherapy datasets. Results and Discussion STING was found to be relatively highly expressed in acute myeloid leukemia (AML) and chronic myeloid leukemia, with higher STING expression correlated with poorer prognosis in AML. STING expression was positively correlated with immune-related pathways such as IFN-gamma response, IFN-alpha response, and inflammatory response. Cytolytic score and STING expression were positively correlated in some hematological tumors, especially chronic lymphocytic leukemia and mantle cell lymphoma. Interestingly, STING expression was negatively correlated with TIDE biomarkers in AML, suggesting that AML patients with a high STING expression level may benefit from immunologic treatment. Our findings contribute a molecular characterization of STING across hematological malignancies, facilitating the development of individualized prognosis and treatment strategies.
Collapse
Affiliation(s)
- Xiang-mei Wen
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhejiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zi-jun Xu
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhejiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ji-chun Ma
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhejiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Min-jie Zhang
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhejiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ye Jin
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiang Lin
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhejiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jun Qian
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuan-yuan Fang
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhejiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shu-yu Luo
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhejiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhen-wei Mao
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
17
|
Wang J, Xing L. Therapeutic targeting of cGAS-STING pathway in lung cancer. Cell Biol Int 2025; 49:129-138. [PMID: 39648304 DOI: 10.1002/cbin.12263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 12/10/2024]
Abstract
The presence of DNA in the cytosol triggers a protective response from the innate immune system. Cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) is an essential cytosolic DNA sensor that triggers a potent innate immune response. As a result of this signaling cascade reaction, type I interferon and other immune mediators activate an immune response. The cGAS-STING pathway has great anticancer immunity-boosting potential since it produces type I interferons. The detection of double-stranded DNA (dsDNA) in response to various stimuli initiates a protective host's cGAS-STING signals. So, it is clear that a substantial relationship is expected between cancer biotherapy and the functioning of the cGAS-STING pathway. Several STING agonists with promising outcomes have been created for preclinical cancer therapy research. Notably, immunotherapy has dramatically extended patient survival and radically altered the course of lung cancer treatment, particularly in more advanced instances. However, this method is still ineffective for a large number of lung cancer patients. cGAS-STING can overcome resistance and boost anticancer immunity by stimulating the activity of many pro-inflammatory mediators, augmenting dendritic cell cross-presentation, and initiating a tumor-specific CD8+ T cell response. This review aims to present the most recent results on the functionality of the cGAS-STING pathway in cancer progression and its potential as an immunotherapy target, with a focus on lung cancer.
Collapse
Affiliation(s)
- Jinli Wang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC, USA
| | - Lumin Xing
- The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
18
|
Bosteels V, Janssens S. Striking a balance: new perspectives on homeostatic dendritic cell maturation. Nat Rev Immunol 2025; 25:125-140. [PMID: 39289483 DOI: 10.1038/s41577-024-01079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/19/2024]
Abstract
Dendritic cells (DCs) are crucial gatekeepers of the balance between immunity and tolerance. They exist in two functional states, immature or mature, that refer to an information-sensing versus an information-transmitting state, respectively. Historically, the term DC maturation was used to describe the acquisition of immunostimulatory capacity by DCs following their triggering by pathogens or tissue damage signals. As such, immature DCs were proposed to mediate tolerance, whereas mature DCs were associated with the induction of protective T cell immunity. Later studies have challenged this view and unequivocally demonstrated that two distinct modes of DC maturation exist, homeostatic and immunogenic DC maturation, each with a distinct functional outcome. Therefore, the mere expression of maturation markers cannot be used to predict immunogenicity. How DCs become activated in homeostatic conditions and maintain tolerance remains an area of intense debate. Several recent studies have shed light on the signals driving the homeostatic maturation programme, especially in the conventional type 1 DC (cDC1) compartment. Here, we highlight our growing understanding of homeostatic DC maturation and the relevance of this process for immune tolerance.
Collapse
Affiliation(s)
- Victor Bosteels
- Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sophie Janssens
- Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium.
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
19
|
Meng X, Luo Y, Cui L, Wang S. Involvement of Tim-3 in Maternal-fetal Tolerance: A Review of Current Understanding. Int J Biol Sci 2025; 21:789-801. [PMID: 39781467 PMCID: PMC11705645 DOI: 10.7150/ijbs.106115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025] Open
Abstract
As the first T cell immunoglobulin mucin (Tim) family member to be identified, Tim-3 is a powerful immune checkpoint that functions in immunoregulation and induction of tolerance. Conventionally, Tim-3 is considered to play a role in adaptive immunity, especially in helper T cell-mediated immune responses. As researches progress, Tim-3 has been detected in a wider range of cell types, modulating cell function through ligand-receptor interactions and other pathways. Strikingly, Tim-3 plays a pivotal role in maternal-fetal tolerance by regulating immune cell functions and orchestrating the maternal-fetal cross-talk. In this review, we elaborate on the involvement of Tim-3 in immunology, with a focus on its participation in maternal-fetal tolerance to provide new insights into immunoregulation during pregnancy. Our work will be helpful in further understanding the pathogenesis of pregnancy-related diseases and will inspire new strategies for their diagnosis and treatment.
Collapse
Affiliation(s)
| | | | - Liyuan Cui
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
| | - Songcun Wang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
| |
Collapse
|
20
|
Dudziak D, Heger L, Agace WW, Bakker J, de Gruijl TD, Dress RJ, Dutertre C, Fenton TM, Fransen MF, Ginhoux F, Heyman O, Horev Y, Hornsteiner F, Kandiah V, Kles P, Lubin R, Mizraji G, Prokopi A, Saar O, Sopper S, Stoitzner P, Strandt H, Sykora MM, Toffoli EC, Tripp CH, van Pul K, van de Ven R, Wilensky A, Yona S, Zelle‐Rieser C. Guidelines for preparation and flow cytometry analysis of human nonlymphoid tissue DC. Eur J Immunol 2025; 55:e2250325. [PMID: 39668411 PMCID: PMC11739683 DOI: 10.1002/eji.202250325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 12/14/2024]
Abstract
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs, and various nonlymphoid tissues. Within this article, detailed protocols are presented that allow for the generation of single-cell suspensions from human nonlymphoid tissues including lung, skin, gingiva, intestine as well as from tumors and tumor-draining lymph nodes with a subsequent analysis of dendritic cells by flow cytometry. Further, prepared single-cell suspensions can be subjected to other applications including cellular enrichment procedures, RNA sequencing, functional assays, etc. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.
Collapse
Affiliation(s)
- Diana Dudziak
- Institute of ImmunologyJena University HospitalFriedrich‐Schiller‐UniversityJenaGermany
- Laboratory of Dendritic Cell BiologyDepartment of DermatologyUniversity Hospital ErlangenErlangenGermany
| | - Lukas Heger
- Laboratory of Dendritic Cell BiologyDepartment of DermatologyUniversity Hospital ErlangenErlangenGermany
- Department of Transfusion Medicine and HemostaseologyUniversity Hospital ErlangenErlangenGermany
| | - William W Agace
- LEO Foundation Skin Immunology Research CenterDepartment of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
- Immunology SectionLund UniversityLundSweden
| | - Joyce Bakker
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Tanja D. de Gruijl
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Regine J. Dress
- Institute of Systems ImmunologyHamburg Center for Translational Immunology (HCTI)University Medical Center Hamburg‐EppendorfHamburgGermany
| | | | | | - Marieke F. Fransen
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Department of Pulmonary DiseasesAmsterdam UMC location Vrije UniversiteitAmsterdamThe Netherlands
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and ResearchSingaporeSingapore
- Department of Immunology and MicrobiologyShanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
- SingHealth Duke‐NUS Academic Medical CentreTranslational Immunology InstituteSingaporeSingapore
- INSERM U1015, Gustave Roussy Cancer CampusVillejuifFrance
| | - Oded Heyman
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Yael Horev
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Florian Hornsteiner
- Department of Dermatology, Venereology & AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Vinitha Kandiah
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Paz Kles
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Ruth Lubin
- Faculty of Dental MedicineThe Institute of Biomedical and Oral ResearchHebrew University of JerusalemIsrael
| | - Gabriel Mizraji
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Anastasia Prokopi
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Or Saar
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Sieghart Sopper
- Internal Medicine V, Hematology and OncologyMedical University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research CenterInnsbruckAustria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology & AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Helen Strandt
- Department of Dermatology, Venereology & AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Martina M Sykora
- Internal Medicine V, Hematology and OncologyMedical University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research CenterInnsbruckAustria
| | - Elisa C. Toffoli
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Christoph H. Tripp
- Department of Dermatology, Venereology & AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Kim van Pul
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Rieneke van de Ven
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
- Department of Otolaryngology, Head and Neck SurgeryAmsterdam UMC location Vrije UniversiteitAmsterdamThe Netherlands
| | - Asaf Wilensky
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Simon Yona
- Faculty of Dental MedicineThe Institute of Biomedical and Oral ResearchHebrew University of JerusalemIsrael
| | - Claudia Zelle‐Rieser
- Department of Dermatology, Venereology & AllergologyMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
21
|
Ju YN, Li H, Zhuo ZP, Yang Q, Gao W. Mitochondrial DNA from endothelial cells activated the cGAS-STING pathway and regulated pyroptosis in lung ischaemia reperfusion injury after lung transplantation. Immunobiology 2025; 230:152865. [PMID: 39826223 DOI: 10.1016/j.imbio.2024.152865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/26/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025]
Abstract
OBJECTIVE Cell dysfunction and death induced by lung ischaemia-reperfusion injury (LIRI) are the main causes of death in transplant patients. Activation of the cGAS-STING-induced immune response and death plays a critical role in multiple organ injuries. However, no study has yet investigated the role of the cGAS-STING pathway in LIRI after lung transplantation. METHODS Sprague-Dawley (SD) rats were subjected to left lung transplantation and administered inhibitors of cGAS and STING. The expression of cGAS-STING-TBK1-IRF3, histological injury, pulmonary permeability, and the levels of cytokines and pyroptotic proteins in transplanted lungs were tested. Endothelial cells were subjected to hypoxemia and reoxygenation and treated with inhibitors of cGAS and STING. Mitochondrial DNA (mtDNA), the cGAS-STING axis and cytokine levels in cells, cellular activity and death were evaluated. Moreover, after the administration of deoxyribonuclease (DNase) I, the reoxygenated endothelial cells were also examined for cellular function and inflammatory factor expression. Finally, we administered an agonist of STING and an inhibitor of cathepsin B to the normal endothelium and investigated pyroptosis and pyroptotic proteins. RESULTS After 24 h of reperfusion, the expression of cGAS-STING-TBK1-IRF3 and pyroptotic proteins was significantly increased, and inhibitors of cGAS or STING ameliorated lung injury and reduced pyroptotic protein levels. In vitro, the inhibition of cGAS and STING reduced the activation of TBK and IRF3 and reduced cellular injury and death. The activation of cGAS-STING and cellular inflammation were suppressed by DNase I. Cathepsin B and NLRP3 were upregulated by an agonist of STING, and an inhibitor of cathepsin B reduced NLRP3 levels. CONCLUSION cGAS-STING participated in LIRI by promoting endothelial cell pyroptosis via cathepsin B.
Collapse
Affiliation(s)
- Ying-Nan Ju
- Department of Intensive Care Unit, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province 570 311, China
| | - Hu Li
- Department of Critical Care Medicine, Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Zi-Peng Zhuo
- Department of Critical Care Medicine, Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Qing Yang
- Department of Critical Care Medicine, Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Wei Gao
- Department of Anesthesiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province 570311, China.
| |
Collapse
|
22
|
Arafat Hossain M. A comprehensive review of immune checkpoint inhibitors for cancer treatment. Int Immunopharmacol 2024; 143:113365. [PMID: 39447408 DOI: 10.1016/j.intimp.2024.113365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Immunology-based therapies are emerging as an effective cancer treatment, using the body's immune system to target tumors. Immune checkpoints, which regulate immune responses to prevent tissue damage and autoimmunity, are often exploited by cancer cells to avoid destruction. The discovery of checkpoint proteins like PD-1/PD-L1 and CTLA-4 was pivotal in developing cancer immunotherapy. Immune checkpoint inhibitors (ICIs) have shown great success, with FDA-approved drugs like PD-1 inhibitors (Nivolumab, Pembrolizumab, Cemiplimab), PD-L1 inhibitors (Atezolizumab, Durvalumab, Avelumab), and CTLA-4 inhibitors (Ipilimumab, Tremelimumab), alongside LAG-3 inhibitor Relatlimab. Research continues on new checkpoints like TIM-3, VISTA, B7-H3, BTLA, and TIGIT. Biomarkers like PDL-1 expression, tumor mutation burden, interferon-γ presence, microbiome composition, and extracellular matrix characteristics play a crucial role in predicting responses to immunotherapy with checkpoint inhibitors. Despite their effectiveness, not all patients experience the same level of benefit, and organ-specific immune-related adverse events (irAEs) such as rash or itching, colitis, diarrhea, hyperthyroidism, and hypothyroidism may occur. Given the rapid advancements in this field and the variability in patient outcomes, there is an urgent need for a comprehensive review that consolidates the latest findings on immune checkpoint inhibitors, covering their clinical status, biomarkers, resistance mechanisms, strategies to overcome resistance, and associated adverse effects. This review aims to fill this gap by providing an analysis of the current clinical status of ICIs, emerging biomarkers, mechanisms of resistance, strategies to enhance therapeutic efficacy, and assessment of adverse effects. This review is crucial to furthering our understanding of ICIs and optimizing their application in cancer therapy.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
23
|
Schmitz E, Ridout A, Smith AL, Eiken AP, Skupa SA, Drengler EM, Singh S, Rana S, Natarajan A, El-Gamal D. Immunogenic Cell Death Traits Emitted from Chronic Lymphocytic Leukemia Cells Following Treatment with a Novel Anti-Cancer Agent, SpiD3. Biomedicines 2024; 12:2857. [PMID: 39767763 PMCID: PMC11673838 DOI: 10.3390/biomedicines12122857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Targeted therapies (e.g., ibrutinib) have markedly improved chronic lymphocytic leukemia (CLL) management; however, ~20% of patients experience disease relapse, suggesting the inadequate depth and durability of these front-line strategies. Moreover, immunotherapeutic success in CLL has been stifled by its pro-tumor microenvironment milieu and low mutational burden, cultivating poor antigenicity and limited ability to generate anti-tumor immunity through adaptive immune cell engagement. Previously, we have demonstrated how a three-carbon-linker spirocyclic dimer (SpiD3) promotes futile activation of the unfolded protein response (UPR) in CLL cells through immense misfolded-protein mimicry, culminating in insurmountable ER stress and programmed CLL cell death. Method: Herein, we used flow cytometry and cell-based assays to capture the kinetics and magnitude of SpiD3-induced damage-associated molecular patterns (DAMPs) in CLL cell lines and primary samples. Result: SpiD3 treatment, in vitro and in vivo, demonstrated the capacity to propagate immunogenic cell death through emissions of classically immunogenic DAMPs (CALR, ATP, HMGB1) and establish a chemotactic gradient for bone marrow-derived dendritic cells. Conclusions: Thus, this study supports future investigation into the relationship between novel therapeutics, manners of cancer cell death, and their contributions to adaptive immune cell engagement as a means for improving anti-cancer therapy in CLL.
Collapse
Affiliation(s)
- Elizabeth Schmitz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; (E.S.); (A.L.S.); (A.P.E.); (S.A.S.); (E.M.D.); (S.S.); (S.R.); (A.N.)
| | - Abigail Ridout
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; (E.S.); (A.L.S.); (A.P.E.); (S.A.S.); (E.M.D.); (S.S.); (S.R.); (A.N.)
| | - Audrey L. Smith
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; (E.S.); (A.L.S.); (A.P.E.); (S.A.S.); (E.M.D.); (S.S.); (S.R.); (A.N.)
| | - Alexandria P. Eiken
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; (E.S.); (A.L.S.); (A.P.E.); (S.A.S.); (E.M.D.); (S.S.); (S.R.); (A.N.)
| | - Sydney A. Skupa
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; (E.S.); (A.L.S.); (A.P.E.); (S.A.S.); (E.M.D.); (S.S.); (S.R.); (A.N.)
| | - Erin M. Drengler
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; (E.S.); (A.L.S.); (A.P.E.); (S.A.S.); (E.M.D.); (S.S.); (S.R.); (A.N.)
| | - Sarbjit Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; (E.S.); (A.L.S.); (A.P.E.); (S.A.S.); (E.M.D.); (S.S.); (S.R.); (A.N.)
| | - Sandeep Rana
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; (E.S.); (A.L.S.); (A.P.E.); (S.A.S.); (E.M.D.); (S.S.); (S.R.); (A.N.)
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; (E.S.); (A.L.S.); (A.P.E.); (S.A.S.); (E.M.D.); (S.S.); (S.R.); (A.N.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dalia El-Gamal
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; (E.S.); (A.L.S.); (A.P.E.); (S.A.S.); (E.M.D.); (S.S.); (S.R.); (A.N.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
24
|
Zamani MR, Šácha P. TIM3 in COVID-19; A potential hallmark? Heliyon 2024; 10:e40386. [PMID: 39759854 PMCID: PMC11700678 DOI: 10.1016/j.heliyon.2024.e40386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/07/2025] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious viral disease, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It can manifest as mild to severe flu-like and non-flu-like symptoms and signs, which are associated with immune dysfunction and increased mortality. The findings from COVID-19 patients imply a link between immune system abnormalities such as impaired T-cell responses or cytokine imbalances and increased risk for worse clinical outcomes, which has not been fully understood. Owing to the regulatory role of inhibitory immune checkpoints during COVID-19 infection, this review summarizes the available studies concerning the TIM3 as a relatively less characterized immune checkpoint in COVID-19 patients.
Collapse
Affiliation(s)
- Mohammad Reza Zamani
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Šácha
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
25
|
Ren D, Xiong S, Ren Y, Yang X, Zhao X, Jin J, Xu M, Liang T, Guo L, Weng L. Advances in therapeutic cancer vaccines: Harnessing immune adjuvants for enhanced efficacy and future perspectives. Comput Struct Biotechnol J 2024; 23:1833-1843. [PMID: 38707540 PMCID: PMC11066472 DOI: 10.1016/j.csbj.2024.04.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024] Open
Abstract
Preventive cancer vaccines are highly effective in preventing viral infection-induced cancer, but advances in therapeutic cancer vaccines with a focus on eliminating cancer cells through immunotherapy are limited. To develop therapeutic cancer vaccines, the integration of optimal adjuvants is a potential strategy to enhance or complement existing therapeutic approaches. However, conventional adjuvants do not satisfy the criteria of clinical trials for therapeutic cancer vaccines. To improve the effects of adjuvants in therapeutic cancer vaccines, effective vaccination strategies must be formulated and novel adjuvants must be identified. This review offers an overview of the current advancements in therapeutic cancer vaccines and highlights in situ vaccination approaches that can be synergistically combined with other immunotherapies by harnessing the adjuvant effects. Additionally, the refinement of adjuvant systems using cutting-edge technologies and the elucidation of molecular mechanisms underlying immunogenic cell death to facilitate the development of innovative adjuvants have been discussed.
Collapse
Affiliation(s)
- Dekang Ren
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Shizheng Xiong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yujie Ren
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xueni Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xinmiao Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jiaming Jin
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Miaomiao Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Li Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
26
|
Karami R, Fathi M, Jalali P, Hassannia H, Zarei A, Hojjat-Farsangi M, Jadidi F. The emerging role of TIM-3 in colorectal cancer: a promising target for immunotherapy. Expert Opin Ther Targets 2024; 28:1093-1115. [PMID: 39670788 DOI: 10.1080/14728222.2024.2442437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Colorectal cancer (CRC) imposes a substantial worldwide health burden, necessitating innovative strategies to enhance therapeutic outcomes. T cell immunoglobulin-3 (Tim-3), an immune checkpoint, enhances immunological tolerance. Tim-3's role in CRC surpasses its conventional function as an indicator of dysfunction in T lymphocytes. AREAS COVERED This review provides an all-inclusive summary of the structural and functional attributes of Tim-3's involvement in the case of CRC. It explores the implications of Tim-3 expression in CRC with regard to tumor progression, clinical characteristics, and therapeutic approaches. Furthermore, it delves into the intricate signaling pathways and molecular mechanisms through which Tim-3 exerts its dual function in both immunity against tumors and immune evasion. EXPERT OPINION Understanding Tim-3's complicated network of interactions in CRC has significant consequences for the development of novel immunotherapeutic strategies targeted toward restoring anti-tumor immune responses and improving patient survival. Tim-3 is an important and valuable target for CRC patient risk classification and treatment because it regulates a complex network of strategies for suppressing immune responses, including causing T cell exhaustion, increasing Treg (regulatory T-cell) proliferation, and altering antigen-presenting cell activity.
Collapse
Affiliation(s)
- Reza Karami
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Fathi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pooya Jalali
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Hassannia
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Asieh Zarei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Farhad Jadidi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Sun K, Shi ZY, Xie DH, Wang YZ, Jiang H, Jiang Q, Huang XJ, Qin YZ. The Functional Role and Prognostic Significance of TIM-3 Expression on NK Cells in the Diagnostic Bone Marrows in Acute Myeloid Leukemia. Biomedicines 2024; 12:2717. [PMID: 39767624 PMCID: PMC11727352 DOI: 10.3390/biomedicines12122717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Compared to other immune checkpoint molecules, T cell immunoglobulin domain and mucin domain-3 (TIM-3) is highly expressed on natural killer (NK) cells, but its functional role and prognostic significance in acute myeloid leukemia (AML) remains unclear. This study aims to evaluate the role of TIM-3 expression on the cytotoxic and killing capacity of NK cells and its prognostic significance in AML. Methods: AML public single-cell RNA sequencing (scRNAseq) data were used to analyze the correlation of transcript levels between HAVCR2 (encoding TIM-3) and cytotoxic molecules in NK cells. NK cells from the bone marrows of seven newly diagnosed AML patients and five healthy donors (HDs) were stimulated in vitro and cell-killing activity was evaluated. A total of one hundred and five newly diagnosed adult AML patients and seven HDs were tested the expression of TIM-3 and cytotoxic molecules on the bone marrow NK cells by multi-parameter flow cytometry (MFC). Results: Both scRNAseq and MFC analysis demonstrated that TIM-3 expression on NK cells was positively related to the levels of perforin (PFP) and granzyme B (GZMB) (all p < 0.05) in AML. It was PFP and GZMB but not the TIM-3 level that was related to NK-cell-killing activity against K562 cells (p = 0.027, 0.042 and 0.55). A high frequency of TIM-3+ NK cells predicted poorer relapse-free survival (RFS) and event-free survival (EFS) (p = 0.013 and 0.0074), but was not an independent prognostic factor, whereas low GZMB levels in TIM-3+ NK cells independently predicted poorer RFS (p = 0.0032). Conclusions: TIM-3 expression on NK cells is positively related to PFP and GZMB levels but has no relation to cell-killing activity in AML, and low GZMB levels in TIM-3+ NK cells in the diagnostic bone marrows predicts poor outcomes. This study lays a theoretical foundation for the clinical application of immune checkpoint inhibitor treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ya-Zhen Qin
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China; (K.S.); (Z.-Y.S.); (D.-H.X.); (Y.-Z.W.); (H.J.); (Q.J.); (X.-J.H.)
| |
Collapse
|
28
|
Lin C, Herlihy SE, Li M, Deng H, Kim R, Bernabei L, Rosenwasser M, Gabrilovich DI, Vogl DT, Nefedova Y. Neutrophil extracellular traps promote tumor chemoresistance to anthracyclines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622533. [PMID: 39605505 PMCID: PMC11601256 DOI: 10.1101/2024.11.07.622533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The microenvironment plays an important role in promoting tumor cell chemoresistance, but the mechanisms responsible for this effect are not clear. Here, using models of multiple myeloma (MM) and solid cancers, we demonstrate a novel mechanism mediated by neutrophils, a major cell population in the bone marrow (BM), that protects cancer cells from chemotherapeutics. We show that in response to tumor-derived soluble factors, BM neutrophils release their DNA in the form of neutrophil extracellular traps (NETs). Cell-free DNA derived from NETs is then taken up by tumor cells via endocytosis and localizes to the cytoplasm. We found that both NETs and cell-free DNA taken up by tumor cells can bind anthracyclines, leading to tumor cell resistance to this class of chemotherapeutic agents. Targeting cell-free DNA with Pulmozyme or blocking NET formation with a PAD4 inhibitor abrogates the chemoprotective effect of neutrophils and restores sensitivity of tumor cells to anthracyclines.
Collapse
|
29
|
Zhang J, Wang L, Guo H, Kong S, Li W, He Q, Ding L, Yang B. The role of Tim-3 blockade in the tumor immune microenvironment beyond T cells. Pharmacol Res 2024; 209:107458. [PMID: 39396768 DOI: 10.1016/j.phrs.2024.107458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Numerous preclinical studies have demonstrated the inhibitory function of T cell immunoglobulin mucin domain-containing protein 3 (Tim-3) on T cells as an inhibitory receptor, leading to the clinical development of anti-Tim-3 blocking antibodies. However, recent studies have shown that Tim-3 is expressed not only on T cells but also on multiple cell types in the tumor microenvironment (TME), including dendritic cells (DCs), natural killer (NK) cells, macrophages, and tumor cells. Therefore, Tim-3 blockade in the immune microenvironment not only affect the function of T cells but also influence the functions of other cells. For example, Tim-3 blockade can enhance the ability of DCs to regulate innate and adaptive immunity. The role of Tim-3 blockade in NK cells function is controversial, as it can enhance the antitumor function of NK cells under certain conditions while having the opposite effect in other situations. Additionally, Tim-3 blockade can promote the reversal of macrophage polarization from the M2 phenotype to the M1 phenotype. Furthermore, Tim-3 blockade can inhibit tumor development by suppressing the proliferation and metastasis of tumor cells. In summary, increasing evidence has shown that Tim-3 in other cell types also plays a critical role in the efficacy of anti-Tim-3 therapy. Understanding the function of anti-Tim-3 therapy in non-T cells can help elucidate the diverse responses observed in clinical patients, leading to better development of relevant therapeutic strategies. This review aims to discuss the role of Tim-3 in the TME and emphasize the impact of Tim-3 blockade in the tumor immune microenvironment beyond T cells.
Collapse
Affiliation(s)
- Jie Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Longsheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shijia Kong
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China; School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China.
| |
Collapse
|
30
|
Kong H, Yang Q, Wu C, Wu X, Yan X, Huang LB, Chen L, Zhou ZG, Wang P, Jiang H. Spatial Context of Immune Checkpoints as Predictors of Overall Survival in Patients with Resectable Colorectal Cancer Independent of Standard Tumor-Node-Metastasis Stages. CANCER RESEARCH COMMUNICATIONS 2024; 4:3025-3035. [PMID: 39485029 PMCID: PMC11589669 DOI: 10.1158/2767-9764.crc-24-0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/10/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024]
Abstract
SIGNIFICANCE The identification of specific spatial patterns of immune checkpoint expression that correlate with overall survival in patients with colon cancer suggests a potential prognostic tool for risk stratification and treatment selection. These findings pave the way for the development of novel therapeutic strategies to enhance antitumor immune responses.
Collapse
Affiliation(s)
- Hao Kong
- Department of Pancreatic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qingxin Yang
- Department of Pancreatic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chunwei Wu
- Department of Pancreatic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangji Wu
- Department of Pancreatic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xinrui Yan
- Department of Pancreatic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Li-Bin Huang
- Laboratory of Digestive Surgery, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zong-Guang Zhou
- Laboratory of Digestive Surgery, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Ping Wang
- Department of Pancreatic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Jiang
- Department of Pancreatic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Ye Z, Li G, Lei J. Influencing immunity: role of extracellular vesicles in tumor immune checkpoint dynamics. Exp Mol Med 2024; 56:2365-2381. [PMID: 39528800 PMCID: PMC11612210 DOI: 10.1038/s12276-024-01340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 11/16/2024] Open
Abstract
Immune checkpoint proteins (ICPs) serve as critical regulators of the immune system, ensuring protection against damage due to overly activated immune responses. However, within the tumor environment, excessive ICP activation weakens antitumor immunity. Despite the development of numerous immune checkpoint blockade (ICB) drugs in recent years, their broad application has been inhibited by uncertainties about their clinical efficacy. A thorough understanding of ICP regulation in the tumor microenvironment is essential for advancing the development of more effective and safer ICB therapies. Extracellular vesicles (EVs), which are pivotal mediators of cell-cell communication, have been extensively studied and found to play key roles in the functionality of ICPs. Nonetheless, a comprehensive review summarizing the current knowledge about the crosstalk between EVs and ICPs in the tumor environment is lacking. In this review, we summarize the interactions between EVs and several widely studied ICPs as well as their potential clinical implications, providing a theoretical basis for further investigation of EV-related ICB therapeutic approaches.
Collapse
Affiliation(s)
- Ziyang Ye
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Genpeng Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jianyong Lei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
32
|
Ribeiro ARS, Neuper T, Horejs-Hoeck J. The Role of STING-Mediated Activation of Dendritic Cells in Cancer Immunotherapy. Int J Nanomedicine 2024; 19:10685-10697. [PMID: 39464674 PMCID: PMC11512692 DOI: 10.2147/ijn.s477320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
The signaling pathway that comprises cyclic guanosine monophosphate-adenosine monophosphate (cGAMP or GMP-AMP) synthase (cGAS) and Stimulator of Interferon Genes (STING) is emerging as a druggable target for immunotherapy, with tumor-resident dendritic cells (DC) playing a critical role in mediating its effects. The STING receptor is part of the DNA-sensing cellular machinery, that can trigger the secretion of pro-inflammatory mediators, priming effector T cells and initiating specific antitumor responses. Yet, recent studies have highlighted the dual role of STING activation in the context of cancer: STING can either promote antitumor responses or enhance tumor progression. This dichotomy often depends on the cell type in which cGAS-STING signaling is induced and the activation mode, namely acute versus chronic. Of note, STING activation at the DC level appears to be particularly important for tumor eradication. This review outlines the contribution of the different conventional and plasmacytoid DC subsets and describes the mechanisms underlying STING-mediated activation of DCs in cancer. We further highlight how the STING pathway plays an intricate role in modulating the function of DCs embedded in tumor tissue. Additionally, we discuss the strategies being employed to harness STING activation for cancer treatment, such as the development of synthetic agonists and nano-based delivery systems, spotlighting the current techniques used to prompt STING engagement specifically in DCs.
Collapse
Affiliation(s)
- Ana R S Ribeiro
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, 5020, Austria
| | - Theresa Neuper
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, 5020, Austria
- Center for Tumor biology and Immunology (CTBI), Salzburg, 5020, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, 5020, Austria
- Center for Tumor biology and Immunology (CTBI), Salzburg, 5020, Austria
| |
Collapse
|
33
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
34
|
Parsons A, Colon ES, Spasic M, Kurt BB, Swarbrick A, Freedman RA, Mittendorf EA, van Galen P, McAllister SS. Cell Populations in Human Breast Cancers are Molecularly and Biologically Distinct with Age. RESEARCH SQUARE 2024:rs.3.rs-5167339. [PMID: 39483921 PMCID: PMC11527348 DOI: 10.21203/rs.3.rs-5167339/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Aging is associated with increased breast cancer risk and outcomes are worse for the oldest and youngest patients, regardless of subtype. It is not known how cells in the breast tumor microenvironment are impacted by age and how they might contribute to age-related disease pathology. Here, we discover age-associated differences in cell states and interactions in human estrogen receptor-positive (ER+) and triple-negative breast cancers (TNBC) using new computational analyses of existing single-cell gene expression data. Age-specific program enrichment (ASPEN) analysis reveals age-related changes, including increased tumor cell epithelial-mesenchymal transition, cancer-associated fibroblast inflammatory responses, and T cell stress responses and apoptosis in TNBC. ER+ breast cancer is dominated by increased cancer cell estrogen receptor 1 (ESR1) and luminal cell activity, reduced immune cell metabolism, and decreased vascular and extracellular matrix (ECM) remodeling with age. Cell interactome analysis reveals candidate signaling pathways that drive many of these cell states. This work lays a foundation for discovery of age-adapted therapeutic interventions for breast cancer.
Collapse
Affiliation(s)
- Adrienne Parsons
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Esther Sauras Colon
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Oncological Pathology and Bioinformatics Research Group, Hospital Verge de la Cinta, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tortosa, Tarragona, Spain
| | - Milos Spasic
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Busem Binboga Kurt
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
| | - Alexander Swarbrick
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Rachel A. Freedman
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Breast Cancer Program, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Elizabeth A. Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Breast Cancer Program, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Peter van Galen
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| | - Sandra S. McAllister
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Breast Cancer Program, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
35
|
Fan N, Zhao F, Meng Y, Chen L, Miao L, Wang P, Tang M, Wu X, Li Y, Li Y, Gao Z. Metal complex lipid-based nanoparticles deliver metabolism-regulating lomitapide to overcome CTC immune evasion via activating STING pathway. Eur J Pharm Biopharm 2024; 203:114467. [PMID: 39173934 DOI: 10.1016/j.ejpb.2024.114467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Activating the cGAS-STING pathway of circulating tumor cell clusters (CTC clusters) represents a promising strategy to mitigate metastases. To fully exploit the potential of cholesterol-regulating agents in activating CTCs' STING levels, we developed a nanoparticle (NP) composed of metal complex lipid (MCL). This design includes MCL-miriplatin to increase NP stiffness and loads lomitapide (lomi) modulating cholesterol levels, resulting in the creation of PLTs@Pt-lipid@lomi NPs. MCL-miriplatin not only enhances lomi's eliciting efficacy on STING pathway but also increases NPs' stiffness, thus a vital factor affecting the penetration into CTC clusters to further boost lomi's ability. Demonstrated by cy5 tracking experiments, PLTs@Pt-lipid@lomi NPs quickly attach to cancer cell via platelet membrane anchorage, penetrate deep into the spheres, and reach the subcellular endoplasmic reticulum where lomi regulates cholesterol. Additionally, these NPs have been shown to track CTCs in the bloodstream, a capability not demonstrated by the free drug. PLTs@Pt-lipid@lomi NPs more efficiently activate the STING pathway and reduce CTC stemness compared to free lomi. Ultimately, PLTs@Pt-lipid@lomi NPs reduce metastasis in a post-surgery animal model. While cholesterol-regulating agents are limited in efficacy when being repositioned as immunomodulatory agents, this MCL-composing NP strategy demonstrates the potential to effectively deliver these agents to target CTC clusters.
Collapse
Affiliation(s)
- Ni Fan
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Feng Zhao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuanyuan Meng
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lin Miao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ping Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Manqing Tang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xuanjun Wu
- Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Qingdao, Shandong University, Shandong 266237, China
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yunfei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
36
|
Kader T, Lin JR, Hug C, Coy S, Chen YA, de Bruijn I, Shih N, Jung E, Pelletier RJ, Leon ML, Mingo G, Omran DK, Lee JS, Yapp C, Satravada BA, Kundra R, Xu Y, Chan S, Tefft JB, Muhlich J, Kim S, Gysler SM, Agudo J, Heath JR, Schultz N, Drescher C, Sorger PK, Drapkin R, Santagata S. Multimodal Spatial Profiling Reveals Immune Suppression and Microenvironment Remodeling in Fallopian Tube Precursors to High-Grade Serous Ovarian Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615007. [PMID: 39386723 PMCID: PMC11463462 DOI: 10.1101/2024.09.25.615007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
High-Grade Serous Ovarian Cancer (HGSOC) originates from fallopian tube (FT) precursors. However, the molecular changes that occur as precancerous lesions progress to HGSOC are not well understood. To address this, we integrated high-plex imaging and spatial transcriptomics to analyze human tissue samples at different stages of HGSOC development, including p53 signatures, serous tubal intraepithelial carcinomas (STIC), and invasive HGSOC. Our findings reveal immune modulating mechanisms within precursor epithelium, characterized by chromosomal instability, persistent interferon (IFN) signaling, and dysregulated innate and adaptive immunity. FT precursors display elevated expression of MHC-class I, including HLA-E, and IFN-stimulated genes, typically linked to later-stage tumorigenesis. These molecular alterations coincide with progressive shifts in the tumor microenvironment, transitioning from immune surveillance in early STICs to immune suppression in advanced STICs and cancer. These insights identify potential biomarkers and therapeutic targets for HGSOC interception and clarify the molecular transitions from precancer to cancer.
Collapse
Affiliation(s)
- Tanjina Kader
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Jia-Ren Lin
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Clemens Hug
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Shannon Coy
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yu-An Chen
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Ino de Bruijn
- Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Natalie Shih
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Euihye Jung
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Mariana Lopez Leon
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Gabriel Mingo
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Dalia Khaled Omran
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jong Suk Lee
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Clarence Yapp
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | | | - Ritika Kundra
- Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Yilin Xu
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sabrina Chan
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Juliann B Tefft
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jeremy Muhlich
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sarah Kim
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stefan M Gysler
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - James R Heath
- Institute of Systems Biology, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Nikolaus Schultz
- Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Charles Drescher
- Swedish Cancer Institute Gynecologic Oncology and Pelvic Surgery, Seattle, WA, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sandro Santagata
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Kim KS, Lee C, Kim HS, Gu SJ, Yoon HJ, Won SB, Lee H, Lee YS, Kim SS, Kane LP, Park EJ. TIM-3 on myeloid cells promotes pulmonary inflammation through increased production of galectin-3. Commun Biol 2024; 7:1090. [PMID: 39237613 PMCID: PMC11377825 DOI: 10.1038/s42003-024-06762-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
T cell immunoglobulin and mucin-containing molecule 3 (TIM-3) exhibits unique, cell type- and context-dependent characteristics and functions. Here, we report that TIM-3 on myeloid cells plays essential roles in modulating lung inflammation. We found that myeloid cell-specific TIM-3 knock-in (FSF-TIM3/LysM-Cre+) mice have lower body weight and shorter lifespan than WT mice. Intriguingly, the lungs of FSF-TIM3/LysM-Cre+ mice display excessive inflammation and features of disease-associated pathology. We further revealed that galectin-3 levels are notably elevated in TIM-3-overexpressing lung-derived myeloid cells. Furthermore, both TIM-3 blockade and GB1107, a galectin-3 inhibitor, ameliorated lung inflammation in FSF-TIM3/LysM-Cre+/- mice. Using an LPS-induced lung inflammation model with myeloid cell-specific TIM-3 knock-out mice, we demonstrated the association of TIM-3 with both lung inflammation and galectin-3. Collectively, our findings suggest that myeloid TIM-3 is an important regulator in the lungs and that modulation of TIM-3 and galectin-3 could offer therapeutic benefits for inflammation-associated lung diseases.
Collapse
Affiliation(s)
- Ki Sun Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Chanju Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
- Immuno-oncology Branch, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Hyung-Seok Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Su Jeong Gu
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Hee Jung Yoon
- Immuno-oncology Branch, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Su Bin Won
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
- Immuno-oncology Branch, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Ho Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Sang Soo Kim
- Radiological Science Branch, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Eun Jung Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea.
- Immuno-oncology Branch, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea.
| |
Collapse
|
38
|
Chang X, Miao J. Role of TIM-3 in ovarian cancer: the forsaken cop or a new noble. Front Immunol 2024; 15:1407403. [PMID: 39206199 PMCID: PMC11350557 DOI: 10.3389/fimmu.2024.1407403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
T cell immunoglobulin and mucin domain-3 (TIM-3), a crucial immune checkpoint following PD1 and CTLA4, is widely found in several immune cells. Nonetheless, its performance in recent clinical trials appears disappointing. Ovarian cancer (OC), a malignant tumor with a high mortality rate in gynecology, faces significant hurdles in immunotherapy. The broad presence of TIM-3 offers a new opportunity for immunotherapy in OC. This study reviews the role of TIM-3 in OC and assesses its potential as a target for immunotherapy. The regulatory effects of TIM-3 on the immune microenvironment in OC are discussed, with a focus on preclinical studies that demonstrate TIM-3's modulation of various immune cells in OC. Additionally, the potential therapeutic advantages and challenges of targeting TIM-3 in OC are examined.
Collapse
Affiliation(s)
| | - Jinwei Miao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
39
|
Chen Y, Shao Z, Hao Z, Xin Z, Chen X, Huang L, Chen D, Lin M, Liu Q, Xu X, Li J, Wu D, Yan J, Chai Y, Wu P. Epithelium/imcDC2 axis facilitates the resistance of neoadjuvant anti-PD-1 in human NSCLC. J Immunother Cancer 2024; 12:e007854. [PMID: 39134346 PMCID: PMC11332012 DOI: 10.1136/jitc-2023-007854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Therapeutic resistance is a main obstacle to achieve long-term benefits from immune checkpoint inhibitors. The underlying mechanism of neoadjuvant anti-PD-1 resistance remains unclear. METHODS Multi-omics analysis, including mass cytometry, single-cell RNA-seq, bulk RNA-seq, and polychromatic flow cytometry, was conducted using the resected tumor samples in a cohort of non-small cell lung cancer (NSCLC) patients received neoadjuvant anti-PD-1 therapy. Tumor and paired lung samples acquired from treatment-naïve patients were used as a control. In vitro experiments were conducted using primary cells isolated from fresh tissues and lung cancer cell lines. A Lewis-bearing mouse model was used in the in vivo experiment. RESULTS The quantity, differentiation status, and clonal expansion of tissue-resident memory CD8+ T cells (CD8+ TRMs) are positively correlated with therapeutic efficacy of neoadjuvant anti-PD-1 therapy in human NSCLC. In contrast, the quantity of immature CD1c+ classical type 2 dendritic cells (imcDC2) and galectin-9+ cancer cells is negatively correlated with therapeutic efficacy. An epithelium/imDC2 suppressive axis that restrains the antitumor response of CD8+ TRMs via galectin-9/TIM-3 was uncovered. The expression level of CD8+ TRMs and galectin-9+ cancer cell-related genes predict the clinical outcome of anti-PD-1 neoadjuvant therapy in human NSCLC patients. Finally, blockade of TIM-3 and PD-1 could improve the survival of tumor-bearing mouse by promoting the antigen presentation of imcDC2 and CD8+ TRMs-mediated tumor-killing. CONCLUSION Galectin-9 expressing tumor cells sustained the primary resistance of neoadjuvant anti-PD-1 therapy in NSCLC through galectin-9/TIM-3-mediated suppression of imcDC2 and CD8+ TRMs. Supplement of anti-TIM-3 could break the epithelium/imcDC2/CD8+ TRMs suppressive loop to overcome anti-PD-1 resistance. TRIAL REGISTRATION NUMBER NCT03732664.
Collapse
Affiliation(s)
- Yongyuan Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zheyu Shao
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhixing Hao
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhongwei Xin
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated of Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoke Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lijian Huang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Di Chen
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingjie Lin
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qinyuan Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Xu
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinfan Li
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dang Wu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Yan
- Division of Immunotherapy, The Hiram C. Polk, Jr., Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Ying Chai
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pin Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
40
|
Xu X, Ding Y, Dong Y, Yuan H, Xia P, Qu C, Ma J, Wang H, Zhang X, Zhao L, Li Z, Liang Z, Wang J. Nanobody-Engineered Biohybrid Bacteria Targeting Gastrointestinal Cancers Induce Robust STING-Mediated Anti-Tumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401905. [PMID: 38888519 PMCID: PMC11336900 DOI: 10.1002/advs.202401905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Bacteria can be utilized for cancer therapy owing to their preferential colonization at tumor sites. However, unmodified non-pathogenic bacteria carry potential risks due to their non-specific targeting effects, and their anti-tumor activity is limited when used as monotherapy. In this study, a biohybrid-engineered bacterial system comprising non-pathogenic MG1655 bacteria modified with CDH17 nanobodies on their surface and conjugated with photosensitizer croconium (CR) molecules is developed. The resultant biohybrid bacteria can efficiently home to CDH17-positive tumors, including gastric, pancreatic, and colorectal cancers, and significantly suppress tumor growth upon irradiation. More importantly, biohybrid bacteria-mediated photothermal therapy (PTT) induced abundant macrophage infiltration in a syngeneic murine colorectal model. Further, that the STING pathway is activated in tumor macrophages by the released bacterial nucleic acid after PTT is revealed, leading to the production of type I interferons. The addition of CD47 nanobody but not PD-1 antibody to the PTT regimen can eradicate the tumors and extend survival. This results indicate that bacteria endowed with tumor-specific selectivity and coupled with photothermal payloads can serve as an innovative strategy for low-immunogenicity cancers. This strategy can potentially reprogram the tumor microenvironment by inducing macrophage infiltration and enhancing the efficacy of immunotherapy targeting macrophages.
Collapse
Affiliation(s)
- Xiaolong Xu
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
- Integrated Chinese and Western Medicine Postdoctoral Research StationJinan UniversityGuangzhou510632China
| | - Youbin Ding
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
- Department of Medical ImagingThe Third Affiliated HospitalSouthern Medical University (Academy of Orthopedics Guangdong Province)Guangzhou510515China
| | - Yafang Dong
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
- Department of Medical ImagingThe Third Affiliated HospitalSouthern Medical University (Academy of Orthopedics Guangdong Province)Guangzhou510515China
| | - Haitao Yuan
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
| | - Peng Xia
- Department of Hepatobiliary & Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanHubei430071China
| | - Chengming Qu
- Department of Hepatobiliary & Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanHubei430071China
| | - Jingbo Ma
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
| | - Huifang Wang
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
| | - Xiaodong Zhang
- Department of Medical ImagingThe Third Affiliated HospitalSouthern Medical University (Academy of Orthopedics Guangdong Province)Guangzhou510515China
| | - Liang Zhao
- Department of PathologyShunde Hospital, Southern Medical University (The First People's Hospital of Shunde)Foshan528308China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Zhijie Li
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
| | - Zhen Liang
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
| | - Jigang Wang
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
- Department of OncologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuan646000China
- Department of Traditional Chinese Medicine and School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
- State Key Laboratory of Antiviral DrugsSchool of PharmacyHenan UniversityKaifeng475004China
| |
Collapse
|
41
|
Vanmeerbeek I, Naulaerts S, Sprooten J, Laureano RS, Govaerts J, Trotta R, Pretto S, Zhao S, Cafarello ST, Verelst J, Jacquemyn M, Pociupany M, Boon L, Schlenner SM, Tejpar S, Daelemans D, Mazzone M, Garg AD. Targeting conserved TIM3 +VISTA + tumor-associated macrophages overcomes resistance to cancer immunotherapy. SCIENCE ADVANCES 2024; 10:eadm8660. [PMID: 39028818 PMCID: PMC11259173 DOI: 10.1126/sciadv.adm8660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
Despite the success of immunotherapy, overcoming immunoresistance in cancer remains challenging. We identified a unique niche of tumor-associated macrophages (TAMs), coexpressing T cell immunoglobulin and mucin domain-containing 3 (TIM3) and V-domain immunoglobulin suppressor of T cell activation (VISTA), that dominated human and mouse tumors resistant to most of the currently used immunotherapies. TIM3+VISTA+ TAMs were sustained by IL-4-enriching tumors with low (neo)antigenic and T cell-depleted features. TIM3+VISTA+ TAMs showed an anti-inflammatory and protumorigenic phenotype coupled with inability to sense type I interferon (IFN). This was established with cancer cells succumbing to immunogenic cell death (ICD). Dying cancer cells not only triggered autocrine type I IFNs but also exposed HMGB1/VISTA that engaged TIM3/VISTA on TAMs to suppress paracrine IFN-responses. Accordingly, TIM3/VISTA blockade synergized with paclitaxel, an ICD-inducing chemotherapy, to repolarize TIM3+VISTA+ TAMs to proinflammatory TAMs that killed cancer cells via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling. We propose targeting TIM3+VISTA+ TAMs to overcome immunoresistant tumors.
Collapse
Affiliation(s)
- Isaure Vanmeerbeek
- Laboratory of Cell Stress and Immunity, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefan Naulaerts
- Laboratory of Cell Stress and Immunity, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Laboratory of Cell Stress and Immunity, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raquel S. Laureano
- Laboratory of Cell Stress and Immunity, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Laboratory of Cell Stress and Immunity, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Rosa Trotta
- Laboratory of Tumour Inflammation and Angiogenesis, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Tumour Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Samantha Pretto
- Laboratory of Tumour Inflammation and Angiogenesis, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Tumour Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Shikang Zhao
- Laboratory of Tumour Inflammation and Angiogenesis, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Tumour Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sarah Trusso Cafarello
- Laboratory of Tumour Inflammation and Angiogenesis, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Tumour Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Joren Verelst
- Laboratory of Tumour Inflammation and Angiogenesis, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Tumour Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Maarten Jacquemyn
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Leuven, Belgium
| | - Martyna Pociupany
- Laboratory of Cell Stress and Immunity, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | - Susan M. Schlenner
- Laboratory of Adaptive Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Sabine Tejpar
- Laboratory for Molecular Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Dirk Daelemans
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Leuven, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumour Inflammation and Angiogenesis, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Tumour Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Abhishek D. Garg
- Laboratory of Cell Stress and Immunity, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
42
|
Kalkusova K, Taborska P, Stakheev D, Rataj M, Smite S, Darras E, Albo J, Bartunkova J, Vannucci L, Smrz D. Impaired Proliferation of CD8 + T Cells Stimulated with Monocyte-Derived Dendritic Cells Previously Matured with Thapsigargin-Stimulated LAD2 Human Mast Cells. J Immunol Res 2024; 2024:5537948. [PMID: 39056014 PMCID: PMC11272405 DOI: 10.1155/2024/5537948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/30/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
CD8+ T cells are essential for adaptive immunity against infection and tumors. Their ability to proliferate after stimulation is crucial to their functionality. Dendritic cells (DCs) are professional antigen-presenting cells that induce their proliferation. Here, we show that thapsigargin-induced LAD2 mast cell (MC) line-released products can impair the ability of monocyte-derived DCs to induce CD8+ T-cell proliferation and the generation of Th1 cytokine-producing T cells. We found that culture medium conditioned with LAD2 MCs previously stimulated with thapsigargin (thapsLAD2) induces maturation of DCs as determined by the maturation markers CD80, CD83, CD86, and HLA-DR. However, thapsLAD2-matured DCs produced no detectable TNFα or IL-12 during the maturation. In addition, although their surface expression of PD-L1 was comparable with the immature or TLR7/8-agonist (R848)-matured DCs, their TIM-3 expression was significantly higher than in immature DCs and even much higher than in R848-matured DCs. In addition, contrary to R848-matured DCs, the thapsLAD2-matured DCs only tended to induce enhanced proliferation of CD4+ T cells than immature DCs. For CD8+ T cells, this tendency was not even detected because thapsLAD2-matured and immature DCs comparably induced their proliferation, which contrasted with the significantly enhanced proliferation induced by R848-matured DCs. Furthermore, these differences were comparably recapitulated in the ability of the tested DCs to induce IFNγ- and IFNγ/TNFα-producing T cells. These findings show a novel mechanism of MC-mediated regulation of adaptive immune responses.
Collapse
Affiliation(s)
- Katerina Kalkusova
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Pavla Taborska
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Dmitry Stakheev
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Michal Rataj
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Sindija Smite
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Elea Darras
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Julia Albo
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Jirina Bartunkova
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Luca Vannucci
- Laboratory of ImmunotherapyInstitute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Smrz
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
- Laboratory of ImmunotherapyInstitute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
43
|
Tyrinova TV, Chernykh ER. Inhibitory Checkpoint Receptor TIM-3 as a Regulator of the Functional Activity of Dendritic Cells. Bull Exp Biol Med 2024; 177:287-292. [PMID: 39123087 DOI: 10.1007/s10517-024-06175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 08/12/2024]
Abstract
T-cell immunoglobulin and mucin domain 3 (TIM-3) belongs to the group of inhibitory checkpoint receptors and has traditionally been of interest in terms of its expression on activated CD4+ and CD8+ T cells. The treatment with TIM-3 inhibitors is considered as a promising strategy in cancer immunotherapy. The review focuses on new data on the expression of TIM-3 on dendritic cells (DCs) that play a key role in initiating the antigen-specific immune response and inducing effector CD8+ T cells. The main hypothesis is that TIM-3 is suggested to act as a negative regulator of DCs. Further studies on TIM-3-mediated DC regulation will improve the effectiveness of current strategies in the treatment of cancer using DCs and checkpoint molecule inhibitors, where the main targets can be not only T cells, but also TIM-3-expressing DCs.
Collapse
Affiliation(s)
- T V Tyrinova
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia.
| | - E R Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
44
|
Liang H, Xu C, Guo D, Peng F, Chen N, Song H, Ji X. Dismantlable Coronated Nanoparticles for Coupling the Induction and Perception of Immunogenic Cell Death. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313097. [PMID: 38643386 DOI: 10.1002/adma.202313097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Therapy-induced immunogenic cell death (ICD) can initiate both innate and adaptive immune responses for amplified anti-tumor efficacy. However, dying cell-released ICD signals are prone to being sequestered by the TIM-3 receptors on dendritic cell (DC) surfaces, preventing immune surveillance. Herein, dismantlable coronated nanoparticles (NPs) are fabricated as a type of spatiotemporally controlled nanocarriers for coupling tumor cell-mediated ICD induction to DC-mediated immune sensing. These NPs are loaded with an ICD inducer, mitoxantrone (MTO), and wrapped by a redox-labile anti-TIM-3 (αTIM-3) antibody corona, forming a separable core-shell structure. The antibody corona disintegrates under high levels of extracellular reactive oxygen species in the tumor microenvironment, exposing the MTO-loaded NP core for ICD induction and releasing functional αTIM-3 molecules for DC sensitization. Systemic administration of the coronated NPs augments DC maturation, promotes cytotoxic T cell recruitment, enhances tumor susceptibility to immune checkpoint blockade, and prevents the side effects of MTO. This study develops a promising nanoplatform to unleash the potential of host immunity in cancer therapy.
Collapse
Affiliation(s)
- Huan Liang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunchen Xu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Daoxia Guo
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fei Peng
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Nan Chen
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Haiyun Song
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoyuan Ji
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
45
|
Qian J, Ding L, Wu Q, Yu X, Li Q, Gu Y, Wang S, Mao J, Liu X, Li B, Pan C, Wang W, Wang Y, Liu J, Qiao Y, Xie H, Chen T, Ge J, Zhou L, Yin S, Zheng S. Nanosecond pulsed electric field stimulates CD103 + DC accumulation in tumor microenvironment via NK-CD103 + DC crosstalk. Cancer Lett 2024; 593:216514. [PMID: 38036040 DOI: 10.1016/j.canlet.2023.216514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/11/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
CD103+ DC is crucial for antitumor immune response. As a promising local therapy on cancers, nanosecond pulsed electric field (nsPEF) has been widely reported to stimulate anti-tumor immune response, but the underlying relationship between intratumoral CD103+ DC and nsPEF treatment remains enigmatic. Here, we focused on the behavior of CD103+ DC in response to nsPEF treatment and explored the underlying mechanism. We found that the nsPEF treatment led to the activation and accumulation of CD103+ DC in tumor. Depletion of CD103+ DC via Batf3-/- mice demonstrated CD103+ DC was necessary for intratumoral CD8+ T cell infiltration and activation in response to nsPEF treatment. Notably, NK cells recruited CD103+ DC into nsPEF-treated tumor through CCL5. Inflammatory array revealed CD103+ DC-derived IL-12 mediated the CCL5 secretion in NK cells. In addition, the boosted activation and infiltration of intratumoral CD103+ DC were abolished by cGAS-STING pathway inhibition, following IL-12 and CCL5 decreasing. Furthermore, nsPEF treatment promoting CD103+ DC-mediated antitumor response enhanced the effects of CD47 blockade strategy. Together, this study uncovers an unprecedented role for CD103+ DC in nsPEF treatment-elicited antitumor immune response and elucidates the underlying mechanisms.
Collapse
Affiliation(s)
- Junjie Qian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China
| | - Limin Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China
| | - Qinchuan Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China
| | - Xizhi Yu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China
| | - Qiyong Li
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310000, China
| | - Yangjun Gu
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310000, China
| | - Shuai Wang
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310000, China
| | - Jing Mao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China
| | - Xi Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China
| | - Bohan Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China
| | - Caixu Pan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China
| | - Wenchao Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China
| | - Yubo Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China
| | - Jianpeng Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China
| | - Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China
| | - Tianchi Chen
- Department of of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jiangzhen Ge
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China.
| | - Shengyong Yin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China.
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China; Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310000, China.
| |
Collapse
|
46
|
Ji Y, Xu Q, Wang W. Single-cell transcriptome reveals the heterogeneity of malignant ductal cells and the prognostic value of REG4 and SPINK1 in primary pancreatic ductal adenocarcinoma. PeerJ 2024; 12:e17350. [PMID: 38827297 PMCID: PMC11141562 DOI: 10.7717/peerj.17350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/17/2024] [Indexed: 06/04/2024] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related deaths, with very limited therapeutic options available. This study aims to comprehensively depict the heterogeneity and identify prognostic targets for PDAC with single-cell RNA sequencing (scRNA-seq) analysis. Methods ScRNA-seq analysis was performed on 16 primary PDAC and three adjacent lesions. A series of analytical methods were applied for analysis in cell clustering, gene profiling, lineage trajectory analysis and cell-to-cell interactions. In vitro experiments including colony formation, wound healing and sphere formation assay were performed to assess the role of makers. Results A total of 32,480 cells were clustered into six major populations, among which the ductal cell cluster expressing high copy number variants (CNVs) was defined as malignant cells. Malignant cells were further subtyped into five subgroups which exhibited specific features in immunologic and metabolic activities. Pseudotime trajectory analysis indicated that components of various oncogenic pathways were differentially expressed along tumor progression. Furthermore, intensive substantial crosstalk between ductal cells and stromal cells was identified. Finally, genes (REG4 and SPINK1) screened out of differentially expressed genes (DEGs) were upregulated in PDAC cell lines. Silencing either of them significantly impaired proliferation, invasion, migration and stemness of PDAC cells. Conclusions Our findings offer a valuable resource for deciphering the heterogeneity of malignant ductal cells in PDAC. REG4 and SPINK1 are expected to be promising targets for PDAC therapy.
Collapse
MESH Headings
- Female
- Humans
- Male
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Pancreatic Ductal/diagnosis
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Pancreatic Neoplasms/diagnosis
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatitis-Associated Proteins
- Prognosis
- Single-Cell Analysis
- Transcriptome
- Trypsin Inhibitor, Kazal Pancreatic/genetics
- Trypsin Inhibitor, Kazal Pancreatic/metabolism
Collapse
Affiliation(s)
- Yutian Ji
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | | | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| |
Collapse
|
47
|
Yin N, Li X, Zhang X, Xue S, Cao Y, Niedermann G, Lu Y, Xue J. Development of pharmacological immunoregulatory anti-cancer therapeutics: current mechanistic studies and clinical opportunities. Signal Transduct Target Ther 2024; 9:126. [PMID: 38773064 PMCID: PMC11109181 DOI: 10.1038/s41392-024-01826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering, agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers, newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.
Collapse
Affiliation(s)
- Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Shaolong Xue
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, PR China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
- Institute of Disaster Medicine & Institute of Emergency Medicine, Sichuan University, No. 17, Gaopeng Avenue, Chengdu, 610041, Sichuan, PR China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
48
|
Qian W, Ye J, Xia S. DNA sensing of dendritic cells in cancer immunotherapy. Front Mol Biosci 2024; 11:1391046. [PMID: 38841190 PMCID: PMC11150630 DOI: 10.3389/fmolb.2024.1391046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Dendritic cells (DCs) are involved in the initiation and maintenance of immune responses against malignant cells by recognizing conserved pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) through pattern recognition receptors (PRRs). According to recent studies, tumor cell-derived DNA molecules act as DAMPs and are recognized by DNA sensors in DCs. Once identified by sensors in DCs, these DNA molecules trigger multiple signaling cascades to promote various cytokines secretion, including type I IFN, and then to induce DCs mediated antitumor immunity. As one of the potential attractive strategies for cancer therapy, various agonists targeting DNA sensors are extensively explored including the combination with other cancer immunotherapies or the direct usage as major components of cancer vaccines. Moreover, this review highlights different mechanisms through which tumor-derived DNA initiates DCs activation and the mechanisms through which the tumor microenvironment regulates DNA sensing of DCs to promote tumor immune escape. The contributions of chemotherapy, radiotherapy, and checkpoint inhibitors in tumor therapy to the DNA sensing of DCs are also discussed. Finally, recent clinical progress in tumor therapy utilizing agonist-targeted DNA sensors is summarized. Indeed, understanding more about DNA sensing in DCs will help to understand more about tumor immunotherapy and improve the efficacy of DC-targeted treatment in cancer.
Collapse
Affiliation(s)
- Wei Qian
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jun Ye
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- The Center for Translational Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
49
|
Li Y, Sang Y, Chang Y, Xu C, Lin Y, Zhang Y, Chiu PCN, Yeung WSB, Zhou H, Dong N, Xu L, Chen J, Zhao W, Liu L, Yu D, Zang X, Ye J, Yang J, Wu Q, Li D, Wu L, Du M. A Galectin-9-Driven CD11c high Decidual Macrophage Subset Suppresses Uterine Vascular Remodeling in Preeclampsia. Circulation 2024; 149:1670-1688. [PMID: 38314577 DOI: 10.1161/circulationaha.123.064391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Preeclampsia is a serious disease of pregnancy that lacks early diagnosis methods or effective treatment, except delivery. Dysregulated uterine immune cells and spiral arteries are implicated in preeclampsia, but the mechanistic link remains unclear. METHODS Single-cell RNA sequencing and spatial transcriptomics were used to identify immune cell subsets associated with preeclampsia. Cell-based studies and animal models including conditional knockout mice and a new preeclampsia mouse model induced by recombinant mouse galectin-9 were applied to validate the pathogenic role of a CD11chigh subpopulation of decidual macrophages (dMφ) and to determine its underlying regulatory mechanisms in preeclampsia. A retrospective preeclampsia cohort study was performed to determine the value of circulating galectin-9 in predicting preeclampsia. RESULTS We discovered a distinct CD11chigh dMφ subset that inhibits spiral artery remodeling in preeclampsia. The proinflammatory CD11chigh dMφ exhibits perivascular enrichment in the decidua from patients with preeclampsia. We also showed that trophoblast-derived galectin-9 activates CD11chigh dMφ by means of CD44 binding to suppress spiral artery remodeling. In 3 independent preeclampsia mouse models, placental and plasma galectin-9 levels were elevated. Galectin-9 administration in mice induces preeclampsia-like phenotypes with increased CD11chigh dMφ and defective spiral arteries, whereas galectin-9 blockade or macrophage-specific CD44 deletion prevents such phenotypes. In pregnant women, increased circulating galectin-9 levels in the first trimester and at 16 to 20 gestational weeks can predict subsequent preeclampsia onset. CONCLUSIONS These findings highlight a key role of a distinct perivascular inflammatory CD11chigh dMφ subpopulation in the pathogenesis of preeclampsia. CD11chigh dMφ activated by increased galectin-9 from trophoblasts suppresses uterine spiral artery remodeling, contributing to preeclampsia. Increased circulating galectin-9 may be a biomarker for preeclampsia prediction and intervention.
Collapse
Affiliation(s)
- Yanhong Li
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
- Department of Obstetrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Clinical Institute of Shantou University Medical College), Shenzhen, Guangdong, China (Y. Li, Y. Lin, W.Z., J. Yang, M.D.)
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University Shanghai, China (Y. Li, M.D.)
| | - Yifei Sang
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Yunjian Chang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (Y.C., Y.Z., H.Z., L.W.)
| | - Chunfang Xu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Yikong Lin
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Yao Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (Y.C., Y.Z., H.Z., L.W.)
| | - Philip C N Chiu
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, China (P.C.N.C., W.S.B.Y.)
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China (P.C.N.C., W.S.B.Y.)
| | - William S B Yeung
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, China (P.C.N.C., W.S.B.Y.)
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China (P.C.N.C., W.S.B.Y.)
| | - Haisheng Zhou
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (Y.C., Y.Z., H.Z., L.W.)
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China (N.D., Q.W.)
| | - Ling Xu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Jiajia Chen
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Weijie Zhao
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
- Department of Obstetrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Clinical Institute of Shantou University Medical College), Shenzhen, Guangdong, China (Y. Li, Y. Lin, W.Z., J. Yang, M.D.)
| | - Lu Liu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Di Yu
- The University of Queensland Diamantina Institute (D.Y.), Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre (D.Y.), Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY (X.Z.)
| | - Jiangfeng Ye
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore City, Singapore (J. Ye)
| | - Jinying Yang
- Department of Obstetrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Clinical Institute of Shantou University Medical College), Shenzhen, Guangdong, China (Y. Li, Y. Lin, W.Z., J. Yang, M.D.)
| | - Qingyu Wu
- Cyrus Tang Hematology Center, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China (N.D., Q.W.)
| | - Dajin Li
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (Y.C., Y.Z., H.Z., L.W.)
| | - Meirong Du
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
- Department of Obstetrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Clinical Institute of Shantou University Medical College), Shenzhen, Guangdong, China (Y. Li, Y. Lin, W.Z., J. Yang, M.D.)
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University Shanghai, China (Y. Li, M.D.)
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau SAR, China (M.D.)
| |
Collapse
|
50
|
Ma Y, Jiang T, Zhu X, Xu Y, Wan K, Zhang T, Xie M. Efferocytosis in dendritic cells: an overlooked immunoregulatory process. Front Immunol 2024; 15:1415573. [PMID: 38835772 PMCID: PMC11148234 DOI: 10.3389/fimmu.2024.1415573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024] Open
Abstract
Efferocytosis, the process of engulfing and removing apoptotic cells, plays an essential role in preserving tissue health and averting undue inflammation. While macrophages are primarily known for this task, dendritic cells (DCs) also play a significant role. This review delves into the unique contributions of various DC subsets to efferocytosis, highlighting the distinctions in how DCs and macrophages recognize and handle apoptotic cells. It further explores how efferocytosis influences DC maturation, thereby affecting immune tolerance. This underscores the pivotal role of DCs in orchestrating immune responses and sustaining immune equilibrium, providing new insights into their function in immune regulation.
Collapse
Affiliation(s)
- Yanyan Ma
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tangxing Jiang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xun Zhu
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yizhou Xu
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ke Wan
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tingxuan Zhang
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Miaorong Xie
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|