1
|
Cabric V, Brown CC. Thetis cells: regulators of intestinal immune tolerance. Curr Opin Immunol 2025; 95:102570. [PMID: 40424976 DOI: 10.1016/j.coi.2025.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 05/07/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025]
Abstract
Our body's mucosal surfaces interface with the external environment and are potential sites of entry for pathogens as well as noxious substances. Yet, these barrier sites are also colonized with symbiotic microbes and are in contact with harmless environmental antigens. Different barrier epithelia harbor distinct microbial communities that shape both the epithelial layer and local immune cells that maintain tissue homeostasis and tolerance to symbiotic microbes. This seemingly paradoxical peaceful co-existence of immune cells and microbes has fascinated immunologists for decades: how does the immune system balance inflammatory and tolerogenic responses? The mechanisms underlying peripheral immune tolerance to harmless foreign antigens have been most widely studied within the intestine, where the immune system must establish and maintain tolerance to harmless food and commensal antigens. Dysregulated immune responses to these antigens are linked to several human diseases, including inflammatory bowel disease, celiac disease, and food allergy. Understanding the cellular and molecular cues that promote intestinal immune tolerance is key to the development of effective therapeutic strategies for these pathologies. Here, we review recent insights into mechanisms of intestinal tolerance with a focus on recently identified RORγt+ antigen-presenting cells.
Collapse
Affiliation(s)
- Vanja Cabric
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chrysothemis C Brown
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
2
|
Cuesta-Margolles G, Schlecht-Louf G, Bachelerie F. ACKR3 in Skin Homeostasis, an Overlooked Player in the CXCR4/CXCL12 Axis. J Invest Dermatol 2025; 145:1039-1049. [PMID: 39466217 DOI: 10.1016/j.jid.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/29/2024]
Abstract
CXCL12 and its receptor CXCR4 emerge as critical regulators within the intricate network of processes ensuring skin homeostasis. In this review, we discuss their spatial distribution and function in steady-state skin; delve into their role in acute wound healing, with emphasis on fibrotic and regenerative responses; and explore their relevance in skin responses to commensals and pathogens. Given the lack of knowledge surrounding ACKR3, the atypical receptor of CXCL12, we speculate whether and how it might be involved in the processes mentioned earlier. Is ACKR3 the (a)typical friend who enjoys missing the party, or do we need to take a closer look?
Collapse
Affiliation(s)
| | - Géraldine Schlecht-Louf
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | - Françoise Bachelerie
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| |
Collapse
|
3
|
Zhang J, Tang C, Liu Y, Sun J, Li X, Long K, Kong F, Chen S, Liang H, Ding Y, Li M, Shen L, Ge J, Ma J, Ge L. Single cell transcriptome profiling of immune tissues from germ-free and specific pathogen-free piglet. Sci Data 2025; 12:652. [PMID: 40251240 PMCID: PMC12008294 DOI: 10.1038/s41597-025-04957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/04/2025] [Indexed: 04/20/2025] Open
Abstract
The commensal microbiota provides immunomodulatory signals during the development, differentiation and activation of immune cells, and is crucial for maintaining host immune homeostasis. However, the systematic effects of commensal microbiota on host immunity based on large animal model at the single-cell level remain to be resolved. Here, we utilized single-cell RNA sequencing (scRNA-seq) to analyze the transcriptome profiling containing 57,720 cells from three important immune tissues [Peyer's patches (PP), mesenteric lymph node (MLN), and spleen] of germ-free (GF) and specific pathogen-free (SPF) piglet. We presented detailed description of the dataset and preliminarily identified the major cell types including immune and non-immune cells, and further annotated the immune cell subsets. This dataset provides a data mining resource for researchers involved in microbe-host interactions, and enables in-depth analysis of cell map alterations caused by the microbiota colonization during early immune development. As the first single-cell transcriptomics dataset for immune tissue of GF and SPF piglet, this provides a valuable data resource for the study of commensal microbe-host immunity regulation.
Collapse
Affiliation(s)
- Jinwei Zhang
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chuang Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Liu
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Sichuan Animal Science Academy, Chengdu, 610066, Sichuan, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
| | - Xiaokai Li
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
| | - Keren Long
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fanli Kong
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Shuangshuang Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Liang
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
| | - Yuchun Ding
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Shen
- Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Junbo Ge
- Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jideng Ma
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China.
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China.
| |
Collapse
|
4
|
Hu C, Yu T, Yang X. The intersection of antibiotic usage and ulcerative colitis: New perspectives and recommendations. Dig Liver Dis 2025; 57:936. [PMID: 39648083 DOI: 10.1016/j.dld.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024]
Affiliation(s)
- Chencheng Hu
- Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Tengjiang Yu
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Xiangdong Yang
- Southwest Medical University, Luzhou City, Sichuan Province, China.
| |
Collapse
|
5
|
Chen J, Zhu L, Cui Z, Zhang Y, Jia R, Zhou D, Hu B, Zhong W, Xu J, Zhang L, Zhou P, Mi W, Wang H, Yao Z, Yu Y, Liu Q, Zhou J. Spermidine restricts neonatal inflammation via metabolic shaping of polymorphonuclear myeloid-derived suppressor cells. J Clin Invest 2025; 135:e183559. [PMID: 40166929 PMCID: PMC11957691 DOI: 10.1172/jci183559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/31/2025] [Indexed: 04/02/2025] Open
Abstract
Newborns exhibit a heightened vulnerability to inflammatory disorders due to their underdeveloped immune system, yet the underlying mechanisms remain poorly understood. Here we report that plasma spermidine is correlated with the maturity of human newborns and reduced risk of inflammation. Administration of spermidine led to the remission of neonatal inflammation in mice. Mechanistic studies revealed that spermidine enhanced the generation of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) via downstream eIF5A hypusination. Genetic deficiency or pharmacological inhibition of deoxyhypusine synthase (DHPS), a key enzyme of hypusinated eIF5A (eIF5AHyp), diminished the immunosuppressive activity of PMN-MDSCs, leading to aggravated neonatal inflammation. The eIF5AHyp pathway was found to enhance the immunosuppressive function via histone acetylation-mediated epigenetic transcription of immunosuppressive signatures in PMN-MDSCs. These findings demonstrate the spermidine-eIF5AHyp metabolic axis as a master switch to restrict neonatal inflammation.
Collapse
Affiliation(s)
- Jiale Chen
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Laboratory of Immunity, Inflammation and Cancer, Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Zhu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhaohai Cui
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuxin Zhang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ran Jia
- Department of Clinical Laboratory, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Dongmei Zhou
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Bo Hu
- Department of Neonatal Surgery, Tianjin Children’s Hospital, Tianjin, China
| | - Wei Zhong
- Department of Neonatal Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jin Xu
- Department of Clinical Laboratory, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Lijuan Zhang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Pan Zhou
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wenyi Mi
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Haitao Wang
- Department of Oncology, The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases, Tianjin, China
| | - Zhi Yao
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Zhou
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Laboratory of Immunity, Inflammation and Cancer, Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Lei Y, Tsang JS. Systems Human Immunology and AI: Immune Setpoint and Immune Health. Annu Rev Immunol 2025; 43:693-722. [PMID: 40279304 DOI: 10.1146/annurev-immunol-090122-042631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
The immune system, critical for human health and implicated in many diseases, defends against pathogens, monitors physiological stress, and maintains tissue and organismal homeostasis. It exhibits substantial variability both within and across individuals and populations. Recent technological and conceptual progress in systems human immunology has provided predictive insights that link personal immune states to intervention responses and disease susceptibilities. Artificial intelligence (AI), particularly machine learning (ML), has emerged as a powerful tool for analyzing complex immune data sets, revealing hidden patterns across biological scales, and enabling predictive models for individualistic immune responses and potentially personalized interventions. This review highlights recent advances in deciphering human immune variation and predicting outcomes, particularly through the concepts of immune setpoint, immune health, and use of the immune system as a window for measuring health. We also provide a brief history of AI; review ML modeling approaches, including their applications in systems human immunology; and explore the potential of AI to develop predictive models and personal immune state embeddings to detect early signs of disease, forecast responses to interventions, and guide personalized health strategies.
Collapse
Affiliation(s)
- Yona Lei
- Yale Center for Systems and Engineering Immunology and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - John S Tsang
- Yale Center for Systems and Engineering Immunology and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Chan Zuckerberg Biohub NY, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Ma Z, Wen X, Zhang Y, Ai Z, Zhao X, Dong N, Dou X, Shan A. Thymol Alleviates Colitis by Modulating Intestinal Barrier Damage, Gut Microbiota, and Amino Acid Metabolic Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7211-7227. [PMID: 40077957 DOI: 10.1021/acs.jafc.4c10406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Thymol (THY) is a phenolic monoterpene compound that has garnered attention due to its various biological properties, including antioxidant, anti-inflammatory, and immune-regulatory effects. The purpose of this study was to determine the therapeutic and protective effects of THY in colitic mice, with a particular focus on the mechanisms involving gut microbiota. The results showed that early intervention with THY (40 and 80 mg/kg) not only alleviated the clinical symptoms and colonic damage in mice with dextran sodium sulfate (DSS)-induced colitis but also suppressed the colonic production of inflammatory cytokines (IL-1β, IL-6, and IL-18) and enhanced the expression of mucins (MUC1 and MUC2) and trefoil factor family 3 (TFF3), thereby improving the integrity of the intestinal epithelial barrier. In addition, THY altered the composition of the gut microbiota in colitis mice by increasing the abundance of Bacteroides and reducing the abundance of Proteobacteria. Fecal microbial transplantation (FMT) results demonstrated that FM from THY donor mice significantly improved symptoms of inflammatory bowel disease (IBD), confirming the crucial role of the gut microbiota. Metagenomic and untargeted metabolomic studies found that the characteristic microbiota of THY is Prevotellaceae, and THY significantly upregulated the amino acid metabolic pathways related to arginine and proline metabolism, arginine biosynthesis, and glycerophospholipid metabolism. In summary, THY holds significant potential as a functional additive to enhance host intestinal activity.
Collapse
Affiliation(s)
- Ziwen Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xin Wen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yahan Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zichun Ai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinyi Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Na Dong
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiujing Dou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
8
|
Ehlers G, Tödtmann AM, Holsten L, Willers M, Heckmann J, Schöning J, Richter M, Heinemann AS, Pirr S, Heinz A, Dopfer C, Händler K, Becker M, Büchel J, Wöckel A, von Kaisenberg C, Hansen G, Hiller K, Schultze JL, Härtel C, Kastenmüller W, Vaeth M, Ulas T, Viemann D. Oxidative phosphorylation is a key feature of neonatal monocyte immunometabolism promoting myeloid differentiation after birth. Nat Commun 2025; 16:2239. [PMID: 40050264 PMCID: PMC11885822 DOI: 10.1038/s41467-025-57357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/20/2025] [Indexed: 03/09/2025] Open
Abstract
Neonates primarily rely on innate immune defense, yet their inflammatory responses are usually restricted compared to adults. This is controversially interpreted as a sign of immaturity or essential programming, increasing or decreasing the risk of sepsis, respectively. Here, combined transcriptomic, metabolic, and immunological studies in monocytes of healthy individuals reveal an inverse ontogenetic shift in metabolic pathway activities with increasing age. Neonatal monocytes are characterized by enhanced oxidative phosphorylation supporting ongoing myeloid differentiation. This phenotype is gradually replaced during early childhood by increasing glycolytic activity fueling the inflammatory responsiveness. Microbial stimulation shifts neonatal monocytes to an adult-like metabolism, whereas ketogenic diet in adults mimicking neonatal ketosis cannot revive a neonate-like metabolism. Our findings disclose hallmarks of innate immunometabolism during healthy postnatal immune adaptation and suggest that premature activation of glycolysis in neonates might increase their risk of sepsis by impairing myeloid differentiation and promoting hyperinflammation.
Collapse
Affiliation(s)
- Greta Ehlers
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Annika Marie Tödtmann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Lisa Holsten
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn, Bonn, Germany
| | - Maike Willers
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Julia Heckmann
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Jennifer Schöning
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Maximilian Richter
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Anna Sophie Heinemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Sabine Pirr
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Alexander Heinz
- Department for Bioinformatics and Biochemistry, BRICS, Technical University Braunschweig, Braunschweig, Germany
| | - Christian Dopfer
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Kristian Händler
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Matthias Becker
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Modular High Performance Computing and Artificial Intelligence, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Johanna Büchel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | - Achim Wöckel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | | | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Karsten Hiller
- Department for Bioinformatics and Biochemistry, BRICS, Technical University Braunschweig, Braunschweig, Germany
| | - Joachim L Schultze
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn, Bonn, Germany
| | - Christoph Härtel
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Martin Vaeth
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Thomas Ulas
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn, Bonn, Germany
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
- Center for Infection Research, University Würzburg, Würzburg, Germany.
| |
Collapse
|
9
|
Liu F, Pu X, Wu J, Ren F, Fang B, Wang R, Zhang M. Enhancing neonatal immune maturity: The impact of Bifidobacterium animalis A6 and its postbiotics on NEC outcomes. FOOD BIOSCI 2025; 65:106129. [DOI: 10.1016/j.fbio.2025.106129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
|
10
|
Lubin JB, Planet PJ, Silverman MA. Microbial succession at weaning is guided by microbial metabolism of host glycans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.20.639370. [PMID: 40027830 PMCID: PMC11870605 DOI: 10.1101/2025.02.20.639370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The weaning transition from a milk-based to a solid-food diet supports critical developmental changes to the intestinal microbiome and immune system. However, the specific microbial and host features that influence microbial succession at weaning are not well understood. Here, we developed a simple approach to investigate the complex dynamics of microbial succession during weaning by co-housing gnotobiotic mice colonized with the defined pre-weaning community PedsCom and the adult-derived consortium OMM12. As expected, co-housing PedsCom mice with OMM12 recapitulated microbial succession at weaning and induced immune system maturation in PedsCom mice. Unexpectedly, we found that the OMM12 microbes with the highest host glycan utilization profiles were the most adept colonizers of PedsCom mice. Genomic analysis confirmed that PedsCom is deficient in the carbohydrate-active enzymes responsible for degrading host-derived glycans, including mucins, compared to adult-derived consortia. We validated a role for glycan utilization in vivo by demonstrating that the mucus-degrading commensal microbe Akkermansia muciniphila critically depends on the metabolism of mucin glycans for colonization of PedsCom mice. These findings highlight the importance of host-derived glycans in shaping microbial communities during the weaning transition and suggest host glycans as novel targets to modulate intestinal microbial populations, introduce beneficial probiotics, and enhance immune system development during weaning.
Collapse
Affiliation(s)
- Jean-Bernard Lubin
- Division of Infectious Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paul J. Planet
- Division of Infectious Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A. Silverman
- Division of Infectious Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Schlößer S, Ullrich AL, Modares NF, Schmitz MA, Schöneich J, Zhang K, Richter I, Robrahn L, Schraven S, Nagai JS, Haange SB, Jennings SAV, Clavel T, Rolle-Kampczyk U, Kiessling F, Costa IG, Muncan V, Repnik U, von Bergen M, Dupont A, Hornef MW. Salmonella infection accelerates postnatal maturation of the intestinal epithelium. Proc Natl Acad Sci U S A 2025; 122:e2403344122. [PMID: 39793046 PMCID: PMC11725846 DOI: 10.1073/pnas.2403344122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025] Open
Abstract
Postnatal establishment of enteric metabolic, host-microbial and immune homeostasis is the result of precisely timed and tightly regulated developmental and adaptive processes. Here, we show that infection with the invasive enteropathogen Salmonella Typhimurium results in accelerated maturation of the neonatal epithelium with premature appearance of antimicrobial, metabolic, developmental, and regenerative features of the adult tissue. Using conditional Myd88-deficient mice, we identify the critical contribution of immune cell-derived mediators. Cytokine stimulation of neonatal intestinal epithelial stem cell organoids suggests a network of synergistic and antagonistic cytokine effects with a significant contribution of IL-22, IL-4/IL-13, TNF, and IL-6 to infection-induced enterocyte reprogramming. Our findings demonstrate that the infection-associated immune cell activation disrupts physiological postnatal tissue maturation and may thereby worsen clinical outcomes and alter the neonatal-adult transition.
Collapse
Grants
- SFB 1382 403224013 Deutsche Forschungsgemeinschaft (DFG)
- SFB 1382 403224013 Deutsche Forschungsgemeinschaft (DFG)
- SFB 1382 403224013 Deutsche Forschungsgemeinschaft (DFG)
- SFB/TRR359 491676693 Deutsche Forschungsgemeinschaft (DFG)
- SFB/TRR359 491676693 Deutsche Forschungsgemeinschaft (DFG)
- SPP2225 HO2236/18-1 Deutsche Forschungsgemeinschaft (DFG)
- SPP2389 DU 1803/2-1 Deutsche Forschungsgemeinschaft (DFG)
- DU-1803/1 Deutsche Forschungsgemeinschaft (DFG)
- eMed Consortia Fibromap Bundesministerium für Bildung und Forschung (BMBF)
- eMed Consortia Fibromap Bundesministerium für Bildung und Forschung (BMBF)
- START RWTH Aachen | Medizinische Fakultät, RWTH Aachen University (Faculty of Medicine, RWTH Aachen University)
- START RWTH Aachen | Medizinische Fakultät, RWTH Aachen University (Faculty of Medicine, RWTH Aachen University)
- Advanced Grant EarlyLife 101019157 EC | ERC | HORIZON EUROPE European Research Council (ERC)
- START RWTH Aachen | Medizinische Fakultät, RWTH Aachen University (Faculty of Medicine, RWTH Aachen University)
- START RWTH Aachen | Medizinische Fakultät, RWTH Aachen University (Faculty of Medicine, RWTH Aachen University)
- IRS seed fund RWTH Aachen University (RWTH Aachen)
- START RWTH Aachen | Medizinische Fakultät, RWTH Aachen University (Faculty of Medicine, RWTH Aachen University)
Collapse
Affiliation(s)
- Stefan Schlößer
- Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
| | - Anna-Lena Ullrich
- Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
| | - Nastaran Fazel Modares
- Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover30625, Germany
| | - Matthias A. Schmitz
- Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
| | - Johannes Schöneich
- Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
| | - Kaiyi Zhang
- Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
| | - Isabel Richter
- Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
| | - Laura Robrahn
- Institute for Computational Genomics, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
- Department of General, Visceral and Transplantation Surgery, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
| | - Sarah Schraven
- Institute for Experimental Molecular Imaging, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
| | - James S. Nagai
- Institute for Computational Genomics, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
| | - Sven-Bastiaan Haange
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH—Helmholtz-Zentrum für Umweltforschung, Leipzig04318, Germany
| | - Susan A. V. Jennings
- Functional Microbiome Research Group, Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
- Euregional Microbiome Center, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH—Helmholtz-Zentrum für Umweltforschung, Leipzig04318, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
| | - Ivan G. Costa
- Institute for Computational Genomics, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
| | - Vanesa Muncan
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC University of Amsterdam, Amsterdam1015 BK, The Netherlands
| | - Urska Repnik
- Central Microscopy, Christian Albrechts University, Kiel24118, Germany
| | - Martin von Bergen
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH—Helmholtz-Zentrum für Umweltforschung, Leipzig04318, Germany
| | - Aline Dupont
- Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover30625, Germany
| | - Mathias W. Hornef
- Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover30625, Germany
- Euregional Microbiome Center, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
| |
Collapse
|
12
|
Intze E, Schaubeck M, Pourjam M, Neuhaus K, Lagkouvardos I, Hitch TCA, Clavel T. The infant microbiota hopscotches between community states toward maturation-longitudinal stool parameters and microbiota development in a cohort of European toddlers. ISME COMMUNICATIONS 2025; 5:ycaf016. [PMID: 40083911 PMCID: PMC11905755 DOI: 10.1093/ismeco/ycaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 03/16/2025]
Abstract
The development of the gut microbiome is critical during early life and is associated with infant health. To test whether this development is deterministic and how it is influenced by factors such as diet and mode of birth, we studied microbiota profiles and fecal parameters of 540 European infants, fed a synbiotic or control infant formula during their first year of life, up to 36 months of age. The diversity of the microbiota gradually increased until 36 months, at which point it resembled adult community states, indicating that microbiota maturation had occurred. However, distinct gut microbiota community states were observed that differed at each stage of maturation. The distribution of infants within the communities even at 36 months was significantly influenced by early life events, with a higher prevalence of infants born by cesarean section having the immature M36-C1 community state at 36 months. The microbial community state at one time point was not predictive of the next; instead, we observed hopscotching of the infant microbiota between different community states. This work provides new longitudinal data on the infant gut microbiome in relation to diet, suggesting that ecosystem development is not deterministic, but that early life events influence the community state of an individual's gut microbiota beyond infancy.
Collapse
Affiliation(s)
- Evangelia Intze
- Department of Clinical Microbiology, School of Medicine, University of Crete, Heraklion 70013, Greece
| | | | - Mohsen Pourjam
- Core Facility Microbiome, ZIEL Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
| | - Ilias Lagkouvardos
- Department of Clinical Microbiology, School of Medicine, University of Crete, Heraklion 70013, Greece
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, 52074 Aachen, Germany
| | - Thomas C A Hitch
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, 52074 Aachen, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, 52074 Aachen, Germany
| |
Collapse
|
13
|
Grases-Pintó B, Torres-Castro P, Abril-Gil M, Castell M, Rodríguez-Lagunas MJ, Pérez-Cano FJ, Franch À. TGF-β2, EGF and FGF21 influence the suckling rat intestinal maturation. J Nutr Biochem 2025; 135:109778. [PMID: 39374742 DOI: 10.1016/j.jnutbio.2024.109778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/04/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Some of the growth factors present in breast milk, such as transforming growth factor-β (TGF-β), epidermal growth factor (EGF) and fibroblast growth factor 21 (FGF21), play important roles in the development of the intestinal tract. The aim of this study was to determine the effect of a supplementation with TGF-β2, EGF and FGF21 on suckling rats intestinal maturation. For this purpose, Wistar rats were supplemented daily with TGF-β2, EGF or FGF21 throughout the suckling period. We evaluated the functionality of the intestinal epithelial barrier through an in vivo dextran permeability assay, and by a histomorphometric and immunohistochemical study. In addition, the intestinal gene expression of tight junction-associated proteins, mucins, toll-like receptors, and maturation markers was analyzed. Moreover, the intraepithelial lymphocyte (IEL) phenotypical composition was established. During the suckling period, the supplementation with TGF-β2, EGF and FGF21 showed important signs of intestinal maturation. These results suggest that these molecules, present in breast milk, play a modulatory role in the maturation of the intestinal barrier function and the IEL composition during the suckling period.
Collapse
Affiliation(s)
- Blanca Grases-Pintó
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA·UB), Santa Coloma de Gramenet, Spain
| | - Paulina Torres-Castro
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA·UB), Santa Coloma de Gramenet, Spain
| | - Mar Abril-Gil
- Klinikum rechts der Isar, Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Margarida Castell
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA·UB), Santa Coloma de Gramenet, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - María J Rodríguez-Lagunas
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA·UB), Santa Coloma de Gramenet, Spain
| | - Francisco J Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA·UB), Santa Coloma de Gramenet, Spain.
| | - Àngels Franch
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA·UB), Santa Coloma de Gramenet, Spain
| |
Collapse
|
14
|
Zhang J. Dysbiosis exists in unaffected relatives of inflammatory bowel disease (IBD): emphasising the critical phases in the developmental trajectory of gut microbiota. Gut 2024:gutjnl-2024-333425. [PMID: 39715670 DOI: 10.1136/gutjnl-2024-333425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/30/2024] [Indexed: 12/25/2024]
Affiliation(s)
- Jingwan Zhang
- Microbiota I-Center (MagIC), Hong Kong SAR, People's Republic of China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
- State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
15
|
Jaber Y, Sarusi-Portuguez A, Netanely Y, Naamneh R, Yacoub S, Saar O, Darawshi N, Eli-Berchoer L, Shapiro H, Elinav E, Wilensky A, Hovav AH. Gingival spatial analysis reveals geographic immunological variation in a microbiota-dependent and -independent manner. NPJ Biofilms Microbiomes 2024; 10:142. [PMID: 39627243 PMCID: PMC11615284 DOI: 10.1038/s41522-024-00625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
In mucosal barriers, tissue cells and leukocytes collaborate to form specialized niches that support host-microbiome symbiosis. Understanding the spatial organization of these barriers is crucial for elucidating the mechanisms underlying health and disease. The gingiva, a unique mucosal barrier with significant health implications, exhibits intricate tissue architecture and likely contains specialized immunological regions. Through spatial transcriptomic analysis, this study reveals distinct immunological characteristics between the buccal and palate regions of the murine gingiva, impacting natural alveolar bone loss. The microbiota primarily affects gingival immunity in the buccal region. Additionally, a significant influence of the microbiota on the junctional epithelium facing the oral biofilm offers new insights into neutrophil recruitment. The microbiota also regulates the proliferation and barrier-sealing function of the gingival epithelium. This underscores the presence of immunological niches in the gingiva, with the microbiota differentially influencing them, highlighting the high complexity of this oral mucosal barrier.
Collapse
Affiliation(s)
- Yasmin Jaber
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | | | - Yasmin Netanely
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Reem Naamneh
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Shahd Yacoub
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Or Saar
- Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel; Department of Periodontology, Hadassah Medical Center, Jerusalem, Israel
| | - Nadeem Darawshi
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Luba Eli-Berchoer
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Hagit Shapiro
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
- Microbiome & Cancer Division, DKFZ, Heidelberg, Germany
| | - Asaf Wilensky
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Avi-Hai Hovav
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
16
|
Fernandez M, Pezier T, Papadopoulos S, Laurent F, Werts C, Lacroix-Lamandé S. Deleterious intestinal inflammation in neonatal mice treated with TLR2/TLR6 agonists. J Leukoc Biol 2024; 116:1142-1156. [PMID: 38872374 DOI: 10.1093/jleuko/qiae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/16/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024] Open
Abstract
By providing innate immune modulatory stimuli, the early-life immune system can be enhanced to increase resistance to infections. Activation of innate cell surface receptors called pattern recognition receptors by Toll-like receptor (TLR) ligands is one promising approach that can help to control infections as described for listeriosis and cryptosporidiosis. In this study, the effect of TLR2/TLR1 and TLR2/TLR6 agonists was compared when injected into neonatal mice. Surprisingly, the stimulation of TLR2/TLR6 led to the death of the neonatal mice, which was not observed in adult mice. The TLR2/TLR6 agonist administration induced higher systemic and intestinal inflammation in both adult and neonatal mice when compared with TLR2/TLR1 agonist. The mortality of neonatal mice was interferon γ dependent and involved the intestinal production of interleukin-22 and interleukin-17A. This study clearly demonstrates that targeting TLRs as new control strategy of neonatal infections has to be used with caution. Depending on its heterodimeric form, TLR2 stimulation can induce more or less severe adverse effects relying on the age-related immune functions of the host.
Collapse
Affiliation(s)
- Mégane Fernandez
- Infectiologie et Santé Publique, Université de Tours, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, F-37380 Nouzilly, France
| | - Tiffany Pezier
- Infectiologie et Santé Publique, Université de Tours, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, F-37380 Nouzilly, France
| | - Stylianos Papadopoulos
- Centre National de la Recherche Scientifique UMR6047, Institut National de la Santé et de la Recherche Médicale U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur, Université Paris Cité, Paris, France
| | - Fabrice Laurent
- Infectiologie et Santé Publique, Université de Tours, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, F-37380 Nouzilly, France
| | - Catherine Werts
- Centre National de la Recherche Scientifique UMR6047, Institut National de la Santé et de la Recherche Médicale U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur, Université Paris Cité, Paris, France
| | - Sonia Lacroix-Lamandé
- Infectiologie et Santé Publique, Université de Tours, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, F-37380 Nouzilly, France
| |
Collapse
|
17
|
Verhasselt V, Marchant A, Kollmann TR. Per Os to Protection - Targeting the Oral Route to Enhance Immune-mediated Protection from Disease of the Human Newborn. J Mol Biol 2024; 436:168718. [PMID: 39094783 DOI: 10.1016/j.jmb.2024.168718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Affiliation(s)
- Valerie Verhasselt
- Larsson-Rosenquist Foundation Centre for Immunology and Breastfeeding, School of Medicine, University of Western Australia, Perth, WA, Australia; Immunology and Breastfeeding Team, Telethon Kids Institute, Perth, WA, Australia
| | - Arnaud Marchant
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Tobias R Kollmann
- Dalhousie University, Department of Microbiology & Immunology, Pediatric Infectious Diseases, Canada.
| |
Collapse
|
18
|
Gao Y, Wang K, Lin Z, Cai S, Peng A, He L, Qi H, Jin Z, Qian X. The emerging roles of microbiome and short-chain fatty acids in the pathogenesis of bronchopulmonary dysplasia. Front Cell Infect Microbiol 2024; 14:1434687. [PMID: 39372498 PMCID: PMC11449852 DOI: 10.3389/fcimb.2024.1434687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/28/2024] [Indexed: 10/08/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease that affects premature infants and leads to long-term pulmonary complications. The pathogenesis of BPD has not been fully elucidated yet. In recent years, the microbiome and its metabolites, especially short-chain fatty acids (SCFAs), in the gut and lungs have been demonstrated to be involved in the development and progression of the disease. This review aims to summarize the current knowledge on the potential involvement of the microbiome and SCFAs, especially the latter, in the development and progression of BPD. First, we introduce the gut-lung axis, the production and functions of SCFAs, and the role of SCFAs in lung health and diseases. We then discuss the evidence supporting the involvement of the microbiome and SCFAs in BPD. Finally, we elaborate on the potential mechanisms of the microbiome and SCFAs in BPD, including immune modulation, epigenetic regulation, enhancement of barrier function, and modulation of surfactant production and the gut microbiome. This review could advance our understanding of the microbiome and SCFAs in the pathogenesis of BPD, which also helps identify new therapeutic targets and facilitate new drug development.
Collapse
Affiliation(s)
- Yuan Gao
- Neonatal Intensive Care Unit (NICU), Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| | - Kaixuan Wang
- Department of Pediatrics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Zupan Lin
- Neonatal Intensive Care Unit (NICU), Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| | - Shujing Cai
- Neonatal Intensive Care Unit (NICU), Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| | - Aohui Peng
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Le He
- Department of Pediatrics, Jinhua Hospital of TCM Affiliated to Zhejiang University of Traditional Chinese Medicine, Jinhua, China
| | - Hui Qi
- China National Clinical Research Center of Respiratory Diseases, Respiratory Department, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Zhigang Jin
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Xubo Qian
- Department of Pediatrics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
- Department of Pediatrics, Jinhua Hospital of TCM Affiliated to Zhejiang University of Traditional Chinese Medicine, Jinhua, China
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
19
|
Hartmann CR, Khan R, Schöning J, Richter M, Willers M, Pirr S, Heckmann J, Dirks J, Morbach H, Konrad M, Fries E, Winkler M, Büchel J, Seidenspinner S, Fischer J, Vollmuth C, Meinhardt M, Marissen J, Schmolke M, Haid S, Pietschmann T, Backes S, Dölken L, Löber U, Keil T, Heuschmann PU, Wöckel A, Sagar, Ulas T, Forslund-Startceva SK, Härtel C, Viemann D. A clinical protocol for a German birth cohort study of the Maturation of Immunity Against respiratory viral Infections (MIAI). Front Immunol 2024; 15:1443665. [PMID: 39355253 PMCID: PMC11442434 DOI: 10.3389/fimmu.2024.1443665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/29/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction Respiratory viral infections (RVIs) are a major global contributor to morbidity and mortality. The susceptibility and outcome of RVIs are strongly age-dependent and show considerable inter-population differences, pointing to genetically and/or environmentally driven developmental variability. The factors determining the age-dependency and shaping the age-related changes of human anti-RVI immunity after birth are still elusive. Methods We are conducting a prospective birth cohort study aiming at identifying endogenous and environmental factors associated with the susceptibility to RVIs and their impact on cellular and humoral immune responses against the influenza A virus (IAV), respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The MIAI birth cohort enrolls healthy, full-term neonates born at the University Hospital Würzburg, Germany, with follow-up at four defined time-points during the first year of life. At each study visit, clinical metadata including diet, lifestyle, sociodemographic information, and physical examinations, are collected along with extensive biomaterial sampling. Biomaterials are used to generate comprehensive, integrated multi-omics datasets including transcriptomic, epigenomic, proteomic, metabolomic and microbiomic methods. Discussion The results are expected to capture a holistic picture of the variability of immune trajectories with a focus on cellular and humoral key players involved in the defense of RVIs and the impact of host and environmental factors thereon. Thereby, MIAI aims at providing insights that allow unraveling molecular mechanisms that can be targeted to promote the development of competent anti-RVI immunity in early life and prevent severe RVIs. Clinical trial registration https://drks.de/search/de/trial/, identifier DRKS00034278.
Collapse
Affiliation(s)
- Carina R. Hartmann
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Robin Khan
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Jennifer Schöning
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Maximilian Richter
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Maike Willers
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Sabine Pirr
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Julia Heckmann
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Dirks
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
- German Center for Infection Research, Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Henner Morbach
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
- Center for Primary Immunodeficiencies and Autoinflammatory Diseases (CIDA), University Hospital Würzburg, Würzburg, Germany
| | - Monika Konrad
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Elena Fries
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Magdalene Winkler
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | - Johanna Büchel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | | | - Jonas Fischer
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Claudia Vollmuth
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Martin Meinhardt
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Janina Marissen
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sibylle Haid
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research (TWINCORE), a joint venture between the Helmholtz Centre for Infection Research and The Hannover Medical School, Hannover, Germany
| | - Thomas Pietschmann
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research (TWINCORE), a joint venture between the Helmholtz Centre for Infection Research and The Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Simone Backes
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Lars Dölken
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Ulrike Löber
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany
| | - Thomas Keil
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany
- State Institute of Health I, Bavarian Health and Food Safety Authority, Erlangen, Germany
| | - Peter U. Heuschmann
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany
- Institute for Medical Data Science, University Hospital Würzburg, Würzburg, Germany
- Clinical Trial Centre Würzburg, University Hospital Würzburg, Würzburg, Germany
| | - Achim Wöckel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | - Sagar
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, University of Freiburg, Freiburg, Germany
| | - Thomas Ulas
- Systems Medicine, German Center for Neurodegenerative Diseases Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and University of Bonn, Bonn, Germany
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Sofia K. Forslund-Startceva
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Christoph Härtel
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Dorothee Viemann
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Center for Infection Research, University Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Millet N, Sekar J, Solis NV, Millet A, Aggor FE, Wildeman A, Lionakis MS, Gaffen SL, Jendzjowsky N, Filler SG, Swidergall M. Non-canonical IL-22 receptor signaling remodels the mucosal barrier during fungal immunosurveillance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.08.611873. [PMID: 39314368 PMCID: PMC11419061 DOI: 10.1101/2024.09.08.611873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Mucosal barrier integrity is vital for homeostasis with commensal organisms while preventing pathogen invasion. We unexpectedly found that fungal-induced immunosurveillance enhances resistance to fungal outgrowth and tissue invasion by remodeling the oral mucosal epithelial barrier in mouse models of adult and neonatal Candida albicans colonization. Epithelial subset expansion and tissue remodeling were dependent on interleukin-22 (IL-22) and signal transducer and activator of transcription 3 (STAT3) signaling, through a non-canonical receptor complex composed of glycoprotein 130 (gp130) coupled with IL-22RA1 and IL-10RB. Immunosurveillance-induced epithelial remodeling was restricted to the oral mucosa, whereas barrier architecture was reset once fungal-specific immunity developed. Collectively, these findings identify fungal-induced transient mucosal remodeling as a critical determinant of resistance to mucosal fungal infection during early stages of microbial colonization.
Collapse
Affiliation(s)
- Nicolas Millet
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jinendiran Sekar
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Norma V. Solis
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Antoine Millet
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Felix E.Y. Aggor
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, PA, USA
| | - Asia Wildeman
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Sarah L. Gaffen
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, PA, USA
| | - Nicholas Jendzjowsky
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Scott G. Filler
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Marc Swidergall
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
21
|
Melki R, Litvak Y. From vacant to vivid: The nutritional landscape drives infant gut microbiota establishment. Mol Microbiol 2024; 122:347-356. [PMID: 39044538 DOI: 10.1111/mmi.15296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024]
Abstract
From the moment of birth, the newborn gastrointestinal tract is infiltrated by various bacteria originating from both maternal and environmental sources. These colonizing bacteria form a complex microbiota community that undergoes continuous changes until adulthood and plays an important role in infant health. The maturation of the infant gut microbiota is driven by many factors and follows a distinct patterned trajectory, with specific bacterial taxa establish in the intestine in accordance with developmental milestones as the infant grows. In this review, we highlight how elements such as diet and host physiology select for specific microbial functions and shape the composition of the bacterial community in the large intestine.
Collapse
Affiliation(s)
- Reut Melki
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Litvak
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
22
|
Light SH, Nagler CR. Regulation of immune responses to food by commensal microbes. Immunol Rev 2024; 326:203-218. [PMID: 39285525 PMCID: PMC11472335 DOI: 10.1111/imr.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The increasing prevalence of immune-mediated non-communicable chronic diseases, such as food allergies, has prompted a deeper investigation into the role of the gut microbiome in modulating immune responses. Here, we explore the complex interactions between commensal microbes and the host immune system, highlighting the critical role of gut bacteria in maintaining immune homeostasis. We examine how modern lifestyle practices and environmental factors have disrupted co-evolved host-microbe interactions and discuss how changes in microbiome composition impact epithelial barrier function, responses to food allergens, and susceptibility to allergic diseases. Finally, we examine the potential of bioengineered microbiome-based therapies, and live biotherapeutic products, for reestablishing immune homeostasis to prevent or treat food allergies.
Collapse
Affiliation(s)
- Samuel H. Light
- Department of Microbiology, University of Chicago, Chicago IL, 60637
| | - Cathryn R. Nagler
- Department of Pathology, University of Chicago, Chicago IL, 60637
- Department of Biological Sciences Division, Pritzker School of Molecular Engineering, University of Chicago, Chicago IL, 60637
| |
Collapse
|
23
|
Verhasselt V. A newborn's perspective on immune responses to food. Immunol Rev 2024; 326:117-129. [PMID: 39162048 DOI: 10.1111/imr.13376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
In this review, we will highlight infants' immune responses to food, emphasizing the unique aspects of early-life immunity and the critical role of breast milk as a food dedicated to infants. Infants are susceptible to inflammatory responses rather than immune tolerance at the mucosal and skin barriers, necessitating strategies to promote oral tolerance that consider this susceptibility. Breast milk provides nutrients for growth and cell metabolism, including immune cells. The content of breast milk, influenced by maternal genetics and environmental exposures, prepares the infant's immune system for the outside world, including solid foods. To do this, breast milk promotes immune system development through antigen-specific and non-antigen-specific immune education by exposing the newborn to food and respiratory allergens and acting on three key targets for food allergy prevention: the gut microbiota, epithelial cells, and immune cells. Building knowledge of how the maternal exposome and human milk composition influence offspring's healthy immune development will lead to recommendations that meet the specific needs of the developing immune system and increase the chances of promoting an appropriate immune response to food in the long term.
Collapse
Affiliation(s)
- Valerie Verhasselt
- Larsson-Rosenquist Foundation Centre for Immunology and Breastfeeding, School of Medicine, University of Western Australia, Perth, Western Australia, Australia
- Immunology and Breastfeeding team, Telethon Kids Institute, Perth, Western Australia, Australia
| |
Collapse
|
24
|
Ionescu E, Nagler CR. Hit me baby one more time…with microbial IPA. Immunity 2024; 57:1728-1730. [PMID: 39142273 DOI: 10.1016/j.immuni.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
The immune system is imprinted by gut microbes in early life. In this issue of Immunity, Perdijk et al. show that dysregulation of airway epithelial function by neonatal antibiotic treatment can be reversed by supplementation with a depleted microbial metabolite.
Collapse
Affiliation(s)
- Edward Ionescu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Cathryn R Nagler
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA; Department of Pathology, Division of Biological Sciences, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
25
|
Hesser LA, Puente AA, Arnold J, Ionescu E, Mirmira A, Talasani N, Lopez J, Maccio-Maretto L, Mimee M, Nagler CR. A synbiotic of Anaerostipes caccae and lactulose prevents and treats food allergy in mice. Cell Host Microbe 2024; 32:1163-1176.e6. [PMID: 38906158 PMCID: PMC11239278 DOI: 10.1016/j.chom.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/26/2024] [Accepted: 05/28/2024] [Indexed: 06/23/2024]
Abstract
Depletion of beneficial microbes by modern lifestyle factors correlates with the rising prevalence of food allergies. Re-introduction of allergy-protective bacteria may be an effective treatment strategy. We characterized the fecal microbiota of healthy and food-allergic infants and found that the anaerobe Anaerostipes caccae (A. caccae) was representative of the protective capacity of the healthy microbiota. We isolated a strain of A. caccae from the feces of a healthy infant and identified lactulose as a prebiotic to optimize butyrate production by A. caccae in vitro. Administration of a synbiotic composed of our isolated A. caccae strain and lactulose increased luminal butyrate in gnotobiotic mice colonized with feces from an allergic infant and in antibiotic-treated specific pathogen-free (SPF) mice, and prevented or treated an anaphylactic response to allergen challenge. The synbiotic's efficacy in two models and microbial contexts suggests that it may be a promising approach for the treatment of food allergy.
Collapse
Affiliation(s)
- Lauren A Hesser
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Armando A Puente
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Jack Arnold
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Edward Ionescu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Anjali Mirmira
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Nidhi Talasani
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Jacqueline Lopez
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | | | - Mark Mimee
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA; Committee on Microbiology, The University of Chicago, Chicago, IL, USA
| | - Cathryn R Nagler
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA; Department of Pathology, The University of Chicago, Chicago, IL, USA; Committee on Immunology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
26
|
Teshigahara A, Banba Y, Yoshida H, Kaji M, Zhou Z, Koyama N, Sakai Y, Karrow NA, Ogasawara K, Hirakawa R, Islam J, Furukawa M, Nochi T. Formation of the junctions between lymph follicles in the Peyer's patches even before postweaning activation. Sci Rep 2024; 14:15783. [PMID: 38982122 PMCID: PMC11233632 DOI: 10.1038/s41598-024-65984-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Peyer's patches (PPs), which contain an abundance of B and T cells, play a key role in inducing pivotal immune responses in the intestinal tract. PPs are defined as aggregated lymph follicles, which consist of multiple lymph follicles (LFs) that may interact with each other in a synergistic manner. LFs are thought to be spherical in shape; however, the characteristics of their structure are not fully understood. To elucidate changes in the structure of PPs as individuals grow, we generated serial 2D sections from entire PPs harvested from mice at 2, 4, and 10 weeks of age and performed a 3D analysis using a software, Amira. Although the number of LFs in PPs was not changed throughout the experiment, the volume and surface area of LFs increased significantly, indicating that LFs in PPs develop continuously by recruiting immune cells, even after weaning. In response to the dramatic changes in the intestinal environment after weaning, the development of germinal centers (GCs) in LFs was observed at 4 and 10 weeks (but not 2 weeks) of age. In addition, GCs gradually began to form away from the center of LFs and close to the muscle layer where export lymphatic vessels develop. Importantly, each LF was joined to the adjacent LF; this feature was observed even in preweaning nonactivated PPs. These results suggest that PPs may have a unique organization and structure that enhance immune functions, allowing cells in LFs to have free access to adjacent LFs and egress smoothly from PPs to the periphery upon stimulation after weaning.
Collapse
Affiliation(s)
- Anri Teshigahara
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
- Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Yuri Banba
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
- Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Hiromi Yoshida
- Institute of Development, Aging and Cancer, Tohoku University, Miyagi, 980-8575, Japan
| | - Mitsuji Kaji
- Institute of Development, Aging and Cancer, Tohoku University, Miyagi, 980-8575, Japan
| | - Zhou Zhou
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
- Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Nao Koyama
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
- Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Yoshifumi Sakai
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Niel A Karrow
- Department of Animal Biosciences, University of Guelph, Ontario, N1G 2W1, Canada
| | - Kouetsu Ogasawara
- Institute of Development, Aging and Cancer, Tohoku University, Miyagi, 980-8575, Japan
| | - Ryota Hirakawa
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
- Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
- Laboratory of Animal Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Jahidul Islam
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
- Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Mutsumi Furukawa
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
- Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
- Laboratory of Animal Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Tomonori Nochi
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan.
- Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan.
- Department of Animal Biosciences, University of Guelph, Ontario, N1G 2W1, Canada.
- Laboratory of Animal Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan.
- Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
- Center for Professional Development, Institute for Excellence in Higher Education, Tohoku University, Miyagi, 980-8576, Japan.
| |
Collapse
|
27
|
León-Lara X, Fichtner AS, Willers M, Yang T, Schaper K, Riemann L, Schöning J, Harms A, Almeida V, Schimrock A, Janssen A, Ospina-Quintero L, von Kaisenberg C, Förster R, Eberl M, Richter MF, Pirr S, Viemann D, Ravens S. γδ T cell profiling in a cohort of preterm infants reveals elevated frequencies of CD83+ γδ T cells in sepsis. J Exp Med 2024; 221:e20231987. [PMID: 38753245 PMCID: PMC11098939 DOI: 10.1084/jem.20231987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 05/19/2024] Open
Abstract
Preterm infants are at high risk of developing neonatal sepsis. γδ T cells are thought to be an important set of effector cells in neonates. Here, γδ T cells were investigated in a longitudinal cohort of preterm neonates using next-generation sequencing, flow cytometry, and functional assays. During the first year of life, the Vγ9Vδ2 T cell subset showed dynamic phenotypic changes and elevated levels of fetal-derived Vγ9Vδ2 T cells were evident in infants with sepsis. Single-cell transcriptomics identified HLA-DRhiCD83+ γδ T cells in neonatal sepsis, which expressed genes related to antigen presentation. In vitro assays showed that CD83 was expressed on activated Vγ9Vδ2 T cells in preterm and term neonates, but not in adults. In contrast, activation of adult Vγ9Vδ2 T cells enhanced CD86 expression, which was presumably the key receptor to induce CD4 T cell proliferation. Together, we provide a map of the maturation of γδ T cells after preterm birth and highlight their phenotypic diversity in infections.
Collapse
MESH Headings
- Adult
- Female
- Humans
- Infant
- Infant, Newborn
- Male
- Antigens, CD/metabolism
- Antigens, CD/genetics
- CD83 Antigen
- Cohort Studies
- Infant, Premature/immunology
- Lymphocyte Activation/immunology
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Neonatal Sepsis/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Ximena León-Lara
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Maike Willers
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Tao Yang
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Lennart Riemann
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Jennifer Schöning
- Translational Pediatrics, Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Anna Harms
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Vicente Almeida
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Anja Schimrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Anika Janssen
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Constantin von Kaisenberg
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | | | - Sabine Pirr
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Translational Pediatrics, Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- PRIMAL (Priming IMmunity at the Beginning of Life) Consortium, Lübeck, Germany
- Center for Infection Research, University Würzburg, Würzburg, Germany
| | - Sarina Ravens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
28
|
Diddeniya G, Ghaffari MH, Hernandez-Sanabria E, Guan LL, Malmuthuge N. INVITED REVIEW: Impact of Maternal Health and Nutrition on the Microbiome and Immune Development of Neonatal Calves. J Dairy Sci 2024:S0022-0302(24)00869-5. [PMID: 38825126 DOI: 10.3168/jds.2024-24835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024]
Abstract
This comprehensive review highlights the intricate interplay between maternal factors and the co-development of the microbiome and immune system in neonatal calves. Based on human and mouse studies, multiple prenatal and postnatal factors influence this process by altering the host-associated microbiomes (gut, respiratory tract, skin), microbial colonization trajectories, and priming of the immune systems (mucosal and systemic). This review emphasizes the importance of early life exposure, highlighting postnatal factors that work in synergy with maternal factors in further finetuning the co-development of the neonatal microbiome and immunity. In cattle, there is a general lack of research to identify the maternal effect on the early colonization process of neonatal calves (gut, respiratory tract) and its impact on the priming of the immune system. Past studies have primarily investigated the maternal effects on the passive transfer of immunity at birth. The co-development process of the microbiome and immune system is vital for lifelong health and production in cattle. Therefore, comprehensive research beyond the traditional focus on passive immunity is an essential step in this endeavor. Calf microbiome research reports the colonization of diverse bacterial communities in newborns, which is affected by the colostrum feeding method immediately after birth. In contrast to human studies reporting a strong link between maternal and infant bacterial communities, there is a lack of evidence to clearly define cow-to-calf transmission in cattle. Maternal exposure has been shown to promote the colonization of beneficial bacteria in neonatal calves. Nonetheless, calf microbiome research lacks links to early development of the immune system. An in-depth understanding of the impact of maternal factors on microbiomes and immunity will improve the management of pregnant cows to raise immune-fit neonatal calves. It is essential to investigate the diverse effects of maternal health conditions and nutrition during pregnancy on the gut microbiome and immunity of neonatal calves through collaboration among researchers from diverse fields such as microbiology, immunology, nutrition, veterinary science, and epidemiology.
Collapse
Affiliation(s)
| | | | - Emma Hernandez-Sanabria
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, Leuven 3000, Belgium
| | - Le Luo Guan
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada
| | - Nilusha Malmuthuge
- Lethbridge Research and Development Center, Agriculture Agri-Food Canada, Lethbridge, Canada.
| |
Collapse
|
29
|
Montenegro C, Perdomo-Celis F, Franco MA. Update on Early-Life T Cells: Impact on Oral Rotavirus Vaccines. Viruses 2024; 16:818. [PMID: 38932111 PMCID: PMC11209100 DOI: 10.3390/v16060818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Rotavirus infection continues to be a significant public health problem in developing countries, despite the availability of several vaccines. The efficacy of oral rotavirus vaccines in young children may be affected by significant immunological differences between individuals in early life and adults. Therefore, understanding the dynamics of early-life systemic and mucosal immune responses and the factors that affect them is essential to improve the current rotavirus vaccines and develop the next generation of mucosal vaccines. This review focuses on the advances in T-cell development during early life in mice and humans, discussing how immune homeostasis and response to pathogens is established in this period compared to adults. Finally, the review explores how this knowledge of early-life T-cell immunity could be utilized to enhance current and novel rotavirus vaccines.
Collapse
Affiliation(s)
| | | | - Manuel A. Franco
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá 110221, Colombia; (C.M.); (F.P.-C.)
| |
Collapse
|
30
|
Zhao M, Liang X, Meng Y, Lu H, Lin K, Gong P, Liu T, Yi H, Pan J, Zhang Y, Zhang Z, Zhang L. Probiotics induce intestinal IgA secretion in weanling mice potentially through promoting intestinal APRIL expression and modulating the gut microbiota composition. Food Funct 2024; 15:4862-4873. [PMID: 38587236 DOI: 10.1039/d4fo00962b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Intestinal infections are strongly associated with infant mortality, and intestinal immunoglobulin A (IgA) is important to protect infants from intestinal infections after weaning. This study aims to screen probiotics that can promote the production of intestinal IgA after weaning and further explore their potential mechanisms of action. In this study, probiotics promoting intestinal IgA production were screened in weanling mouse models. The results showed that oral administration of Bifidobacterium bifidum (B. bifidum) FL228.1 and Bifidobacterium bifidum (B. bifidum) FL276.1 significantly enhanced IgA levels in the small intestine and upregulated the expression of a proliferation-inducing ligand (APRIL) and its upstream regulatory factor toll-like receptor 4 (TLR4). Furthermore, B. bifidum FL228.1 upregulated the relative abundance of Lactobacillus, while B. bifidum FL276.1 increased the relative abundance of Marvinbryantia and decreased Mucispirillum, further elevating intestinal IgA levels. In summary, B. bifidum FL228.1 and B. bifidum FL276.1 can induce IgA production in the intestinal tract of weanling mice by promoting intestinal APRIL expression and mediating changes in the gut microbiota, thus playing a significant role in enhancing local intestinal immunity in infants.
Collapse
Affiliation(s)
- Maozhen Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| | - Xi Liang
- College of Public Health, Qingdao University, Qingdao, 266000, China
| | - Yang Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| | - Haiyan Lu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| | - Kai Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| | - Tongjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| | - Jiancun Pan
- Heilongjiang Feihe Dairy Co., Ltd., Qiqihar, 161000, China
| | - Yongjiu Zhang
- Heilongjiang Feihe Dairy Co., Ltd., Qiqihar, 161000, China
| | - Zhe Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| |
Collapse
|
31
|
Rusconi B, Bard AK, McDonough R, Kindsvogel AM, Wang JD, Udayan S, McDonald KG, Newberry RD, Tarr PI. Intergenerational protective anti-gut commensal immunoglobulin G originates in early life. Proc Natl Acad Sci U S A 2024; 121:e2309994121. [PMID: 38517976 PMCID: PMC10990157 DOI: 10.1073/pnas.2309994121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/16/2024] [Indexed: 03/24/2024] Open
Abstract
Maternal immunoglobulins of the class G (IgGs) protect offspring from enteric infection, but when, where, and how these antibodies are physiologically generated and confer protection remains enigmatic. We found that circulating IgGs in adult mice preferentially bind early-life gut commensal bacteria over their own adult gut commensal bacteria. IgG-secreting plasma cells specific for early-life gut bacteria appear in the intestine soon after weaning, where they remain into adulthood. Manipulating exposure to gut bacteria or plasma cell development before, but not after, weaning reduced IgG-secreting plasma cells targeting early-life gut bacteria throughout life. Further, the development of this anti-gut commensal IgG response coincides with the early-life interval in which goblet cell-associated antigen passages (GAPs) are present in the colon. Offspring of dams "perturbed" by B cell ablation or reduced bacterial exposure in early life were more susceptible to enteric pathogen challenge. In contrast to current concepts, protective maternal IgGs targeted translocating gut commensals in the offspring, not the enteric pathogen. These early-life events affecting anti-commensal IgG production have intergenerational effects for protection of the offspring.
Collapse
Affiliation(s)
- Brigida Rusconi
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Adina K. Bard
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Ryan McDonough
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Angel M. Kindsvogel
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Jacqueline D. Wang
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Sreeram Udayan
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Keely G. McDonald
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Rodney D. Newberry
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Phillip I. Tarr
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine in St. Louis, St. Louis, MO63110
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| |
Collapse
|
32
|
Rekima A, van den Elsen L, Isnard C, Smyth DJ, Lynn MA, Yee T, Stevens NE, Machado S, Divakara N, Bhasin M, Tjiam MC, Rowel C, Servant F, Burcelin R, Locksley R, Maizels R, Lynn DJ, Egwang T, Verhasselt V. Colostrum is required for the postnatal ontogeny of small intestine innate lymphoid type 2 cells and successful anti-helminth defences. Allergy 2024. [PMID: 38348877 DOI: 10.1111/all.16054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Affiliation(s)
- Akila Rekima
- Larsson-Rosenquist Centre for Immunology and Breastfeeding, School of Medicine, The University of Western Australia, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Lieke van den Elsen
- Larsson-Rosenquist Centre for Immunology and Breastfeeding, School of Medicine, The University of Western Australia, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Nedlands, Western Australia, Australia
| | | | - Danielle J Smyth
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Miriam A Lynn
- The South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Tee Yee
- The South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Natalie E Stevens
- The South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Savannah Machado
- Larsson-Rosenquist Centre for Immunology and Breastfeeding, School of Medicine, The University of Western Australia, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Nivedithaa Divakara
- Larsson-Rosenquist Centre for Immunology and Breastfeeding, School of Medicine, The University of Western Australia, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Maheshwar Bhasin
- Larsson-Rosenquist Centre for Immunology and Breastfeeding, School of Medicine, The University of Western Australia, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - M Christian Tjiam
- Larsson-Rosenquist Centre for Immunology and Breastfeeding, School of Medicine, The University of Western Australia, Nedlands, Western Australia, Australia
- Centre for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Candia Rowel
- Vector Control Division, Ministry of Health, Kampala, Uganda
| | | | - Remy Burcelin
- Vaiomer SAS, Toulouse-Labège, France
- I2MC, INSERM 1297, Toulouse, France
| | - Richard Locksley
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Rick Maizels
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - David J Lynn
- The South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | | | - Valérie Verhasselt
- Larsson-Rosenquist Centre for Immunology and Breastfeeding, School of Medicine, The University of Western Australia, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Nedlands, Western Australia, Australia
| |
Collapse
|
33
|
Liu J, Joseph S, Manohar K, Lee J, Brokaw JP, Shelley WC, Markel TA. Role of innate T cells in necrotizing enterocolitis. Front Immunol 2024; 15:1357483. [PMID: 38390341 PMCID: PMC10881895 DOI: 10.3389/fimmu.2024.1357483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a destructive gastrointestinal disease primarily affecting preterm babies. Despite advancements in neonatal care, NEC remains a significant cause of morbidity and mortality in neonatal intensive care units worldwide and the etiology of NEC is still unclear. Risk factors for NEC include prematurity, very low birth weight, feeding with formula, intestinal dysbiosis and bacterial infection. A review of the literature would suggest that supplementation of prebiotics and probiotics prevents NEC by altering the immune responses. Innate T cells, a highly conserved subpopulation of T cells that responds quickly to stimulation, develops differently from conventional T cells in neonates. This review aims to provide a succinct overview of innate T cells in neonates, encompassing their phenotypic characteristics, functional roles, likely involvement in the pathogenesis of NEC, and potential therapeutic implications.
Collapse
Affiliation(s)
- Jianyun Liu
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sharon Joseph
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Krishna Manohar
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jasmine Lee
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - John P. Brokaw
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - W. Christopher Shelley
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN, United States
| | - Troy A. Markel
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN, United States
| |
Collapse
|
34
|
Flores JN, Lubin JB, Silverman MA. The case for microbial intervention at weaning. Gut Microbes 2024; 16:2414798. [PMID: 39468827 PMCID: PMC11540084 DOI: 10.1080/19490976.2024.2414798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024] Open
Abstract
Weaning, the transition from a milk-based diet to solid food, coincides with the most significant shift in gut microbiome composition in the lifetime of most mammals. Notably, this period also marks a "window of opportunity" where key components of the immune system develop, and host-microbe interactions shape long-term immune homeostasis thereby influencing the risk of autoimmune and inflammatory diseases. This review provides a comprehensive analysis of the changes in nutrition, microbiota, and host physiology that occur during weaning. We explore how these weaning-associated processes differ across species, lifestyles, and regions of the intestine. Using prinicples of microbial ecology, we propose that the weaning transition is an optimal period for microbiome-targeted therapeutic interventions. Additionally, we suggest that replicating features of the weaning microbiome in adults could promote the successful engraftment of probiotics. Finally, we highlight key research areas that could deepen our understanding of the complex relationships between diet, commensal microbes, and the host, informing the development of more effective microbial therapies.
Collapse
Affiliation(s)
- Julia N. Flores
- Division of Infectious Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean-Bernard Lubin
- Division of Infectious Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael A. Silverman
- Division of Infectious Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
35
|
Ren X, Wang L, Wang Z, Wang L, Kong Y, Guo Y, Sun L. Association between parental occupational exposure and the risk of asthma in offspring: A meta-analysis and systematic review. Medicine (Baltimore) 2023; 102:e36345. [PMID: 38050266 PMCID: PMC10695554 DOI: 10.1097/md.0000000000036345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Previous epidemiological studies have shown inconsistent results regarding the relation between the risk of asthma in offspring and parental occupational exposure. Therefore, we conducted a comprehensive and systematic collection of currently available epidemiological data to quantify the correlation between the 2. METHODS Related studies published before March 2023 were identified through searches of the Cochrane Library, Embase, PubMed, and Web of Science databases. The quality of included studies was assessed using the Newcastle-Ottawa Scale, while pooled odds ratios (ORs) with 95% confidence intervals (CIs) were computed using fixed-effect or random-effects models. RESULTS This systematic review included 10 cohort studies, with a total of 89,571 parent-child pairs included in the quantitative analysis. The results exhibited a substantial association between parental occupational exposure to allergens (OR = 1.11; 95% CI: 1.00, 1.23; P = .051) and irritants (OR = 1.19; 95% CI: 1.07, 1.32; P = .001) and an increased risk of asthma in offspring. This association was also observed in the analysis of wheezing (OR = 1.22; 95% CI: 1.11, 1.35; P < .001 and OR = 1.19; 95% CI: 1.08, 1.32; P = .001). Subgroup analysis demonstrated that maternal occupational exposure to allergens (OR = 1.07; 95% CI: 1.02, 1.12; P = .008) and irritants (OR = 1.13; 95% CI: 1.05, 1.21; P = .001) significantly increased the risk of childhood asthma. Furthermore, parental postnatal occupational exposure to allergens (OR = 1.26; 95% CI: 1.10, 1.46; P = .001) and irritants (OR = 1.26; 95% CI: 1.06, 1.49; P = .009) had a more pronounced impact on childhood asthma. Higher levels of exposure (OR = 1.26; 95% CI: 1.10, 1.46; P = .001 and OR = 1.30; 95% CI: 1.16, 1.47; P < .001) were recognized as significant risk factors for childhood asthma. CONCLUSION Parental occupational exposure to allergens and irritants increases the risk of asthma and wheezing in offspring, with maternal exposure, postnatal exposure, and high-dose exposure being the primary risk factors for childhood asthma.
Collapse
Affiliation(s)
- Xiaoting Ren
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lie Wang
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Zhongtian Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lei Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yibu Kong
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Yinan Guo
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Liping Sun
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun Jilin, China
| |
Collapse
|
36
|
Kemter AM, Patry RT, Arnold J, Hesser LA, Campbell E, Ionescu E, Mimee M, Wang S, Nagler CR. Commensal bacteria signal through TLR5 and AhR to improve barrier integrity and prevent allergic responses to food. Cell Rep 2023; 42:113153. [PMID: 37742185 PMCID: PMC10697505 DOI: 10.1016/j.celrep.2023.113153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023] Open
Abstract
The increasing prevalence of food allergies has been linked to reduced commensal microbial diversity. In this article, we describe two features of allergy-protective Clostridia that contribute to their beneficial effects. Some Clostridial taxa bear flagella (a ligand for TLR5) and produce indole (a ligand for the aryl hydrocarbon receptor [AhR]). Lysates and flagella from a Clostridia consortium induced interleukin-22 (IL-22) secretion from ileal explants. IL-22 production is abrogated in explants from mice in which TLR5 or MyD88 signaling is deficient either globally or conditionally in CD11c+ antigen-presenting cells. AhR signaling in RORγt+ cells is necessary for the induction of IL-22. Mice deficient in AhR in RORγt+ cells exhibit increased intestinal permeability and are more susceptible to an anaphylactic response to food. Our findings implicate TLR5 and AhR signaling in a molecular mechanism by which commensal Clostridia protect against allergic responses to food.
Collapse
Affiliation(s)
- Andrea M Kemter
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Robert T Patry
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Jack Arnold
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Lauren A Hesser
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Evelyn Campbell
- Committee on Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Edward Ionescu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Mark Mimee
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA; Committee on Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Shan Wang
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Cathryn R Nagler
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
37
|
Schill EM, Joyce EL, Floyd AN, Udayan S, Rusconi B, Gaddipati S, Barrios BE, John V, Kaye ME, Kulkarni DH, Pauta JT, McDonald KG, Newberry RD. Vancomycin-induced gut microbial dysbiosis alters enteric neuron-macrophage interactions during a critical period of postnatal development. Front Immunol 2023; 14:1268909. [PMID: 37901245 PMCID: PMC10602895 DOI: 10.3389/fimmu.2023.1268909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Vancomycin is a broad-spectrum antibiotic widely used in cases of suspected sepsis in premature neonates. While appropriate and potentially lifesaving in this setting, early-life antibiotic exposure alters the developing microbiome and is associated with an increased risk of deadly complications, including late-onset sepsis (LOS) and necrotizing enterocolitis (NEC). Recent studies show that neonatal vancomycin treatment disrupts postnatal enteric nervous system (ENS) development in mouse pups, which is in part dependent upon neuroimmune interactions. This suggests that early-life antibiotic exposure could disrupt these interactions in the neonatal gut. Notably, a subset of tissue-resident intestinal macrophages, muscularis macrophages, has been identified as important contributors to the development of postnatal ENS. We hypothesized that vancomycin-induced neonatal dysbiosis impacts postnatal ENS development through its effects on macrophages. Using a mouse model, we found that exposure to vancomycin in the first 10 days of life, but not in adult mice, resulted in an expansion of pro-inflammatory colonic macrophages by increasing the recruitment of bone-marrow-derived macrophages. Single-cell RNA sequencing of neonatal colonic macrophages revealed that early-life vancomycin exposure was associated with an increase in immature and inflammatory macrophages, consistent with an influx of circulating monocytes differentiating into macrophages. Lineage tracing confirmed that vancomycin significantly increased the non-yolk-sac-derived macrophage population. Consistent with these results, early-life vancomycin exposure did not expand the colonic macrophage population nor decrease enteric neuron density in CCR2-deficient mice. Collectively, these findings demonstrate that early-life vancomycin exposure alters macrophage number and phenotypes in distinct ways compared with vancomycin exposure in adult mice and results in altered ENS development.
Collapse
Affiliation(s)
- Ellen Merrick Schill
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Elisabeth L. Joyce
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Alexandria N. Floyd
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Sreeram Udayan
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Brigida Rusconi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Shreya Gaddipati
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Bibiana E. Barrios
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Vini John
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Mitchell E. Kaye
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Devesha H. Kulkarni
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Jocelyn T. Pauta
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Keely G. McDonald
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Rodney D. Newberry
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
38
|
Connors TJ, Matsumoto R, Verma S, Szabo PA, Guyer R, Gray J, Wang Z, Thapa P, Dogra P, Poon MML, Rybkina K, Bradley MC, Idzikowski E, McNichols J, Kubota M, Pethe K, Shen Y, Atkinson MA, Brusko M, Brusko TM, Yates AJ, Sims PA, Farber DL. Site-specific development and progressive maturation of human tissue-resident memory T cells over infancy and childhood. Immunity 2023; 56:1894-1909.e5. [PMID: 37421943 PMCID: PMC10527943 DOI: 10.1016/j.immuni.2023.06.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/23/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023]
Abstract
Infancy and childhood are critical life stages for generating immune memory to protect against pathogens; however, the timing, location, and pathways for memory development in humans remain elusive. Here, we investigated T cells in mucosal sites, lymphoid tissues, and blood from 96 pediatric donors aged 0-10 years using phenotypic, functional, and transcriptomic profiling. Our results revealed that memory T cells preferentially localized in the intestines and lungs during infancy and accumulated more rapidly in mucosal sites compared with blood and lymphoid organs, consistent with site-specific antigen exposure. Early life mucosal memory T cells exhibit distinct functional capacities and stem-like transcriptional profiles. In later childhood, they progressively adopt proinflammatory functions and tissue-resident signatures, coincident with increased T cell receptor (TCR) clonal expansion in mucosal and lymphoid sites. Together, our findings identify staged development of memory T cells targeted to tissues during the formative years, informing how we might promote and monitor immunity in children.
Collapse
Affiliation(s)
- Thomas J Connors
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Rei Matsumoto
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shivali Verma
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A Szabo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rebecca Guyer
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Joshua Gray
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Zicheng Wang
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Puspa Thapa
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Pranay Dogra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Maya M L Poon
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ksenia Rybkina
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Marissa C Bradley
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Emma Idzikowski
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - James McNichols
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Masaru Kubota
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kalpana Pethe
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Maigan Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Andrew J Yates
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
39
|
Pucca MB, Villena J, de Oliveira GLV. Editorial: Dietary habits, microbiota and autoimmune diseases. Front Nutr 2023; 10:1233863. [PMID: 37426185 PMCID: PMC10327567 DOI: 10.3389/fnut.2023.1233863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Affiliation(s)
- Manuela Berto Pucca
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-National Council of Scientific and Technological Research), San Miguel de Tucumán, Argentina
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Gislane Lelis Vilela de Oliveira
- Microbiology Program, Department of Food Science and Technology, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto, Brazil
- Laboratory of Immunomodulation and Microbiota, Department of Chemical and Biological Sciences, Institute of Biosciences (IBB), São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
40
|
Molofsky AB, Locksley RM. The ins and outs of innate and adaptive type 2 immunity. Immunity 2023; 56:704-722. [PMID: 37044061 PMCID: PMC10120575 DOI: 10.1016/j.immuni.2023.03.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023]
Abstract
Type 2 immunity is orchestrated by a canonical group of cytokines primarily produced by innate lymphoid cells, group 2, and their adaptive counterparts, CD4+ helper type 2 cells, and elaborated by myeloid cells and antibodies that accumulate in response. Here, we review the cytokine and cellular circuits that mediate type 2 immunity. Building from insights in cytokine evolution, we propose that innate type 2 immunity evolved to monitor the status of microbe-rich epithelial barriers (outside) and sterile parenchymal borders (inside) to meet the functional demands of local tissue, and, when necessary, to relay information to the adaptive immune system to reinforce demarcating borders to sustain these efforts. Allergic pathology likely results from deviations in local sustaining units caused by alterations imposed by environmental effects during postnatal developmental windows and exacerbated by mutations that increase vulnerabilities. This framework positions T2 immunity as central to sustaining tissue repair and regeneration and provides a context toward understanding allergic disease.
Collapse
Affiliation(s)
- Ari B Molofsky
- Department of Lab Medicine, University of California, San Francisco, San Francisco, CA 94143-0451, USA
| | - Richard M Locksley
- Howard Hughes Medical Institute and Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0795, USA.
| |
Collapse
|