1
|
Morse SV, Rimer S, Geoghegan G, Shah M, Chan N, Yalcin C, Pereira MA, Rohfleisch L, Nkontchou N, Winiarski S, Ee J, Maitra A, Chan TG, Sastre M, Choi JJ. Biological effects of rapid short pulses of focused ultrasound for drug delivery to the brain. J Control Release 2025; 382:113646. [PMID: 40127724 DOI: 10.1016/j.jconrel.2025.113646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/28/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025]
Abstract
Focused ultrasound in combination with intravenously injected microbubbles offers a non-invasive and localised method to deliver drugs across the blood-brain barrier, enabling targeted treatment of brain disorders. Recently, we have shown that applying sequences of Rapid Short-Pulses (RaSP; 5 μs pulses emitted at 1.25 kHz grouped into 10 ms bursts) of ultrasound can deliver drugs with an improved efficacy and safety profile compared with traditionally-used longer pulses (> 10 ms). In this study, we examined the extent to which RaSP sequences allowed the extravasation of endogenous blood proteins, including albumin and immunoglobulin, as well as T cells, into the brain parenchyma. We also investigated the effect of RaSP ultrasound treatments on synaptic connectivity, and the distribution and excretion of fluorescently-labelled 3 kDa dextran delivered to the brain with RaSP. The left hippocampus of mice was sonicated with either a RaSP sequence (5 μs at 1.25 kHz in groups of 10 ms at 0.5 Hz) or a long pulse sequence (10 ms at 0.5 Hz), at 0.35, 0.53 and 0.71 MPa with a 1-MHz center frequency. Significantly less albumin was detected in RaSP-treated brains immediately after treatment and was cleared within 10 min compared to those treated with long pulses, while immunoglobulin was hardly detected in RaSP-treated brains at 0, 10 or 20 min after treatment. No T cells were detected in RaSP-treated brains at 0.35, 0.53 or 0.71 MPa after 0 or 2 h. In long pulse samples, however, T cells did extravasate when using the two higher acoustic pressures, 0.53 and 0.71 MPa, immediately after treatment. Quantification of dendritic spine area revealed no differences between RaSP-treated hippocampi compared to untreated contralateral hippocampi and control mice following three weekly ultrasound treatments. Finally, fluorescently-labelled dextran increasingly moved towards blood vessels and away from the parenchyma once delivered to the brain with both RaSP and long pulse sequences. Uptake of dextran within cells decreased over time with both sequences, and long pulses lead to a larger number of vessels with dextran uptake. This study highlights that RaSP ultrasound sequences can deliver molecules across the blood-brain barrier with minimal extravasation of endogenous proteins and no T cell infiltration, while preserving dendritic spine integrity, thus offering an improved safety profile.
Collapse
Affiliation(s)
- Sophie V Morse
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK; UK Dementia Research Institute at Imperial College London, UK.
| | - Sarah Rimer
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Grainne Geoghegan
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK; Department of Brain Sciences, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Manaal Shah
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK; UK Dementia Research Institute at Imperial College London, UK
| | - Nicholas Chan
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Ceren Yalcin
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Maria Afonso Pereira
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Lucia Rohfleisch
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Neema Nkontchou
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Samuel Winiarski
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Jamie Ee
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Aurna Maitra
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Tiffany G Chan
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - James J Choi
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| |
Collapse
|
2
|
Faust Akl C, Andersen BM, Li Z, Giovannoni F, Diebold M, Sanmarco LM, Kilian M, Fehrenbacher L, Pernin F, Rone JM, Lee HG, Piester G, Kenison JE, Lee JH, Illouz T, Polonio CM, Srun L, Martinez J, Chung EN, Schüle A, Plasencia A, Li L, Ferrara K, Lewandrowski M, Strathdee CA, Lerner L, Quéva C, Clark IC, Deneen B, Lieberman J, Sherr DH, Antel JP, Wheeler MA, Ligon KL, Chiocca EA, Prinz M, Reardon DA, Quintana FJ. Glioblastoma-instructed astrocytes suppress tumour-specific T cell immunity. Nature 2025:10.1038/s41586-025-08997-x. [PMID: 40399681 DOI: 10.1038/s41586-025-08997-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/09/2025] [Indexed: 05/23/2025]
Abstract
Glioblastoma is the most common and aggressive primary brain cancer and shows minimal response to therapies. The immunosuppressive tumour microenvironment in glioblastoma contributes to the limited therapeutic response. Astrocytes are abundant in the central nervous system and have important immunoregulatory roles. However, little is known about their role in the immune response to glioblastoma1. Here we used single-cell and bulk RNA sequencing of clinical glioblastoma samples and samples from preclinical models, multiplexed immunofluorescence, in vivo CRISPR-based cell-specific genetic perturbations and in vitro mouse and human experimental systems to address this gap in knowledge. We identified an astrocyte subset that limits tumour immunity by inducing T cell apoptosis through the death receptor ligand TRAIL. Moreover, we identified that IL-11 produced by tumour cells is a driver of STAT3-dependent TRAIL expression in astrocytes. Astrocyte signalling through STAT3 and TRAIL expression were associated with a shorter time to recurrence and overall decreased survival in patients with glioblastoma. Genetic inactivation of the IL-11 receptor or TRAIL in astrocytes extended survival in mouse models of glioblastoma and enhanced T cell and macrophage responses. Finally, treatment with an oncolytic HSV-1 virus engineered to express a TRAIL-blocking single-chain antibody in the tumour microenvironment extended survival and enhanced tumour-specific immunity in preclinical models of glioblastoma. In summary, we establish that IL-11-STAT3-driven astrocytes suppress glioblastoma-specific protective immunity by inducing TRAIL-dependent T cell apoptosis, and engineered therapeutic viruses can be used to target this mechanism of astrocyte-driven tumour immunoevasion.
Collapse
Affiliation(s)
- Camilo Faust Akl
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Brian M Andersen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Veterans Affairs Medical Center, Harvard Medical School, Boston, MA, USA
| | - Zhaorong Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Federico Giovannoni
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martin Diebold
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Liliana M Sanmarco
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Kilian
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Luca Fehrenbacher
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Florian Pernin
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Joseph M Rone
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hong-Gyun Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gavin Piester
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica E Kenison
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joon-Hyuk Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tomer Illouz
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carolina M Polonio
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Léna Srun
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jazmin Martinez
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth N Chung
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anton Schüle
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Agustin Plasencia
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lucinda Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kylynne Ferrara
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mercedes Lewandrowski
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Iain C Clark
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin Deneen
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - David H Sherr
- Department of Pathology, Boston University School of Medicine, Boston, MA, USA
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- The Gene Lay Institute of Immunology and Inflammation, Harvard Medical School, Boston, MA, USA
| | - Keith L Ligon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- The Gene Lay Institute of Immunology and Inflammation, Harvard Medical School, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
3
|
Wu Z, Shan Q, Jiang Y, Huang W, Wang Z, Zhuang Y, Liu J, Li T, Yang Z, Li C, Wei T, Wen C, Cui W, Qiu Z, Liu X, Wang Z. Irreversible electroporation combined with PD-L1/IL-6 dual blockade promotes anti-tumor immunity via cDC2/CD4 +T cell axis in MHC-I deficient pancreatic cancer. Cancer Lett 2025; 617:217620. [PMID: 40068706 DOI: 10.1016/j.canlet.2025.217620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/15/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a "cold" solid tumor with frequent Major Histocompatibility Complex I (MHC-I) deficiency, thereby making it resistant to type-1-conventional dendritic cell (cDC1)-CD8+T cell mediated anti-tumor immunity. Current studies have demonstrated the emerging compensatory role of MHC-II-mediated antigen presentation and CD4+T cell activation in anti-tumor immunity against MHC-I-deficient tumors. However, the underlying mechanism of the compensatory immune response by CD4+T cells in cancer ablation therapy remains to be elucidate. In clinical samples and murine models, we observed that irreversible electroporation (IRE) ablation therapy promoted immune infiltration and the conversion of CD4+T cells into anti-tumor IFN-γ+Th1 cells and Th17 cells in MHC-I low-expressed PDAC using scRNA-seq and flow-cytometry analyses. Furthermore, we found that PD-L1 blockade predominantly enhanced the activation of CD11b+CD103-type-2 conventional dendritic cells (cDC2s) and their antigen presentation to CD4+T cells after ablation, stimulating the anti-tumor immune response through the tumor antigen-specific IFN-γ+Th1-NK cell axis. Elevated plasma levels of IL-6 in pancreatic cancer patients receiving ablation therapy are significant indicators for impaired prognosis. IL-6 and PD-L1 dual blockade could significantly augment the ratio of IFN-γ+Th1 in CD4+T cells to boost the anti-tumor immunity of NK cells, leading to prolonged survival of mouse bearing pancreatic cancer. Collectively, we have elucidated that PD-L1 blockade activates the cDC2-CD4+T cell axis after IRE therapy, thereby playing a pivotal compensatory anti-tumor role in MHC-I low-expressed pancreatic cancer. Moreover, a combination strategy involving dual-target blockade of PD-L1/IL-6 along with ablation therapy could emerge as a novel therapeutic approach for MHC-I deficient tumors.
Collapse
Affiliation(s)
- Zhuozhuo Wu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Qungang Shan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Yuyue Jiang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Wei Huang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Ziyin Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Yaping Zhuang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Jingjing Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Tiankuan Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Ziyu Yang
- Faculty of Medical Imaging Technology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Chaojie Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, Shanghai, 200025, China; Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, No.149, South Chongqing Road, Shanghai, 200025, China
| | - Tao Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, China
| | - Chenlei Wen
- Department of Pancreatic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Zilong Qiu
- Songjiang Research Institute, Institute of Autism & MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China, No.748, Middle Zhongshan Road, Shanghai, 200025, China
| | - Xiaoyu Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, Shanghai, 200025, China; Faculty of Medical Imaging Technology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Zhongmin Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, Shanghai, 200025, China; Faculty of Medical Imaging Technology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, Shanghai, 200025, China; Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, No.149, South Chongqing Road, Shanghai, 200025, China
| |
Collapse
|
4
|
Mc Neil V, Lee SW. Advancing Cancer Treatment: A Review of Immune Checkpoint Inhibitors and Combination Strategies. Cancers (Basel) 2025; 17:1408. [PMID: 40361336 PMCID: PMC12071127 DOI: 10.3390/cancers17091408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
A groundbreaking milestone in oncology has been the recognition and targeted elimination of malignant cells through cancer immunotherapy, which harnesses the body's immune system to attack cancer [...].
Collapse
Affiliation(s)
- Valencia Mc Neil
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea;
| | - Seung Won Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea;
- Department of Artificial Intelligence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Metabiohealth, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Personalized Cancer Immunotherapy Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Shi K, Zhao Y, Ye H, Zhu X, Chen Z. Targeting DKK3 to remodel tumor immune microenvironment and enhance cancer immunotherapy. BMC Cancer 2025; 25:645. [PMID: 40205566 PMCID: PMC11984186 DOI: 10.1186/s12885-025-14075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 04/02/2025] [Indexed: 04/11/2025] Open
Abstract
Cancer immunotherapy such as immune checkpoint blockade (ICB) therapy has made important breakthroughs in cancer treatment, however, currently only parts of cancer patients benefit from ICB therapy. The suppressive tumor immune microenvironment (TIME) impedes the treatment response of immunotherapy, indicating the necessity to explore new treatment targets. Here, we reported a new potential immunotherapeutic target, Dickkopf-3 (DKK3), for cancer treatment. DKK3 expression is up-regulated in the tumors from multiple cancer types, and high DKK3 expression is associated with worse survival outcome across different cancers. We observed that DKK3 directly inhibits the activation of CD8+ T cells and the Th1 differentiation of CD4+ T cells ex vivo. Also, by establishing four different mouse cancer models, we found that DKK3 blockade triggers effective anti-tumor effects and improve the survival of tumor-bearing mice in vivo. DKK3 blockade also remodels the suppressive TIME of different cancer types, including the increased infiltration of CD8+ T cells, IFN-γ+CD8+ T cells, Th1 cells, and decreased infiltration of M2 macrophages and MDSCs in the TIME. Moreover, we found that combined blockade of DKK3 and PD-1 induces synergistic tumor-control effect in our mouse cancer model. Therefore, our study reveals the impact of DKK3 in the TIME and cancer progression, which suggests that DKK3 is a novel and promising immunotherapeutic target for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Kai Shi
- Department of Thoracic Surgery, Huai'an Hospital of Huai'an City & Huai'an Cancer Hospital & The Affiliated Huai'an Hospital of Jiangsu College of Nursing, Huai'an, Jiangsu Province, China
| | - Yan Zhao
- Department of Thoracic Surgery, Huai'an Hospital of Huai'an City & Huai'an Cancer Hospital & The Affiliated Huai'an Hospital of Jiangsu College of Nursing, Huai'an, Jiangsu Province, China
| | - Hao Ye
- Department of Thoracic Surgery, Huai'an Hospital of Huai'an City & Huai'an Cancer Hospital & The Affiliated Huai'an Hospital of Jiangsu College of Nursing, Huai'an, Jiangsu Province, China
| | - Xiaoming Zhu
- Department of Thoracic Surgery, Huai'an Hospital of Huai'an City & Huai'an Cancer Hospital & The Affiliated Huai'an Hospital of Jiangsu College of Nursing, Huai'an, Jiangsu Province, China
| | - Zhenghai Chen
- Department of Thoracic Surgery, Huai'an Hospital of Huai'an City & Huai'an Cancer Hospital & The Affiliated Huai'an Hospital of Jiangsu College of Nursing, Huai'an, Jiangsu Province, China.
| |
Collapse
|
6
|
Fang J, Chen H, Hamal K, Liu D. CD86 immunohistochemical staining for the detection of Talaromyces marneffei in lesions. Microbiol Spectr 2025; 13:e0206324. [PMID: 39992148 PMCID: PMC11960086 DOI: 10.1128/spectrum.02063-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/13/2025] [Indexed: 02/25/2025] Open
Abstract
Talaromycosis is an invasive fungal disease caused by the pathogenic thermodimorphic fungus Talaromyces marneffei (TM), which is often overlooked in tropical and subtropical regions of Asia. In view of the diversity of clinical manifestations in patients with TM infection, early diagnosis remains challenging. We assessed the sensitivity and specificity of a novel immunohistochemical staining by performing CD86 immunohistochemical staining on 56 tissue sections from patients with talaromycosis who had fungal culture or metagenomic next-generation sequencing confirmed to exist in clinical specimens, as well as 26 patients with other fungi that had been culture-proven. Hematoxylin and eosin and periodic acid Schiff (PAS) stains were also applied to each specimen. We found that anti-CD86 antibody can label TM pathogens in 38 HIV-negative specimens (38/42) and 14 HIV-positive specimens (14/14); conversely, PAS staining yielded positive results in seven cases of HIV-negative specimens (7/42) and 13 cases of HIV-positive specimens (13/14). Additionally, CD86 immunohistochemical staining was negative in other fungi. Importantly, CD86 immunohistochemical staining significantly outperformed PAS staining in terms of localizing and highlighting TM yeasts, as well as demonstrating the specificity of 100% and a significantly higher sensitivity compared to PAS staining at 92.9% versus 35.7% (P < 0.05, McNemar test). Our findings suggest that CD86 immunohistochemical staining has the potential for the rapid diagnosis of talaromycosis.IMPORTANCETalaromycosis is an opportunistic endemic disease without typical clinical manifestations that has emerged as a fungal disease impacting the survival and mortality of immunocompromised individuals and HIV-positive individuals in endemic regions. Nonetheless, talaromycosis is completely curable if it is accurately diagnosed and treated effectively at an early stage. Rapid pathological diagnosis relies on the unique morphological features of Talaromyces marneffei observed under the microscope. This study introduces a novel pathological diagnostic approach, CD86 immunohistochemical staining, to enhance the early detection of TM-infected lesions.
Collapse
Affiliation(s)
- Jinling Fang
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huiyuan Chen
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Krishna Hamal
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Donghua Liu
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
Takahashi M, Mukhamejanova D, Jasewicz H, Acharya N, Moon JJ, Hara T. Opportunities to Modulate Tumor Ecosystem Toward Successful Glioblastoma Immunotherapy. Cancer Sci 2025. [PMID: 40123277 DOI: 10.1111/cas.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025] Open
Abstract
Over the past decade, the failure of multiple clinical trials has confirmed the need for a systematic and comprehensive understanding of glioblastoma (GBM). Current immunotherapies aiming to harness the immune system to achieve anti-tumor effects remain largely ineffective, highlighting the complexities of the GBM microenvironment. However, our recent understanding of immune niches within the central nervous system provides both opportunities and challenges in translating these insights into successful immunotherapy implementation. We discuss these strategies, including targeting multiple antigens within the heterogeneous GBM microenvironment, identifying new druggable targets to abrogate immunosuppression, and understanding niche-specific immune cell functionality to modulate tumor-immune-stroma interactions.
Collapse
Affiliation(s)
- Mariko Takahashi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Darina Mukhamejanova
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurosurgery, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biology, Nazarbayev University, Astana, Kazakhstan
| | - Himani Jasewicz
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Nandini Acharya
- Pelotonia Institute for Immuno-Oncology, OSUCCC-James, The Ohio State University, Columbus, Ohio, USA
- Department of Neurology, the Neuroscience Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Toshiro Hara
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurosurgery, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
He W, Chen R, Chen G, Zhang L, Qian Y, Zhou J, Peng J, Wong VKW, Jiang Y. Identification and Validation of Prognostic Genes Related to Histone Lactylation Modification in Glioblastoma: An Integrated Analysis of Transcriptome and Single-cell RNA Sequencing. J Cancer 2025; 16:2145-2166. [PMID: 40302809 PMCID: PMC12036088 DOI: 10.7150/jca.110646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/05/2025] [Indexed: 05/02/2025] Open
Abstract
Background: The impact of histone lactylation modification (HLM) on glioblastoma (GBM) progression is not well understood. This study aimed to identify HLM-associated prognostic genes in GBM and explore their mechanisms of action. Methods: The presence and role of lactylation in glioma clinical tissue samples and its correlation with GBM progression were analysed through immunohistochemical staining and Western blotting. Sequencing data for GBM were obtained from publicly available databases. An initial correlation analysis was performed between global HLM levels and GBM. Differentially expressed HLM-related genes (HLMRGs) in GBM were identified by intersecting differentially expressed genes (DEGs) from the TCGA-GBM dataset, key module genes derived from weighted gene coexpression network analysis (WGCNA), and previously reported HLMRGs. Prognostic genes were subsequently identified through univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses, which formed the basis for constructing a risk prediction model. Associations between HLMRGs and GBM were further evaluated via single-cell RNA sequencing (scRNA-seq) datasets. Complementary analyses, including functional enrichment, immune infiltration, somatic mutation, and nomogram-based survival prediction, were conducted alongside in vitro experiments. Additionally, drug sensitivity and Chinese medicine prediction analyses were performed to identify potential therapeutic agents for GBM. Results: We detected a significant increase in global lactylation levels in GBM, which correlated with patient survival. We identified 227 differentially expressed HLMRGs from the intersection of 3,343 differentially expressed genes and 948 key module genes, indicating strong prognostic potential. Notably, genes such as SNCAIP, TMEM100, NLRP11, HOXC11, and HOXD10 were highly expressed in GBM. Functional analysis suggested that HLMRGs are involved primarily in pathways related to cytokine‒cytokine receptor interactions, cell cycle regulation, and cellular interactions, including microglial differentiation states. Further connections were established between HLMRGs and infiltrating immune cells, particularly type 1 T helper (Th1) cells, as well as mutations in genes such as PTEN. The potential therapeutic agents identified included ATRA and Can Sha. Conclusion: The HLM-related gene risk prediction model shows substantial promise for improving patient management in GBM, providing crucial insights for clinical prognostic evaluations and immunotherapeutic approaches in GBM.
Collapse
Affiliation(s)
- Wenfeng He
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery & State Key Laboratory of Quality Research in Chinese Medicine & Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ruihong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Songshan Lake Innovation Center of Medicine & Engineering, Guangdong Medical University, Dongguan, China
| | - Guangliang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lihan Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhang Qian
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jie Zhou
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery & State Key Laboratory of Quality Research in Chinese Medicine & Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yong Jiang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Espinoza FI, Tankov S, Chliate S, Pereira Couto J, Marinari E, Vermeil T, Lecoultre M, El Harane N, Dutoit V, Migliorini D, Walker PR. Targeting HIF-2α in glioblastoma reshapes the immune infiltrate and enhances response to immune checkpoint blockade. Cell Mol Life Sci 2025; 82:119. [PMID: 40095115 PMCID: PMC11914682 DOI: 10.1007/s00018-025-05642-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/31/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
Glioblastoma (GBM) is an aggressive primary brain tumor with dismal clinical prognosis and resistance to current therapies. GBM progression is facilitated by the tumor microenvironment (TME), with an immune infiltrate dominated by tumor-associated microglia/macrophages (TAMs) and regulatory T cells (Tregs). The TME is also characterized by hypoxia and the expression of hypoxia-inducible factors (HIFs), with HIF-2α emerging as a potential regulator of tumor progression. However, its role in GBM immunosuppression remains unknown. Here, we investigate HIF-2α and the use of the HIF-2α inhibitor PT2385 to modulate the TME in the immunocompetent GL261 mouse GBM model. PT2385 administration in vivo decreased tumor volume and prolonged survival of tumor-bearing mice, without affecting GL261 viability in vitro. Notably, HIF-2α inhibition alleviated the immunosuppressive TME and synergized with immune checkpoint blockade (ICB) using αPD-1 and αTIM-3 antibodies to promote long-term survival. Comprehensive analysis of the immune infiltrate through single-cell RNA sequencing and flow cytometry revealed that combining PT2385 with ICB reduced numbers of pro-tumoral macrophages and Tregs while increasing numbers of microglia, with a corresponding transcriptional modulation towards an anti-tumoral profile of these TAMs. In vitro, deletion of HIF-2α in microglia impeded their polarization towards a pro-tumoral M2-like profile, and its inhibition impaired Treg migration. Our results show that targeting HIF-2α can switch an immunosuppressive TME towards one that favors a robust and sustained response to ICB based immunotherapy. These findings establish that clinically relevant HIF-2α inhibitors should be explored not only in malignancies with defects in the HIF-2α axis, but also in those exhibiting an immunosuppressive TME that limits immunotherapy responsiveness.
Collapse
Affiliation(s)
- Felipe I Espinoza
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
| | - Stoyan Tankov
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
| | - Sylvie Chliate
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
| | - Joana Pereira Couto
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
| | - Eliana Marinari
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Thibaud Vermeil
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
| | - Marc Lecoultre
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
| | - Nadia El Harane
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
| | - Valérie Dutoit
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Denis Migliorini
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Paul R Walker
- Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland.
| |
Collapse
|
10
|
Rodriguez-Baena FJ, Marquez-Galera A, Ballesteros-Martinez P, Castillo A, Diaz E, Moreno-Bueno G, Lopez-Atalaya JP, Sanchez-Laorden B. Microglial reprogramming enhances antitumor immunity and immunotherapy response in melanoma brain metastases. Cancer Cell 2025; 43:413-427.e9. [PMID: 39919736 DOI: 10.1016/j.ccell.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/04/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025]
Abstract
Melanoma is one of the tumor types with the highest risk of brain metastasis. However, the biology of melanoma brain metastasis and the role of the brain immune microenvironment in treatment responses are not yet fully understood. Using preclinical models and single-cell transcriptomics, we have identified a mechanism that enhances antitumor immunity in melanoma brain metastasis. We show that activation of the Rela/Nuclear Factor κB (NF-κB) pathway in microglia promotes melanoma brain metastasis. Targeting this pathway elicits microglia reprogramming toward a proinflammatory phenotype, which enhances antitumor immunity and reduces brain metastatic burden. Furthermore, we found that proinflammatory microglial markers in melanoma brain metastasis are associated with improved responses to immune checkpoint inhibitors in patients and targeting Rela/NF-κB pathway in mice improves responses to these therapies in the brain, suggesting a strategy to enhance antitumor immunity and responses to immune checkpoint inhibitors in patients with melanoma brain metastasis.
Collapse
Affiliation(s)
| | | | | | - Alba Castillo
- Instituto de Neurociencias (CSIC-UMH), San Juan de Alicante, Spain
| | - Eva Diaz
- MD Anderson Cancer Center International Foundation, Madrid, Spain
| | - Gema Moreno-Bueno
- MD Anderson Cancer Center International Foundation, Madrid, Spain; Instituto de Investigaciones Biomédicas "Sols-Morreale" CSIC-UAM, Madrid, Spain; CIBERONC Centro de Investigación Biomédica en Red de Cancer, ISCIII, Madrid, Spain; Translational Cancer Research Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | | |
Collapse
|
11
|
Lunavat TR, Nieland L, van de Looij SM, de Reus AJEM, Couturier CP, Farran CAE, Miller TE, Lill JK, Schübel M, Xiao T, Ianni ED, Woods EC, Sun Y, Rufino-Ramos D, van Solinge TS, Mahjoum S, Grandell E, Li M, Mangena V, Dunn GP, Jenkins RW, Mempel TR, Breakefield XO, Breyne K. Intratumoral gene delivery of 4-1BBL boosts IL-12-triggered anti-glioblastoma immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636330. [PMID: 39975249 PMCID: PMC11838556 DOI: 10.1101/2025.02.03.636330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The standard of care in high-grade gliomas has remained unchanged in the past 20 years. Efforts to replicate effective immunotherapies in non-cranial tumors have led to only modest therapeutical improvements in glioblastoma (GB). Here, we demonstrate that intratumoral administration of recombinant interleukin-12 (rIL-12) promotes local cytotoxic CD8 POS T cell accumulation and conversion into an effector-like state, resulting in a dose-dependent survival benefit in preclinical GB mouse models. This tumor-reactive CD8 T cell response is further supported by intratumoral rIL-12-sensing dendritic cells (DCs) and is accompanied by the co-stimulatory receptor 4-1BB expression on both cell types. Given that DCs and CD8 POS T cells are functionally suppressed in the tumor microenvironments of de novo and recurrent glioma patients, we tested whether anti-tumor response at the rIL-12-inflamed tumor site could be enhanced with 4-1BBL, the ligand of 4-1BB. 4-1BBL was delivered using an adeno-associated virus (AAV) vector targeting GFAP-expressing cells and resulted in prolonged survival of rIL-12 treated GB-bearing mice. This study establishes that tumor antigen-specific CD8 T cell activity can be directed using an AAV-vector-mediated gene therapy approach, effectively enhancing anti-GB immunity.
Collapse
|
12
|
Mathew D, Ohri N, Ngiow SF, Halmos B, Wumesh KC, Garg M, Levsky JM, Cheng H, Gucalp RA, Bodner WR, Kabarriti R, Gutierrez-Chavez C, Zakharia A, Kalnicki S, Keler T, Yellin M, Minn AJ, Maity A, Giles JR, Guha C, Wherry EJ. Revitalizing systemic immune responses in advanced NSCLC using FLT3L and SBRT. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.29.25321332. [PMID: 39974012 PMCID: PMC11838671 DOI: 10.1101/2025.01.29.25321332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer mortality worldwide. For patients who develop progressive disease after treatment with chemotherapy and immunotherapy, treatment options are limited. Here, we report the results of a Phase II clinical trial where twenty-nine patients with advanced, previously treated NSCLC were treated with stereotactic body radiotherapy (SBRT) targeting a single site of disease along with CDX-301, a recombinant human Fms-like tyrosine kinase 3 ligand (FLT3L). The primary study endpoint was progression-free survival four months after study entry (PFS4), which was achieved for 14 patients (48%). Abscopal responses were observed on fludeoxyglucose-18 positron emission tomography (FDG-PET) in nine patients (31%). The median overall survival for all participants was 18 months, with a median overall survival for participants with abscopal response of 31 months. To identify underlying immune signatures of response, we developed a high dimensional flow cytometric approach that quantified 31 distinct cell subsets from peripheral blood, and performed multiplex proteomic analysis of 92 proteins from plasma. SBRT combined with CDX-301 significantly increased circulating myeloid cells, including monocytes, myeloid derived suppressor cells (MDSCs) and dendritic cells (DCs). Among DCs, FceR1-expressing DC2 and DC3 subsets changed most robustly upon treatment. These dynamic changes in DCs and MDSCs following initiation of SBRT and CDX-301 returned to baseline by 8 weeks. However, these changes were also associated with treatment-induced T cell activation with quantitatively robust activation of CD4 T cells. Abscopal responses were associated with a prolonged increase in DC1 cells, Th1-like CD4 T cells, circulating IL-12 and FLT3L. Integrated analysis of multiple types of immune parameters revealed a strong association between coordinated DC induction, CD4 T cell and CD8 T cell activation, and inflammatory cytokine activity in patients with abscopal responses, compared to a stark lack of immune coordination in patients without abscopal responses. These coordinated immune responses were sustained for over 4 weeks in responders, highlighting a potential therapeutic axis engaged in a systemic immune response against multiple lesions in NSCLC. Overall, these findings underscore the potential of combining in situ vaccination, using SBRT, with strategies to enhance the activation of innate immune cells, such as DCs through FLT3L, to potentiate robust anti-tumor T cell responses.
Collapse
|
13
|
Grimes JM, Ghosh S, Manzoor S, Li LX, Moran MM, Clements JC, Alexander SD, Markert JM, Leavenworth JW. Oncolytic reprogramming of tumor microenvironment shapes CD4 T-cell memory via the IL6ra-Bcl6 axis for targeted control of glioblastoma. Nat Commun 2025; 16:1095. [PMID: 39885128 PMCID: PMC11782536 DOI: 10.1038/s41467-024-55455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/13/2024] [Indexed: 02/01/2025] Open
Abstract
Oncolytic viruses (OVs) emerge as a promising cancer immunotherapy. However, the temporal impact on tumor cells and the tumor microenvironment, and the nature of anti-tumor immunity post-therapy remain largely unclear. Here we report that CD4+ T cells are required for durable tumor control in syngeneic murine models of glioblastoma multiforme after treatment with an oncolytic herpes simplex virus (oHSV) engineered to express IL-12. The upregulated MHCII on residual tumor cells facilitates programmed polyfunctional CD4+ T cells for tumor control and for recall responses. Mechanistically, the proper ratio of Bcl-6 to T-bet in CD4+ T cells navigates their enhanced anti-tumor capacity, and a reciprocal IL6ra-Bcl-6 regulatory axis in a memory CD4+ T-cell subset, which requires MHCII signals from reprogrammed tumor cells, tumor-infiltrating and resident myeloid cells, is necessary for the prolonged response. These findings uncover an OV-induced tumor/myeloid-CD4+ T-cell partnership, leading to long-term anti-tumor immune memory, and improved OV therapeutic efficacy.
Collapse
Affiliation(s)
- Jeffrey M Grimes
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sadashib Ghosh
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shamza Manzoor
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Li X Li
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Monica M Moran
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer C Clements
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sherrie D Alexander
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James M Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
- The O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jianmei W Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA.
- The O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
14
|
Su H, Peng Y, Wu Y, Zeng X. Overcoming immune evasion with innovative multi-target approaches for glioblastoma. Front Immunol 2025; 16:1541467. [PMID: 39911397 PMCID: PMC11794508 DOI: 10.3389/fimmu.2025.1541467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025] Open
Abstract
Glioblastoma (GBM) cells leverage complex endogenous and environmental regulatory mechanisms to drive proliferation, invasion, and metastasis. Tumor immune evasion, facilitated by a multifactorial network, poses a significant challenge to effective therapy, as evidenced by the limited clinical benefits of monotherapies, highlighting the adaptive nature of immune evasion. This review explores glioblastoma's immune evasion mechanisms, the role of ICIs in the tumor microenvironment, and recent clinical advancements, offering theoretical insights and directions for monotherapy and combination therapy in glioblastoma management.
Collapse
Affiliation(s)
- Hai Su
- Department of Neurosurgery, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yin Peng
- Department of Neurosurgery, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yilong Wu
- Department of Neurosurgery, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoli Zeng
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi “Flagship” Oncology Department of Synergy for Chinese and Western Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Oncology, Jiangxi Clinical Research Center for Cancer, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
15
|
Zhou S, Lin W, Jin X, Niu R, Yuan Z, Chai T, Zhang Q, Guo M, Kim SS, Liu M, Deng Y, Park JB, Choi SI, Shi B, Yin J. CD97 maintains tumorigenicity of glioblastoma stem cells via mTORC2 signaling and is targeted by CAR Th9 cells. Cell Rep Med 2024; 5:101844. [PMID: 39637858 PMCID: PMC11722114 DOI: 10.1016/j.xcrm.2024.101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/19/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
Glioblastoma (GBM) stem cells (GSCs) contribute to poor prognosis in patients with GBM. Identifying molecular markers is crucial for developing targeted therapies. Here, we identify cluster of differentiation 97 (CD97) as an optimal GSC surface antigen for potential targeting by chimeric antigen receptor (CAR) T cell therapy through in vitro antibody screening. CD97 is consistently expressed in all validated patient-derived GSCs and positively correlated with known intracellular GSC markers. Silencing CD97 reduces GSC tumorigenicity-related activities, including self-renewal, proliferation, and tumor progression. Transcriptome analysis reveals that CD97 activates mTORC2, leading to AKT S473 phosphorylation and enhanced expression of the downstream genes ARHGAP1, BZW1, and BZW2. Inhibiting mTORC2 with JR-AB2-011 suppresses GSC tumorigenicity and downstream gene expression. We develop CD97-CAR T helper (Th) 9 cells, which exhibit potent cytotoxic effects in vitro and extend survival in mice. These findings suggest that CD97 is a promising GSC-enriched antigen and that targeting it with CAR Th9 cells offers a potential therapeutic strategy for GBM.
Collapse
MESH Headings
- Glioblastoma/pathology
- Glioblastoma/metabolism
- Glioblastoma/immunology
- Glioblastoma/genetics
- Humans
- Animals
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/immunology
- Signal Transduction
- Mice
- Mechanistic Target of Rapamycin Complex 2/metabolism
- Mechanistic Target of Rapamycin Complex 2/genetics
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Carcinogenesis/pathology
- Carcinogenesis/genetics
- Cell Proliferation
- Cell Line, Tumor
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Brain Neoplasms/pathology
- Brain Neoplasms/immunology
- Brain Neoplasms/metabolism
- Brain Neoplasms/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Mice, Inbred NOD
- Immunotherapy, Adoptive/methods
- Gene Expression Regulation, Neoplastic
- GTPase-Activating Proteins/metabolism
- GTPase-Activating Proteins/genetics
- Proto-Oncogene Proteins c-akt/metabolism
Collapse
Affiliation(s)
- Shuchang Zhou
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Weiwei Lin
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China; Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| | - Xiong Jin
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Rui Niu
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Zheng Yuan
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Tianran Chai
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Qi Zhang
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Meixia Guo
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Sung Soo Kim
- Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Meichen Liu
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Yilin Deng
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Jong Bae Park
- Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea; Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Sun Il Choi
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Bingyang Shi
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Jinlong Yin
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
16
|
Duerinck J, Lescrauwaet L, Dirven I, Del’haye J, Stevens L, Geeraerts X, Vaeyens F, Geens W, Brock S, Vanbinst AM, Everaert H, Caljon B, Bruneau M, Lebrun L, Salmon I, Kockx M, Tuyaerts S, Neyns B. Intracranial administration of anti-PD-1 and anti-CTLA-4 immune checkpoint-blocking monoclonal antibodies in patients with recurrent high-grade glioma. Neuro Oncol 2024; 26:2208-2221. [PMID: 39406392 PMCID: PMC11630548 DOI: 10.1093/neuonc/noae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Recurrent high-grade glioma (rHGG) lacks effective life-prolonging treatments and the efficacy of systemic PD-1 and CTLA-4 immune checkpoint inhibitors is limited. The multi-cohort Glitipni phase I trial investigates the safety and feasibility of intraoperative intracerebral (iCer) and postoperative intracavitary (iCav) nivolumab (NIVO) ± ipilimumab (IPI) treatment following maximal safe resection (MSR) in rHGG. MATERIALS AND METHODS Patients received 10 mg IV NIVO within 24 h before surgery, followed by MSR, iCer 5 mg IPI and 10 mg NIVO, and Ommaya catheter placement in the resection cavity. Biweekly postoperative iCav administrations of 1-5-10 mg NIVO (cohort 4) or 10 mg NIVO plus 1-5-10 mg IPI (cohort 7) were combined with 10 mg IV NIVO for 11 cycles. RESULTS 42 rHGG patients underwent MSR with iCer NIVO + IPI. 16 pts were treated in cohort 4 (postoperative iCav NIVO at escalating doses) while 28 patients were treated in cohort 7 (intra and postoperative iCav NIVO and escalating doses of IPI). The most common TRAE was fatigue; no grade 5 AE occurred. Dose-limiting toxicity was grade 3 neutrophilic pleocytosis (4 pts) receiving iCav NIVO plus 5 or 10 mg IPI. PFS and OS did not significantly differ between cohorts (median OS: 42 [95% CI 26-57] vs. 35 [29-40] weeks; 1-year OS rate: 37% vs. 29%). Baseline B7-H3 expression significantly correlated with worse survival. OS compared favorably to a historical pooled cohort (n = 469) of Belgian rHGG pts treated with anti-VEGF therapies (log-rank P = .015). CONCLUSION Intraoperative iCer IPI + NIVO with postoperative iCav NIVO ± IPI up to biweekly doses of 1 mg IPI + 10 mg NIVO is feasible and safe, showing encouraging OS in rHGG patients. ClinicalTrials.gov registration: NCT03233152.
Collapse
Affiliation(s)
- Johnny Duerinck
- Department of Neurosurgery, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Louise Lescrauwaet
- Department of Neurosurgery, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Iris Dirven
- Department of Medical Oncology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Jacomi Del’haye
- Department of Medical Oncology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Latoya Stevens
- Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Xenia Geeraerts
- Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Freya Vaeyens
- Department of Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Wietse Geens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Stefanie Brock
- Department of Pathology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Anne-Marie Vanbinst
- Department of Radiology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Hendrik Everaert
- Department of Nuclear Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ben Caljon
- Department of Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Michaël Bruneau
- Department of Neurosurgery, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Laetitia Lebrun
- Department of Pathology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, Brussels, Belgium
| | - Isabelle Salmon
- Department of Pathology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, Brussels, Belgium
| | | | - Sandra Tuyaerts
- Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Bart Neyns
- Department of Medical Oncology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| |
Collapse
|
17
|
Zhou C, Xu L, Geng M, Hu S. Expression and Clinical Significance of Lymphocyte Subpopulations and Peripheral Inflammatory Markers in Glioma. J Inflamm Res 2024; 17:9423-9451. [PMID: 39600678 PMCID: PMC11590653 DOI: 10.2147/jir.s474577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Purpose Patients with glioma often fail to achieve satisfactory outcomes despite receiving surgery, radiotherapy, and chemotherapy. Photodynamic therapy (PDT) shows promise in addressing the limitations of traditional treatments. However, the immunological effects of PDT in glioma patients remain underexplored. This study aims to fill this gap by analyzing lymphocyte subpopulations and inflammatory markers in glioma patients undergoing PDT-assisted surgery. Patients and Methods To enhance our comprehension of the immunobiology of glioma within a clinical framework, we conducted a retrospective analysis of glioma patients from September 2019 to December 2023. Peripheral blood lymphocyte subpopulations (CD3+, CD19+, CD4+, CD8+, CD4+/CD8+) and hematological inflammatory factors were compared among 18 patients who underwent surgery with PDT, 10 patients treated with surgery alone, and healthy controls. Additionally, lymphocyte subpopulations from 48 healthy individuals and hematology inflammatory factors from 38 healthy controls were regarded as controls. Results PDT-assisted surgery resulted in significant alterations in lymphocyte subpopulations and inflammatory markers before and after treatment, particularly in CD4+ and CD8+ T cells. PDT-treated patients demonstrated a superior therapeutic response compared to surgery alone (P=0.035). Notably, primary glioma patients had more prolonged overall survival than recurrent glioma patients (P=0.039). Conclusion PDT-assisted surgery significantly affects lymphocyte subpopulations and inflammatory markers, enhancing immune response in glioma patients. These findings support the use of PDT as an effective adjuvant therapy. Monitoring lymphocyte subpopulations and inflammatory markers may be valuable for glioma prognosis and treatment optimization.
Collapse
Affiliation(s)
- Chunxiao Zhou
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Lei Xu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Mo Geng
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Shaoshan Hu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
18
|
Donders E, Lambrechts D. TKI resistance in brain metastasis: A CTLA4 state of mind. Immunity 2024; 57:2494-2496. [PMID: 39536715 DOI: 10.1016/j.immuni.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Resistance to tyrosine kinase inhibitors (TKIs) in lung cancer brain metastasis (LCBM) remains a clinical challenge. Recently in Cancer Cell, Fu et al. reveal how TKIs reshape the immune microenvironment of LCBM and propose CTLA4 blockade as a promising strategy to overcome resistance.
Collapse
Affiliation(s)
- Elena Donders
- Laboratory for Translational Genetics, VIB, Leuven, Belgium; Department of Human Genetics, University of Leuven (KU Leuven), Leuven, Belgium; Pneumology - Respiratory Oncology, University Hospitals Leuven (UZ Leuven), Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, VIB, Leuven, Belgium; Department of Human Genetics, University of Leuven (KU Leuven), Leuven, Belgium.
| |
Collapse
|
19
|
Ross JL, Puigdelloses-Vallcorba M, Piñero G, Soni N, Thomason W, DeSisto J, Angione A, Tsankova NM, Castro MG, Schniederjan M, Wadhwani NR, Raju GP, Morgenstern P, Becher OJ, Green AL, Tsankov AM, Hambardzumyan D. Microglia and monocyte-derived macrophages drive progression of pediatric high-grade gliomas and are transcriptionally shaped by histone mutations. Immunity 2024; 57:2669-2687.e6. [PMID: 39395421 PMCID: PMC11578068 DOI: 10.1016/j.immuni.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 06/04/2024] [Accepted: 09/11/2024] [Indexed: 10/14/2024]
Abstract
Pediatric high-grade gliomas (pHGGs), including hemispheric pHGGs and diffuse midline gliomas (DMGs), harbor mutually exclusive tumor location-specific histone mutations. Using immunocompetent de novo mouse models of pHGGs, we demonstrated that myeloid cells were the predominant infiltrating non-neoplastic cell population. Single-cell RNA sequencing (scRNA-seq), flow cytometry, and immunohistochemistry illustrated the presence of heterogeneous myeloid cell populations shaped by histone mutations and tumor location. Disease-associated myeloid (DAM) cell phenotypes demonstrating immune permissive characteristics were identified in murine and human pHGG samples. H3.3K27M DMGs, the most aggressive DMG, demonstrated enrichment of DAMs. Genetic ablation of chemokines Ccl8 and Ccl12 resulted in a reduction of DAMs and an increase in lymphocyte infiltration, leading to increased survival of tumor-bearing mice. Pharmacologic inhibition of chemokine receptors CCR1 and CCR5 resulted in extended survival and decreased myeloid cell infiltration. This work establishes the tumor-promoting role of myeloid cells in DMG and the potential therapeutic opportunities for targeting them.
Collapse
Affiliation(s)
- James L Ross
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Montserrat Puigdelloses-Vallcorba
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, USA
| | - Gonzalo Piñero
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, USA
| | - Nishant Soni
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wes Thomason
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, USA
| | - John DeSisto
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Cell Biology, Stem Cells and Development Graduate Program, Aurora, CO, USA; Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| | - Angelo Angione
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, USA
| | - Nadejda M Tsankova
- Department of Pathology and Molecular and Cell-Based Medicine, Mount Sinai Icahn School of Medicine, New York, NY 10029, USA
| | - Maria G Castro
- Departments of Neurosurgery and Cell & Developmental Biology, The University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Matthew Schniederjan
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Nitin R Wadhwani
- Department of Pathology and Laboratory Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - G Praveen Raju
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Morgenstern
- Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, USA
| | - Oren J Becher
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam L Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Cell Biology, Stem Cells and Development Graduate Program, Aurora, CO, USA; Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| | - Alexander M Tsankov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, USA.
| |
Collapse
|
20
|
Figg J, Chen D, Falceto Font L, Flores C, Jin D. In vivo mouse models for adult brain tumors: Exploring tumorigenesis and advancing immunotherapy development. Neuro Oncol 2024; 26:1964-1980. [PMID: 38990913 PMCID: PMC11534310 DOI: 10.1093/neuonc/noae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Indexed: 07/13/2024] Open
Abstract
Brain tumors, particularly glioblastoma (GBM), are devastating and challenging to treat, with a low 5-year survival rate of only 6.6%. Mouse models are established to understand tumorigenesis and develop new therapeutic strategies. Large-scale genomic studies have facilitated the identification of genetic alterations driving human brain tumor development and progression. Genetically engineered mouse models (GEMMs) with clinically relevant genetic alterations are widely used to investigate tumor origin. Additionally, syngeneic implantation models, utilizing cell lines derived from GEMMs or other sources, are popular for their consistent and relatively short latency period, addressing various brain cancer research questions. In recent years, the success of immunotherapy in specific cancer types has led to a surge in cancer immunology-related research which specifically necessitates the utilization of immunocompetent mouse models. In this review, we provide a comprehensive summary of GEMMs and syngeneic mouse models for adult brain tumors, emphasizing key features such as model origin, genetic alteration background, oncogenic mechanisms, and immune-related characteristics. Our review serves as a valuable resource for the brain tumor research community, aiding in the selection of appropriate models to study cancer immunology.
Collapse
Affiliation(s)
- John Figg
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Dongjiang Chen
- Division of Neuro-Oncology, Department of Neurological Surgery and Neurology, USC Keck Brain Tumor Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Laura Falceto Font
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Catherine Flores
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Dan Jin
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
21
|
Kim KS, Habashy K, Gould A, Zhao J, Najem H, Amidei C, Saganty R, Arrieta VA, Dmello C, Chen L, Zhang DY, Castro B, Billingham L, Levey D, Huber O, Marques M, Savitsky DA, Morin BM, Muzzio M, Canney M, Horbinski C, Zhang P, Miska J, Padney S, Zhang B, Rabadan R, Phillips JJ, Butowski N, Heimberger AB, Hu J, Stupp R, Chand D, Lee-Chang C, Sonabend AM. Fc-enhanced anti-CTLA-4, anti-PD-1, doxorubicin, and ultrasound-mediated blood-brain barrier opening: A novel combinatorial immunotherapy regimen for gliomas. Neuro Oncol 2024; 26:2044-2060. [PMID: 39028616 PMCID: PMC11534315 DOI: 10.1093/neuonc/noae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Glioblastoma is a highly aggressive brain cancer that is resistant to conventional immunotherapy strategies. Botensilimab, an Fc-enhanced anti-CTLA-4 antibody (FcE-aCTLA-4), has shown durable activity in "cold" and immunotherapy-refractory cancers. METHODS We evaluated the efficacy and immune microenvironment phenotype of a mouse analogue of FcE-aCTLA-4 in treatment-refractory preclinical models of glioblastoma, both as a monotherapy and in combination with doxorubicin delivered via low-intensity pulsed ultrasound and microbubbles (LIPU/MB). Additionally, we studied 4 glioblastoma patients treated with doxorubicin, anti-PD-1 with concomitant LIPU/MB to investigate the novel effect of doxorubicin modulating FcγR expressions in tumor-associated macrophages/microglia (TAMs). RESULTS FcE-aCTLA-4 demonstrated high-affinity binding to FcγRIV, the mouse ortholog of human FcγRIIIA, which was highly expressed in TAMs in human glioblastoma, most robustly at diagnosis. Notably, FcE-aCTLA-4-mediated selective depletion of intratumoral regulatory T cells (Tregs) via TAM-mediated phagocytosis, while sparing peripheral Tregs. Doxorubicin, a chemotherapeutic drug with immunomodulatory functions, was found to upregulate FcγRIIIA on TAMs in glioblastoma patients who received doxorubicin and anti-PD-1 with concomitant LIPU/MB. In murine models of immunotherapy-resistant gliomas, a combinatorial regimen of FcE-aCTLA-4, anti-PD-1, and doxorubicin with LIPU/MB, achieved a 90% cure rate, that was associated robust infiltration of activated CD8+ T cells and establishment of immunological memory as evidenced by rejection upon tumor rechallenge. CONCLUSIONS Our findings demonstrate that FcE-aCTLA-4 promotes robust immunomodulatory and anti-tumor effects in murine gliomas and is significantly enhanced when combined with anti-PD-1, doxorubicin, and LIPU/MB. We are currently investigating this combinatory strategy in a clinical trial (clinicaltrials.gov NCT05864534).
Collapse
Affiliation(s)
- Kwang-Soo Kim
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Karl Habashy
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andrew Gould
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Junfei Zhao
- Department of Biomedical Informatics, Columbia University, New York, New York, USA
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, New York, USA
- Department of Systems Biology, Columbia University, New York, New York, USA
| | - Hinda Najem
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Christina Amidei
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ruth Saganty
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Víctor A Arrieta
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Crismita Dmello
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Li Chen
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel Y Zhang
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brandyn Castro
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Leah Billingham
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | | - Miguel Muzzio
- Life Science Group, IIT Research Institute (IITRI), Chicago, Illinois, USA
| | | | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Peng Zhang
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jason Miska
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Surya Padney
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Bin Zhang
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Raul Rabadan
- Department of Biomedical Informatics, Columbia University, New York, New York, USA
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, New York, USA
- Department of Systems Biology, Columbia University, New York, New York, USA
| | - Joanna J Phillips
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Nicholas Butowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Amy B Heimberger
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jian Hu
- Division of Basic Science Research, Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Roger Stupp
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Dhan Chand
- Agenus Inc., Lexington, Massachusetts, USA
| | - Catalina Lee-Chang
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Adam M Sonabend
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
22
|
Shan H, Zheng G, Bao S, Yang H, Shrestha UD, Li G, Duan X, Du X, Ke T, Liao C. Tumor perfusion enhancement by focus ultrasound-induced blood-brain barrier opening to potentiate anti-PD-1 immunotherapy of glioma. Transl Oncol 2024; 49:102115. [PMID: 39217852 PMCID: PMC11402623 DOI: 10.1016/j.tranon.2024.102115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE To demonstrate the feasibility of using focused ultrasound to enhance delivery of PD-1 inhibitors in glioma rats and determine if such an approach increases treatment efficacy. METHODS C6 glioma in situ rat model was used in this study. Transcranial irradiation with FUS combined with microbubbles was administered to open the blood-brain barrier (BBB). The efficacy of BBB opening was evaluated in normal rats. The rats with glioma were grouped to evaluate the role of PD-1 inhibitors combined with FUS-induced immune responses in suppressing glioma when the BBB opens. Flow cytometry was used to examine the changes of immune cell populations of lymphocytes in peripheral blood, tumor tissue and spleen tissue of the rats. A section of rat brain tissue was also used for histological and immunohistochemical analysis. The survival of the rats was then monitored; the tumor progression and changes in blood perfusion of tumor were dynamically observed in vivo using multimodal MRI. RESULTS FUS combined with microbubbles could enhance the blood perfusion of tumors by increasing the permeability of BBB (p < 0.0001), thus promoting the infiltration of CD4+ T lymphocytes (p < 0.01). Compared with the control group, the combination treatment group had increased in the infiltration number of CD4+(p < 0.05) and CD8+ T (p < 0.05); the tumor volume of the combined treatment group was smaller than that of the control group (p < 0.01) and the survival rate of the rats was prolonged (p < 0.05). CONCLUSIONS In this study, we demonstrated that the transient opening of the BBB induced by FUS enhanced tumor vascular perfusion and facilitated the delivery of PD-1 inhibitors, ultimately improving the therapeutic efficacy for glioblastoma.
Collapse
Affiliation(s)
- Haiyan Shan
- Department of Radiology, Yan 'an Hospital of Kunming City, Kunming, China.
| | - Guangrong Zheng
- Department of Radiology, Yan 'an Hospital of Kunming City, Kunming, China.
| | - Shasha Bao
- Department of Radiology, Yan 'an Hospital of Kunming City, Kunming, China
| | - Haiyan Yang
- Department of Ultrasound, Chongqing General Hospital, Chongqing University, Chongqing 401147, China
| | | | - Guochen Li
- Department of Radiology, Yan 'an Hospital of Kunming City, Kunming, China
| | - Xirui Duan
- Department of Radiology, Yan 'an Hospital of Kunming City, Kunming, China
| | - Xiaolan Du
- Department of Radiology, Yan 'an Hospital of Kunming City, Kunming, China
| | - Tengfei Ke
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Chengde Liao
- Department of Radiology, Yan 'an Hospital of Kunming City, Kunming, China.
| |
Collapse
|
23
|
Peng Z, Huang W, Xiao Z, Wang J, Zhu Y, Zhang F, Lan D, He F. Immunotherapy in the Fight Against Bone Metastases: A Review of Recent Developments and Challenges. Curr Treat Options Oncol 2024; 25:1374-1389. [PMID: 39436492 PMCID: PMC11541271 DOI: 10.1007/s11864-024-01256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 10/23/2024]
Abstract
OPINION STATEMENT Bone metastasis, a frequent and detrimental complication of advanced cancers, often triggers bone deterioration events that severely compromise patient quality of life and prognosis. The past few years have witnessed the emergence and continuous advancements in immunotherapy, ushering in innovative therapeutic prospects for bone metastasis. These advancements include not only the use of immune checkpoint inhibitors (ICIs), both as standalone and combined treatments, but also the investigation of novel targets within immune cells residing in bone metastases. These breakthroughs have instilled fresh optimism for effectively managing patients with bone metastasis. This article endeavors to present an exhaustive review of the recent progress made across a spectrum of immunotherapeutic strategies and targeted therapies specifically designed for individuals battling bone metastasis from malignant tumors. By doing so, it seeks to offer insights that can inform clinical practices and guide further medical research in this domain.
Collapse
Affiliation(s)
- Zhonghui Peng
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Wei Huang
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Ziyu Xiao
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Jinge Wang
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yongzhe Zhu
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Fudou Zhang
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Dongqiang Lan
- Department of Oncology, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, China
| | - Fengjiao He
- Department of Oncology, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, China.
| |
Collapse
|
24
|
Boon M, Akkari L. Architecture sets the path: Breast cancer subtypes differently shape the early brain metastatic niche. Cancer Cell 2024; 42:1643-1645. [PMID: 39332398 DOI: 10.1016/j.ccell.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024]
Abstract
The ability of disseminated cancer cells to colonize the brain is highly dependent on initial survival cues, often evoking early microenvironmental adaptations. In this issue of Cancer Cell, Gan et al. unveil disparate tumor architectures in early stage HER2+ breast cancer and triple-negative breast cancer brain metastases that shape stromal interactions, providing a rationale for subtype-dependent patient stratification.
Collapse
Affiliation(s)
- Menno Boon
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Leila Akkari
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
25
|
Gan S, Macalinao DG, Shahoei SH, Tian L, Jin X, Basnet H, Bibby C, Muller JT, Atri P, Seffar E, Chatila W, Karacay A, Chanda P, Hadjantonakis AK, Schultz N, Brogi E, Bale TA, Moss NS, Murali R, Pe'er D, Massagué J. Distinct tumor architectures and microenvironments for the initiation of breast cancer metastasis in the brain. Cancer Cell 2024; 42:1693-1712.e24. [PMID: 39270646 DOI: 10.1016/j.ccell.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 12/15/2023] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
Brain metastasis, a serious complication of cancer, hinges on the initial survival, microenvironment adaptation, and outgrowth of disseminated cancer cells. To understand the early stages of brain colonization, we investigated two prevalent sources of cerebral relapse, triple-negative (TNBC) and HER2+ (HER2BC) breast cancers. Using mouse models and human tissue samples, we found that these tumor types colonize the brain, with a preference for distinctive tumor architectures, stromal interfaces, and autocrine programs. TNBC models tend to form perivascular sheaths with diffusive contact with astrocytes and microglia. In contrast, HER2BC models tend to form compact spheroids driven by autonomous tenascin C production, segregating stromal cells to the periphery. Single-cell transcriptomics of the tumor microenvironment revealed that these architectures evoke differential Alzheimer's disease-associated microglia (DAM) responses and engagement of the GAS6 receptor AXL. The spatial features of the two modes of brain colonization have relevance for leveraging the stroma to treat brain metastasis.
Collapse
Affiliation(s)
- Siting Gan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Danilo G Macalinao
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sayyed Hamed Shahoei
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lin Tian
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xin Jin
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province 310024, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province 310024, China
| | - Harihar Basnet
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Catherine Bibby
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James T Muller
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pranita Atri
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Evan Seffar
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Walid Chatila
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ali Karacay
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pharto Chanda
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nikolaus Schultz
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edi Brogi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tejus A Bale
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nelson S Moss
- Department of Neurological Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rajmohan Murali
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
26
|
Daugherty-Lopès A, Pérez-Guijarro E, Gopalan V, Rappaport J, Chen Q, Huang A, Lam KC, Chin S, Ebersole J, Wu E, Needle GA, Church I, Kyriakopoulos G, Xie S, Zhao Y, Gruen C, Sassano A, Araya RE, Thorkelsson A, Smith C, Lee MP, Hannenhalli S, Day CP, Merlino G, Goldszmid RS. IMMUNE AND MOLECULAR CORRELATES OF RESPONSE TO IMMUNOTHERAPY REVEALED BY BRAIN-METASTATIC MELANOMA MODELS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609785. [PMID: 39372744 PMCID: PMC11451731 DOI: 10.1101/2024.08.26.609785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Despite the promising results of immune checkpoint blockade (ICB) therapy, outcomes for patients with brain metastasis (BrM) remain poor. Identifying resistance mechanisms has been hindered by limited access to patient samples and relevant preclinical models. Here, we developed two mouse melanoma BrM models that recapitulate the disparate responses to ICB seen in patients. We demonstrate that these models capture the cellular and molecular complexity of human disease and reveal key factors shaping the tumor microenvironment and influencing ICB response. BR1-responsive tumor cells express inflammatory programs that polarize microglia into reactive states, eliciting robust T cell recruitment. In contrast, BR3-resistant melanoma cells are enriched in neurological programs and exploit tolerance mechanisms to maintain microglia homeostasis and limit T cell infiltration. In humans, BR1 and BR3 expression signatures correlate positively or negatively with T cell infiltration and BrM patient outcomes, respectively. Our study provides clinically relevant models and uncovers mechanistic insights into BrM ICB responses, offering potential biomarkers and therapeutic targets to improve therapy efficacy.
Collapse
Affiliation(s)
- Amélie Daugherty-Lopès
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Eva Pérez-Guijarro
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jessica Rappaport
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Quanyi Chen
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Kelly Government Solutions, Bethesda, MD, USA
| | - April Huang
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Kelly Government Solutions, Bethesda, MD, USA
| | - Khiem C. Lam
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sung Chin
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Jessica Ebersole
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Emily Wu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Gabriel A. Needle
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Isabella Church
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - George Kyriakopoulos
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shaojun Xie
- CCR-SF Bioinformatics Team, Bioinformatics and Computational Science Directorate, Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21701, USA
| | - Yongmei Zhao
- CCR-SF Bioinformatics Team, Bioinformatics and Computational Science Directorate, Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21701, USA
| | - Charli Gruen
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Antonella Sassano
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Romina E. Araya
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Andres Thorkelsson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Cari Smith
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Maxwell P. Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Romina S. Goldszmid
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
27
|
Nader NE, Frederico SC, Miller T, Huq S, Zhang X, Kohanbash G, Hadjipanayis CG. Barriers to T Cell Functionality in the Glioblastoma Microenvironment. Cancers (Basel) 2024; 16:3273. [PMID: 39409893 PMCID: PMC11476085 DOI: 10.3390/cancers16193273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive primary brain tumor depicted by a cold tumor microenvironment, low immunogenicity, and limited effective therapeutic interventions. Its location in the brain, a highly immune-selective organ, acts as a barrier, limiting immune access and promoting GBM dissemination, despite therapeutic interventions. Currently, chemotherapy and radiation combined with surgical resection are the standard of care for GBM treatment. Although immune checkpoint blockade has revolutionized the treatment of solid tumors, its observed success in extracranial tumors has not translated into a significant survival benefit for GBM patients. To develop effective immunotherapies for GBM, it is vital to tailor treatments to overcome the numerous immunosuppressive barriers that inhibit T cell responses to these tumors. In this review, we address the unique physical and immunological barriers that make GBM challenging to treat. Additionally, we explore potential therapeutic mechanisms, studied in central nervous system (CNS) and non-CNS cancers, that may overcome these barriers. Furthermore, we examine current and promising immunotherapy clinical trials and immunotherapeutic interventions for GBM. By highlighting the array of challenges T cell-based therapies face in GBM, we hope this review can guide investigators as they develop future immunotherapies for this highly aggressive malignancy.
Collapse
Affiliation(s)
- Noor E. Nader
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (N.E.N.); (S.C.F.); (T.M.)
| | - Stephen C. Frederico
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (N.E.N.); (S.C.F.); (T.M.)
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Tracy Miller
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (N.E.N.); (S.C.F.); (T.M.)
| | - Sakibul Huq
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Xiaoran Zhang
- Sloan Kettering Memorial Cancer Center, New York, NY 10065, USA;
| | - Gary Kohanbash
- Sloan Kettering Memorial Cancer Center, New York, NY 10065, USA;
| | | |
Collapse
|
28
|
Kim KS, Zhang J, Arrieta VA, Dmello C, Grabis E, Habashy K, Duffy J, Zhao J, Gould A, Chen L, Hu J, Balyasnikova I, Chand D, Levey D, Canoll P, Zhao W, Sims PA, Rabadan R, Pandey S, Zhang B, Lee-Chang C, Heiland DH, Sonabend AM. MAPK/ERK signaling in gliomas modulates interferon responses, T cell recruitment, microglia phenotype, and immune checkpoint blockade efficacy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612571. [PMID: 39345374 PMCID: PMC11429708 DOI: 10.1101/2024.09.11.612571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Background Glioblastoma (GB) remains a formidable challenge in neuro-oncology, with immune checkpoint blockade (ICB) showing limited efficacy in unselected patients. We previously recently established that MAPK/ERK signaling is associated with overall survival following anti-PD-1 and anti-CTLA-4 treatment in recurrent GB. However, the causal relationship between MAPK/ERK signaling and susceptibility to ICB, as well as the mechanisms underlying this association, remain poorly understood. Method We conducted in vivo kinome-wide CRISPR/Cas9 screenings in murine gliomas to identify key regulators of susceptibility to anti-PD-1 and CD8+ T cell responses and performed survival studies to validate the most relevant genes. Additionally, paired single cell RNA-sequencing (scRNA-seq) with p-ERK staining, spatial transcriptomics on GB samples, and ex-vivo slice culture of a BRAFV600E mutant GB tumor treated with BRAFi/MEKi were used to determine the causal relationship between MAPK signaling, tumor cell immunogenicity, and modulation of microglia phenotype. Results CRISPR/Cas9 screens identified the MAPK pathway, particularly the RAF-MEK-ERK pathway, as the most critical modulator of glioma susceptibility to CD8+ T cells, and anti-PD-1 across all kinases. Experimentally-induced ERK phosphorylation in gliomas enhanced survival with ICB treatment, led to durable anti-tumoral immunity upon re-challenge and memory T cell infiltration in long-term survivors. Elevated p-ERK in glioma cells correlated with increased interferon responses, antigen presentation and T cell infiltration in GB. Moreover, spatial transcriptomics and scRNA-seq analysis revealed the modulation of interferon responses by the MAPK/ERK pathway in BRAFV600E human GB cells with ERK1/2 knockout and in slice cultures of human BRAFV600E GB tissue. Notably, BRAFi/MEKi treatment disrupted the interaction between tumor cells and tumor-associated macrophages/microglia in slice cultures from BRAFV600E mutant GB. Conclusion Our data indicate that the MAPK/ERK pathway is a critical regulator of GB cell susceptibility to anti-tumoral immunity, modulating interferon responses, and antigen-presentation in glioma cells, as well as tumor cell interaction with microglia. These findings not only elucidate the mechanistic underpinnings of immunotherapy resistance in GB but also highlight the MAPK/ERK pathway as a promising target for enhancing immunotherapeutic efficacy in this challenging malignancy.
Collapse
Affiliation(s)
- Kwang-Soo Kim
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Junyi Zhang
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany
| | - Víctor A. Arrieta
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Crismita Dmello
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elena Grabis
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany
| | - Karl Habashy
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joseph Duffy
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Junfei Zhao
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Andrew Gould
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Li Chen
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Irina Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | - Peter Canoll
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Wenting Zhao
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA
| | - Peter A. Sims
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Surya Pandey
- Department of Hematology and Oncology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Bin Zhang
- Department of Hematology and Oncology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dieter Henrik Heiland
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany
| | - Adam M. Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
29
|
Chen Y, Zhou Q, Jia Z, Cheng N, Zhang S, Chen W, Wang L. Enhancing cancer immunotherapy: Nanotechnology-mediated immunotherapy overcoming immunosuppression. Acta Pharm Sin B 2024; 14:3834-3854. [PMID: 39309502 PMCID: PMC11413684 DOI: 10.1016/j.apsb.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 09/25/2024] Open
Abstract
Immunotherapy is an important cancer treatment method that offers hope for curing cancer patients. While immunotherapy has achieved initial success, a major obstacle to its widespread adoption is the inability to benefit the majority of patients. The success or failure of immunotherapy is closely linked to the tumor's immune microenvironment. Recently, there has been significant attention on strategies to regulate the tumor immune microenvironment in order to stimulate anti-tumor immune responses in cancer immunotherapy. The distinctive physical properties and design flexibility of nanomedicines have been extensively utilized to target immune cells (including tumor-associated macrophages (TAMs), T cells, myeloid-derived suppressor cells (MDSCs), and tumor-associated fibroblasts (TAFs)), offering promising advancements in cancer immunotherapy. In this article, we have reviewed treatment strategies aimed at targeting various immune cells to regulate the tumor immune microenvironment. The focus is on cancer immunotherapy models that are based on nanomedicines, with the goal of inducing or enhancing anti-tumor immune responses to improve immunotherapy. It is worth noting that combining cancer immunotherapy with other treatments, such as chemotherapy, radiotherapy, and photodynamic therapy, can maximize the therapeutic effects. Finally, we have identified the challenges that nanotechnology-mediated immunotherapy needs to overcome in order to design more effective nanosystems.
Collapse
Affiliation(s)
- Yunna Chen
- Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Qianqian Zhou
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Zongfang Jia
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Nuo Cheng
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Sheng Zhang
- Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Weidong Chen
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Lei Wang
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| |
Collapse
|
30
|
Hawly J, Murcar MG, Schcolnik-Cabrera A, Issa ME. Glioblastoma stem cell metabolism and immunity. Cancer Metastasis Rev 2024; 43:1015-1035. [PMID: 38530545 DOI: 10.1007/s10555-024-10183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/09/2024] [Indexed: 03/28/2024]
Abstract
Despite enormous efforts being invested in the development of novel therapies for brain malignancies, there remains a dire need for effective treatments, particularly for pediatric glioblastomas. Their poor prognosis has been attributed to the fact that conventional therapies target tumoral cells, but not glioblastoma stem cells (GSCs). GSCs are characterized by self-renewal, tumorigenicity, poor differentiation, and resistance to therapy. These characteristics represent the fundamental tools needed to recapitulate the tumor and result in a relapse. The mechanisms by which GSCs alter metabolic cues and escape elimination by immune cells are discussed in this article, along with potential strategies to harness effector immune cells against GSCs. As cellular immunotherapy is making significant advances in a variety of cancers, leveraging this underexplored reservoir may result in significant improvements in the treatment options for brain malignancies.
Collapse
Affiliation(s)
- Joseph Hawly
- Faculty of Medicine and Medical Sciences, University of Balamand, Dekouaneh, Lebanon
| | - Micaela G Murcar
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Mark E Issa
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
31
|
Li C, Niu C, Chen L, Yu B, Luo F, Qie J, Yang H, Qian J, Chu Y. Classical Monocytes Shuttling for Precise Delivery of Nanotherapeutics to Glioblastoma. Adv Healthc Mater 2024:e2400925. [PMID: 39212635 DOI: 10.1002/adhm.202400925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/12/2024] [Indexed: 09/04/2024]
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor for which current therapies have limited efficacy. Immunosuppression and difficulties in accessing tumors with therapeutic agents are major obstacles for GBM treatments. Classical monocytes (CMs) possess the strongest infiltration among myeloid cells recruited into tumors during tumorigenesis. In this study, CMs are utilized to deliver the small-molecule CUDC-907 encapsulated in nanoparticles (907-NPs@CMs) for GBM therapy. Hitchhiking on CMs enables more 907-NPs to successfully penetrate the blood-brain barrier (BBB) and reach the interior of tumors. Results demonstrate that 907-NPs@CMs significantly improve the survival rates by suppressing tumor growth and reversing the immunosuppression of tumor microenvironment (TME). Furthermore, the high delivery efficiency of CMs reduces the amount of CUDC-907 required for treatments, reducing the physiological toxicity and off-target effects caused by high doses. 907-NPs@CMs is a safe and versatile therapeutic system that provides a platform for targeted drug delivery to tumors and the ability to treat GBM through a combination of chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Congwen Li
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Congyi Niu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Lin Chen
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Baichao Yu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Feifei Luo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Jingbo Qie
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Hui Yang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiawen Qian
- Shanghai Fifth People's Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Science, Fudan University, Shanghai, 200030, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 200032, China
| |
Collapse
|
32
|
Bhattacharya S, Paraskar G, Jha M, Gupta GL, Prajapati BG. Deciphering Regulatory T-Cell Dynamics in Cancer Immunotherapy: Mechanisms, Implications, and Therapeutic Innovations. ACS Pharmacol Transl Sci 2024; 7:2215-2236. [PMID: 39144553 PMCID: PMC11320738 DOI: 10.1021/acsptsci.4c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 08/16/2024]
Abstract
This Review explores how tumor-associated regulatory cells (Tregs) affect cancer immunotherapy. It shows how Tregs play a role in keeping the immune system in check, how cancers grow, and how well immunotherapy work. Tregs use many ways to suppress the immune system, and these ways are affected by the tumor microenvironment (TME). New approaches to cancer therapy are showing promise, such as targeting Treg checkpoint receptors precisely and using Fc-engineered antibodies. It is important to tailor treatments to each patient's TME in order to provide personalized care. Understanding Treg biology is essential for creating effective cancer treatments and improving the long-term outcomes of immunotherapy.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- School
of Pharmacy and Technology Management, SVKM’S
NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Gaurav Paraskar
- School
of Pharmacy and Technology Management, SVKM’S
NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Megha Jha
- School
of Pharmacy and Technology Management, SVKM’S
NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Girdhari Lal Gupta
- School
of Pharmacy and Technology Management, SVKM’S
NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Bhupendra G. Prajapati
- Shree.
S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat 384012, India
- Faculty
of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
33
|
Yuan K, Wu Q, Yao Y, Shao J, Zhu S, Yang J, Sun Q, Zhao J, Xu J, Wu P, Li Y, Shi H. Deacetylase SIRT2 Inhibition Promotes Microglial M2 Polarization Through Axl/PI3K/AKT to Alleviate White Matter Injury After Subarachnoid Hemorrhage. Transl Stroke Res 2024:10.1007/s12975-024-01282-5. [PMID: 39103659 DOI: 10.1007/s12975-024-01282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
White matter injury (WMI) subsequent to subarachnoid hemorrhage (SAH) frequently leads to an unfavorable patient prognosis. Previous studies have indicated that microglial M1 polarization following SAH results in the accumulation of amyloid precursor protein (APP) and degradation of myelin basic protein (MBP), thereby catalyzing the exacerbation of WMI. Consequently, transitioning microglial polarization towards the M2 phenotype (neuroprotective state) represents a potential therapeutic approach for reversing WMI. The SIRT2 gene is pivotal in neurological disorders such as neurodegeneration and ischemic stroke. However, its function and underlying mechanisms in SAH, particularly how it influences microglial function to ameliorate WMI, remain unclear. Our investigations revealed that in post-SAH, there was a temporal increase in SIRT2 expression, predominantly in the cerebral corpus callosum area, with notable colocalization with microglia. However, following the administration of the SIRT2 inhibitor AK-7, a shift in microglial polarization towards the M2 phenotype and an improvement in both short-term and long-term neuronal functions in rats were observed. Mechanistically, CO-IP experiments confirmed that SIRT2 can interact with the receptor tyrosine kinase Axl within the TAM receptor family and act as a deacetylase to regulate the deacetylation of Axl. Concurrently, the inhibition of SIRT2 by AK-7 can lead to increased expression of Axl and activation of the anti-inflammatory pathway PI3K/Akt signaling pathway, which regulates microglial M2 polarization and consequently reduces WMI. However, when Axl expression was inhibited by the injection of the shAxl virus into the lateral ventricles, the downstream signaling pathways were significantly suppressed. Rescue experiments also confirmed that the neuroprotective effects of AK-7 can be reversed by PI3K inhibitors. These data suggest that SIRT2 influences WMI by affecting microglial polarization through the Axl/PI3K/AKT pathway, and that AK-7 could serve as an effective therapeutic drug for improving neurological functions in SAH patients.
Collapse
Affiliation(s)
- Kaikun Yuan
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Qiaowei Wu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Yanting Yao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Department of Neurosurgery, Beidahuang Group General Hospital, Harbin, 150001, People's Republic of China
| | - Jiang Shao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Shiyi Zhu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Jinshuo Yang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Qi Sun
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Junjie Zhao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Jiayi Xu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Pei Wu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Yuchen Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Huaizhang Shi
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.
| |
Collapse
|
34
|
Li J, Zhang Y, Liang C, Yan X, Hui X, Liu Q. Advancing precision medicine in gliomas through single-cell sequencing: unveiling the complex tumor microenvironment. Front Cell Dev Biol 2024; 12:1396836. [PMID: 39156969 PMCID: PMC11327033 DOI: 10.3389/fcell.2024.1396836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Glioblastoma (GBM) displays an infiltrative growth characteristic that recruits neighboring normal cells to facilitate tumor growth, maintenance, and invasion into the brain. While the blood-brain barrier serves as a critical natural defense mechanism for the central nervous system, GBM disrupts this barrier, resulting in the infiltration of macrophages from the peripheral bone marrow and the activation of resident microglia. Recent advancements in single-cell transcriptomics and spatial transcriptomics have refined the categorization of cells within the tumor microenvironment for precise identification. The intricate interactions and influences on cell growth within the tumor microenvironment under multi-omics conditions are succinctly outlined. The factors and mechanisms involving microglia, macrophages, endothelial cells, and T cells that impact the growth of GBM are individually examined. The collaborative mechanisms of tumor cell-immune cell interactions within the tumor microenvironment synergistically promote the growth, infiltration, and metastasis of gliomas, while also influencing the immune status and therapeutic response of the tumor microenvironment. As immunotherapy continues to progress, targeting the cells within the inter-tumor microenvironment emerges as a promising novel therapeutic approach for GBM. By comprehensively understanding and intervening in the intricate cellular interactions within the tumor microenvironment, novel therapeutic modalities may be developed to enhance treatment outcomes for patients with GBM.
Collapse
Affiliation(s)
- Jinwei Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Neurosurgery, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Yang Zhang
- Graduate School of Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Cong Liang
- Department of Pharmacy, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Xianlei Yan
- Department of Neurosurgery, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Xuhui Hui
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Quan Liu
- Department of Neurosurgery, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| |
Collapse
|
35
|
Afzal A, Afzal Z, Bizink S, Davis A, Makahleh S, Mohamed Y, Coniglio SJ. Phagocytosis Checkpoints in Glioblastoma: CD47 and Beyond. Curr Issues Mol Biol 2024; 46:7795-7811. [PMID: 39194679 DOI: 10.3390/cimb46080462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the deadliest human cancers with very limited treatment options available. The malignant behavior of GBM is manifested in a tumor which is highly invasive, resistant to standard cytotoxic chemotherapy, and strongly immunosuppressive. Immune checkpoint inhibitors have recently been introduced in the clinic and have yielded promising results in certain cancers. GBM, however, is largely refractory to these treatments. The immune checkpoint CD47 has recently gained attention as a potential target for intervention as it conveys a "don't eat me" signal to tumor-associated macrophages (TAMs) via the inhibitory SIRP alpha protein. In preclinical models, the administration of anti-CD47 monoclonal antibodies has shown impressive results with GBM and other tumor models. Several well-characterized oncogenic pathways have recently been shown to regulate CD47 expression in GBM cells and glioma stem cells (GSCs) including Epidermal Growth Factor Receptor (EGFR) beta catenin. Other macrophage pathways involved in regulating phagocytosis including TREM2 and glycan binding proteins are discussed as well. Finally, chimeric antigen receptor macrophages (CAR-Ms) could be leveraged for greatly enhancing the phagocytosis of GBM and repolarization of the microenvironment in general. Here, we comprehensively review the mechanisms that regulate the macrophage phagocytosis of GBM cells.
Collapse
Affiliation(s)
- Amber Afzal
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Zobia Afzal
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Sophia Bizink
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Amanda Davis
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Sara Makahleh
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Yara Mohamed
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Salvatore J Coniglio
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA
| |
Collapse
|
36
|
Zhang H, Hong Y, Wu T, Ben E, Li S, Hu L, Xie T. Role of gut microbiota in regulating immune checkpoint inhibitor therapy for glioblastoma. Front Immunol 2024; 15:1401967. [PMID: 38915399 PMCID: PMC11194316 DOI: 10.3389/fimmu.2024.1401967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Glioblastoma (GBM) is a highly malignant, invasive, and poorly prognosed brain tumor. Unfortunately, active comprehensive treatment does not significantly prolong patient survival. With the deepening of research, it has been found that gut microbiota plays a certain role in GBM, and can directly or indirectly affect the efficacy of immune checkpoint inhibitors (ICIs) in various ways. (1) The metabolites produced by gut microbiota directly affect the host's immune homeostasis, and these metabolites can affect the function and distribution of immune cells, promote or inhibit inflammatory responses, affect the phenotype, angiogenesis, inflammatory response, and immune cell infiltration of GBM cells, thereby affecting the effectiveness of ICIs. (2) Some members of the gut microbiota may reverse T cell function inhibition, increase T cell anti-tumor activity, and ultimately improve the efficacy of ICIs by targeting specific immunosuppressive metabolites and cytokines. (3) Some members of the gut microbiota directly participate in the metabolic process of drugs, which can degrade, transform, or produce metabolites, affecting the effective concentration and bioavailability of drugs. Optimizing the structure of the gut microbiota may help improve the efficacy of ICIs. (4) The gut microbiota can also regulate immune cell function and inflammatory status in the brain through gut brain axis communication, indirectly affecting the progression of GBM and the therapeutic response to ICIs. (5) Given the importance of gut microbiota for ICI therapy, researchers have begun exploring the use of fecal microbiota transplantation (FMT) to transplant healthy or optimized gut microbiota to GBM patients, in order to improve their immune status and enhance their response to ICI therapy. Preliminary studies suggest that FMT may enhance the efficacy of ICI therapy in some patients. In summary, gut microbiota plays a crucial role in regulating ICIs in GBM, and with a deeper understanding of the relationship between gut microbiota and tumor immunity, it is expected to develop more precise and effective personalized ICI therapy strategies for GBM, in order to improve patient prognosis.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying Hong
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tingting Wu
- Department of Health Management, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Eyi Ben
- Department of Oncology, Yidu People’s Hospital, Yichang, Hubei, China
| | - Shuai Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liu Hu
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Xie
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
37
|
Lerouge L, Ruch A, Pierson J, Thomas N, Barberi-Heyob M. Non-targeted effects of radiation therapy for glioblastoma. Heliyon 2024; 10:e30813. [PMID: 38778925 PMCID: PMC11109805 DOI: 10.1016/j.heliyon.2024.e30813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/05/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Radiotherapy is recommended for the treatment of brain tumors such as glioblastoma (GBM) and brain metastases. Various curative and palliative scenarios suggest improved local-regional control. Although the underlying mechanisms are not yet clear, additional therapeutic effects have been described, including proximity and abscopal reactions at the treatment site. Clinical and preclinical data suggest that the immune system plays an essential role in regulating the non-targeted effects of radiotherapy for GBM. This article reviews current biological mechanisms for regulating the non-targeted effects caused by external and internal radiotherapy, and how they might be applied in a clinical context. Optimization of therapeutic regimens requires assessment of the complexity of the host immune system on the activity of immunosuppressive or immunostimulatory cells, such as glioma-associated macrophages and microglia. This article also discusses recent preclinical models adapted to post-radiotherapy responses. This narrative review explores and discusses the current status of immune responses both locally via the "bystander effect" and remotely via the "abscopal effect". Preclinical and clinical observations demonstrate that unirradiated cells, near or far from the irradiation site, can control the tumor response. Nevertheless, previous studies do not address the problem in its global context, and present gaps regarding the link between the role of the immune system in the control of non-targeted effects for different types of radiotherapy and different fractionation schemes applied to GBM. This narrative synthesis of the scientific literature should help to update and critique available preclinical and medical knowledge. Indirectly, it will help formulate new research projects based on the synthesis and interpretation of results from a non-systematic selection of published studies.
Collapse
Affiliation(s)
- Lucie Lerouge
- Department of Biology, Signals and Systems in Cancer and Neuroscience, CRAN, UMR7039, Université de Lorraine, CNRS, 54500 Vandœuvre-lès-Nancy, France
| | - Aurélie Ruch
- Department of Biology, Signals and Systems in Cancer and Neuroscience, CRAN, UMR7039, Université de Lorraine, CNRS, 54500 Vandœuvre-lès-Nancy, France
| | - Julien Pierson
- Department of Biology, Signals and Systems in Cancer and Neuroscience, CRAN, UMR7039, Université de Lorraine, CNRS, 54500 Vandœuvre-lès-Nancy, France
| | - Noémie Thomas
- Department of Biology, Signals and Systems in Cancer and Neuroscience, CRAN, UMR7039, Université de Lorraine, CNRS, 54500 Vandœuvre-lès-Nancy, France
| | - Muriel Barberi-Heyob
- Department of Biology, Signals and Systems in Cancer and Neuroscience, CRAN, UMR7039, Université de Lorraine, CNRS, 54500 Vandœuvre-lès-Nancy, France
| |
Collapse
|
38
|
Chang H, Foulke JG, Chen L, Tian F, Gu Z. GAS-Luc2 Reporter Cell Lines for Immune Checkpoint Drug Screening in Solid Tumors. Cancers (Basel) 2024; 16:1965. [PMID: 38893085 PMCID: PMC11171215 DOI: 10.3390/cancers16111965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Recent studies highlight the integral role of the interferon gamma receptor (IFNγR) pathway in T cell-mediated cytotoxicity against solid but not liquid tumors. IFNγ not only directly facilitates tumor cell death by T cells but also indirectly promotes cytotoxicity via myeloid phagocytosis in the tumor microenvironment. Meanwhile, full human ex vivo immune checkpoint drug screening remains challenging. We hypothesized that an engineered gamma interferon activation site response element luciferase reporter (GAS-Luc2) can be utilized for immune checkpoint drug screening in diverse ex vivo T cell-solid tumor cell co-culture systems. We comprehensively profiled cell surface proteins in ATCC's extensive collection of human tumor and immune cell lines, identifying those with endogenously high expression of established and novel immune checkpoint molecules and binding ligands. We then engineered three GAS-Luc2 reporter tumor cell lines expressing immune checkpoints PD-L1, CD155, or B7-H3/CD276. Luciferase expression was suppressed upon relevant immune checkpoint-ligand engagement. In the presence of an immune checkpoint inhibitor, T cells released IFNγ, activating the JAK-STAT pathway in GAS-Luc2 cells, and generating a quantifiable bioluminescent signal for inhibitor evaluation. These reporter lines also detected paracrine IFNγ signaling for immune checkpoint-targeted ADCC drug screening. Further development into an artificial antigen-presenting cell line (aAPC) significantly enhanced T cell signaling for superior performance in these ex vivo immune checkpoint drug screening platforms.
Collapse
Affiliation(s)
| | | | | | - Fang Tian
- American Type Culture Collection (ATCC), Manassas, VA 20110, USA
| | - Zhizhan Gu
- American Type Culture Collection (ATCC), Manassas, VA 20110, USA
| |
Collapse
|
39
|
De Leo A, Ugolini A, Yu X, Scirocchi F, Scocozza D, Peixoto B, Pace A, D'Angelo L, Liu JKC, Etame AB, Rughetti A, Nuti M, Santoro A, Vogelbaum MA, Conejo-Garcia JR, Rodriguez PC, Veglia F. Glucose-driven histone lactylation promotes the immunosuppressive activity of monocyte-derived macrophages in glioblastoma. Immunity 2024; 57:1105-1123.e8. [PMID: 38703775 PMCID: PMC11114377 DOI: 10.1016/j.immuni.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 12/08/2023] [Accepted: 04/09/2024] [Indexed: 05/06/2024]
Abstract
Immunosuppressive macrophages restrict anti-cancer immunity in glioblastoma (GBM). Here, we studied the contribution of microglia (MGs) and monocyte-derived macrophages (MDMs) to immunosuppression and mechanisms underlying their regulatory function. MDMs outnumbered MGs at late tumor stages and suppressed T cell activity. Molecular and functional analysis identified a population of glycolytic MDM expressing GLUT1 with potent immunosuppressive activity. GBM-derived factors promoted high glycolysis, lactate, and interleukin-10 (IL-10) production in MDMs. Inhibition of glycolysis or lactate production in MDMs impaired IL-10 expression and T cell suppression. Mechanistically, intracellular lactate-driven histone lactylation promoted IL-10 expression, which was required to suppress T cell activity. GLUT1 expression on MDMs was induced downstream of tumor-derived factors that activated the PERK-ATF4 axis. PERK deletion in MDM abrogated histone lactylation, led to the accumulation of intratumoral T cells and tumor growth delay, and, in combination with immunotherapy, blocked GBM progression. Thus, PERK-driven glucose metabolism promotes MDM immunosuppressive activity via histone lactylation.
Collapse
Affiliation(s)
- Alessandra De Leo
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, USA; Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Alessio Ugolini
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, USA; Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA; Department of Experimental Medicine "Sapienza" University of Rome, Rome, Italy
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatic, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Fabio Scirocchi
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, USA; Department of Experimental Medicine "Sapienza" University of Rome, Rome, Italy
| | - Delia Scocozza
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Barbara Peixoto
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, USA; Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Angelica Pace
- Department of Experimental Medicine "Sapienza" University of Rome, Rome, Italy
| | - Luca D'Angelo
- Department of Human Neurosciences, Neurosurgery Division, "Sapienza" University, AOU Policlinico Umberto I, Rome, Italy
| | - James K C Liu
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Arnold B Etame
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Aurelia Rughetti
- Department of Experimental Medicine "Sapienza" University of Rome, Rome, Italy
| | - Marianna Nuti
- Department of Experimental Medicine "Sapienza" University of Rome, Rome, Italy
| | - Antonio Santoro
- Department of Human Neurosciences, Neurosurgery Division, "Sapienza" University, AOU Policlinico Umberto I, Rome, Italy
| | | | - Jose R Conejo-Garcia
- Department of Integrative immunobiology, Duke School of Medicine, Durham, NC, USA
| | - Paulo C Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Filippo Veglia
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, USA; Department of Neuro-Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA; Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Zheng J, Wang L, Zhao S, Zhang W, Chang Y, Bosco DB, Huang T, Dheer A, Gao S, Xu S, Ayasoufi K, Al-Kharboosh R, Qi F, Xie M, Johnson AJ, Dong H, Quiñones-Hinojosa A, Wu LJ. TREM2 mediates MHCII-associated CD4+ T-cell response against gliomas. Neuro Oncol 2024; 26:811-825. [PMID: 37941134 PMCID: PMC11066911 DOI: 10.1093/neuonc/noad214] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Myeloid cells comprise up to 50% of the total tumor mass in glioblastoma (GBM) and have been implicated in promoting tumor progression and immunosuppression. Modulating the response of myeloid cells to the tumor has emerged as a promising new approach for cancer treatment. In this regard, we focus on the Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), which has recently emerged as a novel immune modulator in peripheral tumors. METHODS We studied the TREM2 expression profile in various patient tumor samples and conducted single-cell transcriptomic analysis in both GBM patients and the GL261 mouse glioma model. We utilized multiple mouse glioma models and employed state-of-the-art techniques such as invivo 2-photon imaging, spectrum flow cytometry, and in vitro co-culture assays to study TREM2 function in myeloid cell-mediated phagocytosis of tumor cells, antigen presentation, and response of CD4+ T cells within the tumor hemispheres. RESULTS Our research revealed significantly elevated levels of TREM2 expression in brain tumors compared to other types of tumors in patients. TREM2 was predominantly localized in tumor-associated myeloid cells and was highly expressed in nearly all microglia, as well as various subtypes of macrophages. Surprisingly, in preclinical glioma models, TREM2 deficiency did not confer a beneficial effect; instead, it accelerated glioma progression. Through detailed investigations, we determined that TREM2 deficiency impaired the ability of tumor-myeloid cells to phagocytose tumor cells and led to reduced expression of MHCII. This deficiency further significantly decreased the presence of CD4+ T cells within the tumor hemispheres. CONCLUSIONS Our study unveiled a previously unrecognized protective role of tumor-myeloid TREM2. Specifically, we found that TREM2 enhances the phagocytosis of tumor cells and promotes an immune response by facilitating MHCII-associated CD4+ T-cell responses against gliomas.
Collapse
Affiliation(s)
- Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Lingxiao Wang
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Shunyi Zhao
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Wenjing Zhang
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Yuzhou Chang
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Dale B Bosco
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tao Huang
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Aastha Dheer
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Shan Gao
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Shengze Xu
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Rawan Al-Kharboosh
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, Florida, USA
| | - Fangfang Qi
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Aaron J Johnson
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Haidong Dong
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
41
|
Blise KE, Sivagnanam S, Betts CB, Betre K, Kirchberger N, Tate BJ, Furth EE, Dias Costa A, Nowak JA, Wolpin BM, Vonderheide RH, Goecks J, Coussens LM, Byrne KT. Machine Learning Links T-cell Function and Spatial Localization to Neoadjuvant Immunotherapy and Clinical Outcome in Pancreatic Cancer. Cancer Immunol Res 2024; 12:544-558. [PMID: 38381401 PMCID: PMC11065586 DOI: 10.1158/2326-6066.cir-23-0873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/12/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
Tumor molecular data sets are becoming increasingly complex, making it nearly impossible for humans alone to effectively analyze them. Here, we demonstrate the power of using machine learning (ML) to analyze a single-cell, spatial, and highly multiplexed proteomic data set from human pancreatic cancer and reveal underlying biological mechanisms that may contribute to clinical outcomes. We designed a multiplex immunohistochemistry antibody panel to compare T-cell functionality and spatial localization in resected tumors from treatment-naïve patients with localized pancreatic ductal adenocarcinoma (PDAC) with resected tumors from a second cohort of patients treated with neoadjuvant agonistic CD40 (anti-CD40) monoclonal antibody therapy. In total, nearly 2.5 million cells from 306 tissue regions collected from 29 patients across both cohorts were assayed, and over 1,000 tumor microenvironment (TME) features were quantified. We then trained ML models to accurately predict anti-CD40 treatment status and disease-free survival (DFS) following anti-CD40 therapy based on TME features. Through downstream interpretation of the ML models' predictions, we found anti-CD40 therapy reduced canonical aspects of T-cell exhaustion within the TME, as compared with treatment-naïve TMEs. Using automated clustering approaches, we found improved DFS following anti-CD40 therapy correlated with an increased presence of CD44+CD4+ Th1 cells located specifically within cellular neighborhoods characterized by increased T-cell proliferation, antigen experience, and cytotoxicity in immune aggregates. Overall, our results demonstrate the utility of ML in molecular cancer immunology applications, highlight the impact of anti-CD40 therapy on T cells within the TME, and identify potential candidate biomarkers of DFS for anti-CD40-treated patients with PDAC.
Collapse
Affiliation(s)
- Katie E. Blise
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA
- The Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
| | - Shamilene Sivagnanam
- The Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR USA
| | - Courtney B. Betts
- The Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR USA
- Current affiliation: Akoya Biosciences, 100 Campus Drive, 6 Floor, Marlborough, MA USA
| | - Konjit Betre
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR USA
| | - Nell Kirchberger
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR USA
| | - Benjamin J. Tate
- The Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
- Immune Monitoring and Cancer Omics Services, Oregon Health & Science University, Portland, OR USA
| | - Emma E. Furth
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Andressa Dias Costa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA USA
| | - Jonathan A. Nowak
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA USA
| | - Robert H. Vonderheide
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Jeremy Goecks
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA
- The Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
- Current affiliation: Department of Machine Learning, H. Lee Moffitt Cancer Center, Tampa, FL USA
- Current affiliation: Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL USA
| | - Lisa M. Coussens
- The Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR USA
| | - Katelyn T. Byrne
- The Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR USA
- Lead contact: Katelyn T. Byrne, Department of Cell, Developmental and Cancer Biology, RLSB 6N032 Mail Code CL6C, 2730 S. Moody Ave, Portland, OR 97201
| |
Collapse
|
42
|
Yabo YA, Moreno-Sanchez PM, Pires-Afonso Y, Kaoma T, Nosirov B, Scafidi A, Ermini L, Lipsa A, Oudin A, Kyriakis D, Grzyb K, Poovathingal SK, Poli A, Muller A, Toth R, Klink B, Berchem G, Berthold C, Hertel F, Mittelbronn M, Heiland DH, Skupin A, Nazarov PV, Niclou SP, Michelucci A, Golebiewska A. Glioblastoma-instructed microglia transition to heterogeneous phenotypic states with phagocytic and dendritic cell-like features in patient tumors and patient-derived orthotopic xenografts. Genome Med 2024; 16:51. [PMID: 38566128 PMCID: PMC10988817 DOI: 10.1186/s13073-024-01321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND A major contributing factor to glioblastoma (GBM) development and progression is its ability to evade the immune system by creating an immune-suppressive environment, where GBM-associated myeloid cells, including resident microglia and peripheral monocyte-derived macrophages, play critical pro-tumoral roles. However, it is unclear whether recruited myeloid cells are phenotypically and functionally identical in GBM patients and whether this heterogeneity is recapitulated in patient-derived orthotopic xenografts (PDOXs). A thorough understanding of the GBM ecosystem and its recapitulation in preclinical models is currently missing, leading to inaccurate results and failures of clinical trials. METHODS Here, we report systematic characterization of the tumor microenvironment (TME) in GBM PDOXs and patient tumors at the single-cell and spatial levels. We applied single-cell RNA sequencing, spatial transcriptomics, multicolor flow cytometry, immunohistochemistry, and functional studies to examine the heterogeneous TME instructed by GBM cells. GBM PDOXs representing different tumor phenotypes were compared to glioma mouse GL261 syngeneic model and patient tumors. RESULTS We show that GBM tumor cells reciprocally interact with host cells to create a GBM patient-specific TME in PDOXs. We detected the most prominent transcriptomic adaptations in myeloid cells, with brain-resident microglia representing the main population in the cellular tumor, while peripheral-derived myeloid cells infiltrated the brain at sites of blood-brain barrier disruption. More specifically, we show that GBM-educated microglia undergo transition to diverse phenotypic states across distinct GBM landscapes and tumor niches. GBM-educated microglia subsets display phagocytic and dendritic cell-like gene expression programs. Additionally, we found novel microglial states expressing cell cycle programs, astrocytic or endothelial markers. Lastly, we show that temozolomide treatment leads to transcriptomic plasticity and altered crosstalk between GBM tumor cells and adjacent TME components. CONCLUSIONS Our data provide novel insights into the phenotypic adaptation of the heterogeneous TME instructed by GBM tumors. We show the key role of microglial phenotypic states in supporting GBM tumor growth and response to treatment. Our data place PDOXs as relevant models to assess the functionality of the TME and changes in the GBM ecosystem upon treatment.
Collapse
Affiliation(s)
- Yahaya A Yabo
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Pilar M Moreno-Sanchez
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Yolanda Pires-Afonso
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg
| | - Tony Kaoma
- Bioinformatics Platform, Department of Medical Informatics, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Bakhtiyor Nosirov
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg
- Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Andrea Scafidi
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg
| | - Luca Ermini
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg
| | - Anuja Lipsa
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg
| | - Anaïs Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg
| | - Dimitrios Kyriakis
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
| | - Kamil Grzyb
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
| | - Suresh K Poovathingal
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
- Single Cell Analytics & Microfluidics Core, Vlaams Instituut Voor Biotechnologie-KU Leuven, 3000, Louvain, Belgium
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg
| | - Arnaud Muller
- Bioinformatics Platform, Department of Medical Informatics, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Reka Toth
- Bioinformatics Platform, Department of Medical Informatics, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
- Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Barbara Klink
- National Center of Genetics, Laboratoire National de Santé, L-3555, Dudelange, Luxembourg
- Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg
- German Cancer Consortium (DKTK): Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT/UCC), Cancer Consortium (DKTK) Partner Site Dresden, and German Cancer Research Center (DKFZ), Dresden, Heidelberg, 01307, Germany
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Guy Berchem
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
- Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg
- Centre Hospitalier Luxembourg, L-1210, Luxembourg, Luxembourg
| | | | - Frank Hertel
- Centre Hospitalier Luxembourg, L-1210, Luxembourg, Luxembourg
| | - Michel Mittelbronn
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
- Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), L-3555, Dudelange, Luxembourg
- National Center of Pathology (NCP), Laboratoire National de Santé, L-3555, Dudelange, Luxembourg
| | - Dieter H Heiland
- Translational Neurosurgery, Friedrich-Alexander University Erlangen Nuremberg, 91054, Erlangen, Germany
- Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, 91054, Erlangen, Germany
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Neurosurgery, Medical Center, University of Freiburg, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, 79106, Freiburg, Germany
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
- Department of Physics and Material Science, University Luxembourg, L-4367, Belvaux, Luxembourg
- Department of Neuroscience, University of California San Diego, La Jolla, CA, 92093, USA
| | - Petr V Nazarov
- Bioinformatics Platform, Department of Medical Informatics, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
- Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Alessandro Michelucci
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg.
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg.
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg.
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg.
| |
Collapse
|
43
|
Guo M, Liu MYR, Brooks DG. Regulation and impact of tumor-specific CD4 + T cells in cancer and immunotherapy. Trends Immunol 2024; 45:303-313. [PMID: 38508931 DOI: 10.1016/j.it.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
CD4+ T cells are crucial in generating and sustaining immune responses. They orchestrate and fine-tune mammalian innate and adaptive immunity through cell-based interactions and the release of cytokines. The role of these cells in contributing to the efficacy of antitumor immunity and immunotherapy has just started to be uncovered. Yet, many aspects of the CD4+ T cell response are still unclear, including the differentiation pathways controlling such cells during cancer progression, the external signals that program them, and how the combination of these factors direct ensuing immune responses or immune-restorative therapies. In this review, we focus on recent advances in understanding CD4+ T cell regulation during cancer progression and the importance of CD4+ T cells in immunotherapies.
Collapse
Affiliation(s)
- Mengdi Guo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Melissa Yi Ran Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - David G Brooks
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
44
|
Lofiego MF, Piazzini F, Caruso FP, Marzani F, Solmonese L, Bello E, Celesti F, Costa MC, Noviello T, Mortarini R, Anichini A, Ceccarelli M, Coral S, Di Giacomo AM, Maio M, Covre A. Epigenetic remodeling to improve the efficacy of immunotherapy in human glioblastoma: pre-clinical evidence for development of new immunotherapy approaches. J Transl Med 2024; 22:223. [PMID: 38429759 PMCID: PMC10908027 DOI: 10.1186/s12967-024-05040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/24/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor, that is refractory to standard treatment and to immunotherapy with immune-checkpoint inhibitors (ICI). Noteworthy, melanoma brain metastases (MM-BM), that share the same niche as GBM, frequently respond to current ICI therapies. Epigenetic modifications regulate GBM cellular proliferation, invasion, and prognosis and may negatively regulate the cross-talk between malignant cells and immune cells in the tumor milieu, likely contributing to limit the efficacy of ICI therapy of GBM. Thus, manipulating the tumor epigenome can be considered a therapeutic opportunity in GBM. METHODS Microarray transcriptional and methylation profiles, followed by gene set enrichment and IPA analyses, were performed to study the differences in the constitutive expression profiles of GBM vs MM-BM cells, compared to the extracranial MM cells and to investigate the modulatory effects of the DNA hypomethylating agent (DHA) guadecitabine among the different tumor cells. The prognostic relevance of DHA-modulated genes was tested by Cox analysis in a TCGA GBM patients' cohort. RESULTS The most striking differences between GBM and MM-BM cells were found to be the enrichment of biological processes associated with tumor growth, invasion, and extravasation with the inhibition of MHC class II antigen processing/presentation in GBM cells. Treatment with guadecitabine reduced these biological differences, shaping GBM cells towards a more immunogenic phenotype. Indeed, in GBM cells, promoter hypomethylation by guadecitabine led to the up-regulation of genes mainly associated with activation, proliferation, and migration of T and B cells and with MHC class II antigen processing/presentation. Among DHA-modulated genes in GBM, 7.6% showed a significant prognostic relevance. Moreover, a large set of immune-related upstream-regulators (URs) were commonly modulated by DHA in GBM, MM-BM, and MM cells: DHA-activated URs enriched for biological processes mainly involved in the regulation of cytokines and chemokines production, inflammatory response, and in Type I/II/III IFN-mediated signaling; conversely, DHA-inhibited URs were involved in metabolic and proliferative pathways. CONCLUSIONS Epigenetic remodeling by guadecitabine represents a promising strategy to increase the efficacy of cancer immunotherapy of GBM, supporting the rationale to develop new epigenetic-based immunotherapeutic approaches for the treatment of this still highly deadly disease.
Collapse
Affiliation(s)
| | | | - Francesca Pia Caruso
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples "Federico II", Naples, Italy
| | | | - Laura Solmonese
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy
| | | | | | - Maria Claudia Costa
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples "Federico II", Naples, Italy
| | - Teresa Noviello
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Roberta Mortarini
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Anichini
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Ceccarelli
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Anna Maria Di Giacomo
- University of Siena, Siena, Italy
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy
| | - Michele Maio
- University of Siena, Siena, Italy
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy
| | | |
Collapse
|
45
|
Repici A, Ardizzone A, De Luca F, Colarossi L, Prestifilippo A, Pizzino G, Paterniti I, Esposito E, Capra AP. Signaling Pathways of AXL Receptor Tyrosine Kinase Contribute to the Pathogenetic Mechanisms of Glioblastoma. Cells 2024; 13:361. [PMID: 38391974 PMCID: PMC10886920 DOI: 10.3390/cells13040361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Brain tumors are a diverse collection of neoplasms affecting the brain with a high prevalence rate in people of all ages around the globe. In this pathological context, glioblastoma, a form of glioma that belongs to the IV-grade astrocytoma group, is the most common and most aggressive form of the primary brain tumors. Indeed, despite the best treatments available including surgery, radiotherapy or a pharmacological approach with Temozolomide, glioblastoma patients' mortality is still high, within a few months of diagnosis. Therefore, to increase the chances of these patients surviving, it is critical to keep finding novel treatment opportunities. In the past, efforts to treat glioblastoma have mostly concentrated on customized treatment plans that target specific mutations such as epidermal growth factor receptor (EGFR) mutations, Neurotrophic Tyrosine Receptor Kinase (NTRK) fusions, or multiple receptors using multi-kinase inhibitors like Sunitinib and Regorafenib, with varying degrees of success. Here, we focused on the receptor tyrosine kinase AXL that has been identified as a mediator for tumor progression and therapy resistance in various cancer types, including squamous cell tumors, small cell lung cancer, and breast cancer. Activated AXL leads to a significant increase in tumor proliferation, tumor cell migration, and angiogenesis in different in vitro and in vivo models of cancer since this receptor regulates interplay with apoptotic, angiogenic and inflammatory pathways. Based on these premises, in this review we mainly focused on the role of AXL in the course of glioblastoma, considering its primary biological mechanisms and as a possible target for the application of the most recent treatments.
Collapse
Affiliation(s)
- Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Fabiola De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Lorenzo Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (L.C.); (A.P.); (G.P.)
| | - Angela Prestifilippo
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (L.C.); (A.P.); (G.P.)
| | - Gabriele Pizzino
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (L.C.); (A.P.); (G.P.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| |
Collapse
|
46
|
Yadav N, Purow BW. Understanding current experimental models of glioblastoma-brain microenvironment interactions. J Neurooncol 2024; 166:213-229. [PMID: 38180686 PMCID: PMC11056965 DOI: 10.1007/s11060-023-04536-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
Glioblastoma (GBM) is a common and devastating primary brain tumor, with median survival of 16-18 months after diagnosis in the setting of substantial resistance to standard-of-care and inevitable tumor recurrence. Recent work has implicated the brain microenvironment as being critical for GBM proliferation, invasion, and resistance to treatment. GBM does not operate in isolation, with neurons, astrocytes, and multiple immune populations being implicated in GBM tumor progression and invasiveness. The goal of this review article is to provide an overview of the available in vitro, ex vivo, and in vivo experimental models for assessing GBM-brain interactions, as well as discuss each model's relative strengths and limitations. Current in vitro models discussed will include 2D and 3D co-culture platforms with various cells of the brain microenvironment, as well as spheroids, whole organoids, and models of fluid dynamics, such as interstitial flow. An overview of in vitro and ex vivo organotypic GBM brain slices is also provided. Finally, we conclude with a discussion of the various in vivo rodent models of GBM, including xenografts, syngeneic grafts, and genetically-engineered models of GBM.
Collapse
Affiliation(s)
- Niket Yadav
- Department of Neurology, University of Virginia Comprehensive Cancer Center, University of Virginia Health System, Charlottesville, VA, 22903, USA
- Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Benjamin W Purow
- Department of Neurology, University of Virginia Comprehensive Cancer Center, University of Virginia Health System, Charlottesville, VA, 22903, USA.
| |
Collapse
|
47
|
Camviel N, Akkari L. Uniting innate and adaptive immunity in glioblastoma; an α-CTLA-4 quest. Trends Immunol 2023; 44:933-935. [PMID: 37949785 DOI: 10.1016/j.it.2023.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
Immunotherapies have thus far led to disappointing outcomes in patients suffering from glioblastoma. Published in Immunity, Chen et al.'s recent study shows the therapeutic potential of an αCTLA-4 antibody (Ab), specifically in murine mesenchymal-like glioblastoma. αCTLA-4 Ab efficacy relied on the distinctive cooperation between CD4+ Th1 T cells and microglia, unleashing a potent antitumor response.
Collapse
Affiliation(s)
- Nicolas Camviel
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Leila Akkari
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
48
|
Chen H, Sameshima J, Yokomizo S, Sueyoshi T, Nagano H, Miyahara Y, Sakamoto T, Fujii S, Kiyoshima T, Guy T, Nakamura S, Moriyama M, Kaneko N, Kawano S. Expansion of CD4+ cytotoxic T lymphocytes with specific gene expression patterns may contribute to suppression of tumor immunity in oral squamous cell carcinoma: single-cell analysis and in vitro experiments. Front Immunol 2023; 14:1305783. [PMID: 38077321 PMCID: PMC10702345 DOI: 10.3389/fimmu.2023.1305783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Background Cancer immunotherapy targeting CD8+ T cells has made remarkable progress, even for oral squamous cell carcinoma (OSCC), a heterogeneous epithelial tumor without a substantial increase in the overall survival rate over the past decade. However, the therapeutic effects remain limited due to therapy resistance. Thus, a more comprehensive understanding of the roles of CD4+ T cells and B cells is crucial for more robust development of cancer immunotherapy. Methods In this study, we examined immune responses and effector functions of CD4+ T cells, CD8+ T cells and B cells infiltrating in OSCC lesions using single-cell RNA sequencing analysis, T cell receptor (TCR) and B cell receptor (BCR) repertoire sequencing analysis, and multi-color immunofluorescence staining. Finally, two Kaplan-Meier curves and several Cox proportional hazards models were constructed for the survival analysis. Results We observed expansion of CD4+ cytotoxic T lymphocytes (CTLs) expressing granzymes, which are reported to induce cell apoptosis, with a unique gene expression patterns. CD4+ CTLs also expressed CXCL13, which is a B cell chemoattractant. Cell-cell communication analysis and multi-color immunofluorescence staining demonstrated potential interactions between CD4+ CTLs and B cells, particularly IgD- CD27- double negative (DN) B cells. Expansion of CD4+ CTLs, DN B cells, and their contacts has been reported in T and B cell-activated diseases, including IgG4-related disease and COVID-19. Notably, we observed upregulation of several inhibitory receptor genes including CTLA-4 in CD4+ CTLs, which possibly dampened T and B cell activity. We next demonstrated comprehensive delineation of the potential for CD8+ T cell differentiation towards dysfunctional states. Furthermore, prognostic analysis revealed unfavorable outcomes of patients with a high proportion of CD4+ CTLs in OSCC lesions. Conclusion Our study provides a dynamic landscape of lymphocytes and demonstrates a systemic investigation of CD4+ CTL effects infiltrating into OSCC lesions, which may share some pathogenesis reported in severe T and B cell-activated diseases such as autoimmune and infectious diseases.
Collapse
Affiliation(s)
- Hu Chen
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Junsei Sameshima
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shiho Yokomizo
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tomoki Sueyoshi
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Haruki Nagano
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuka Miyahara
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Taiki Sakamoto
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shinsuke Fujii
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Thomas Guy
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Seiji Nakamura
- Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Masafumi Moriyama
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Naoki Kaneko
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Shintaro Kawano
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
49
|
Blise KE, Sivagnanam S, Betts CB, Betre K, Kirchberger N, Tate B, Furth EE, Dias Costa A, Nowak JA, Wolpin BM, Vonderheide RH, Goecks J, Coussens LM, Byrne KT. Machine learning links T cell function and spatial localization to neoadjuvant immunotherapy and clinical outcome in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563335. [PMID: 37961410 PMCID: PMC10634700 DOI: 10.1101/2023.10.20.563335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Tumor molecular datasets are becoming increasingly complex, making it nearly impossible for humans alone to effectively analyze them. Here, we demonstrate the power of using machine learning to analyze a single-cell, spatial, and highly multiplexed proteomic dataset from human pancreatic cancer and reveal underlying biological mechanisms that may contribute to clinical outcome. A novel multiplex immunohistochemistry antibody panel was used to audit T cell functionality and spatial localization in resected tumors from treatment-naive patients with localized pancreatic ductal adenocarcinoma (PDAC) compared to a second cohort of patients treated with neoadjuvant agonistic CD40 (αCD40) monoclonal antibody therapy. In total, nearly 2.5 million cells from 306 tissue regions collected from 29 patients across both treatment cohorts were assayed, and more than 1,000 tumor microenvironment (TME) features were quantified. We then trained machine learning models to accurately predict αCD40 treatment status and disease-free survival (DFS) following αCD40 therapy based upon TME features. Through downstream interpretation of the machine learning models' predictions, we found αCD40 therapy to reduce canonical aspects of T cell exhaustion within the TME, as compared to treatment-naive TMEs. Using automated clustering approaches, we found improved DFS following αCD40 therapy to correlate with the increased presence of CD44+ CD4+ Th1 cells located specifically within cellular spatial neighborhoods characterized by increased T cell proliferation, antigen-experience, and cytotoxicity in immune aggregates. Overall, our results demonstrate the utility of machine learning in molecular cancer immunology applications, highlight the impact of αCD40 therapy on T cells within the TME, and identify potential candidate biomarkers of DFS for αCD40-treated patients with PDAC.
Collapse
Affiliation(s)
- Katie E. Blise
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA
- The Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
| | - Shamilene Sivagnanam
- The Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR USA
| | - Courtney B. Betts
- The Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR USA
- Current affiliation: Akoya Biosciences, 100 Campus Drive, 6th Floor, Marlborough, MA USA
| | - Konjit Betre
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR USA
| | - Nell Kirchberger
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR USA
| | - Benjamin Tate
- The Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
- Immune Monitoring and Cancer Omics Services, Oregon Health & Science University, Portland, OR USA
| | - Emma E. Furth
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Andressa Dias Costa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA USA
| | - Jonathan A. Nowak
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA USA
| | - Robert H. Vonderheide
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Jeremy Goecks
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA
- The Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
- Current affiliation: Department of Machine Learning, H. Lee Moffitt Cancer Center, Tampa, FL USA
- Current affiliation: Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL USA
| | - Lisa M. Coussens
- The Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR USA
| | - Katelyn T. Byrne
- The Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR USA
- Lead contact
| |
Collapse
|