1
|
Joshi P, Patel S, Paliwal A, Jain S, Verma K, Dwivedi J, Sharma S. Tinospora cordifolia ameliorates paclitaxel-induced neuropathic pain in albino rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117559. [PMID: 38072294 DOI: 10.1016/j.jep.2023.117559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tinospora cordifolia (T. cordifolia) (Willd.) Miers, a member of the Menispermaceae, family documented in the ancient textbooks of the Ayurveda System of Medicine, has been used in the management of sciatica pain and diabetic neuropathy. AIM The study has been designed to evaluate the antinociceptive potential of various extracts of T. cordifolia stem in Paclitaxel (PT)-generated neuropathic pain model in albino rats and explore its possible mechanism employing molecular docking studies. METHODS Stems of T. cordifolia were shade dried, grinded in fine powder, and extracted separately with different solvents viz. ethanol, water & hydro-alcoholic and characterized using LCMS/MS. The antinociceptive property of T. cordifolia stem (200 and 400 mg/kg) was examined in albino rats using a PT-induced neuropathic pain model. Further, the effect of these extracts was also observed using different behavioral assays viz. cold allodynia, mechanical hyperalgesia (pin-prick test), locomotor activity test, walking track test, and Sciatic Functional Index (SFI) in rats. Tissue lysate of the sciatic nerve was used to determine various biochemical markers such as GSH, SOD, TBARS, tissue protein, and nitrite. Further to explore the possible mechanism of action, the most abundant and therapeutically active compounds available in aqueous extract were analyzed for binding affinity towards soluble epoxide hydrolase (sEH) enzyme (PDB ID: 3wk4) employing molecular docking studies. RESULTS The results of the LCMS/MS study of different extracts of T. cordifolia indicated presence of alkaloids, glycosides, terpenoids, sterols and sugars such as amritoside A, tinocordin, magnoflorine, N-methylcoclaurine, coridine, 20β-hydroxyecdysone and menaquinone-7 palmatin, cordifolioside A and tinosporine etc. Among all the three extracts, the hydroalcoholic extract (400 mg/kg) showed the highest response followed by aqueous and ethanolic extracts as evident in in vivo behavioral and biochemical evaluations. Furthermore, docking studies also exposed that these compounds viz. N-methylcoclaurine tinosporin, palmatine, tinocordin, 20β-hydroxyecdysone, and coridine exhibited well to excellent affinity towards target sEH protein. CONCLUSION T. cordifolia stem could alleviate neuropathic pain via soluble epoxide hydrolase inhibitory activity.
Collapse
Affiliation(s)
- Priyanka Joshi
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India; R&D, Patanjali Ayurved Ltd, Patanjali Food and Herbal Park, Haridwar, Uttarakhand, India
| | - Saraswati Patel
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Ajita Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India.
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India.
| |
Collapse
|
2
|
Gupta A, Gupta P, Bajpai G. Tinospora cordifolia (Giloy): An insight on the multifarious pharmacological paradigms of a most promising medicinal ayurvedic herb. Heliyon 2024; 10:e26125. [PMID: 38390130 PMCID: PMC10882059 DOI: 10.1016/j.heliyon.2024.e26125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Medicinal herbs are being widely accepted as alternative remedies for preventing various diseases especially in India and other Asian countries. However, most plant-based herbal medicines are not yet being scientifically accepted worldwide. "Tinospora cordifolia (Willd.) Miers ex Hook.F. & Thomson", one of the most promising plant species of Tinospora known as "Giloy" or Guduchi that is used in several traditional medicines in treating diseases e.g., metabolic and immune disorders, diabetes, heart diseases, cancer, and infectious diseases, has been widely investigated. Varieties of bioactive phytochemical constituents isolated from the stem, root and whole plant of T. cordifolia have been identified. In the last two decades, the diverse pharmacological activities of T. cordifolia have been continuously studied. Due to its therapeutic efficacy in immune modulation, it could be effective in viral and other diseases treatment as well. A medicinal plant could be well-suited not only for the treatment of target site but also for boosting the body's immune system. As an alternate source of medication, medicinal herbs are continuously showing better compatibility with the human body with minimal side effects than other therapies. Keeping this in mind, the present review highlights the pharmacological potential of T. cordifolia against various diseases.
Collapse
Affiliation(s)
- Abhishek Gupta
- Baj's Laboratories, Industrial Area, Rooma, Kanpur-208008, UP, India
- King George's Medical University, Lucknow-226003, UP, India
| | - Priyanka Gupta
- King George's Medical University, Lucknow-226003, UP, India
| | - Gunjan Bajpai
- Baj's Laboratories, Industrial Area, Rooma, Kanpur-208008, UP, India
| |
Collapse
|
3
|
Chen X, Liao B, Ren T, Liao Z, Huang Z, Lin Y, Zhong S, Li J, Wen S, Li Y, Lin X, Du X, Yang Y, Guo J, Zhu X, Lin H, Liu R, Wang J. Adjuvant activity of cordycepin, a natural derivative of adenosine from Cordyceps militaris, on an inactivated rabies vaccine in an animal model. Heliyon 2024; 10:e24612. [PMID: 38293396 PMCID: PMC10826310 DOI: 10.1016/j.heliyon.2024.e24612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Vaccination is the most feasible way of preventing rabies, an ancient zoonosis that remains a major public health concern globally. However, administration of inactivated rabies vaccination without adjuvants is always inefficient and necessitates four to five injections. In the current study, we explored the adjuvant characteristics of cordycepin, a major bioactive component of Cordyceps militaris, to boost immune responses against a commercially available rabies vaccine. We found that cordycepin could stimulate stronger phenotypic and functional maturation of dendritic cells (DCs). For animal experiments, mice were immunized 3 times with rabies vaccine in the presence or absence of cordycepin at 1-week interval. Analysis of T cell differentiation and serum antibody isotypes showed that humoral immunity was dominant with a Th2 biased immune response. These results were also supported by the raised ratio of follicular helper T cells (TFH) and germinal center B cells (GCB). Thus, titer of rabies virus neutralizing antibody (RVNAb) and rabies virus-specific memory B cells were both raised as a result. Furthermore, administration of cordycepin did not cause pathological phenomena or body weight loss. The findings indicate that cordycepin could be used as a promising adjuvant for rabies vaccines to get a higher range of protection without any side effects.
Collapse
Affiliation(s)
- Xin Chen
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518118, China
| | - Boyu Liao
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518118, China
| | - Tianci Ren
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Zhipeng Liao
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Zijie Huang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yujuan Lin
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Shouhao Zhong
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Jiaying Li
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Shun Wen
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yingyan Li
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xiaohan Lin
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xingchen Du
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yuhui Yang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518118, China
| | - Jiubiao Guo
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xiaohui Zhu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Haishu Lin
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518118, China
| | - Rui Liu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jingbo Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518118, China
| |
Collapse
|
4
|
Anjum V, Bagale U, Kadi A, Potoroko I, Sonawane SH, Anjum A. Unveiling Various Facades of Tinospora cordifolia Stem in Food: Medicinal and Nutraceutical Aspects. Molecules 2023; 28:7073. [PMID: 37894552 PMCID: PMC10609069 DOI: 10.3390/molecules28207073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Natural products with curative properties are gaining immense popularity in scientific and food research, possessing no side effects in contrast to other drugs. Guduchi, or Tinospora cordifolia, belongs to the menispermaceae family of universal drugs used to treat various diseases in traditional Indian literature. It has received attention in recent decades because of its utilization in folklore medicine for treating several disorders. Lately, the findings of active phytoconstituents present in herbal plants and their pharmacological function in disease treatment and control have stimulated interest in plants around the world. Guduchi is ethnobotanically used for jaundice, diabetes, urinary problems, stomachaches, prolonged diarrhea, skin ailments, and dysentery. The treatment with Guduchi extracts was accredited to phytochemical constituents, which include glycosides, alkaloids, steroids, and diterpenoid lactones. This review places emphasis on providing in-depth information on the budding applications of herbal medicine in the advancement of functional foods and nutraceuticals to natural product researchers.
Collapse
Affiliation(s)
- Varisha Anjum
- Department of Food and Biotechnology, South Ural State University, Chelyabinsk 454080, Russia; (U.B.); (A.K.); (I.P.)
| | - Uday Bagale
- Department of Food and Biotechnology, South Ural State University, Chelyabinsk 454080, Russia; (U.B.); (A.K.); (I.P.)
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University, Chelyabinsk 454080, Russia; (U.B.); (A.K.); (I.P.)
| | - Irina Potoroko
- Department of Food and Biotechnology, South Ural State University, Chelyabinsk 454080, Russia; (U.B.); (A.K.); (I.P.)
| | - Shirish H. Sonawane
- Department of Chemical Engineering, National Institute of Technology, Warangal 506004, India;
| | - Areefa Anjum
- Department of Ilmul Advia, School of Unani Medical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| |
Collapse
|
5
|
Singh A, Adam A, Rodriguez L, Peng BH, Wang B, Xie X, Shi PY, Homma K, Wang T. Oral Supplementation with AHCC ®, a Standardized Extract of Cultured Lentinula edodes Mycelia, Enhances Host Resistance against SARS-CoV-2 Infection. Pathogens 2023; 12:554. [PMID: 37111440 PMCID: PMC10144296 DOI: 10.3390/pathogens12040554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has significantly impacted global public health safety and the economy. Multiple antiviral drugs have been developed, and some have received regulatory approval and/or authorization. The use of nutraceuticals can be beneficial for preventing and treating COVID-19 complications. AHCC is a standardized, cultured extract of an edible mushroom Lentinula edodes of the Basidiomycete family of fungi that is enriched in acylated α-1,4-glucans. Here, we evaluated the effects of the oral administration of AHCC on the host response to SARS-CoV-2 infection in two murine models, K18-hACE2 transgenic mice and immunocompetent BALB/c mice. Oral administration of AHCC every other day for one week before and one day post SARS-CoV-2 infection in both strains of mice decreased the viral load and attenuated inflammation in the lungs. AHCC treatment also significantly reduced SARS-CoV-2-induced lethality in the K18-hACE2 mice. AHCC administration enhanced the expansion of γδ T cells in the spleen and lungs before and after viral infection and promoted T helper 1-prone mucosal and systemic T cell responses in both models. In AHCC-fed BALB/c mice, SARS-CoV-2 specific IgG responses were also enhanced. In summary, AHCC supplementation enhances host resistance against mild and severe COVID-19 infection primarily via the promotion of innate and adaptive T cell immune responses in mice.
Collapse
Affiliation(s)
- Ankita Singh
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Awadalkareem Adam
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Leslie Rodriguez
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bi-Hung Peng
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Binbin Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xuping Xie
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kohei Homma
- Research and Development Division, Amino Up Co., Ltd., Sapporo 004-0839, Hokkaido, Japan
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
6
|
Kumar M, Hasan M, Sharma A, Suhag R, Maheshwari C, Radha, Chandran D, Sharma K, Dhumal S, Senapathy M, Natarajan K, Punniyamoorthy S, Mohankumar P, Dey A, Deshmukh V, Anitha T, Balamurugan V, Pandiselvam R, Lorenzo JM, Kennedy JF. Tinospora cordifolia (Willd.) Hook.f. & Thomson polysaccharides: A review on extraction, characterization, and bioactivities. Int J Biol Macromol 2023; 229:463-475. [PMID: 36563821 DOI: 10.1016/j.ijbiomac.2022.12.181] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Human awareness of the need for health and wellness practices that enhance disease resilience has increased as a result of recent health risks. Plant-derived polysaccharides with biological activity are good candidates to fight diseases because of their low toxicity. Tinospora cordifolia (Willd.) Hook.f. & Thomson polysaccharides extract from different plant parts have been reported to possess significant biological activity such as anti-oxidant, anti-cancer, immunomodulatory, anti-diabetic, radioprotective and hepatoprotective. Several extraction and purification techniques have been used to isolate and characterize T. cordifolia polysaccharides. Along with hot-water extraction (HWE), other novel techniques like microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), pulsed electric field (PEF), supercritical-fluid extraction (SFE), and enzyme-assisted extraction (EAE) are used to extract T cordifolia polysaccharides. SFE is a revolutionary technology that gives the best yield and purity of low-molecular-weight polysaccharides. According to the findings, polysaccharides extracted and purified from T. cordifolia have a significant impact on their structure and biological activity. As a result, the methods of extraction, structural characterization, and biological activity of T. cordifolia polysaccharides are covered in this review. Research on T. cordifolia polysaccharides and their potential applications will benefit greatly from the findings presented in this review.
Collapse
Affiliation(s)
- Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India; Department of Biology, East Carolina University, Greenville 27858, USA.
| | - Muzaffar Hasan
- Agro Produce Processing Division, ICAR-Central Institute of Agricultural Engineering, Bhopal 462038, India
| | - Anshu Sharma
- Department of Food Science and Technology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni 173230, India
| | - Rajat Suhag
- National Institute of Food Technology Entrepreneurship and Management, Sonipat 131028, Haryana, India
| | - Chirag Maheshwari
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 12, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India.
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Kanika Sharma
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India.
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo, SNNPR, Ethiopia
| | - Krishnaprabu Natarajan
- Department of Agronomy, VIT School of Agricultural Innovations and Advanced Learning, VIT University, Vellore 632014, India
| | - Sheela Punniyamoorthy
- Department of Food Science and Technology, SRM College of Agricultural Sciences, SRMIST-Vendhar Nagar, Baburayanpettai, Chengalpet 603201, India
| | - Pran Mohankumar
- School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Vishal Deshmukh
- Bharati Vidyapeeth (Deemed to be University), Yashwantrao Mohite Institute of Management, Karad, India
| | - T Anitha
- Department of Postharvest Technology, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Periyakulam 625604, India
| | - V Balamurugan
- Department of Agricultural Economics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Ravi Pandiselvam
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, Kerala 671124, India
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, Kyrewood House, Tenbury Wells, Worcs WR15 8FF, UK
| |
Collapse
|
7
|
Nandan A, Sharma V, Banerjee P, Sadasivam K, Venkatesan S, Prasher B. Deciphering the mechanism of Tinospora cordifolia extract on Th17 cells through in-depth transcriptomic profiling and in silico analysis. Front Pharmacol 2023; 13:1056677. [PMID: 36699055 PMCID: PMC9868420 DOI: 10.3389/fphar.2022.1056677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023] Open
Abstract
Naive CD4+ T cells differentiate into effector (Th1, Th2, Th17) cells and immunosuppressive (Treg) cells upon antigenic stimulation in the presence of a specific cytokine milieu. The T cell in vitro culture system provides a very efficient model to study compounds' therapeutic activity and mechanism of action. Tinospora cordifolia (Willd.) Hook.f. & Thomson (Family. Menispermaceae) is one of the widely used drugs in Ayurveda (ancient Indian system of medicine) for various ailments such as inflammatory conditions, autoimmune disorders, and cancer as well as for promoting general health. In vitro and in vivo studies on immune cells comprising dendritic cells, macrophages, and B cells suggest its immune-modulating abilities. However, to date, the effect of T. cordifolia on individual purified and polarized T cell subsets has not been studied. Studying drug effects on T cell subsets is needed to understand their immunomodulatory mechanism and to develop treatments for diseases linked with T cell abnormalities. In this study, we examined the immunomodulatory activity of T. cordifolia on primary CD4+ T cells, i.e., Th1, Th17, and iTreg cells. An aqueous extract of T. cordifolia was non-cytotoxic at concentrations below 1500 µg/ml and moderately inhibited the proliferation of naive CD4+ T cells stimulated with anti-CD3ε and anti-CD28 for 96 h. T. cordifolia treatment of naive CD4+ T cells differentiated under Th17-polarizing conditions exhibited reduced frequency of IL-17 producing cells with inhibition of differentiation and proliferation. For the first time, in-depth genome-wide expression profiling of T. cordifolia treated naive CD4+ T cells, polarized to Th17 cells, suggests the broad-spectrum activity of T. cordifolia. It shows inhibition of the cytokine-receptor signaling pathway, majorly via the JAK-STAT signaling pathway, subsequently causing inhibition of Th17 cell differentiation, proliferation, and effector function. Additionally, the molecular docking studies of the 69 metabolites of T. cordifolia further substantiate the inhibitory activity of T. cordifolia via the cytokine-receptor signaling pathway. Furthermore, in vitro polarized Th1 and iTreg cells treated with T. cordifolia extract also showed reduced IFN-γ production and FoxP3 expression, respectively. This study provides insight into the plausible mechanism/s of anti-inflammatory activity of T. cordifolia involving T cells, mainly effective in Th17-associated autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Amrita Nandan
- Genomics and Molecular Medicine, Council of Scientific and Industrial Research -Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India,CSIR’s Ayurgenomics Unit, Translational Research and Innovative Science Through Ayurgenomics (TRISUTRA), CSIR-IGIB, Delhi, India,Centre of Excellence for Applied Development of Ayurveda, Prakriti and Genomics, CSIR- IGIB, Delhi, India,*Correspondence: Amrita Nandan, ; Bhavana Prasher,
| | | | - Prodyot Banerjee
- Centre of Excellence for Applied Development of Ayurveda, Prakriti and Genomics, CSIR- IGIB, Delhi, India
| | - Kannan Sadasivam
- Centre for High Computing, CSIR-Central Leather Research Institute (CLRI), Chennai, India
| | - Subramanian Venkatesan
- Centre for High Computing, CSIR-Central Leather Research Institute (CLRI), Chennai, India,Department of Chemistry, Indian Institute of Technology Madras, Chennai, India
| | - Bhavana Prasher
- Genomics and Molecular Medicine, Council of Scientific and Industrial Research -Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India,CSIR’s Ayurgenomics Unit, Translational Research and Innovative Science Through Ayurgenomics (TRISUTRA), CSIR-IGIB, Delhi, India,Centre of Excellence for Applied Development of Ayurveda, Prakriti and Genomics, CSIR- IGIB, Delhi, India,*Correspondence: Amrita Nandan, ; Bhavana Prasher,
| |
Collapse
|
8
|
The Effect of Novel Selenopolysaccharide Isolated from Lentinula edodes Mycelium on Human T Lymphocytes Activation, Proliferation, and Cytokines Synthesis. Biomolecules 2022; 12:biom12121900. [PMID: 36551328 PMCID: PMC9776057 DOI: 10.3390/biom12121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Polysaccharides isolated from Lentinula edodes are bioactive compounds with immunomodulatory properties. In our previous studies from L. edodes mycelium, we have isolated a selenium(Se)-enriched fraction (named Se-Le-30), a mixture of linear 1,4-α-glucan and linear 1,3-β- and 1,6-β-glucans. In this study, we analyzed the effects of Se-Le-30 on the activation and proliferation of human T lymphocytes stimulated by anti-CD3 and anti-CD3/CD28 antibodies (Abs) and on the production of cytokines by peripheral blood mononuclear cells (PBMCs). Se-Le-30 had effects on T cell proliferation induced by Abs against CD3 and CD28. It significantly inhibited the proliferation of CD3-stimulated CD4+ and CD8+ T cells and enhanced the proliferation of CD4+ T cells stimulated with anti-CD3/CD28 Ab. Moreover, Se-Le-30 downregulated the number of CD3-stimulated CD4+CD69+ cells, CD4+CD25+ cells, as well as CD8+CD25+ cells, and upregulated the expression of CD25 marker on CD4+ and CD8+ T cells activated with anti-CD3/CD28 Abs. Furthermore, Se-Le-30 enhanced the synthesis of IFN-γ by the unstimulated and anti-CD3/CD28-stimulated PBMCs, inhibited synthesis of IL-2 and IL-4 by CD3-stimulated cells, and augmented the synthesis of IL-6 and IL-10 by unstimulated, CD3-stimulated, and CD3/CD28-stimulated PBMCs. Together, we demonstrated that Se-Le-30 exerts immunomodulatory effects on human T lymphocytes. These observations are of importance for the prospective use of Se-Le-30 in research or as a therapeutic compound.
Collapse
|
9
|
Arunachalam K, Yang X, San TT. Tinospora cordifolia (Willd.) Miers: Protection mechanisms and strategies against oxidative stress-related diseases. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114540. [PMID: 34509604 DOI: 10.1016/j.jep.2021.114540] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tinospora cordifolia (Willd.) Miers (Menispermaceae) is a Mediterranean herb, used in Ayurvedic, Siddha, Unani, and folk medicines. The herb is also used in conventional medicine to treat oxidative stress-related diseases and conditions, including inflammation, pain, diarrhea, asthma, respiratory infections, cancer, diabetes, and gastrointestinal disorders. AIM OF THE REVIEW The taxonomy, botanical classification, geographical distribution, and ethnobotanical uses of T. cordifolia, as well as the phytochemical compounds found in the herb, the toxicology of and pharmacological and clinical studies on the effects of T. cordifolia are all covered in this study. MATERIALS AND METHODS To gather information on T. cordifolia, we used a variety of scientific databases, including Scopus, Google Scholar, PubMed, and Science Direct. The information discussed focuses on biologically active compounds found in T. cordifolia, and common applications and pharmacological activity of the herb, as well as toxicological and clinical studies on its properties. RESULTS The findings of this study reveal a connection between the use of T. cordifolia in conventional medicine and its antioxidant, anti-inflammatory, antihypertensive, antidiabetic, anticancer, immunomodulatory, and other biological effects. The entire plant, stem, leaves, root, and extracts of T. cordifolia have been shown to have a variety of biological activities, including antioxidant, antimicrobial, antiviral, antiparasitic, antidiabetic, anticancer, anti-inflammatory, analgesic and antipyretic, hepatoprotective, and cardioprotective impact. Toxicological testing demonstrated that this plant may have medicinal applications. T. cordifolia contains a variety of biologically active compounds from various chemical classes, including alkaloids, terpenoids, sitosterols, flavonoids, and phenolic acids. Based on the reports researched for this review, we believe that chemicals in T. cordifolia may activate Nrf2, which leads to the overexpression of antioxidant enzymes such as CAT, GPx, GST, and GR, and thereby induces the adaptive response to oxidative stress. T. cordifolia is also able to reduce NF-κB signalling by inhibiting PI3K/Akt, activating AMPK and sirtuins, and downregulating PI3K/Akt. CONCLUSIONS Our findings indicate that the pharmacological properties displayed by T. cordifolia back up its conventional uses. Antimicrobial, antiviral, antioxidant, anticancer, anti-inflammatory, antimutagenic, antidiabetic, nephroprotective, gastroprotective, hepatoprotective, and cardioprotective activities were all demonstrated in T. cordifolia stem extracts. To validate pharmacodynamic targets, further research is needed to evaluate the molecular mechanisms of the known compounds against gastrointestinal diseases, inflammatory processes, and microbial infections, as immunostimulants, and in chemotherapy. The T. cordifolia safety profile was confirmed in a toxicological analysis, which prompted pharmacokinetic assessment testing to confirm its bioavailability.
Collapse
Affiliation(s)
- Karuppusamy Arunachalam
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650 201, People's Republic of China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar.
| | - Xuefei Yang
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650 201, People's Republic of China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar.
| | - Thae Thae San
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650 201, People's Republic of China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| |
Collapse
|
10
|
Sharma H, Rao PS, Singh AK. Fifty years of research on Tinospora cordifolia: From botanical plant to functional ingredient in foods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Mishra SK, Tripathi T. One year update on the COVID-19 pandemic: Where are we now? Acta Trop 2021; 214:105778. [PMID: 33253656 PMCID: PMC7695590 DOI: 10.1016/j.actatropica.2020.105778] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
We are living through an unprecedented crisis with the rapid spread of the new coronavirus disease (COVID-19) worldwide within a short time. The timely availability of thousands of SARS-CoV-2 genomes has enabled the scientific community to study the origin, structures, and pathogenesis of the virus. The pandemic has spurred research publication and resulted in an unprecedented number of therapeutic proposals. Because the development of new drugs is time consuming, several strategies, including drug repurposing and repositioning, are being tested to treat patients with COVID-19. Researchers have developed several potential vaccine candidates that have shown promise in phase II and III trials. As of 12 November 2020, 164 candidate vaccines are in preclinical evaluation, and 48 vaccines are in clinical evaluation, of which four have cleared phase III trials (Pfizer/BioNTech's BNT162b2, Moderna's mRNA-1273, University of Oxford & AstraZeneca's AZD1222, and Gamaleya's Sputnik V vaccine). Despite the acquisition of a vast body of scientific information, treatment depends only on the clinical management of the disease through supportive care. At the pandemic's 1-year mark, we summarize current information on SARS-CoV-2 origin and biology, and advances in the development of therapeutics. The updated information presented here provides a comprehensive report on the scientific progress made in the past year in understanding of SARS-CoV-2 biology and therapeutics.
Collapse
Affiliation(s)
- Sanjay Kumar Mishra
- Department of Botany, Ewing Christian College, Prayagraj- 211003, Uttar Pradesh, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, Meghalaya, India.
| |
Collapse
|
12
|
Yates CR, Bruno EJ, Yates MED. Tinospora Cordifolia: A review of its immunomodulatory properties. J Diet Suppl 2021; 19:271-285. [PMID: 33480818 DOI: 10.1080/19390211.2021.1873214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Emergent health threats have heightened human awareness of the need for health and wellness measures that promote resilience to disease. In addition to proper nutrition and exercise, health-conscious consumers are seeking natural-based modalities, e.g. botanical preparations, that positively impact the immune system. In Ayurvedic ethnomedicine, Tinospora cordifolia (T. cordifolia), a deciduous climbing shrub indigenous to India, has been used to historically to combat acute and chronic inflammation as well as to promote a balanced immune response. As a dietary supplement, T. cordifolia has been administered most often as a decoction either alone or in compositions containing other medicinal plant extracts of the Terminalia and Phyllanthus species. Extensive phytochemical characterization of aqueous and alcoholic extracts of different Tinospora species has identified over two hundred different phytochemicals from non-overlapping chemical classes with the most abundant being diterpenoids containing the clerodane-type skeleton. Numerous pharmacology studies have demonstrated that T. cordifolia modulates key signaling pathways related to cell proliferation, inflammation, and immunomodulation. However, rigorous dereplication studies to identify active constituents in various T. cordifolia extracts and their fractions are lacking. In this review, we will summarize the current information regarding T. cordifolia's ethnomedicinal uses, phytochemistry, pharmacological activities, and safety in order to highlight its potential as an immunomodulatory dietary supplement.
Collapse
Affiliation(s)
- Charles R Yates
- Center for Nutraceutical and Dietary Supplement Research, School of Health Studies, University of Memphis, Memphis, TN, USA
| | - Eugene J Bruno
- Administration Department, Huntington University of Health Sciences, Knoxville, TN, USA
| | - Mary E D Yates
- Pharmacy Department, Methodist Germantown Hospital, Germantown, TN, USA
| |
Collapse
|
13
|
Franco AR, Peri F. Developing New Anti-Tuberculosis Vaccines: Focus on Adjuvants. Cells 2021; 10:cells10010078. [PMID: 33466444 PMCID: PMC7824815 DOI: 10.3390/cells10010078] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) that sits in the top 10 leading causes of death in the world today and is the current leading cause of death among infectious diseases. Although there is a licensed vaccine against TB, the Mycobacterium bovis bacilli Calmette–Guérin (BCG) vaccine, it has several limitations, namely its high variability of efficacy in the population and low protection against pulmonary tuberculosis. New vaccines for TB are needed. The World Health Organization (WHO) considers the development and implementation of new TB vaccines to be a priority. Subunit vaccines are promising candidates since they can overcome safety concerns and optimize antigen targeting. Nevertheless, these vaccines need adjuvants in their formulation in order to increase immunogenicity, decrease the needed antigen dose, ensure a targeted delivery and optimize the antigens delivery and interaction with the immune cells. This review aims to focus on adjuvants being used in new formulations of TB vaccines, namely candidates already in clinical trials and others in preclinical development. Although no correlates of protection are defined, most research lines in the field of TB vaccination focus on T-helper 1 (Th1) type of response, namely polyfunctional CD4+ cells expressing simultaneously IFN-γ, TNF-α, and IL-2 cytokines, and also Th17 responses. Accordingly, most of the adjuvants reviewed here are able to promote such responses. In the future, it might be advantageous to consider a wider array of immune parameters to better understand the role of adjuvants in TB immunity and establish correlates of protection.
Collapse
|
14
|
Adithya J, Nair B, Aishwarya TS, Nath LR. The Plausible Role of Indian Traditional Medicine in Combating Corona Virus (SARS-CoV 2): A Mini-Review. Curr Pharm Biotechnol 2021; 22:906-919. [PMID: 32767920 DOI: 10.2174/1389201021666200807111359] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023]
Abstract
SARS-CoV 2 is a novel virus strain of Coronavirus, reported in China in late December 2019. Its highly contagious nature in humans has prompted WHO to designate the ongoing pandemic as a Public Health Emergency of International Concern. At this moment, there is no specific treatment and the therapeutic strategies to deal with the infection are only supportive, with prevention aimed at reducing community transmission. A permanent solution for the pandemic, which has brought the world economy to the edge of collapse, is the need of the hour. This situation has brought intense research in traditional systems of medicine. Indian Traditional System, Ayurveda, has a clear concept of the cause and treatment of pandemics. Through this review, information on the potential antiviral traditional medicines along with their immunomodulatory pathways are discussed. We have covered the seven most important Indian traditional plants with antiviral properties: Withania somnifera (L.) Dunal (family: Solanaceae), Tinospora cordifolia (Thunb.) Miers (family: Menispermaceae), Phyllanthus emblica L. (family: Euphorbiaceae), Asparagus racemosus L. (family: Liliaceae), Glycyrrhiza glabra L. (family: Fabaceae), Ocimum sanctum L. (family: Lamiaceae) and Azadirachta indica A. Juss (family: Meliaceae) in this review. An attempt is also made to bring into limelight the importance of dietary polyphenol, Quercetin, which is a potential drug candidate in the making against the SARS-CoV2 virus.
Collapse
Affiliation(s)
- J Adithya
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala 682041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala 682041, India
| | - T S Aishwarya
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala 682041, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala 682041, India
| |
Collapse
|
15
|
Kumar P, Kamle M, Mahato DK, Bora H, Sharma B, Rasane P, Bajpai VK. <i>Tinospora cordifolia</i> (Giloy): Phytochemistry, Ethnopharmacology, Clinical Application and Conservation Strategies. Curr Pharm Biotechnol 2020; 21:1165-1175. [PMID: 32351180 DOI: 10.2174/1389201021666200430114547] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/25/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022]
Abstract
Tinospora cordifolia (Giloy) is a medicinal plant used in folk and Ayurvedic medicines throughout India since ancient times. All the parts of the plant are immensely useful due to the presence of different compounds of pharmaceutical importance belonging to various groups as alkaloids, diterpenoid lactones, glycosides, steroids, sesquiterpenoid, and phenolics. These compounds possess pharmacological properties, which make it anti-diabetic, antipyretic, anti-inflammatory, anti-oxidant, hepato-protective, and immuno-modulatory. However, due to the increasing population, there is an inadequate supply of drugs. Therefore, this review focuses on phytochemistry, ethnopharmacology, clinical application and its conservation strategies so that the plant can be conserved for future generations and utilized as alternative medicine as well as to design various pharmacologically important drugs.
Collapse
Affiliation(s)
- Pradeep Kumar
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli- 791109, Arunachal Pradesh, India
| | - Madhu Kamle
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli- 791109, Arunachal Pradesh, India
| | - Dipendra K Mahato
- School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Hwy, Burwood VIC 3125, Australia
| | - Himashree Bora
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli- 791109, Arunachal Pradesh, India
| | - Bharti Sharma
- Centre of Food Science and Technology, Banaras Hindu University, Varanasi- 221005, India
| | - Prasad Rasane
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India
| | - Vivek K Bajpai
- Department of Energy and Material Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| |
Collapse
|
16
|
Xie X, Shen W, Zhou Y, Ma L, Xu D, Ding J, He L, Shen B, Zhou C. Characterization of a polysaccharide from Eupolyphaga sinensis walker and its effective antitumor activity via lymphocyte activation. Int J Biol Macromol 2020; 162:31-42. [DOI: 10.1016/j.ijbiomac.2020.06.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/28/2020] [Accepted: 06/11/2020] [Indexed: 01/18/2023]
|
17
|
Shukla U, Ujjaliya N, Gupta P, Khare V, Yadav B, Rai AK, Amin H, Rana R, Tripathi A, Khanduri S, Sharma BS, Chandrasekhararao B, Srikanth N, Dhiman KS. Efficacy and safety of Guduchighana Vati in asymptomatic and mild-to-moderate cases of coronavirus disease-19: A randomized controlled pilot study. Ayu 2020; 41:188-196. [PMID: 35370379 PMCID: PMC8966758 DOI: 10.4103/ayu.ayu_11_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Currently, there is no approved treatment for the management of coronavirus disease (COVID-19). Drug repurposing of existing medications could be a possible way to find out a novel therapeutic entity to combat the COVID-19. Aim: To determine the clinical efficacy and safety of an Ayurveda intervention (Guduchighana Vati) in asymptomatic and mild-to-moderate cases of COVID-19. Materials and methods: This was an open-label randomized controlled pilot study with a sample size of 30 participants (15 in each arm). The participants were asymptomatic or mild to moderate cases of COVID-19. Guduchighana Vati 500 mg twice daily for 10 days was administered in the study group and Hydroxychloroquine for 5 days in the control group. Paracetamol, Vitamin C, Multivitamin, and Zinc were also provided in the control group. The main outcome measures were to negative real-time reverse transcription–polymerase chain reaction (RT-PCR) assay for COVID-19, proportion of participants with negative RT-PCR for COVID-19 at 5th and 10th day, proportion of participants with clinical recovery, improvement in laboratory parameters, and incidence of adverse drug reaction/adverse event (ADR/AE). The results of RT-PCR and clinical recovery were compared between groups using Chi-square test. The data related to laboratory parameters were compared within group using paired sample t-test/Wilcoxon signed-rank test and between groups using independent sample t-test/Mann–Whitney test. Results: The proportion of participants with negative RT-PCR for COVID-19 in the Guduchighana Vati group (93.3%) was better as compared to the control group (66.6%) till 10th day of the study period. Though, the results are statistically not significant (P = 0.068). All the symptomatic patients in the Guduchighana Vati group clinically recovered whereas one patient remained symptomatic in the control group on the 5th day. No symptoms of COVID-19 were observed at 10th day in both the groups. No ADR/serious adverse event were observed during the study period in either of the groups. Conclusion: In this study on asymptomatic and mild to moderate cases of COVID-19, Guduchighana Vati showed numerically better proportion of participants with negative RT-PCR assay for COVID-19 and reduced time to clinical improvement which requires confirmation through studies with larger sample size. Although, the study outcomes are statistically not significant which may be due to small sample size.
Collapse
Affiliation(s)
- Umesh Shukla
- Principal & CEO, Pt. Khushilal Sharma Government (Autonomous) Ayurveda College & Institute, Bhopal, Madhya Pradesh, India
| | - Nitin Ujjaliya
- Department of Dravyaguna, Pt. Khushilal Sharma Government (Autonomous) Ayurveda College & Institute, Bhopal, Madhya Pradesh, India
| | - Pankaj Gupta
- Department of Rachana Sharira, Pt. Khushilal Sharma Government (Autonomous) Ayurveda College & Institute, Bhopal, Madhya Pradesh, India
| | - Vivek Khare
- Department of Pathology, Pt. Khushilal Sharma Government (Autonomous) Ayurveda College & Institute, Bhopal, Madhya Pradesh, India
| | - Babita Yadav
- Department of Ayurveda, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India
| | - Amit Kumar Rai
- Department of Ayurveda, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India
| | - Hetalben Amin
- Department of Ayurveda, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India
| | - Rakesh Rana
- Department of Biostatistics, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India
| | - Arunabh Tripathi
- Department of Biostatistics, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India
| | - Shruti Khanduri
- Department of Ayurveda, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India
| | - Bhagwan Sahay Sharma
- Department of Ayurveda, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India
| | - Bhogavalli Chandrasekhararao
- Department of Ayurveda, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India
| | - Narayanam Srikanth
- Director General (Additional Charge), Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India
| | - Kartar Singh Dhiman
- Former Director General, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India
| |
Collapse
|
18
|
Zhang W, Cheng N, Wang Y, Zheng X, Zhao Y, Wang H, Wang C, Han Q, Gao Y, Shan J, Yang S, Xia X. Adjuvant activity of PCP-II, a polysaccharide from Poria cocos, on a whole killed rabies vaccine. Virus Res 2019; 270:197638. [PMID: 31173772 DOI: 10.1016/j.virusres.2019.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/13/2019] [Accepted: 06/02/2019] [Indexed: 11/26/2022]
Abstract
Adjuvants are important components of vaccination strategies because they boost and accelerate the immune response. The aim of this study was to investigate the adjuvant activity of PCP-II, a polysaccharide isolated from Poria cocos, together with an inactivated rabies vaccine. The polysaccharide PCP-II was compared with the common veterinary rabies vaccine adjuvant Alhydrogel by co-administration of either adjuvant with the inactivated rabies virus rCVS-11-G to mice via the intramuscular route. Blood samples were collected to determine the virus-neutralizing antibody (VNA) titer and assess activation of B and T lymphocytes. Inguinal lymph node samples were collected, and proliferation of B lymphocytes was measured. Splenocytes were isolated, and antigen-specific cellular immune responses were evaluated by enzyme-linked immunospot and immunosorbent assays (ELISpot assay and ELISA, respectively). The results showed that PCP-II enhanced and promoted an increase in the VNA titer in the mice compared to Alhydrogel. Flow cytometry assays revealed that the polysaccharide activated more B lymphocytes in the lymph nodes and more B and T lymphocytes in the blood. Assessment of antigen-specific cellular immune responses showed that PCP-II strongly induced T lymphocyte proliferation in the spleen and high levels of cytokine secretion from splenocytes. All of these data suggest that PCP-II possesses excellent adjuvant activity and enhances both cellular and humoral immunity in mice. After examining the adjuvant activities of PCP-II in mice, dogs were immunized with rCVS-11-G together with Alhydrogel or PCP-II as an adjuvant; the control group was injected with a commercial rabies vaccine. Serum samples were collected, and the VNA titers were measured. PCP-II caused increases in the VNA titers in both the booster and single-dose immunization tests when co-administered with rCVS-11-G compared with Alhydrogel. The VNA titer of the commercial vaccine group was also significantly lower than that of the PCP-II group. These data indicate that PCP-II is an excellent candidate adjuvant for inactive rabies vaccines in the veterinary setting.
Collapse
Affiliation(s)
- Weijiao Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Nan Cheng
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Yuxia Wang
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Xuexing Zheng
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Yongkun Zhao
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Hualei Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Chong Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Qiuxue Han
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Yuwei Gao
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Junjie Shan
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China.
| | - Songtao Yang
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China.
| | - Xianzhu Xia
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| |
Collapse
|
19
|
Lu Z, Chang L, Du Q, Huang Y, Zhang X, Wu X, Zhang J, Li R, Zhang Z, Zhang W, Zhao X, Tong D. Arctigenin Induces an Activation Response in Porcine Alveolar Macrophage Through TLR6-NOX2-MAPKs Signaling Pathway. Front Pharmacol 2018; 9:475. [PMID: 29867481 PMCID: PMC5962800 DOI: 10.3389/fphar.2018.00475] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/23/2018] [Indexed: 01/08/2023] Open
Abstract
Arctigenin (ARG), one of the most active ingredients abstracted from seeds of Arctium lappa L., has been proved to exert promising biological activities such as immunomodulatory, anti-viral, and anti-cancer etc. However, the mechanism behind its immunomodulatory function still remains elusive to be further investigated. In this study, we found that ARG had no significant effects on the cell proliferation in both porcine alveolar macrophage cell line (3D4/21) and primary porcine derived alveolar macrophage. It remarkably increased the expression and secretion of the two cytokines including tumor necrosis factor-alpha (TNF-α) and transforming growth factor beta1 (TGF-β1) in a dose-dependent manner with the concomitant enhancement of phagocytosis, which are the indicators of macrophage activation. ARG also elevated the intracellular reactive oxygen species (ROS) production by activating NOX2-based NADPH oxidase. Furthermore, inhibition of ROS generation by diphenyliodonium and apocynin significantly suppressed ARG-induced cytokine secretion and phagocytosis increase, indicating the requirement of ROS for the porcine alveolar macrophage activation. In addition, TLR6-My88 excitation, p38 MAPK and ERK1/2 phosphorylation were all involved in the process. As blocking TLR6 receptor dramatically attenuated the NOX2 oxidase activation, cytokine secretion and phagocytosis increase. Inhibiting ROS generation almost abolished p38 and ERK1/2 phosphorylation, and the cytokine secretion could also be remarkably reduced by p38 and ERK1/2 inhibitors (SB203580 and UO126). Our finding gave a new insight of understanding that ARG could improve the immune-function of porcine alveolar macrophages through TLR6-NOX2 oxidase-MAPKs signaling pathway.
Collapse
Affiliation(s)
- Zheng Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Lingling Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiujuan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xingchen Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jie Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ruizhen Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zelin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wenlong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
20
|
Immune-Stimulatory and Therapeutic Activity of Tinospora cordifolia: Double-Edged Sword against Salmonellosis. J Immunol Res 2017; 2017:1787803. [PMID: 29318160 PMCID: PMC5727750 DOI: 10.1155/2017/1787803] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/17/2017] [Indexed: 11/17/2022] Open
Abstract
The present study was aimed at determining the activity of aqueous and methanolic extracts of Tinospora cordifolia (AETC and METC) against Salmonella typhimurium. In vitro anti-Salmonella activity of T. cordifolia was determined through the broth dilution and agar well diffusion assays. The immune-stimulating potential of AETC or METC was determined by measuring the cytokine levels in the culture supernatants of treated murine J774 macrophages. Antibacterial activity of AETC or METC was determined by treating S. typhimurium-infected macrophages and BALB/C mice. The toxicity of AETC or METC was determined by measuring the levels of liver inflammation markers aspartate transaminase (AST) and alanine transaminase (ALT) and antioxidant enzymes. Macrophages treated with AETC or METC secreted greater levels of IFN-γ, TNF-α, and IL-1β. METC showed greater activity against S. typhimurium infection in macrophages and mice as well. Treatment with METC resulted in increased survival and reduced bacterial load in S. typhimurium-infected mice. Moreover, METC or AETC treatment reduced the liver inflammation and rescued the levels of antioxidant enzymes in S. typhimurium-infected mice. The results of the present study suggest that the use of T. cordifolia may act as a double-edged sword in combating salmonellosis.
Collapse
|
21
|
Synergistic Antioxidant and Anti-Inflammatory Effects between Modified Citrus Pectin and Honokiol. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:8379843. [PMID: 28900464 PMCID: PMC5576403 DOI: 10.1155/2017/8379843] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/22/2017] [Accepted: 07/03/2017] [Indexed: 12/24/2022]
Abstract
Inflammation is a normal physiological process; however, dysregulation of this process may contribute to inflammatory-based chronic disorders and diseases in animals and humans. Therefore, the antioxidant and anti-inflammatory properties of natural products, often recognized in traditional medicine systems, represent therapeutic modalities to reduce or prevent uncontrolled inflammatory processes which in turn potentially ameliorate or prevent sequelae of inflammatory-based symptoms of chronic diseases. We have investigated the antioxidant and anti-inflammatory effects of honokiol (HNK) and modified citrus pectin (MCP) in vitro and examined whether the MCP : HNK combination has synergistic effects on antioxidant and anti-inflammatory properties. Although both HNK and MCP induced a dose-dependent increase in antioxidant activity, the latter has a consistently higher antioxidant effect. The MCP : HNK (9 : 1) combination induced a synergistic effect on antioxidant activity suggesting that the combination is significantly more efficacious than individual compounds. In mouse monocytes, the lipopolysaccharide- (LPS-) induced tumor necrosis-α (TNF-α) synthesis was significantly inhibited by HNK and the MCP : HNK combination in a dose-dependent manner and synergistic effects were clearly demonstrated with the combination on TNF-α inhibition. This combination effect was also evident on inhibition of nuclear factor-kappa B activity, cyclooxygenase-II activity, and lipid peroxidation in mouse monocytes. Further research into the combination is warranted.
Collapse
|
22
|
Moreno-Mendieta S, Barrios-Payán J, Mata-Espinosa D, Sánchez S, Hernández-Pando R, Rodríguez-Sanoja R. Raw starch microparticles have immunostimulant activity in mice vaccinated with BCG and challenged with Mycobacterium tuberculosis. Vaccine 2017; 35:5123-5130. [PMID: 28818565 DOI: 10.1016/j.vaccine.2017.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/11/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022]
Abstract
The main challenge for vaccine development or improvement is the lack of safe adjuvants or immunostimulants that induce protective immune responses and can be used for mucosal immunization, which is a highly desirable strategy for vaccination against infectious diseases acquired by oral or intranasal routes. One promising alternative is the use of biodegradable and biocompatible polymeric microparticles. Recently, we developed an immobilization and delivery system with starch microparticles (SMPs) and a starch-binding domain (SBDtag) suitable for the mucosal administration of antigens and the induction of antigen-specific immune responses. Here, we explore the immunostimulant and reinforcing potential of the system using BALB/c mice with progressive pulmonary tuberculosis (PPT). The heat shock protein alpha-crystallin from Mycobacterium tuberculosis immobilized on SMPs (µAcr-SBDtag) or SMPs alone were administered nasally as boosters to BCG-vaccinated mice without any extra adjuvant. The mice were challenged intratracheally with either moderately virulent or highly virulent M. tuberculosis strains. Our results showed that the administration of either the immobilized antigen or SMPs asa booster for the BCG vaccination induced a significant reduction of bacterial loads in the lungs of mice, even more than in mice that received the BCG vaccination alone. Since no difference was observed in pulmonary bacillary burdens between the two reinforced groups, the obtained effect was most likely primarily caused by the starch. As determined by histological study, the administration of boosters did not contribute to the progress of pneumonia, which diminishes the safety concerns related to the administration of SMPs intranasally. Taken together, our findings suggest that this system may be considered asa new carbohydrate-based adjuvant suitable for mucosal vaccines against tuberculosis and other infectious diseases, and more generally, they highlight the potential of particulate α-glucans as immune response modifiers.
Collapse
Affiliation(s)
- Silvia Moreno-Mendieta
- CONACYT, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Jorge Barrios-Payán
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Delegación Tlalpan, Ciudad de México, Mexico
| | - Dulce Mata-Espinosa
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Delegación Tlalpan, Ciudad de México, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Delegación Tlalpan, Ciudad de México, Mexico.
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| |
Collapse
|
23
|
Gangoiti M, Puertas A, Hamet M, Peruzzo P, Llamas M, Medrano M, Prieto A, Dueñas M, Abraham A. Lactobacillus plantarum CIDCA 8327: An α-glucan producing-strain isolated from kefir grains. Carbohydr Polym 2017; 170:52-59. [DOI: 10.1016/j.carbpol.2017.04.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/07/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
|
24
|
Potential of glucans as vaccine adjuvants: A review of the α-glucans case. Carbohydr Polym 2017; 165:103-114. [DOI: 10.1016/j.carbpol.2017.02.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 01/06/2023]
|
25
|
Zhang M, Liu Y, Li J, Ke M, Yu J, Dou J, Wang H, Zhou C. A polysaccharide component from Strongylocentrotus nudus eggs inhibited hepatocellular carcinoma in mice by activating T lymphocytes. Oncol Lett 2017; 13:1847-1855. [PMID: 28454333 DOI: 10.3892/ol.2017.5624] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/27/2016] [Indexed: 11/06/2022] Open
Abstract
A component purified from Strongylocentrotus nudus eggs on a diethylaminoethyl cellulose-52 chromatography column and eluted using a NaCl solution gradient (SEP-S), is a homogeneous polysaccharide of α-D-glucan with a reduced molecular weight of 9.33×105 Da, compared with that of S. nudus egg polysaccharide (SEP). In an in vivo antitumor assay of histocompatibility-22 hepatocellular carcinoma in tumor-bearing mice, the inhibitory rates at SEP-S doses of 5, 10 and 20 mg/kg/day were 38.8, 50.7 and 70.3%, respectively. In addition, the spleen and thymus indices and the percentages of cluster of differentiation (CD) 4+ and CD8+ T cells were significantly increased, and the activity of cytotoxic T lymphocytes was notably enhanced, suggesting that the anti-hepatocellular carcinoma activity is mediated by boosting the immune system. In vitro experiments also demonstrated that splenocyte proliferation induced by SEP-S was inhibited by the toll-like receptor (TLR) 2 and TLR4 monoclonal antibodies. These data indicate that SEP-S is a polysaccharide component possessing high anti-hepatocellular carcinoma activity and may be a potential immunotherapy candidate for the treatment of liver cancer.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Yang Liu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Jingwen Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Mengyun Ke
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Jie Yu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Jie Dou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Hui Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Changlin Zhou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
26
|
Abstract
Tinospora cordifolia (Menispermaceae) is an Ayurvedic medicinal plant distributed throughout the Indian subcontinent and China. The whole plant is used in folk and the Ayurvedic system of medicine alone and in combination with other plants. Due to its commercial importance, T. cordifolia has been of intense research interest for the last four decades with the isolation of diverse compounds such as alkaloids, sesquiterpenoids, diterpenoids, phenolics, steroids, aliphatic compounds and polysaccharides, along with the discovery of a wide spectrum of pharmacological properties like immunomodulation, anticancer, hepatoprotective and hypoglycemic. Although pharmacological activities of extracts and compounds of T. cordifolia have been studied both in vitro and in vivo, only few mechanisms of action have been explored and need further elaboration. In the present review, the pharmacological activities of compounds and different extracts of T. cordifolia are highlighted, along with those of the marketed products, showing the relevance of phytochemicals and the standardization of the marketed products for medicinal use. This compilation of the extensive literature of T. cordifolia here will be a referral point for clinical study and the development of standardized phytomedicines in healthcare.
Collapse
Affiliation(s)
- Deepika Singh
- Medicinal Chemistry Division, Central Institute of Medicinal and Aromatic Plants, PO CIMAP, Lucknow 226015, India
| | - Prabir K Chaudhuri
- Medicinal Chemistry Division, Central Institute of Medicinal and Aromatic Plants, PO CIMAP, Lucknow 226015, India
| |
Collapse
|
27
|
Shi L. Bioactivities, isolation and purification methods of polysaccharides from natural products: A review. Int J Biol Macromol 2016; 92:37-48. [PMID: 27377457 PMCID: PMC7124366 DOI: 10.1016/j.ijbiomac.2016.06.100] [Citation(s) in RCA: 342] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 12/31/2022]
Abstract
Polysaccharides play multiple roles and have extensive bioactivities in life process and an immense potential in healthcare, food and cosmetic industries, due to their therapeutic effects and relatively low toxicity. This review describes their major functions involved in antitumor, anti-virus, and anti-inflammatory bioactivities. Due to their enormous structural heterogeneity, the approaches for isolation and purification of polysaccharides are distinct from that of the other macromolecules such as proteins, etc. Yet, to achieve the homogeneity is the initial step for studies of polysaccharide structure, pharmacology, and its structure-activity relationships. According to the experiences accumulated by our lab and the published literatures, this review also introduces the methods widely used in isolation and purification of polysaccharides.
Collapse
Affiliation(s)
- Lei Shi
- Centre of Innovation, School of Applied Science, Temasek Polytechnic, 21 Tampines Avenue 1, 529757, Singapore.
| |
Collapse
|
28
|
Paiva IMD, Steinberg RDS, Lula IS, Souza-Fagundes EMD, Mendes TDO, Bell MJV, Nicoli JR, Nunes ÁC, Neumann E. Lactobacillus kefiranofaciens and Lactobacillus satsumensis isolated from Brazilian kefir grains produce alpha-glucans that are potentially suitable for food applications. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
29
|
Genus Tinospora: Ethnopharmacology, Phytochemistry, and Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:9232593. [PMID: 27648105 PMCID: PMC5018348 DOI: 10.1155/2016/9232593] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/10/2016] [Accepted: 07/13/2016] [Indexed: 01/19/2023]
Abstract
The genus Tinospora includes 34 species, in which several herbs were used as traditional medicines by indigenous groups throughout the tropical and subtropical parts of Asia, Africa, and Australia. The extensive literature survey revealed Tinospora species to be a group of important medicinal plants used for the ethnomedical treatment of colds, headaches, pharyngitis, fever, diarrhea, oral ulcer, diabetes, digestive disorder, and rheumatoid arthritis. Indian ethnopharmacological data points to the therapeutic potential of the T. cordifolia for the treatment of diabetic conditions. While Tinospora species are confusing in individual ingredients and their mechanisms of action, the ethnopharmacological history of those plants indicated that they exhibit antidiabetic, antioxidation, antitumor, anti-inflammation, antimicrobial, antiosteoporosis, and immunostimulation activities. While the clinical applications in modern medicine are lacking convincing evidence and support, this review is aimed at summarizing the current knowledge of the traditional uses, phytochemistry, biological activities, and toxicities of the genus Tinospora to reveal its therapeutic potentials and gaps, offering opportunities for future researches.
Collapse
|
30
|
Zhang W, Zheng X, Cheng N, Gai W, Xue X, Wang Y, Gao Y, Shan J, Yang S, Xia X. Isatis indigotica root polysaccharides as adjuvants for an inactivated rabies virus vaccine. Int J Biol Macromol 2016; 87:7-15. [PMID: 26875535 PMCID: PMC7112441 DOI: 10.1016/j.ijbiomac.2016.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 10/27/2022]
Abstract
Adjuvants can enhance vaccine immunogenicity and induce long-term enhancement of immune responses. Thus, adjuvants are important for vaccine research. Polysaccharides isolated from select Chinese herbs have been demonstrated to possess various beneficial functions and excellent adjuvant abilities. In the present study, the polysaccharides IIP-A-1 and IIP-2 were isolated from Isatis indigotica root and compared with the common vaccine adjuvant aluminum hydroxide via intramuscular co-administration of inactivated rabies virus rCVS-11-G into mice. Blood was collected to determine virus neutralizing antibody (VNA) titers and B and T lymphocyte activation status. Inguinal lymph node samples were collected and used to measure B lymphocyte proliferation. Splenocytes were isolated, from which antigen-specific cellular immune responses were detected via ELISpot, ELISA and intracellular cytokine staining. The results revealed that both types of polysaccharides induce more rapid changes and higher VNA titers than aluminum hydroxide. Flow cytometry assays revealed that the polysaccharides activated more B lymphocytes in the lymph nodes and more B and T lymphocytes in the blood than aluminum hydroxide. Antigen-specific cellular immune responses showed that IIP-2 strongly induced T lymphocyte proliferation in the spleen and high levels of cytokine secretion from splenocytes, whereas aluminum hydroxide induced proliferation in only a small number of lymphocytes and the secretion of only small quantities of cytokines. Collectively, these data suggest that the polysaccharide IIP-2 exhibits excellent adjuvant activity and can enhance both cellular and humoral immunity.
Collapse
Affiliation(s)
- Weijiao Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Xuexing Zheng
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Nan Cheng
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Weiwei Gai
- College of Veterinary Medicine, Jilin University, Changchun, China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Xianghong Xue
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Yuxia Wang
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Yuwei Gao
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Junjie Shan
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China.
| | - Songtao Yang
- College of Veterinary Medicine, Jilin University, Changchun, China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China.
| | - Xianzhu Xia
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| |
Collapse
|
31
|
Dhama K, Latheef SK, Mani S, Samad HA, Karthik K, Tiwari R, Khan RU, Alagawany M, Farag MR, Alam GM, Laudadio V, Tufarelli V. Multiple Beneficial Applications and Modes of Action of Herbs in Poultry Health and Production-A Review. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.152.176] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
An α-glucan isolated from root of Isatis Indigotica, its structure and adjuvant activity. Glycoconj J 2014; 31:317-26. [DOI: 10.1007/s10719-014-9525-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/08/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
|
33
|
Antioxidant and antitumor activities of β-glucan-rich exopolysaccharides with different molecular weight from Paenibacillus polymyxa JB115. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s13765-013-4252-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Masuma R, Okuno T, Kabir Choudhuri MS, Saito T, Kurasaki M. Effect of Tinospora cordifolia on the reduction of ultraviolet radiation-induced cytotoxicity and DNA damage in PC12 cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2014; 49:416-421. [PMID: 24762179 DOI: 10.1080/03601234.2014.894777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The safety of Tinospora cordifolia and its potential to protect against ultraviolet radiation-induced cytotoxicity and DNA damage in PC12 cells were investigated. To evaluate the safety of T. cordifolia, cell viability and agarose gel electrophoresis were carried out using PC12 cells treated with 0 to 100 μg mL(-1) of methanol extract of T. cordifolia. T. cordifolia extracts did not show cytotoxicity ranging 0 to 100 μg mL(-1). In addition, T. cordifolia extracts significantly increased cell viability at 1 ng, 10 ng and 1 μg mL(-1) concentrations in serum-deprived medium compared to control. To confirm the protective role against UV-induced damage, PC12 cells alone or in the presence of 10 ng, 100 ng, or 1 μg mL(-1) of T. cordifolia extract were exposed to 250, 270 and 290 nm of UV radiation, which corresponded to doses of 120, 150 and 300 mJ cm(-2), respectively. Treatment with T. cordifolia extracts significantly increased the cell survival rate irradiated at 290 nm. In addition, T. cordifolia extracts significantly reduced cyclobutane pyrimidine dimer formation induced by UV irradiation at all wavelengths. In conclusion, T. cordifolia is not toxic and safe for cells. Our findings can support its application as phototherapy in the medical sector.
Collapse
Affiliation(s)
- Runa Masuma
- a Course of Environmental Adaptation Science, Division of Environmental Science Development, Graduate School of Environmental Science , Hokkaido University , Sapporo , Japan
| | | | | | | | | |
Collapse
|
35
|
Tinospora cordifolia as a protective and immunomodulatory agent in combination with cisplatin against murine visceral leishmaniasis. Exp Parasitol 2013; 137:53-65. [PMID: 24370645 DOI: 10.1016/j.exppara.2013.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 12/11/2013] [Accepted: 12/16/2013] [Indexed: 12/11/2022]
Abstract
Effect of pure herb, Tinospora cordifolia was studied for its hepatoprotective, nephroprotective and immunomodulatory activity against high dose cisplatin treatment in Leishmania donovani infected BALB/c mice. Administration of cisplatin (5mg/kg b.wt. daily for 5 days, i.p.) reduced the parasite load in L. donovani infected BALB/c mice but produced damage in liver and kidney as manifested biochemically by an increase in serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), serum urea, serum creatinine and various electrolytes etc. These biochemical analyses were further supported by cisplatin induced morphological changes in kidney, liver and spleen. To combat this pure herb, T. cordifolia (100mg/kg b.wt. for 15 days daily) was used in combination with cisplatin in L. donovani infected BALB/c mice and it was found that all the aforementioned changes were effectively attenuated by T. cordifolia when administered in combination with cisplatin. Moreover, flow cytometric analysis of lymphocyte surface markers of T cells (CD3+, CD4+ and CD8+), NK1.1 and B cells (CD19) indicated prominent enhancement in proliferation and differentiation of lymphocytes. T. cordifolia in combination with cisplatin selectively induced Th1 type of immune response as depicted by enhanced levels of IFN-γ and IL-2 whereas Th2 specific cytokines IL-4 and IL-10 observed a moderate decline. Confirmation of Th1 polarization was further obtained from augmented levels of IgG2a over IgG1 and heightened DTH (delayed type hypersensitivity) response. Thus, our results suggest that treatment by T. cordifolia may be a critical remedy for the amelioration of adverse effects of cisplatin. Thus, this might serve as a novel combination against visceral leishmaniasis in future.
Collapse
|
36
|
Ni W, Gao T, Wang H, Du Y, Li J, Li C, Wei L, Bi H. Anti-fatigue activity of polysaccharides from the fruits of four Tibetan plateau indigenous medicinal plants. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:529-35. [PMID: 24036063 DOI: 10.1016/j.jep.2013.08.055] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/12/2013] [Accepted: 08/29/2013] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fruits of Hippophae rhamnoides L., Lycium barbarum L., Lycium ruthenicum Murr. and Nitraria tangutorum Bobr. are traditional medicinal food of Tibetans and used to alleviate fatigue caused by oxygen deficiency for thousands of years. The present study focused on exploiting natural polysaccharides with remarkable anti-fatigue activity from the four Qinghai-Tibet plateau characteristic berries. MATERIALS AND METHODS The fruits of Hippophae rhamnoides, Lycium barbarum, Lycium ruthenicum and Nitraria tangutorum were collected from Haixi national municipality of Mongol and Tibetan (N 36.32°, E98.11°; altitude: 3100 m), Qinghai, China. Their polysaccharides (HRWP, LBWP, LRWP and NTWP) were isolated by hot-water extraction, and purified by DEAE-Cellulose ion-exchange chromatography. The total carbohydrate, uronic acid, protein and starch contents of polysaccharides were determined by a spectrophotometric method. The molecular weight distributions of polysaccharides were determined by gel filtration chromatography. Their monosaccharide composition analysis was performed by the method of 1-phenyl-3-methyl-5-pyrazolone (PMP) pre-column derivatization and RP-HPLC analysis. HRWP, LBWP, LRWP and NTWP (50, 100 and 200 mg/kg) were orally administrated to mice once daily for 15 days, respectively. Anti-fatigue activity was assessed using the forced swim test (FST), and serum biochemical parameters were determined by an autoanalyzer and commercially available kits; the body and organs were also weighted. RESULT LBWP, LRWP and NTWP were mainly composed of glucans and some RG-I pectins, and HRWP was mainly composed of HG-type pectin and some glucans. All the four polysaccharides decreased immobility in the FST, and the effects of LBWP and NTWP were demonstrated in lower doses compared with HRWP and LRWP. There was no significant difference in liver and heart indices between non-treated and polysaccharide-treated mice, but the spleen indices were increased in LBWP and NTWP (200mg/kg) group. Moreover, the FST-induced reduction in glucose (Glc), superoxide dismutase (SOD) and glutathione peroxidase (GPx) and increase in creatine phosphokinase (CK), lactic dehydrogenase (LDH), blood urea nitrogen (BUN), triglyceride (TG) and malondialdehyde (MDA) levels, all indicators of fatigue, were inhibited by HRWP, LBWP, LRWP and NTWP to a certain extent while the effects of LBWP and NTWP were much better than that of HRWP and LRWP at the same dosage. CONCLUSION Water-soluble polysaccharides HRWP, LBWP, LRWP and NTWP, from the fruits of four Tibetan plateau indigenous berry plants, significantly exhibited anti-fatigue activities for the first time, through triglyceride (TG) (or fat) mobilization during exercise and protecting corpuscular membrane by prevention of lipid oxidation via modifying several enzyme activities. Moreover, it is demonstrated that LBWP and NTWP are more potent than HRWP and LRWP, which were proposed to be applied in functional foods for anti-fatigue and antioxidant potential.
Collapse
Affiliation(s)
- Weihua Ni
- Department of Immunology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Upadhyay AK, Kumar K, Kumar A, Mishra HS. Tinospora cordifolia (Willd.) Hook. f. and Thoms. (Guduchi) - validation of the Ayurvedic pharmacology through experimental and clinical studies. Int J Ayurveda Res 2013; 1:112-21. [PMID: 20814526 PMCID: PMC2924974 DOI: 10.4103/0974-7788.64405] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Accepted: 03/10/2010] [Indexed: 01/22/2023] Open
Abstract
T. cordifolia (Guduchi) is a large, glabrous, perennial, deciduous, climbing shrub of weak and fleshy stem found throughout India. It is a widely used plant in folk and Ayurvedic systems of medicine. The chemical constituents reported from this shrub belong to different classes, such as alkaloids, diterpenoid lactones, glycosides, steroids, sesquiterpenoid, phenolics, aliphatic compounds and polysaccharides. Various properties of T. cordifolia, described in ancient texts of Ayurveda, like Rasayana, Sangrahi, Balya, Agnideepana, Tridoshshamaka, Dahnashaka, Mehnashaka, Kasa-swasahara, Pandunashaka, Kamla-Kushta-Vataraktanashaka, Jwarhara, Krimihara, Prameha, Arshnashaka, Kricch-Hridroganashak, etc., are acquiring scientific validity through modern research adopting "reverse pharmacological" approach. Potential medicinal properties reported by scientific research include anti-diabetic, antipyretic, antispasmodic, anti-inflammatory, anti-arthritic, antioxidant, anti-allergic, anti-stress, anti-leprotic, antimalarial, hepato-protective, immuno-modulatory and anti-neoplastic activities. This review brings together various properties and medicinal uses of T. cordifolia described in Ayurveda, along with phytochemical and pharmacological reports.
Collapse
Affiliation(s)
- Avnish K Upadhyay
- Department of Ayurved Research and Development, Patanjali Yogpeeth, Haridwar, India
| | | | | | | |
Collapse
|
38
|
Zhang X, Ding R, Zhou Y, Zhu R, Liu W, Jin L, Yao W, Gao X. Toll-like receptor 2 and Toll-like receptor 4-dependent activation of B cells by a polysaccharide from marine fungus Phoma herbarum YS4108. PLoS One 2013; 8:e60781. [PMID: 23556003 PMCID: PMC3612108 DOI: 10.1371/journal.pone.0060781] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 03/02/2013] [Indexed: 11/19/2022] Open
Abstract
Various natural polysaccharides are capable of activating the immune system and therefore can be employed as biological response modifiers in anti-tumor therapy. We previously found a homogenous polysaccharide from the mycelium of marine fungus Phoma herbarum YS4108, named YCP, exhibiting strong in vivo antitumor ability via enhancement of the host immune responses. To further elucidate the role of YCP as a biological response modifier, the immunomoduating activities of YCP in B cells was investigated in the current study. We demonstrated that stimulation of YCP with murine splenic B cells resulted in cell proliferation and generation of IgM antibody response. Binding of YCP to B cells was a direct, saturable and reversible event and required TLR2 and TLR4 involvement. TLR2 and TLR4 defunctionalization by either antibody blocking or allele-specific mutation significantly impaired the B-cell proliferative and IgM responses to YCP. YCP interaction with TLR2 and TLR4 led to the activation of intracellular p38, ERK and JNK, as well as the translocation of transcriptional factor NF-κB into nucleus. Furthermore, specific inhibitors of p38, ERK, JNK and NF-κB could attenuate the ability of YCP to induce B cell proliferation and IgM production. Taken together, this study has indicated for the first time the immunostimulating properties of YCP on B cells through a receptor-mediated mechanism, which involves TLR2 and TLR4 and resultant activation of MAPK and NF-κB signaling pathways, thereby highlighting the role of YCP as an efficacious biological response modifier in oncologic immunotherapy.
Collapse
Affiliation(s)
- Xian Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Ran Ding
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Yan Zhou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Rui Zhu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Wei Liu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Lei Jin
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Wenbing Yao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
- * E-mail: (XG); (WY)
| | - Xiangdong Gao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
- * E-mail: (XG); (WY)
| |
Collapse
|
39
|
Sharma U, Bala M, Kumar N, Singh B, Munshi RK, Bhalerao S. Immunomodulatory active compounds from Tinospora cordifolia. JOURNAL OF ETHNOPHARMACOLOGY 2012; 141:918-26. [PMID: 22472109 DOI: 10.1016/j.jep.2012.03.027] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 03/09/2012] [Accepted: 03/17/2012] [Indexed: 05/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tinospora cordifolia mentioned as "Rasayana" is extensively used in various herbal preparations for the treatment of different ailments for its general tonic, antiperiodic, antispasmodic, antiinflammatory, antiarthritic, antiallergic and antidiabetic properties. It is extensively used in Ayurveda due to its potential in improving the immune system and the body resistance against infections. AIM OF THE STUDY The aim of the study was to isolate and characterise the immunomodulatory active compounds of Tinospora cordifolia. MATERIALS AND METHODS The immunomodulatory activity of different extracts, fractions and isolated compounds in relation to phagocytosis and reactive oxygen species production in human neutrophil cells have been investigated using the PMN phagocytic function studies, NBT, NO and chemiluminescence assay. RESULTS The results obtained indicate that ethyl acetate, water fractions and hot water extract exhibited significant immunomodulatory activity with an increase in percentage phagocyctosis. Chromatographic purification of these fraction led to the isolation of a mixture of two compounds 2, 3 isolated for the first time from natural source and five known compounds 1, 4-7 which were characterized as 11-hydroxymustakone (2), N-methyl-2-pyrrolidone (3), N-formylannonain (1), cordifolioside A (4), magnoflorine (5), tinocordiside (6), syringin (7) by nuclear magnetic resonance (NMR) and mass spectrometry (MS) and comparing the spectral data with reported one. Cordifolioside A and syringin have been reported to possess immunomodulatory activity. Other five compounds showed significant enhancement in phagocytic activity and increase in nitric oxide and reactive oxygen species generation at concentration 0.1-2.5 μg/ml. CONCLUSIONS Seven immunomodulatory active compounds belonging to different classes have been isolated and characterised indicating that the immunomodulatory activity of Tinospora cordifolia may be attributed to the synergistic effect of group of compounds.
Collapse
Affiliation(s)
- Upendra Sharma
- Natural Plant Products Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
| | | | | | | | | | | |
Collapse
|
40
|
Aranha I, Clement F, Venkatesh YP. Immunostimulatory properties of the major protein from the stem of the Ayurvedic medicinal herb, guduchi (Tinospora cordifolia). JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:366-72. [PMID: 22119223 DOI: 10.1016/j.jep.2011.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/28/2011] [Accepted: 11/09/2011] [Indexed: 05/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Guduchi (Tinospora cordifolia), a widely used plant in folk and Ayurvedic systems of medicine is well known for its immunomodulatory activity; however, the presence of an immunomodulatory protein (ImP) in guduchi has not been investigated. MATERIALS AND METHODS Guduchi ImP was purified from dry stem powder extract by anion-exchange chromatography on Q-Sepharose. Characterization of guduchi ImP was performed by SDS-PAGE, periodic acid-Schiff staining, HPLC, and immunochemical analyses. Immunostimulatory activity was assessed by lymphocyte proliferation and macrophage activation assays. Fresh guduchi stem/leaf, guduchi satwa and guduchi capsules were also analyzed for the presence of guduchi ImP. RESULTS Guduchi ImP was purified to homogeneity from dry stem powder extract (~150 mg protein per 100 g guduchi stem powder) as a single chain acidic protein (25 kDa) without glycans; it was noticeably absent in guduchi leaf. Guduchi satwa and guduchi capsule preparations also lacked this protein. Guduchi ImP showed ~3-fold mitogenic activity compared to untreated murine splenocytes in the 1-10 μg/mL concentration range; 5-7-fold increase in mitogenic activity was seen in the case of murine thymocytes vs. control. The purified protein also induced nitric oxide production from macrophages present in isolated murine peritoneal exudates cells. Guduchi ImP displays enhanced phagocytosis of yeast cells by macrophages. Guduchi ImP does not possess hemagglutination activity (towards rabbit and human erythrocytes of all blood groups) indicating that the immunomodulatory protein is not a lectin. CONCLUSIONS The confirmation of an immunomodulatory protein in guduchi stem showing lymphoproliferative and macrophage-activating properties reinforces the rationale of the use of guduchi preparations in several Ayurvedic medicines for immunomodulation. To our knowledge, this is the first report of an immunomodulatory protein isolated from guduchi.
Collapse
MESH Headings
- Animals
- Anion Exchange Resins
- Cell Proliferation/drug effects
- Cells, Cultured
- Chromatography, Gel
- Chromatography, High Pressure Liquid
- Chromatography, Ion Exchange
- Electrophoresis, Polyacrylamide Gel
- Hemagglutination/drug effects
- Hemagglutination Tests
- Humans
- Immunologic Factors/isolation & purification
- Immunologic Factors/pharmacology
- Lymphocytes/drug effects
- Lymphocytes/immunology
- Macrophage Activation/drug effects
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/immunology
- Medicine, Ayurvedic
- Mice
- Mice, Inbred BALB C
- Nitric Oxide/metabolism
- Phagocytosis/drug effects
- Plant Proteins/isolation & purification
- Plant Proteins/pharmacology
- Plant Stems
- Plants, Medicinal
- Tinospora/chemistry
Collapse
Affiliation(s)
- Ivan Aranha
- Department of Biochemistry & Nutrition, Central Food Technological Research Institute (CFTRI, a CSIR Laboratory), Mysore, Karnataka, India
| | | | | |
Collapse
|
41
|
Hashemi S, Davoodi H. Herbal Plants as New Immuno-stimulator in Poultry Industry: A Review. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ajava.2012.105.116] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Kakutani R, Adachi Y, Kajiura H, Takata H, Kuriki T, Ohno N. The effect of orally administered glycogen on anti-tumor activity and natural killer cell activity in mice. Int Immunopharmacol 2012; 12:80-7. [DOI: 10.1016/j.intimp.2011.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 10/16/2011] [Accepted: 10/27/2011] [Indexed: 11/29/2022]
|
43
|
Thakur M, Weng A, Fuchs H, Sharma V, Bhargava CS, Chauhan NS, Dixit VK, Bhargava S. Rasayana properties of Ayurvedic herbs: Are polysaccharides a major contributor. Carbohydr Polym 2012; 87:3-15. [DOI: 10.1016/j.carbpol.2011.08.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/29/2011] [Accepted: 08/14/2011] [Indexed: 01/07/2023]
|
44
|
Wang M, Wang H, Tang Y, Kang D, Gao Y, Ke M, Dou J, Xi T, Zhou C. Effective inhibition of a Strongylocentrotus nudus eggs polysaccharide against hepatocellular carcinoma is mediated via immunoregulation in vivo. Immunol Lett 2011; 141:74-82. [DOI: 10.1016/j.imlet.2011.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/01/2011] [Indexed: 12/22/2022]
|
45
|
Wang H, Wang M, Chen J, Tang Y, Dou J, Yu J, Xi T, Zhou C. A polysaccharide from Strongylocentrotus nudus eggs protects against myelosuppression and immunosuppression in cyclophosphamide-treated mice. Int Immunopharmacol 2011; 11:1946-53. [DOI: 10.1016/j.intimp.2011.06.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 06/01/2011] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
|
46
|
Sengupta M, Sharma GD, Chakraborty B. Effect of aqueous extract of Tinospora cordifolia on functions of peritoneal macrophages isolated from CCl4 intoxicated male albino mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 11:102. [PMID: 22035196 PMCID: PMC3215963 DOI: 10.1186/1472-6882-11-102] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 10/28/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND The current practice of ingesting phytochemicals for supporting the immune system or fighting infections is based on centuries-old tradition. Macrophages are involved at all the stages of an immune response. The present study focuses on the immunostimulant properties of Tinospora cordifolia extract that are exerted on circulating macrophages isolated from CCl(4) (0.5 ml/kg body weight) intoxicated male albino mice. METHODS Apart from damaging the liver system, carbon tetrachloride also inhibits macrophage functions thus, creating an immunocompromised state, as is evident from the present study. Such cell functions include cell morphology, adhesion property, phagocytosis, enzyme release (myeloperoxidase or MPO), nitric oxide (NO) release, intracellular survival of ingested bacteria and DNA fragmentation in peritoneal macrophages isolated from these immunocompromised mice. T. cordifolia extract was tested for acute toxicity at the given dose (150 mg/kg body weight) by lactate dehydrogenase (LDH) assay. RESULTS The number of morphologically altered macrophages was increased in mice exposed to CCl(4). Administration of CCl(4) (i.p.) also reduced the phagocytosis, cell adhesion, MPO release, NO release properties of circulating macrophages of mice. The DNA fragmentation of peritoneal macrophages was observed to be higher in CCl(4) intoxicated mice. The bacterial killing capacity of peritoneal macrophages was also adversely affected by CCl(4). However oral administration of aqueous fraction of Tinospora cordifolia stem parts at a dose of 40 mg/kg body weight (in vivo) in CCl(4) exposed mice ameliorated the effect of CCl(4), as the percentage of morphologically altered macrophages, phagocytosis activity, cell adhesion, MPO release, NO release, DNA fragmentation and intracellular killing capacity of CCl(4) intoxicated peritoneal macrophages came closer to those of the control group. No acute toxicity was identified in oral administration of the aqueous extract of Tinospora cordifolia at a dose of 150 mg/kg body weight. CONCLUSION From our findings it can be suggested that, polar fractions of Tinospora cordifolia stem parts contain major bioactive compounds, which directly act on peritoneal macrophages and have been found to boost the non-specific host defenses of the immune system. However, the molecular mechanism of this activity of Tinospora cordifolia on immune functions needs to be elucidated.
Collapse
Affiliation(s)
- Mahuya Sengupta
- Department of Biotechnology, Assam University, Silchar-788 011, Assam; India
| | - Gauri D Sharma
- Department of Life Science, Assam University, Silchar-788 011, Assam; India
| | | |
Collapse
|
47
|
Kakutani R, Adachi Y, Takata H, Kuriki T, Ohno N. Essential role of Toll-like receptor 2 in macrophage activation by glycogen. Glycobiology 2011; 22:146-59. [DOI: 10.1093/glycob/cwr122] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
48
|
Fuentes AL, Millis L, Sigola LB. Laminarin, a soluble beta-glucan, inhibits macrophage phagocytosis of zymosan but has no effect on lipopolysaccharide mediated augmentation of phagocytosis. Int Immunopharmacol 2011; 11:1939-45. [PMID: 21856445 DOI: 10.1016/j.intimp.2011.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 08/02/2011] [Accepted: 08/03/2011] [Indexed: 11/18/2022]
Abstract
Phagocytosis is a fundamental aspect of innate resistance against microbes, including fungi. In this study we investigated the significance of beta-glucan on the surfaces of zymosan particles, derived from Saccharomyces cerevisiae, during phagocytosis by RAW 264.7 macrophages. Phagocytosis was assessed in vitro by macrophage exposure to zymosan particles followed by cell staining and light microscopy. Macrophage ingestion of zymosan was dependent on cellular recognition of the particles' beta-glucans since laminarin, a soluble beta-glucan, inhibited phagocytosis in a concentration dependent manner when added to cell cultures. In contrast, the presence of another carbohydrate, mannan, had no effect on zymosan phagocytosis by cells. In addition we showed that LPS and dexamethasone had opposing effects on phagocytosis of zymosan. LPS significantly augmented ingestion while in contrast dexamethasone, like laminarin, suppressed it. The LPS-enhanced ingestion of zymosan was insensitive to the presence of laminarin in cell cultures, however dexamethasone partially ameliorated the effects of LPS on phagocytosis. Our findings confirm beta-glucan as an important ligand identified by macrophages and required for zymosan phagocytosis in naïve cells, but not in cells previously exposed to LPS.
Collapse
Affiliation(s)
- Ana-Lucia Fuentes
- Biology Department, Douglas College, P.O. Box 2503, New Westminster, BC, Canada V3L 5B2
| | | | | |
Collapse
|
49
|
Chen X, Cao D, Zhou L, Jin H, Dong Q, Yao J, Ding K. Structure of a polysaccharide from Gastrodia elata Bl., and oligosaccharides prepared thereof with anti-pancreatic cancer cell growth activities. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2011.06.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Wismar R, Brix S, Frøkiaer H, Laerke HN. Dietary fibers as immunoregulatory compounds in health and disease. Ann N Y Acad Sci 2010; 1190:70-85. [PMID: 20388138 DOI: 10.1111/j.1749-6632.2009.05256.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Many nonstarch polysaccharides (NSPs) classified as dietary fibers have been reported to possess immunoregulatory properties. The fibers reported to activate or by other means modulate immune responses originate from both plant, fungal, and microbial sources and constitute highly distinct structures. In order to enhance our understanding of factors important for the immunoregulatory activities, this article addresses the importance of chemical structure, origin, and purity of fibers for their capacity to interact with key regulatory immune cells. Furthermore, we assess bioavailability, and discuss possible mechanisms involved. The binding of some NSPs to carbohydrate receptors on immune cells is well established and this event leads to activation or other changes. Especially, certain beta-glucans and some mannans have demonstrated immunomodulatory capacity with the specific structure being important for the activity. Within beta-glucans the activity varies according to structure, molecular weight, and solubility. As many of the preparations tested constitute crude extracts or partly purified NSPs, the risk of contaminants holding immunoregulatory activities should not be ignored. To what extent NSPs enter systemic circulation has been difficult to assess, partly due to lack of sensitive analytical methods. The presence of NSPs in blood and Peyer's patches in the gut has been demonstrated, supporting encounter between NSPs and immune cells, but bioavailability studies still constitute a major challenge. Studies demonstrating in vivo effects of beta-glucans on microbial infections and cancer treatment strongly indicate an immunoregulatory mechanism behind the effects. However, the potential of NSPs as immunoregulatory food ingredients is still far from fully explored.
Collapse
Affiliation(s)
- René Wismar
- Nutritional Immunology Group, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | | | | | | |
Collapse
|