1
|
Huang J, Zou Q, Hao M, Shen J, Zhang M, Li F, Xu Q, Zhang H, Zhang J, Wang X. Exploring the potential mechanisms of polysaccharides against gastric ulcer: Network pharmacology analysis and molecular docking validation. FOOD SAFETY AND HEALTH 2024. [DOI: 10.1002/fsh3.12079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/16/2024] [Indexed: 01/02/2025]
Abstract
AbstractGastric ulcer is a common peptic ulcer that affects human health and life quality seriously. As anti‐gastric ulcer drugs usually cause side‐effects, polysaccharides may be the potential alternatives because of better effectiveness and less toxicity. Although the anti‐gastric ulcer activities of polysaccharides have been widely reported, the mechanisms have not yet been well‐disclosed. In this study, network pharmacology analysis was performed to explore the potential mechanisms of polysaccharides against gastric ulcer, and the results were validated by molecular docking. Results indicated that β‐glucan, arabinogalactan, xylan, and arabinan were the key structures, and ABL1, AKT1, androgen receptor, epidermal growth factor receptor, v‐Ha‐ras Harvey rat sarcoma viral oncogene homolog, HSP90AA1, mitogen‐activated protein kinase 8 (MAPK8), MAPK14, NOS2, PIK3R1, RAC1, ras homolog gene family member A, and proto‐oncogene tyrosine‐protein kinase Src were the core targets for polysaccharides in treating gastric ulcer. Polysaccharides have influences on 1958 GO items and 199 KEGG pathways, and their anti‐gastric ulcer activities are related to MAPK, Ras, PI3K‐Akt, vascular endothelial growth factor, prolactin, FoxO and Rap1 signaling pathways, etc. Molecular docking validation showed that the results of network pharmacology analysis were credible, and interactions between polysaccharide structures and core targets were observed. This study contributes to understanding the mechanisms of polysaccharides in treating gastric ulcer and provides references for future activity screening and mechanism research in anti‐gastric ulcer.
Collapse
Affiliation(s)
- Jia‐Yu Huang
- School of Public Health and Health Management Gannan Medical University Ganzhou China
| | - Qi Zou
- School of Public Health and Health Management Gannan Medical University Ganzhou China
- Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou Gannan Medical University Ganzhou China
| | - Ming Hao
- School of Public Health and Health Management Gannan Medical University Ganzhou China
| | - Jian‐Lin Shen
- School of Public Health and Health Management Gannan Medical University Ganzhou China
| | - Meng‐Tong Zhang
- School of Public Health and Health Management Gannan Medical University Ganzhou China
| | - Fei Li
- School of Public Health and Health Management Gannan Medical University Ganzhou China
| | - Quan‐Sheng Xu
- School of Public Health and Health Management Gannan Medical University Ganzhou China
| | - Han‐Yue Zhang
- School of Public Health and Health Management Gannan Medical University Ganzhou China
| | - Jun Zhang
- School of Public Health and Health Management Gannan Medical University Ganzhou China
| | - Xiao‐Yin Wang
- School of Public Health and Health Management Gannan Medical University Ganzhou China
- Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou Gannan Medical University Ganzhou China
- State Key Laboratory of Food Science and Technology Nanchang University Nanchang China
| |
Collapse
|
2
|
Bawish BM, Rabab MA, Gohari ST, Khattab MS, AbdElkader NA, Elsharkawy SH, Ageez AM, Zaki MM, Kamel S, Ismail EM. Promising effect of Geranium robertianum L. leaves and Aloe vera gel powder on Aspirin ®-induced gastric ulcers in Wistar rats: anxiolytic behavioural effect, antioxidant activity, and protective pathways. Inflammopharmacology 2023; 31:3183-3201. [PMID: 37184667 PMCID: PMC10692037 DOI: 10.1007/s10787-023-01205-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/21/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Many drugs have been restricted in the treatment of gastric ulcers (GU). So, herbal medicines are now in great demand for their better cultural acceptability, compatibility, and minimal side effects. Therefore, our study aimed to assess the protective efficacy of Aloe vera gel and Geranium robertianum extracts against Aspirin®-induced GU in Wistar rats. METHODS Antioxidant activity and chemical composition of both herbs were analysed. Then, we divided forty female Wistar rats into five groups: a negative control group, a positive control group of Aspirin®-induced GU, and pretreated groups with Aloe Vera, geranium, and Famotidine (reference drug). The locomotor disability, anxiety-like behaviour, and ultrasonography were assessed. Ultimately, scarification of animals to determine gastric juice pH and ulcer index. Then the collection of stomach and liver for histopathological and immunohistochemical examinations, besides tracing the oxidative stress biomarkers and related genes. RESULTS High content of polyphenols was revealed in both extracts. The pretreatment with Aloe vera gel and geranium showed significant antioxidant activities with free radical scavenging and ferric-reducing power (FRAP). Moreover, they improved the stomach architecture and alleviated anxiety-like behaviour and motor deficits. They significantly reduced the expression of proinflammatory cytokine (TNF-α), inflammatory, and oxidative stress genes (NF-KB, HO-1, Nrf-2) while increasing the Keap-1 in gastric mucosa. CONCLUSION Data presented a significant protective effect of Aloe vera gel and geranium against Aspirin®-induced GU; they reduced gastric mucosal injury with potential anxiolytic effects through their anti-inflammatory and antioxidant properties. Therefore, they may be considered promising agents for preventing or treating gastric ulceration.
Collapse
Affiliation(s)
- Basma M Bawish
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mariem A Rabab
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), 6th October City, 12573, Egypt
| | - Safaa T Gohari
- Department of Nutrition, Food Science and Home Economics, Faculty of Specific Education, Ain Shams University, Ain Shams, 11566, Egypt
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Naglaa A AbdElkader
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Samar H Elsharkawy
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Amr M Ageez
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), 6th October City, 12573, Egypt
| | - Manal M Zaki
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Shaimaa Kamel
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Eman M Ismail
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
3
|
Debsharma S, Pramanik S, Bindu S, Mazumder S, Das T, Saha D, De R, Nag S, Banerjee C, Siddiqui AA, Ghosh Z, Bandyopadhyay U. Honokiol, an inducer of sirtuin-3, protects against non-steroidal anti-inflammatory drug-induced gastric mucosal mitochondrial pathology, apoptosis and inflammatory tissue injury. Br J Pharmacol 2023; 180:2317-2340. [PMID: 36914615 DOI: 10.1111/bph.16070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/22/2022] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Mitochondrial oxidative stress, inflammation and apoptosis primarily underlie gastric mucosal injury caused by the widely used non-steroidal anti-inflammatory drugs (NSAIDs). Alternative gastroprotective strategies are therefore needed. Sirtuin-3 pivotally maintains mitochondrial structural integrity and metabolism while preventing oxidative stress; however, its relevance to gastric injury was never explored. Here, we have investigated whether and how sirtuin-3 stimulation by the phytochemical, honokiol, could rescue NSAID-induced gastric injury. EXPERIMENTAL APPROACH Gastric injury in rats induced by indomethacin was used to assess the effects of honokiol. Next-generation sequencing-based transcriptomics followed by functional validation identified the gastroprotective function of sirtuin-3. Flow cytometry, immunoblotting, qRT-PCR and immunohistochemistry were used measure effects on oxidative stress, mitochondrial dynamics, electron transport chain function, and markers of inflammation and apoptosis. Sirtuin-3 deacetylase activity was also estimated and gastric luminal pH was measured. KEY RESULTS Indomethacin down-regulated sirtuin-3 to induce oxidative stress, mitochondrial hyperacetylation, 8-oxoguanine DNA glycosylase 1 depletion, mitochondrial DNA damage, respiratory chain defect and mitochondrial fragmentation leading to severe mucosal injury. Indomethacin dose-dependently inhibited sirtuin-3 deacetylase activity. Honokiol prevented mitochondrial oxidative damage and inflammatory tissue injury by attenuating indomethacin-induced depletion of both sirtuin-3 and its transcriptional regulators PGC1α and ERRα. Honokiol also accelerated gastric wound healing but did not alter gastric acid secretion, unlike lansoprazole. CONCLUSIONS AND IMPLICATIONS Sirtuin-3 stimulation by honokiol prevented and reversed NSAID-induced gastric injury through maintaining mitochondrial integrity. Honokiol did not affect gastric acid secretion. Sirtuin-3 stimulation by honokiol may be utilized as a mitochondria-based, acid-independent novel gastroprotective strategy against NSAIDs.
Collapse
Affiliation(s)
- Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Saikat Pramanik
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Samik Bindu
- Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Somnath Mazumder
- Department of Zoology, Raja Peary Mohan College, Uttarpara, West Bengal, India
| | - Troyee Das
- Division of Bioinformatics, Bose Institute, Kolkata, West Bengal, India
| | - Debanjan Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University, Kolkata, Kolkata, West Bengal, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Zhumur Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, West Bengal, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
4
|
Zhao X, Yang T, Zhou J, Chen Y, Shen Q, Zhang J, Qiu Q. Fucoidan alleviates the hepatorenal syndrome through inhibition organic solute transporter α/β to reduce bile acids reabsorption. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2023; 5:100159. [PMID: 37416532 PMCID: PMC10320405 DOI: 10.1016/j.crphar.2023.100159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/03/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023] Open
Abstract
The high levels of bile acids are a critical factor in hepatorenal syndrome. Organic solute transporter α/β (Ostα/β) participate in bile acids reabsorption in the kidney. Fucoidan has the great potential in protecting against liver and kidney injury. However, whether Ostα/β increase bile acids reabsorption in bile duct ligature (BDL)-induced hepatorenal syndrome and the blockade of fucoidan are still not clear. Male mice that received BDL were given to fucoidan (at 12.5, 25 and 50 mg/kg) through intraperitoneal injection once daily for three weeks. The serum, liver and kidney samples of these experimental mice were collected to carry out biochemical, pathological and Western blot analysis. In this study, fucoidan significantly lowered serum activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), decreased serum levels of uric acid, creatinine and uric nitrogen, restored the deregulation of the renal urate transporter 1 (URAT1), organic anion transporter 1 (OAT1), and organic cation/carnitine transporter 1/2 (OCTN1/2), consistence with alleviation BDL-induced liver and kidney dysfunction, inflammation and fibrosis in mice. Furthermore, fucoidan significantly hampered Ostα/β and reduced bile acids reabsorption in BDL-induced mice, protected against AML12 and HK-2 cells injury in vitro. These results demonstrate that fucoidan alleviates BDL-induced hepatorenal syndrome through inhibition Ostα/β to reduce bile acids reabsorption in mice. Therefore, suppression of Ostα/β by fucoidan may be a novel strategy for attenuating hepatorenal syndrome.
Collapse
|
5
|
Chen YT, Huang YW, Shen TY, Wu CC, Wang JJ, Hsieh SL. Evaluation of antioxidant and anti-obesity potential of Sargassum extracts. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1723-1730. [PMID: 37187983 PMCID: PMC10170008 DOI: 10.1007/s13197-023-05707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
Sargassum are brown algae belonging to the class Phaeophyceae. Brown algae are rich in nutrients and widely used in food. Most previous experiments have focused on the functional evaluation of organic solvent extracts of Sargassum. Considering food safety, this study investigated the antioxidant and antiobesity activities of Sargassum hemiphyllum water extract (SE). The antioxidant activity of SE (500-4000 mg/mL) was determined in vitro. The results indicated that SE has good DPPH radical scavenging activity (14-74%), reducing power (20-78%), ABTS+ radical scavenging activity (8-91%), and Fe2+ chelating ability (5-25%). Furthermore, the antiobesity activity of SE (50-300 mg/mL) was analysed in a 3T3-L1 adipocyte model. SE effectively inhibited lipid accumulation (determined by methods including measuring the absorbance of Oil red O after staining and the triglyceride content, which were decreased by 10% and 20%, respectively) by reducing peroxisome proliferator-activated receptor gamma (PPARγ) protein expression in 3T3-L1 adipocytes. This study suggested that SE has good antioxidant and antiobesity properties. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05707-1.
Collapse
Affiliation(s)
- Ya-Ting Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157 Taiwan
| | - Yu-Wen Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157 Taiwan
| | - Tsai-Ying Shen
- Division of Nutrition, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301 Taiwan
| | - Chih-Chung Wu
- Department of Food and Nutrition, Providence University, Taichung, 43301 Taiwan
| | - Jyh-Jye Wang
- Department of Nutrition and Health Science, Fooyin University, Kaohsiung, 83102 Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157 Taiwan
| |
Collapse
|
6
|
Wang X, Yin J, Hu J, Nie S, Xie M. Gastroprotective polysaccharide from natural sources: Review on structure, mechanism, and structure–activity relationship. FOOD FRONTIERS 2022; 3:560-591. [DOI: 10.1002/fft2.172] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
Abstract
AbstractPolysaccharides from natural sources have the potentials in being used as substitutes of chemosynthetic drugs for gastroprotection because of its safety and efficacy. For giving a better understanding of gastroprotective polysaccharides, the research progress on preparation, structure, bioactivity, and their action mechanism is comprehensively summarized in this review. Moreover, the structure–activity relationship of gastroprotective polysaccharides is discussed. Accumulating evidence has indicated that natural polysaccharides, which were widely prepared by water extraction and column chromatography purifications, exhibited gastroprotective effects in vitro and in vivo. The action mechanism might be related to gastric secretions, promotion of gastric defensive factor releases, antioxidation, anti‐inflammatory, antiapoptosis, and facilitation of proliferation. Phenolic compounds, molecular weight and conformation, monosaccharide composition, backbone structure and side chain, and functional group have great influences on the gastroprotective activities of polysaccharides. This review gives comprehensive guidance to the exploitation and application of natural polysaccharides in food and other industries for gastroprotection.
Collapse
Affiliation(s)
- Xiao‐Yin Wang
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
- School of Public Health and Health Management Gannan Medical University Ganzhou 341000 China
| | - Jun‐Yi Yin
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
| | - Jie‐Lun Hu
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
| | - Shao‐Ping Nie
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
| | - Ming‐Yong Xie
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
| |
Collapse
|
7
|
Guo G, Yang W, Fan C, Lan R, Gao Z, Gan S, Yu H, Yin F, Wang Z. The effects of fucoidan as a dairy substitute on diarrhea rate and intestinal barrier function of the large intestine in weaned lambs. Front Vet Sci 2022; 9:1007346. [PMID: 36337209 PMCID: PMC9630570 DOI: 10.3389/fvets.2022.1007346] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/29/2022] [Indexed: 08/13/2023] Open
Abstract
This paper explores the effects of fucoidan on the frequency of diarrhea, colon morphology, colon antioxidant status, cytokine content, short-chain fatty acids, and microflora of cecal contents in early weaned lambs in order to provide a reference for the intestinal health of young ruminants. Fucoidan is a natural active polysaccharide extracted from kelp and other large brown algae. It has many biological effects, such as improving immunity, nourishing the stomach and intestines, and anti-tumor properties. This study investigated the effects of fucoidan supplementation in milk replacer on the large intestine's ability to act as an intestinal barrier in weaned lambs. With six duplicate pens and one lamb per pen, a total of 24 weaned lambs (average starting body weight of 7.32 ± 0.37 kg) were randomly assigned to one of four milk replacer treatments. Four concentrations of fucoidan supplementation (0, 0.1, 0.3, and 0.6% dry matter intake) were employed to investigate the effects of fucoidan on cecal fermentation and colon microbial organization. The test period lasted 37 days (1 week before the test and 1 month after the test), and lamb cecal contents and colon organization were collected for examination. In addition, the fecal status of all lambs was observed and recorded daily, allowing us to calculate the incidence of diarrhea in weaned lambs. The findings demonstrated that fucoidan may significantly increase the concentration of short-chain fatty acids (propionic acid and butyric acid) in the cecal digesta of weaned lambs. In weaned lambs, 16S rDNA testing showed that fucoidan at 0.3-0.6% (dry matter intake) was beneficial for boosting the variety of the intestinal bacteria and modifying the relative abundance of a few bacterial strains. In addition, fucoidan enhanced colon antioxidant and immune functions and decreased the diarrhea rate to relieve weaning stress. This result demonstrates that milk replacer supplementation with fucoidan contributes to the improvement in the large intestinal health of weaned lambs.
Collapse
Affiliation(s)
- Guangzhen Guo
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Weiguang Yang
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Chaojie Fan
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Ruixia Lan
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Zhenhua Gao
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Shangquan Gan
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Haibin Yu
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Fuquan Yin
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Zhijing Wang
- Animal Disease Prevention and Control Center, Guangdong Qingyuan Agricultural Bureau, Qingyuan, China
| |
Collapse
|
8
|
Kiselevskiy MV, Anisimova NY, Ustyuzhanina NE, Vinnitskiy DZ, Tokatly AI, Reshetnikova VV, Chikileva IO, Shubina IZ, Kirgizov KI, Nifantiev NE. Perspectives for the Use of Fucoidans in Clinical Oncology. Int J Mol Sci 2022; 23:11821. [PMID: 36233121 PMCID: PMC9569813 DOI: 10.3390/ijms231911821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Fucoidans are natural sulfated polysaccharides that have a wide range of biological functions and are regarded as promising antitumor agents. The activity of various fucoidans and their derivatives has been demonstrated in vitro on tumor cells of different histogenesis and in experiments on mice with grafted tumors. However, these experimental models showed low levels of antitumor activity and clinical trials did not prove that this class of compounds could serve as antitumor drugs. Nevertheless, the anti-inflammatory, antiangiogenic, immunostimulating, and anticoagulant properties of fucoidans, as well as their ability to stimulate hematopoiesis during cytostatic-based antitumor therapy, suggest that effective fucoidan-based drugs could be designed for the supportive care and symptomatic therapy of cancer patients. The use of fucoidans in cancer patients after chemotherapy and radiation therapy might promote the rapid improvement of hematopoiesis, while their anti-inflammatory, immunomodulatory, and anticoagulant effects have the potential to improve the quality of life of patients with advanced cancer.
Collapse
Affiliation(s)
- Mikhail V. Kiselevskiy
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Sh., Moscow 115478, Russia
- Center for Biomedical Engineering, National University of Science and Technology MISIS, Leninsky Prospect 4, Moscow 119049, Russia
| | - Natalia Yu. Anisimova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Sh., Moscow 115478, Russia
- Center for Biomedical Engineering, National University of Science and Technology MISIS, Leninsky Prospect 4, Moscow 119049, Russia
| | - Nadezhda E. Ustyuzhanina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Av., 47, Moscow 119991, Russia
| | - Dmitry Z. Vinnitskiy
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Av., 47, Moscow 119991, Russia
| | - Alexandra I. Tokatly
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Av., 47, Moscow 119991, Russia
| | - Vera V. Reshetnikova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Sh., Moscow 115478, Russia
| | - Irina O. Chikileva
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Sh., Moscow 115478, Russia
| | - Irina Zh. Shubina
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Sh., Moscow 115478, Russia
| | - Kirill I. Kirgizov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Sh., Moscow 115478, Russia
| | - Nikolay E. Nifantiev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Av., 47, Moscow 119991, Russia
| |
Collapse
|
9
|
Yang Y, Liang M, Ouyang D, Tong H, Wu M, Su L. Research Progress on the Protective Effect of Brown Algae-Derived Polysaccharides on Metabolic Diseases and Intestinal Barrier Injury. Int J Mol Sci 2022; 23:10784. [PMID: 36142699 PMCID: PMC9503908 DOI: 10.3390/ijms231810784] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
In the human body, the intestine is the largest digestive and immune organ, where nutrients are digested and absorbed, and this organ plays a key role in host immunity. In recent years, intestinal health issues have gained attention and many studies have shown that oxidative stress, inflammation, intestinal barrier damage, and an imbalance of intestinal microbiota may cause a range of intestinal diseases, as well as other problems. Brown algae polysaccharides, mainly including alginate, fucoidan, and laminaran, are food-derived natural products that have received wide attention from scholars owing to their good biological activity and low toxic side effects. It has been found that brown algae polysaccharides can repair intestinal physical, chemical, immune and biological barrier damage. Principally, this review describes the protective effects and mechanisms of brown algae-derived polysaccharides on intestinal health, as indicated by the ability of polysaccharides to maintain intestinal barrier integrity, inhibit lipid peroxidation-associated damage, and suppress inflammatory cytokines. Furthermore, our review aims to provide new ideas on the prevention and treatment of intestinal diseases and act as a reference for the development of fucoidan as a functional product for intestinal protection.
Collapse
Affiliation(s)
- Ying Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Meina Liang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Dan Ouyang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Laijin Su
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
10
|
Viswanath K, Hayes M, Avni D. Inflammatory bowel disease - A peek into the bacterial community shift and algae-based ‘biotic’ approach to combat the disease. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Huang W, Tan H, Nie S. Beneficial effects of seaweed-derived dietary fiber: Highlights of the sulfated polysaccharides. Food Chem 2022; 373:131608. [PMID: 34815114 DOI: 10.1016/j.foodchem.2021.131608] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022]
Abstract
Seaweeds and their derivatives are important bioresources of natural bioactive compounds. Nutritional studies indicate that dietary fibers derived from seaweeds have great beneficial potentials in human health and can be developed as functional food. Moreover, sulfated polysaccharides are more likely to be the main bioactive components which are widely distributed in various species of seaweeds including Phaeophyceae, Rhodophyceae and Chlorophyceae. The catabolism by gut microbiota of the seaweeds-derived dietary fibers (DFs) may be one of the pivotal pathways of their physiological functions. Therefore, in this review, we summarized the latest results of the physiological characteristics of seaweed-derived dietary fiber and highlighted the roles of sulfated polysaccharides in the potential regulatory mechanisms against disorders. Meanwhile, the effects of different types of seaweed-derived dietary fiber on gut microbiota were discussed. The analysis of the structure-function correlations and gut microbiota related mechanisms and will contribute to further better applications in food and biotherapeutics.
Collapse
Affiliation(s)
- Wenqi Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Huizi Tan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
12
|
Effect of fucoidan on kidney injury in type 2 diabetic rats based on PI3K/AKT/Nrf2. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Dong XD, Liu YN, Zhao Y, Liu AJ, Ji HY, Yu J. Structural characterization of a water-soluble polysaccharide from Angelica dahurica and its antitumor activity in H22 tumor-bearing mice. Int J Biol Macromol 2021; 193:219-227. [PMID: 34688677 DOI: 10.1016/j.ijbiomac.2021.10.110] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/20/2021] [Accepted: 10/16/2021] [Indexed: 01/16/2023]
Abstract
A novel Angelica dahurica polysaccharide (ADP) with Mw of 6.09 × 103 Da was isolated. The contents of total sugar and uronic acid in ADP were 91.04% and 12.69%. The structure characteristics indicated that ADP was an acidic polysaccharide consisting of rhamnose, arabinose, galactose, glucose, mannose, glucuronic acid and galacturonic acid (0.09: 0.61: 1.88: 1: 0.14: 0.63: 0.03). Moreover, there were →3)-Manp-(1→, →4, 6)-Galp-(1→, →4)-Galp-(1→, →3)-Glcp-(1→, →5)-Araf-(1→, →2)-Galp-(1→ in ADP with relative molar ratios of 0.32:0.57:0.29:0.95:0.71:0.26. In vivo experiments suggested that ADP significantly inhibited the tumor growth of mice, increased the activities of spleen lymphocytes and natural killer (NK) cells, improved the cytokine level (IL-2 and TNF-α) and the proportions of lymphocyte subsets in the peripheral blood. The tumor cell progression was arrested in the G1 phase, and the apoptosis rate of tumor cells were 7.54% and 19.32% at the dose of 100 and 200 mg/kg, which was consistent with the results of pathological observation. In summary, the study might provide a theoretical basis for the application on functional foods containing Angelica dahurica polysaccharides.
Collapse
Affiliation(s)
- Xiao-Dan Dong
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Yi-Ning Liu
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Yan Zhao
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - An-Jun Liu
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hai-Yu Ji
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Juan Yu
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
14
|
Drira M, Hentati F, Babich O, Sukhikh S, Larina V, Sharifian S, Homai A, Fendri I, Lemos MFL, Félix C, Félix R, Abdelkafi S, Michaud P. Bioactive Carbohydrate Polymers-Between Myth and Reality. Molecules 2021; 26:7068. [PMID: 34885655 PMCID: PMC8659292 DOI: 10.3390/molecules26237068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/27/2022] Open
Abstract
Polysaccharides are complex macromolecules long regarded as energetic storage resources or as components of plant and fungal cell walls. They have also been described as plant mucilages or microbial exopolysaccharides. The development of glycosciences has led to a partial and difficult deciphering of their other biological functions in living organisms. The objectives of glycobiochemistry and glycobiology are currently to correlate some structural features of polysaccharides with some biological responses in the producing organisms or in another one. In this context, the literature focusing on bioactive polysaccharides has increased exponentially during the last two decades, being sometimes very optimistic for some new applications of bioactive polysaccharides, notably in the medical field. Therefore, this review aims to examine bioactive polysaccharide, taking a critical look of the different biological activities reported by authors and the reality of the market. It focuses also on the chemical, biochemical, enzymatic, and physical modifications of these biopolymers to optimize their potential as bioactive agents.
Collapse
Affiliation(s)
- Maroua Drira
- Laboratoire de Biotechnologies des Plantes Appliquées à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisia; (M.D.); (I.F.)
| | - Faiez Hentati
- INRAE, URAFPA, Université de Lorraine, F-54000 Nancy, France;
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.)
| | - Stanislas Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.)
| | - Viktoria Larina
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.)
| | - Sana Sharifian
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas 74576, Iran; (S.S.); (A.H.)
| | - Ahmad Homai
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas 74576, Iran; (S.S.); (A.H.)
| | - Imen Fendri
- Laboratoire de Biotechnologies des Plantes Appliquées à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisia; (M.D.); (I.F.)
| | - Marco F. L. Lemos
- MARE–Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (M.F.L.L.); (C.F.); (R.F.)
| | - Carina Félix
- MARE–Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (M.F.L.L.); (C.F.); (R.F.)
| | - Rafael Félix
- MARE–Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (M.F.L.L.); (C.F.); (R.F.)
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia;
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France
| |
Collapse
|
15
|
Li Y, Zheng Y, Zhang Y, Yang Y, Wang P, Imre B, Wong ACY, Hsieh YSY, Wang D. Brown Algae Carbohydrates: Structures, Pharmaceutical Properties, and Research Challenges. Mar Drugs 2021; 19:620. [PMID: 34822491 PMCID: PMC8623139 DOI: 10.3390/md19110620] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
Brown algae (Phaeophyceae) have been consumed by humans for hundreds of years. Current studies have shown that brown algae are rich sources of bioactive compounds with excellent nutritional value, and are considered functional foods with health benefits. Polysaccharides are the main constituents of brown algae; their diverse structures allow many unique physical and chemical properties that help to moderate a wide range of biological activities, including immunomodulation, antibacterial, antioxidant, prebiotic, antihypertensive, antidiabetic, antitumor, and anticoagulant activities. In this review, we focus on the major polysaccharide components in brown algae: the alginate, laminarin, and fucoidan. We explore how their structure leads to their health benefits, and their application prospects in functional foods and pharmaceuticals. Finally, we summarize the latest developments in applied research on brown algae polysaccharides.
Collapse
Affiliation(s)
- Yanping Li
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Yuting Zheng
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Ye Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Yuanyuan Yang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Peiyao Wang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Balázs Imre
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.I.); (A.C.Y.W.)
| | - Ann C. Y. Wong
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.I.); (A.C.Y.W.)
| | - Yves S. Y. Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.I.); (A.C.Y.W.)
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 11421 Stockholm, Sweden
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| |
Collapse
|
16
|
Abd-El-Aziz AS, Benaaisha MR, Abdelghani AA, Bissessur R, Abdel-Rahman LH, Fayez AM, El-ezz DA. Aspirin-Based Organoiron Dendrimers as Promising Anti-Inflammatory, Anticancer, and Antimicrobial Drugs. Biomolecules 2021; 11:1568. [PMID: 34827566 PMCID: PMC8615929 DOI: 10.3390/biom11111568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022] Open
Abstract
Designing nanocarriers with actions directed at a specific organ or tissue is a very promising strategy since it can significantly reduce the toxicity of a bioactive drug. In this study, an organometallic dendrimer was used to synthesize a biocompatible drug delivery system by attaching aspirin to the periphery of the dendrimer. Our goal is to enhance the bioavailability and anticancer activity of aspirin and reduce its toxicity through successive generations of organoiron dendrimers. The biological activity of aspirin-based dendrimer complexes was evaluated. The result of antimicrobial activity of the synthesized dendrimers also demonstrated an increase in their antimicrobial activity with increased generation of the dendrimers for most types of microorganisms. This study reveals for the first time that organoiron dendrimers linked with aspirin exhibit an excellent Gram-negative activity comparable to the reference drug Gentamicin. All synthesized dendrimers were tested for their anticancer activity against breast cancer cell lines (MCF-7), hepatocellular cell lines (Hep-G2), and a non-cancer cell line, Human Embryonic Kidney (HEK293), using the MTT cell viability assay and compared against a standard anticancer drug, Doxorubicin. Compounds G3-D9-Asp and G4-D12-Asp exhibited noticeable activity against both cell lines, both of which were more effective than aspirin itself. In addition, the in vivo anti-inflammatory activity and histopathology of swollen paws showed that the designed aspirin-based dendrimers displayed significant anti-inflammatory activity; however, G2-D6-Asp showed the best anti-inflammatory activity, which was more potent than the reference drug aspirin during the same period. Moreover, the coupling of aspirin to the periphery of organoiron dendrimers showed a significant reduction in the toxicity of aspirin on the stomach.
Collapse
Affiliation(s)
- Alaa S. Abd-El-Aziz
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; (M.R.B.); (A.A.A.); (R.B.)
| | - Maysun R. Benaaisha
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; (M.R.B.); (A.A.A.); (R.B.)
| | - Amani A. Abdelghani
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; (M.R.B.); (A.A.A.); (R.B.)
| | - Rabin Bissessur
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; (M.R.B.); (A.A.A.); (R.B.)
| | | | - Ahmed M. Fayez
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11835, Egypt;
| | - Doaa Abou El-ezz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Giza 8655, Egypt;
| |
Collapse
|
17
|
Ding HM, Fu RJ, Xie C, Wang CS, Qian GY. Transcriptomic profile of human erythroleukemia cells in response to Sargassum fusiforme polysaccharide and its structure analysis. Chin J Nat Med 2021; 19:784-795. [PMID: 34688468 DOI: 10.1016/s1875-5364(21)60076-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Indexed: 12/08/2022]
Abstract
Sargassum fusiforme (S. fusiforme) has been used as an ingredient in Chinese herbal medicine for thousands of years. However, there are a limited number of studies concerning its therapeutic mechanism. High performance gel permeation chromatography (HPGPC) analysis showed that the average molecular weight of the S. fusiforme polysaccharide, SFPS 191212, is 43 kDa. SFPS 191212 is composed of mannose, rhamnose, galactose, xylose, glucose, and fucose (at a molar ratio: 2.1 : 2.9 : 1.8 : 15.5 : 4.6 : 62.5) with α- and β-configurations. The present research evaluated the anti-tumor potential of the S. fusiforme polysaccharide in human erythroleukemia (HEL) cells in vitro. To explore the SFPS 191212's apoptosis mechanism in HEL cells, transcriptome analysis was performed on HEL cells that were incubated with SFPS 191212. The inhibitory effect of SFPS 191212 on HEL cell growth was also analyzed. It was found that SFPS 191212 inhibited HEL cell proliferation, reduced cell viability in a concentration-dependent manner, and induced an insignificant toxic effect on normal human embryonic lung (MRC-5) cells. Compared with the control group, transcriptome analysis identified a total of 598 differentially expressed genes (DEGs), including 243 up-regulated genes and 355 down-regulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on all DEGs, and 900 GO terms and 52 pathways were found to be significantly enriched. Finally, 23 DEGs were randomly selected and confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). Moreover, SFPS 191212 down-regulated the PI3K/Akt signal transduction pathway. Our results provide a framework for understanding the effect of SFPS 191212 on cancer cells and can serve as a resource for delineating the anti-tumor mechanisms of S. fusiforme.
Collapse
Affiliation(s)
- Hao-Miao Ding
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Rui-Jie Fu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Ce Xie
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Cai-Sheng Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China.
| | - Guo-Ying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China.
| |
Collapse
|
18
|
Sun T, Xue M, Yang J, Pei Z, Zhang N, Qin K, Liang H. Metabolic regulation mechanism of fucoidan via intestinal microecology in diseases. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4456-4463. [PMID: 33682122 DOI: 10.1002/jsfa.11202] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/23/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
The intestinal microecology is an extremely complex ecosystem consisting of gut microbiota, intestinal mucosa and the intestinal immune system. The intestinal microecology performs several important functions and is considered to be an essential 'organ' because it plays an important role in regulating human metabolism. Fucoidan contains a large amount of fucose and galactose residues, as well as various other neutral and acidic monosaccharides. Fucoidan particularly effects tumors, inflammatory bowel disease, diabetes and obesity by repairing intestinal mucosal damage and improving the intestinal microecological environment. It has been proposed that fucoidan could be used as a prebiotic agent for pharmaceutical and functional foods. In this review, we elucidate the potential mechanisms of the metabolic regulation of fucoidan with respect to the intestinal microecology of diseases. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ting Sun
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Meilan Xue
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Jia Yang
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Zhongqian Pei
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Nan Zhang
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Kunpeng Qin
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Hui Liang
- Department of Human Nutrition, College of Public Health, Qingdao University of Medicine, Qingdao, China
| |
Collapse
|
19
|
Wang T, Zhao H, Bi Y, Fan X. Preparation and antioxidant activity of selenium nanoparticles decorated by polysaccharides from Sargassum fusiforme. J Food Sci 2021; 86:977-986. [PMID: 33559173 DOI: 10.1111/1750-3841.15605] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/01/2020] [Accepted: 12/27/2020] [Indexed: 01/22/2023]
Abstract
In this study, the response surface method was employed to optimize the extraction conditions of the ultrasonic-assisted extraction of Sargassum fusiforme polysaccharides (SFPS). The effects of four independent variables (hot water extraction time, ultrasonic time, ultrasonic power, and material-to-liquid ratio) on the extraction rate of SFPS were tested. In addition, the SFPS functionalized nanoselenium (SFPS-SeNPs) was prepared by chemical reduction method, whose characterization and in vitro antioxidant activity were investigated. The results showed that the yield of the crude SFPS was 25.8% at the optimal conditions of material-to-liquid ratio 1:50 (w/v), ultrasonic power 200 W, ultrasonic time 15 min, and water bath time 130 min. A series of characterization experiments showed that the SFPS-SeNPs performed higher dispersion and stability than naked SeNPs. Furthermore, the in vitro antioxidant activity assay indicated that SFPS functioned as a modifier improved the free radical scavenging activity of SeNPs significantly. In conclusion, this study provided a method to extract SFPS as a carrier for SeNPs, and SFPS-SeNPs could not only improve the stability of SeNPs, but also exerted the biological activities of SFPS. PRACTICAL APPLICATION: This research provided new ideas for the application of SFPS and the development of nanoselenium preparation carriers.
Collapse
Affiliation(s)
- Tian Wang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Hongying Zhao
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Yongguang Bi
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| | - Xiaodan Fan
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| |
Collapse
|
20
|
Holmegaard L, Stanne TM, Andreasson U, Zetterberg H, Blennow K, Blomstrand C, Jood K, Jern C. Proinflammatory protein signatures in cryptogenic and large artery atherosclerosis stroke. Acta Neurol Scand 2021; 143:303-312. [PMID: 33107019 PMCID: PMC7898473 DOI: 10.1111/ane.13366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/03/2020] [Accepted: 10/12/2020] [Indexed: 01/17/2023]
Abstract
Objectives The cause of ischemic stroke remains unknown, cryptogenic, in 25% of young and middle‐aged patients. We hypothesized that if atherosclerosis is prominent in cryptogenic stroke, it would have a similar proinflammatory protein signature as large artery atherosclerosis (LAA) stroke. Materials & Methods Blood was collected in the acute phase and after 3 months from cryptogenic (n = 162) and LAA (n = 73) stroke patients aged 18–69 years and once from age‐matched controls (n = 235). Cryptogenic stroke was divided into Framingham Risk Score (FRS) quartiles to compare low and high risk of atherosclerosis. Plasma concentrations of 25 proteins were analyzed using a Luminex multiplex assay. The discriminating properties were assessed with discriminant analysis and C‐statistics. Results We identified proteins that separated cryptogenic and LAA stroke from controls (area under the curves, AUCs ≥ 0.85). For both subtypes, RANTES, IL‐4, and IFN‐γ contributed the most at both time points. These associations were independent of risk factors of atherosclerosis. We also identified proteins that separated cryptogenic strokes in the lowest quartile of FRS from those in the highest, and from LAA stroke (AUCs ≥ 0.76), and here eotaxin and MCP‐1 contributed the most. Conclusions The protein signature separating cases from controls was different from the signature separating cryptogenic stroke with low risk of atherosclerosis from those with high risk and from LAA stroke. This suggests that increased RANTES, IL‐4, and IFN‐γ in stroke may not be primarily related to atherosclerosis, whereas increased eotaxin and MCP‐1 in cryptogenic stroke may be markers of occult atherosclerosis as the underlying cause.
Collapse
Affiliation(s)
- Lukas Holmegaard
- Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Department of Neurology Sahlgrenska University Hospital Gothenburg Sweden
| | - Tara M. Stanne
- Department of Laboratory Medicine Institute of Biomedicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Department of Clinical Genetics and Genomics Sahlgrenska University Hospital Gothenburg Sweden
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
- Department of Neurodegenerative Disease UCL Institute of Neurology, Queen Square London UK
- UK Dementia Research Institute at UCL London UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
| | - Christian Blomstrand
- Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Katarina Jood
- Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Department of Neurology Sahlgrenska University Hospital Gothenburg Sweden
| | - Christina Jern
- Department of Laboratory Medicine Institute of Biomedicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Department of Clinical Genetics and Genomics Sahlgrenska University Hospital Gothenburg Sweden
| |
Collapse
|
21
|
Current developments in the oral drug delivery of fucoidan. Int J Pharm 2021; 598:120371. [PMID: 33581274 DOI: 10.1016/j.ijpharm.2021.120371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
Fucoidan is well known to have various biological functions and is often investigated for pharmaceutical applications. Several studies have been conducted on clinical applications of fucoidan in recent years, especially regarding its oral drug delivery. Although fucoidan has shown promising results in various dosage forms, its potential applications as a dietary supplement have been demonstrated, and recent studies show that oral administration of fucoidan is preferred. However, the focus on the oral delivery of fucoidan in recent studies has caused its potency in therapy to be understudied. This review aims to provide results on the promising fucoidan activity by oral administration with in vivo studies. In addition to using it as an active ingredient, the utilization of fucoidan as an excipient in oral drug delivery systems will be discussed. An overview of fucoidan administration by oral delivery in recent promising studies will provide a direction for further investigations in clinical applications, particularly for fucoidan, which has a broad spectrum of bioactive properties.
Collapse
|
22
|
Hsieh SY, Lian YZ, Lin IH, Yang YC, Tinkov AA, Skalny AV, Chao JCJ. Combined Lycium babarum polysaccharides and C-phycocyanin increase gastric Bifidobacterium relative abundance and protect against gastric ulcer caused by aspirin in rats. Nutr Metab (Lond) 2021; 18:4. [PMID: 33407626 PMCID: PMC7789774 DOI: 10.1186/s12986-020-00538-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/26/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Non-steroidal anti-inflammatory drugs such as aspirin are used for the treatment of cardiovascular disease. Chronic use of low-dose aspirin is associated with the occurrence of gastric ulcer. The aim of this study was to investigate the healing potential of Lycium barbarum polysaccharides (LBP) from Chinese Goji berry and C-phycocyanin (CPC) from Spirulina platensis on gastric ulcer in rats. METHODS Male Sprague-Dawley rats were divided into five groups: normal, aspirin (700 mg/kg bw), LBP (aspirin + 100 mg/kg bw/d LBP), CPC (aspirin + 50 mg/kg bw/d CPC), and MIX (aspirin + 50 mg/kg bw/d LBP + 25 mg/kg bw/d CPC) groups. Gastric ulcer was developed by daily oral feeding of aspirin for 8 weeks. Treatments were given orally a week before ulcer induction for 9 weeks. RESULTS The MIX group elevated gastric cyclooxygenase-1, prostaglandin E2, and total nitrite and nitrate levels by 139%, 86%, and 66%, respectively, compared with the aspirin group (p < 0.05). Moreover, the MIX group reduced lipid peroxides malondialdehyde levels by 78% (p < 0.05). The treatment of LBP and/or CPC increased gastric Bifidobacterium relative abundance by 2.5-4.0 times compared with the aspirin group (p < 0.05). CONCLUSIONS We conclude that combined LBP and CPC enhance gastroprotective factors, inhibit lipid peroxidation, and increase gastric Bifidobacterium relative abundance. Combined LBP and CPC have protective potential against gastric ulcer caused by aspirin in rats.
Collapse
Affiliation(s)
- Shu-Yu Hsieh
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, 11031, Taiwan
| | - Yu Zhi Lian
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, 11031, Taiwan
| | - I-Hsuan Lin
- Research Center of Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Chen Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 110, Taiwan
| | - Alexey A Tinkov
- Sechenov First Moscow State Medical University, Moscow, Russia
- K.G. Razumovsky Moscow State University of Technologies and Management, Moscow, Russia
| | - Anatoly V Skalny
- Sechenov First Moscow State Medical University, Moscow, Russia
- K.G. Razumovsky Moscow State University of Technologies and Management, Moscow, Russia
| | - Jane C-J Chao
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, 11031, Taiwan.
- Master Program in Global Health and Development, Taipei Medical University, Taipei 110, Taiwan.
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan.
| |
Collapse
|
23
|
Seetha A, Devaraj H, Sudhandiran G. Effects of combined treatment with Indomethacin and Juglone on AOM/DSS induced colon carcinogenesis in Balb/c mice: Roles of inflammation and apoptosis. Life Sci 2021; 264:118657. [PMID: 33148421 DOI: 10.1016/j.lfs.2020.118657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023]
Abstract
AIM Indomethacin [IND] is reported to treat colon cancer. However, continuous exposure to IND causes gastric ulceration, an adverse side effect in humans. This study implies the therapeutic effect of IND and juglone [JUG] against colon carcinogenesis, without gastric ulceration - an adverse side effect of IND. MATERIALS AND METHODS Adult male Balb/C mice were divided into six groups randomly: control, AOM/DSS-induced, IND-treated, JUG-treated, IND + JUG-treated and drug-control. Levels of serum markers, haematoxylin & eosin staining to observe tissue architecture, toluidine blue staining to detect mast cells expression, Masson's trichrome and sirius-red staining were used to detect the collagen deposition. RT-PCR and western blot analysis were carried out to detect inflammation and apoptosis. KEY FINDINGS IND + JUG effectively decreased the levels of serum markers: CEA, AFP, LDH, AST and ALT. Although, IND restored colonic architecture by regulating the accumulation of mast cell and collagen content, it causes gastric ulceration. To address this adverse effect of IND, JUG was given along with IND and was shown to alleviate IND-induced gastric ulceration. AOM/DSS induced animals showed increased expression of inflammatory molecules - TNFα, NFκB and Cox-2, apoptosis regulator - Bcl-2 and decreased expression of pro-apoptotic molecules - Bad, Bax and caspase3; whereas, IND and JUG treated groups showed decreased inflammatory expression with increased expression of pro-apoptotic molecules. SIGNIFICANCE IND and JUG reduce the inflammatory activity and induce apoptotic cell death, while JUG effectively prevents IND induced gastric ulceration. These findings establish that a combination of IND + JUG may serve as a promising treatment regimen for colon cancer.
Collapse
Affiliation(s)
- Alagesan Seetha
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, India
| | - Halagowder Devaraj
- Department of Zoology, University of Madras, Guindy Campus, Chennai, India
| | | |
Collapse
|
24
|
EGFR-conjugated hydrogel accelerates wound healing on ulcer-induced burn wounds by targeting collagen and inflammatory cells using photoimmunomodulatory inhibition. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111541. [PMID: 33255093 DOI: 10.1016/j.msec.2020.111541] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 01/10/2023]
Abstract
In the present study, we fabricated an epidermal growth factor receptor (EGFR)-conjugated hydrogel to promote wound healing in cold restraint-induced gastric ulceration on burn wounds targeting collagen and inflammatory cells for the treatment of burns and gastric ulcers. Cytotoxicity and cell proliferation assays demonstrated good biocompatibility of hydrogel as a suitable extracellular matrix for targeted cells and support for regenerative cell growth. These findings were confirmed by staining methods. In vitro wound healing was confirmed cell migration in the targeted cells. The effect of the EGFR-H was investigated in cold restraint-induced gastric ulcers in rats, where the treatment was started immediately after ulcer induction. In the in vivo experiment, the EGFR-H demonstrated enhanced ulcer healing ability and less scarring compared to the hydrogel alone and controls. Thus, EGFR-H promotes healing of cold restraint-induced gastric ulcer via EGFR conjugated with a hydrogel. The present study demonstrates a novel pathway to fabricate hydrogels as suitable wound dressing biomaterials to improve deep partial thickness burn wound healing and prevent scar formation when aided by laser therapy.
Collapse
|
25
|
Jia RB, Li ZR, Wu J, Ou ZR, Liao B, Sun B, Lin L, Zhao M. Mitigation mechanisms of Hizikia fusifarme polysaccharide consumption on type 2 diabetes in rats. Int J Biol Macromol 2020; 164:2659-2670. [PMID: 32846181 DOI: 10.1016/j.ijbiomac.2020.08.154] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
The objective of current work was to explore the potential anti-diabetic mechanisms of Hizikia fusifarme polysaccharide (HFP) in type 2 diabetic rats. The carbohydrate loading experiment illustrated that HFP supplement could reduce blood sugar fluctuations caused by eating through inhibiting the hydrolysis of starch in mice. The analysis of typically diabetic symptoms and serum profiles showed that oral administration of HFP could mitigate hyperglycemia, insulin resistance, dyslipidemia, chronic inflammation and oxidative stress in rats. The 16s rRNA gene sequencing analysis indicated that HFP treatment could restore beneficial composition of gut flora in diabetic rats, and the correlation analysis revealed that the improvement of diabetes is closely related to the modification of gut flora by HFP intervention. Furthermore, the RT-qPCR and western blotting analysis clarified that HFP administration could increase glycogen storage in liver and skeletal muscle of diabetic rats through activating IRS/PI3K/AKT/GLUT signaling pathway and restrain gluconeogenesis via affecting the relative expression of Egr-1 and PEPCK genes.
Collapse
Affiliation(s)
- Rui-Bo Jia
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China
| | - Zhao-Rong Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China
| | - Juan Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China
| | - Zhi-Rong Ou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bingwu Liao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China.
| |
Collapse
|
26
|
Li J, Guo C, Wu J. Fucoidan: Biological Activity in Liver Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1617-1632. [PMID: 33148007 DOI: 10.1142/s0192415x20500809] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fucoidan is a type of polysaccharide rich in sulfuric acid groups and is mainly found in brown algae. Due to its extensive biological activities, such as anticoagulant, antitumor, antithrombotic, antiviral, anti-oxidant and enhancing immune function, fucoidan has gradually become a research hotspot. Under the scientific guidance of modern medical theory, fucoidan and its mechanism in oxidative stress, carbohydrate and lipid metabolism, inflammatory response, tumor proliferation, and metastasis have become a new research direction and an important basis as an effective liver protection drug. In this paper, we discuss the important role of fucoidan in viral hepatitis, liver fibrosis, liver cancer, nonalcoholic fatty liver and liver injury induced by drugs and ischemia and briefly discuss its underlying mechanism. We supplement the theoretical basis for its clinical application and provide effective targets for the development of follow-up dominant drugs.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, P. R. China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Shanghai 200072, P. R. China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, P. R. China
| |
Collapse
|
27
|
Ding HM, Chen XJ, Chen HM, Wang CS, Qian GY. Effect of Sargassum fusiforme polysaccharide on apoptosis and its possible mechanism in human erythroleukemia cells. Chin J Nat Med 2020; 18:749-759. [PMID: 33039054 DOI: 10.1016/s1875-5364(20)60015-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Indexed: 12/17/2022]
Abstract
This study aimed to investigate the effects of Sargassum fusiforme polysaccharide (SFPS I, II, and III) on the apoptosis and regulation of human erythroleukemia (HEL) cells. The effect of different doses of SFPS on HEL cell growth was detected using the Cell Counting Kit-8 method, and apoptosis was detected by Hoechst staining. Cell cycle distribution and apoptosis were detected using flow cytometry. Expression of the cell cycle gene, p53, antiapoptotic genes, Bcl-xL and Bcl-2, and pro-apoptotic genes, Bax, Bad, and Caspase-3, as well as the expression of the corresponding proteins, were detected using real-time quantitative polymerase chain reaction (qPCR) and Western blot. The results showed that SFPS II and III decreased HEL cell viability and induced HEL cell apoptosis. Different concentrations of SFPS (I, II, and III) were detected that induced much less toxic effect in normal human embryonic lung (MRC-5) cells, and SFPS I increased cell proliferation, indicating its favorable selectivity towards cancer cells. The mechanism by which SFPS induced apoptosis was also found to be related to the induction of cell cycle arrest in the G0/G1 phase and the increased expression of apoptosis-related genes and proteins. We concluded that SFPS induces HEL cell apoptosis, possibly via activation of the Caspase pathway, providing the theoretical basis for the development of SFPS-based anti-tumor drug products.
Collapse
Affiliation(s)
- Hao-Miao Ding
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Xue-Jia Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Hai-Min Chen
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Cai-Sheng Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China.
| | - Guo-Ying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China.
| |
Collapse
|
28
|
Sun T, Liang H, Xue M, Liu Y, Gong A, Jiang Y, Qin Y, Yang J, Meng D. Protective effect and mechanism of fucoidan on intestinal mucosal barrier function in NOD mice. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1789071] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Ting Sun
- Basic Medical College, Qingdao University of Medicine, Qingdao, People’s Republic of China
| | - Hui Liang
- Department of Human Nutrition, College of Public Health, Qingdao University of Medicine, Qingdao, People’s Republic of China
| | - Meilan Xue
- Basic Medical College, Qingdao University of Medicine, Qingdao, People’s Republic of China
| | - Ying Liu
- Basic Medical College, Qingdao University of Medicine, Qingdao, People’s Republic of China
| | - Anjing Gong
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Yushan Jiang
- Department of Human Nutrition, College of Public Health, Qingdao University of Medicine, Qingdao, People’s Republic of China
| | - Yimin Qin
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao, People’s Republic of China
| | - Jia Yang
- Basic Medical College, Qingdao University of Medicine, Qingdao, People’s Republic of China
| | - Danyang Meng
- Basic Medical College, Qingdao University of Medicine, Qingdao, People’s Republic of China
| |
Collapse
|
29
|
Liu J, Wu SY, Chen L, Li QJ, Shen YZ, Jin L, Zhang X, Chen PC, Wu MJ, Choi JI, Tong HB. Different extraction methods bring about distinct physicochemical properties and antioxidant activities of Sargassum fusiforme fucoidans. Int J Biol Macromol 2020; 155:1385-1392. [PMID: 31733246 DOI: 10.1016/j.ijbiomac.2019.11.113] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 01/11/2023]
Abstract
Fucoidan is a complex sulfated polysaccharide and an active component found in the cell wall of brown seaweeds. In the present study, fucoidans were obtained from Sargassum fusiforme using different extraction methods, including hot water (prepared fucoidan was named as WSFF), dilute hydrochloric acid (ASFF), and calcium chloride solution (CSFF). The assessments were performed on S. fusiforme fucoidans based on their chemical composition, molecular conformations, and in vitro antioxidant activities. ASFF showed the maximum extraction yield (11.24%), whereas CSFF exhibited the minimum yield (3.94%). The monosaccharide composition of WSFF, ASFF, and CSFF was similar, but the molar ratio of monosaccharide was quite different. Moreover, their molecular weight, Fourier transform infrared (FT-IR) spectrum, surface morphology, uronic acid content and degree of sulfation were distinct. The Congo red test and Circular dichroism spectroscopy analysis displayed some differences in solution conformation of these samples. Furthermore, WSFF, ASFF, and CSFF showed distinct in vitro antioxidant activities evaluated by DPPH and hydroxyl radical scavenging assays. The present study provides scientific evidence on the influences of extraction methods on the physicochemical characteristics, conformation behaviors and antioxidant activities of S. fusiforme fucoidans.
Collapse
Affiliation(s)
- Jian Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 500-757, South Korea
| | - Si-Ya Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ling Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Qiao-Juan Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yi-Zhe Shen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Li Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Pei-Chao Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ming-Jiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 500-757, South Korea.
| | - Hai-Bin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
30
|
Okimura T, Jiang Z, Komatsubara H, Hirasaka K, Oda T. Therapeutic effects of an orally administered edible seaweed-derived polysaccharide preparation, ascophyllan HS, on a Streptococcus pneumoniae infection mouse model. Int J Biol Macromol 2020; 154:1116-1122. [PMID: 31712141 DOI: 10.1016/j.ijbiomac.2019.11.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/19/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022]
Abstract
Ascophyllan HS is a commercially available preparation of the edible brown alga Ascophyllum nodosum containing ascophyllan, a sulfated polysaccharide with diverse beneficial biological activities. In this study, the effects of ascophyllan HS were evaluated in a severe intranasal Streptococcus pneumoniae infection mouse model. The control untreated mice started to die on day 7 and 80% had died by day 14 post-infection. Continuous oral administration of ascophyllan HS before and after bacterial infection resulted in a remarkable increase in survival rate, with 90% of the low (167 mg/kg body weight/day) and 100% of the high (500 mg/kg body weight/day) dose ascophyllan HS-treated mice surviving at day 14 post-infection. Histopathological observation of the lungs of the infected mice revealed the induction of typical pneumonia features in the alveolar spaces of the untreated control mice, such as extensive infiltration of inflammatory cells, edema, and fibrin deposition. In contrast, notable levels of lung injuries or alterations were not observed in the ascophyllan HS-treated mice, and only a minor lesion was observed in one mouse. Furthermore, bacterial burdens in the lungs were significantly reduced in the ascophyllan HS-treated mice as compared to the control mice at day 4 post-infection. Significantly higher levels of IL-12 were detected in the serum of ascophyllan HS-treated mice than that of control mice measured at the end of the infection experiment (day 14). These results suggest that orally administered ascophyllan HS exerts a therapeutic effect on S. pneumoniae infection by activating the host defense systems. This is the first report of the therapeutic effect of an orally administered seaweed polysaccharide preparation on S. pneumoniae infection. Our findings suggest that ascophyllan HS has the potential to be developed as nutraceuticals and pharmaceuticals applicable for humans as well as a safe and promising therapeutic agent against S. pneumoniae infection.
Collapse
Affiliation(s)
- Takasi Okimura
- Research and Development Division, Hayashikane Sangyo Co., Ltd., Shimonoseki, Yamaguchi 750-8608, Japan
| | - Zedong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | | | - Katsuya Hirasaka
- Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Tatsuya Oda
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan.
| |
Collapse
|
31
|
Sanniyasi E, Venkatasubramanian G, Anbalagan MM, Raj PP, Gopal RK. In vitro anti-HIV-1 activity of the bioactive compound extracted and purified from two different marine macroalgae (seaweeds) (Dictyota bartayesiana J.V.Lamouroux and Turbinaria decurrens Bory). Sci Rep 2019; 9:12185. [PMID: 31434919 PMCID: PMC6704075 DOI: 10.1038/s41598-019-47917-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/28/2019] [Indexed: 11/09/2022] Open
Abstract
Highly active antiretroviral therapy (HAART) is the only available remedial measure to treat HIV infected patients, as recognized by the WHO. However, it is associated with toxicity (nephrotoxicity), high cost and most preferably drug resistance in the first-line treatment. Wherefore, potential and novel natural source is the only option for the modern world to challenge this global issue. In recent years, sulfated polysaccharide from marine macroalgae shown to be biologically active as anti-inflammatory, anticoagulant, antitumor, immunomodulatory and antiviral agents. As a direct inhibitor of HIV including other retroviruses, it is considered as a "new generation antiretroviral drug". In our present study, Fucoidan, a sulfated polysaccharide has been extracted from two different macroalgae Dictyota bartayesiana (DD) and Turbinaria decurrens (TD) based on hot water extraction method and further confirmed by FT-IR and RP-HPLC methods. Both the crude and purified fucoidan samples were evaluated for anti-HIV activity after ion exchange chromatography purification. The maximum inhibitory activity of crude and purified fucoidan samples are 90.5% and 89% in the fucoidan extracts of DD. Whereas, it was 89.7% and 92% in the fucoidan extracts of TD. Simultaneously, the IC50 values were determined and recorded as 1.56 µg/ml and 57.6 ng/ml in both the crude and purified fucoidan extracts of DD respectively. Similarly, for TD, it was 3 µg/ml and 131.7 ng/ml in the fucoidan extracts of TD. Therefore, further extensive research work is the most needful to fill the gaps to develop this sulfated polysaccharide as a potential drug for the treatment of HIV patients.
Collapse
Affiliation(s)
- Elumalai Sanniyasi
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India.
| | | | - Madhu Mitra Anbalagan
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, Tamil Nadu, India
| | - Preethy P Raj
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| | - Rajesh Kanna Gopal
- Department of Plant Biology and Plant Biotechnology, Presidency College (Autonomous), Chennai, Tamil Nadu, India
| |
Collapse
|
32
|
Kan J, Cheng J, Xu L, Hood M, Zhong D, Cheng M, Liu Y, Chen L, Du J. The combination of wheat peptides and fucoidan protects against chronic superficial gastritis and alters gut microbiota: a double-blinded, placebo-controlled study. Eur J Nutr 2019; 59:1655-1666. [PMID: 31230147 DOI: 10.1007/s00394-019-02020-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/31/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Chronic gastritis is observed in almost half world population. Traditional medications against chronic gastritis might produce adverse effects, so alternative nutritional strategies are needed to prevent the aggravation of gastric mucosal damage. The aim of this study is to evaluate the protective effect of the combination of wheat peptides and fucoidan (WPF) on adults diagnosed with chronic superficial gastritis in a randomized, double-blind, placebo-controlled clinical trial. METHODS Participants were randomized to receive WPF (N = 53) or placebo (N = 53) once daily for 45 days. Pathological grading of gastric mucosal damage was scored using gastroscopy. Fecal samples were collected for the determination of calprotectin, short chain fatty acids (SCFA) levels and metagenomics analysis. Questionnaires for self-reported gastrointestinal discomforts, life quality and food frequency were collected throughout the study. RESULTS WPF intervention reduced gastric mucosal damage in 70% subjects (P < 0.001). Significantly less stomach pain (P < 0.001), belching (P = 0.028), bloating (P < 0.001), acid reflux (P < 0.001), loss of appetite (P = 0.021), increased food intake (P = 0.020), and promoted life quality (P = 0.014) were reported in the WPF group. WPF intervention significantly decreased fecal calprotectin level (P = 0.003) while slightly increased fecal SCFAs level (P = 0.092). In addition, we found altered microbiota composition post-intervention with increased Bifidobacterium pseudocatenulatum (P = 0.032), Eubacterium siraeum (P = 0.036), Bacteroides intestinalis (P = 0.024) and decreased Prevotella copri (P = 0.055). CONCLUSIONS WPF intervention could be utilized as a nutritional alternative to mitigate the progression of chronic gastritis. Furthermore, WPF played an important role in altering gut microbial profile and SCFA production, which might benefit the lower gastrointestinal tract.
Collapse
Affiliation(s)
- Juntao Kan
- Nutrilite Health Institute, Amway R&D Center, 720 Cailun Road, Shanghai, 201203, China
| | - Junrui Cheng
- Nutrilite Health Institute, Amway R&D Center, 720 Cailun Road, Shanghai, 201203, China
| | - Leiming Xu
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Molly Hood
- Nutrilite Health Institute, Amway R&D Center, Ada, MI, 49355, USA
| | - Dingfu Zhong
- Department of Gastroenterology, Jinhua Wenrong Hospital, Jinhua, 321013, Zhejiang, China
| | | | - Yumin Liu
- Nutrilite Health Institute, Amway R&D Center, 720 Cailun Road, Shanghai, 201203, China
| | - Liang Chen
- Nutrilite Health Institute, Amway R&D Center, 720 Cailun Road, Shanghai, 201203, China
| | - Jun Du
- Nutrilite Health Institute, Amway R&D Center, 720 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
33
|
Tanna B, Mishra A. Nutraceutical Potential of Seaweed Polysaccharides: Structure, Bioactivity, Safety, and Toxicity. Compr Rev Food Sci Food Saf 2019; 18:817-831. [DOI: 10.1111/1541-4337.12441] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Bhakti Tanna
- Division of Biotechnology and PhycologyCSIR—Central Salt and Marine Chemicals Research Inst. G. B. Marg Bhavnagar 364002 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Avinash Mishra
- Division of Biotechnology and PhycologyCSIR—Central Salt and Marine Chemicals Research Inst. G. B. Marg Bhavnagar 364002 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
34
|
Wang Y, Xing M, Cao Q, Ji A, Liang H, Song S. Biological Activities of Fucoidan and the Factors Mediating Its Therapeutic Effects: A Review of Recent Studies. Mar Drugs 2019; 17:E183. [PMID: 30897733 PMCID: PMC6471298 DOI: 10.3390/md17030183] [Citation(s) in RCA: 272] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 02/06/2023] Open
Abstract
The marine acid polysaccharide fucoidan has attracted attention from both the food and pharmaceutical industries due to its promising therapeutic effects. Fucoidan is a polysaccharide that mainly consists of L-fucose and sulphate groups. Its excellent biological function is attributed to its unique biological structure. Classical activities include antitumor, antioxidant, anticoagulant, antithrombotic, immunoregulatory, antiviral and anti-inflammatory effects. More recently, fucoidan has been shown to alleviate metabolic syndrome, protect the gastrointestinal tract, benefit angiogenesis and bone health. This review focuses on the progress in our understanding of the biological activities of fucoidan, highlighting its benefits for the treatment of human disease. We hope that this review can provide some theoretical basis and inspiration for the product development of fucoidan.
Collapse
Affiliation(s)
- Yu Wang
- Marine College, Shandong University, Weihai 264209, China.
| | - Maochen Xing
- Marine College, Shandong University, Weihai 264209, China.
| | - Qi Cao
- Marine College, Shandong University, Weihai 264209, China.
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China.
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Hao Liang
- Marine College, Shandong University, Weihai 264209, China.
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
35
|
Mohamed WA, Abd-Elhakim YM, Ismail SAA. Involvement of the anti-inflammatory, anti-apoptotic, and anti-secretory activity of bee venom in its therapeutic effects on acetylsalicylic acid-induced gastric ulceration in rats. Toxicology 2019; 419:11-23. [PMID: 30885738 DOI: 10.1016/j.tox.2019.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/21/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022]
Abstract
Acetylsalicylic acid (ASA) is the most highly consumed pharmaceutical product worldwide. Importantly, gastrointestinal ulceration due to ASA is a major complication. Hence, the present work aimed to examine, for the first time, the healing properties of bee venom (BV) in acute gastric ulceration induced by ASA. Forty adult male Sprague-Dawley rats were divided into four groups that received distilled water only, ASA (500 mg/kg BW) twice daily for 3 days, ASA for 3 days followed by BV (2 mg/kg BW) for 7 days, or ASA for 3 days followed by ranitidine hydrochloride (50 mg/kg BW) for 7 days. Haematological analysis, haemostatic evaluation, and inflammatory marker estimation were performed. Rat stomachs were collected for ulcer scoring, gene expression analysis, oxidative stress assays, histopathological and immunohistochemical examinations, and tissue eosinophil scoring. The results revealed that BV markedly decreased the ulcer index, pro-inflammatory cytokine levels, malondialdehyde levels, BAX distribution, caspase-3 expression, and tissue eosinophil levels. Additionally, significant increases in antioxidant enzymes and heat shock protein 70 localization in gastric tissue were evident following BV treatment after ASA exposure. Also, BV has been found to attenuate the haematological, haemostatic, and histopathological alterations induced by ASA. Our findings collectively indicate that the gastroprotective effect of BV against ASA-induced ulceration in rats is mediated by its antioxidant, anti-inflammatory, anti-apoptotic, and anti-secretory properties.
Collapse
Affiliation(s)
- Wafaa A Mohamed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Shimaa A A Ismail
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
36
|
Hira K, Sultana V, Khatoon N, Ara J, Ehteshamul-Haque S. Protective effect of crude sulphated polysaccharides from Sargassum Swartzii (Turn.) C.Ag. against acetaminophen induced liver toxicity in rats. CLINICAL PHYTOSCIENCE 2019. [DOI: 10.1186/s40816-019-0108-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
37
|
Marine Polysaccharides: Biomedical and Tissue Engineering Applications. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/978-981-13-8855-2_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Bouissil S, Pierre G, Alaoui-Talibi ZE, Michaud P, El Modafar C, Delattre C. Applications of Algal Polysaccharides and Derivatives in Therapeutic and Agricultural Fields. Curr Pharm Des 2019; 25:1187-1199. [PMID: 31465279 DOI: 10.2174/1381612825666190425162729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Recently, researchers have given more and more consideration to natural polysaccharides thanks to their huge properties such as stability, biodegradability and biocompatibility for food and therapeutics applications. METHODS a number of enzymatic and chemical processes were performed to generate bioactive molecules, such as low molecular weight fractions and oligosaccharides derivatives from algal polysaccharides. RESULTS These considerable characteristics allow algal polysaccharides and their derivatives such as low molecular weight polymers and oligosaccharides structures to have great potential to be used in lots of domains, such as pharmaceutics and agriculture etc. Conclusion: The present review describes the mains polysaccharides structures from Algae and focuses on the currents agricultural (fertilizer, bio-elicitor, stimulators, signaling molecules and activators) and pharmaceutical (wound dressing, tissues engineering and drugs delivery) applications by using polysaccharides and/or their oligosaccharides derivatives obtained by chemical, physical and enzymatic processes.
Collapse
Affiliation(s)
- Soukaina Bouissil
- Universite Cadi Ayyad, Laboratoire de Biotechnologie et Bioingenierie Moleculaire, Faculte des Sciences et Techniques, Marrakech, Morocco
- Universite Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Guillaume Pierre
- Universite Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Zainab El Alaoui-Talibi
- Universite Cadi Ayyad, Laboratoire de Biotechnologie et Bioingenierie Moleculaire, Faculte des Sciences et Techniques, Marrakech, Morocco
| | - Philippe Michaud
- Universite Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - C El Modafar
- Universite Cadi Ayyad, Laboratoire de Biotechnologie et Bioingenierie Moleculaire, Faculte des Sciences et Techniques, Marrakech, Morocco
| | - Cedric Delattre
- Universite Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| |
Collapse
|
39
|
Bi D, Yu B, Han Q, Lu J, White WL, Lai Q, Cai N, Luo W, Gu L, Li S, Xu H, Hu Z, Nie S, Xu X. Immune Activation of RAW264.7 Macrophages by Low Molecular Weight Fucoidan Extracted from New Zealand Undaria pinnatifida. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10721-10728. [PMID: 30257559 DOI: 10.1021/acs.jafc.8b03698] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fucoidan, a sulfated polysaccharide extracted from brown seaweeds, has been shown to possess various bioactivities. In particular, low molecular weight fucoidan (LMWF) has been shown to have better bioactivities. In this study, a LMWF (<10 kDa) was extracted from New Zealand Undaria pinnatifida and investigated for its immune modulation effects. LMWF at a concentration range from 1 to 50 μg/mL exerted an effective immune activation in RAW264.7 macrophages. LMWF treatment promoted significant NO release, iNOS expression, and TNF-α and IL-6 secretion in a concentration-dependent manner. It also significantly stimulated the activation of NF-κB and MAPK signaling pathways, and specific inhibitors of NF-κB and MAPK pathways diminished the stimulation, confirming the activation pathways. These results indicate that LMWF possesses potential health benefits through immune-stimulation, which may lead to future pharmaceutical development.
Collapse
Affiliation(s)
- Decheng Bi
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Boming Yu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Qingguo Han
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Jun Lu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
- School of Science and School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences , Auckland University of Technology , Auckland 1142 , New Zealand
| | - William Lindsey White
- School of Science and School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences , Auckland University of Technology , Auckland 1142 , New Zealand
| | - Qiuxian Lai
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Nan Cai
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Wenqi Luo
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Liang Gu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Sheng Li
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Hong Xu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Zhangli Hu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , Jiangxi , PR China
| | - Xu Xu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| |
Collapse
|
40
|
Tanna B, Mishra A. Metabolites Unravel Nutraceutical Potential of Edible Seaweeds: An Emerging Source of Functional Food. Compr Rev Food Sci Food Saf 2018; 17:1613-1624. [PMID: 33350143 DOI: 10.1111/1541-4337.12396] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 01/04/2023]
Abstract
Functional foods are nutritional compounds which also provide health and medicinal benefits. Daily food intake has much impact on the quality of life, and therefore inclusion of functional foods is now essential to our diet. Nutraceuticals are neither food nor drug but are added to food to provide extra nutritional and physiological properties. Though nutraceutical compounds provide minimal actions, their regular involvement in the diet can provide major and long-term health benefits. Global demand for additional and sustainable biomass for the production of important metabolites with nutraceutical potential has resulted in renewed interest in seaweeds. Seaweeds have been consumed from ancient times in Asian areas, and in recent times they have been demonstrated to possess many medicinal effects. Seaweeds are considered a rich source of various nutritional ingredients and metabolites that have pharmaceutical properties. It has been observed that total protein, from terrestrial plants such as soybean and wheat, produces an allergic response on consumption. Therefore, seaweed proteins can be considered a promising source for food industries. Overall, seaweeds are a rich source of PUFAs, metabolites, proteins, sulfated polysaccharides, vitamins, and minerals, which are all responsible for different bioactivities; they are therefore considered a promising functional food (nutraceutical). In this review we discuss the nutraceutical potential of seaweeds regarding different metabolites (primary and secondary), variation in composition, probable biological applications, limitations, research gaps, and future prospects.
Collapse
Affiliation(s)
- Bhakti Tanna
- Div. of Biotechnology and Phycology, CSIR-Central Salt and Marine Chemicals Research Inst., G. B. Marg, Bhavnagar, Gujarat, India.,Acad. of Scientific and Innovative Research, Council of Scientific and Industrial Research, New Delhi, India
| | - Avinash Mishra
- Div. of Biotechnology and Phycology, CSIR-Central Salt and Marine Chemicals Research Inst., G. B. Marg, Bhavnagar, Gujarat, India.,Acad. of Scientific and Innovative Research, Council of Scientific and Industrial Research, New Delhi, India
| |
Collapse
|
41
|
Kim HM, Ahn C, Kang BT, Kang JH, Jeung EB, Yang MP. Fucoidan suppresses excessive phagocytic capacity of porcine peripheral blood polymorphonuclear cells by modulating production of tumor necrosis factor-alpha by lipopolysaccharide-stimulated peripheral blood mononuclear cells. Res Vet Sci 2018; 118:413-418. [PMID: 29698903 DOI: 10.1016/j.rvsc.2018.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/05/2018] [Accepted: 04/13/2018] [Indexed: 11/30/2022]
Abstract
We examined the effect of fucoidan, an immune modulator, on the phagocytic capacity of porcine peripheral blood polymorphonuclear cells (PMNs) exposed to culture supernatant from lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMCs). For this purpose, we evaluated the phagocytic capacity of porcine PMNs by flow cytometry and measured levels of tumor necrosis factor-alpha (TNF-α) protein and mRNA in porcine PBMCs by enzyme-linked immunosorbent assay (ELISA) and real time-polymerase chain reaction (PCR), respectively. Fucoidan or LPS alone did not affect the phagocytic capacity of PMNs, but phagocytosis by these cells was increased by exposure to culture supernatant from PBMCs treated with fucoidan or LPS. In particular, the culture supernatant from PBMCs treated with LPS revealed excessive phagocytosis of PMNs. This excessive phagocytic capacity was diminished by co-treatment LPS with fucoidan. Production of TNF-α mRNA and protein increased upon treatment of PBMCs with either fucoidan or LPS, but this effect was also diminished by co-treatment LPS with fucoidan. The ability of culture supernatant from PBMCs treated with LPS and/or fucoidan to increase the phagocytic capacity of PMNs was inhibited by anti-recombinant porcine TNF-α polyclonal antibody. These results suggested that fucoidan suppresses the phagocytic capacity of PMNs by modulating TNF-α production by LPS-stimulated PBMCs.
Collapse
Affiliation(s)
- Hyeong-Mok Kim
- Department of Veterinary Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Changhwan Ahn
- Department of Veterinary Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Byeong-Teck Kang
- Department of Veterinary Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ji-Houn Kang
- Department of Veterinary Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Eui-Bae Jeung
- Department of Veterinary Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Mhan-Pyo Yang
- Department of Veterinary Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
42
|
Affiliation(s)
- O Ersoy
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - G Kizilay
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
43
|
Salem NA, Wahba MA, Eisa WH, El-Shamarka M, Khalil W. Silver oxide nanoparticles alleviate indomethacin-induced gastric injury: a novel antiulcer agent. Inflammopharmacology 2017; 26:1025-1035. [DOI: 10.1007/s10787-017-0424-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
|
44
|
Wu X, Yan M, Liu T, Liao J, Zhang J, Chen S, Deng W, Zhang S, Sun B, Zhou H, Ke B. Fucoidan elevates surface organic cation transporter 2 expression via upregulation of protein kinase A in uric acid nephropathy. Exp Ther Med 2017; 14:4153-4159. [PMID: 29104632 PMCID: PMC5658688 DOI: 10.3892/etm.2017.5077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 03/31/2017] [Indexed: 12/21/2022] Open
Abstract
Uric acid nephropathy (UAN) is caused by excessive uric acid, and is a key risk factor for uric acid nephrolithiasis, gouty arthritis, renal diseases and cardiovascular diseases. The present study aimed to evaluate the protective effect of fucoidan, a sulfated polysaccharide component of brown algae, on UAN and to elucidate the underlying molecular mechanism. A rat model of UAN was induced by adenine treatment, and rats were then randomly assigned to control, model or fucoidan treatment groups. Hematoxylin and eosin staining of the kidney tissues of rats with UAN was subjected to conventional morphological evaluation. Cellular infiltrate in the tubules, atrophic glomeruli, tubular ectasia, granuloma hyperplasia focal fibrosis and accumulated urate crystals in the tubules of UAN rat renal tissues were observed. These symptoms of kidney damage were reduced in the fucoidan treatment group. Periodic acid methenamine silver-Masson staining was performed and the results indicated that renal interstitial fibrosis was reduced among renal tissues from the fucoidan treatment group compared with the model group. Terminal deoxynucleotidyl-transferase-mediated dUTP nick end labelling staining revealed a lower proportion of apoptotic nuclei in the kidneys of the fucoidan treatment group compared with the model group. Protein kinase A (PKA) 2β and phosphorylated PKA 2β protein levels were significantly elevated in renal tissues of the fucoidan treatment group compared with the model group (P<0.05 and P<0.01, respectively), suggesting that PKA expression was upregulated by fucoidan. Immunohistochemistry staining of PKA in rat renal tissues demonstrated increased expression of PKA. The surface organic cation transporter 2 (OCT2) level was significantly increased by fucoidan treatment compared with the model group (P<0.01), with no significant change in total OCT2 level. COS-7 cells ectopically expressing OCT2 were established. It was indicated that fucoidan was able to activate PKA and upregulate surface OCT2 in OCT2-expressing COS-7 cells. This further demonstrated that upregulation of surface OCT2 expression in OCT2-expressing cells was induced by PKA upregulation. In conclusion, fucoidan upregulated surface OCT2 expression in renal tissues to alleviate the symptoms of UAN via upregulated expression of PKA.
Collapse
Affiliation(s)
- Xinlin Wu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Miansheng Yan
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Taoli Liu
- Department of Traditional Chinese Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Jiantang Liao
- Community Health Service Center of Dongshan, Guangzhou, Guangdong 510030, P.R. China
| | - Jianqing Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shuqing Chen
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wei Deng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shijun Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Baoguo Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Houming Zhou
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Bin Ke
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
45
|
Kan J, Hood M, Burns C, Scholten J, Chuang J, Tian F, Pan X, Du J, Gui M. A Novel Combination of Wheat Peptides and Fucoidan Attenuates Ethanol-Induced Gastric Mucosal Damage through Anti-Oxidant, Anti-Inflammatory, and Pro-Survival Mechanisms. Nutrients 2017; 9:E978. [PMID: 28878183 PMCID: PMC5622738 DOI: 10.3390/nu9090978] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 02/07/2023] Open
Abstract
Gastritis or peptic ulcer is believed to affect about half of people worldwide. Traditional medications can lead to adverse effects, therefore, alternative nutritional strategies are needed to prevent the development of gastric mucosal damage. A novel combination of two food-grade ingredients, wheat peptides and fucoidan (WPF), was prepared to treat male Sprague Dawley rats for 30 days before gastric mucosal damage was induced by oral administration of ethanol. The serum levels of biomarkers were determined by enzyme-linked immunosorbent assay. Biomarkers in stomach tissue were analyzed using immunohistochemistry. In addition, human gastric epithelial cell line (GES-1) was used to investigate protein expression by Western blot. WPF could attenuate ethanol-induced gastric mucosal damage in an inverse dose-dependent manner, with both ulcer index and pathological index improved. WPF increased superoxide dismutase level and decreased malondialdehyde level. WPF also decreased the levels of interleukin-8, platelet-activating factor, and Caspase 3, while increasing the levels of prostaglandin E-2, epidermal growth factor (EGF), and EGF receptor (EGFR). Furthermore, phosphorylation of EGFR and extracellular signal-regulated kinases was induced by WPF in GES-1 cells. In conclusion, the novel combination of wheat peptides and fucoidan attenuated ethanol-induced gastric mucosal damage in rats through anti-oxidant, anti-inflammatory, and pro-survival mechanisms.
Collapse
Affiliation(s)
- Juntao Kan
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China.
| | - Molly Hood
- Nutrilite Health Institute, 7575 East Fulton Avenue, Ada, MI 49355, USA.
| | - Charlie Burns
- Nutrilite Health Institute, 7575 East Fulton Avenue, Ada, MI 49355, USA.
| | - Jeff Scholten
- Nutrilite Health Institute, 7575 East Fulton Avenue, Ada, MI 49355, USA.
| | - Jennifer Chuang
- Nutrilite Health Institute, 5600 Beach Boulevard, Buena Park, CA 90621, USA.
| | - Feng Tian
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China.
| | - Xingchang Pan
- China National Research Institute of Food and Fermentation Industries, 24 Jiuxianqiao Middle Road, Beijing 100015, China.
| | - Jun Du
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China.
| | - Min Gui
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
46
|
Alese MO, Adewole SO, Akinwunmi KF, Omonisi AE, Alese OO. Aspirin-Induced Gastric Lesions Alters EGFR and PECAM-1 Immunoreactivity in Wistar Rats: Modulatory Action of Flavonoid Fraction of Musa Paradisiaca. Open Access Maced J Med Sci 2017; 5:569-577. [PMID: 28932294 PMCID: PMC5591583 DOI: 10.3889/oamjms.2017.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/02/2017] [Accepted: 04/18/2017] [Indexed: 01/03/2023] Open
Abstract
AIM In this study, Epithelial Growth Factor Receptor and Platelet Endothelial Cell Adhesion Molecule-1 were localised to investigate the healing effects of a flavonoid-rich fraction of M. paradisiaca fruit in the gastric corpus of Wistar rats following aspirin-induced gastric lesion. MATERIALS AND METHODS Mature, unripe fruits of M. paradisiaca were peeled; air dried, pulverised, extracted with 70% methanol, concentrated and partitioned. Ninety male Wistar rats were randomly assigned into 6 groups of 15 rats each. The gastric lesion was induced in groups B, C, D, E and F rats by administration of 400 mg/kg aspirin in distilled water. Group A received distilled water. After 24 hours, flavonoid fraction of M. paradisiaca was administered to groups C, D and E at 100, 200 and 400 mg/kg respectively for 21 days. Group F rats received omeprazole at 1.8 mg/kg for 21 days. Five rats from each group were anaesthetized with ketamine on days 14, 21 and 28. Gastric tissues were excised and fixed in Neutral buffered formalin. This was followed by paraffin wax embedding method and sections stained with haematoxylin and eosin and for immunolocalisation of EGFR and PECAM-1. Data were analysed using descriptive and inferential statistics. RESULTS There was a significant difference in the ulcer index in the corpus of control and treated rats throughout the experimental period (p = 0.0001). H&E stained sections showed a gradual restoration of the epithelial lining in the treated groups. Immunohistochemical examination showed that M. paradisiaca significantly increased (p < 0.05) reactivity for both EGFR and CD31 across the treatment groups. CONCLUSION The efficacy of Musa paradisiaca in attenuating the damaging effects of aspirin on the gastric mucosa was observed as there was a significantly increased reactivity for EGFR and PECAM-1 in the gastric corpus in a dose-dependent manner.
Collapse
Affiliation(s)
| | | | - Kemi Feyisayo Akinwunmi
- Department of Biochemistry, Faculty of Science, Obafemi Awolowo University, Ile Ife, Nigeria
| | - Abidemi Emmanuel Omonisi
- Department of Anatomic Pathology, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| | - Oluwole Ojo Alese
- Department of Physiology, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| |
Collapse
|
47
|
Yuguchi Y, Tran VTT, Bui LM, Takebe S, Suzuki S, Nakajima N, Kitamura S, Thanh TTT. Primary structure, conformation in aqueous solution, and intestinal immunomodulating activity of fucoidan from two brown seaweed species Sargassum crassifolium and Padina australis. Carbohydr Polym 2016; 147:69-78. [PMID: 27178910 DOI: 10.1016/j.carbpol.2016.03.101] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 12/12/2022]
Abstract
We studied the structure of fucoidans extracted from two brown seaweed species, Sargassum crassifolium and Padina australis, and their intestinal immunomodulating activity via Peyer's patch cells of C3H/HeJ mice. ESI-MS analysis indicated that the dominant structure of both fucoidans has a backbone of α-(1→4)-linked and α-(1→3)-linked l-fucose residues and sulfate groups are attached at the C-2 and C-4 positions; branches of fucoidan from S. crassifolium are galactose residues with (1→4)- linkage and branching points are at C-4 of fucose, while fucoidan from P. australis, branches are sulfated galactose-fucose disaccharides and sulfated galactose monosaccharides attached to the main chain through (1→3)- or (1→4)- linkages. According to small angle X-ray scattering (SAXS) measurements, the two fucoidans have a branched structure. We simulated them with molecular models based on our proposed primary structure. These fucoidan samples have the ability to stimulate intestinal immunological activity via Peyer's patch cells.
Collapse
Affiliation(s)
- Yoshiaki Yuguchi
- Faculty of Engineering, Osaka Electro-Communication University, Japan
| | - Van Thi Thanh Tran
- Nha Trang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Vietnam
| | - Ly Minh Bui
- Nha Trang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Vietnam
| | - Shizuka Takebe
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Japan
| | - Shiho Suzuki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Japan
| | - Nobukazu Nakajima
- Faculty of Engineering, Osaka Electro-Communication University, Japan
| | - Shinichi Kitamura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Japan
| | - Thuy Thi Thu Thanh
- Institute of Chemistry, Vietnam Academy of Science and Technology, Vietnam.
| |
Collapse
|
48
|
Hwang PA, Phan NN, Lu WJ, Ngoc Hieu BT, Lin YC. Low-molecular-weight fucoidan and high-stability fucoxanthin from brown seaweed exert prebiotics and anti-inflammatory activities in Caco-2 cells. Food Nutr Res 2016; 60:32033. [PMID: 27487850 PMCID: PMC4973444 DOI: 10.3402/fnr.v60.32033] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/20/2016] [Accepted: 06/20/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The aim of this study is to investigate the anti-inflammatory effects of low-molecular-weight fucoidan (LMF) and high-stability fucoxanthin (HS-Fucox) in a lipopolysaccharide-induced inflammatory Caco-2 cell line co-culture with B. lactis. METHODS We used various methods such as transepithelial resistance (TER) assay, cytokine secretion assay, and tight junction protein mRNA expression assay to examine LMF and HS-Fucox anti-inflammatory properties. RESULTS LMF and HS-Fucox activated probiotic growth and reduced the inflammation of the intestinal epithelial cells. Moreover, the combination of LMFHS-Fucox dramatically enhanced the intestinal epithelial barrier and immune function against the lipopolysaccharide effect by inhibiting IL-1β and TNF-α and promoting IL-10 and IFN-γ. CONCLUSION These findings suggested that LMF and HS-Fucox, alone or in combination, could be the potential natural compounds to enhance the immune system and have an anti-inflammatory effect on the intestinal cells.
Collapse
Affiliation(s)
- Pai-An Hwang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Nam Nhut Phan
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan.,Faculty of Applied Sciences, Ton Duc Thang University, Hồ Chí Minh, Vietnam
| | - Wen-Jung Lu
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Bui Thi Ngoc Hieu
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - Yen-Chang Lin
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan;
| |
Collapse
|
49
|
Ruocco N, Costantini S, Guariniello S, Costantini M. Polysaccharides from the Marine Environment with Pharmacological, Cosmeceutical and Nutraceutical Potential. Molecules 2016; 21:molecules21050551. [PMID: 27128892 PMCID: PMC6273702 DOI: 10.3390/molecules21050551] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/18/2016] [Accepted: 04/22/2016] [Indexed: 01/29/2023] Open
Abstract
Carbohydrates, also called saccharides, are molecules composed of carbon, hydrogen, and oxygen. They are the most abundant biomolecules and essential components of many natural products and have attracted the attention of researchers because of their numerous human health benefits. Among carbohydrates the polysaccharides represent some of the most abundant bioactive substances in marine organisms. In fact, many marine macro- and microorganisms are good resources of carbohydrates with diverse applications due to their biofunctional properties. By acting on cell proliferation and cycle, and by modulating different metabolic pathways, marine polysaccharides (including mainly chitin, chitosan, fucoidan, carrageenan and alginate) also have numerous pharmaceutical activities, such as antioxidative, antibacterial, antiviral, immuno-stimulatory, anticoagulant and anticancer effects. Moreover, these polysaccharides have many general beneficial effects for human health, and have therefore been developed into potential cosmeceuticals and nutraceuticals. In this review we describe current advances in the development of marine polysaccharides for nutraceutical, cosmeceutical and pharmacological applications. Research in this field is opening new doors for harnessing the potential of marine natural products.
Collapse
Affiliation(s)
- Nadia Ruocco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, 80126 Napoli, Italy.
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, Pozzuoli, 80078 Naples, Italy.
| | - Susan Costantini
- CROM, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, 80131 Napoli, Italy.
| | - Stefano Guariniello
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, 80131 Napoli, Italy.
| | - Maria Costantini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
50
|
Huang CY, Wu SJ, Yang WN, Kuan AW, Chen CY. Antioxidant activities of crude extracts of fucoidan extracted from Sargassum glaucescens by a compressional-puffing-hydrothermal extraction process. Food Chem 2016; 197 Pt B:1121-9. [PMID: 26675848 DOI: 10.1016/j.foodchem.2015.11.100] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 10/18/2015] [Accepted: 11/19/2015] [Indexed: 11/17/2022]
Abstract
Fucoidan, a multifunctional marine polymer, is normally extracted from brown algae via extensive use of acid, solvent or high temperature water and a long reaction time. In present study, we developed a novel compressional-puffing-hydrothermal extraction (CPHE) process which primarily decomposes the cellular structure of algae and facilitates the release of fucoidan by hot water extraction. The CPHE process provides a number of advantages including simple procedure, reactant-saving, reduced pollution, and feasibility for continuous production. Sargassum glaucescens (SG) was utilized in this study, and the maximum extraction yield of polysaccharide was approximately 9.83 ± 0.11% (SG4). Thin layer chromatography (TLC), Fourier transform infrared (FTIR) analysis, and measurements of monosaccharide composition, fucose, sulfate, and uronic acid contents revealed that the extracted polysaccharide showed characteristics of fucoidan. All extracts exhibited antioxidant activities, and thus, further exploration of these extracts as potential natural and safe antioxidant agents is warranted.
Collapse
Affiliation(s)
- Chun-Yung Huang
- Department of Seafood Science, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd., Nan-Tzu District, Kaohsiung 811, Taiwan, ROC.
| | - Shu-Jing Wu
- Department of Health and Nutrition, Chia Nan University of Pharmacy & Science, No. 60, Sec. 1, Erh-Jen Rd., Jen-Te District, Tainan 717, Taiwan, ROC
| | - Wen-Ning Yang
- Department of Seafood Science, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd., Nan-Tzu District, Kaohsiung 811, Taiwan, ROC
| | - Ai-Wei Kuan
- Department of Seafood Science, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd., Nan-Tzu District, Kaohsiung 811, Taiwan, ROC
| | - Cheng-Yo Chen
- Department of Seafood Science, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd., Nan-Tzu District, Kaohsiung 811, Taiwan, ROC
| |
Collapse
|