1
|
Hu Y, Zhang Y, He J, Rao H, Zhang D, Shen Z, Zhou C. ANO1: central role and clinical significance in non-neoplastic and neoplastic diseases. Front Immunol 2025; 16:1570333. [PMID: 40356890 PMCID: PMC12067801 DOI: 10.3389/fimmu.2025.1570333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/20/2025] [Indexed: 05/15/2025] Open
Abstract
Anoctamin 1 (ANO1), also known as TMEM16A, is a multifunctional protein that serves as a calcium-activated chloride channel (CaCC). It is ubiquitously expressed across various tissues, including epithelial cells, smooth muscle cells, and neurons, where it is integral to physiological processes such as epithelial secretion, smooth muscle contraction, neural conduction, and cell proliferation and migration. Dysregulation of ANO1 has been linked to the pathogenesis of numerous diseases. Extensive research has established its involvement in non-neoplastic conditions such as asthma, hypertension, and gastrointestinal (GI) dysfunction. Moreover, ANO1 has garnered significant attention for its role in the development and progression of cancers, including head and neck cancer, breast cancer, and lung cancer, where its overexpression correlates with increased tumor growth, metastasis, and poor prognosis. Additionally, ANO1 regulates multiple signaling pathways, including the epidermal growth factor receptor (EGFR) pathway, the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway, among others. These pathways are pivotal in regulating cell proliferation, migration, and invasion. Given its central role in these processes, ANO1 has emerged as a promising diagnostic biomarker and therapeutic target. Recent advancements in ANO1 research have highlighted its potential in disease diagnosis and treatment. Strategies targeting ANO1, such as small molecule modulators or gene-silencing techniques, have shown preclinical promise in both non-neoplastic and neoplastic diseases. This review explores the latest findings in ANO1 research, focusing on its mechanistic involvement in disease progression, its regulation, and its therapeutic potential. Modulating ANO1 activity may offer novel therapeutic strategies for effectively treating ANO1-associated diseases.
Collapse
Affiliation(s)
- Yanghao Hu
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yifei Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Jiali He
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Huihuang Rao
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Duomi Zhang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Mažerik J, Gondáš E, Dohál M, Smieško L, Jošková M, Fraňová S, Šutovská M. Targeting TMEM16A ion channels suppresses airway hyperreactivity, inflammation, and remodeling in an experimental Guinea pig asthma model. J Pharmacol Sci 2024; 156:239-246. [PMID: 39608849 DOI: 10.1016/j.jphs.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/07/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
Asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness, inflammation, and remodeling. Calcium (Ca2+)-activated chloride (Cl-) channels, such as TMEM16A, are inferred to be involved in asthma. Therefore, the present study investigated the therapeutic potential of TMEM16A inhibition in a guinea pig model of ovalbumin (OVA)-induced allergic asthma. Guinea pigs were treated with a specific blocker, CaCCinh-A01 (10 μM), administered via inhalation. A significant reduction in cough reflex sensitivity and specific airway resistance was observed in animals treated with CaCCinh-A01, highlighting its potential to improve airway function. Despite a reduction in ciliary beating frequency (CBF), CaCCinh-A01 reduced airway mucus viscosity by decreasing the production of mucin-5AC (MUC5AC). The nonspecific reduction in the Th1/Th2 cytokine spectrum following CaCCinh-A01 treatment indicated the suppression of airway inflammation. Additionally, markers associated with airway remodeling were diminished, suggesting that CaCCinh-A01 may counteract structural changes in airway tissues. Therefore, inhibition appears to mitigate the pathological aspects of asthma, including airway hyperresponsiveness, inflammation, and remodeling. However, further studies are required to comprehensively evaluate the potential of TMEM16A as a therapeutic target for asthma.
Collapse
Affiliation(s)
- Jozef Mažerik
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 11161/4B, Martin, Slovakia.
| | - Eduard Gondáš
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 11161/4B, Martin, Slovakia
| | - Matúš Dohál
- Biomedical Centre, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 11161/4C, Martin, Slovakia
| | - Lukáš Smieško
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 11161/4B, Martin, Slovakia
| | - Marta Jošková
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 11161/4B, Martin, Slovakia
| | - Soňa Fraňová
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 11161/4B, Martin, Slovakia
| | - Martina Šutovská
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 11161/4B, Martin, Slovakia
| |
Collapse
|
3
|
Rojas DA, Coronado K, Pérez-Reytor D, Karahanian E. Reduction of Alcohol-Dependent Lung Pathological Features in Rats Treated with Fenofibrate. Int J Mol Sci 2024; 25:12814. [PMID: 39684525 DOI: 10.3390/ijms252312814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Alcohol use disorder (AUD) is a public health problem characterized by a marked increment in systemic inflammation. In the last few years, it has been described as the role of alcohol in neuroinflammation affecting some aspects of neuronal function. Interestingly, inflammation is reduced with fenofibrate treatment, a PPARα agonist used to treat dyslipidemia. On the other hand, alcohol has been associated with chronic inflammation and fibrosis in the lungs, affecting their normal function and increasing respiratory infections. However, a deep characterization of the role of alcohol in the worsening of chronic respiratory diseases has not been described completely. In this work, we present a novel study using rats treated with alcohol and fenofibrate to evaluate the relevant features of chronic respiratory disease: inflammation, mucus hypersecretion, and fibrosis. The analysis of extracted lungs showed an increment in the inflammatory infiltrates and pro-inflammatory cytokine levels associated with alcohol. Interestingly, the treatment with fenofibrate decreased the expression of these markers and the infiltrates observed in the lungs. The levels of mucin Muc5ac showed an increment in animals treated with alcohol. However, this increment was markedly reduced if animals were subsequently treated with fenofibrate. Finally, we documented an increment of collagen deposition around airways in the animals treated with alcohol compared with control animals. However, fenofibrate treatment reduced this deposition to a level similar to the control animals. These results showed the role of alcohol in the increment of pathological features in the lungs. Moreover, these features were attenuated due to the fibrate treatment, which allows us to glimpse this drug's promising role as lung anti-inflammatory therapy.
Collapse
Affiliation(s)
- Diego A Rojas
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Krishna Coronado
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Diliana Pérez-Reytor
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Eduardo Karahanian
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago 8910132, Chile
| |
Collapse
|
4
|
Dubaissi E, Hilton EN, Lilley S, Collins R, Holt C, March P, Danahay H, Gosling M, Grencis RK, Roberts IS, Thornton DJ. The Tmem16a chloride channel is required for mucin maturation after secretion from goblet-like cells in the Xenopus tropicalis tadpole skin. Sci Rep 2024; 14:25555. [PMID: 39461969 PMCID: PMC11514049 DOI: 10.1038/s41598-024-76482-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The TMEM16A chloride channel is proposed as a therapeutic target in cystic fibrosis, where activation of this ion channel might restore airway surface hydration and mitigate respiratory symptoms. While TMEM16A is associated with increased mucin production under stimulated or pro-inflammatory conditions, its role in baseline mucin production, secretion and/or maturation is less well understood. Here, we use the Xenopus tadpole skin mucociliary surface as a model of human upper airway epithelium to study Tmem16a function in mucus production. We found that Xenopus tropicalis Tmem16a is present at the apical membrane surface of tadpole skin small secretory cells that express canonical markers of mammalian "goblet cells" such as Foxa1 and spdef. X. tropicalis Tmem16a functions as a voltage-gated, calcium-activated chloride channel when transfected into mammalian cells in culture. Depletion of Tmem16a from the tadpole skin results in dysregulated mucin maturation post-secretion, with secreted mucins having a disrupted molecular size distribution and altered morphology assessed by sucrose gradient centrifugation and electron microscopy, respectively. Our results show that in the Xenopus tadpole skin, Tmem16a is necessary for normal mucus barrier formation and demonstrate the utility of this model system to discover new biology relevant to human mucosal biology in health and disease.
Collapse
Affiliation(s)
- Eamon Dubaissi
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Emma N Hilton
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Sarah Lilley
- Sussex Drug Discovery Centre, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
| | - Richard Collins
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Charlotte Holt
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Peter March
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Henry Danahay
- Enterprise Therapeutics, Sussex Innovation Centre, Science Park Square, Falmer, Brighton, BN1 9SB, UK
| | - Martin Gosling
- Sussex Drug Discovery Centre, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
- Enterprise Therapeutics, Sussex Innovation Centre, Science Park Square, Falmer, Brighton, BN1 9SB, UK
| | - Richard K Grencis
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Ian S Roberts
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - David J Thornton
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK.
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK.
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, M13 9PT, UK.
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
5
|
Arreola J, López-Romero AE, Huerta M, Guzmán-Hernández ML, Pérez-Cornejo P. Insights into the function and regulation of the calcium-activated chloride channel TMEM16A. Cell Calcium 2024; 121:102891. [PMID: 38772195 DOI: 10.1016/j.ceca.2024.102891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
Abstract
The TMEM16A channel, a member of the TMEM16 protein family comprising chloride (Cl-) channels and lipid scramblases, is activated by the free intracellular Ca2+ increments produced by inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release after GqPCRs or Ca2+ entry through cationic channels. It is a ubiquitous transmembrane protein that participates in multiple physiological functions essential to mammals' lives. TMEM16A structure contains two identical 10-segment monomers joined at their transmembrane segment 10. Each monomer harbours one independent hourglass-shaped pore gated by Ca2+ ligation to an orthosteric site adjacent to the pore and controlled by two gates. The orthosteric site is created by assembling negatively charged glutamate side chains near the pore´s cytosolic end. When empty, this site generates an electrostatic barrier that controls channel rectification. In addition, an isoleucine-triad forms a hydrophobic gate at the boundary of the cytosolic vestibule and the inner side of the neck. When the cytosolic Ca2+ rises, one or two Ca2+ ions bind to the orthosteric site in a voltage (V)-dependent manner, thus neutralising the electrostatic barrier and triggering an allosteric gating mechanism propagating via transmembrane segment 6 to the hydrophobic gate. These coordinated events lead to pore opening, allowing the Cl- flux to ensure the physiological response. The Ca2+-dependent function of TMEM16A is highly regulated. Anions with higher permeability than Cl- facilitate V dependence by increasing the Ca2+ sensitivity, intracellular protons can replace Ca2+ and induce channel opening, and phosphatidylinositol 4,5-bisphosphate bound to four cytosolic sites likely maintains Ca2+ sensitivity. Additional regulation is afforded by cytosolic proteins, most likely by phosphorylation and protein-protein interaction mechanisms.
Collapse
Affiliation(s)
- Jorge Arreola
- Jorge Arreola, Physics Institute of Universidad Autónoma de San Luis Potosí. Av. Parque Chapultepec 1570, Privadas del Pedregal, 78295 San Luis Potosí, SLP., Mexico.
| | - Ana Elena López-Romero
- Jorge Arreola, Physics Institute of Universidad Autónoma de San Luis Potosí. Av. Parque Chapultepec 1570, Privadas del Pedregal, 78295 San Luis Potosí, SLP., Mexico
| | - Miriam Huerta
- Jorge Arreola, Physics Institute of Universidad Autónoma de San Luis Potosí. Av. Parque Chapultepec 1570, Privadas del Pedregal, 78295 San Luis Potosí, SLP., Mexico
| | - María Luisa Guzmán-Hernández
- Catedrática CONAHCYT, Department of Physiology and Biophysics, School of Medicine, Universidad Autónoma de San Luis Potosí. Ave. V. Carranza 2905, Los Filtros, San Luis Potosí, SLP 78210, Mexico
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, School of Medicine, Universidad Autónoma de San Luis Potosí. Ave. V. Carranza 2905, Los Filtros, San Luis Potosí, SLP 78210, Mexico
| |
Collapse
|
6
|
Ousingsawat J, Centeio R, Reyne N, McCarron A, Cmielewski P, Schreiber R, diStefano G, Römermann D, Seidler U, Donnelley M, Kunzelmann K. Inhibition of mucus secretion by niclosamide and benzbromarone in airways and intestine. Sci Rep 2024; 14:1464. [PMID: 38233410 PMCID: PMC10794189 DOI: 10.1038/s41598-024-51397-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
The Ca2+ activated Cl- channel TMEM16A (anoctamin 1; ANO1) is expressed in secretory epithelial cells of airways and intestine. Previous studies provided evidence for a role of ANO1 in mucus secretion. In the present study we investigated the effects of the two ANO1-inhibitors niclosamide (Niclo) and benzbromarone (Benz) in vitro and in vivo in mouse models for cystic fibrosis (CF) and asthma. In human CF airway epithelial cells (CFBE), Ca2+ increase and activation of ANO1 by adenosine triphosphate (ATP) or ionomycin was strongly inhibited by 200 nM Niclo and 1 µM Benz. In asthmatic mice airway mucus secretion was inhibited by intratracheal instillation of Niclo or Benz. In homozygous F508del-cftr mice, intestinal mucus secretion and infiltration by CD45-positive cells was inhibited by intraperitoneal injection of Niclo (13 mg/kg/day for 7 days). In homozygous F508del-cftr rats intestinal mucus secretion was inhibited by oral application of Benz (5 mg/kg/day for 60 days). Taken together, well tolerated therapeutic concentrations of niclosamide and benzbromarone corresponding to plasma levels of treated patients, inhibit ANO1 and intracellular Ca2+ signals and may therefore be useful in inhibiting mucus hypersecretion and mucus obstruction in airways and intestine of patients suffering from asthma and CF, respectively.
Collapse
Affiliation(s)
- Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, University Street 31, 93053, Regensburg, Germany
| | - Raquel Centeio
- Physiological Institute, University of Regensburg, University Street 31, 93053, Regensburg, Germany
| | - Nicole Reyne
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Alexandra McCarron
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Patricia Cmielewski
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, University Street 31, 93053, Regensburg, Germany
| | - Gabriella diStefano
- Department of Gastroenterology, Hannover Medical School, 30625, Hannover, Germany
| | - Dorothee Römermann
- Department of Gastroenterology, Hannover Medical School, 30625, Hannover, Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hannover Medical School, 30625, Hannover, Germany
| | - Martin Donnelley
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, University Street 31, 93053, Regensburg, Germany.
| |
Collapse
|
7
|
Ruhl A, Antão AV, Dietschmann A, Radtke D, Tenbusch M, Voehringer D. STAT6-induced production of mucus and resistin-like molecules in lung Club cells does not protect against helminth or influenza A virus infection. Eur J Immunol 2024; 54:e2350558. [PMID: 37855177 DOI: 10.1002/eji.202350558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Airway epithelial cells contribute to a variety of lung diseases including allergic asthma, where IL-4 and IL-13 promote activation of the transcription factor STAT6. This leads to goblet cell hyperplasia and the secretion of effector molecules by epithelial cells. However, the specific effect of activated STAT6 in lung epithelial cells is only partially understood. Here, we created a mouse strain to selectively investigate the role of constitutively active STAT6 in Club cells, a subpopulation of airway epithelial cells. CCSP-Cre_STAT6vt mice and bronchiolar organoids derived from these show an enhanced expression of the chitinase-like protein Chil4 (Ym2) and resistin-like molecules (Relm-α, -β, -γ). In addition, goblet cells of these mice spontaneously secrete mucus into the bronchi. However, the activated epithelium resulted neither in impaired lung function nor conferred a protective effect against the migrating helminth Nippostrongylus brasiliensis. Moreover, CCSP-Cre_STAT6vt mice showed similar allergic airway inflammation induced by live conidia of the fungus Aspergillus fumigatus and similar recovery after influenza A virus infection compared to control mice. Together these results highlight that STAT6 signaling in Club cells induces the secretion of Relm proteins and mucus without impairing lung function, but this is not sufficient to confer protection against helminth or viral infections.
Collapse
Affiliation(s)
- Andreas Ruhl
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ana Vieira Antão
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Axel Dietschmann
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel Radtke
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Tenbusch
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - David Voehringer
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Arreola J, Pérez-Cornejo P, Segura-Covarrubias G, Corral-Fernández N, León-Aparicio D, Guzmán-Hernández ML. Function and Regulation of the Calcium-Activated Chloride Channel Anoctamin 1 (TMEM16A). Handb Exp Pharmacol 2024; 283:101-151. [PMID: 35768554 DOI: 10.1007/164_2022_592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Various human tissues express the calcium-activated chloride channel Anoctamin 1 (ANO1), also known as TMEM16A. ANO1 allows the passive chloride flux that controls different physiological functions ranging from muscle contraction, fluid and hormone secretion, gastrointestinal motility, and electrical excitability. Overexpression of ANO1 is associated with pathological conditions such as hypertension and cancer. The molecular cloning of ANO1 has led to a surge in structural, functional, and physiological studies of the channel in several tissues. ANO1 is a homodimer channel harboring two pores - one in each monomer - that work independently. Each pore is activated by voltage-dependent binding of two intracellular calcium ions to a high-affinity-binding site. In addition, the binding of phosphatidylinositol 4,5-bisphosphate to sites scattered throughout the cytosolic side of the protein aids the calcium activation process. Furthermore, many pharmacological studies have established ANO1 as a target of promising compounds that could treat several illnesses. This chapter describes our current understanding of the physiological roles of ANO1 and its regulation under physiological conditions as well as new pharmacological compounds with potential therapeutic applications.
Collapse
Affiliation(s)
- Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Guadalupe Segura-Covarrubias
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Nancy Corral-Fernández
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Daniel León-Aparicio
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | |
Collapse
|
9
|
Kim J, Kwak S, Lee J, Park IH, Lee SH, Shin JM, Kim TH. Eosinophilic Chronic Rhinosinusitis and Pathogenic Role of Protease. Int J Mol Sci 2023; 24:17372. [PMID: 38139201 PMCID: PMC10744023 DOI: 10.3390/ijms242417372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/01/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is an inflammation of the nasal and paranasal sinus mucosa, and eosinophilic CRS (eCRS) is a subtype characterized by significant eosinophil infiltration and immune response by T-helper-2 cells. The pathogenesis of eCRS is heterogeneous and involves various environmental and host factors. Proteases from external sources, such as mites, fungi, and bacteria, have been implicated in inducing type 2 inflammatory reactions. The balance between these proteases and endogenous protease inhibitors (EPIs) is considered important, and their imbalance can potentially lead to type 2 inflammatory reactions, such as eCRS. In this review, we discuss various mechanisms by which exogenous proteases influence eCRS and highlight the emerging role of endogenous protease inhibitors in eCRS pathogenesis.
Collapse
Affiliation(s)
- Jaehyeong Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Sooun Kwak
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
| | - Juhyun Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
| | - Il-Ho Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
| | - Seung Hoon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
| | - Jae Min Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
10
|
Cho DY, Zhang S, Skinner D, Koch CG, Smith MJ, Lim DJ, Grayson JW, Tearney GJ, Rowe SM, Woodworth BA. Red ginseng aqueous extract improves mucociliary transport dysfunction and histopathology in CF rat airways. J Cyst Fibros 2023; 22:1113-1119. [PMID: 37704464 PMCID: PMC10843063 DOI: 10.1016/j.jcf.2023.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND We previously discovered that Korean red ginseng aqueous extract (RGAE) potentiates the TMEM16A channel, improved mucociliary transport (MCT) parameters in CF nasal epithelia in vitro, and thus could serve as a therapeutic strategy to rescue the MCT defect in cystic fibrosis (CF) airways. The hypothesis of this study is that RGAE can improve epithelial Cl- secretion, MCT, and histopathology in an in-vivo CF rat model. METHODS Seventeen 4-month old CFTR-/- rats were randomly assigned to receive daily oral control (saline, n = 9) or RGAE (Ginsenosides 0.4mg/kg/daily, n = 8) for 4 weeks. Outcomes included nasal Cl- secretion measured with the nasal potential difference (NPD), functional microanatomy of the trachea using micro-optical coherence tomography, histopathology, and immunohistochemical staining for TMEM16a. RESULTS RGAE-treated CF rats had greater mean NPD polarization with UTP (control = -5.48 +/- 2.87 mV, RGAE = -9.49 +/- 2.99 mV, p < 0.05), indicating, at least in part, potentiation of UTP-mediated Cl- secretion through TMEM16A. All measured tracheal MCT parameters (airway surface liquid, periciliary liquid, ciliary beat frequency, MCT) were significantly increased in RGAE-treated CF rats with MCT exhibiting a 3-fold increase (control, 0.45+/-0.31 vs. RGAE, 1.45+/-0.66 mm/min, p < 0.01). Maxillary mucosa histopathology was markedly improved in RGAE-treated cohort (reduced intracellular mucus, goblet cells with no distention, and shorter epithelial height). TMEM16A expression was similar between groups. CONCLUSION RGAE improves TMEM16A-mediated transepithelial Cl- secretion, functional microanatomy, and histopathology in CF rats. Therapeutic strategies utilizing TMEM16A potentiators to treat CF airway disease are appropriate and provide a new avenue for mutation-independent therapies.
Collapse
Affiliation(s)
- Do-Yeon Cho
- Department of Otolaryngology - Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Division of Otolaryngology, Department of Surgery, Veteran Affairs Medical Center, Birmingham, AL, USA
| | - Shaoyan Zhang
- Department of Otolaryngology - Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel Skinner
- Department of Otolaryngology - Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Connor G Koch
- Department of Otolaryngology - Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Metta J Smith
- Department of Otolaryngology - Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dong-Jin Lim
- Department of Otolaryngology - Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessica W Grayson
- Department of Otolaryngology - Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Departments of Medicine, Pediatrics, Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bradford A Woodworth
- Department of Otolaryngology - Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
11
|
Manne A, Kasi A, Esnakula AK, Paluri RK. Predictive Value of MUC5AC Signature in Pancreatic Ductal Adenocarcinoma: A Hypothesis Based on Preclinical Evidence. Int J Mol Sci 2023; 24:8087. [PMID: 37175794 PMCID: PMC10178741 DOI: 10.3390/ijms24098087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Mucin 5AC (MUC5AC) glycoprotein plays a crucial role in carcinogenesis and drug sensitivity in pancreatic ductal adenocarcinoma (PDAC), both individually and in combination with other mucins. Its function and localization are glycoform-specific. The immature isoform (detected by the CLH2 monoclonal antibody, or mab) is usually in the perinuclear (cytoplasmic) region, while the mature (45 M1, 2-11, Nd2) variants are in apical and extracellular regions. There is preclinical evidence suggesting that mature MUC5AC has prognostic and predictive (response to treatment) value. However, these findings were not validated in clinical studies. We propose a MUC5AC signature with three components of MUC5AC-localization, variant composition, and intensity-suggesting a reliable marker in combination of variants than with individual MUC5AC variants alone. We also postulate a theory to explain the occurrence of different MUC5AC variants in abnormal pancreatic lesions (benign, precancerous, and cancerous). We also analyzed the effect of mature MUC5AC on sensitivity to drugs often used in PDAC management, such as gemcitabine, 5-fluorouracil, oxaliplatin, irinotecan, cisplatin, and paclitaxel. We found preliminary evidence of its predictive value, but there is a need for large-scale studies to validate them.
Collapse
Affiliation(s)
- Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, 460 W 10th Ave, Columbus, OH 43210, USA
| | - Anup Kasi
- Medical Oncology, The University of Kansas Medical Center, 2330 Shawnee Mission Pkwy, Westwood, KS 66025, USA
| | - Ashwini Kumar Esnakula
- Department of Pathology, The Ohio State University Wexner Medical Center, 460 W 10th Ave, Columbus, OH 43210, USA
| | - Ravi Kumar Paluri
- Section of Hematology and Oncology, Department of Medicine, Wake Forest School of Medicine, 475 Vine St, Winston-Salem, NC 27157, USA
| |
Collapse
|
12
|
Kimura Y, Shinoda M, Shinkai M, Kaneko T. Solithromycin inhibits IL-13-induced goblet cell hyperplasia and MUC5AC, CLCA1, and ANO1 in human bronchial epithelial cells. PeerJ 2023; 11:e14695. [PMID: 36684665 PMCID: PMC9854378 DOI: 10.7717/peerj.14695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023] Open
Abstract
Solithromycin is a novel fluoroketolide antibiotic belonging to the class of macrolide antibiotics. Activation of the interleukin (IL)-13 receptor leads to STAT6 activation and subsequent induction of SAM pointed domain containing ETS transcription factor (SPDEF), chloride channel accessory 1 (CLCA1), and anoctamin-1 (ANO1), all of which are associated with the induction of MUC5AC. We examined the effects of solithromycin on mucin production led by IL-13 signaling. Normal human bronchial epithelial cells were grown at the air-liquid interface with IL-13 with/without solithromycin for 14 days. Histochemical analysis was performed using hematoxylin and eosin staining and MUC5AC immunostaining. MUC5AC, SPDEF, CLCA1, and ANO1 mRNA expressions were examined using real-time polymerase chain reaction. Western blot analysis was performed to assess CLCA1 and ANO1 proteins, and phosphorylation of STAT6 and ERK. Solithromycin attenuated IL-13 induction of goblet cell hyperplasia and MUC5AC, CLCA1 and ANO1 mRNA and protein expression induced by IL-13, but had no effect on the phosphorylation of STAT6 and ERK. Our results indicate that solithromycin could attenuate goblet cell hyperplasia and MUC5AC induced by IL-13 through inhibition of CLCA1 and ANO1 mRNA and protein expression. However, much more information is required to clarify the molecular mechanisms underlying the inhibition of CLCA1 and ANO1 by solithromycin.
Collapse
Affiliation(s)
- Yasuhiro Kimura
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Masahiro Shinoda
- Department of Respiratory Medicine, Tokyo Shinagawa Hospital, Shinagawa, Tokyo, Japan
| | - Masaharu Shinkai
- Department of Respiratory Medicine, Tokyo Shinagawa Hospital, Shinagawa, Tokyo, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
13
|
Danahay H, Lilley S, Adley K, Charlton H, Fox R, Gosling M. Niclosamide does not modulate airway epithelial function through blocking of the calcium activated chloride channel, TMEM16A. Front Pharmacol 2023; 14:1142342. [PMID: 36950016 PMCID: PMC10025480 DOI: 10.3389/fphar.2023.1142342] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Niclosamide and benzbromarone have been described as inhibitors of the calcium activated chloride channel, TMEM16A, and on this basis have been considered and tested as clinical candidates for the treatment of airway diseases. However, both compounds have previously demonstrated activity on a range of additional biological targets and it is unclear from the literature to what extent any activity on TMEM16A may contribute to efficacy in these models of airway disease. The aim of the present study was therefore to examine the pharmacology and selectivity of these clinical candidates together with a structurally unrelated TMEM16A blocker, Ani9, in a range of functional assays to better appreciate the putative role of TMEM16A in the regulation of both epithelial ion transport and the development of an airway epithelial mucus secretory phenoptype. Benzbromarone and Ani9 both attenuated recombinant TMEM16A activity in patch clamp studies, whereas in contrast, niclosamide induced a paradoxical potentiation of the TMEM16A-mediated current. Niclosamide and benzbromarone were also demonstrated to attenuate receptor-dependent increases in intracellular Ca2+ levels ([Ca2+]i) which likely contributed to their concomitant attenuation of the Ca2+-stimulated short-circuit current responses of FRT-TMEM16A and primary human bronchial epithelial (HBE) cells. In contrast, Ani9 attenuated the Ca2+-stimulated short-circuit current responses of both cell systems without influencing [Ca2+]i which supports a true channel blocking mechanism for this compound. Additional studies using HBE cells revealed effects of both niclosamide and benzbromarone on global ion transport processes (absorptive and secretory) as well as signs of toxicity (elevated LDH levels, loss of transepithelial resistance) that were not shared by Ani9. Ani9 also failed to influence the IL-13 induced differentiation of HBE towards a goblet cell rich, mucus hypersecreting epithelium, whereas niclosamide and benzbromarone attenuated numbers of both goblet and multiciliated cells, that would be consistent with cellular toxicity. Together these data challenge the description of niclosamide as a TMEM16A blocker and illustrate a range of off-target effects of both niclosamide and benzbromarone which may contribute to the reported activity in models of airway function.
Collapse
Affiliation(s)
- Henry Danahay
- Enterprise Therapeutics Ltd., Brighton, United Kingdom
- *Correspondence: Henry Danahay,
| | - Sarah Lilley
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Kathryn Adley
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Holly Charlton
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Roy Fox
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | | |
Collapse
|
14
|
Li H, Yu Z, Wang H, Wang N, Sun X, Yang S, Hua X, Liu Z. Role of ANO1 in tumors and tumor immunity. J Cancer Res Clin Oncol 2022; 148:2045-2068. [PMID: 35471604 DOI: 10.1007/s00432-022-04004-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 03/29/2022] [Indexed: 12/24/2022]
Abstract
Dysregulation of gene amplification, cell-signaling-pathway transduction, epigenetic and transcriptional regulation, and protein interactions drives tumor-cell proliferation and invasion, while ion channels also play an important role in the generation and development of tumor cells. Overexpression of Ca2+-activated Cl- channel anoctamin 1 (ANO1) is shown in numerous cancer types and correlates with poor prognosis. However, the mechanisms involved in ANO1-mediated malignant cellular transformation and the role of ANO1 in tumor immunity remain unknown. In this review, we discuss recent studies to determine the role of ANO1 in tumorigenesis and provide novel insights into the role of ANO1 in the context of tumor immunity. Furthermore, we analyze the roles and potential mechanisms of ANO1 in different types of cancers, and provide novel notions for the role of ANO1 in the tumor microenvironment and for potential use of ANO1 in clinical applications. Our review shows that ANO1 is involved in tumor immunity and microenvironment, and may, therefore, be an effective biomarker and therapeutic drug target.
Collapse
Affiliation(s)
- Haini Li
- Department of Gastroenterology, Qingdao Sixth People's Hospital, Qingdao, 266001, China
| | - Zongxue Yu
- Department of Endocrinology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266001, China
| | - Haiyan Wang
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Ning Wang
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Xueguo Sun
- Department of Gastroenterology, Qingdao University Affiliated Hospital, Qingdao, 266001, China
| | - Shengmei Yang
- Department of Gynecology, Qingdao University Affiliated Hospital, Qingdao, 266001, China
| | - Xu Hua
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Zongtao Liu
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
15
|
Wang Y, Hu X, Huang H, Jin Z, Gao J, Guo Y, Zhong Y, Li Z, Zong X, Wang K, Zhang L, Liu Z. Optimization of 4-arylthiophene-3-carboxylic acid derivatives as inhibitors of ANO1: Lead optimization studies toward their analgesic efficacy for inflammatory pain. Eur J Med Chem 2022; 237:114413. [DOI: 10.1016/j.ejmech.2022.114413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 11/04/2022]
|
16
|
Lin Z, Deng Z, Liu J, Lin Z, Chen S, Deng Z, Li W. Chloride Channel and Inflammation-Mediated Pathogenesis of Osteoarthritis. J Inflamm Res 2022; 15:953-964. [PMID: 35177922 PMCID: PMC8846625 DOI: 10.2147/jir.s350432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/28/2022] [Indexed: 12/15/2022] Open
Abstract
Articular cartilage allows the human body to buffer and absorb stress during normal exercise. It is mainly composed of cartilage cells and the extracellular matrix and is surrounded by the extracellular microenvironment formed by synovial fluid and various factors in it. Studies have shown that chondrocytes are the metabolic center of articular cartilage. Under physiological conditions, the extracellular matrix is in a dynamic balance of anabolism and catabolism, and various factors and physical and chemical conditions in the extracellular microenvironment are also in a steady state. This homeostasis depends on the normal function of proteins represented by various ion channels on chondrocytes. In mammalian chondrocyte species, ion channels are mainly divided into two categories: cation channels and anion channels. Anion channels such as chloride channels have become hot research topics in recent years. These channels play an extremely important role in various physiological processes. Recently, a growing body of evidence has shown that many pathological processes, abnormal concentration of mechanical stress and chloride channel dysfunction in articular cartilage lead to microenvironment disorders, matrix and bone metabolism imbalances, which cause partial aseptic inflammation. These pathological processes initiate extracellular matrix degradation, abnormal chondrocyte death, hyperplasia of inflammatory synovium and bony. Osteoarthritis (OA) is a common clinical disease in orthopedics. Its typical manifestations are joint inflammation and pain caused by articular cartilage degeneration, but its pathogenesis has not been fully elucidated. Focusing on the physiological functions and pathological changes of chloride channels and pathophysiology of aseptic inflammation furthers the understanding of OA pathogenesis and provides possible targets for subsequent medication development.
Collapse
Affiliation(s)
- Zicong Lin
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Zhiqin Deng
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Jianquan Liu
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Zhongshi Lin
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), Shenzhen, Guangdong, 518057, People’s Republic of China
| | - Siyu Chen
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
- Correspondence: Zhenhan Deng, Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, 3002 Sungang West Road, Shenzhen City, 518025, People’s Republic of China, Tel +86 13928440786, Fax +86 755-83366388, Email
| | - Wencui Li
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
- Wencui Li, Department of Hand and Foot Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, 3002 Sungang West Road, Shenzhen City, 518025, People’s Republic of China, Tel +86 13923750767, Email
| |
Collapse
|
17
|
Cortes LM, Brodsky D, Chen C, Pridgen T, Odle J, Snider DB, Cruse G, Putikova A, Masuda MY, Doyle AD, Wright BL, Dawson HD, Blikslager A, Dellon ES, Laster SM, Käser T. Immunologic and pathologic characterization of a novel swine biomedical research model for eosinophilic esophagitis. FRONTIERS IN ALLERGY 2022; 3:1029184. [PMID: 36452260 PMCID: PMC9701751 DOI: 10.3389/falgy.2022.1029184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/18/2022] [Indexed: 11/15/2022] Open
Abstract
Eosinophilic esophagitis (EoE) is a chronic allergy-mediated condition with an increasing incidence in both children and adults. Despite EoE's strong impact on human health and welfare, there is a large unmet need for treatments with only one recently FDA-approved medication for EoE. The goal of this study was to establish swine as a relevant large animal model for translational biomedical research in EoE with the potential to facilitate development of therapeutics. We recently showed that after intraperitoneal sensitization and oral challenge with the food allergen hen egg white protein (HEWP), swine develop esophageal eosinophilia-a hallmark of human EoE. Herein, we used a similar sensitization and challenge treatment and evaluated immunological and pathological markers associated with human EoE. Our data demonstrate that the incorporated sensitization and challenge treatment induces (i) a systemic T-helper 2 and IgE response, (ii) a local expression of eotaxin-1 and other allergy-related immune markers, (iii) esophageal eosinophilia (>15 eosinophils/0.24 mm2), and (iv) esophageal endoscopic findings including linear furrows and white exudates. Thereby, we demonstrate that our sensitization and oral challenge protocol not only induces the underlying immune markers but also the micro- and macro-pathological hallmarks of human EoE. This swine model for EoE represents a novel relevant large animal model that can drive translational biomedical research to develop urgently needed treatment strategies for EoE.
Collapse
Affiliation(s)
- Lizette M Cortes
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Center for Food Allergy Modeling in Pigs (CFAMP), Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - David Brodsky
- Center for Food Allergy Modeling in Pigs (CFAMP), Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Celine Chen
- USDA, ARS, Diet, Genomics and Immunology Laboratory, Beltsville, MD, United States
| | - Tiffany Pridgen
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, United States
| | - Jack Odle
- Center for Food Allergy Modeling in Pigs (CFAMP), Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States.,Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| | - Douglas B Snider
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, United States
| | - Glenn Cruse
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, United States
| | - Arina Putikova
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Mia Y Masuda
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States.,Department of Immunology, Mayo Clinic, Rochester, MN, United States.,Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Alfred D Doyle
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Benjamin L Wright
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States.,Section of Allergy and Immunology, Division of Pulmonology, Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Harry D Dawson
- USDA, ARS, Diet, Genomics and Immunology Laboratory, Beltsville, MD, United States
| | - Anthony Blikslager
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, United States
| | - Evan S Dellon
- Center for Food Allergy Modeling in Pigs (CFAMP), Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States.,Division of Gastroenterology and Hepatology, Department of Medicine, Center for Esophageal Diseases and Swallowing, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Scott M Laster
- Center for Food Allergy Modeling in Pigs (CFAMP), Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Center for Food Allergy Modeling in Pigs (CFAMP), Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
18
|
Li Y, Tang XX. Abnormal Airway Mucus Secretion Induced by Virus Infection. Front Immunol 2021; 12:701443. [PMID: 34650550 PMCID: PMC8505958 DOI: 10.3389/fimmu.2021.701443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
The airway mucus barrier is a primary defensive layer at the airway surface. Mucins are the major structural components of airway mucus that protect the respiratory tract. Respiratory viruses invade human airways and often induce abnormal mucin overproduction and airway mucus secretion, leading to airway obstruction and disease. The mechanism underlying the virus-induced abnormal airway mucus secretion has not been fully studied so far. Understanding the mechanisms by which viruses induce airway mucus hypersecretion may open new avenues to treatment. In this article, we elaborate the clinical and experimental evidence that respiratory viruses cause abnormal airway mucus secretion, review the underlying mechanisms, and also discuss the current research advance as well as potential strategies to treat the abnormal airway mucus secretion caused by SARS-CoV-2.
Collapse
Affiliation(s)
- Yao Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao Xiao Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Laboratory, Bio-island, Guangzhou, China
| |
Collapse
|
19
|
Bai W, Liu M, Xiao Q. The diverse roles of TMEM16A Ca 2+-activated Cl - channels in inflammation. J Adv Res 2021; 33:53-68. [PMID: 34603778 PMCID: PMC8463915 DOI: 10.1016/j.jare.2021.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/17/2020] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Transmembrane protein 16A (TMEM16A) Ca2+-activated Cl- channels have diverse physiological functions, such as epithelial secretion of Cl- and fluid and sensation of pain. Recent studies have demonstrated that TMEM16A contributes to the pathogenesis of infectious and non-infectious inflammatory diseases. However, the role of TMEM16A in inflammation has not been clearly elucidated. Aim of review In this review, we aimed to provide comprehensive information regarding the roles of TMEM16A in inflammation by summarizing the mechanisms underlying TMEM16A expression and activation under inflammatory conditions, in addition to exploring the diverse inflammatory signaling pathways activated by TMEM16A. This review attempts to develop the idea that TMEM16A plays a diverse role in inflammatory processes and contributes to inflammatory diseases in a cellular environment-dependent manner. Key scientific concepts of review Multiple inflammatory mediators, including cytokines (e.g., interleukin (IL)-4, IL-13, IL-6), histamine, bradykinin, and ATP/UTP, as well as bacterial and viral infections, promote TMEM16A expression and/or activity under inflammatory conditions. In addition, TMEM16A activates diverse inflammatory signaling pathways, including the IP3R-mediated Ca2+ signaling pathway, the NF-κB signaling pathway, and the ERK signaling pathway, and contributes to the pathogenesis of many inflammatory diseases. These diseases include airway inflammatory diseases, lipopolysaccharide-induced intestinal epithelial barrier dysfunction, acute pancreatitis, and steatohepatitis. TMEM16A also plays multiple roles in inflammatory processes by increasing vascular permeability and leukocyte adhesion, promoting inflammatory cytokine release, and sensing inflammation-induced pain. Furthermore, TMEM16A plays its diverse pathological roles in different inflammatory diseases depending on the disease severity, proliferating status of the cells, and its interacting partners. We herein propose cellular environment-dependent mechanisms that explain the diverse roles of TMEM16A in inflammation.
Collapse
Affiliation(s)
- Weiliang Bai
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Mei Liu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
20
|
Rico SD, Mahnken M, Büscheck F, Dum D, Luebke AM, Kluth M, Hube-Magg C, Hinsch A, Höflmayer D, Möller-Koop C, Fraune C, Möller K, Menz A, Bernreuther C, Jacobsen F, Lebok P, Clauditz TS, Sauter G, Uhlig R, Wilczak W, Simon R, Steurer S, Minner S, Burandt E, Krech T, Marx AH. MUC5AC Expression in Various Tumor Types and Nonneoplastic Tissue: A Tissue Microarray Study on 10 399 Tissue Samples. Technol Cancer Res Treat 2021; 20:15330338211043328. [PMID: 34547930 PMCID: PMC8461123 DOI: 10.1177/15330338211043328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Mucin 5AC (MUC5AC) belongs to the glycoprotein family of secreted gel-forming mucins and is physiologically expressed in some epithelial cells. Studies have shown that MUC5AC is also expressed in several cancer types suggesting a potential utility for the distinction of tumor types and subtypes. Methods: To systematically determine MUC5AC expression in normal and cancerous tissues, a tissue microarray containing 10 399 samples from 111 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. Results: MUC5AC was expressed in normal mucus-producing cells of various organs. At least weak MUC5AC positivity was seen in 44 of 111 (40%) tumor entities. Of these 44 tumor entities, 28 included also tumors with strong positivity. MUC5AC immunostaining was most commonly seen in esophageal adenocarcinoma (72%), colon adenoma (62%), ductal adenocarcinoma of the pancreas (64%), mucinous carcinoma of the ovary (46%), diffuse gastric adenocarcinoma (44%), pancreatic ampullary adenocarcinoma (41%), intestinal gastric adenocarcinoma (39%), and bronchioloalveolar carcinoma (33%). Clinically relevant tumors with complete or almost complete absence of MUC5AC staining included small cell carcinoma of the lung (0% of 17), clear cell renal cell carcinoma (0% of 507), papillary thyroid carcinoma (0% of 359), breast cancer (2% of 1097), prostate cancer (2% of 228), soft tissue tumors (0.1% of 968), and hematological neoplasias (0% of 111). Conclusion: The highly standardized analysis of a broad range of cancers identified a ranking order of tumors according to their relative prevalence of MUC5AC expression.
Collapse
Affiliation(s)
| | - Moritz Mahnken
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Academic Hospital Fuerth, Fuerth, Germany
| |
Collapse
|
21
|
CLCA1 Regulates Airway Mucus Production and Ion Secretion Through TMEM16A. Int J Mol Sci 2021; 22:ijms22105133. [PMID: 34066250 PMCID: PMC8151571 DOI: 10.3390/ijms22105133] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
TMEM16A, a Ca2+-activated chloride channel (CaCC), and its regulator, CLCA1, are associated with inflammatory airway disease and goblet cell metaplasia. CLCA1 is a secreted protein with protease activity that was demonstrated to enhance membrane expression of TMEM16A. Expression of CLCA1 is particularly enhanced in goblet cell metaplasia and is associated with various lung diseases. However, mice lacking expression of CLCA1 showed the same degree of mucous cell metaplasia and airway hyperreactivity as asthmatic wild-type mice. To gain more insight into the role of CLCA1, we applied secreted N-CLCA1, produced in vitro, to mice in vivo using intratracheal instillation. We observed no obvious upregulation of TMEM16A membrane expression by CLCA1 and no differences in ATP-induced short circuit currents (Iscs). However, intraluminal mucus accumulation was observed by treatment with N-CLCA1 that was not seen in control animals. The effects of N-CLCA1 were augmented in ovalbumin-sensitized mice. Mucus production induced by N-CLCA1 in polarized BCi-NS1 human airway epithelial cells was dependent on TMEM16A expression. IL-13 upregulated expression of CLCA1 and enhanced mucus production, however, without enhancing purinergic activation of Isc. In contrast to polarized airway epithelial cells and mouse airways, which express very low levels of TMEM16A, nonpolarized airway cells express large amounts of TMEM16A protein and show strong CaCC. The present data show an only limited contribution of TMEM16A to airway ion secretion but suggest a significant role of both CLCA1 and TMEM16A for airway mucus secretion.
Collapse
|
22
|
Sun Y, Shi Z, Lin Y, Zhang M, Liu J, Zhu L, Chen Q, Bi J, Li S, Ni Z, Wang X. Benzo(a)pyrene induces MUC5AC expression through the AhR/mitochondrial ROS/ERK pathway in airway epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111857. [PMID: 33421718 DOI: 10.1016/j.ecoenv.2020.111857] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVES Benzo(a)pyrene (BaP) is a ubiquitous air pollutants, and BaP exposure leads to a risk of respiratory diseases. The oversecretion of airway mucus and high expression of mucin 5AC (MUC5AC) are associated with common respiratory disorders caused by air pollution. We aimed to investigate the effect of BaP on MUC5AC expression, especially the mechanisms by which BaP induces MUC5AC gene expression. METHODS The human airway epithelial cell NCI-H292 was used to test the effects of BaP on the expression of MUC5AC in vitro. MUC5AC mRNA and protein expression were assessed with real-time quantitative PCR, immunochemistry, and western blotting. A luciferase assay was conducted to detect the activity of the promoter. The total cellular ROS and mitochondrial ROS were measured by corresponding probes. Small-interfering RNAs were used for gene silencing. AhR-overexpressing cell lines were constructed by transfection with AhR overexpression lentivirus. RESULTS We found that BaP stimulation upregulated the MUC5AC mRNA and protein levels and activated the ERK pathway. Suppressing ERK with U0126 (an ERK inhibitor) or knocking down ERK with siRNA decreased BaP-induced MUC5AC expression. The luciferase activity transfected with the MUC5AC promoter and cAMP-response element (CRE) was increased after BaP treatment, whereas CREB siRNA suppressed the BaP-induced overexpression of MUC5AC. In addition, BaP increased mitochondrial ROS production, and Mito-TEMP, a mitochondrial ROS inhibitor, inhibited BaP-induced MUC5AC expression and ERK activation. BaP increased the mRNA levels of CYP1A1 and CYP1B1, while Alizarin, a CYP1s inhibitor, suppressed the effects of BaP, including the MUC5AC overexpression, ERK activation and mitochondrial ROS generation. BaP induced the translocation of aryl hydrocarbon receptor (AhR) from the cytoplasm to the nucleus. SiRNA-mediated knockdown or chemical inhibition of AhR decreased the BaP-induced expression of MUC5AC, while the overexpression of AhR significantly enhanced the BaP-induced expression of MUC5AC. ITE, an endogenous AhR ligand, also upregulated the mRNA and protein expression of MUC5AC. Furthermore, resveratrol treatment inhibited the BaP-induced MUC5AC overexpression, AhR translocation, mitochondrial ROS production and ERK pathway activation. CONCLUSION Here, we highlighted the crucial role of AhR/mitochondrial ROS/ERK pathway activation in BaP-induced MUC5AC overexpression and identified resveratrol as a promising drug to reduce BaP-induced MUC5AC overexpression.
Collapse
Affiliation(s)
- Yipeng Sun
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, PR China; Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Zhaowen Shi
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, PR China
| | - Yuhua Lin
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, PR China
| | - Mengzhe Zhang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, PR China
| | - Jinjin Liu
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, PR China
| | - Linyun Zhu
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, PR China
| | - Qingge Chen
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, PR China
| | - Junjie Bi
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, PR China
| | - Shanqun Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Zhenhua Ni
- Central lab, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, PR China.
| | - Xiongbiao Wang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, PR China.
| |
Collapse
|
23
|
Cabrita I, Benedetto R, Wanitchakool P, Lerias J, Centeio R, Ousingsawat J, Schreiber R, Kunzelmann K. TMEM16A Mediates Mucus Production in Human Airway Epithelial Cells. Am J Respir Cell Mol Biol 2021; 64:50-58. [PMID: 33026825 DOI: 10.1165/rcmb.2019-0442oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
TMEM16A is a Ca2+-activated chloride channel that was shown to enhance production and secretion of mucus in inflamed airways. It is, however, not clear whether TMEM16A directly supports mucus production, or whether mucin and TMEM16A are upregulated independently during inflammatory airway diseases such as asthma and cystic fibrosis (CF). We examined this question using BCi-NS1 cells, a human airway basal cell line that maintains multipotent differentiation capacity, and the two human airway epithelial cell lines, Calu-3 and CFBE. The data demonstrate that exposure of airway epithelial cells to IL-8 and IL-13, two cytokines known to be enhanced in CF and asthma, respectively, leads to an increase in mucus production. Expression of MUC5AC was fully dependent on expression of TMEM16A, as shown by siRNA knockdown of TMEM16A. In addition, different inhibitors of TMEM16A attenuated IL-13-induced mucus production. Interestingly, in CFBE cells expressing F508 delCFTR, IL-13 was unable to upregulate membrane expression of TMEM16A or Ca2+-activated whole cell currents. The regulator of TMEM16A, CLCA1, strongly augmented both Ca2+- and cAMP-activated Cl- currents in cells expressing wtCFTR but failed to augment membrane expression of TMEM16A in F508 delCFTR-expressing CFBE cells. The data confirm the functional relationship between CFTR and TMEM16A and suggest an impaired upregulation of TMEM16A by IL-13 or CLCA1 in cells expressing the most frequent CF-causing mutation F508 delCFTR.
Collapse
Affiliation(s)
- Inês Cabrita
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | - Roberta Benedetto
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | | | - Joana Lerias
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | - Raquel Centeio
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | | | - Rainer Schreiber
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, Regensburg, Germany
| |
Collapse
|
24
|
Optimizations of In Vitro Mucus and Cell Culture Models to Better Predict In Vivo Gene Transfer in Pathological Lung Respiratory Airways: Cystic Fibrosis as an Example. Pharmaceutics 2020; 13:pharmaceutics13010047. [PMID: 33396283 PMCID: PMC7823756 DOI: 10.3390/pharmaceutics13010047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022] Open
Abstract
The respiratory epithelium can be affected by many diseases that could be treated using aerosol gene therapy. Among these, cystic fibrosis (CF) is a lethal inherited disease characterized by airways complications, which determine the life expectancy and the effectiveness of aerosolized treatments. Beside evaluations performed under in vivo settings, cell culture models mimicking in vivo pathophysiological conditions can provide complementary insights into the potential of gene transfer strategies. Such models must consider multiple parameters, following the rationale that proper gene transfer evaluations depend on whether they are performed under experimental conditions close to pathophysiological settings. In addition, the mucus layer, which covers the epithelial cells, constitutes a physical barrier for gene delivery, especially in diseases such as CF. Artificial mucus models featuring physical and biological properties similar to CF mucus allow determining the ability of gene transfer systems to effectively reach the underlying epithelium. In this review, we describe mucus and cellular models relevant for CF aerosol gene therapy, with a particular emphasis on mucus rheology. We strongly believe that combining multiple pathophysiological features in single complex cell culture models could help bridge the gaps between in vitro and in vivo settings, as well as viral and non-viral gene delivery strategies.
Collapse
|
25
|
Dulin NO. Calcium-Activated Chloride Channel ANO1/TMEM16A: Regulation of Expression and Signaling. Front Physiol 2020; 11:590262. [PMID: 33250781 PMCID: PMC7674831 DOI: 10.3389/fphys.2020.590262] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/13/2020] [Indexed: 01/11/2023] Open
Abstract
Anoctamin-1 (ANO1), also known as TMEM16A, is the most studied member of anoctamin family of calcium-activated chloride channels with diverse cellular functions. ANO1 controls multiple cell functions including cell proliferation, survival, migration, contraction, secretion, and neuronal excitation. This review summarizes the current knowledge of the cellular mechanisms governing the regulation of ANO1 expression and of ANO1-mediated intracellular signaling. This includes the stimuli and mechanisms controlling ANO1 expression, agonists and processes that activate ANO1, and signal transduction mediated by ANO1. The major conclusion is that this field is poorly understood, remains highly controversial, and requires extensive and rigorous further investigation.
Collapse
Affiliation(s)
- Nickolai O Dulin
- Department of Medicine, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
26
|
Danahay H, Fox R, Lilley S, Charlton H, Adley K, Christie L, Ansari E, Ehre C, Flen A, Tuvim MJ, Dickey BF, Williams C, Beaudoin S, Collingwood SP, Gosling M. Potentiating TMEM16A does not stimulate airway mucus secretion or bronchial and pulmonary arterial smooth muscle contraction. FASEB Bioadv 2020; 2:464-477. [PMID: 32821878 PMCID: PMC7429354 DOI: 10.1096/fba.2020-00035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/11/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
The calcium-activated chloride channel (CaCC) TMEM16A enables chloride secretion across several transporting epithelia, including in the airways. Additional roles for TMEM16A have been proposed, which include regulating mucus production and secretion and stimulating smooth muscle contraction. The aim of the present study was to test whether the pharmacological regulation of TMEM16A channel function, could affect any of these proposed biological roles in the airways. In vitro, neither a potent and selective TMEM16A potentiator (ETX001) nor the potent TMEM16A inhibitor (Ani9) influenced either baseline mucin release or goblet cell numbers in well-differentiated primary human bronchial epithelial (HBE) cells. In vivo, a TMEM16A potentiator was without effect on goblet cell emptying in an IL-13 stimulated goblet cell metaplasia model. Using freshly isolated human bronchi and pulmonary arteries, neither ETX001 or Ani9 had any effect on the contractile or relaxant responses of the tissues. In vivo, ETX001 also failed to influence either lung or cardiovascular function when delivered directly into the airways of telemetered rats. Together, these studies do not support a role for TMEM16A in the regulation of goblet cell numbers or baseline mucin release, or on the regulation of airway or pulmonary artery smooth muscle contraction.
Collapse
Affiliation(s)
- Henry Danahay
- Enterprise Therapeutics Ltd, Science Park SquareBrightonUK
| | - Roy Fox
- School of Life SciencesUniversity of SussexBrightonUK
| | - Sarah Lilley
- School of Life SciencesUniversity of SussexBrightonUK
| | | | - Kathryn Adley
- School of Life SciencesUniversity of SussexBrightonUK
| | - Lee Christie
- REPROCELL Europe Ltd, West of Scotland Science ParkGlasgowUK
| | - Ejaz Ansari
- REPROCELL Europe Ltd, West of Scotland Science ParkGlasgowUK
| | - Camille Ehre
- Marsico Lung InstituteUniversity of North CarolinaChapel HillNCUSA
| | - Alexis Flen
- Marsico Lung InstituteUniversity of North CarolinaChapel HillNCUSA
| | - Michael J. Tuvim
- Department of Pulmonary MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Burton F. Dickey
- Department of Pulmonary MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | | | | | | | - Martin Gosling
- Enterprise Therapeutics Ltd, Science Park SquareBrightonUK
- School of Life SciencesUniversity of SussexBrightonUK
| |
Collapse
|
27
|
Wang Y, Ninaber DK, van Schadewijk A, Hiemstra PS. Tiotropium and Fluticasone Inhibit Rhinovirus-Induced Mucin Production via Multiple Mechanisms in Differentiated Airway Epithelial Cells. Front Cell Infect Microbiol 2020; 10:278. [PMID: 32637364 PMCID: PMC7318795 DOI: 10.3389/fcimb.2020.00278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/12/2020] [Indexed: 01/16/2023] Open
Abstract
Human rhinoviruses (HRVs) are associated with acute exacerbations in patients with chronic obstructive pulmonary disease (COPD) and asthma, which are accompanied by mucus hypersecretion. Whereas, various studies have shown that HRVs increase epithelial mucin production and thus may directly contribute to mucus hypersecretion. The effects of drugs used in the treatment of COPD and asthma on HRV-induced mucin production in epithelial cell cultures have not been studied. In the present study, we assessed effects of HRVs on mucin production and secretion in well-differentiated primary human bronchial epithelial cells (PBEC) and studied the effect of the inhaled corticosteroid fluticasone propionate and the long-acting muscarinic antagonist tiotropium bromide on this process. Differentiated PBEC that were cultured at the air-liquid interface (ALI-PBEC) were infected with HRV-A16 and HRV-1B. Quantitative PCR, immunofluorescence staining, ELISA, periodic acid-Schiff (PAS) staining and immunostaining assays were used to assess the effects of HRV infection. Here we demonstrate that both HRV-A16 and HRV-1B increased mucin (MUC5AC and MUC5B) gene expression and protein release. When exploring this in more detail in HRV-A16-infected epithelial cells, mucin expression was found to be accompanied by increases in expression of SAM-pointed domain-containing Ets-like factor (SPDEF) and SPDEF-regulated genes known to be involved in the regulation of mucin production. We also found that pre-treatment with the purinergic P2R antagonist suramin inhibits HRV-enhanced MUC5AC expression and protein release, implicating involvement of purinergic signaling by extracellular ATP. We furthermore found that both fluticasone and tiotropium decreased HRV-induced mucin production without affecting viral replication, and obtained evidence to suggest that the inhibitory effect of fluticasone involved modulation of SPDEF-regulated genes and extracellular ATP release. These data show that both tiotropium and fluticasone inhibit HRV-induced epithelial mucin production independent of viral clearance, and thus provide insight into the mechanisms underlying beneficial effects of tiotropium and fluticasone in the treatment of COPD, asthma and accompanying exacerbations in these patients. Furthermore, our findings provide additional insight into the mechanisms by which HRV increases epithelial mucin production.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Dennis K Ninaber
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
28
|
Jiao J, Zhang T, Zhang Y, Li J, Wang M, Wang M, Li Y, Wang X, Zhang L. Epidermal growth factor upregulates expression of MUC5AC via TMEM16A, in chronic rhinosinusitis with nasal polyps. Allergy Asthma Clin Immunol 2020; 16:40. [PMID: 32514271 PMCID: PMC7254766 DOI: 10.1186/s13223-020-00440-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/19/2020] [Indexed: 01/07/2023] Open
Abstract
Background Mucus hypersecretion and goblet cell upregulation are common features of chronic rhinosinusitis with nasal polyps (CRSwNP). Although epidermal growth factor (EGF) has been reported to stimulate the expression of MUC5AC, the major macro-molecular constituent of airway mucus, the precise mechanisms underlying the regulation of MUC5AC expression are still not fully understood. The aim of this study therefore was to investigate the role of EGF in regulation of mucin MUC5AC expression and define the involvement of transmembrane protein 16A (TMEM16A) in mediating the EGF-induced mucus overexpression. Methods Human nasal epithelial cells (HNECs) derived from tissue of patients with CRSwNP and control subjects were established as air-liquid interface (ALI) cultures. Differentiated cultures were treated with different concentrations of EGF for 4-24 h, and assessed for the expression of TMEM16A and MUC5AC by real-time RT-PCR, Western blotting, ELISA and immunofluorescence. Cultures pretreated for 30 min with T16Ainh-A01 (a specific TMEM16A inhibitor) or LY294002 (a phosphoinositide 3-kinase (PI3K) inhibitor) were also assessed similarly following EGF treatment. Results EGF treatment (10-100 ng/ml for 4-24 h) significantly increased the expression of both TMEM16A and MUC5AC mRNA and protein, as well as the percentage of TMEM16A-positive cells, MUC5AC-positive cells and cells coexpressing TMEM16A and MUC5AC in HNECs compared to control non-EGF-treated HNECs. Pretreatment of the HNECs with T16Ainh-A01 and LY294002 attenuated these EGF-induced effects. Conclusions This study demonstrated that EGF upregulates the expression of MUC5AC in HNECs from CRSwNP patients. Furthermore, the EGF-mediated regulation of MUC5AC expression is likely to involve a PI3K-TMEM16A signalling pathway in CRSwNP.
Collapse
Affiliation(s)
- Jian Jiao
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 People's Republic of China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17, HouGouHuTong, DongCheng District, Beijing, 100005 People's Republic of China
| | - Tao Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 People's Republic of China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17, HouGouHuTong, DongCheng District, Beijing, 100005 People's Republic of China.,Department of Otolaryngology, Head and Neck Surgery, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| | - Yu Zhang
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000 People's Republic of China
| | - Jingyun Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 People's Republic of China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17, HouGouHuTong, DongCheng District, Beijing, 100005 People's Republic of China
| | - Min Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 People's Republic of China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17, HouGouHuTong, DongCheng District, Beijing, 100005 People's Republic of China
| | - Ming Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 People's Republic of China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17, HouGouHuTong, DongCheng District, Beijing, 100005 People's Republic of China
| | - Ying Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 People's Republic of China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17, HouGouHuTong, DongCheng District, Beijing, 100005 People's Republic of China
| | - Xiangdong Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 People's Republic of China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17, HouGouHuTong, DongCheng District, Beijing, 100005 People's Republic of China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 People's Republic of China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17, HouGouHuTong, DongCheng District, Beijing, 100005 People's Republic of China
| |
Collapse
|
29
|
TMEM16A: An Alternative Approach to Restoring Airway Anion Secretion in Cystic Fibrosis? Int J Mol Sci 2020; 21:ijms21072386. [PMID: 32235608 PMCID: PMC7177896 DOI: 10.3390/ijms21072386] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
The concept that increasing airway hydration leads to improvements in mucus clearance and lung function in cystic fibrosis has been clinically validated with osmotic agents such as hypertonic saline and more convincingly with cystic fibrosis transmembrane conductance regulator (CFTR) repair therapies. Although rapidly becoming the standard of care in cystic fibrosis (CF), current CFTR modulators do not treat all patients nor do they restore the rate of decline in lung function to normal levels. As such, novel approaches are still required to ensure all with CF have effective therapies. Although CFTR plays a fundamental role in the regulation of fluid secretion across the airway mucosa, there are other ion channels and transporters that represent viable targets for future therapeutics. In this review article we will summarise the current progress with CFTR-independent approaches to restoring mucosal hydration, including epithelial sodium channel (ENaC) blockade and modulators of SLC26A9. A particular emphasis is given to modulation of the airway epithelial calcium-activated chloride channel (CaCC), TMEM16A, as there is controversy regarding whether it should be positively or negatively modulated. This is discussed in light of a recent report describing for the first time bona fide TMEM16A potentiators and their positive effects upon epithelial fluid secretion and mucus clearance.
Collapse
|
30
|
Wang Q, Bai L, Luo S, Wang T, Yang F, Xia J, Wang H, Ma K, Liu M, Wu S, Wang H, Guo S, Sun X, Xiao Q. TMEM16A Ca 2+-activated Cl - channel inhibition ameliorates acute pancreatitis via the IP 3R/Ca 2+/NFκB/IL-6 signaling pathway. J Adv Res 2020; 23:25-35. [PMID: 32071789 PMCID: PMC7016042 DOI: 10.1016/j.jare.2020.01.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 02/08/2023] Open
Abstract
TMEM16A Ca2+-activated Cl- channels are expressed in pancreatic acinar cells and participate in inflammation-associated diseases. Whether TMEM16A contributes to the pathogenesis of acute pancreatitis (AP) remains unknown. Here, we found that increased TMEM16A expression in the pancreatic tissue was correlated with the interleukin-6 (IL-6) level in the pancreatic tissue and in the serum of a cerulein-induced AP mouse model. IL-6 treatment promoted TMEM16A expression in AR42J pancreatic acinar cells via the IL-6 receptor (IL-6R)/signal transducers and activators of transcription 3 (STAT3) signaling pathway. In addition, TMEM16A was co-immunoprecipitated with the inositol 1,4,5-trisphosphate receptor (IP3R) and was activated by IP3R-mediated Ca2+ release. TMEM16A inhibition reduced the IP3R-mediated Ca2+ release induced by cerulein. Furthermore, TMEM16A overexpression activated nuclear factor-κB (NFκB) and increased IL-6 release by increasing intracellular Ca2+. TMEM16A knockdown by shRNAs reduced the cerulein-induced NFκB activation by Ca2+. TMEM16A inhibitors inhibited NFκB activation by decreasing channel activity and reducing TMEM16A protein levels in AR42J cells, and it ameliorated pancreatic damage in cerulein-induced AP mice. This study identifies a novel mechanism underlying the pathogenesis of AP by which IL-6 promotes TMEM16A expression via IL-6R/STAT3 signaling activation, and TMEM16A overexpression increases IL-6 secretion via IP3R/Ca2+/NFκB signaling activation in pancreatic acinar cells. TMEM16A inhibition may be a new potential strategy for treating AP.
Collapse
Key Words
- AP, acute pancreatitis
- Acute pancreatitis
- BAPTA-AM, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid-acetyloxymethyl ester
- CCK, cholesystokinin
- CFBE, cystic fibrosis bronchial epithelial
- CaCCinh-A01, Ca2+-activated Cl− channel inhibitor-A01
- EDTA, ethylenediaminetetraacetic acid
- EGF, epidermal growth factor
- EGFP, green fluorescent protein
- EGFR, epidermal growth factor receptor
- EGTA, ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid
- ELISA, enzyme-linked immunosorbent assay
- ER, endoplasmic reticulum
- FBS, fetal bovine serum
- HEPES, N-2-hydroxyethil-piperazine-N'-2-ethanesulfonic acid
- IL-6, interleukin 6
- IL-6R, interleukin 6 receptor
- IP3R, inositol 1,4,5-trisphosphate receptor
- Inositol 1,4,5-trisphosphate receptor
- Interleukin-6
- NFκB
- NFκB, nuclear factor-κB
- NMDG, N-methyl-D-glucamine
- NP-40, Nonidet P-40
- PACs, pancreatic acinar cells
- RIPA, radio immunoprecipitation assay
- SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis
- STAT3, signal transducers and activators of transcription 3
- T16Ainh-A01, TMEM16A inhibitor-A01
- TMEM16A
- Tris, tris(hydroxymethyl)aminomethane
- WT, wild type
- shRNAs, short hairpin RNAs
Collapse
Affiliation(s)
- Qinghua Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.,Department of Experimental Center, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Lichuan Bai
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shuya Luo
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Tianyu Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Fan Yang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Jialin Xia
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Hui Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Ke Ma
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Mei Liu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shuwei Wu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Huijie Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shibin Guo
- Department of Gastroenterological Endoscopy, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaohong Sun
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
31
|
Simões FB, Quaresma MC, Clarke LA, Silva IA, Pankonien I, Railean V, Kmit A, Amaral MD. TMEM16A chloride channel does not drive mucus production. Life Sci Alliance 2019; 2:2/6/e201900462. [PMID: 31732694 PMCID: PMC6859295 DOI: 10.26508/lsa.201900462] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 01/07/2023] Open
Abstract
Despite being essential for airway hydration, TMEM16A is not required for mucus (MUC5AC) production. Cell proliferation is the main driver for TMEM16A up-regulation during inflammation. Airway mucus obstruction is the main cause of morbidity in cystic fibrosis, a disease caused by mutations in the CFTR Cl− channel. Activation of non-CFTR Cl− channels such as TMEM16A can likely compensate for defective CFTR. However, TMEM16A was recently described as a key driver in mucus production/secretion. Here, we have examined whether indeed there is a causal relationship between TMEM16A and MUC5AC production, the main component of respiratory mucus. Our data show that TMEM16A and MUC5AC are inversely correlated during differentiation of human airway cells. Furthermore, we show for the first time that the IL-4–induced TMEM16A up-regulation is proliferation-dependent, which is supported by the correlation found between TMEM16A and Ki-67 proliferation marker during wound healing. Consistently, the notch signaling activator DLL4 increases MUC5AC levels without inducing changes neither in TMEM16A nor in Ki-67 expression. Moreover, TMEM16A inhibition decreased airway surface liquid height. Altogether, our findings demonstrate that up-regulation of TMEM16A and MUC5AC is only circumstantial under cell proliferation, but with no causal relationship between them. Thus, although essential for airway hydration, TMEM16A is not required for MUC5AC production.
Collapse
Affiliation(s)
- Filipa B Simões
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Margarida C Quaresma
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Luka A Clarke
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Iris Al Silva
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Ines Pankonien
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Violeta Railean
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Arthur Kmit
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| |
Collapse
|
32
|
Cabrita I, Benedetto R, Schreiber R, Kunzelmann K. Niclosamide repurposed for the treatment of inflammatory airway disease. JCI Insight 2019; 4:128414. [PMID: 31391337 DOI: 10.1172/jci.insight.128414] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022] Open
Abstract
Inflammatory airway diseases, such as asthma, cystic fibrosis (CF), and chronic obstructive pulmonary disease (COPD), are characterized by mucus hypersecretion and airway plugging. In both CF and asthma, enhanced expression of the Ca2+-activated Cl- channel TMEM16A is detected in mucus-producing club/goblet cells and airway smooth muscle. TMEM16A contributes to mucus hypersecretion and bronchoconstriction, which are both inhibited by blockers of TMEM16A, such as niflumic acid. Here we demonstrate that the FDA-approved drug niclosamide, a potent inhibitor of TMEM16A identified by high-throughput screening, is an inhibitor of both TMEM16A and TMEM16F. In asthmatic mice, niclosamide reduced mucus production and secretion, as well as bronchoconstriction, and showed additional antiinflammatory effects. Using transgenic asthmatic mice, we found evidence that TMEM16A and TMEM16F are required for normal mucus production/secretion, which may be due to their effects on intracellular Ca2+ signaling. TMEM16A and TMEM16F support exocytic release of mucus and inflammatory mediators, both of which are blocked by niclosamide. Thus, inhibition of mucus and cytokine release, bronchorelaxation, and reported antibacterial effects make niclosamide a potentially suitable drug for the treatment of inflammatory airway diseases, such as CF, asthma, and COPD.
Collapse
|
33
|
Liu PY, Zhang Z, Liu Y, Tang XL, Shu S, Bao XY, Zhang Y, Gu Y, Xu Y, Cao X. TMEM16A Inhibition Preserves Blood-Brain Barrier Integrity After Ischemic Stroke. Front Cell Neurosci 2019; 13:360. [PMID: 31447648 PMCID: PMC6691060 DOI: 10.3389/fncel.2019.00360] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/23/2019] [Indexed: 12/23/2022] Open
Abstract
The inflammatory response plays a pivotal role in Blood–Brain Barrier (BBB) destruction following ischemic brain injury. Enhanced leukocyte adhesion to vascular endothelial cells is an essential event in the inflammatory process. TMEM16A, a newly discovered protein regulating calcium-activated chloride channels, is widely expressed in eukaryotes. Recent studies have suggested that upregulated expression of TMEM16A is associated with the occurrence and development of many diseases. However, the role of TMEM16A in regulating BBB integrity after ischemic stroke has not been fully investigated. In this study, we found that TMEM16A is mainly expressed in brain endothelial cells and upregulated after ischemic stroke in the mouse brain. Caccinh-A01, an TMEM16A inhibitor that reduced its upregulation, attenuated brain infarct size and neurological deficits after ischemic stroke. ICAM-1 and MPO expression and BBB permeability were decreased after TMEM16A inhibitor administration. In addition, TMEM16A silencing rescued oxygen-glucose deprivation/reoxygenation (OGD/R)-induced transendothelial permeability in vitro accompanied by decreased ICAM-1 expression and leukocyte adhesion. Furthermore, our mechanistic study showed that TMEM16A knockdown alleviated NF-κB activation and nuclear translocation, indicating that TMEM16A knockdown downregulated OGD/R-induced ICAM-1 expression in an NF-κB-dependent manner. Finally, NF-κB inhibitor treatment also alleviated OGD/ R-induced BBB permeability, confirming that activated NF-κB and increased ICAM-1 are essential factors involved in ischemia-induced BBB damage. Thus, our research provides a promising treatment strategy against BBB destruction after ischemic stroke, and TMEM16A may become a potential target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Pin-Yi Liu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Zhi Zhang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yi Liu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Xue-Lian Tang
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Shu Shu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Xin-Yu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yan Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yue Gu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| |
Collapse
|
34
|
Wang H, Yao F, Luo S, Ma K, Liu M, Bai L, Chen S, Song C, Wang T, Du Q, Wu H, Wei M, Fang Y, Xiao Q. A mutual activation loop between the Ca 2+-activated chloride channel TMEM16A and EGFR/STAT3 signaling promotes breast cancer tumorigenesis. Cancer Lett 2019; 455:48-59. [PMID: 31042586 DOI: 10.1016/j.canlet.2019.04.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/19/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
Abstract
The Ca2+-activated chloride channel TMEM16A (anoctamin 1) is overexpressed in breast cancer. It remains unclear how TMEM16A overexpression plays a role in carcinogenesis in breast cancer. In this study, we found that high TMEM16A expression in combination with high EGFR or STAT3 expression was significantly associated with shorter overall survival in ER-positive breast cancer patients without tamoxifen treatment, and longer overall survival in patients with tamoxifen treatment. EGFR/STAT3 signaling activation by EGF promoted TMEM16A expression, and TMEM16A overexpression activated EGFR/STAT3 signaling in breast cancer cells. Both in vitro and in animal studies showed that TMEM16A overexpression promoted, and TMEM16A knockdown inhibited breast cancer cell proliferation and tumor growth. In addition, TMEM16A overexpression-induced cell proliferation was blocked by EGFR/STAT3 inhibitors, and TMEM16A knockdown reduced EGF-induced proliferation and tumorigenesis in breast cancer. Furthermore, inhibition of TMEM16A channel function effectively reduced breast cancer cell proliferation, especially in combination with EGFR inhibitors. Our findings identify a mutual activation loop between TMEM16A and EGFR/STAT3 signaling, which is important for breast cancer proliferation and growth. TMEM16A inhibition may represent a novel therapy for EGFR-expressing breast cancer.
Collapse
Affiliation(s)
- Hui Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Fan Yao
- Department of Breast Surgery and Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Shuya Luo
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ke Ma
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Mei Liu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Lichuan Bai
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Si Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Chang Song
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Tianyu Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Qiang Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
35
|
CT and Functional MRI to Evaluate Airway Mucus in Severe Asthma. Chest 2019; 155:1178-1189. [PMID: 30910637 DOI: 10.1016/j.chest.2019.02.403] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/14/2019] [Accepted: 02/22/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Intraluminal contributor(s) to airflow obstruction in severe asthma are patient-specific and must be evaluated to personalize treatment. The occurrence and functional consequence of airway mucus in the presence or absence of airway eosinophils remain undetermined. OBJECTIVE The objective of this study was to understand the functional consequence of airway mucus in the presence or absence of eosinophils and to identify biomarkers of mucus-related airflow obstruction. METHODS Mucus plugs were quantified on CT scans, and their contribution to ventilation heterogeneity (using MRI ventilation defect percent [VDP]) was evaluated in 27 patients with severe asthma. Patients were dichotomized based on sputum eosinophilia such that the relationship between mucus, eosinophilia, and ventilation heterogeneity could be investigated. Fractional exhaled nitric oxide (Feno) and related cytokines in sputum were measured. RESULTS Mucus plugging was present in 100% of asthma patients with sputum eosinophils and 36% of those without sputum eosinophils (P = .0006) and was correlated with MRI VDP prebronchodilator (r = 0.68; P = .0001) and postbronchodilator (r = 0.72; P < .0001). In a multivariable regression, both mucus and eosinophils contributed to the prediction of postbronchodilator MRI VDP (R2 = 0.75; P < .0001). Patients with asthma in whom the mucus score was high had raised Feno (P = .03) and IL-4 (P = .02) values. Mucus plugging correlated with Feno (r = 0.63; P = .005). CONCLUSIONS Both airway eosinophils and mucus can contribute to ventilation heterogeneity in patients with severe asthma. Patients in whom mucus is the dominant cause of airway obstruction have evidence of an upregulated IL-4/IL-13 pathway that could be identified according to increased Feno level.
Collapse
|
36
|
Miner K, Labitzke K, Liu B, Wang P, Henckels K, Gaida K, Elliott R, Chen JJ, Liu L, Leith A, Trueblood E, Hensley K, Xia XZ, Homann O, Bennett B, Fiorino M, Whoriskey J, Yu G, Escobar S, Wong M, Born TL, Budelsky A, Comeau M, Smith D, Phillips J, Johnston JA, McGivern JG, Weikl K, Powers D, Kunzelmann K, Mohn D, Hochheimer A, Sullivan JK. Drug Repurposing: The Anthelmintics Niclosamide and Nitazoxanide Are Potent TMEM16A Antagonists That Fully Bronchodilate Airways. Front Pharmacol 2019; 10:51. [PMID: 30837866 PMCID: PMC6382696 DOI: 10.3389/fphar.2019.00051] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/18/2019] [Indexed: 01/21/2023] Open
Abstract
There is an unmet need in severe asthma where approximately 40% of patients exhibit poor β-agonist responsiveness, suffer daily symptoms and show frequent exacerbations. Antagonists of the Ca2+-activated Cl- channel, TMEM16A, offers a new mechanism to bronchodilate airways and block the multiple contractiles operating in severe disease. To identify TMEM16A antagonists we screened a library of ∼580,000 compounds. The anthelmintics niclosamide, nitazoxanide, and related compounds were identified as potent TMEM16A antagonists that blocked airway smooth muscle depolarization and contraction. To evaluate whether TMEM16A antagonists resist use- and inflammatory-desensitization pathways limiting β-agonist action, we tested their efficacy under harsh conditions using maximally contracted airways or airways pretreated with a cytokine cocktail. Stunningly, TMEM16A antagonists fully bronchodilated airways, while the β-agonist isoproterenol showed only partial effects. Thus, antagonists of TMEM16A and repositioning of niclosamide and nitazoxanide represent an important additional treatment for patients with severe asthma and COPD that is poorly controlled with existing therapies. It is of note that drug repurposing has also attracted wide interest in niclosamide and nitazoxanide as a new treatment for cancer and infectious disease. For the first time we identify TMEM16A as a molecular target for these drugs and thus provide fresh insights into their mechanism for the treatment of these disorders in addition to respiratory disease.
Collapse
Affiliation(s)
- Kent Miner
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Katja Labitzke
- Department of Therapeutic Discovery, Amgen Inc., Regensburg, Germany
| | - Benxian Liu
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Paul Wang
- Department of Therapeutic Discovery, Amgen Inc., Thousand Oaks, CA, United States
| | - Kathryn Henckels
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Kevin Gaida
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Robin Elliott
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Jian Jeffrey Chen
- Department of Medicinal Chemistry, Amgen Inc., Thousand Oaks, CA, United States
| | - Longbin Liu
- Department of Medicinal Chemistry, Amgen Inc., Thousand Oaks, CA, United States
| | - Anh Leith
- Department of Inflammation Research, Amgen Inc., Seattle, WA, United States
| | - Esther Trueblood
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Seattle, WA, United States
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, CA, United States
- Department of Comparative Biology and Safety Sciences, Amgen Inc., South San Francisco, CA, United States
| | - Kelly Hensley
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Seattle, WA, United States
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, CA, United States
- Department of Comparative Biology and Safety Sciences, Amgen Inc., South San Francisco, CA, United States
| | - Xing-Zhong Xia
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Oliver Homann
- Genome Analysis Unit, Amgen Inc., South San Francisco, CA, United States
| | - Brian Bennett
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Mike Fiorino
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - John Whoriskey
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Gang Yu
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Sabine Escobar
- Department of Inflammation Research, Amgen Inc., Seattle, WA, United States
| | - Min Wong
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Teresa L. Born
- Department of Inflammation Research, Amgen Inc., Seattle, WA, United States
| | - Alison Budelsky
- Department of Inflammation Research, Amgen Inc., Seattle, WA, United States
| | - Mike Comeau
- Department of Inflammation Research, Amgen Inc., Seattle, WA, United States
| | - Dirk Smith
- Department of Inflammation Research, Amgen Inc., Seattle, WA, United States
| | - Jonathan Phillips
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - James A. Johnston
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Joseph G. McGivern
- Department of Therapeutic Discovery, Amgen Inc., Thousand Oaks, CA, United States
| | - Kerstin Weikl
- Department of Therapeutic Discovery, Amgen Inc., Regensburg, Germany
| | - David Powers
- Department of Therapeutic Discovery, Amgen Inc., Thousand Oaks, CA, United States
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | - Deanna Mohn
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| | | | - John K. Sullivan
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, CA, United States
| |
Collapse
|
37
|
Krishn SR, Ganguly K, Kaur S, Batra SK. Ramifications of secreted mucin MUC5AC in malignant journey: a holistic view. Carcinogenesis 2019; 39:633-651. [PMID: 29415129 DOI: 10.1093/carcin/bgy019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Heavily glycosylated secreted mucin MUC5AC, by the virtue of its cysteine-rich repeats, can form inter- and intramolecular disulfide linkages resulting in complex polymers, which in turn craft the framework of the polymeric mucus gel on epithelial cell surfaces. MUC5AC is a molecule with versatile functional implications including barrier functions to epithelial cells, host-pathogen interaction, immune cell attraction to sites of premalignant or malignant lesions and tumor progression in a context-dependent manner. Differential expression, glycosylation and localization of MUC5AC have been associated with a plethora of benign and malignant pathologies. In this era of robust technologies, overexpression strategies and genetically engineered mouse models, MUC5AC is emerging as a potential diagnostic, prognostic and therapeutic target for various malignancies. Considering the clinical relevance of MUC5AC, this review holistically encompasses its genomic organization, domain structure, glycosylation patterns, regulation, functional and molecular connotation from benign to malignant pathologies. Furthermore, we have here explored the incipient and significant experimental tools that are being developed to study this structurally complex and evolutionary conserved gel-forming mucin.
Collapse
Affiliation(s)
- Shiv Ram Krishn
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
38
|
Ji Q, Guo S, Wang X, Pang C, Zhan Y, Chen Y, An H. Recent advances in TMEM16A: Structure, function, and disease. J Cell Physiol 2018; 234:7856-7873. [PMID: 30515811 DOI: 10.1002/jcp.27865] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
Abstract
TMEM16A (also known as anoctamin 1, ANO1) is the molecular basis of the calcium-activated chloride channels, with ten transmembrane segments. Recently, atomic structures of the transmembrane domains of mouse TMEM16A (mTMEM16A) were determined by single-particle electron cryomicroscopy. This gives us a solid ground to discuss the electrophysiological properties and functions of TMEM16A. TMEM16A is reported to be dually regulated by Ca2+ and voltage. In addition, the dysfunction of TMEM16A has been found to be involved in many diseases including cystic fibrosis, various cancers, hypertension, and gastrointestinal motility disorders. TMEM16A is overexpressed in many cancers, including gastrointestinal stromal tumors, gastric cancer, head and neck squamous cell carcinoma (HNSCC), colon cancer, pancreatic ductal adenocarcinoma, and esophageal cancer. Furthermore, overexpression of TMEM16A is related to the occurrence, proliferation, and migration of tumor cells. To date, several studies have shown that many natural compounds and synthetic compounds have regulatory effects on TMEM16A. These small molecule compounds might be novel drugs for the treatment of diseases caused by TMEM16A dysfunction in the future. In addition, recent studies have shown that TMEM16A plays different roles in different diseases through different signal transduction pathways. This review discusses the topology, electrophysiological properties, modulators and functions of TMEM16A in mediates nociception, gastrointestinal dysfunction, hypertension, and cancer and focuses on multiple regulatory mechanisms regarding TMEM16A.
Collapse
Affiliation(s)
- Qiushuang Ji
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Shuai Guo
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Xuzhao Wang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Chunli Pang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Yong Zhan
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Yafei Chen
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| |
Collapse
|
39
|
Clarithromycin suppresses IL-13-induced goblet cell metaplasia via the TMEM16A-dependent pathway in guinea pig airway epithelial cells. Respir Investig 2018; 57:79-88. [PMID: 30393041 DOI: 10.1016/j.resinv.2018.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/09/2018] [Accepted: 10/02/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Transmembrane protein 16A (TMEM16A) is associated with mucus secretion and ion transport in asthma. Clarithromycin (CAM) is reported to inhibit IL-13-induced goblet cell metaplasia. However, the effect of CAM on TMEM16A function and expression remains unclear. METHODS Tracheal epithelial cells from guinea pigs were cultured for ~14 days at an air-liquid interface in medium containing IL-13 (10 ng/ml) in the absence or presence of CAM (20 µg/ml) or a TMEM16A inhibitor, T16Ainh-A01 (10 µg/ml). Electrophysiological studies were performed by Ussing׳s short-circuit technique. The cells were used for immunofluorescence staining with antibodies against TMEM16A, MUC5AC, and α-tubulin. The cells were also examined by transmission electron microscopy. TMEM16A protein levels in the cell lysates were determined by ELISA. For the in vivo study, guinea pigs were treated intratracheally with IL-13 in the absence or presence of CAM or T16Ainh-A01. RESULTS CAM decreased the MUC5AC-positive cells and reduced TMEM16A expression in them and increased the α-tubulin-positive cells. CAM inhibited TMEM16A protein levels in a dose-dependent manner, and decreased UTP-induced Cl ion transport. In cells treated with IL-13 for 24 h, TMEM16A appeared prior to MUC5AC protein expression, and was inhibited by CAM. In the in vivo study, CAM inhibited IL-13-induced goblet cell metaplasia and TMEM16A expression. The inhibitory effects of CAM were similar to those of T16Ainh-A01. CONCLUSIONS CAM inhibited IL-13-induced TMEM16A expression, Cl ion transport and goblet cell metaplasia both in vitro and in vivo. CAM may thus improve airway mucociliary differentiation by attenuating TMEM16A expression in IL-13-related asthma.
Collapse
|
40
|
García G, Martínez-Rojas VA, Oviedo N, Murbartián J. Blockade of anoctamin-1 in injured and uninjured nerves reduces neuropathic pain. Brain Res 2018; 1696:38-48. [DOI: 10.1016/j.brainres.2018.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 04/12/2018] [Accepted: 06/01/2018] [Indexed: 12/28/2022]
|
41
|
Hahn A, Salomon JJ, Leitz D, Feigenbutz D, Korsch L, Lisewski I, Schrimpf K, Millar-Büchner P, Mall MA, Frings S, Möhrlen F. Expression and function of Anoctamin 1/TMEM16A calcium-activated chloride channels in airways of in vivo mouse models for cystic fibrosis research. Pflugers Arch 2018; 470:1335-1348. [DOI: 10.1007/s00424-018-2160-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/30/2018] [Accepted: 05/23/2018] [Indexed: 01/17/2023]
|
42
|
Nagaoka K, Ito T, Ogino K, Eguchi E, Fujikura Y. Human lactoferrin induces asthmatic symptoms in NC/Nga mice. Physiol Rep 2018; 5:5/15/e13365. [PMID: 28774951 PMCID: PMC5555891 DOI: 10.14814/phy2.13365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/25/2017] [Accepted: 06/29/2017] [Indexed: 01/04/2023] Open
Abstract
Lactoferrin in commercial supplements is known to exert anti‐viral and anti‐allergic effects. However, this is the first study to evaluate the induction of allergic airway inflammation in NC/Nga mice. Human lactoferrin was administered intraperitoneally with aluminum oxide for sensitization. Five days later, lactoferrin was inoculated intranasally for 5 days, and then on the 12th day, the single inoculation of lactoferrin intranasally was performed as a challenge. On the 13th day, airway hypersensitivity was assessed (AHR), a bronchoalveolar fluid (BALF) cell analysis was conducted, serum IgE and serum lactoferrin‐specific IgG and IgE levels as well as the mRNA expression levels of cytokines and chemokines in the lung were measured, and a histopathological analysis of the lung was performed. Human lactoferrin increased AHR, the number of eosinophils in BALF, serum lactoferrin‐specific IgG levels, and the mRNA levels of IL‐13, eotaxin 1, and eotaxin 2. Moreover, the accumulation of inflammatory cells around the bronchus and the immunohistochemical localization of arginase I and human lactoferrin were detected. Collectively, these results indicate that human lactoferrin induced allergic airway inflammation in mice. Therefore, the commercial use of human lactoferrin in supplements warrants more intensive study.
Collapse
Affiliation(s)
- Kenjiro Nagaoka
- Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tatsuo Ito
- Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keiki Ogino
- Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Eri Eguchi
- Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihisa Fujikura
- Department of Molecular Anatomy, Faculty of Medicine, Oita University, Oita, Japan
| |
Collapse
|
43
|
Jiang D, Schaefer N, Chu HW. Air-Liquid Interface Culture of Human and Mouse Airway Epithelial Cells. Methods Mol Biol 2018; 1809:91-109. [PMID: 29987785 DOI: 10.1007/978-1-4939-8570-8_8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Air-liquid interface culture enables airway epithelial cells to differentiate into a pseudostratified cell layer, consisting of ciliated cells, goblet/secretory cells, and basal cells (Ghio et al., Part Fibre Toxicol 10:25, 2013). This technique is critically important for in vitro studies of lung diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, since differentiated airway epithelial cells are more representative of the in vivo lung environment than non-differentiated cells (Derichs et al., FASEB J 25:2325-2332, 2011; Hackett et al., Am J Respir Cell Mol Biol 45:1090-1100, 2011;Schneider et al., Am J Respir Crit Care Med 182: 332-340, 2010). Here we describe the process of isolating and expanding human and mouse airway epithelial cells, as well as differentiation of airway epithelial cells by air-liquid interface culture.
Collapse
Affiliation(s)
- Di Jiang
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | | | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
44
|
Wang H, Zou L, Ma K, Yu J, Wu H, Wei M, Xiao Q. Cell-specific mechanisms of TMEM16A Ca 2+-activated chloride channel in cancer. Mol Cancer 2017; 16:152. [PMID: 28893247 PMCID: PMC5594453 DOI: 10.1186/s12943-017-0720-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/01/2017] [Indexed: 02/08/2023] Open
Abstract
TMEM16A (known as anoctamin 1) Ca2+-activated chloride channel is overexpressed in many tumors. TMEM16A overexpression can be caused by gene amplification in many tumors harboring 11q13 amplification. TMEM16A expression is also controlled in many cancer cells via transcriptional regulation, epigenetic regulation and microRNAs. In addition, TMEM16A activates different signaling pathways in different cancers, e.g. the EGFR and CAMKII signaling in breast cancer, the p38 and ERK1/2 signaling in hepatoma, the Ras-Raf-MEK-ERK1/2 signaling in head and neck squamous cell carcinoma and bladder cancer, and the NFκB signaling in glioma. Furthermore, TMEM16A overexpression has been reported to promote, inhibit, or produce no effects on cell proliferation and migration in different cancer cells. Since TMEM16A exerts different roles in different cancer cells via activation of distinct signaling pathways, we try to develop the idea that TMEM16A regulates cancer cell proliferation and migration in a cell-dependent mechanism. The cell-specific role of TMEM16A may depend on the cellular environment that is predetermined by TMEM16A overexpression mechanisms specific for a particular cancer type. TMEM16A may exert its cell-specific role via its associated protein networks, phosphorylation by different kinases, and involvement of different signaling pathways. In addition, we discuss the role of TMEM16A channel activity in cancer, and its clinical use as a prognostic and predictive marker in different cancers. This review highlights the cell-type specific mechanisms of TMEM16A in cancer, and envisions the promising use of TMEM16A inhibitors as a potential treatment for TMEM16A-overexpressing cancers.
Collapse
Affiliation(s)
- Hui Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| | - Liang Zou
- Department of Anesthesiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Ke Ma
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| | - Jiankun Yu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122 China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122 China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| |
Collapse
|
45
|
Qi M, Zhou J, Zhang X, Zhong X, Zhang Y, Zhang X, Deng X, Li H, Wang Q. Effect of Xiaoqinglong decoction on mucus hypersecretion in the airways and cilia function in a murine model of asthma. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2017. [DOI: 10.1016/j.jtcms.2017.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
46
|
Stevenson C, Jiang D, Schaefer N, Ito Y, Berman R, Sanchez A, Chu HW. MUC18 regulates IL-13-mediated airway inflammatory response. Inflamm Res 2017; 66:691-700. [PMID: 28451734 DOI: 10.1007/s00011-017-1050-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/06/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To evaluate the effects of MUC18 on IL-13-mediated airway inflammatory responses in human airway epithelial cells and in mice. MATERIALS Primary normal human tracheobronchial epithelial (HTBE) cells, wild-type (WT) and Muc18 knockout (KO) mice, and mouse tracheal epithelial cells (mTECs) were utilized. TREATMENT Cultured HTBE cells treated with MUC18 siRNA or MUC18 expressing lentivirus were incubated with IL-13 (10 ng/mL) for 24 h. Mice were intranasally instilled with 500 ng of IL-13 for 3 days. mTECs were treated with IL-13 (10 ng/mL) for 3 days. METHODS PCR was used to measure mRNA expression. Western Blot and ELISAs were used to quantify protein expression. Cytospins of bronchoalveolar lavage (BAL) cells were used to obtain leukocyte differentials. RESULTS MUC18 siRNA reduced IL-13-mediated eotaxin-3 (183 ± 44 vs. 380 ± 59 pg/mL, p < 0.05), while MUC18 overexpression increased IL-13-mediated eotaxin-3 (95 ± 3 vs. 58 ± 3 pg/mL, p < 0.05) in HTBE cells. IL-13-treated Muc18 KO mice had a lower percentage of neutrophils in BAL than WT mice (25 ± 3 vs. 35 ± 3%, p = 0.0565). CONCLUSIONS These results implicate MUC18 as a potential enhancer of airway inflammation in a type 2 cytokine (e.g., IL-13) milieu.
Collapse
Affiliation(s)
- Connor Stevenson
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA
| | - Di Jiang
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA
| | - Niccolette Schaefer
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA
| | - Yoko Ito
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA
| | - Reena Berman
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA
| | - Amelia Sanchez
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA.
| |
Collapse
|
47
|
Kondo M, Tsuji M, Hara K, Arimura K, Yagi O, Tagaya E, Takeyama K, Tamaoki J. Chloride ion transport and overexpression of TMEM16A in a guinea-pig asthma model. Clin Exp Allergy 2017; 47:795-804. [PMID: 28109183 DOI: 10.1111/cea.12887] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 12/09/2016] [Accepted: 12/18/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND TMEM16A, a Ca-activated Cl channel, regulates various physiological functions such as mucin secretion. However, the role of TMEM16A in hyper-secretion in asthma is not fully understood. OBJECTIVE The aim of this study is to evaluate Cl ion transport via TMEM16A and determine the localization of TMEM16A in a guinea-pig asthma model. METHODS Guinea-pigs were sensitized with ovalbumin (OVA) i.p. on Days 1 and 8. On Day 22, we assessed OVA challenge-induced Cl ion transport in the sensitized tracheas ex vivo in an Ussing chamber, compared with the non-sensitized tracheas. We then examined the effect of T16Ainh-A01, a TMEM16A inhibitor, on the increase in Cl ion transport. The tracheal epithelium was immunostained with an anti-TMEM16A antibody. Epithelial cells from guinea-pig tracheas were cultured at the air-liquid interface in the presence of IL-13 for in vitro study. We studied the effect of TMEM16A inhibitors on Ca-dependent agonist, uridine triphosphate (UTP)-induced increases in Cl ion transport in the cultured cells. The cells were immunostained with an anti-TMEM16A antibody, an anti-MUC5AC antibody and an anti-α-tubulin antibody. RESULTS OVA challenge induced an increase in short circuit current within 1 min in the OVA-sensitized tracheas but not in the non-sensitized tracheas, which was inhibited by pretreatment of T16Ainh-A01. Sensitized tracheas showed goblet cell metaplasia with more positive TMEM16A immunostaining, particularly in the apical portion compared with the non-sensitized tracheas. The in vitro UTP-induced increase in Cl ion transport was strongly inhibited by pretreatment with T16Ainh-A01, benzbromarone, and niflumic acid. TMEM16A was positively immunostained at the apical portion and in the MUC5AC-positive area in IL-13-induced goblet cell metaplasia. CONCLUSIONS Antigen challenge and Ca-dependent agonist treatment increased Cl ion transport via the overexpression of TMEM16A in goblet cell metaplasia in a guinea-pig asthma model. TMEM16A inhibitors may be useful for the treatment of hyper-secretion in asthma.
Collapse
Affiliation(s)
- M Kondo
- First Department of Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - M Tsuji
- First Department of Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - K Hara
- First Department of Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - K Arimura
- First Department of Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - O Yagi
- First Department of Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - E Tagaya
- First Department of Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - K Takeyama
- First Department of Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - J Tamaoki
- First Department of Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| |
Collapse
|