1
|
Bourgeois NM, Wei L, Kaushansky A, Aitchison JD. Exploiting Host Kinases to Combat Dengue Virus Infection and Disease. Antiviral Res 2025:106172. [PMID: 40348023 DOI: 10.1016/j.antiviral.2025.106172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/03/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025]
Abstract
The burden of dengue on human health has dramatically increased in recent years, underscoring the urgent need for effective therapeutic interventions. Despite decades of research since the discovery of the dengue virus, no specific antiviral treatments are available and strategies to reliably prevent severe disease remain limited. Direct-acting antivirals against dengue are under active investigation but have shown limited efficacy to date. An underappreciated Achille's heal of the virus is its dependence on host factors for infection and pathogenesis, each of which presents a potential avenue for therapeutic intervention. We and others have demonstrated that dengue virus relies on multiple host kinases, some of which are already targeted by clinically approved inhibitors. These offer drug repurposing opportunities for host-directed dengue treatment. Here, we summarize findings on the role of kinases in dengue infection and disease and highlight potential kinase targets for the development of innovative host-directed therapeutics.
Collapse
Affiliation(s)
- Natasha M Bourgeois
- Department of Global Health, University of Washington, Seattle WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA
| | - Ling Wei
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA
| | - Alexis Kaushansky
- Department of Global Health, University of Washington, Seattle WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA.
| | - John D Aitchison
- Department of Global Health, University of Washington, Seattle WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA.
| |
Collapse
|
2
|
Giordano L, Ware SA, Lagranha CJ, Kaufman BA. Mitochondrial DNA signals driving immune responses: Why, How, Where? Cell Commun Signal 2025; 23:192. [PMID: 40264103 PMCID: PMC12012978 DOI: 10.1186/s12964-025-02042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/14/2025] [Indexed: 04/24/2025] Open
Abstract
There has been a recent expansion in our understanding of DNA-sensing mechanisms. Mitochondrial dysfunction, oxidative and proteostatic stresses, instability and impaired disposal of nucleoids cause the release of mitochondrial DNA (mtDNA) from the mitochondria in several human diseases, as well as in cell culture and animal models. Mitochondrial DNA mislocalized to the cytosol and/or the extracellular compartments can trigger innate immune and inflammation responses by binding DNA-sensing receptors (DSRs). Here, we define the features that make mtDNA highly immunogenic and the mechanisms of its release from the mitochondria into the cytosol and the extracellular compartments. We describe the major DSRs that bind mtDNA such as cyclic guanosine-monophosphate-adenosine-monophosphate synthase (cGAS), Z-DNA-binding protein 1 (ZBP1), NOD-, LRR-, and PYD- domain-containing protein 3 receptor (NLRP3), absent in melanoma 2 (AIM2) and toll-like receptor 9 (TLR9), and their downstream signaling cascades. We summarize the key findings, novelties, and gaps of mislocalized mtDNA as a driving signal of immune responses in vascular, metabolic, kidney, lung, and neurodegenerative diseases, as well as viral and bacterial infections. Finally, we define common strategies to induce or inhibit mtDNA release and propose challenges to advance the field.
Collapse
Affiliation(s)
- Luca Giordano
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus-Liebig-University, Giessen, Germany.
| | - Sarah A Ware
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claudia J Lagranha
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brett A Kaufman
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Chen H, Charles PD, Gu Q, Liberatori S, Robertson DL, Palmarini M, Wilson SJ, Mohammed S, Castello A. Omics Analyses Uncover Host Networks Defining Virus-Permissive and -Hostile Cellular States. Mol Cell Proteomics 2025; 24:100966. [PMID: 40204275 DOI: 10.1016/j.mcpro.2025.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025] Open
Abstract
The capacity of host cells to sustain or restrict virus infection is influenced by their proteome. Understanding the compendium of proteins defining cellular permissiveness is key to many questions in fundamental virology. Here, we apply a multi-omic approach to determine the proteins that are associated with highly permissive, intermediate, and hostile cellular states. We observed two groups of differentially regulated genes: (i) with robust changes in mRNA and protein levels and (ii) with protein/RNA discordances. While many of the latter are classified as interferon-stimulated genes (ISGs), most exhibit no antiviral effects in overexpression screens. This suggests that IFN-dependent protein changes can be better indicators of antiviral function than mRNA levels. Phosphoproteomics revealed an additional regulatory layer involving non-signaling proteins with altered phosphorylation. Indeed, we confirmed that several permissiveness-associated proteins with changes in abundance or phosphorylation regulate infection fitness. Altogether, our study provides a comprehensive and systematic map of the cellular alterations driving virus susceptibility.
Collapse
Affiliation(s)
- Honglin Chen
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK; Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | | | | | - Sam J Wilson
- Cambridge Institute of Therapeutic Immunol & Infect Disease, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, Oxford, UK; The Rosalind Franklin Institute, Oxfordshire, UK; Department of Chemistry, University of Oxford, Oxford, UK.
| | - Alfredo Castello
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
| |
Collapse
|
4
|
Cenci Dietrich V, Costa JMC, Oliveira MMGL, Aguiar CEO, Silva LGDO, Luz MS, Lemos FFB, de Melo FF. Pathogenesis and clinical management of arboviral diseases. World J Virol 2025; 14:100489. [PMID: 40134841 PMCID: PMC11612872 DOI: 10.5501/wjv.v14.i1.100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Arboviral diseases are viral infections transmitted to humans through the bites of arthropods, such as mosquitoes, often causing a variety of pathologies associated with high levels of morbidity and mortality. Over the past decades, these infections have proven to be a significant challenge to health systems worldwide, particularly following the considerable geographic expansion of the dengue virus (DENV) and its most recent outbreak in Latin America as well as the difficult-to-control outbreaks of yellow fever virus (YFV), chikungunya virus (CHIKV), and Zika virus (ZIKV), leaving behind a substantial portion of the population with complications related to these infections. Currently, the world is experiencing a period of intense globalization, which, combined with global warming, directly contributes to wider dissemination of arbovirus vectors across the globe. Consequently, all continents remain on high alert for potential new outbreaks. Thus, this review aims to provide a comprehensive understanding of the pathogenesis of the four main arboviruses today (DENV, ZIKV, YFV, and CHIKV) discussing their viral characteristics, immune responses, and mechanisms of viral evasion, as well as important clinical aspects for patient management. This includes associated symptoms, laboratory tests, treatments, existing or developing vaccines and the main associated complications, thus integrating a broad historical, scientific and clinical approach.
Collapse
Affiliation(s)
- Victoria Cenci Dietrich
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Juan Marcos Caram Costa
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | | | | | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
5
|
Lai JH, Wu DW, Huang CY, Hung LF, Wu CH, Ka SM, Chen A, Huang JL, Ho LJ. Induction of LY6E regulates interleukin-1β production, potentially contributing to the immunopathogenesis of systemic lupus erythematosus. Cell Commun Signal 2025; 23:146. [PMID: 40114200 PMCID: PMC11924716 DOI: 10.1186/s12964-025-02140-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by the deposition of immune complexes (ICs) in various organs, especially the kidney, leading to lupus nephritis, one of the major and therapeutically challenging manifestations of SLE. Among the various cytokines induced in SLE, type I interferons (IFN-Is) play crucial roles in mediating immunopathogenesis, and anti-IFN-I treatment has been approved for SLE treatment. The uptake of ICs by macrophages results in macrophage activation, which initiates, triggers, and exaggerates immune responses in SLE. After observing the induction of an IFN-stimulated gene, LY6E, in monocytes from SLE patients, we demonstrated the colocalization of both LY6E and a macrophage marker in kidneys from pristane-induced lupus-prone mice and from patients with lupus nephritis. By studying mouse bone marrow-derived macrophages, we showed that LY6E regulated IFN-α- and IC-induced production and secretion of mature interleukin-1β (mIL-1β), foam cell formation and several mitochondria-associated mechanisms, such as the release of mitochondrial DNA (mtDNA) but not mitochondrial RNA (mtRNA) into the cytosol, the generation of mitochondrial reactive oxygen species (mtROS) and ROS, the activation of caspase 1, NLRP3, and the stimulator of interferon genes (STING) signaling pathway, and the activation of cytidine/uridine monophosphate kinase 2 (CMPK2), which were involved in LY6E-mediated immunomodulatory effects. In addition, synergistic effects of a combination of IL-1β and IFN-α and of IL-1β and ICs on the induction of the expression of IFN-stimulated genes were observed. In addition to revealing the proinflammatory roles and mechanisms of LY6E in macrophages, given that various subgroups of macrophages have been identified in the kidneys of patients with lupus nephritis, targeted treatment aimed at LY6E may be a potential therapeutic for lupus nephritis.
Collapse
Affiliation(s)
- Jenn-Haung Lai
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan, ROC.
| | - De-Wei Wu
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan, ROC
| | - Chuan-Yueh Huang
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, ROC
| | - Li-Feng Hung
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, ROC
| | - Chien-Hsiang Wu
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan, ROC
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Ann Chen
- Department of Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC
| | - Jing-Long Huang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan , 333, Taiwan, ROC
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei City , 236, Taiwan, ROC
| | - Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, ROC.
| |
Collapse
|
6
|
Zhou Y, Wang J, Chen Y, Lin W, Zhou R, Zhao L, Wang H. NRIR promotes immune escape in hepatocellular cancer by regulating IFNγ-induced PD-L1 expression. J Adv Res 2025:S2090-1232(25)00133-X. [PMID: 40023249 DOI: 10.1016/j.jare.2025.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 11/25/2024] [Accepted: 02/25/2025] [Indexed: 03/04/2025] Open
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, with insensitive treatment and poor prognosis; in recent years, breakthroughs in IFN signaling pathway and PDL1/PD1 signaling pathway in HCC immunotherapy research. OBJECTIVES This study aimed to investigate the molecular mechanisms controlling the immune response and immune evasion. METHODS NRIR was identified as a differential gene affecting the IFN signaling pathway and PDL1/PD1 signaling pathway in HCC by bioinformatics, and the function of NRIR was investigated in the HCC cell model and the xenograft mouse model. Quantitative Real-time PCR (qRT-PCR) was used to detect NRIR and PD-L1 mRNAs in hepatocellular carcinoma tissues, and dual luciferase reporter gene assay, fluorescence in situ hybridization, western blot and RNA immunoprecipitation (RIP) to explore the molecular mechanisms between NRIR and target genes. RESULTS In this study, we observed a significant positive correlation between NRIR and PD-L1 expression in HCC, and NRIR upregulated PD-L1 expression in HCC by modulating the IFNγ signaling pathway. We demonstrated that NRIR recruited the transcription factor ZNF384 to initiate CMPK2 transcription. Furthermore, CMPK2 regulates ATP production to modulate STAT1 activation to affect PD-L1 expression. CONCLUSION Our findings revealed the important players of NRIR in regulating PD-L1 expression in HCC and provided new insights for the clinical application of immune-targeted therapies.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Medical Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China; Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jing Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuanhang Chen
- Department of Medical Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China; Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wandie Lin
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rui Zhou
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Hui Wang
- Department of Medical Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Liu C, Shi J, Xing L, Yao B, Liu J, Wang Y, Fan J. Discovery and confirmation of crucial genes associated with radiation-induced heart disease. Int J Med Sci 2025; 22:1278-1291. [PMID: 40084244 PMCID: PMC11898860 DOI: 10.7150/ijms.107667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/25/2025] [Indexed: 03/16/2025] Open
Abstract
Objective: Radiotherapy is an essential method for treating cancerous tumors, and the resultant radiation-induced heart disease (RIHD) has emerged as the leading non-cancerous cause of mortality among cancer survivors. However, the mechanisms of RIHD are still unknown, and specific biomarkers and effective treatment methods are needing to be found. Methods: Fourteen male C57BL/6J mice, each 8 weeks old, were randomly assigned into two groups: an experimental group (n = 7) and a control group (n = 7). The test group underwent irradiation with 30 Gy of 60Co γ-rays. To assess the acute and chronic damage to the myocardium caused by radiation, heart tissues were collected at one day and six weeks after irradiation for transcriptome sequencing, and H&E staining and immunohistochemical staining were done, respectively. Results: One day after radiation, the myocardial tissue showed a significant amount of inflammatory cell infiltration. Following a period of six weeks, there was an increase in hypertrophic cardiomyocytes and myocardial fibrosis. Additionally, we identified several genes (Cmpk2, Ifit3, Dhx58, Slc2a1, and Thbs1) that were strongly associated with RIHD. The expression of these genes in heart tissue was significantly upregulated after six weeks of radiation. Findings from the GO functional and KEGG pathway enrichment analysis, along with the hub gene function analysis, indicate that the mechanism behind RIHD might be linked to systemic inflammation and mitochondrial dysfunction. Conclusion: Acute radiation myocardial injury is characterized by inflammation, while chronic radiation myocardial injury is characterized by myocardial fibrosis. RIHD is linked to Cmpk2, Ifit3, Dhx58, Slc2a1, and Thbs1 genes through a mechanism that may cause systemic inflammation and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Chuanbin Liu
- Department of Emergency, the First Medical Center of PLA General Hospital, Beijing, China
- Western Medical Branch of PLA General Hospital, Beijing, China
| | - Jingqi Shi
- Institute of Geriatrics, the Second Medical Centre & National Clinical Research Centre for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Lei Xing
- Institute of Geriatrics, the Second Medical Centre & National Clinical Research Centre for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Binwei Yao
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Jing Liu
- Institute of Geriatrics, the Second Medical Centre & National Clinical Research Centre for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Yiru Wang
- Department of Ultrasound, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jiao Fan
- Institute of Geriatrics, the Second Medical Centre & National Clinical Research Centre for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Rai P, Fessler MB. Mechanisms and effects of activation of innate immunity by mitochondrial nucleic acids. Int Immunol 2025; 37:133-142. [PMID: 39213393 DOI: 10.1093/intimm/dxae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
In recent years, a growing number of roles have been identified for mitochondria in innate immunity. One principal mechanism is that the translocation of mitochondrial nucleic acid species from the mitochondrial matrix to the cytosol and endolysosomal lumen in response to an array of microbial and non-microbial environmental stressors has been found to serve as a second messenger event in the cell signaling of the innate immune response. Thus, mitochondrial DNA and RNA have been shown to access the cytosol through several regulated mechanisms involving remodeling of the mitochondrial inner and outer membranes and to access lysosomes via vesicular transport, thereby activating cytosolic [e.g. cyclic GMP-AMP synthase (cGAS), retinoic acid-inducible gene I (RIG-I)-like receptors], and endolysosomal (Toll-like receptor 7, 9) nucleic acid receptors that induce type I interferons and pro-inflammatory cytokines. In this mini-review, we discuss these molecular mechanisms of mitochondrial nucleic acid mislocalization and their roles in host defense, autoimmunity, and auto-inflammatory disorders. The emergent paradigm is one in which host-derived DNA interestingly serves as a signal amplifier in the innate immune response and also as an alarm signal for disturbances in organellar homeostasis. The apparent vast excess of mitochondria and mitochondrial DNA nucleoids per cell may thus serve to sensitize the cell response to stressors while ensuring an underlying reserve of intact mitochondria to sustain cellular metabolism. An improved understanding of these molecular mechanisms will hopefully afford future opportunities for therapeutic intervention in human disease.
Collapse
Affiliation(s)
- Prashant Rai
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
9
|
Luo J, Zhang Q, Wang S, Zheng L, Liu J, Zhang Y, Wang Y, Wang R, Xiao Z, Li Z. Comprehensive Pan-cancer Analysis of CMPK2 as Biomarker and Prognostic Indicator for Immunotherapy. Curr Cancer Drug Targets 2025; 25:209-229. [PMID: 38486392 DOI: 10.2174/0115680096281451240306062101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/30/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2025]
Abstract
BACKGROUND UMP-CMP kinase 2 (CMPK2) is involved in mitochondrial DNA synthesis, which can be oxidized and released into the cytoplasm in innate immunity. It initiates the assembly of NLRP3 inflammasomes and mediates various pathological processes such as human immunodeficiency virus infection and systemic lupus erythematosus. However, the role of CMPK2 in tumor progression and tumor immunity remains unclear. METHODS We identified CMPK2 expression patterns in the Genotype Tissue-Expression (GTEx), The Cancer Genome Atlas (TCGA), and the Cancer Cell Line Encyclopedia (CCLE) databases. Validation was performed using immunohistochemical staining data from the Human Protein Atlas (HPA) database and qPCR experiments. Receiver operating characteristic curve analysis and Kaplan-Meier survival analysis were conducted to assess the clinical relevance of CMPK2 expression. The Estimation of Stromal and Immune Cells in Malignant Tumor Tissues Using Expression Data (ESTIMATE) algorithm and the Tumor IMmune Estimation Resource (TIMER) database were used to evaluate the correlation between CMPK2 and immune infiltration in tumors. The Tumor Immune Syngeneic Mouse (TISMO) database and other public datasets were utilized to assess the impact of CMPK2 on immune therapy response. MEXPRESS and MethSurv databases were employed to investigate the effects of methylation on CMPK2 expression. RESULTS CMPK2 expression was elevated in 23 cancers and decreased in two cancers. Furthermore, CMPK2 expression had a high diagnostic value for 16 cancers. Elevated CMPK2 expression was associated with lower overall survival (OS), disease-specific survival (DSS), and progression- free interval (PFI) in four cancers. Immune microenvironment-related analysis revealed strong associations between CMPK2 expression and immune cell infiltration, as well as immune checkpoint expression across various tumors. Notably, in four mouse immunotherapy cohorts, CMPK2 expression in treated mouse tumors was higher post-treatment. In five clinical immunotherapy cohorts, patients with high CMPK2 expression show better responses to immunotherapy. Moreover, the methylation level of CMPK2 gene was closely correlated to its expression and tumor prognosis. Among these cancers, the clinical and immunological indications of skin cutaneous melanoma (SKCM) are particularly closely related to CMPK2 expression. CONCLUSION Our analysis preliminarily describes the complex function of CMPK2 in cancer progression and immune microenvironment, highlighting its potential as a diagnostic and therapeutic target for immunotherapy.
Collapse
Affiliation(s)
- Jingyuan Luo
- NHC Key Laboratory of Carcinogenesis, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Clinical Medicine, Xiangya School of Medicine of Central South University, Changsha, China
| | - Qianyue Zhang
- Department of Clinical Medicine, Xiangya School of Medicine of Central South University, Changsha, China
| | - Shutong Wang
- NHC Key Laboratory of Carcinogenesis, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Clinical Medicine, Xiangya School of Medicine of Central South University, Changsha, China
| | - Luojie Zheng
- NHC Key Laboratory of Carcinogenesis, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jie Liu
- NHC Key Laboratory of Carcinogenesis, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Clinical Medicine, Xiangya School of Medicine of Central South University, Changsha, China
| | - Yuchen Zhang
- NHC Key Laboratory of Carcinogenesis, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Clinical Medicine, Xiangya School of Medicine of Central South University, Changsha, China
| | - Yingchen Wang
- NHC Key Laboratory of Carcinogenesis, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Clinical Medicine, Xiangya School of Medicine of Central South University, Changsha, China
| | - Ranran Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhigang Xiao
- Department of General Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Zheng Li
- NHC Key Laboratory of Carcinogenesis, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Tesfay MZ, Zhang Y, Ferdous KU, Taylor MA, Cios A, Shelton RS, Simoes CC, Watters CR, Barro O, Elliott NM, Mustafa B, Chamcheu JC, Graham AL, Washam CL, Alkam D, Gies A, Byrum SD, Giorgakis E, Post SR, Kelly T, Ying J, Moaven O, Chabu CY, Fernandez-Zapico ME, Duda DG, Roberts LR, Govindarajan R, Borad MJ, Cannon MJ, Basnakian AG, Nagalo BM. Enhancing immune response and survival in hepatocellular carcinoma with novel oncolytic Jurona virus and immune checkpoint blockade. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200913. [PMID: 39758249 PMCID: PMC11697550 DOI: 10.1016/j.omton.2024.200913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/19/2024] [Accepted: 11/22/2024] [Indexed: 01/07/2025]
Abstract
Members of the Vesiculovirus genus including Jurona virus (JURV) have emerged as promising immunotherapeutic agents, characterized by their tumor selectivity, fast kinetics, low seroprevalence, and minimal toxicity in humans. Here, we demonstrate that the administration of JURV leads to tumor regression in both hepatocellular carcinoma (HCC) xenograft and syngeneic models. Furthermore, our findings indicate that combining JURV and anti-PD-1 therapy reduced tumor burden and improved survival rates over JURV or anti-PD-1 alone in an orthotopic HCC model. Proteogenomic analysis of JURV-treated, murine HCC tumors demonstrates that the therapeutic effects of the combination of JURV and anti-PD-1 are predominantly driven by coordinated activation of immune effectors, which modulate the tumor microenvironment into a state conducive to anti-tumor activity. Our results establish JURV as a potent candidate for immunovirotherapy in HCC, capable of modulating immune response and synergizing with standard of care for HCC to prolong survival in preclinical models. Further, this research deepens our understanding of JURV's anti-tumoral mechanisms and highlights its potential as a novel approach to HCC treatment strategies.
Collapse
Affiliation(s)
- Mulu Z. Tesfay
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| | - Yuguo Zhang
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Khandoker U. Ferdous
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Mika A. Taylor
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Aleksandra Cios
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | | | - Camila C. Simoes
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| | | | - Oumar Barro
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Bahaa Mustafa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Alicia L. Graham
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Charity L. Washam
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| | - Duah Alkam
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| | - Allen Gies
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| | - Stephanie D. Byrum
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| | - Emmanouil Giorgakis
- College of Medicine, Surgery Transplant University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Steven R. Post
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| | - Thomas Kelly
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| | - Jun Ying
- Department of Biostatistics, UAMS College of Public Health, Little Rock, AR, USA
| | - Omeed Moaven
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, LA, USA
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University (LSU) Health, New Orleans, LA, USA
- LSU-LCMC Cancer Center, New Orleans, LA, USA
| | - Chiswili Y. Chabu
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, USA
- Siteman Cancer Center, Washington University, St. Louis, MO, USA
| | | | - Dan G. Duda
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Lewis R. Roberts
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, USA
| | - Rang Govindarajan
- Medical Oncology Division, Internal Medicine Department, The University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mitesh J. Borad
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Martin J. Cannon
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
- Department of Microbiology and Immunology, UAMS, Little Rock, AR, USA
| | - Alexei G. Basnakian
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
- Department of Pharmacology, UAMS, Little Rock, AR, USA
| | - Bolni M. Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| |
Collapse
|
11
|
Li N, Wang X, Lin R, Yang F, Chang HC, Gu X, Shu J, Liu G, Yu Y, Wei W, Bao Z. ANGPTL4-mediated microglial lipid droplet accumulation: Bridging Alzheimer's disease and obesity. Neurobiol Dis 2024; 203:106741. [PMID: 39577812 DOI: 10.1016/j.nbd.2024.106741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/08/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024] Open
Abstract
Increasing evidence suggests that metabolic disorders such as obesity are implicated in the development of Alzheimer's disease (AD). The pathological buildup of lipids in microglia is regarded as a key indicator in brain aging and the progression of AD, yet the mechanisms behind this process remain uncertain. The adipokine ANGPTL4 is strongly associated with obesity and is thought to play a role in the advancement of neurodegenerative diseases. This study utilized RNA sequencing to identify differential expression in lipid-accumulating BV2 microglia and investigated the potential mechanism through ANGPTL4 overexpression in BV2. Subsequently, animal models and clinical data were employed to further explore alterations in circulating ANGPTL4 levels in AD. RNA sequencing results indicated a correlation between ANGPTL4 and microglial lipid accumulation. The overexpression of ANGPTL4 in microglia resulted in increased secretion of inflammatory factors, elevated oxidative stress levels, and diminished antiviral capacity. Furthermore, when simulating the coexistence of AD and obesity through combined treatment with Amyloid-Beta 1-42 peptide (Aβ) and Free Fatty Acids (FFA) in vitro, we observed a notable upregulation of ANGPTL4 expression, highlighting its potential role in the interplay between AD and obesity. In vivo experiments, we also observed a significant increase in ANGPTL4 expression in the hippocampus and plasma of APP/PS1 mice compared to wild-type controls. This was accompanied by heightened microglial activation and reduced expression of longevity-related genes in the hippocampus. Clinical data from the UK Biobank indicated that plasma ANGPTL4 levels are elevated in patients with AD when compared to healthy controls. Moreover, significantly higher ANGPTL4 levels were observed in obese AD patients relative to their non-obese counterparts. Our findings suggest that ANGPTL4-mediated microglial aging may serve as a crucial link between AD and obesity, proposing ANGPTL4 as a potential biomarker for AD.
Collapse
Affiliation(s)
- Nan Li
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Neurology, Huashan Hospital Affiliated to Fudan University, Shanghai 200032, China
| | - Xiaojun Wang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Shanghai institute of geriatric medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Ruilang Lin
- Department of Biostatistics, Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory for Health Technology Assessment, National Commission of Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Fuxia Yang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Hung-Chen Chang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Shanghai institute of geriatric medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Xuchao Gu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Jun Shu
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Guidong Liu
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China.
| | - Yongfu Yu
- Department of Biostatistics, Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory for Health Technology Assessment, National Commission of Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Wenshi Wei
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China.
| | - Zhijun Bao
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Shanghai institute of geriatric medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China.
| |
Collapse
|
12
|
Tan YN, Jiang GG, Meng XW, Lu ZY, Yan-Ma, Li J, Nan-Xiang, Sun XG, Wang Q, Wang X, Jia XY, Zhang M. CMPK2 Promotes CD4 + T Cell Activation and Apoptosis through Modulation of Mitochondrial Dysfunction in Systemic Lupus Erythematosus. Cell Biochem Biophys 2024; 82:3547-3557. [PMID: 39078538 DOI: 10.1007/s12013-024-01443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
Systemic lupus erythematosus (SLE) is a classic autoimmune disease characterized by abnormal autoantibodies, immune complex deposition, and tissue inflammation. Despite extensive research, the exact etiology and progression of SLE remain elusive. Cytidine/uridine monophosphate kinase 2 (CMPK2), a mitochondrial nucleoside monophosphate kinase, has garnered attention for its potential involvement in the development of various diseases, including SLE, where it has been observed to be dysregulated in affected individuals. However, the specific involvement of CMPK2 in the pathogenesis of SLE remains unclear. This study aims to clarify the expression level of CMPK2 in SLE CD4+ T cells and explore its impact on CD4+ T cells. The expression levels of the CMPK2 gene and the corresponding CMPK2 protein in CD4+ T cells of SLE patients were quantified using RT-qPCR and Western blot, respectively. Immunofluorescence and RT-qPCR were used to assess the mitochondrial function of SLE CD4+ T cells. Flow cytometry was used to assess CD4+ T cell activation and apoptosis levels. The impact of CMPK2 on CD4+ T cells was investigated by gene transfection experiment. We found that CMPK2 was significantly upregulated in SLE CD4+ T cells at both gene and protein levels. These cells demonstrated aberrant mitochondrial function, as evidenced by elevated mitochondrial reactive oxygen species (mtROS) levels, mitochondrial membrane potential, and mitochondrial DNA (mtDNA) copy number. Flow cytometry revealed a notable increase in both apoptosis and activation levels of CD4+ T cells in SLE patients. Gene transfection experiments showed that suppressing CMPK2 led to a significant improvement in these conditions. These findings suggest that CMPK2 may be involved in the pathogenesis of SLE by regulating mitochondrial dysfunction in CD4+ T cells and thus affecting CD4+ T cell activation and apoptosis. Our study may provide a new target for the treatment of SLE.
Collapse
Affiliation(s)
- Ya-Nan Tan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, PR China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, PR China
| | - Ge-Ge Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, PR China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, PR China
| | - Xiang-Wen Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, PR China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, PR China
| | - Zhi-Yuan Lu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, PR China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, PR China
| | - Yan-Ma
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
| | - Jin Li
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
| | - Nan-Xiang
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
| | - Xiao-Ge Sun
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
| | - Qian Wang
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
| | - Xue Wang
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
| | - Xiao-Yi Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, PR China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, PR China
| | - Min Zhang
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China.
| |
Collapse
|
13
|
Kumaresan V, Hung CY, Hermann BP, Seshu J. Role of Dual Specificity Phosphatase 1 (DUSP1) in influencing inflammatory pathways in macrophages modulated by Borrelia burgdorferi lipoproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624562. [PMID: 39605372 PMCID: PMC11601599 DOI: 10.1101/2024.11.20.624562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Borrelia burgdorferi (Bb), the spirochetal agent of Lyme disease, has a large array of lipoproteins that play a significant role in mediating host-pathogen interactions within ticks and vertebrates. Although there is substantial information on the effects of B. burgdorferi lipoproteins (BbLP) on immune modulatory pathways, the application of multi-omics methodologies to decode the transcriptional and proteomic patterns associated with host cell responses induced by lipoproteins in murine bone marrow-derived macrophages (BMDMs) has identified additional effectors and pathways. Single-cell RNA-Seq (scRNA-Seq) performed on BMDMs treated with various concentrations of borrelial lipoproteins revealed macrophage subsets within the BMDMs. Differential expression analysis showed that genes encoding various receptors, type I IFN-stimulated genes, signaling chemokines, and mitochondrial genes are altered in BMDMs in response to lipoproteins. Unbiased proteomics analysis of lysates of BMDMs treated with lipoproteins corroborated several of these findings. Notably, dual specificity phosphatase 1 (Dusp1) gene was upregulated during the early stages of BMDM exposure to BbLP. Pre-treatment with benzylidene-3-cyclohexylamino-1-indanone hydrochloride (BCI), an inhibitor of both DUSP1 and 6 prior to exposure to BbLP, demonstrated that DUSP1 negatively regulates NLRP3-mediated pro-inflammatory signaling and positively regulates the expression of interferon-stimulated genes and those encoding Ccl5, Il1b, and Cd274. Moreover, DUSP1, IkB kinase complex and MyD88 also modulate mitochondrial changes in BMDMs treated with borrelial lipoproteins. These findings advance the potential for exploiting DUSP1 as a therapeutic target to regulate host responses in reservoir hosts to limit survival of B. burgdorferi during its infectious cycle between ticks and mammalian hosts.
Collapse
Affiliation(s)
- Venkatesh Kumaresan
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX-78249
| | - Chiung-Yu Hung
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX-78249
| | - Brian P. Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX-78249
| | - J. Seshu
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX-78249
| |
Collapse
|
14
|
Swaraj S, Tripathi S. Interference without interferon: interferon-independent induction of interferon-stimulated genes and its role in cellular innate immunity. mBio 2024; 15:e0258224. [PMID: 39302126 PMCID: PMC11481898 DOI: 10.1128/mbio.02582-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Interferons (IFNs) are multifaceted proteins that play pivotal roles in orchestrating robust antiviral immune responses and modulating the intricate landscape of host immunity. The major signaling pathway activated by IFNs is the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway, which leads to the transcription of a battery of genes, collectively known as IFN-stimulated genes (ISGs). While the well-established role of IFNs in coordinating the innate immune response against viral infections is widely acknowledged, recent years have provided a more distinct comprehension of the functional significance attributed to non-canonical, IFN-independent induction of ISGs. In this review, we summarize the non-conventional signaling pathways of ISG induction. These alternative pathways offer new avenues for developing antiviral strategies or immunomodulation in various diseases.
Collapse
Affiliation(s)
- Shachee Swaraj
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
15
|
Boytz R, Keita K, Pawlak JB, Laurent-Rolle M. Flaviviruses manipulate mitochondrial processes to evade the innate immune response. NPJ VIRUSES 2024; 2:47. [PMID: 39371935 PMCID: PMC11452341 DOI: 10.1038/s44298-024-00057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024]
Abstract
Mitochondria are essential eukaryotic organelles that regulate a range of cellular processes, from metabolism to calcium homeostasis and programmed cell death. They serve as essential platforms for antiviral signaling proteins during the innate immune response to viral infections. Mitochondria are dynamic structures, undergoing frequent fusion and fission processes that regulate various aspects of mitochondrial biology, including innate immunity. Pathogens have evolved sophisticated mechanisms to manipulate mitochondrial morphology and function to facilitate their replication. In this review, we examine the emerging literature on how flaviviruses modulate mitochondrial processes.
Collapse
Affiliation(s)
- RuthMabel Boytz
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT USA
| | - Kadiatou Keita
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT USA
| | - Joanna B. Pawlak
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT USA
| | - Maudry Laurent-Rolle
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT USA
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
16
|
Akinsola OM, Musa AA, Muansangi L, Singh SP, Mukherjee S, Mukherjee A. Genomic insights into adaptation and inbreeding among Sub-Saharan African cattle from pastoral and agropastoral systems. Front Genet 2024; 15:1430291. [PMID: 39119582 PMCID: PMC11306176 DOI: 10.3389/fgene.2024.1430291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Background In Sub-Saharan Africa (SSA), cattle are crucial for socioeconomic stability yet face numerous environmental stressors such as diseases, parasites, and extreme heat within pastoral and agropastoral systems. Despite their significance, gaps remain in understanding how genetic diversity and inbreeding influence traits essential for disease resistance and environmental adaptability. This study examines the genomic adaptations that enable SSA cattle to thrive under these conditions and assesses the impact of inbreeding on such adaptive traits. Methods We analyzed genomic data from 113 cattle across four breeds-Kuri, N'dama, Zebu-Fulani, and Zebu-Bororo-employing Runs of Homozygosity (ROH) and Integrated Haplotype Score (iHS) analyses to identify historical and recent genetic selections. Strict quality controls using PLINK software ensured accurate genomic pattern identification related to adaptation and inbreeding. Results ROH analysis revealed islands with genes such as RSAD2, CMPK2, and NOTCH1, which are involved in immune response and cellular stress management, highlighting regions of historical selection that have likely provided adaptive advantages in overcoming environmental and pathogenic stresses. In contrast, iHS analysis identified genes under recent selection like HIPK1, involved in stress response regulation, and EPHA5, which plays a crucial role in neural development and synaptic functions, potentially equipping these breeds with novel adaptations to ongoing and emergent environmental challenges. Conclusion This research confirms that selective pressures inherent in pastoral and agropastoral systems profoundly influence the genetic structure of SSA cattle. By delineating the genetic bases of key adaptive traits, our study offers crucial insights for targeted breeding programs to enhance cattle resilience and productivity. These findings provide a valuable framework for future genetic improvements and conservation strategies, crucial for sustainable livestock management and economic stability in SSA.
Collapse
Affiliation(s)
- Oludayo M. Akinsola
- Department of Theriogenology and Production, Faculty of Veterinary Medicine, University of Jos, Jos, Nigeria
| | | | - Lal Muansangi
- Animal Genetics and Breeding Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute (NDRI), Karnal, Haryana, India
| | - Sanchit P. Singh
- Animal Genetics and Breeding Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute (NDRI), Karnal, Haryana, India
| | - Sabyasachi Mukherjee
- Animal Genetics and Breeding Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute (NDRI), Karnal, Haryana, India
| | - Anupama Mukherjee
- Animal Genetics and Breeding Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute (NDRI), Karnal, Haryana, India
| |
Collapse
|
17
|
Felipe Fumero E, Walter C, Frenz JM, Seifert F, Alla V, Hennig T, Angenendt L, Hartmann W, Wolf S, Serve H, Oellerich T, Lenz G, Müller-Tidow C, Schliemann C, Huber O, Dugas M, Mann M, Jayavelu AK, Mikesch JH, Arteaga MF. Epigenetic control over the cell-intrinsic immune response antagonizes self-renewal in acute myeloid leukemia. Blood 2024; 143:2284-2299. [PMID: 38457355 PMCID: PMC11181352 DOI: 10.1182/blood.2023021640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/10/2024] Open
Abstract
ABSTRACT Epigenetic modulation of the cell-intrinsic immune response holds promise as a therapeutic approach for leukemia. However, current strategies designed for transcriptional activation of endogenous transposons and subsequent interferon type-I (IFN-I) response, show limited clinical efficacy. Histone lysine methylation is an epigenetic signature in IFN-I response associated with suppression of IFN-I and IFN-stimulated genes, suggesting histone demethylation as key mechanism of reactivation. In this study, we unveil the histone demethylase PHF8 as a direct initiator and regulator of cell-intrinsic immune response in acute myeloid leukemia (AML). Site-specific phosphorylation of PHF8 orchestrates epigenetic changes that upregulate cytosolic RNA sensors, particularly the TRIM25-RIG-I-IFIT5 axis, thereby triggering the cellular IFN-I response-differentiation-apoptosis network. This signaling cascade largely counteracts differentiation block and growth of human AML cells across various disease subtypes in vitro and in vivo. Through proteome analysis of over 200 primary AML bone marrow samples, we identify a distinct PHF8/IFN-I signature in half of the patient population, without significant associations with known clinically or genetically defined AML subgroups. This profile was absent in healthy CD34+ hematopoietic progenitor cells, suggesting therapeutic applicability in a large fraction of patients with AML. Pharmacological support of PHF8 phosphorylation significantly impairs the growth in samples from patients with primary AML. These findings provide novel opportunities for harnessing the cell-intrinsic immune response in the development of immunotherapeutic strategies against AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Epigenesis, Genetic
- Animals
- Histone Demethylases/genetics
- Histone Demethylases/metabolism
- Mice
- Interferon Type I/metabolism
- Cell Self Renewal
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
| | - Carolin Walter
- Institute of Medical Informatics, Gerhard-Domagk-Institute for Pathology, University Hospital Muenster, Muenster, Germany
| | - Joris Maximillian Frenz
- Proteomics and Cancer Cell Signaling Group, German Cancer Research Center, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children’s Cancer Center, University of Heidelberg, Heidelberg, Germany
| | - Franca Seifert
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
| | - Vijay Alla
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
| | - Thorben Hennig
- Proteomics and Cancer Cell Signaling Group, German Cancer Research Center, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children’s Cancer Center, University of Heidelberg, Heidelberg, Germany
| | - Linus Angenendt
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institute for Pathology, University Hospital Muenster, Muenster, Germany
| | - Sebastian Wolf
- Department of Hematology/Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Hubert Serve
- Department of Hematology/Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Thomas Oellerich
- Department of Hematology/Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Georg Lenz
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
| | | | | | - Otmar Huber
- Department of Biochemistry II, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ashok Kumar Jayavelu
- Proteomics and Cancer Cell Signaling Group, German Cancer Research Center, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children’s Cancer Center, University of Heidelberg, Heidelberg, Germany
| | - Jan-Henrik Mikesch
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
| | | |
Collapse
|
18
|
Tang Z, Mao Y, Ruan P, Li J, Qiu X, Meng Y, Wang M, Wu G, Wang L, Tan Y. Drugs targeting CMPK2 inhibit pyroptosis to alleviate severe pneumonia caused by multiple respiratory viruses. J Med Virol 2024; 96:e29643. [PMID: 38695269 DOI: 10.1002/jmv.29643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/05/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
Severe pneumonia caused by respiratory viruses has become a major threat to humans, especially with the SARS-CoV-2 outbreak and epidemic. The aim of this study was to investigate the universal molecular mechanism of severe pneumonia induced by multiple respiratory viruses and to search for therapeutic strategies targeting this universal molecular mechanism. The common differential genes of four respiratory viruses, including respiratory syncytial virus (RSV), rhinovirus, influenza, and SARS-CoV-2, were screened by GEO database, and the hub gene was obtained by Sytohubba in Cytoscape. Then, the effect of hub genes on inflammasome and pyrodeath was investigated in the model of RSV infection in vitro and in vivo. Finally, through virtual screening, drugs targeting the hub gene were obtained, which could alleviate severe viral pneumonia in vitro and in vivo. The results showed that CMPK2 is one of the hub genes after infection by four respiratory viruses. CMPK2 activates the inflammasome by activating NLRP3, and promotes the releases of inflammatory factors interleukin (IL)-1β and IL-18 to induce severe viral pneumonia. Z25 and Z08 can reduce the expression level of CMPK2 mRNA and protein, thereby inhibiting NLRP3 and alleviating the development of severe viral pneumonia. In conclusion, the inflammatory response mediated by CMPK2 is the common molecular mechanism of severe pneumonia induced by viral infection, and Z25 and Z08 can effectively alleviate viral infection and severe pneumonia through this mechanism.
Collapse
Affiliation(s)
- Zhongxiang Tang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yu Mao
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Pinglang Ruan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiani Li
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiangjie Qiu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuting Meng
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Mengyu Wang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Guojun Wu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Lili Wang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
19
|
Koch B, Filzmayer M, Patyna S, Wetzstein N, Lampe S, Schmid T, Geiger H, Baer PC, Dolnik O. Transcriptomics of Marburg virus-infected primary proximal tubular cells reveals negative correlation of immune response and energy metabolism. Virus Res 2024; 342:199337. [PMID: 38346476 PMCID: PMC10875301 DOI: 10.1016/j.virusres.2024.199337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Marburg virus, a member of the Filoviridae, is the causative agent of Marburg virus disease (MVD), a hemorrhagic fever with a case fatality rate of up to 90 %. Acute kidney injury is common in MVD and is associated with increased mortality, but its pathogenesis in MVD remains poorly understood. Interestingly, autopsies show the presence of viral proteins in different parts of the nephron, particularly in proximal tubular cells (PTC). These findings suggest a potential role for the virus in the development of MVD-related kidney injury. To shed light on this effect, we infected primary human PTC with Lake Victoria Marburg virus and conducted transcriptomic analysis at multiple time points. Unexpectedly, infection did not induce marked cytopathic effects in primary tubular cells at 20 and 40 h post infection. However, gene expression analysis revealed robust renal viral replication and dysregulation of genes essential for different cellular functions. The gene sets mainly downregulated in PTC were associated with the targets of the transcription factors MYC and E2F, DNA repair, the G2M checkpoint, as well as oxidative phosphorylation. Importantly, the downregulated factors comprise PGC-1α, a well-known factor in acute and chronic kidney injury. By contrast, the most highly upregulated gene sets were those related to the inflammatory response and cholesterol homeostasis. In conclusion, Marburg virus infects and replicates in human primary PTC and induces downregulation of processes known to be relevant for acute kidney injury as well as a strong inflammatory response.
Collapse
Affiliation(s)
- Benjamin Koch
- Goethe University Frankfurt, University Hospital, Department of Internal Medicine 4, Nephrology, Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany.
| | - Maximilian Filzmayer
- Goethe University Frankfurt, University Hospital, Department of Urology, Frankfurt am Main 60596, Germany
| | - Sammy Patyna
- Goethe University Frankfurt, University Hospital, Department of Internal Medicine 4, Nephrology, Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany
| | - Nils Wetzstein
- Goethe University Frankfurt, University Hospital, Department of Internal Medicine, Infectious Diseases, Frankfurt am Main 60596, Germany
| | - Sebastian Lampe
- Goethe University Frankfurt, University Hospital, Faculty of Medicine, Institute for Biochemistry I, Frankfurt am Main 60596, Germany
| | - Tobias Schmid
- Goethe University Frankfurt, University Hospital, Faculty of Medicine, Institute for Biochemistry I, Frankfurt am Main 60596, Germany
| | - Helmut Geiger
- Goethe University Frankfurt, University Hospital, Department of Internal Medicine 4, Nephrology, Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany
| | - Patrick C Baer
- Goethe University Frankfurt, University Hospital, Department of Internal Medicine 4, Nephrology, Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany
| | - Olga Dolnik
- Philipps University Marburg, Institute of Virology, Hans-Meerwein-Str. 2, Marburg 35043, Germany.
| |
Collapse
|
20
|
Bu F, Qin X, Wang T, Li N, Zheng M, Wu Z, Ma K. Unlocking potential biomarkers bridging coronary atherosclerosis and pyrimidine metabolism-associated genes through an integrated bioinformatics and machine learning approach. BMC Cardiovasc Disord 2024; 24:148. [PMID: 38454353 PMCID: PMC10921789 DOI: 10.1186/s12872-024-03819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND This study delves into the intricate landscape of atherosclerosis (AS), a chronic inflammatory disorder with significant implications for cardiovascular health. AS poses a considerable burden on global healthcare systems, elevating both mortality and morbidity rates. The pathological underpinnings of AS involve a marked metabolic disequilibrium, particularly within pyrimidine metabolism (PyM), a crucial enzymatic network central to nucleotide synthesis and degradation. While the therapeutic relevance of pyrimidine metabolism in diverse diseases is acknowledged, the explicit role of pyrimidine metabolism genes (PyMGs) in the context of AS remains elusive. Utilizing bioinformatics methodologies, this investigation aims to reveal and substantiate PyMGs intricately linked with AS. METHODS A set of 41 candidate PyMGs was scrutinized through differential expression analysis. GSEA and GSVA were employed to illuminate potential biological pathways and functions associated with the identified PyMGs. Simultaneously, Lasso regression and SVM-RFE were utilized to distill core genes and assess the diagnostic potential of four quintessential PyMGs (CMPK1, CMPK2, NT5C2, RRM1) in discriminating AS. The relationship between key PyMGs and clinical presentations was also explored. Validation of the expression levels of the four PyMGs was performed using the GSE43292 and GSE9820 datasets. RESULTS This investigation identified four PyMGs, with NT5C2 and RRM1 emerging as key players, intricately linked to AS pathogenesis. Functional analysis underscored their critical involvement in metabolic processes, including pyrimidine-containing compound metabolism and nucleotide biosynthesis. Diagnostic evaluation of these PyMGs in distinguishing AS showcased promising results. CONCLUSION In conclusion, this exploration has illuminated a constellation of four PyMGs with a potential nexus to AS pathogenesis. These findings unveil emerging biomarkers, paving the way for novel approaches to disease monitoring and progression, and providing new avenues for therapeutic intervention in the realm of atherosclerosis.
Collapse
Affiliation(s)
- Fanli Bu
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, 257091, People's Republic of China
| | - Xiao Qin
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, 257091, People's Republic of China
| | - Tiantian Wang
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, 257091, People's Republic of China
| | - Na Li
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, 257091, People's Republic of China
| | - Man Zheng
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, 257091, People's Republic of China
| | - Zixuan Wu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai Ma
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, 257091, People's Republic of China.
| |
Collapse
|
21
|
Yang Q, Gong H, Liu S, Huang S, Yan W, Wang K, Li H, Lei CW, Wang HN, Yang X. Differential analysis of IBV-infected primary chicken embryonic fibroblasts and immortalized DF-1. Microbiol Spectr 2024; 12:e0240223. [PMID: 38299864 PMCID: PMC10913733 DOI: 10.1128/spectrum.02402-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/30/2023] [Indexed: 02/02/2024] Open
Abstract
Infectious bronchitis virus (IBV), the causative agent of infectious bronchitis, is responsible for major economic losses in the poultry industry worldwide. While IBVs can usually be passaged in primary chicken embryonic fibroblasts (CEFs), most of the wild ones cannot adapt to passaged cell lines. In this study, the wild strain CK/CH/MY/2020 was used to infect primary CEF and immortalize DF-1 CEF cells. Results indicated that IBV was able to cause lesions and pass onto CEF, but not DF-1. Indeed, the virus could enter DF-1 cells and synthesize the associated structural gene but could not assemble into complete viral particles for release. Furthermore, transcriptome sequencing analysis showed significant differences in gene expression between CEF and DF-1 cells after viral infection, although the corresponding antiviral responses could be activated in both cell types. The biggest difference was in terms of the amino acid biosynthesis pathway and the cytokine receptor interaction pathway, which were significantly and specifically activated in CEF. This could actually explain why intact viruses can be assembled but not in DF-1. In addition, SLBP and P2RX7 affect the replication of IBV's structural genes to some extent. Overall, IBV can enter CEF and DF-1 cells, but the complex intracellular cytokine interactions affect the assembly and release of viral particles. The insight will be useful for the study of IBV through in vitro transmission and pathogenesis. IMPORTANCE Infectious bronchitis virus (IBV) is responsible for high morbidity and mortality as well as substantial economic losses worldwide. Transcriptome sequencing of IBV-infected chicken embryonic fibroblast and DF-1 cells revealed that the virus elicits antiviral immunity in cells after viral infection, but IBV cannot activate DF-1 cells to produce sufficient amounts of viral structures to assemble into complete virions, which may be caused by the interactions between cytokines. The study of IBV cellular adaptations is important for vaccine development and investigation of the pathogenesis of IBV.
Collapse
Affiliation(s)
- Qingcheng Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Huiling Gong
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Song Liu
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Siyu Huang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Wenjun Yan
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Kailu Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Hao Li
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Chang-Wei Lei
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Hong-Ning Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Xin Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Prakash P, Erdjument-Bromage H, O'Dea MR, Munson CN, Labib D, Fossati V, Neubert TA, Liddelow SA. Proteomic profiling of interferon-responsive reactive astrocytes in rodent and human. Glia 2024; 72:625-642. [PMID: 38031883 PMCID: PMC10843807 DOI: 10.1002/glia.24494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
Astrocytes are a heterogeneous population of central nervous system glial cells that respond to pathological insults and injury by undergoing a transformation called "reactivity." Reactive astrocytes exhibit distinct and context-dependent cellular, molecular, and functional state changes that can either support or disturb tissue homeostasis. We recently identified a reactive astrocyte sub-state defined by interferon-responsive genes like Igtp, Ifit3, Mx1, and others, called interferon-responsive reactive astrocytes (IRRAs). To further this transcriptomic definition of IRRAs, we wanted to define the proteomic changes that occur in this reactive sub-state. We induced IRRAs in immunopanned rodent astrocytes and human iPSC-differentiated astrocytes using TNF, IL1α, C1Q, and IFNβ and characterized their proteomic profile (both cellular and secreted) using unbiased quantitative proteomics. We identified 2335 unique cellular proteins, including IFIT2/3, IFITM3, OASL1/2, MX1/2/3, and STAT1. We also report that rodent and human IRRAs secrete PAI1, a serine protease inhibitor which may influence reactive states and functions of nearby cells. Finally, we evaluated how IRRAs are distinct from neurotoxic reactive astrocytes (NRAs). While NRAs are described by expression of the complement protein C3, it was not upregulated in IRRAs. Instead, we found ~90 proteins unique to IRRAs not identified in NRAs, including OAS1A, IFIT3, and MX1. Interferon signaling in astrocytes is critical for the antiviral immune response and for regulating synaptic plasticity and glutamate transport mechanisms. How IRRAs contribute to these functions is unknown. This study provides the basis for future experiments to define the functional roles of IRRAs in the context of neurodegenerative disorders.
Collapse
Affiliation(s)
- Priya Prakash
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York, USA
| | - Hediye Erdjument-Bromage
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Michael R O'Dea
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York, USA
| | - Christy N Munson
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York, USA
| | - David Labib
- The New York Stem Cell Foundation Research Institute, New York, New York, USA
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, New York, USA
| | - Thomas A Neubert
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, New York, USA
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
23
|
Olszewska AM, Nowak JI, Król O, Flis D, Żmijewski MA. Different impact of vitamin D on mitochondrial activity and morphology in normal and malignant keratinocytes, the role of genomic pathway. Free Radic Biol Med 2024; 210:286-303. [PMID: 38040270 DOI: 10.1016/j.freeradbiomed.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Deregulation of mitochondria activity is one of the hallmarks of cancerogenesis and an important target for cancer therapy. Therefore, we compared the impact of an active form of vitamin D3 (1,25(OH)2D3) on mitochondrial morphology and bioenergetics in human squamous cell carcinoma (A431) and immortalized HaCaT keratinocytes. It was shown that mitochondria of cancerous A431 cells differ from that observed in HaCaT keratinocytes in terms of network, morphology, bioenergetics, glycolysis, and mitochondrial DNA copy number, while treatment of A431 with 1,25(OH)2D3 partially eliminates these differences. Furthermore, mitochondrial membrane potential, basal respiration, and mitochondrial reactive oxygen species production were decreased in A431 cells treated with 1,25(OH)2D3. Additionally, the expression and protein level of mitophagy marker PINK1 was significantly increased in A431 1,25(OH)2D3 treated cells, but not observed in treated HaCaT cells. Knockout of VDR (vitamin D receptor) or RXRA (binding partner retinoid X receptor) partially altered mitochondrial morphology and function as well as mitochondrial response to 1,25(OH)2D3. Transcriptomic analysis on A431 cells treated with 1,25(OH)2D3 revealed modulation of expression of several mitochondrial-related genes involved in mitochondrial depolarization, mitochondrial protein translation (i.e. LYRM9, MARS2), and fusion-fission (OPA1, FIS1, MFN1 and 2), however, none of the genes coded by mitochondrial DNA was affected. Interestingly, in silico analyses of nuclear-encoded mitochondrial genes revealed that they are rather activated by the secondary genomic response to 1,25(OH)2D3. Taken together, 1,25(OH)2D3 remodels mitochondrial architecture and bioenergetics through VDR-dependent and only partially RXRA-dependent activation of the genomic pathway, thus outlining a new perspective for anticancer properties of vitamin D3 in relation to mitochondria in squamous cell carcinoma.
Collapse
Affiliation(s)
- Anna M Olszewska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211, Gdansk, Poland
| | - Joanna I Nowak
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211, Gdansk, Poland
| | - Oliwia Król
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Damian Flis
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Michał A Żmijewski
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211, Gdansk, Poland.
| |
Collapse
|
24
|
Lai JH, Wu DW, Wu CH, Hung LF, Huang CY, Ka SM, Chen A, Ho LJ. USP18 enhances dengue virus replication by regulating mitochondrial DNA release. Sci Rep 2023; 13:20126. [PMID: 37978268 PMCID: PMC10656416 DOI: 10.1038/s41598-023-47584-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Dengue virus (DENV) infection remains a challenging health threat worldwide. Ubiquitin-specific protease 18 (USP18), which preserves the anti-interferon (IFN) effect, is an ideal target through which DENV mediates its own immune evasion. However, much of the function and mechanism of USP18 in regulating DENV replication remains incompletely understood. In addition, whether USP18 regulates DENV replication merely by causing IFN hyporesponsiveness is not clear. In the present study, by using several different approaches to block IFN signaling, including IFN neutralizing antibodies (Abs), anti-IFN receptor Abs, Janus kinase inhibitors and IFN alpha and beta receptor subunit 1 (IFNAR1)knockout cells, we showed that USP18 may regulate DENV replication in IFN-associated and IFN-unassociated manners. Localized in mitochondria, USP18 regulated the release of mitochondrial DNA (mtDNA) to the cytosol to affect viral replication, and mechanisms such as mitochondrial reactive oxygen species (mtROS) production, changes in mitochondrial membrane potential, mobilization of calcium into mitochondria, 8-oxoguanine DNA glycosylase 1 (OGG1) expression, oxidation and fragmentation of mtDNA, and opening of the mitochondrial permeability transition pore (mPTP) were involved in USP18-regulated mtDNA release to the cytosol. We therefore identify mitochondrial machineries that are regulated by USP18 to affect DENV replication and its association with IFN effects.
Collapse
Affiliation(s)
- Jenn-Haung Lai
- Department of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, ROC.
| | - De-Wei Wu
- Department of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, ROC
| | - Chien-Hsiang Wu
- Department of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, ROC
| | - Li-Feng Hung
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, ROC
| | - Chuan-Yueh Huang
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, ROC
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Ann Chen
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, ROC.
| |
Collapse
|
25
|
Talukder AK, Rabaglino MB, Browne JA, Charpigny G, Lonergan P. Dose- and time-dependent effects of interferon tau on bovine endometrial gene expression. Theriogenology 2023; 211:1-10. [PMID: 37549523 DOI: 10.1016/j.theriogenology.2023.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023]
Abstract
Failure by the developing conceptus to secrete sufficient interferon tau (IFNT), required for maternal recognition of pregnancy (MRP), at the appropriate time is related to early pregnancy loss in cattle. We aimed to test the hypothesis that there is a dose- and time-dependent relationship between IFNT and the endometrial expression of key interferon-stimulated genes (ISGs) involved in the signalling cascade leading to MRP in cattle. Candidate genes were identified first through a bioinformatic approach, where integrated transcriptomic data from two previous studies were analyzed to identify endometrial genes induced by IFNT. Next, expression of selected candidate genes was investigated in vitro in endometrial explants. Endometrial explants collected from cows (n = 8) in the late luteal phase of the estrous cycle were cultured in medium without (control) or with recombinant ovine IFNT (1, 10, 100 ng/mL) for 6 h. Simultaneously, endometrial explants were cultured in medium containing 100 ng/mL IFNT for different time periods (15 min, 30 min, 1 h, 3 h, 6 h). Gene expression was analyzed by RT-qPCR. We identified 54 endometrial genes responding to IFNT and to some degree to the conceptus, from which five ISGs (CMPK2, BPNT1, IFI35, TNFSF10 and TRIM38) were further selected for the dose- and time-dependent experiments. Classical ISGs (ISG15, OAS1, MX1 and MX2) were up-regulated (P < 0.05) in endometrium by 1 ng/mL IFNT. However, other selected ISGs (CMPK2, BPNT1, IFI35, TNFSF10 and TRIM38) were induced only by higher concentrations (10 and 100 ng/mL) of IFNT (P < 0.05). In terms of duration of exposure, IFNT at 100 ng/mL induced a significant (P < 0.05) increase in ISG15 and CMPK2 expression after 1 h incubation, while all other studied ISGs in the endometrium were upregulated when cultured for 3 or 6 h, but did not affect expression when the duration of culture was for 1 h or less. These results suggest that IFNT acts on the uterus in both a dose- and time-dependent manner in cattle and that timely exposure of the endometrium to sufficient IFNT is essential for appropriate signalling to ensure successful pregnancy establishment.
Collapse
Affiliation(s)
- A K Talukder
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; Department of Gynecology, Obstetrics & Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - M B Rabaglino
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - J A Browne
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - G Charpigny
- INRAE, Biologie du Développement et Reproduction, Jouy en Josas, France
| | - P Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
26
|
Ikezaki H, Nomura H, Shimono N. Impact of peripheral mitochondrial DNA level on immune response after COVID-19 vaccination. iScience 2023; 26:107094. [PMID: 37351502 PMCID: PMC10256584 DOI: 10.1016/j.isci.2023.107094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/30/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
The efficacy of vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the elderly is partially hindered by immunosenescence, resulting from decreased mtDNA levels. This study evaluated the correlation between mtDNA levels in peripheral leukocytes and immune response to the SARS-CoV-2 vaccine. Two hundred ten participants (median age 79.5 years), including 83 frail residents/inpatients and 70 robust outpatients, were analyzed. Anti-spike IgG antibody (IgG(S)) titers were serially measured from before the first vaccination to after the third vaccination. The mtDNA levels and cell-mediated immunity were measured in 45 elderly and 22 elderly individuals two months after the third vaccination. The robust group had consistently higher IgG(S) titers than the frail group. The mtDNA levels positively correlated with IgG(S) titers, as well as with cell-mediated immunity. These findings suggest that mtDNA levels positively impact vaccine-induced immunity. Further studies into maintaining mtDNA levels may provide insights into immunosenescence in the elderly.
Collapse
Affiliation(s)
- Hiroaki Ikezaki
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka 8128582, Japan
- Department of Comprehensive General Internal Medicine, Kyushu University Faculty of Medical Sciences, Fukuoka 8128582, Japan
- Department of Internal Medicine, Haradoi Hospital, Fukuoka 8138588, Japan
| | - Hideyuki Nomura
- Department of Internal Medicine, Haradoi Hospital, Fukuoka 8138588, Japan
| | - Nobuyuki Shimono
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka 8128582, Japan
| |
Collapse
|
27
|
Sentis G, Loukogiannaki C, Malissovas N, Nikolopoulos D, Manolakou T, Flouda S, Grigoriou M, Banos A, Boumpas DT, Filia A. A network-based approach reveals long non-coding RNAs associated with disease activity in lupus nephritis: key pathways for flare and potential biomarkers to be used as liquid biopsies. Front Immunol 2023; 14:1203848. [PMID: 37475860 PMCID: PMC10355154 DOI: 10.3389/fimmu.2023.1203848] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Objective A blood-based biomarker is needed to assess lupus nephritis (LN) disease activity, minimizing the need for invasive kidney biopsies. Long non-coding RNAs (lncRNAs) are known to regulate gene expression, appear to be stable in human plasma, and can serve as non-invasive biomarkers. Methods Transcriptomic data of whole blood samples from 74 LN patients and 20 healthy subjects (HC) were analyzed to identify differentially expressed (DE) lncRNAs associated with quiescent disease and flares. Weighted gene co-expression network analysis (WGCNA) was performed to uncover lncRNAs with a central role (hub lncRNAs) in regulating key biological processes that drive LN disease activity. The association of hub lncRNAs with disease activity was validated using RT-qPCR on an independent cohort of 15 LN patients and 9 HC. cis- and trans-targets of validated lncRNAs were explored in silico to examine potential mechanisms of their action. Results There were 444 DE lncRNAs associated with quiescent disease and 6 DE lncRNAs associated with flares (FDR <0.05). WGCNA highlighted IFN signaling and B-cell activity/adaptive immunity as the most significant processes contributing to nephritis activity. Four disease-activity-associated lncRNAs, namely, NRIR, KLHDC7B-DT, MIR600HG, and FAM30A, were detected as hub genes and validated in an independent cohort. NRIR and KLHDC7B-DT emerged as potential key regulators of IFN-mediated processes. Network analysis suggests that FAM30A and MIR600HG are likely to play a central role in the regulation of B-cells in LN through cis-regulation effects and a competing endogenous RNA mechanism affecting immunoglobulin gene expression and the IFN-λ pathway. Conclusions The expression of lncRNAs NRIR, KLHDC7B-DT, FAM30A, and MIR600HG were associated with disease activity and could be further explored as blood-based biomarkers and potential liquid biopsy on LN.
Collapse
Affiliation(s)
- George Sentis
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Catherine Loukogiannaki
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Nikos Malissovas
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Dionysis Nikolopoulos
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Theodora Manolakou
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Sofia Flouda
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Maria Grigoriou
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- 1st Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Aggelos Banos
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Dimitrios T. Boumpas
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Anastasia Filia
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- 1st Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
28
|
Sun ZL, You T, Zhang BH, Liu Y, Liu J. Bone marrow mesenchymal stem cell-derived exosomes miR-202-5p inhibited pyroptosis to alleviate lung ischemic-reperfusion injury by targeting CMPK2. Kaohsiung J Med Sci 2023; 39:688-698. [PMID: 37092308 DOI: 10.1002/kjm2.12688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/03/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Bone mesenchymal stem cell-derived exosome (BMSC-exosome) is a potential candidate for lung ischemia-reperfusion injury (LIRI) treatment. This study aims to investigate the anti-pyroptosis effect of BMSC-exosomes in LIRI. The LIRI cell model was established by hypoxia/reoxygenation (H/R) treatment. Interleukin (IL)-1β and IL-18 levels were examined by enzyme-linked immunosorbent assay. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. Lactate dehydrogenase (LDH) release was examined using a LDH assay kit. The interaction between microRNA (miR)-202-5p and cytidine monophosphate kinase 2 (CMPK2) was analyzed using dual-luciferase reporter assay and RNA immunoprecipitation. BMSC-exosomes promoted cell viability and suppressed pyroptosis in H/R-treated mouse lung epithelial. miR-202-5p was enriched in BMSC-exosomes, and exosomal miR-202-5p inhibition upregulated pyroptosis-associated proteins, including cleaved N-terminal Gasdermin D, nucleotide-binding domain-like receptor family member pyrin domain-containing protein 3, and Caspase1. Meanwhile, miR-202-5p suppressed CMPK2 expression by directly targeting CMPK2. Expectedly, CMPK2 knockdown reversed the promoting effect of exosomal miR-202-5p inhibition on pyroptosis in LIRI. Therefore, BMSC-derived exosome miR-202-5p repressed pyroptosis to inhibit LIRI progression by targeting CMPK2.
Collapse
Affiliation(s)
- Zhi-Lu Sun
- The First Affiliated Hospital, Emergency Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan Province, People's Republic of China
| | - Ting You
- The First Affiliated Hospital, Emergency Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan Province, People's Republic of China
| | - Bi-Hong Zhang
- The First Affiliated Hospital, Emergency Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan Province, People's Republic of China
| | - Yu Liu
- The First Affiliated Hospital, Emergency Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan Province, People's Republic of China
| | - Jing Liu
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, Hunan Province, People's Republic of China
| |
Collapse
|
29
|
Wang H, Peng W, Wang J, Zhang C, Zhao W, Ran Y, Yang X, Chen J, Li H. Human Cytomegalovirus UL23 Antagonizes the Antiviral Effect of Interferon-γ by Restraining the Expression of Specific IFN-Stimulated Genes. Viruses 2023; 15:v15041014. [PMID: 37112994 PMCID: PMC10145438 DOI: 10.3390/v15041014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Interferon-γ (IFN-γ) is a critical component of innate immune responses in humans to combat infection by many viruses, including human cytomegalovirus (HCMV). IFN-γ exerts its biological effects by inducing hundreds of IFN-stimulated genes (ISGs). In this study, RNA-seq analyses revealed that HCMV tegument protein UL23 could regulate the expression of many ISGs under IFN-γ treatment or HCMV infection. We further confirmed that among these IFN-γ stimulated genes, individual APOL1 (Apolipoprotein-L1), CMPK2 (Cytidine/uridine monophosphate kinase 2), and LGALS9 (Galectin-9) could inhibit HCMV replication. Moreover, these three proteins exhibited a synergistic effect on HCMV replication. UL23-deficient HCMV mutants induced higher expression of APOL1, CMPK2, and LGALS9, and exhibited lower viral titers in IFN-γ treated cells compared with parental viruses expressing full functional UL23. Thus, UL23 appears to resist the antiviral effect of IFN-γ by downregulating the expression of APOL1, CMPK2, and LGALS9. This study highlights the roles of HCMV UL23 in facilitating viral immune escape from IFN-γ responses by specifically downregulating these ISGs.
Collapse
Affiliation(s)
- Hankun Wang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Weijian Peng
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jialin Wang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Chunling Zhang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wangchun Zhao
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yanhong Ran
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiaoping Yang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jun Chen
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Guangzhou 510632, China
| | - Hongjian Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Guangzhou 510632, China
| |
Collapse
|
30
|
Pawlak JB, Hsu JCC, Xia H, Han P, Suh HW, Grove TL, Morrison J, Shi PY, Cresswell P, Laurent-Rolle M. CMPK2 restricts Zika virus replication by inhibiting viral translation. PLoS Pathog 2023; 19:e1011286. [PMID: 37075076 PMCID: PMC10150978 DOI: 10.1371/journal.ppat.1011286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 05/01/2023] [Accepted: 03/09/2023] [Indexed: 04/20/2023] Open
Abstract
Flaviviruses continue to emerge as global health threats. There are currently no Food and Drug Administration (FDA) approved antiviral treatments for flaviviral infections. Therefore, there is a pressing need to identify host and viral factors that can be targeted for effective therapeutic intervention. Type I interferon (IFN-I) production in response to microbial products is one of the host's first line of defense against invading pathogens. Cytidine/uridine monophosphate kinase 2 (CMPK2) is a type I interferon-stimulated gene (ISG) that exerts antiviral effects. However, the molecular mechanism by which CMPK2 inhibits viral replication is unclear. Here, we report that CMPK2 expression restricts Zika virus (ZIKV) replication by specifically inhibiting viral translation and that IFN-I- induced CMPK2 contributes significantly to the overall antiviral response against ZIKV. We demonstrate that expression of CMPK2 results in a significant decrease in the replication of other pathogenic flaviviruses including dengue virus (DENV-2), Kunjin virus (KUNV) and yellow fever virus (YFV). Importantly, we determine that the N-terminal domain (NTD) of CMPK2, which lacks kinase activity, is sufficient to restrict viral translation. Thus, its kinase function is not required for CMPK2's antiviral activity. Furthermore, we identify seven conserved cysteine residues within the NTD as critical for CMPK2 antiviral activity. Thus, these residues may form an unknown functional site in the NTD of CMPK2 contributing to its antiviral function. Finally, we show that mitochondrial localization of CMPK2 is required for its antiviral effects. Given its broad antiviral activity against flaviviruses, CMPK2 is a promising potential pan-flavivirus inhibitor.
Collapse
Affiliation(s)
- Joanna B. Pawlak
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jack Chun-Chieh Hsu
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Patrick Han
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Hee-Won Suh
- Department of Biomedical Engineering, Yale University School of Engineering and Applied Science, New Haven, Connecticut, United States of America
| | - Tyler L. Grove
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Juliet Morrison
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Maudry Laurent-Rolle
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
31
|
Sheu KM, Guru AA, Hoffmann A. Quantifying stimulus-response specificity to probe the functional state of macrophages. Cell Syst 2023; 14:180-195.e5. [PMID: 36657439 PMCID: PMC10023480 DOI: 10.1016/j.cels.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/05/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023]
Abstract
Immune sentinel macrophages initiate responses to pathogens via hundreds of immune response genes. Each immune threat demands a tailored response, suggesting that the capacity for stimulus-specific gene expression is a key functional hallmark of healthy macrophages. To quantify this property, termed "stimulus-response specificity" (SRS), we developed a single-cell experimental workflow and analytical approaches based on information theory and machine learning. We found that the response specificity of macrophages is driven by combinations of specific immune genes that show low cell-to-cell heterogeneity and are targets of separate signaling pathways. The "response specificity profile," a systematic comparison of multiple stimulus-response distributions, was distinctly altered by polarizing cytokines, and it enabled an assessment of the functional state of macrophages. Indeed, the response specificity profile of peritoneal macrophages from old and obese mice showed characteristic differences, suggesting that SRS may be a basis for measuring the functional state of innate immune cells. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Katherine M Sheu
- Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr S, Los Angeles, CA 90093, USA
| | - Aditya A Guru
- Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr S, Los Angeles, CA 90093, USA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr S, Los Angeles, CA 90093, USA.
| |
Collapse
|
32
|
Zhu M, Lv J, Wang W, Guo R, Zhong C, Antia A, Zeng Q, Li J, Liu Q, Zhou J, Zhu X, Fan B, Ding S, Li B. CMPK2 is a host restriction factor that inhibits infection of multiple coronaviruses in a cell-intrinsic manner. PLoS Biol 2023; 21:e3002039. [PMID: 36930652 PMCID: PMC10058120 DOI: 10.1371/journal.pbio.3002039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 03/29/2023] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
Coronaviruses (CoVs) comprise a group of important human and animal pathogens. Despite extensive research in the past 3 years, the host innate immune defense mechanisms against CoVs remain incompletely understood, limiting the development of effective antivirals and non-antibody-based therapeutics. Here, we performed an integrated transcriptomic analysis of porcine jejunal epithelial cells infected with porcine epidemic diarrhea virus (PEDV) and identified cytidine/uridine monophosphate kinase 2 (CMPK2) as a potential host restriction factor. CMPK2 exhibited modest antiviral activity against PEDV infection in multiple cell types. CMPK2 transcription was regulated by interferon-dependent and interferon regulatory factor 1 (IRF1)-dependent pathways post-PEDV infection. We demonstrated that 3'-deoxy-3',4'-didehydro-cytidine triphosphate (ddhCTP) catalysis by Viperin, another interferon-stimulated protein, was essential for CMPK2's antiviral activity. Both the classical catalytic domain and the newly identified antiviral key domain of CMPK2 played crucial roles in this process. Together, CMPK2, viperin, and ddhCTP suppressed the replication of several other CoVs of different genera through inhibition of the RNA-dependent RNA polymerase activities. Our results revealed a previously unknown function of CMPK2 as a restriction factor for CoVs, implying that CMPK2 might be an alternative target of interfering with the viral polymerase activity.
Collapse
Affiliation(s)
- Mingjun Zhu
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Nanjing, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiahuang Lv
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Nanjing, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- College of Animal Science, Tibet Agricultural and Animal Husbandry University College of Veterinary Medicine, Nyingchi, Tibet, China
| | - Wei Wang
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Nanjing, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rongli Guo
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Nanjing, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chunyan Zhong
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Nanjing, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Biological Engineering Department, Southwest Guizhou Vocational and Technical College for Nationalities, Xingyi, China
| | - Avan Antia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Qiru Zeng
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jizong Li
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Nanjing, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qingtao Liu
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Nanjing, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jinzhu Zhou
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Nanjing, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xuejiao Zhu
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Nanjing, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Baochao Fan
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Nanjing, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bin Li
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Nanjing, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
33
|
Oxidative Stress Response Biomarkers of Ovarian Cancer Based on Single-Cell and Bulk RNA Sequencing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1261039. [PMID: 36743693 PMCID: PMC9897923 DOI: 10.1155/2023/1261039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 01/28/2023]
Abstract
Background The occurrence and development of ovarian cancer (OV) are significantly influenced by increased levels of oxidative stress (OS) byproducts and the lack of an antioxidant stress repair system. Hence, it is necessary to explore the markers related to OS in OV, which can aid in predicting the prognosis and immunotherapeutic response in patients with OV. Methods The single-cell RNA-sequencing (scRNA-seq) dataset GSE146026 was retrieved from the Gene Expression Omnibus (GEO) database, and Bulk RNA-seq data were obtained from TCGA and GTEx databases. The Seurat R package and SingleR package were used to analyze scRNA-seq and to identify OS response-related clusters based on ROS markers. The "limma" R package was used to identify the differentially expressed genes (DEGs) between normal and ovarian samples. The risk model was constructed using the least absolute shrinkage and selection operator (LASSO) regression analysis. The immune cell infiltration, genomic mutation, and drug sensitivity of the model were analyzed using the CIBERSORT algorithm, the "maftools," and the "pRRophetic" R packages, respectively. Results Based on scRNA-seq data, we identified 12 clusters; OS response-related genes had the strongest specificity for cluster 12. A total of 151 genes were identified from 2928 DEGs to be significantly correlated with OS response. Finally, nine prognostic genes were used to construct the risk score (RS) model. The risk score model was an independent prognostic factor for OV. The gene mutation frequency and tumor immune microenvironment in the high- and low-risk score groups were significantly different. The value of the risk score model in predicting immunotherapeutic outcomes was confirmed. Conclusions OS response-related RS model could predict the prognosis and immune responses in patients with OV and provide new strategies for cancer treatment.
Collapse
|
34
|
Madhry D, Malvankar S, Phadnis S, Srivastava RK, Bhattacharyya S, Verma B. Synergistic correlation between host angiogenin and dengue virus replication. RNA Biol 2023; 20:805-816. [PMID: 37796112 PMCID: PMC10557563 DOI: 10.1080/15476286.2023.2264003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/06/2023] Open
Abstract
DENV infection poses a major health concern globally and the pathophysiology relies heavily on host-cellular machinery. Although virus replication relies heavily on the host, the mechanistic details of DENV-host interaction is not fully characterized yet. Here, we are focusing on characterizing the mechanistic basis of virus-induced stress on the host cell. Specifically, we aim to characterize the role of the stress modulator ribonuclease Angiogenin during DENV infection. Our results suggested that the levels of Angiogenin are up-regulated in DENV-infected cells and the levels increase proportionately with DENV replication. Our efforts to knockdown Angiogenin using siRNA were unsuccessful in DENV-infected cells but not in mock-infected control. To further investigate the modulation between DENV replication and Angiogenin, we treated Huh7 cells with Ivermectin prior to DENV infection. Our results suggest a significant reduction in DENV replication specifically at the later stages as a consequence of Ivermectin treatment. Interestingly, Angiogenin levels were also found to be decreased proportionately. Our results suggest that Angiogenin modulation during DENV infection is important for DENV replication and pathogenesis.
Collapse
Affiliation(s)
- Deeksha Madhry
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, India
| | - Shivani Malvankar
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, India
| | - Sushant Phadnis
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, India
| | - Sankar Bhattacharyya
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, India
| |
Collapse
|
35
|
Pinto SM, Subbannayya Y, Kim H, Hagen L, Górna MW, Nieminen AI, Bjørås M, Espevik T, Kainov D, Kandasamy RK. Multi-OMICs landscape of SARS-CoV-2-induced host responses in human lung epithelial cells. iScience 2022; 26:105895. [PMID: 36590899 PMCID: PMC9794516 DOI: 10.1016/j.isci.2022.105895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/03/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
COVID-19 pandemic continues to remain a global health concern owing to the emergence of newer variants. Several multi-Omics studies have produced extensive evidence on host-pathogen interactions and potential therapeutic targets. Nonetheless, an increased understanding of host signaling networks regulated by post-translational modifications and their ensuing effect on the cellular dynamics is critical to expanding the current knowledge on SARS-CoV-2 infections. Through an unbiased transcriptomics, proteomics, acetylomics, phosphoproteomics, and exometabolome analysis of a lung-derived human cell line, we show that SARS-CoV-2 Norway/Trondheim-S15 strain induces time-dependent alterations in the induction of type I IFN response, activation of DNA damage response, dysregulated Hippo signaling, among others. We identified interplay of phosphorylation and acetylation dynamics on host proteins and its effect on the altered release of metabolites, especially organic acids and ketone bodies. Together, our findings serve as a resource of potential targets that can aid in designing novel host-directed therapeutic strategies.
Collapse
Affiliation(s)
- Sneha M. Pinto
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway,Corresponding author
| | - Yashwanth Subbannayya
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Hera Kim
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway,Proteomics and Modomics Experimental Core, PROMEC, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Maria W. Górna
- Structural Biology Group, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Anni I. Nieminen
- Institute for Molecular Medicine Finland, University of Helsinki, 00014Helsinki, Finland
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway,Department of Laboratory Medicine and Pathology, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA,Corresponding author
| |
Collapse
|
36
|
Systematic Analysis of Molecular Subtypes Based on the Expression Profile of Immune-Related Genes in Pancreatic Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3124122. [PMID: 36567857 PMCID: PMC9780013 DOI: 10.1155/2022/3124122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 12/23/2022]
Abstract
Immunotherapy has a good therapeutic effect and provides a new approach for cancer treatment. However, only limited studies have focused on the use of molecular typing to construct an immune characteristic index for gene expression in pancreatic adenocarcinoma (PAAD) and to assess the effectiveness of immunotherapy in patients with PAAD. Clinical follow-up data and gene expression profile of PAAD patients were retrieved from The Cancer Genome Atlas (TCGA) database. Based on 184 immune features, molecular subtypes of pancreatic cancer were found by the "ConsensusClusterPlus" package, and the association between clinical features and immune cell subtype distribution was analysed. In addition, the relationship between the proportion of immune subtypes and the expression of immune checkpoints was analysed. The CIBERSORT algorithm was introduced to evaluate the immune scores of different molecular subtypes. We used the tumor immune dysfunction and exclusion (TIDE) algorithm to assess the potential clinical effect of immunotherapy interventions on single-molecule subtypes. In addition, the oxidative stress index was constructed by linear discriminant analysis DNA (LDA), and weighted correlation network analysis was performed to identify the core module of the index and its characteristic genes. Expression of hub genes was verified by immunohistochemical analysis in an independent PAAD cohort. Pancreatic cancer is divided into three molecular subtypes (IS1, IS2, and IS3), with significant differences in prognosis between multiple cohorts. Expression of immune checkpoint-associated genes was significantly reduced in IS3 and higher in IS1 and IS2, suggesting that the three subgroups have different responsiveness to immunotherapy interventions. The results of the CIBERSORT analysis showed that IS1 exhibited the highest levels of immune infiltration, whereas the results of the TIDE analysis showed that the T-cell dysfunction score of IS1 was higher than that of IS2 and IS3. Furthermore, IS3 was found to be more sensitive to 5-FU and to have a higher immune signature index than IS1 and IS2. Based on WGCNA analysis, 10 potential gene markers were identified, and their expression at the protein level was verified by immunohistochemical analysis. Specific molecular expression patterns in pancreatic cancer can predict the efficacy of immunotherapy and influence the prognosis of patients.
Collapse
|
37
|
Arumugam P, Chauhan M, Rajeev T, Chakraborty R, Bisht K, Madan M, Shankaran D, Ramalingam S, Gandotra S, Rao V. The mitochondrial gene-CMPK2 functions as a rheostat for macrophage homeostasis. Front Immunol 2022; 13:935710. [PMID: 36451821 PMCID: PMC9702992 DOI: 10.3389/fimmu.2022.935710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/21/2022] [Indexed: 09/04/2024] Open
Abstract
In addition to their role in cellular energy production, mitochondria are increasingly recognized as regulators of the innate immune response of phagocytes. Here, we demonstrate that altering expression levels of the mitochondria-associated enzyme, cytidine monophosphate kinase 2 (CMPK2), disrupts mitochondrial physiology and significantly deregulates the resting immune homeostasis of macrophages. Both CMPK2 silenced and constitutively overexpressing macrophage lines portray mitochondrial stress with marked depolarization of their membrane potential, enhanced reactive oxygen species (ROS), and disturbed architecture culminating in the enhanced expression of the pro-inflammatory genes IL1β, TNFα, and IL8. Interestingly, the long-term modulation of CMPK2 expression resulted in an increased glycolytic flux of macrophages akin to the altered physiological state of activated M1 macrophages. While infection-induced inflammation for restricting pathogens is regulated, our observation of a total dysregulation of basal inflammation by bidirectional alteration of CMPK2 expression only highlights the critical role of this gene in mitochondria-mediated control of inflammation.
Collapse
Affiliation(s)
- Prabhakar Arumugam
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)- Human Resource Development Centre, Ghaziabad, India
| | - Meghna Chauhan
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)- Human Resource Development Centre, Ghaziabad, India
| | - Thejaswitha Rajeev
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
| | - Rahul Chakraborty
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)- Human Resource Development Centre, Ghaziabad, India
| | - Kanika Bisht
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)- Human Resource Development Centre, Ghaziabad, India
| | - Mahima Madan
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)- Human Resource Development Centre, Ghaziabad, India
| | - Deepthi Shankaran
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)- Human Resource Development Centre, Ghaziabad, India
| | - Sivaprakash Ramalingam
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
- Genomics and Molecular Medicine, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sheetal Gandotra
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)- Human Resource Development Centre, Ghaziabad, India
| | - Vivek Rao
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)- Human Resource Development Centre, Ghaziabad, India
| |
Collapse
|
38
|
Nishimoto S, Sata M, Fukuda D. Expanding role of deoxyribonucleic acid-sensing mechanism in the development of lifestyle-related diseases. Front Cardiovasc Med 2022; 9:881181. [PMID: 36176986 PMCID: PMC9513035 DOI: 10.3389/fcvm.2022.881181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/15/2022] [Indexed: 11/14/2022] Open
Abstract
In lifestyle-related diseases, such as cardiovascular, metabolic, respiratory, and kidney diseases, chronic inflammation plays a causal role in their pathogenesis; however, underlying mechanisms of sterile chronic inflammation are not well-understood. Previous studies have confirmed the damage of cells in these organs in the presence of various risk factors such as diabetes, dyslipidemia, and cigarette smoking, releasing various endogenous ligands for pattern recognition receptors. These studies suggested that nucleic acids released from damaged tissues accumulate in these tissues, acting as an endogenous ligand. Undamaged DNA is an integral factor for the sustenance of life, whereas, DNA fragments, especially those from pathogens, are potent activators of the inflammatory response. Recent studies have indicated that inflammatory responses such as the production of type I interferon (IFN) induced by DNA-sensing mechanisms which contributes to self-defense system in innate immunity participates in the progression of inflammatory diseases by the recognition of nucleic acids derived from the host, including mitochondrial DNA (mtDNA). The body possesses several types of DNA sensors. Toll-like receptor 9 (TLR9) recognizes DNA fragments in the endosomes. In addition, the binding of DNA fragments in the cytosol activates cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS), resulting in the synthesis of the second messenger cyclic GMP-AMP (cGAMP). The binding of cGAMP to stimulator of interferon genes (STING) activates NF-κB and TBK-1 signaling and consequently the production of many inflammatory cytokines including IFNs. Numerous previous studies have demonstrated the role of DNA sensors in self-defense through the recognition of DNA fragments derived from pathogens. Beyond the canonical role of TLR9 and cGAS-STING, this review describes the role of these DNA-sensing mechanism in the inflammatory responses caused by endogenous DNA fragments, and in the pathogenesis of lifestyle-related diseases.
Collapse
Affiliation(s)
- Sachiko Nishimoto
- Faculty of Clinical Nutrition and Dietetics, Konan Women’s University, Kobe, Japan
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Cardiovascular Medicine, Osaka Metropolitan University, Osaka, Japan
- *Correspondence: Daiju Fukuda, ,
| |
Collapse
|
39
|
Dong Z, Yan Q, Cao W, Liu Z, Wang X. Identification of key molecules in COVID-19 patients significantly correlated with clinical outcomes by analyzing transcriptomic data. Front Immunol 2022; 13:930866. [PMID: 36072597 PMCID: PMC9441550 DOI: 10.3389/fimmu.2022.930866] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/03/2022] [Indexed: 12/15/2022] Open
Abstract
Background Although several key molecules have been identified to modulate SARS-CoV-2 invasion of human host cells, the molecules correlated with outcomes in COVID-19 caused by SARS-CoV-2 infection remain insufficiently explored. Methods This study analyzed three RNA-Seq gene expression profiling datasets for COVID-19 and identified differentially expressed genes (DEGs) between COVID-19 patients and normal people, commonly in the three datasets. Furthermore, this study explored the correlation between the expression of these genes and clinical features in COVID-19 patients. Results This analysis identified 13 genes significantly upregulated in COVID-19 patients’ leukocyte and SARS-CoV-2-infected nasopharyngeal tissue compared to normal tissue. These genes included OAS1, OAS2, OAS3, OASL, HERC6, SERPING1, IFI6, IFI44, IFI44L, CMPK2, RSAD2, EPSTI1, and CXCL10, all of which are involved in antiviral immune regulation. We found that these genes’ downregulation was associated with worse clinical outcomes in COVID-19 patients, such as intensive care unit (ICU) admission, mechanical ventilatory support (MVS) requirement, elevated D-dimer levels, and increased viral loads. Furthermore, this analysis identified two COVID-19 clusters based on the expression profiles of the 13 genes, termed COV-C1 and COV-C2. Compared with COV-C1, COV-C2 more highly expressed the 13 genes, had stronger antiviral immune responses, were younger, and displayed more favorable clinical outcomes. Conclusions A strong antiviral immune response is essential in reducing severity of COVID-19.
Collapse
Affiliation(s)
- Zehua Dong
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Qiyu Yan
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Wenxiu Cao
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Zhixian Liu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Zhixian Liu, ; Xiaosheng Wang,
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
- *Correspondence: Zhixian Liu, ; Xiaosheng Wang,
| |
Collapse
|
40
|
Li X, Abdel-Moneim AME, Mesalam NM, Yang B. Effects of Lysophosphatidylcholine on Jejuna Morphology and Its Potential Mechanism. Front Vet Sci 2022; 9:911496. [PMID: 35795789 PMCID: PMC9252431 DOI: 10.3389/fvets.2022.911496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/10/2022] [Indexed: 01/13/2023] Open
Abstract
Lysophosphatidylcholine (LPC) plays a vital role in promoting jejuna morphology in broilers. However, the potential mechanism behind LPC improving the chicken jejuna morphology is unclear. Therefore, the present study was designed to reveal the important genes associated with LPC regulation in birds' jejuna. Thus, GSE94622, the gene expression microarray, was obtained from Gene Expression Omnibus (GEO). GSE94622 consists of 15 broiler jejuna samples from two LPC-treated (LPC500 and LPC1000) and the control groups. Totally 98 to 217 DEGs were identified by comparing LPC500 vs. control, LPC1000 vs. control, and LPC1000 vs. LPC500. Gene ontology (GO) analysis suggested that those DEGs were mainly involved in the one-carbon metabolic process, carbon dioxide transport, endodermal cell differentiation, the positive regulation of dipeptide transmembrane transport, cellular pH reduction, and synaptic transmission. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated the DEGs were enriched in NOD-like receptor (NLR), RIG-I-like receptor (RILR), Toll-like receptor (TLR), and necroptosis signaling pathway. Moreover, many genes, such as RSAD2, OASL, EPSTI1, CMPK2, IFIH1, IFIT5, USP18, MX1, and STAT1 might be involved in promoting the jejuna morphology of broilers. In conclusion, this study enhances our understanding of LPC regulation in jejuna morphology.
Collapse
Affiliation(s)
- Xiaofeng Li
- College of Animal Science, Anhui Science and Technology University, Huainan, China
| | | | - Noura M. Mesalam
- Department of Biological Applications, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal, Egypt
| | - Bing Yang
- College of Animal Science, Anhui Science and Technology University, Huainan, China
- *Correspondence: Bing Yang
| |
Collapse
|
41
|
Li X, Feng Y, Liu W, Tan L, Sun Y, Song C, Liao Y, Xu C, Ren T, Ding C, Qiu X. A Role for the Chicken Interferon-Stimulated Gene CMPK2 in the Host Response Against Virus Infection. Front Microbiol 2022; 13:874331. [PMID: 35633731 PMCID: PMC9132166 DOI: 10.3389/fmicb.2022.874331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022] Open
Abstract
Virus infection can lead to the production of interferon, which activates the JAK/STAT pathway and induces the expression of multiple downstream interferon-stimulated genes (ISGs) to achieve their antiviral function. Cytidine/uridine monophosphate kinase 2 (CMPK2) gene has been identified as an ISG in human and fish, and is also known as a rate-limiting enzyme in mitochondria to maintain intracellular UTP/CTP levels, which is necessary for de novo mitochondrial DNA synthesis. By mining previous microarray data, it was found that both Avian Influenza Virus (AIV) and Newcastle Disease Virus (NDV) infection can lead to the significant upregulation of chicken CMPK2 gene. However, little is known about the function of CMPK2 gene in chickens. In the present study, the open reading frame (ORF) of chicken CMPK2 (chCMPK2) was cloned from DF-1, a chicken embryo fibroblasts cell line, and subjected to further analysis. Sequence analysis showed that chCMPK2 shared high similarity in amino acid with CMPK2 sequences from all the other species, especially reptiles. A thymidylate kinase (TMK) domain was identified in the C-terminus of chCMPK2, which is highly conserved among all species. In vitro, AIV infection induced significant increases in chCMPK2 expression in DF-1, HD11, and the chicken embryonic fibroblasts (CEF), while obvious increase only detected in DF-1 cells and CEF cells after NDV infection. In vivo, the expression levels of chCMPK2 were up-regulated in several tissues from AIV infected chickens, especially the brain, spleen, bursa, kidney, intestine, heart and thymus, and notable increase of chCMPK2 was detected in the bursa, kidney, duodenum, lung, heart, and thymus during NDV infection. Here, using MDA5 and IFN-β knockdown cells, we demonstrated that as a novel ISG, chCMPK2 could be regulated by the MDA5/IFN-β pathway. The high expression level of exogenous chCMPK2 displayed inhibitory effects on AIV and NDV as well as reduced viral RNA in infected cells. We further demonstrated that Asp135, a key site on the TMK catalytic domain, was identified as critical for the antiviral activities of chCMPK2. Taken together, these data demonstrated that chCMPK2 is involved in the chicken immune system and may play important roles in host anti-viral responses.
Collapse
Affiliation(s)
- Xin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yiyi Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Infectious Diseases, Yangzhou University, Yangzhou, China
| | - Weiwei Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chenggang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| |
Collapse
|
42
|
Sagulkoo P, Suratanee A, Plaimas K. Immune-Related Protein Interaction Network in Severe COVID-19 Patients toward the Identification of Key Proteins and Drug Repurposing. Biomolecules 2022; 12:biom12050690. [PMID: 35625619 PMCID: PMC9138873 DOI: 10.3390/biom12050690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is still an active global public health issue. Although vaccines and therapeutic options are available, some patients experience severe conditions and need critical care support. Hence, identifying key genes or proteins involved in immune-related severe COVID-19 is necessary to find or develop the targeted therapies. This study proposed a novel construction of an immune-related protein interaction network (IPIN) in severe cases with the use of a network diffusion technique on a human interactome network and transcriptomic data. Enrichment analysis revealed that the IPIN was mainly associated with antiviral, innate immune, apoptosis, cell division, and cell cycle regulation signaling pathways. Twenty-three proteins were identified as key proteins to find associated drugs. Finally, poly (I:C), mitomycin C, decitabine, gemcitabine, hydroxyurea, tamoxifen, and curcumin were the potential drugs interacting with the key proteins to heal severe COVID-19. In conclusion, IPIN can be a good representative network for the immune system that integrates the protein interaction network and transcriptomic data. Thus, the key proteins and target drugs in IPIN help to find a new treatment with the use of existing drugs to treat the disease apart from vaccination and conventional antiviral therapy.
Collapse
Affiliation(s)
- Pakorn Sagulkoo
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Biomedical Informatics, Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
- Intelligent and Nonlinear Dynamics Innovations Research Center, Science and Technology Research Institute, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Kitiporn Plaimas
- Advance Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence:
| |
Collapse
|
43
|
Amaral AF, McQueen BE, Bellingham-Johnstun K, Poston TB, Darville T, Nagarajan UM, Laplante C, Käser T. Host-Pathogen Interactions of Chlamydia trachomatis in Porcine Oviduct Epithelial Cells. Pathogens 2021; 10:pathogens10101270. [PMID: 34684219 PMCID: PMC8540921 DOI: 10.3390/pathogens10101270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Chlamydia trachomatis (Ct) causes the most prevalent bacterial sexually transmitted disease leading to ectopic pregnancy and infertility. Swine not only have many similarities to humans, but they are also susceptible to Ct. Despite these benefits and the ease of access to primary tissue from this food animal, in vitro research in swine has been underutilized. This study will provide basic understanding of the Ct host–pathogen interactions in porcine oviduct epithelial cells (pOECs)—the counterparts of human Fallopian tube epithelial cells. Using NanoString technology, flow cytometry, and confocal and transmission-electron microscopy, we studied the Ct developmental cycle in pOECs, the cellular immune response, and the expression and location of the tight junction protein claudin-4. We show that Ct productively completes its developmental cycle in pOECs and induces an immune response to Ct similar to human cells: Ct mainly induced the upregulation of interferon regulated genes and T-cell attracting chemokines. Furthermore, Ct infection induced an accumulation of claudin-4 in the Ct inclusion with a coinciding reduction of membrane-bound claudin-4. Downstream effects of the reduced membrane-bound claudin-4 expression could potentially include a reduction in tight-junction expression, impaired epithelial barrier function as well as increased susceptibility to co-infections. Thereby, this study justifies the investigation of the effect of Ct on tight junctions and the mucosal epithelial barrier function. Taken together, this study demonstrates that primary pOECs represent an excellent in vitro model for research into Ct pathogenesis, cell biology and immunity.
Collapse
Affiliation(s)
- Amanda F. Amaral
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA;
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Bryan E. McQueen
- Department of Microbiology and Immunology, University of North Carolina, 116 Manning Drive, Chapel Hill, NC 27599, USA; (B.E.M.); (T.D.)
| | - Kimberly Bellingham-Johnstun
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; (K.B.-J.); (C.L.)
| | - Taylor B. Poston
- Department of Pediatrics, University of North Carolina, 116 Manning Drive, Chapel Hill, NC 27599, USA; (T.B.P.); (U.M.N.)
| | - Toni Darville
- Department of Microbiology and Immunology, University of North Carolina, 116 Manning Drive, Chapel Hill, NC 27599, USA; (B.E.M.); (T.D.)
- Department of Pediatrics, University of North Carolina, 116 Manning Drive, Chapel Hill, NC 27599, USA; (T.B.P.); (U.M.N.)
| | - Uma M. Nagarajan
- Department of Pediatrics, University of North Carolina, 116 Manning Drive, Chapel Hill, NC 27599, USA; (T.B.P.); (U.M.N.)
| | - Caroline Laplante
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; (K.B.-J.); (C.L.)
| | - Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA;
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
- Correspondence: ; Tel.: +1-919-513-6352
| |
Collapse
|