1
|
Candelas A, Bessy T, Vianay B, Théry M, Brunet S. Microwells as Minimalistic Niches to Study Heterotypic Interactions of Stromal and Hematopoietic Stem Cells. Methods Mol Biol 2025. [PMID: 40397282 DOI: 10.1007/7651_2025_628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) can migrate and reside within the bone marrow in distinct microenvironments or niches. The niches organize around specific stromal cells, such as endothelial cells at the capillary or sinusoid walls, and osteoblasts along the bone matrix. Within each niche, a specific combination of external cues, including secreted and diffusible factors, cell-matrix, and cell-cell interactions, controls HSPCs behavior and fate. Deciphering the interplay between HSPCs and stromal cells of the niches is challenging: in vivo, it is hindered by the opacity of the bone matrix; in vitro, classical co-culture models only poorly recapitulate essential features of the physiological niches. The difficulty is moreover amplified by the exceptional migration capacity of HSPCs.In this chapter, we present a method to overcome these limitations by producing arrays of microwells designed to mimic bone marrow niches in a functional manner. These "microniches" promote a long-term interaction between the HSPC and a stromal cell of interest. We describe their microfabrication based on a maskless photolithography method allowing the production of arrays of microwells with reproducible volume and geometry, and the iterative improvement of the geometric design of the wells. We describe the loading and culture of stromal cells with HSPCs. We discuss the potentiality of microwells, in basic and applied research, as a platform to investigate molecular mechanisms involved in direct cell-cell interactions and local effects of diffusible factors, for any adherent and non-adherent cells of interest.
Collapse
Affiliation(s)
- Adrian Candelas
- Institut de Recherche St Louis, INSERM U.1342, AP-HP, Hôpital Saint-Louis, Université Paris Cité, Paris, France
- Cytomorpholab, Institut Pierre-Gilles de Gennes, Paris, France
| | - Thomas Bessy
- Institut de Recherche St Louis, INSERM U.1342, AP-HP, Hôpital Saint-Louis, Université Paris Cité, Paris, France
| | - Benoit Vianay
- Cytomorpholab, Univ. Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Végétale, CytoMorpho Lab, Grenoble, France
| | - Manuel Théry
- Institut de Recherche St Louis, INSERM U.1342, AP-HP, Hôpital Saint-Louis, Université Paris Cité, Paris, France.
- Cytomorpholab, Institut Pierre-Gilles de Gennes, Paris, France.
- Cytomorpholab, Univ. Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Végétale, CytoMorpho Lab, Grenoble, France.
| | - Stephane Brunet
- Institut de Recherche St Louis, INSERM U.1342, AP-HP, Hôpital Saint-Louis, Université Paris Cité, Paris, France.
| |
Collapse
|
2
|
Ocón B, Brulois KF, Hadeiba H, Gaafarelkhalifa M, Ayesha A, Bi Y, Xiang M, Gulman J, Kooshesh M, Pan J, Butcher EC. An SSTR2-somatostatin chemotactic axis drives T cell progenitor homing to the intestines. Nat Immunol 2025; 26:607-618. [PMID: 40140497 DOI: 10.1038/s41590-025-02097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/24/2025] [Indexed: 03/28/2025]
Abstract
Progenitors of intraepithelial T cells (IELps) migrate from the thymus to the intestines after birth where they develop into unconventional TCRγδ and TCRαβ lymphocytes in a process of extrathymic lymphopoiesis within cryptopatches. Mechanisms of IELp migration have remained unclear. Here we show that thymic IELps express the somatostatin receptor SSTR2, which contributes to their homing to the gut. IELp homing is Sstr2 dependent and correlates with neonatal induction of Sst encoding somatostatin in neuroendocrine and lamina propria stromal cells. The SSTR2 ligands somatostatin and cortistatin attract IELps in chemotaxis assays and somatostatin triggers IELp binding to the mucosal vascular addressin MAdCAM1. T cell transduction with Sstr2 confers homing to the neonatal colon. Human fetal thymic IELp-like cells express SSTR2 and intestinal stromal cells express SST at the time of initial T cell population, suggesting conserved mechanisms of progenitor seeding of the developing intestines. These results reveal an unexpected role for the SSTR2-somatostatin axis in early immune system development and describe a new role for a small peptide hormone G-protein-coupled receptor in developmental lymphocyte trafficking.
Collapse
Affiliation(s)
- Borja Ocón
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA.
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA.
| | - Kevin F Brulois
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Husein Hadeiba
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Mohammed Gaafarelkhalifa
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Aiman Ayesha
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Yuhan Bi
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Menglan Xiang
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jacob Gulman
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Maryam Kooshesh
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Junliang Pan
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Eugene C Butcher
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
3
|
Cain TL, Derecka M, McKinney-Freeman S. The role of the haematopoietic stem cell niche in development and ageing. Nat Rev Mol Cell Biol 2025; 26:32-50. [PMID: 39256623 DOI: 10.1038/s41580-024-00770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 09/12/2024]
Abstract
Blood production depends on rare haematopoietic stem cells (HSCs) and haematopoietic stem and progenitor cells (HSPCs) that ultimately take up residence in the bone marrow during development. HSPCs and HSCs are subject to extrinsic regulation by the bone marrow microenvironment, or niche. Studying the interactions between HSCs and their niche is critical for improving ex vivo culturing conditions and genetic manipulation of HSCs, which is pivotal for improving autologous HSC therapies and transplantations. Additionally, understanding how the complex molecular network in the bone marrow is altered during ageing is paramount for developing novel therapeutics for ageing-related haematopoietic disorders. HSCs are unique amongst stem and progenitor cell pools in that they engage with multiple physically distinct niches during their ontogeny. HSCs are specified from haemogenic endothelium in the aorta, migrate to the fetal liver and, ultimately, colonize their final niche in the bone marrow. Recent studies employing single-cell transcriptomics and microscopy have identified novel cellular interactions that govern HSC specification and engagement with their niches throughout ontogeny. New lineage-tracing models and microscopy tools have raised questions about the numbers of HSCs specified, as well as the functional consequences of HSCs interacting with each developmental niche. Advances have also been made in understanding how these niches are modified and perturbed during ageing, and the role of these altered interactions in haematopoietic diseases. In this Review, we discuss these new findings and highlight the questions that remain to be explored.
Collapse
Affiliation(s)
- Terri L Cain
- Department of Haematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Marta Derecka
- Department of Haematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
4
|
Budzynska K, Siemionow M, Stawarz K, Chambily L, Siemionow K. Chimeric Cell Therapies as a Novel Approach for Duchenne Muscular Dystrophy (DMD) and Muscle Regeneration. Biomolecules 2024; 14:575. [PMID: 38785982 PMCID: PMC11117592 DOI: 10.3390/biom14050575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Chimerism-based strategies represent a pioneering concept which has led to groundbreaking advancements in regenerative medicine and transplantation. This new approach offers therapeutic potential for the treatment of various diseases, including inherited disorders. The ongoing studies on chimeric cells prompted the development of Dystrophin-Expressing Chimeric (DEC) cells which were introduced as a potential therapy for Duchenne Muscular Dystrophy (DMD). DMD is a genetic condition that leads to premature death in adolescent boys and remains incurable with current methods. DEC therapy, created via the fusion of human myoblasts derived from normal and DMD-affected donors, has proven to be safe and efficacious when tested in experimental models of DMD after systemic-intraosseous administration. These studies confirmed increased dystrophin expression, which correlated with functional and morphological improvements in DMD-affected muscles, including cardiac, respiratory, and skeletal muscles. Furthermore, the application of DEC therapy in a clinical study confirmed its long-term safety and efficacy in DMD patients. This review summarizes the development of chimeric cell technology tested in preclinical models and clinical studies, highlighting the potential of DEC therapy in muscle regeneration and repair, and introduces chimeric cell-based therapies as a promising, novel approach for muscle regeneration and the treatment of DMD and other neuromuscular disorders.
Collapse
Affiliation(s)
- Katarzyna Budzynska
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| | - Maria Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
- Chair and Department of Traumatology, Orthopaedics, and Surgery of the Hand, Poznan University of Medical Sciences, 61-545 Poznan, Poland
| | - Katarzyna Stawarz
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| | - Lucile Chambily
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| | - Krzysztof Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| |
Collapse
|
5
|
Dai Y, Peng Y, Lu Z, Mao T, Chen K, Lu X, Liu K, Zhou X, Hu W, Wang H. Prenatal prednisone exposure impacts liver development and function in fetal mice and its characteristics. Toxicol Sci 2024; 199:63-80. [PMID: 38439560 DOI: 10.1093/toxsci/kfae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Prednisone, a widely used glucocorticoid drug in human and veterinary medicine, has been reported to cause developmental toxicity. However, systematic studies about the effect of prednisone on fetal liver development are still unclear. We investigated the potential effects of maternal exposure to clinically equivalent doses of prednisone during different gestational stages on cell proliferation and apoptosis, cell differentiation, glucose and lipid metabolism, and hematopoiesis in the liver of fetal mice, and explored the potential mechanisms. Results showed that prenatal prednisone exposure (PPE) could suppress cell proliferation, inhibit hepatocyte differentiation, and promote cholangiocyte differentiation in the fetal liver. Meanwhile, PPE could result in the enhancement of glyconeogenesis and bile acid synthesis and the inhibition of fatty acid β-oxidation and hematopoiesis in the fetal liver. Further analysis found that PPE-induced alterations in liver development had obvious stage and sex differences. Overall, the alteration in fetal liver development and function induced by PPE was most pronounced during the whole pregnancy (GD0-18), and the males were relatively more affected than the females. Additionally, fetal hepatic insulin-like growth factor 1 (IGF1) signaling pathway was inhibited by PPE. In conclusion, PPE could impact fetal liver development and multiple functions, and these alterations might be partially related to the inhibition of IGF1 signaling pathway.
Collapse
Affiliation(s)
- Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Yu Peng
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Zhengjie Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Tongyun Mao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Kaiqi Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Xiaoqian Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Kexin Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Xinli Zhou
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Wen Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| |
Collapse
|
6
|
Chen Z, Cheng X, Yang L, Cheng X, Zhu B, Long H. Mechanism and effects of extramedullary hematopoiesis on anti-tumor immunity. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0203. [PMID: 37493332 PMCID: PMC10466439 DOI: 10.20892/j.issn.2095-3941.2023.0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023] Open
Affiliation(s)
- Zefang Chen
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xinyu Cheng
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Li Yang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xiaoming Cheng
- Department of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Haixia Long
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
7
|
Hussein HAM, Thabet AAA, Mohamed TIA, Elnosary ME, Sobhy A, El-Adly AM, Wardany AA, Bakhiet EK, Afifi MM, Abdulraouf UM, Fathy S.M, Sayed NG, Zahran AM. Phenotypical changes of hematopoietic stem and progenitor cells in COVID-19 patients: Correlation with disease status. Cent Eur J Immunol 2023; 48:97-110. [PMID: 37692025 PMCID: PMC10485691 DOI: 10.5114/ceji.2023.129981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/12/2023] [Indexed: 09/12/2023] Open
Abstract
Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) play a crucial role in the context of viral infections and their associated diseases. The link between HSCs and HPCs and disease status in COVID-19 patients is largely unknown. This study aimed to monitor the kinetics and contributions of HSCs and HPCs in severe and non-severe COVID-19 patients and to evaluate their diagnostic performance in differentiating between healthy and COVID-19 patients as well as severe and non-severe cases. Peripheral blood (PB) samples were collected from 48 COVID-19 patients, 16 recovered, and 27 healthy controls and subjected to deep flow cytometric analysis to determine HSCs and progenitor cells. Their diagnostic value and correlation with C-reactive protein (CRP), D-dimer, and ferritin levels were determined. The percentages of HSCs and common myeloid progenitors (CMPs) declined significantly, while the percentage of multipotent progenitors (MPPs) increased significantly in COVID-19 patients. There were no significant differences in the percentages of megakaryocyte-erythroid progenitors (MEPs) and granulocyte-macrophage progenitors (GMPs) between all groups. Severe COVID-19 patients had a significantly low percentage of HSCs, CMPs, and GMPs compared to non-severe cases. Contrarily, the levels of CRP, D-dimer, and ferritin increased significantly in severe COVID-19 patients. MPPs and CMPs showed excellent diagnostic performance in distinguishing COVID-19 patients from healthy controls and severe from non-severe COVID-19 patients, respectively. Collectively, our study indicated that hematopoietic stem and progenitor cells are significantly altered by COVID-19 and could be used as therapeutic targets and diagnostic biomarkers for severe COVID-19.
Collapse
Affiliation(s)
- Hosni A. M. Hussein
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Ali A. A. Thabet
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Taha I. A. Mohamed
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mohamed E. Elnosary
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ali Sobhy
- Department of Clinical Pathology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Ahmed M. El-Adly
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Ahmed A. Wardany
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Elsayed K. Bakhiet
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Magdy M. Afifi
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Usama M. Abdulraouf
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Samah . M. Fathy
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Noha G. Sayed
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Asmaa M. Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
8
|
Geng N, Yu Z, Zeng X, Xu D, Gao H, Yang M, Huang X. Nuclear Tubulin Enhances CXCR4 Transcription and Promotes Chemotaxis Through TCF12 Transcription Factor in human Hematopoietic Stem Cells. Stem Cell Rev Rep 2023; 19:1328-1339. [PMID: 37067645 DOI: 10.1007/s12015-023-10543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
Tubulins are cytoskeleton components in all eukaryotic cells and play crucial roles in various cellular activities by polymerizing into dynamic microtubules. A subpopulation of tubulin has been shown to localize in the nucleus, however, the function of nuclear tubulin remains largely unexplored. Here we report that microtubule depolymerization specifically upregulates surface CXCR4 expression in human hematopoietic stem cells (HSCs). Mechanistically, microtubule depolymerization results in accumulation of tubulin subunits in the nucleus, leading to elevated CXCR4 transcription and increased chemotaxis of human HSCs. Treatment with microtubule stabilizer Epothilone B strongly suppresses the phenotypes induced by microtubule depolymerizing agents in human HSCs. Furthermore, chromatin immunoprecipitation assay reveals an increased binding of nuclear tubulin and TCF12 transcription factor at the CXCR4 promoter region. Depletion of TCF12 significantly suppresses microtubule depolymerization mediated upregulation of CXCR4 surface expression. These results demonstrate a previously unknown function of nuclear tubulin in regulating gene transcription through TCF12. New strategy targeting nuclear tubulin-TCF12-CXCR4 axis may be applicable to enhance HSC transplantation.
Collapse
Affiliation(s)
- Nanxi Geng
- Zhongshan-Xuhui Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ziqin Yu
- Zhongshan-Xuhui Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xingchao Zeng
- Zhongshan-Xuhui Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Danhua Xu
- Zhongshan-Xuhui Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Hai Gao
- Zhongshan-Xuhui Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Min Yang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
| | - Xinxin Huang
- Zhongshan-Xuhui Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Zhu R, Sang X, Zhou J, Meng Q, Huang LSM, Xu Y, An J, Huang Z. CXCR4 Recognition by L- and D-Peptides Containing the Full-Length V3 Loop of HIV-1 gp120. Viruses 2023; 15:1084. [PMID: 37243169 PMCID: PMC10221217 DOI: 10.3390/v15051084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) recognizes one of its principal coreceptors, CXC chemokine receptor 4 (CXCR4), on the host cell via the third variable loop (V3 loop) of HIV-1 envelope glycoprotein gp120 during the viral entry process. Here, the mechanism of the molecular recognition of HIV-1 gp120 V3 loop by coreceptor CXCR4 was probed by synthetic peptides containing the full-length V3 loop. The two ends of the V3 loop were covalently linked by a disulfide bond to form a cyclic peptide with better conformational integrity. In addition, to probe the effect of the changed side-chain conformations of the peptide on CXCR4 recognition, an all-D-amino acid analog of the L-V3 loop peptide was generated. Both of these cyclic L- and D-V3 loop peptides displayed comparable binding recognition to the CXCR4 receptor, but not to another chemokine receptor, CCR5, suggesting their selective interactions with CXCR4. Molecular modeling studies revealed the important roles played by many negative-charged Asp and Glu residues on CXCR4 that probably engaged in favorable electrostatic interactions with the positive-charged Arg residues present in these peptides. These results support the notion that the HIV-1 gp120 V3 loop-CXCR4 interface is flexible for ligands of different chiralities, which might be relevant in terms of the ability of the virus to retain coreceptor recognition despite the mutations at the V3 loop.
Collapse
Affiliation(s)
- Ruohan Zhu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohong Sang
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jiao Zhou
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Qian Meng
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lina S. M. Huang
- Division of Infectious Diseases and Global Public Heath, Department of Medicine, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yan Xu
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jing An
- Division of Infectious Diseases and Global Public Heath, Department of Medicine, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ziwei Huang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
10
|
Zhong D, Jiang H, Zhou C, Ahmed A, Li H, Wei X, Lian Q, Tastemel M, Xin H, Ge M, Zhang C, Jing L. The microbiota regulates hematopoietic stem and progenitor cell development by mediating inflammatory signals in the niche. Cell Rep 2023; 42:112116. [PMID: 36795566 DOI: 10.1016/j.celrep.2023.112116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/23/2022] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
The commensal microbiota regulates the self-renewal and differentiation of hematopoietic stem and progenitor cells (HSPCs) in bone marrow. Whether and how the microbiota influences HSPC development during embryogenesis is unclear. Using gnotobiotic zebrafish, we show that the microbiota is necessary for HSPC development and differentiation. Individual bacterial strains differentially affect HSPC formation, independent of their effects on myeloid cells. Early-life dysbiosis in chd8-/- zebrafish impairs HSPC development. Wild-type microbiota promote HSPC development by controlling basal inflammatory cytokine expression in kidney niche, and chd8-/- commensals elicit elevated inflammatory cytokines that reduce HSPCs and enhance myeloid differentiation. We identify an Aeromonas veronii strain with immuno-modulatory activities that fails to induce HSPC development in wild-type fish but selectively inhibits kidney cytokine expression and rebalances HSPC development in chd8-/- zebrafish. Our studies highlight the important roles of a balanced microbiome during early HSPC development that ensure proper establishment of lineal precursor for adult hematopoietic system.
Collapse
Affiliation(s)
- Dan Zhong
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China
| | - Haowei Jiang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengzhuo Zhou
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Abrar Ahmed
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongji Li
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaona Wei
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiuyu Lian
- UM-SJTU Joint Institute, Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Melodi Tastemel
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hongyi Xin
- Global Institute of Future Technology, Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mei Ge
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai 200240, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lili Jing
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China.
| |
Collapse
|
11
|
Guerau-de-Arellano M, Piedra-Quintero ZL, Tsichlis PN. Akt isoforms in the immune system. Front Immunol 2022; 13:990874. [PMID: 36081513 PMCID: PMC9445622 DOI: 10.3389/fimmu.2022.990874] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Abstract
Akt is a PI3K-activated serine-threonine kinase that exists in three distinct isoforms. Akt's expression in most immune cells, either at baseline or upon activation, reflects its importance in the immune system. While Akt is most highly expressed in innate immune cells, it plays crucial roles in both innate and adaptive immune cell development and/or effector functions. In this review, we explore what's known about the role of Akt in innate and adaptive immune cells. Wherever possible, we discuss the overlapping and distinct role of the three Akt isoforms, namely Akt1, Akt2, and Akt3, in immune cells.
Collapse
Affiliation(s)
- Mireia Guerau-de-Arellano
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States,Department of Neuroscience, The Ohio State University, Columbus, OH, United States,The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States,*Correspondence: Mireia Guerau-de-Arellano,
| | - Zayda L. Piedra-Quintero
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Philip N. Tsichlis
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States,Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
12
|
Kimura T, Panaroni C, Rankin EB, Purton LE, Wu JY. Loss of Parathyroid Hormone Receptor Signaling in Osteoprogenitors Is Associated With Accumulation of Multiple Hematopoietic Lineages in the Bone Marrow. J Bone Miner Res 2022; 37:1321-1334. [PMID: 35490308 PMCID: PMC11479576 DOI: 10.1002/jbmr.4568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/10/2022]
Abstract
Osteoblasts and their progenitors play an important role in the support of hematopoiesis within the bone marrow (BM) microenvironment. We have previously reported that parathyroid hormone receptor (PTH1R) signaling in osteoprogenitors is required for normal B cell precursor differentiation, and for trafficking of maturing B cells out of the BM. Cells of the osteoblast lineage have been implicated in the regulation of several other hematopoietic cell populations, but the effects of PTH1R signaling in osteoprogenitors on other maturing hematopoietic populations have not been investigated. Here we report that numbers of maturing myeloid, T cell, and erythroid populations were increased in the BM of mice lacking PTH1R in Osx-expressing osteoprogenitors (PTH1R-OsxKO mice; knockout [KO]). This increase in maturing hematopoietic populations was not associated with an increase in progenitor populations or proliferation. The spleens of PTH1R-OsxKO mice were small with decreased numbers of all hematopoietic populations, suggesting that trafficking of mature hematopoietic populations between BM and spleen is impaired in the absence of PTH1R in osteoprogenitors. RNA sequencing (RNAseq) of osteoprogenitors and their descendants in bone and BM revealed increased expression of vascular cell adhesion protein 1 (VCAM-1) and C-X-C motif chemokine ligand 12 (CXCL12), factors that are involved in trafficking of several hematopoietic populations. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Takaharu Kimura
- Department of Medicine (Endocrinology), Stanford University School of Medicine, Stanford, CA, USA
| | - Cristina Panaroni
- Department of Medicine (Endocrinology), Stanford University School of Medicine, Stanford, CA, USA
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Louise E Purton
- St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
- The University of Melbourne, Department of Medicine at St Vincent's Hospital, Fitzroy, VIC, Australia
| | - Joy Y Wu
- Department of Medicine (Endocrinology), Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
13
|
CXCR4/CXCL12 Activities in the Tumor Microenvironment and Implications for Tumor Immunotherapy. Cancers (Basel) 2022; 14:cancers14092314. [PMID: 35565443 PMCID: PMC9105267 DOI: 10.3390/cancers14092314] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Chemokines are small soluble proteins that control and regulate cell trafficking within and between tissues by binding to their receptors. Among them, CXCL12 and its receptor CXCR4 appeared with ancestral vertebrates, are expressed almost ubiquitously, and play essential roles in embryogenesis and organogenesis. In addition, CXCL12 and CXCR4 are involved in antigen recognition by T and B cells and in shaping the tumor microenvironment (TME), mainly towards dampening immune responses. New data indicate that CXCR4 interacts with the surface protein CD47 in a novel form of immunosurveillance, called ImmunoGenic Surrender (IGS). Following the co-internalization of CXCR4 and CD47 in tumor cells, macrophages phagocytose them and cross-present their antigens to the adaptive immune system, leading to tumor rejection in a fraction of mice. All of these specific activities of CXCL12 and CXCR4 in antigen presentation might be complementary to current immunotherapies. Abstract CXCR4 is a G-Protein coupled receptor that is expressed nearly ubiquitously and is known to control cell migration via its interaction with CXCL12, the most ancient chemokine. The functions of CXCR4/CXCL12 extend beyond cell migration and involve the recognition and disposal of unhealthy or tumor cells. The CXCR4/CXCL12 axis plays a relevant role in shaping the tumor microenvironment (TME), mainly towards dampening immune responses. Notably, CXCR4/CXCL12 cross-signal via the T and B cell receptors (TCR and BCR) and co-internalize with CD47, promoting tumor cell phagocytosis by macrophages in an anti-tumor immune process called ImmunoGenic Surrender (IGS). These specific activities in shaping the immune response might be exploited to improve current immunotherapies.
Collapse
|
14
|
Ben Nasr M, Robbins D, Parone P, Usuelli V, Tacke R, Seelam AJ, Driver E, Le T, Sabouri-Ghomi M, Guerrettaz L, Shoemaker D, Fiorina P. Pharmacologically Enhanced Regulatory Hematopoietic Stem Cells Revert Experimental Autoimmune Diabetes and Mitigate Other Autoimmune Disorders. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1554-1565. [PMID: 35321879 DOI: 10.4049/jimmunol.2100949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/14/2022] [Indexed: 12/19/2022]
Abstract
Type 1 diabetes (T1D) is characterized by the loss of immune self-tolerance, resulting in an aberrant immune responses against self-tissue. A few therapeutics have been partially successful in reverting or slowing down T1D progression in patients, and the infusion of autologous hematopoietic stem cells (HSCs) is emerging as an option to be explored. In this study, we proposed to pharmacologically enhance by ex vivo modulation with small molecules the immunoregulatory and trafficking properties of HSCs to provide a safer and more efficacious treatment option for patients with T1D and other autoimmune disorders. A high-throughput targeted RNA sequencing screening strategy was used to identify a combination of small molecules (16,16-dimethyl PGE2 and dexamethasone), which significantly upregulate key genes involved in trafficking (e.g., CXCR4) and immunoregulation (e.g., programmed death ligand 1). The pharmacologically enhanced, ex vivo-modulated HSCs (regulatory HSCs [HSC.Regs]) have strong trafficking properties to sites of inflammation in a mouse model of T1D, reverted autoimmune diabetes in NOD mice, and delayed experimental multiple sclerosis and rheumatoid arthritis in preclinical models. Mechanistically, HSC.Regs reduced lymphocytic infiltration of pancreatic β cells and inhibited the activity of autoreactive T cells. Moreover, when tested in clinically relevant in vitro autoimmune assays, HSC.Regs abrogated the autoimmune response. Ex vivo pharmacological modulation enhances the immunoregulatory and trafficking properties of HSCs, thus generating HSC.Regs, which mitigated autoimmune diabetes and other autoimmune disorders.
Collapse
Affiliation(s)
- Moufida Ben Nasr
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA.,International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, DIBIC L. Sacco, University of Milan, Milan, Italy
| | | | | | - Vera Usuelli
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, DIBIC L. Sacco, University of Milan, Milan, Italy
| | | | - Andy-Joe Seelam
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, DIBIC L. Sacco, University of Milan, Milan, Italy
| | | | - Thuy Le
- Fate Therapeutics, San Diego, CA; and
| | | | | | | | - Paolo Fiorina
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA; .,International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, DIBIC L. Sacco, University of Milan, Milan, Italy.,Division of Endocrinology, Fatebenefratelli-Sacco Hospital, Milan, Italy
| |
Collapse
|
15
|
Weitoft M, Kadefors M, Stenberg H, Tufvesson E, Diamant Z, Rolandsson Enes S, Bjermer L, Rosmark O, Westergren-Thorsson G. Plasma proteome changes linked to late phase response after inhaled allergen challenge in asthmatics. Respir Res 2022; 23:50. [PMID: 35248034 PMCID: PMC8897854 DOI: 10.1186/s12931-022-01968-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/14/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A subset of individuals with allergic asthma develops a late phase response (LPR) to inhaled allergens, which is characterized by a prolonged airway obstruction, airway inflammation and airway hyperresponsiveness. The aim of this study was to identify changes in the plasma proteome and circulating hematopoietic progenitor cells associated with the LPR following inhaled allergen challenge. METHODS Serial plasma samples from asthmatics undergoing inhaled allergen challenge were analyzed by mass spectrometry and immunosorbent assays. Peripheral blood mononuclear cells were analyzed by flow cytometry. Mass spectrometry data were analyzed using a linear regression to model the relationship between airway obstruction during the LPR and plasma proteome changes. Data from immunosorbent assays were analyzed using linear mixed models. RESULTS Out of 396 proteins quantified in plasma, 150 showed a statistically significant change 23 h post allergen challenge. Among the most upregulated proteins were three protease inhibitors: alpha-1-antitrypsin, alpha-1-antichymotrypsin and plasma serine protease inhibitor. Altered levels of 13 proteins were associated with the LPR, including increased factor XIII A and decreased von Willebrand factor. No relationship was found between the LPR and changes in the proportions of classical, intermediate, and non-classical monocytes. CONCLUSIONS Allergic reactions to inhaled allergens in asthmatic subjects were associated with changes in a large proportion of the measured plasma proteome, whereof protease inhibitors showed the largest changes, likely to influence the inflammatory response. Many of the proteins altered in relation to the LPR are associated with coagulation, highlighting potential mechanistic targets for future treatments of type-2 asthma.
Collapse
Affiliation(s)
- Maria Weitoft
- Division of Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Måns Kadefors
- Division of Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Henning Stenberg
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Ellen Tufvesson
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Zuzana Diamant
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Microbiology Immunology and Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium
- Department of Clin Pharm and Pharmacol, University of Groningen, Univ Med Ctr Groningen, Groningen, Netherlands
| | - Sara Rolandsson Enes
- Division of Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Leif Bjermer
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Oskar Rosmark
- Division of Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | | |
Collapse
|
16
|
The extracellular matrix of hematopoietic stem cell niches. Adv Drug Deliv Rev 2022; 181:114069. [PMID: 34838648 PMCID: PMC8860232 DOI: 10.1016/j.addr.2021.114069] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/21/2022]
Abstract
Comprehensive overview of different classes of ECM molecules in the HSC niche. Overview of current knowledge on role of biophysics of the HSC niche. Description of approaches to create artificial stem cell niches for several application. Importance of considering ECM in drug development and testing.
Hematopoietic stem cells (HSCs) are the life-long source of all types of blood cells. Their function is controlled by their direct microenvironment, the HSC niche in the bone marrow. Although the importance of the extracellular matrix (ECM) in the niche by orchestrating niche architecture and cellular function is widely acknowledged, it is still underexplored. In this review, we provide a comprehensive overview of the ECM in HSC niches. For this purpose, we first briefly outline HSC niche biology and then review the role of the different classes of ECM molecules in the niche one by one and how they are perceived by cells. Matrix remodeling and the emerging importance of biophysics in HSC niche function are discussed. Finally, the application of the current knowledge of ECM in the niche in form of artificial HSC niches for HSC expansion or targeted differentiation as well as drug testing is reviewed.
Collapse
|
17
|
Martinez P, Ballarin L, Ereskovsky AV, Gazave E, Hobmayer B, Manni L, Rottinger E, Sprecher SG, Tiozzo S, Varela-Coelho A, Rinkevich B. Articulating the "stem cell niche" paradigm through the lens of non-model aquatic invertebrates. BMC Biol 2022; 20:23. [PMID: 35057814 PMCID: PMC8781081 DOI: 10.1186/s12915-022-01230-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Stem cells (SCs) in vertebrates typically reside in "stem cell niches" (SCNs), morphologically restricted tissue microenvironments that are important for SC survival and proliferation. SCNs are broadly defined by properties including physical location, but in contrast to vertebrates and other "model" organisms, aquatic invertebrate SCs do not have clearly documented niche outlines or properties. Life strategies such as regeneration or asexual reproduction may have conditioned the niche architectural variability in aquatic or marine animal groups. By both establishing the invertebrates SCNs as independent types, yet allowing inclusiveness among them, the comparative analysis will allow the future functional characterization of SCNs.
Collapse
Affiliation(s)
- P Martinez
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
- Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - L Ballarin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35100, Padova, Italy
| | - A V Ereskovsky
- Aix Marseille University, Avignon Université, CNRS, IRD, IMBE, Marseille, France
- St. Petersburg State University, Biological Faculty, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russia
- N. K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Street 26, Moscow, 119334, Russia
| | - E Gazave
- Université de Paris, CNRS, Institut Jacques Monod, F-75006, Paris, France
| | - B Hobmayer
- Department of Zoology and Center of Molecular Biosciences, University of Innsbruck, Technikerstr. 25, 6020, Innsbruck, Austria
| | - L Manni
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35100, Padova, Italy
| | - E Rottinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- Université Côte d'Azur, Federative Research Institute - Marine Resources (IFR MARRES), Nice, France
| | - S G Sprecher
- Department of Biology, University of Fribourg, Chemin du Musee 10, 1700, Fribourg, Switzerland
| | - S Tiozzo
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Paris, France
| | - A Varela-Coelho
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. da República, 2780-157, Oeiras, Portugal
| | - B Rinkevich
- Israel Oceanography and Limnological Research, National Institute of Oceanography, Tel Shikmona, P.O. Box 8030, 31080, Haifa, Israel.
| |
Collapse
|
18
|
Li J, Kumari T, Barazia A, Jha V, Jeong SY, Olson A, Kim M, Lee BK, Manickam V, Song Z, Clemens R, Razani B, Kim J, Dinauer MC, Cho J. Neutrophil DREAM promotes neutrophil recruitment in vascular inflammation. J Exp Med 2022; 219:e20211083. [PMID: 34751735 PMCID: PMC8719643 DOI: 10.1084/jem.20211083] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/21/2021] [Accepted: 10/19/2021] [Indexed: 01/02/2023] Open
Abstract
The interaction between neutrophils and endothelial cells is critical for the pathogenesis of vascular inflammation. However, the regulation of neutrophil adhesive function remains not fully understood. Intravital microscopy demonstrates that neutrophil DREAM promotes neutrophil recruitment to sites of inflammation induced by TNF-α but not MIP-2 or fMLP. We observe that neutrophil DREAM represses expression of A20, a negative regulator of NF-κB activity, and enhances expression of pro-inflammatory molecules and phosphorylation of IκB kinase (IKK) after TNF-α stimulation. Studies using genetic and pharmacologic approaches reveal that DREAM deficiency and IKKβ inhibition significantly diminish the ligand-binding activity of β2 integrins in TNF-α-stimulated neutrophils or neutrophil-like HL-60 cells. Neutrophil DREAM promotes degranulation through IKKβ-mediated SNAP-23 phosphorylation. Using sickle cell disease mice lacking DREAM, we show that hematopoietic DREAM promotes vaso-occlusive events in microvessels following TNF-α challenge. Our study provides evidence that targeting DREAM might be a novel therapeutic strategy to reduce excessive neutrophil recruitment in inflammatory diseases.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL
| | - Tripti Kumari
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Andrew Barazia
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL
| | - Vishwanath Jha
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Si-Yeon Jeong
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL
| | - Amber Olson
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Mijeong Kim
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX
| | - Bum-Kyu Lee
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX
| | - Vijayprakash Manickam
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Zhimin Song
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Regina Clemens
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Babak Razani
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- John Cochran VA Medical Center, St. Louis, MO
| | - Jonghwan Kim
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX
| | - Mary C. Dinauer
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Jaehyung Cho
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
19
|
Ratajczak MZ, Kucia M. Hematopoiesis and innate immunity: an inseparable couple for good and bad times, bound together by an hormetic relationship. Leukemia 2022; 36:23-32. [PMID: 34853440 PMCID: PMC8727304 DOI: 10.1038/s41375-021-01482-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
Hematopoietic and immune cells originate from a common hematopoietic/lymphopoietic stem cell what explains that these different cell types often share the same receptors and respond to similar factors. Moreover, the common goal of both lineages is to ensure tissue homeostasis under steady-state conditions, fight invading pathogens, and promote tissue repair. We will highlight accumulating evidence that innate and adaptive immunity modulate several aspects of hematopoiesis within the hormetic zone in which the biological response to low exposure to potential stressors generally is favorable and benefits hematopoietic stem/progenitor cells (HSPCs). Innate immunity impact on hematopoiesis is pleiotropic and involves both the cellular arm, comprised of innate immunity cells, and the soluble arm, whose major component is the complement cascade (ComC). In addition, several mediators released by innate immunity cells, including inflammatory cytokines and small antimicrobial cationic peptides, affect hematopoiesis. There are intriguing observations that HSPCs and immune cells share several cell-surface pattern-recognition receptors (PRRs), such as Toll-like receptors (TLRs) and cytosol-expressed NOD, NOD-like, and RIG-I-like receptors and thus can be considered "pathogen sensors". In addition, not only lymphocytes but also HSPCs express functional intracellular complement proteins, defined as complosome which poses challenging questions for further investigation of the intracellular ComC-mediated intracrine regulation of hematopoiesis.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute at Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
- Laboratory of Regenerative Medicine Medical University of Warsaw, Warsaw, Poland.
| | - Magdalena Kucia
- Stem Cell Institute at Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
- Laboratory of Regenerative Medicine Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
20
|
Usui M, Williamson KC. Stressed Out About Plasmodium falciparum Gametocytogenesis. Front Cell Infect Microbiol 2021; 11:790067. [PMID: 34926328 PMCID: PMC8674873 DOI: 10.3389/fcimb.2021.790067] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/08/2021] [Indexed: 11/21/2022] Open
Abstract
Blocking malaria transmission is critical to malaria control programs but remains a major challenge especially in endemic regions with high levels of asymptomatic infections. New strategies targeting the transmissible sexual stages of the parasite, called gametocytes, are needed. This review focuses on P. falciparum gametocytogenesis in vivo and in vitro. Highlighting advances made elucidating genes required for gametocyte production and identifying key questions that remain unanswered such as the factors and regulatory mechanisms that contribute to gametocyte induction, and the mechanism of sequestration. Tools available to begin to address these issues are also described to facilitate advances in our understanding of this important stage of the life cycle.
Collapse
Affiliation(s)
- Miho Usui
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Kim C Williamson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
21
|
Kamnev A, Lacouture C, Fusaro M, Dupré L. Molecular Tuning of Actin Dynamics in Leukocyte Migration as Revealed by Immune-Related Actinopathies. Front Immunol 2021; 12:750537. [PMID: 34867982 PMCID: PMC8634686 DOI: 10.3389/fimmu.2021.750537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023] Open
Abstract
Motility is a crucial activity of immune cells allowing them to patrol tissues as they differentiate, sample or exchange information, and execute their effector functions. Although all immune cells are highly migratory, each subset is endowed with very distinct motility patterns in accordance with functional specification. Furthermore individual immune cell subsets adapt their motility behaviour to the surrounding tissue environment. This review focuses on how the generation and adaptation of diversified motility patterns in immune cells is sustained by actin cytoskeleton dynamics. In particular, we review the knowledge gained through the study of inborn errors of immunity (IEI) related to actin defects. Such pathologies are unique models that help us to uncover the contribution of individual actin regulators to the migration of immune cells in the context of their development and function.
Collapse
Affiliation(s)
- Anton Kamnev
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Claire Lacouture
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.,Laboratoire De Physique Théorique, IRSAMC, Université De Toulouse (UPS), CNRS, Toulouse, France
| | - Mathieu Fusaro
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| |
Collapse
|
22
|
Matteini F, Mulaw MA, Florian MC. Aging of the Hematopoietic Stem Cell Niche: New Tools to Answer an Old Question. Front Immunol 2021; 12:738204. [PMID: 34858399 PMCID: PMC8631970 DOI: 10.3389/fimmu.2021.738204] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022] Open
Abstract
The hematopoietic stem cell (HSC) niche is a specialized microenvironment, where a complex and dynamic network of interactions across multiple cell types regulates HSC function. During the last years, it became progressively clearer that changes in the HSC niche are responsible for specific alterations of HSC behavior. The aging of the bone marrow (BM) microenvironment has been shown to critically contribute to the decline in HSC function over time. Interestingly, while upon aging some niche structures within the BM are degenerated and negatively affect HSC functionality, other niche cells and specific signals are preserved and essential to retaining HSC function and regenerative capacity. These new findings on the role of the aging BM niche critically depend on the implementation of new technical tools, developed thanks to transdisciplinary approaches, which bring together different scientific fields. For example, the development of specific mouse models in addition to coculture systems, new 3D-imaging tools, ossicles, and ex-vivo BM mimicking systems is highlighting the importance of new technologies to unravel the complexity of the BM niche on aging. Of note, an exponential impact in the understanding of this biological system has been recently brought by single-cell sequencing techniques, spatial transcriptomics, and implementation of artificial intelligence and deep learning approaches to data analysis and integration. This review focuses on how the aging of the BM niche affects HSCs and on the new tools to investigate the specific alterations occurring in the BM upon aging. All these new advances in the understanding of the BM niche and its regulatory function on HSCs have the potential to lead to novel therapeutical approaches to preserve HSC function upon aging and disease.
Collapse
Affiliation(s)
- Francesca Matteini
- Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], Barcelona, Spain
| | - Medhanie A. Mulaw
- Institute for Molecular Medicine and Internal Medicine I, Ulm University and University Hospital Ulm, Ulm, Germany
| | - M. Carolina Florian
- Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], Barcelona, Spain
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
23
|
Mack R, Zhang L, Breslin Sj P, Zhang J. The Fetal-to-Adult Hematopoietic Stem Cell Transition and its Role in Childhood Hematopoietic Malignancies. Stem Cell Rev Rep 2021; 17:2059-2080. [PMID: 34424480 DOI: 10.1007/s12015-021-10230-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 01/07/2023]
Abstract
As with most organ systems that undergo continuous generation and maturation during the transition from fetal to adult life, the hematopoietic and immune systems also experience dynamic changes. Such changes lead to many unique features in blood cell function and immune responses in early childhood. The blood cells and immune cells in neonates are a mixture of fetal and adult origin due to the co-existence of both fetal and adult types of hematopoietic stem cells (HSCs) and progenitor cells (HPCs). Fetal blood and immune cells gradually diminish during maturation of the infant and are almost completely replaced by adult types of cells by 3 to 4 weeks after birth in mice. Such features in early childhood are associated with unique features of hematopoietic and immune diseases, such as leukemia, at these developmental stages. Therefore, understanding the cellular and molecular mechanisms by which hematopoietic and immune changes occur throughout ontogeny will provide useful information for the study and treatment of pediatric blood and immune diseases. In this review, we summarize the most recent studies on hematopoietic initiation during early embryonic development, the expansion of both fetal and adult types of HSCs and HPCs in the fetal liver and fetal bone marrow stages, and the shift from fetal to adult hematopoiesis/immunity during neonatal/infant development. We also discuss the contributions of fetal types of HSCs/HPCs to childhood leukemias.
Collapse
Affiliation(s)
- Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Lei Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin Sj
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
24
|
Patrolling human SLE haematopoietic progenitors demonstrate enhanced extramedullary colonisation; implications for peripheral tissue injury. Sci Rep 2021; 11:15759. [PMID: 34344937 PMCID: PMC8333421 DOI: 10.1038/s41598-021-95224-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease where bone-marrow-derived haematopoietic cells have a key role in its pathogenesis with accumulating evidence suggesting an aberrant function of haematopoietic stem/progenitor cells (HSPCs). We examined whether patrolling HSPCs differ from bone-marrow HSPCs both in SLE and healthy individuals, and how they participate in peripheral tissue injury. By employing next-generation RNA sequencing, the transcriptomes of CD34+ HSPCs deriving from the bone marrow and those patrolling the bloodstream of both healthy and individuals with SLE were compared. Patrolling SLE and Healthy human HSPC kinetics were examined through their inoculation into humanised mice. Patrolling and bone-marrow HSPCs have distinct molecular signatures, while patrolling SLE HSPCs showed an enhanced extramedullary gene expression profile. Non-mobilised, SLE-derived circulating HSPCs demonstrated altered homing capacities. Xenotransplantation of circulating HSPCs in humanised mice showed that human peripheral blood HSPCs possess the ability for extramedullary organ colonisation to the kidneys. Circulating and bone marrow-derived HSPCs are distinct in steady and diseased states. Patrolling SLE CD34+ HSPCs are able to home at extramedullary sites such as the spleen and kidneys, potentially participating in peripheral tissue injury.
Collapse
|
25
|
Hammond BP, Manek R, Kerr BJ, Macauley MS, Plemel JR. Regulation of microglia population dynamics throughout development, health, and disease. Glia 2021; 69:2771-2797. [PMID: 34115410 DOI: 10.1002/glia.24047] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022]
Abstract
The dynamic expansions and contractions of the microglia population in the central nervous system (CNS) to achieve homeostasis are likely vital for their function. Microglia respond to injury or disease but also help guide neurodevelopment, modulate neural circuitry throughout life, and direct regeneration. Throughout these processes, microglia density changes, as does the volume of area that each microglia surveys. Given that microglia are responsible for sensing subtle alterations to their environment, a change in their density could affect their capacity to mobilize rapidly. In this review, we attempt to synthesize the current literature on the ligands and conditions that promote microglial proliferation across development, adulthood, and neurodegenerative conditions. Microglia display an impressive proliferative capacity during development and in neurodegenerative diseases that is almost completely absent at homeostasis. However, the appropriate function of microglia in each state is critically dependent on density fluctuations that are primarily induced by proliferation. Proliferation is a natural microglial response to insult and often serves neuroprotective functions. In contrast, inappropriate microglial proliferation, whether too much or too little, often precipitates undesirable consequences for nervous system health. Thus, fluctuations in the microglia population are tightly regulated to ensure these immune cells can execute their diverse functions.
Collapse
Affiliation(s)
- Brady P Hammond
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rupali Manek
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
26
|
Integrin VLA-4 as a PET imaging biomarker of hyper-adhesion in transgenic sickle mice. Blood Adv 2021; 4:4102-4112. [PMID: 32882004 DOI: 10.1182/bloodadvances.2020002642] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
In sickle cell disease (SCD), very late antigen-4 (VLA-4 or integrin α4β1) mediates the adhesion of reticulocytes to inflamed, proinflammatory endothelium, a key process in promoting vaso-occlusive episodes (VOEs). We hypothesized that a radionuclide tracer targeting VLA-4 could be harnessed as a positron emission tomography (PET) imaging biomarker of VOEs. We tested the VLA-4 peptidomimetic PET tracer 64Cu-CB-TE1A1P-PEG4-LLP2A (64Cu-LLP2A) for imaging hyper-adhesion-associated VOEs in the SCD Townes mouse model. With lipopolysaccharide (LPS)-induced VOEs, 64Cu-LLP2A uptake was increased in the bone marrow of the humeri and femurs, common sites of VOEs in SCD mice compared with non-SCD mice. Treatment with a proven inhibitor of VOEs (the anti-mouse anti-P-selectin monoclonal antibody [mAb] RB40.34) during LPS stimulation led to a reduction in the uptake of 64Cu-LLP2A in the humeri and femurs to baseline levels, implying blockade of VOE hyper-adhesion. Flow cytometry with Cy3-LLP2A demonstrated an increased percentage of VLA-4-positive reticulocytes in SCD vs non-SCD mice in the bone and peripheral blood after treatment with LPS, which was abrogated by anti-P-selectin mAb treatment. These data, for the first time, show in vivo imaging of VLA-4-mediated hyper-adhesion, primarily of SCD reticulocytes, during VOEs. PET imaging with 64Cu-LLP2A may serve as a valuable, noninvasive method for identifying sites of vaso-occlusion and may provide an objective biomarker of disease severity and anti-P-selectin treatment efficacy in patients with SCD.
Collapse
|
27
|
A single-cell resolution developmental atlas of hematopoietic stem and progenitor cell expansion in zebrafish. Proc Natl Acad Sci U S A 2021; 118:2015748118. [PMID: 33785593 PMCID: PMC8040670 DOI: 10.1073/pnas.2015748118] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The caudal hematopoietic tissue (CHT) is characterized as a hematopoietic organ for fetal hematopoietic stem and progenitor cell (HSPC) expansion in zebrafish. In this study, we used scRNA-seq combined with functional assays to decode the developing CHT. First, we resolved fetal HSPC heterogeneity, manifested as lineage priming and metabolic gene signatures. We further analyzed the cellular interactions among nonhematopoietic niche components and HSPCs and identified an endothelial cell-specific factor, Gpr182, followed by experimental validation of its role in promoting HSPC expansion. Finally, we uncovered the conservation and divergence of developmental hematopoiesis between human fetal liver and zebrafish CHT. Our study provides a valuable resource for fetal HSPC development and clues to establish a supportive niche for HSPC expansion in vitro. During vertebrate embryogenesis, fetal hematopoietic stem and progenitor cells (HSPCs) exhibit expansion and differentiation properties in a supportive hematopoietic niche. To profile the developmental landscape of fetal HSPCs and their local niche, here, using single-cell RNA-sequencing, we deciphered a dynamic atlas covering 28,777 cells and 9 major cell types (23 clusters) of zebrafish caudal hematopoietic tissue (CHT). We characterized four heterogeneous HSPCs with distinct lineage priming and metabolic gene signatures. Furthermore, we investigated the regulatory mechanism of CHT niche components for HSPC development, with a focus on the transcription factors and ligand–receptor networks involved in HSPC expansion. Importantly, we identified an endothelial cell-specific G protein–coupled receptor 182, followed by in vivo and in vitro functional validation of its evolutionally conserved role in supporting HSPC expansion in zebrafish and mice. Finally, comparison between zebrafish CHT and human fetal liver highlighted the conservation and divergence across evolution. These findings enhance our understanding of the regulatory mechanism underlying hematopoietic niche for HSPC expansion in vivo and provide insights into improving protocols for HSPC expansion in vitro.
Collapse
|
28
|
Lei X, Palomero J, de Rink I, de Wit T, van Baalen M, Xiao Y, Borst J. Flagellin/TLR5 Stimulate Myeloid Progenitors to Enter Lung Tissue and to Locally Differentiate Into Macrophages. Front Immunol 2021; 12:621665. [PMID: 33815375 PMCID: PMC8017192 DOI: 10.3389/fimmu.2021.621665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/24/2021] [Indexed: 11/30/2022] Open
Abstract
Toll-like receptor 5 (TLR5) is the receptor of bacterial Flagellin. Reportedly, TLR5 engagement helps to combat infections, especially at mucosal sites, by evoking responses from epithelial cells and immune cells. Here we report that TLR5 is expressed on a previously defined bipotent progenitor of macrophages (MΦs) and osteoclasts (OCs) that resides in the mouse bone marrow (BM) and circulates at low frequency in the blood. In vitro, Flagellin promoted the generation of MΦs, but not OCs from this progenitor. In vivo, MΦ/OC progenitors were recruited from the blood into the lung upon intranasal inoculation of Flagellin, where they rapidly differentiated into MΦs. Recruitment of the MΦ/OC progenitors into the lung was likely promoted by the CCL2/CCR2 axis, since the progenitors expressed CCR2 and type 2 alveolar epithelial cells (AECs) produced CCL2 upon stimulation by Flagellin. Moreover, CCR2 blockade reduced migration of the MΦ/OC progenitors toward lung lavage fluid (LLF) from Flagellin-inoculated mice. Our study points to a novel role of the Flagellin/TLR5 axis in recruiting circulating MΦ/OC progenitors into infected tissue and stimulating these progenitors to locally differentiate into MΦs. The progenitor pathway to produce MΦs may act, next to monocyte recruitment, to fortify host protection against bacterial infection at mucosal sites.
Collapse
Affiliation(s)
- Xin Lei
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Jara Palomero
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Iris de Rink
- Genomics Facility, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Tom de Wit
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Martijn van Baalen
- Flow Cytometry Facility, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Yanling Xiao
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Jannie Borst
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
29
|
Cortabarria ASDV, Makhoul L, Strouboulis J, Lombardi G, Oteng-Ntim E, Shangaris P. In utero Therapy for the Treatment of Sickle Cell Disease: Taking Advantage of the Fetal Immune System. Front Cell Dev Biol 2021; 8:624477. [PMID: 33553164 PMCID: PMC7862553 DOI: 10.3389/fcell.2020.624477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/23/2020] [Indexed: 01/16/2023] Open
Abstract
Sickle Cell Disease (SCD) is an autosomal recessive disorder resulting from a β-globin gene missense mutation and is among the most prevalent severe monogenic disorders worldwide. Haematopoietic stem cell transplantation remains the only curative option for the disease, as most management options focus solely on symptom control. Progress in prenatal diagnosis and fetal therapeutic intervention raises the possibility of in utero treatment. SCD can be diagnosed prenatally in high-risk patients using chorionic villus sampling. Among the possible prenatal treatments, in utero stem cell transplantation (IUSCT) shows the most promise. IUSCT is a non-myeloablative, non-immunosuppressive alternative conferring various unique advantages and may also offer safer postnatal management. Fetal immunologic immaturity could allow engraftment of allogeneic cells before fetal immune system maturation, donor-specific tolerance and lifelong chimerism. In this review, we will discuss SCD, screening and current treatments. We will present the therapeutic rationale for IUSCT, examine the early experimental work and initial human experience, as well as consider primary barriers of clinically implementing IUSCT and the promising approaches to address them.
Collapse
Affiliation(s)
| | - Laura Makhoul
- GKT School of Medical Education, King's College London, London, United Kingdom
| | - John Strouboulis
- School of Cancer & Pharmaceutical Sciences, Kings College London, London, United Kingdom
| | - Giovanna Lombardi
- School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Eugene Oteng-Ntim
- School of Life Course Sciences, Kings College London, London, United Kingdom
| | - Panicos Shangaris
- School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
- School of Life Course Sciences, Kings College London, London, United Kingdom
| |
Collapse
|
30
|
Yang L, Hu M, Lu Y, Han S, Wang J. Inflammasomes and the Maintenance of Hematopoietic Homeostasis: New Perspectives and Opportunities. Molecules 2021; 26:molecules26020309. [PMID: 33435298 PMCID: PMC7827629 DOI: 10.3390/molecules26020309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem cells (HSCs) regularly produce various blood cells throughout life via their self-renewal, proliferation, and differentiation abilities. Most HSCs remain quiescent in the bone marrow (BM) and respond in a timely manner to either physiological or pathological cues, but the underlying mechanisms remain to be further elucidated. In the past few years, accumulating evidence has highlighted an intermediate role of inflammasome activation in hematopoietic maintenance, post-hematopoietic transplantation complications, and senescence. As a cytosolic protein complex, the inflammasome participates in immune responses by generating a caspase cascade and inducing cytokine secretion. This process is generally triggered by signals from purinergic receptors that integrate extracellular stimuli such as the metabolic factor ATP via P2 receptors. Furthermore, targeted modulation/inhibition of specific inflammasomes may help to maintain/restore adequate hematopoietic homeostasis. In this review, we will first summarize the possible relationships between inflammasome activation and homeostasis based on certain interesting phenomena. The cellular and molecular mechanism by which purinergic receptors integrate extracellular cues to activate inflammasomes inside HSCs will then be described. We will also discuss the therapeutic potential of targeting inflammasomes and their components in some diseases through pharmacological or genetic strategies.
Collapse
|
31
|
Yuan S, Sun G, Zhang Y, Dong F, Cheng H, Cheng T. Understanding the "SMART" features of hematopoietic stem cells and beyond. SCIENCE CHINA. LIFE SCIENCES 2021; 64:2030-2044. [PMID: 34341896 PMCID: PMC8328818 DOI: 10.1007/s11427-021-1961-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
Since the huge success of bone marrow transplantation technology in clinical practice, hematopoietic stem cells (HSCs) have become the gold standard for defining the properties of adult stem cells (ASCs). Here, we describe the "self-renewal, multi-lineage differentiation, apoptosis, rest, and trafficking" or "SMART" model, which has been developed based on data derived from studies of HSCs as the most well-characterized stem cell type. Given the potential therapeutic applications of ASCs, we delineate the key characteristics of HSCs using this model and speculate on the physiological relevance of stem cells identified in other tissues. Great strides are being made in understanding the biology of ASCs, and efforts are now underway to develop safe and effective ASC-based therapies in this emerging area.
Collapse
Affiliation(s)
- Shiru Yuan
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Guohuan Sun
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Yawen Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Fang Dong
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, 300020 China
| | - Hui Cheng
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, 300020 China
| | - Tao Cheng
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, 300020 China
| |
Collapse
|
32
|
Khanna A, Indracanti N, Chakrabarti R, Indraganti PK. Short-term ex-vivo exposure to hydrogen sulfide enhances murine hematopoietic stem and progenitor cell migration, homing, and proliferation. Cell Adh Migr 2020; 14:214-226. [PMID: 33135550 PMCID: PMC7671055 DOI: 10.1080/19336918.2020.1842131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/26/2020] [Accepted: 10/20/2020] [Indexed: 01/05/2023] Open
Abstract
For successful transplantation of Hematopoietic Stem cells (HSCs), it is quite necessary that efficient homing, engraftment and retention of HSC self-renewal capacity takes place, which is often restricted due to inadequate number of adult HSCs. Here, we report that short-term ex-vivo treatment of mouse bone marrow mononuclear cells (BMMNCs) to Sodium Hydrogen Sulfide (NaHS, hydrogen sulfide-H2S donor) can be used as a possible strategy to overcome such hurdle. H2S increases the expression of CXCR4 on HSPCs, enhancing their migration toward SDF-1α in-vitro and thus homing to BM niche. . Additionally, in-vitro studies revealed that H2S has a role in activating mitochondria, thus, pushing quiescent HSCs into division. These results suggest a readily available and cost-effective method to facilitate efficient HSC transplantation.
Collapse
Affiliation(s)
- Anoushka Khanna
- Drug Repurposing and Translational Research Lab, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, India
- Aqua Research Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Namita Indracanti
- Drug Repurposing and Translational Research Lab, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | - Rina Chakrabarti
- Aqua Research Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Prem Kumar Indraganti
- Drug Repurposing and Translational Research Lab, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, India
| |
Collapse
|
33
|
Shi W, Misra S, Li M, Su J, Chong LP, McCuske M, Williams J, Xu W, Ghoraie LS, Sutherland DR, Han K, Minden MD, Bratman SV, Yip KW, Liu FF. Inflammatory Biomarkers, Hematopoietic Stem Cells, and Symptoms in Breast Cancer Patients Undergoing Adjuvant Radiation Therapy. JNCI Cancer Spectr 2020; 4:pkaa037. [PMID: 33134822 PMCID: PMC7583146 DOI: 10.1093/jncics/pkaa037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/06/2020] [Accepted: 04/30/2020] [Indexed: 12/03/2022] Open
Abstract
Background Fatigue and insomnia are common symptoms experienced by breast cancer patients undergoing adjuvant radiation therapy (RT), yet the underlying mechanisms of these symptoms are unclear. In particular, the roles of hematopoietic stem cells (HSCs) and inflammatory cytokines remain to be elucidated. Methods Breast cancer patients (n = 147) completed questionnaires to longitudinally assess symptoms before, during, and after adjuvant RT. Phlebotomies were performed prior to RT, at the second and fifth treatment fractions, end of treatment (EOT), and 1 month after completing RT, assessing for CD34+, CD45+, full hematology, and 17 inflammatory cytokines. The associations between symptoms and all biomarkers were evaluated. All statistical tests were 2-sided. Results General fatigue and insomnia worsened with RT, with peak levels observed at EOT, which remained statistically significant even after controlling for anxiety and depression (P < .05 for all). CD34+, CD45+, white blood cell, and lymphocyte counts decreased, with the lowest levels also observed at EOT (P < .001). Fatigue and insomnia were associated with changes in both interferon γ-induced protein 10 (IP-10) - (P = .03 and P = .01, respectively) and tumor necrosis factor receptor II (TNF-RII) (P = .02 and P = .006, respectively), while mental fatigue was associated with increased matrix metalloproteinases-2 (MMP-2) levels (P = .03). Patients who received prior chemotherapy demonstrated statistically significantly greater severity in all symptoms, with lower baseline HSC levels. Conclusions This is the first longitudinal study to examine linkages between symptoms, HSCs, and cytokines, demonstrating that fatigue and insomnia shared associations with increasing serum levels of IP-10 and TNF-RII, and mental fatigue was associated with increasing serum levels of MMP-2. Our findings highlight opportunities for further research into mechanisms and potential interventions for these symptoms.
Collapse
Affiliation(s)
- Wei Shi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shagun Misra
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Madeline Li
- Department of Supportive Care, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Jie Su
- Division of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Lisa P Chong
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Megan McCuske
- Department of Supportive Care, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Justin Williams
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Wei Xu
- Division of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Biostatistics, University of Toronto, Toronto, Ontario, Canada
| | - Laleh S Ghoraie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - D Robert Sutherland
- Department of Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kathy Han
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Mark D Minden
- Department of Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Scott V Bratman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth W Yip
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Fei-Fei Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Chen HR, Sun YY, Chen CW, Kuo YM, Kuan IS, Tiger Li ZR, Short-Miller JC, Smucker MR, Kuan CY. Fate mapping via CCR2-CreER mice reveals monocyte-to-microglia transition in development and neonatal stroke. SCIENCE ADVANCES 2020; 6:eabb2119. [PMID: 32923636 PMCID: PMC7449686 DOI: 10.1126/sciadv.abb2119] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/13/2020] [Indexed: 05/12/2023]
Abstract
Whether monocytes contribute to the brain microglial pool in development or after brain injury remains contentious. To address this issue, we generated CCR2-CreER mice to track monocyte derivatives in a tamoxifen-inducible manner. This method labeled Ly6Chi and Ly6Clo monocytes after tamoxifen dosing and detected a surge of perivascular macrophages before blood-brain barrier breakdown in adult stroke. When dosed by tamoxifen at embryonic day 17 (E17), this method captured fetal hematopoietic cells at E18, subdural Ki67+ ameboid cells at postnatal day 2 (P2), and perivascular microglia, leptomeningeal macrophages, and Iba1+Tmem119+P2RY12+ parenchymal microglia in selective brain regions at P24. Furthermore, this fate mapping strategy revealed an acute influx of monocytes after neonatal stroke, which gradually transformed into a ramified morphology and expressed microglial marker genes (Sall1, Tmem119, and P2RY12) for at least 62 days after injury. These results suggest an underappreciated level of monocyte-to-microglia transition in development and after neonatal stroke.
Collapse
Affiliation(s)
- Hong-Ru Chen
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yu-Yo Sun
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ching-Wen Chen
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yi-Min Kuo
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | - Irena S. Kuan
- Department of Biology, Emory University, Atlanta, GA 30329, USA
| | | | - Jonah C. Short-Miller
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Marchelle R. Smucker
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Chia-Yi Kuan
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
35
|
Yang X, Chen D, Long H, Zhu B. The mechanisms of pathological extramedullary hematopoiesis in diseases. Cell Mol Life Sci 2020; 77:2723-2738. [PMID: 31974657 PMCID: PMC11104806 DOI: 10.1007/s00018-020-03450-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/24/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
Extramedullary hematopoiesis (EMH) is the expansion and differentiation of hematopoietic stem and progenitor cells outside of the bone marrow. In postnatal life, as a compensatory mechanism for ineffective hematopoiesis of the bone marrow, pathological EMH is triggered by hematopoietic disorders, insufficient hematopoietic compensation, and other pathological stress conditions, such as infection, advanced tumors, anemia, and metabolic stress. Pathological EMH has been reported in many organs, and the sites of pathological EMH may be related to reactivation of the embryonic hematopoietic structure in these organs. As a double-edged sword (blood and immune cell supplementation as well as clinical complications), pathological EMH has been widely studied in recent years. In particular, pathological EMH induced by late-stage tumors contributes to tumor immunosuppression. Thus, a deeper understanding of the mechanism of pathological EMH may be conducive to the development of therapies against the pathological processes that induce EMH. This article reviews the recent progress of research on the cellular and molecular mechanisms of pathological EMH in specific diseases.
Collapse
Affiliation(s)
- Xinxin Yang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Degao Chen
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Haixia Long
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
36
|
Upadhaya S, Krichevsky O, Akhmetzyanova I, Sawai CM, Fooksman DR, Reizis B. Intravital Imaging Reveals Motility of Adult Hematopoietic Stem Cells in the Bone Marrow Niche. Cell Stem Cell 2020; 27:336-345.e4. [PMID: 32589864 DOI: 10.1016/j.stem.2020.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/28/2020] [Accepted: 06/02/2020] [Indexed: 01/05/2023]
Abstract
Adult mammalian hematopoietic stem cells (HSCs) reside in the bone marrow (BM) but can be mobilized into blood for use in transplantation. HSCs interact with BM niche cells that produce growth factor c-Kit ligand (Kitl/SCF) and chemokine CXCL12, and were thought to be static and sessile. We used two-photon laser scanning microscopy to visualize genetically labeled HSCs in the BM of live mice for several hours. The majority of HSCs showed a dynamic non-spherical morphology and significant motility, undergoing slow processive motion interrupted by short stretches of confined motion. HSCs moved in the perivascular space and showed intermittent close contacts with SCF-expressing perivascular stromal cells. In contrast, mobilization-inducing blockade of CXCL12 receptor CXCR4 and integrins rapidly abrogated HSC motility and shape dynamics in real time. Our results reveal an unexpectedly dynamic nature of HSC residence in the BM and interaction with the SCF+ stromal niche, which is disrupted during HSC mobilization.
Collapse
Affiliation(s)
- Samik Upadhaya
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Oleg Krichevsky
- Physics Department, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | - Catherine M Sawai
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; INSERM Unit 1218 ACTION Laboratory, University of Bordeaux, Bergonié Cancer Institute, 33076 Bordeaux, France
| | - David R Fooksman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
37
|
Huizer K, Sacchetti A, Swagemakers S, van der Spek PJ, Dik W, Mustafa DA, Kros JM. Circulating angiogenic cells in glioblastoma: toward defining crucial functional differences in CAC-induced neoplastic versus reactive neovascularization. Neurooncol Adv 2020; 2:vdaa040. [PMID: 32642695 PMCID: PMC7276933 DOI: 10.1093/noajnl/vdaa040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background In order to identify suitable therapeutic targets for glioma anti-angiogenic therapy, the process of neovascularization mediated by circulating angiogenic cells (CACs) needs to be scrutinized. Methods In the present study, we compared the expression of neovascularization-related genes by 3 circulating CAC subsets (hematopoietic progenitor cells [HPCs], CD34+, and KDR+ cells; internal controls: peripheral blood mononuclear cells and circulating endothelial cells) of treatment-naïve patients with glioblastoma (GBM) to those of patients undergoing reactive neovascularization (myocardial infarction (MI). CACs from umbilical cord (representing developmental neovascularization) and healthy subjects served as controls. Fluorescent-activated cell sorting was used to isolate CACs, RT-PCR to determine the expression levels of a panel of 48 neovascularization-related genes, and Luminex assays to measure plasma levels of 21 CAC-related circulating molecules. Results We found essential differences in gene expression between GBM and MI CACs. GBM CACs had a higher expression of proangiogenic factors (especially, KITL, CXCL12, and JAG1), growth factor and chemotactic receptors (IGF1R, TGFBR2, CXCR4, and CCR2), adhesion receptor monomers (ITGA5 and ITGA6), and matricellular factor POSTN. In addition, we found major differences in the levels of neovascularization-related plasma factors. A strong positive correlation between plasma MMP9 levels and expression of CXCR4 in the CAC subset of HPCs was found in GBM patients. Conclusions Our findings indicate that CAC-mediated neovascularization in GBM is characterized by more efficient CAC homing to target tissue and a more potent proangiogenic response than in physiologic tissue repair in MI. Our findings can aid in selecting targets for therapeutic strategies acting against GBM-specific CACs.
Collapse
Affiliation(s)
- Karin Huizer
- Laboratory for Tumor Immuno-Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Andrea Sacchetti
- Laboratory for Tumor Immuno-Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sigrid Swagemakers
- Department of Pathology and Clinical Bio-Informatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Peter J van der Spek
- Department of Pathology and Clinical Bio-Informatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wim Dik
- Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dana A Mustafa
- Laboratory for Tumor Immuno-Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Johan M Kros
- Laboratory for Tumor Immuno-Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
38
|
Sadeghzadeh Z, Khosravi A, Jazi MS, Asadi J. Upregulation of Fucosyltransferase 3, 8 and protein O-Fucosyltransferase 1, 2 genes in esophageal cancer stem-like cells (CSLCs). Glycoconj J 2020; 37:319-327. [PMID: 32157457 DOI: 10.1007/s10719-020-09917-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023]
Abstract
Recently, studies have shown that Fucosylation plays an important role in the invasion and metastatic process of CSLCs. Understanding the expression pattern of fucosyltransferase (FUT) genes may help to suggest better-targeted therapy strategies for esophageal squamous cell carcinoma (ESCC). The study aimed to address the expression pattern of FUT gene variants in esophageal CSLCs and parental adherent cells. Sphere formation method was used to enrich CSLCs. Expression of FUT genes was examined in tumor sphere and parental adherent cells using the RT-PCR method and then relative expression of detected variants was performed by the Real-Time PCR method in both groups. The detected FUTs, also, were assessed in fresh ESCC tumors and the matched healthy controls. Analysis of The cell surface carbohydrate Lewis x (LeX, CD15) was performed by flow cytometry. Molecular analysis showed that the expression of FUT 3, 8 and POFUT1, 2 genes in tumorsphere were significantly higher than parental adherent cells. Analysis of fresh ESCC tumor tissues and the matched healthy controls showed that FUT8 and POFUT1, 2 genes in contrast to FUT 3 have higher expression in tumor tissues than controls. Flow cytometric analyses revealed that tumorsphere and their parent cells do not differ significantly in Lewis x surface marker. The present study showed that FUT 3, 8 and POFUT1, 2 genes upregulated in esophageal CSLCs in comparison to adherent cells. Understanding the expression pattern of FUT gene variants may help to suggest better-targeted therapy strategies for ESCC.
Collapse
Affiliation(s)
- Zahra Sadeghzadeh
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ayyoob Khosravi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Marie Saghaeian Jazi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Jahanbakhsh Asadi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran. .,Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
39
|
Bouvard B, Pascaretti-Grizon F, Legrand E, Lavigne C, Audran M, Chappard D. Bone lesions in systemic mastocytosis: Bone histomorphometry and histopathological mechanisms. Morphologie 2020; 104:97-108. [PMID: 32127247 DOI: 10.1016/j.morpho.2020.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 01/06/2023]
Abstract
Osteoporosis is considered the most frequent skeletal manifestation of systemic mastocytosis (SM). We performed a retrospective analysis of sixty patients (37 males and 23 females) who underwent a bone biopsy in the assessment of SM or in the assessment of unexplained bone fragility. Thirty-three had simultaneously a bone marrow biopsy with a Jamshidi's needle; this sample was used for immunohistochemical analysis (tryptase, c-KIT. CD20, VCAM-1). Bone biopsy was realized in 42 cases in the assessment of SM to provide histologic proof of the disease and in 18 cases in the assessment of unexplained bone fragility and surprisingly revealed a SM. An increased bone turnover was observed in patients with SM with elevated eroded surfaces, osteoclast number and bone formation rate. In addition to nodules of mast cells (MC), a high number of MC was directly apposed on the trabeculae, affixed on the osteoblasts or the lining cells. The VCAM-1 adhesion protein recognizing α4β7 and α4β1 integrins may be a candidate to explain this particular adherence. One third of the bone marrow biopsies did not exhibit MC nodules or MC infiltration and led to a false negative diagnosis for SM. SM can be discovered in the assessment of fracture or osteoporosis. Transiliac bone biopsy allows for the diagnosis of the disease more accurately than bone marrow biopsy; it also provides a histomorphometric analysis of bone remodeling.
Collapse
Affiliation(s)
- B Bouvard
- Groupe études remodelage osseux et biomatériaux (GEROM), EA-4658, SFR-4208, IRIS-Institut de Biologie en Santé (IBS), université d'Angers, CHU d'Angers, 49933 Angers, France; Department of rheumatology, CHU d'Angers, 49933 Angers cedex, France
| | - F Pascaretti-Grizon
- Groupe études remodelage osseux et biomatériaux (GEROM), EA-4658, SFR-4208, IRIS-Institut de Biologie en Santé (IBS), université d'Angers, CHU d'Angers, 49933 Angers, France
| | - E Legrand
- Groupe études remodelage osseux et biomatériaux (GEROM), EA-4658, SFR-4208, IRIS-Institut de Biologie en Santé (IBS), université d'Angers, CHU d'Angers, 49933 Angers, France; Department of rheumatology, CHU d'Angers, 49933 Angers cedex, France
| | - C Lavigne
- Department of internal medicine, CHU d'Angers, 49933 Angers cedex, France
| | - M Audran
- Groupe études remodelage osseux et biomatériaux (GEROM), EA-4658, SFR-4208, IRIS-Institut de Biologie en Santé (IBS), université d'Angers, CHU d'Angers, 49933 Angers, France; Department of rheumatology, CHU d'Angers, 49933 Angers cedex, France
| | - D Chappard
- Groupe études remodelage osseux et biomatériaux (GEROM), EA-4658, SFR-4208, IRIS-Institut de Biologie en Santé (IBS), université d'Angers, CHU d'Angers, 49933 Angers, France.
| |
Collapse
|
40
|
Benova A, Tencerova M. Obesity-Induced Changes in Bone Marrow Homeostasis. Front Endocrinol (Lausanne) 2020; 11:294. [PMID: 32477271 PMCID: PMC7235195 DOI: 10.3389/fendo.2020.00294] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022] Open
Abstract
Obesity is characterized by low-grade inflammation, which is accompanied by increased accumulation of immune cells in peripheral tissues including adipose tissue (AT), skeletal muscle, liver and pancreas, thereby impairing their primary metabolic functions in the regulation of glucose homeostasis. Obesity has also shown to have a detrimental effect on bone homeostasis by altering bone marrow and hematopoietic stem cell differentiation and thus impairing bone integrity and immune cell properties. The origin of immune cells arises in the bone marrow, which has been shown to be affected with the obesogenic condition via increased cellularity and shifting differentiation and function of hematopoietic and bone marrow mesenchymal stem cells in favor of myeloid progenitors and increased bone marrow adiposity. These obesity-induced changes in the bone marrow microenvironment lead to dramatic bone marrow remodeling and compromising immune cell functions, which in turn affect systemic inflammatory conditions and regulation of whole-body metabolism. However, there is limited information on the inflammatory secretory factors creating the bone marrow microenvironment and how these factors changed during metabolic complications. This review summarizes recent findings on inflammatory and cellular changes in the bone marrow in relation to obesity and further discuss whether dietary intervention or physical activity may have beneficial effects on the bone marrow microenvironment and whole-body metabolism.
Collapse
|
41
|
Daniel SK, Seo YD, Pillarisetty VG. The CXCL12-CXCR4/CXCR7 axis as a mechanism of immune resistance in gastrointestinal malignancies. Semin Cancer Biol 2019; 65:176-188. [PMID: 31874281 DOI: 10.1016/j.semcancer.2019.12.007] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Single agent checkpoint inhibitor therapy has not been effective for most gastrointestinal solid tumors, but combination therapy with drugs targeting additional immunosuppressive pathways is being attempted. One such pathway, the CXCL12-CXCR4/CXCR7 chemokine axis, has attracted attention due to its effects on tumor cell survival and metastasis as well as immune cell migration. CXCL12 is a small protein that functions in normal hematopoietic stem cell homing in addition to repair of damaged tissue. Binding of CXCL12 to CXCR4 leads to activation of G protein signaling kinases such as P13K/mTOR and MEK/ERK while binding to CXCR7 leads to β-arrestin mediated signaling. While some gastric and colorectal carcinoma cells have been shown to make CXCL12, the primary source in pancreatic cancer and peritoneal metastases is cancer-associated fibroblasts. Binding of CXCL12 to CXCR4 and CXCR7 on tumor cells leads to anti-apoptotic signaling through Bcl-2 and survivin upregulation, as well as promotion of the epithelial-to-mesechymal transition through the Rho-ROCK pathway and alterations in cell adhesion molecules. High levels of CXCL12 seen in the bone marrow, liver, and spleen could partially explain why these are popular sites of metastases for many tumors. CXCL12 is a chemoattractant for lymphocytes at lower levels, but becomes chemorepellant at higher levels; it is unclear exactly what gradient exists in the tumor microenvironment and how this influences tumor-infiltrating lymphocytes. AMD3100 (Plerixafor or Mozobil) is a small molecule CXCR4 antagonist and is the most frequently used drug targeting the CXCL12-CXCR4/CXCR7 axis in clinical trials for gastrointestinal solid tumors currently. Other small molecules and monoclonal antibodies against CXCR4 are being trialed. Further understanding of the CXCL12- CXCR4/CXCR7 chemokine axis in the tumor microenvironment will allow more effective targeting of this pathway in combination immunotherapy.
Collapse
Affiliation(s)
- Sara K Daniel
- University of Washington, Dept. of Surgery, Seattle, WA, USA
| | - Y David Seo
- University of Washington, Dept. of Surgery, Seattle, WA, USA
| | | |
Collapse
|
42
|
Goodus MT, McTigue DM. Hepatic dysfunction after spinal cord injury: A vicious cycle of central and peripheral pathology? Exp Neurol 2019; 325:113160. [PMID: 31863731 DOI: 10.1016/j.expneurol.2019.113160] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 11/17/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
Abstract
The liver is essential for numerous physiological processes, including filtering blood from the intestines, metabolizing fats, proteins, carbohydrates and drugs, and regulating iron storage and release. The liver is also an important immune organ and plays a critical role in response to infection and injury throughout the body. Liver functions are regulated by autonomic parasympathetic innervation from the brainstem and sympathetic innervation from the thoracic spinal cord. Thus, spinal cord injury (SCI) at or above thoracic levels disrupts major regulatory mechanisms for hepatic functions. Work in rodents and humans shows that SCI induces liver pathology, including hepatic inflammation and fat accumulation characteristic of a serious form of non-alcoholic fatty liver disease (NAFLD) called non-alcoholic steatohepatitis (NASH). This hepatic pathology is associated with and likely contributes to indices of metabolic dysfunction often noted in SCI individuals, such as insulin resistance and hyperlipidemia. These occur at greater rates in the SCI population and can negatively impact health and quality of life. In this review, we will: 1) Discuss acute and chronic changes in human and rodent liver pathology and function after SCI; 2) Describe how these hepatic changes affect systemic inflammation, iron regulation and metabolic dysfunction after SCI; 3) Describe how disruption of the hepatic autonomic nervous system may be a key culprit in post-injury chronic liver pathology; and 4) Preview ongoing and future research that aims to elucidate mechanisms driving liver and metabolic dysfunction after SCI.
Collapse
Affiliation(s)
- Matthew T Goodus
- The Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| | - Dana M McTigue
- The Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
43
|
Emmi G, Mannucci A, Argento FR, Silvestri E, Vaglio A, Bettiol A, Fanelli A, Stefani L, Taddei N, Prisco D, Fiorillo C, Becatti M. Stem-Cell-Derived Circulating Progenitors Dysfunction in Behçet's Syndrome Patients Correlates With Oxidative Stress. Front Immunol 2019; 10:2877. [PMID: 31921141 PMCID: PMC6923242 DOI: 10.3389/fimmu.2019.02877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 11/22/2019] [Indexed: 12/29/2022] Open
Abstract
Behçet's syndrome (BS) is a systemic vasculitis considered as the prototype of a systemic inflammation-induced thrombotic condition whose pathogenesis cannot be explained just by coagulation abnormalities. Circulating hematopoietic progenitor cells (CPC), a population of rare, pre-differentiated adult stem cells originating in the bone marrow and capable of both self-renewal and multi-lineage differentiation, are mobilized in response to vascular injury and play a key role in tissue repair. In cardiovascular and thrombotic diseases, low circulating CPC number and reduced CPC function have been observed. Oxidative stress may be one of the relevant culprits that account for the dysfunctional and numerically reduced CPC in these conditions. However, the detailed mechanisms underlying CPC number reduction are unknown. On this background, the present study was designed to evaluate for the first time the possible relationship between CPC dysfunction and oxidative stress in BS patients. In BS patients, we found signs of plasma oxidative stress and significantly lower CD34+/CD45−/dim and CD34+/CD45−/dim/CD133+ CPC levels. Importantly, in all the considered CPC subsets, significantly higher ROS levels with respect to controls were observed. Higher levels of caspase-3 activity in all the considered CPC population and a strong reduction in GSH content in CPC subpopulation from BS patients with respect to controls were also observed. Interestingly, in BS patients, ROS significantly correlated with CPC number and CPC caspase-3 activity and CPC GSH content significantly correlated with CPC number, in all CPC subsets. Collectively, these data demonstrate for the first time that CPC from BS patients show signs of oxidative stress and apoptosis and that a reduced CPC number is present in BS patients with respect to controls. Interestingly, we observed an inverse correlation between circulating CPC number and CPC ROS production, suggesting a possible toxic ROS effect on CPC in BS patients. The significant correlations between ROS production/GSH content and caspase-3 activity point out that oxidative stress can represent a determinant in the onset of apoptosis in CPC. These data support the hypothesis that oxidative-stress-mediated CPC dysfunctioning may counteract their vascular repair actions, thereby contributing to the pathogenesis and the progression of vascular disease in BS.
Collapse
Affiliation(s)
- Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Amanda Mannucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Elena Silvestri
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Augusto Vaglio
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Alessandra Fanelli
- Central Laboratory, Azienda Ospedaliero Universitaria Careggi, Firenze, Italy
| | - Laura Stefani
- Department of Clinical and Experimental Medicine, Center of Sports Medicine, University of Firenze, Firenze, Italy
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| |
Collapse
|
44
|
Wang F, Wei D, Suo Y, Zhu X, Yuan Y, Gao W, Jiang H, Wei X, Chen T. In vivo flow cytometry combined with intravital microscopy to monitor kinetics of transplanted bone marrow mononuclear cells in peripheral blood and bone marrow. Mol Biol Rep 2019; 47:1-10. [DOI: 10.1007/s11033-019-04608-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/16/2019] [Indexed: 12/26/2022]
|
45
|
Li J, Li S, Dong J, Alibhai FJ, Zhang C, Shao Z, Song H, He S, Yin W, Wu J, Weisel RD, Liu S, Li R. Long-term repopulation of aged bone marrow stem cells using young Sca-1 cells promotes aged heart rejuvenation. Aging Cell 2019; 18:e13026. [PMID: 31385396 PMCID: PMC6826122 DOI: 10.1111/acel.13026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 06/27/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022] Open
Abstract
Reduced quantity and quality of stem cells in aged individuals hinders cardiac repair and regeneration after injury. We used young bone marrow (BM) stem cell antigen 1 (Sca‐1) cells to reconstitute aged BM and rejuvenate the aged heart, and examined the underlying molecular mechanisms. BM Sca‐1+ or Sca‐1− cells from young (2–3 months) or aged (18–19 months) GFP transgenic mice were transplanted into lethally irradiated aged mice to generate 4 groups of chimeras: young Sca‐1+, young Sca‐1−, old Sca‐1+, and old Sca‐1−. Four months later, expression of rejuvenation‐related genes (Bmi1, Cbx8, PNUTS, Sirt1, Sirt2, Sirt6) and proteins (CDK2, CDK4) was increased along with telomerase activity and telomerase‐related protein (DNA‐PKcs, TRF‐2) expression, whereas expression of senescence‐related genes (p16INK4a, P19ARF, p27Kip1) and proteins (p16INK4a, p27Kip1) was decreased in Sca‐1+ chimeric hearts, especially in the young group. Host cardiac endothelial cells (GFP−CD31+) but not cardiomyocytes were the primary cell type rejuvenated by young Sca‐1+ cells as shown by improved proliferation, migration, and tubular formation abilities. C‐X‐C chemokine CXCL12 was the factor most highly expressed in homed donor BM (GFP+) cells isolated from young Sca‐1+ chimeric hearts. Protein expression of Cxcr4, phospho‐Akt, and phospho‐FoxO3a in endothelial cells derived from the aged chimeric heart was increased, especially in the young Sca‐1+ group. Reconstitution of aged BM with young Sca‐1+ cells resulted in effective homing of functional stem cells in the aged heart. These young, regenerative stem cells promoted aged heart rejuvenation through activation of the Cxcl12/Cxcr4 pathway of cardiac endothelial cells.
Collapse
Affiliation(s)
- Jiao Li
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Institute of Cardiovascular Disease Guangzhou Medical University Guangzhou China
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute University Health Network Toronto ON Canada
| | - Shu‐Hong Li
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute University Health Network Toronto ON Canada
| | - Jun Dong
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Institute of Cardiovascular Disease Guangzhou Medical University Guangzhou China
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute University Health Network Toronto ON Canada
| | - Faisal J. Alibhai
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute University Health Network Toronto ON Canada
| | - Chongyu Zhang
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Institute of Cardiovascular Disease Guangzhou Medical University Guangzhou China
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute University Health Network Toronto ON Canada
| | - Zheng‐Bo Shao
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute University Health Network Toronto ON Canada
| | - Hui‐Fang Song
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute University Health Network Toronto ON Canada
| | - Sheng He
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute University Health Network Toronto ON Canada
| | - Wen‐Juan Yin
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute University Health Network Toronto ON Canada
| | - Jun Wu
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute University Health Network Toronto ON Canada
| | - Richard D. Weisel
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute University Health Network Toronto ON Canada
- Division of Cardiac Surgery, Department of Surgery University of Toronto Toronto ON Canada
| | - Shi‐Ming Liu
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Institute of Cardiovascular Disease Guangzhou Medical University Guangzhou China
| | - Ren‐Ke Li
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute University Health Network Toronto ON Canada
- Division of Cardiac Surgery, Department of Surgery University of Toronto Toronto ON Canada
| |
Collapse
|
46
|
Kim J, Bixel MG. Intravital Multiphoton Imaging of the Bone and Bone Marrow Environment. Cytometry A 2019; 97:496-503. [DOI: 10.1002/cyto.a.23937] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Affiliation(s)
- JungMo Kim
- Department of Tissue MorphogenesisMax Planck Institute for Molecular Biomedicine D‐48149 Münster Germany
| | - Maria Gabriele Bixel
- Department of Tissue MorphogenesisMax Planck Institute for Molecular Biomedicine D‐48149 Münster Germany
| |
Collapse
|
47
|
Zhang C, Jing Y, Zhang W, Zhang J, Yang M, Du L, Jia Y, Chen L, Gong H, Li J, Gao F, Liu H, Qin C, Liu C, Wang Y, Shi W, Zhou H, Liu Z, Yang D, Li J. Dysbiosis of gut microbiota is associated with serum lipid profiles in male patients with chronic traumatic cervical spinal cord injury. Am J Transl Res 2019; 11:4817-4834. [PMID: 31497202 PMCID: PMC6731442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Neurogenic bowel dysfunction (NBD) and gut dysbiosis frequently occur in patients with traumatic cervical spinal cord injury (TCSCI). We evaluated neurogenic bowel management and changes in the gut microbiota in patients with TCSCI as well as associations between these changes and serum biomarkers. Fresh fecal and clinical data were collected from 20 male patients with TCSCI and 23 healthy males. Microbial diversity and composition were analyzed by sequencing the V3-V4 region of the 16S rRNA gene. Moderate NBD was observed in patients with TCSCI. The diversity of the gut microbiota was lower in patients with TCSCI than in healthy adults. Furthermore, patients with TCSCI showed altered levels of serum biomarkers related to lipid metabolism, indicating unfavorable lipid profiles. Interestingly, Firmicutes had a positive effect and Verrucomicrobia had a negative effect on lipid metabolism (P < 0.05). At the genus level, Bacteroides and Blautia were significantly more abundant in patients than in healthy subjects and could be associated with lipid metabolism (P < 0.05). Faecalibacterium, Megamonas, and Prevotella, which were correlated with lipid metabolism markers, may be suitable targets for the treatment of TCSCI. Lactobacillus was positively correlated with glucose levels. The dysbiosis of several key gut bacteria was associated with serum biomarkers of lipid metabolism in patients with TCSCI. The observed interdependency of the microbiota and lipid metabolism provides a basis for understanding the mechanisms underlying lipid disorders after cervical SCI.
Collapse
Affiliation(s)
- Chao Zhang
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Yingli Jing
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Institute of Rehabilitation MedicineBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Wenhao Zhang
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Jie Zhang
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Mingliang Yang
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Liangjie Du
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Yanmei Jia
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Liang Chen
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Huiming Gong
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Jun Li
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Feng Gao
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Hongwei Liu
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Chuan Qin
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Changbin Liu
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Yi Wang
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Spinal Cord Injury RehabilitationBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Wenli Shi
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Nutrition China Rehabilitation Research CenterBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Hongjun Zhou
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Laboratory MedicineBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Zhizhong Liu
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Spinal Cord Injury RehabilitationBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Degang Yang
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Jianjun Li
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| |
Collapse
|
48
|
Phc2 controls hematopoietic stem and progenitor cell mobilization from bone marrow by repressing Vcam1 expression. Nat Commun 2019; 10:3496. [PMID: 31375680 PMCID: PMC6677815 DOI: 10.1038/s41467-019-11386-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/12/2019] [Indexed: 01/04/2023] Open
Abstract
The timely mobilization of hematopoietic stem and progenitor cells (HSPCs) is essential for maintaining hematopoietic and tissue leukocyte homeostasis. Understanding how HSPCs migrate between bone marrow (BM) and peripheral tissues is of great significance in the clinical setting, where therapeutic strategies for modulating their migration capacity determine the clinical outcome. Here, we identify an epigenetic regulator, Phc2, as a critical modulator of HSPC trafficking. The genetic ablation of Phc2 in mice causes a severe defect in HSPC mobilization through the derepression of Vcam1 in bone marrow stromal cells (BMSCs), ultimately leading to a systemic immunodeficiency. Moreover, the pharmacological inhibition of VCAM-1 in Phc2-deficient mice reverses the symptoms. We further determine that Phc2-dependent Vcam1 repression in BMSCs is mediated by the epigenetic regulation of H3K27me3 and H2AK119ub. Together, our data demonstrate a cell-extrinsic role for Phc2 in controlling the mobilization of HSPCs by finely tuning their bone marrow niche. Mobilization of hematopoietic stem and progenitor cells (HSPCs) into the circulation is essential for maintaining homeostasis. Here, the authors show that Phc2 in bone marrow stromal cells represses the cell adhesion molecule Vcam1 and facilitates mobilization of HSPCs through regulation of epigenetic marks.
Collapse
|
49
|
Li H, Lim HC, Zacharaki D, Xian X, Kenswil KJG, Bräunig S, Raaijmakers MHGP, Woods NB, Hansson J, Scheding S. Early growth response 1 regulates hematopoietic support and proliferation in human primary bone marrow stromal cells. Haematologica 2019; 105:1206-1215. [PMID: 31371413 PMCID: PMC7193482 DOI: 10.3324/haematol.2019.216648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/19/2019] [Indexed: 02/04/2023] Open
Abstract
Human bone marrow stromal cells (BMSC) are key elements of the hematopoietic environment and they play a central role in bone and bone marrow physiology. However, how key stromal cell functions are regulated is largely unknown. We analyzed the role of the immediate early response transcription factor EGR1 as key stromal cell regulator and found that EGR1 was highly expressed in prospectively-isolated primary BMSC, down-regulated upon culture, and low in non-colony-forming CD45neg stromal cells. Furthermore, EGR1 expression was lower in proliferative regenerating adult and fetal primary cells compared to adult steady-state BMSC. Overexpression of EGR1 in stromal cells induced potent hematopoietic stroma support as indicated by an increased production of transplantable CD34+CD90+ hematopoietic stem cells in expansion co-cultures. The improvement in bone marrow stroma support function was mediated by increased expression of hematopoietic supporting genes, such as VCAM1 and CCL28. Furthermore, EGR1 overexpression markedly decreased stromal cell proliferation whereas EGR1 knockdown caused the opposite effects. These findings thus show that EGR1 is a key stromal transcription factor with a dual role in regulating proliferation and hematopoietic stroma support function that is controlling a genetic program to co-ordinate the specific functions of BMSC in their different biological contexts.
Collapse
Affiliation(s)
- Hongzhe Li
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Hooi-Ching Lim
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Dimitra Zacharaki
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Xiaojie Xian
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Division of Molecular Medicine and Gene Therapy, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Keane J G Kenswil
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Sandro Bräunig
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Niels-Bjarne Woods
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Division of Molecular Medicine and Gene Therapy, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Jenny Hansson
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Stefan Scheding
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, Lund, Sweden .,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Department of Hematology, Skåne University Hospital Lund, Skåne, Sweden
| |
Collapse
|
50
|
Mafra K, Nakagaki BN, Castro Oliveira HM, Rezende RM, Antunes MM, Menezes GB. The liver as a nursery for leukocytes. J Leukoc Biol 2019; 106:687-693. [PMID: 31107980 DOI: 10.1002/jlb.mr1118-455r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/10/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022] Open
Abstract
Leukocytes are a large population of cells spread within most tissues in the body. These cells may be either sessile (called as resident cells) or circulating leukocytes, which travel long journeys inside the vessels during their lifespan. Although production and maturation of these leukocytes in adults primarily occur in the bone marrow, it is well known that this process-called hematopoiesis-started in the embryonic life in different sites, including the yolk sac, placenta, and the liver. In this review, we will discuss how the liver acts as a pivotal site for leukocyte maturation during the embryo phase, and also how the most frequent liver-resident immune cell populations-namely Kupffer cells, dendritic cells, and lymphocytes-play a vital role in both tolerance and inflammatory responses to antigens from food, microbiota, and pathogens.
Collapse
Affiliation(s)
- Kassiana Mafra
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Brenda Naemi Nakagaki
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Hortência Maciel Castro Oliveira
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Machado Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maísa Mota Antunes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo Batista Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|