1
|
Xie C, Cheng J, Chen P, Yan X, Luo C, Qu H, Shu D, Ji J. Integrating gut and IgA-coated microbiota to identify Blautia as a probiotic for enhancing feed efficiency in chickens. IMETA 2025; 4:e264. [PMID: 40027490 PMCID: PMC11865324 DOI: 10.1002/imt2.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 03/05/2025]
Abstract
This study explores the role of IgA-coated bacteria in improving feed efficiency in chickens, offering a novel perspective for probiotic screening. Chickens with high feed efficiency were found to have a greater abundance of Gram-positive bacteria, while low feed efficiency chickens exhibited higher levels of Gram-negative bacteria and potential pathogens. Through fecal microbiota transplantation (FMT) and integrating analysis of cecal and IgA-coated microbiota, we precisely identified Blautia as a key genus linked to improved feed efficiency. Further validation demonstrated that Blautia coccoides, a representative species of this genus, enhances feed efficiency and activates B cells to produce Immunoglobulin A (IgA), both in vivo and in vitro. Our findings provide new insights into the potential of IgA-coated bacteria as functional probiotics, offering a promising strategy for enhancing feed efficiency in animal production.
Collapse
Affiliation(s)
- Chunlin Xie
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Jiaheng Cheng
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Peng Chen
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Xia Yan
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Chenglong Luo
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Hao Qu
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Dingming Shu
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Jian Ji
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural SciencesGuangzhouChina
| |
Collapse
|
2
|
Said SS, Ibrahim WN. Gut Microbiota-Tumor Microenvironment Interactions: Mechanisms and Clinical Implications for Immune Checkpoint Inhibitor Efficacy in Cancer. Cancer Manag Res 2025; 17:171-192. [PMID: 39881948 PMCID: PMC11776928 DOI: 10.2147/cmar.s405590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/21/2024] [Indexed: 01/31/2025] Open
Abstract
Cancer immunotherapy has transformed cancer treatment in recent years, with immune checkpoint inhibitors (ICIs) emerging as a key therapeutic approach. ICIs work by inhibiting the mechanisms that allow tumors to evade immune detection. Although ICIs have shown promising results, especially in solid tumors, patient responses vary widely due to multiple intrinsic and extrinsic factors within the tumor microenvironment. Emerging evidence suggests that the gut microbiota plays a pivotal role in modulating immune responses at the tumor site and may even influence treatment outcomes in cancer patients receiving ICIs. This review explores the complex interactions between the gut microbiota and the tumor microenvironment, examining how these interactions could impact the effectiveness of ICI therapy. Furthermore, we discuss how dysbiosis, an imbalance in gut microbiota composition, may contribute to resistance to ICIs, and highlight microbiota-targeted strategies to potentially overcome this challenge. Additionally, we review recent studies investigating the diagnostic potential of microbiota profiles in cancer patients, considering how microbial markers might aid in early detection and stratification of patient responses to ICIs. By integrating insights from recent preclinical and clinical studies, we aim to shed light on the potential of microbiome modulation as an adjunct to cancer immunotherapy and as a diagnostic tool, paving the way for personalized therapeutic approaches that optimize patient outcomes.
Collapse
Affiliation(s)
- Sawsan Sudqi Said
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
3
|
Jiang Q, Zhu X, Sun L, Xie C, Wang X, Ma L, Yan X. Akkermansia muciniphila Promotes SIgA Production and Alters the Reactivity Toward Commensal Bacteria in Early-Weaned Piglets. J Nutr 2025; 155:52-65. [PMID: 39528052 DOI: 10.1016/j.tjnut.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Secretory IgA (SIgA) is the first line of defense in protecting the intestinal epithelium against pathogenic bacteria, regulating gut microbiota composition, and maintaining intestinal homeostasis. Early weaning strategies may disrupt SIgA levels in piglet intestines, causing a decline in immune response and early weaning stress. However, the specific microbial mechanisms modulating SIgA in early-weaned piglets are not well understood. OBJECTIVES We hypothesized that Akkermansia muciniphila increases intestinal SIgA production in the early-weaned piglets. METHODS Fecal SIgA levels, SIgA-coated bacteria abundance, and fecal metagenomes were compared between 6 Huanjiang miniature (HM) and 6 Duroc×Landrace×Yorkshire (DLY) early-weaned piglets to identify bacterial species involved in SIgA modulation. Four bacterial species were investigated using 5 groups (Control, A. muciniphila, L. amylovorus, L. crispatus, and L. acidophilus) of male specific pathogen-free C57BL/6J mice, weaned 3 wk postbirth (n = 8/group). Subsequently, 10-d-old Landrace×Yorkshire (LY) piglets were randomly assigned to 3 groups (Control, 109A. muciniphila, and 108A. muciniphila) (n = 10/group) to evaluate the effect of orally administered A. muciniphila on intestinal SIgA production and microbial composition. RESULTS HM early-weaned piglets showed significantly higher SIgA levels [7.59 μg/mg, 95% confidence interval (CI): 3.2, 12, P = 0.002] and SIgA-coated bacteria abundance (8.64%, 95% CI: 3.2, 14, P = 0.014) than DLY piglets. In the mouse model, the administration of A. muciniphila significantly increased SIgA levels (3.50 μg/mg, 95% CI: 0.59, 6.4, P = 0.018), SIgA-coated bacteria abundance (9.06%, 95% CI: 4, 14, P = 0.018), and IgA+ plasma cell counts (6.1%, 95% CI: 4.3, 8, P = 0.005). In the pig experiments, the oral administration of A. muciniphila to LY piglets significantly enhanced intestinal SIgA concentrations (4.22 μg/mg, 95% CI: 0.37, 8.5, P = 0.034) and altered the SIgA-coated bacterial landscape. CONCLUSIONS Early intervention with A. muciniphila in nursing piglets can increases intestinal SIgA production and alter the reactivity toward commensal bacteria upon early weaning.
Collapse
Affiliation(s)
- Qin Jiang
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Yazhouwan National Laboratory (YNL), Sanya, China
| | - Xiaoyan Zhu
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lingling Sun
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chunlin Xie
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xinkai Wang
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Libao Ma
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xianghua Yan
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Wu S, Hu L, Fu Y, Chen Y, Hu Z, Li H, Liu Z. Effects of Intestinal M Cells on Intestinal Barrier and Neuropathological Properties in an AD Mouse Model. Mol Neurobiol 2024; 61:10006-10022. [PMID: 38066398 DOI: 10.1007/s12035-023-03807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2024]
Abstract
Intestinal microfold cells (M cells) play a critical role in the immune response of the intestinal mucosa by actively taking up antigens, facilitating antigen presentation to immune cells, and promoting the production of secretory immunoglobulin A by B cells. Despite their known important functions in the gut, the effect of M cells on the central nervous system remains unclear. We investigated the expression of M cell-related factor genes and protein levels in Peyer's patches (PPs) of 3-month-old and 9-month-old APP/PS1 mice, as well as the expression of intestinal barrier proteins in the ileum and colon of these mice. Furthermore, we employed intestinal M cell conditional ablation mice (i.e., RankΔIEC mice) to assess the influence of M cells on the intestinal barrier and Alzheimer's disease (AD)-like behavioral and pathological features. Our findings revealed that compared to wild-type mice, APP/PS1 mice showed altered M cell-related genes and disrupted intestinal barriers. In addition, there is a significant decrease in glycoprotein 2 (GP2) mRNA levels in the PPs of 3-month-old APP/PS1 mice, with the relative expression of GP2 mRNA tending to zero. Parameters related to the intestinal barrier (IgA, MUC2, Claudin-5, ZO-1) were significantly downregulated in both 3-month-old and 9-month-old APP/PS1 mice compared to wild-type controls, and the differences were more pronounced in the 9-month-old mice. Moreover, M cell ablation in APP/PS1 mice (i.e., APP/PS1ΔMC mice) resulted in more severe intestinal barrier destruction. Notably, we observed through water maze experiments that APP/PS1ΔMC mice at 6 months of age exhibited significantly poorer spatial learning memory compared to APP/PS1 mice. And the neuropathological alterations were also observed in APP/PS1ΔMC mice at 6 months of age that when intestinal M cells are damaged in APP/PS1 mice, brain microglia are activated, Tau phosphorylation is exacerbated, and the number of neurons is reduced. Our results suggest for the first time that the absence of intestinal M cells might further aggravate intestinal leakage, lead to neuropathological damage, and subsequently cause the impairment of learning memory ability in AD mice. Our research highlights the impact of intestinal M cells on the intestinal barrier and AD neuropathogenesis in AD mouse model.
Collapse
Affiliation(s)
- Shijing Wu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Li Hu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yiwei Fu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yating Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhibin Hu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK.
| | - Zhou Liu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
5
|
Gleeson PJ, Camara NOS, Launay P, Lehuen A, Monteiro RC. Immunoglobulin A Antibodies: From Protection to Harmful Roles. Immunol Rev 2024; 328:171-191. [PMID: 39578936 PMCID: PMC11659943 DOI: 10.1111/imr.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024]
Abstract
Immunoglobulin A (IgA) is the most abundantly produced antibody in humans. IgA is a unique class of immunoglobulin due to its multiple molecular forms, and a defining difference between the two subclasses: IgA1 has a long hinge-region that is heavily O-glycosylated, whereas the IgA2 hinge-region is shorter but resistant to bacterial proteases prevalent at mucosal sites. IgA is essential for immune homeostasis and education. Mucosal IgA plays a crucial role in maintaining the integrity of the mucosal barrier by immune exclusion of pathobionts while facilitating colonization with certain commensals; a large part of the gut microbiota is coated with IgA. In the circulation, monomeric IgA that has not been engaged by antigen plays a discrete role in dampening inflammatory responses. Protective and harmful roles of IgA have been studied over several decades, but a new understanding of the complex role of this immunoglobulin in health and disease has been provided by recent studies. Here, we discuss the physiological and pathological roles of IgA with a special focus on the gut, kidneys, and autoimmunity. We also discuss new IgA-based therapeutic approaches.
Collapse
Affiliation(s)
- Patrick J. Gleeson
- Center for Research on InflammationParis Cité UniversityParisFrance
- INSERMParisFrance
- CNRSParisFrance
- Inflamex Laboratory of ExcellenceParisFrance
- Nephrology DepartmentBichat HospitalParisFrance
| | - Niels O. S. Camara
- Department of Immunology, Institute of Biomedical SciencesUniversity of Sao PauloSao PauloBrazil
| | - Pierre Launay
- Center for Research on InflammationParis Cité UniversityParisFrance
- INSERMParisFrance
- CNRSParisFrance
- Inflamex Laboratory of ExcellenceParisFrance
| | - Agnès Lehuen
- Inflamex Laboratory of ExcellenceParisFrance
- Cochin Institute, INSERM, CNRSParis Cité UniversityParisFrance
| | - Renato C. Monteiro
- Center for Research on InflammationParis Cité UniversityParisFrance
- INSERMParisFrance
- CNRSParisFrance
- Inflamex Laboratory of ExcellenceParisFrance
| |
Collapse
|
6
|
van Gogh M, Louwers JM, Celli A, Gräve S, Viveen MC, Bosch S, de Boer NKH, Verheijden RJ, Suijkerbuijk KPM, Brand EC, Top J, Oldenburg B, de Zoete MR. Next-generation IgA-SEQ allows for high-throughput, anaerobic, and metagenomic assessment of IgA-coated bacteria. MICROBIOME 2024; 12:211. [PMID: 39434178 PMCID: PMC11492651 DOI: 10.1186/s40168-024-01923-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/02/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND The intestinal microbiota plays a significant role in maintaining systemic and intestinal homeostasis, but can also influence diseases such as inflammatory bowel disease (IBD) and cancer. Certain bacterial species within the intestinal tract can chronically activate the immune system, leading to low-grade intestinal inflammation. As a result, plasma cells produce high levels of secretory antigen-specific immunoglobulin A (IgA), which coats the immunostimulatory bacteria. This IgA immune response against intestinal bacteria may be associated with the maintenance of homeostasis and health, as well as disease. Unraveling this dichotomy and identifying the immunostimulatory bacteria is crucial for understanding the relationship between the intestinal microbiota and the immune system, and their role in health and disease. IgA-SEQ technology has successfully identified immunostimulatory, IgA-coated bacteria from fecal material. However, the original technology is time-consuming and has limited downstream applications. In this study, we aimed to develop a next-generation, high-throughput, magnet-based sorting approach (ng-IgA-SEQ) to overcome the limitations of the original IgA-SEQ protocol. RESULTS We show, in various settings of complexity ranging from simple bacterial mixtures to human fecal samples, that our magnetic 96-well plate-based ng-IgA-SEQ protocol is highly efficient at sorting and identifying IgA-coated bacteria in a high-throughput and time efficient manner. Furthermore, we performed a comparative analysis between different IgA-SEQ protocols, highlighting that the original FACS-based IgA-SEQ approach overlooks certain nuances of IgA-coated bacteria, due to the low yield of sorted bacteria. Additionally, magnetic-based ng-IgA-SEQ allows for novel downstream applications. Firstly, as a proof-of-concept, we performed metagenomic shotgun sequencing on 10 human fecal samples to identify IgA-coated bacterial strains and associated pathways and CAZymes. Secondly, we successfully isolated and cultured IgA-coated bacteria by performing the isolation protocol under anaerobic conditions. CONCLUSIONS Our magnetic 96-well plate-based high-throughput next-generation IgA-SEQ technology efficiently identifies a great number of IgA-coated bacteria from fecal samples. This paves the way for analyzing large cohorts as well as novel downstream applications, including shotgun metagenomic sequencing, culturomics, and various functional assays. These downstream applications are essential to unravel the role of immunostimulatory bacteria in health and disease. Video Abstract.
Collapse
Affiliation(s)
- Merel van Gogh
- Medical Microbiology Department, UMC Utrecht, Utrecht, The Netherlands
| | - Jonas M Louwers
- Department of Gastroenterology and Hepatology, UMC Utrecht, Utrecht, The Netherlands
| | - Anna Celli
- Medical Microbiology Department, UMC Utrecht, Utrecht, The Netherlands
| | - Sanne Gräve
- Medical Microbiology Department, UMC Utrecht, Utrecht, The Netherlands
| | - Marco C Viveen
- Medical Microbiology Department, UMC Utrecht, Utrecht, The Netherlands
| | - Sofie Bosch
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nanne K H de Boer
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rik J Verheijden
- Department of Medical Oncology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Eelco C Brand
- Department of Gastroenterology and Hepatology, UMC Utrecht, Utrecht, The Netherlands
| | - Janetta Top
- Medical Microbiology Department, UMC Utrecht, Utrecht, The Netherlands
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, UMC Utrecht, Utrecht, The Netherlands
| | - Marcel R de Zoete
- Medical Microbiology Department, UMC Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Gu Q, Draheim M, Planchais C, He Z, Mu F, Gong S, Shen C, Zhu H, Zhivaki D, Shahin K, Collard JM, Su M, Zhang X, Mouquet H, Lo-Man R. Intestinal newborn regulatory B cell antibodies modulate microbiota communities. Cell Host Microbe 2024; 32:1787-1804.e9. [PMID: 39243760 DOI: 10.1016/j.chom.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/08/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
The role of immunoglobulins produced by IL-10-producing regulatory B cells remains unknown. We found that a particular newborn regulatory B cell population (nBreg) negatively regulates the production of immunoglobulin M (IgM) via IL-10 in an autocrine manner, limiting the intensity of the polyreactive antibody response following innate activation. Based on nBreg scRNA-seq signature, we identify these cells and their repertoire in fetal and neonatal intestinal tissues. By characterizing 205 monoclonal antibodies cloned from intestinal nBreg, we show that newborn germline-encoded antibodies display reactivity against bacteria representing six different phyla of the early microbiota. nBreg-derived antibodies can influence the diversity and the cooperation between members of early microbial communities, at least in part by modulating energy metabolism. These results collectively suggest that nBreg populations help facilitate early-life microbiome establishment and shed light on the paradoxical activities of regulatory B cells in early life.
Collapse
Affiliation(s)
- Qisheng Gu
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; Université Paris Cite, Paris, France
| | - Marion Draheim
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Cyril Planchais
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cite, INSERM U1222, Paris, France
| | - Zihan He
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fan Mu
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shijie Gong
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chun Shen
- Children's Hospital of Fudan University, Shanghai, China
| | - Haitao Zhu
- Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, China
| | - Dania Zhivaki
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Khashayar Shahin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan Microbiome Center, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jean-Marc Collard
- Enteric Bacterial Pathogens Unit & French National Reference Center for Escherichia Coli, Shigella and Salmonella, Institut Pasteur, Paris, France
| | - Min Su
- Obstetrics department, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoming Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Innate Defense and Immune Modulation, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Hugo Mouquet
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cite, INSERM U1222, Paris, France.
| | - Richard Lo-Man
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; Université Paris Cite, Paris, France.
| |
Collapse
|
8
|
Ichikawa T, Yamashima M, Yamamichi S, Koike M, Nakano Y, Yajima H, Miyazaki O, Ikeda T, Okamura T, Nagata K, Sawa K, Niiya K, Nakao K. Serum immunoglobulin A levels: Diagnostic utility in alcoholic liver disease and association with liver fibrosis in steatotic liver disease. Biomed Rep 2024; 21:142. [PMID: 39161940 PMCID: PMC11332156 DOI: 10.3892/br.2024.1830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
The relationship between immunoglobulin A (IgA) levels and chronic liver disease remains poorly understood. The present study evaluated the clinical significance of IgA in 478 new patients who visited the Outpatient Clinic of Nagasaki Harbor Medical Center (Nagasaki, Japan). Serum IgA levels in comparison to liver stiffness (LS), as measured using a FibroScan® device, were evaluated in 358 patients. Furthermore, in 270 patients, the associations between serum IgA levels and body composition were analyzed using computed tomography. The IgA levels of patients in the groups with Child-Pugh classification B and C (CPGBC), alcoholic liver disease (ALD), steatotic liver disease (SLD) or diabetes were higher than the IgA levels of patients in the groups with CPGA, non-ALD, non-SLD or no diabetes, respectively. Logistic regression analysis showed that CPGBC, ALD, high IgG (>1,700 mg/dl), high macrophage galactose-specific lectin-2 binding protein glycosylation isomer (M2BPGi) (>1 cut-off index) and diabetes were contributing factors for high serum IgA level (>410 mg/dl). The ratio of IgA level divided by IgG level was highest in patients with ALD, followed by those with metabolic dysfunction-associated SLD (MASLD) and non-SLD. In SLD, IgA level was associated more with LS than M2BPGi and fibrosis-4 (FIB-4) in multiple regression analysis. In the receiver operating characteristic analysis, IgA level, M2BPG, and FIB-4 had similar area under the curve values for discriminating high LS (>8 kPa) from low LS (≤8 kPa) in SLD. IgA levels were also associated with visceral fat, and this association was only found in women. In conclusion, elevated IgA is an indicator of liver fibrosis that also reflects the presence of diabetes and an increased visceral fat level. Therefore, IgA is considered a useful marker of liver disease severity in the current era of increased SLD.
Collapse
Affiliation(s)
- Tatsuki Ichikawa
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
- Department of Comprehensive Community Care Systems, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
- Innovation and Translational Research Center, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Mio Yamashima
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Shinobu Yamamichi
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Makiko Koike
- Innovation and Translational Research Center, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Yusuke Nakano
- Innovation and Translational Research Center, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Hiroyuki Yajima
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Osamu Miyazaki
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Tomonari Ikeda
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Takuma Okamura
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
- Department of Comprehensive Community Care Systems, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Kazuyoshi Nagata
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Kenichi Sawa
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Kazutaka Niiya
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| |
Collapse
|
9
|
Xu X, Zhang B, Tan M, Fan X, Chen Q, Xu Z, Tang Y, Han L. CLINICAL APPLICATION OF EARLY POSTOPERATIVE NUTRITIONAL SUPPORT IN PATIENTS WITH HIGH-RISK VALVULAR HEART DISEASE. Shock 2024; 62:522-528. [PMID: 39158921 PMCID: PMC11446509 DOI: 10.1097/shk.0000000000002436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024]
Abstract
ABSTRACT Background : The treatment strategy of early nutritional support after cardiac surgery has gradually been adopted. However, there are no scientific guidelines for the timing and specific programs of early nutritional support. Methods: A retrospective, single-center analysis (2021-2023) was carried out including elderly patients who were admitted for valvular heart disease and received open-heart valve replacement surgery. We designated patients who started the optimized nutritional support after surgery as the optimized enteral nutritional support strategy TN (EN) group and those who received traditional nutritional support as the traditional nutritional support strategy (TN) group. The nutritional and immune indexes, postoperative complications, length of hospital stay, and hospitalization cost of the two groups were compared and analyzed. Results: We identified 378 eligible patients, comprising 193 (51%) patients in the EN group and 185 (49%) patients in the TN group. There was no significant difference in hospital mortality between the two groups, but the proportion of nosocomial pneumonia was significantly lower in the EN group than in the TN group ( P < 0.001). In the Poisson regression analysis, EN was not associated with an increase in gastrointestinal complications ( P = 0.549). The EN group also seemed to have shorter hospital stays and lower hospitalization expenses ( P < 0.001). In the comparison of postoperative gastrointestinal complications, fewer patients experienced diarrhea ( P = 0.021) and abdominal distension ( P = 0.033) in the EN group compared with the TN group. Conclusion: The optimal nutritional support strategy could effectively improve the clinical outcome of high-risk patients with valvular heart disease.
Collapse
|
10
|
Wang C, Zhang Y, Lu Y, Huang X, Jiang H, Chen G, Shao Y, Savelkoul HFJ, Jansen CA, Liu G. TGF-β1 impairs IgA class switch recombination and production in porcine Peyer's patches B cells. Eur J Immunol 2024; 54:e2350704. [PMID: 38973082 DOI: 10.1002/eji.202350704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Secretory IgA is crucial for preventing the invasion of entero-pathogens via intestinal mucosa. While it is well-established that Transforming growth factor β1 (TGF-β1) regulates IgA production in human and mouse B cells, our previous investigation revealed different functions of TGF-β1 in IgA generation in pigs compared with humans and mice, with the underlying mechanism remaining elusive. In this study, IgM+ B cells from porcine Peyer's patches (PPs) were isolated and stimulated with recombinant porcine TGF-β1 to evaluate the effect of TGF-β1 on pigs. The results showed that antibody production from B cells of PPs was impaired by TGF-β1 ex vivo. Furthermore, TGF-β1 treatment led to a decrease in the expression of germ-line transcript αand postswitch transcript α. Moreover, we observed that TGF-β1 predominantly inhibited the phosphorylation of p38-mitogen-activated protein kinases (MAPK), confirming the involvement of the p38-MAPK pathway in porcine IgA generation and IgA class switch recombination. The application of p38-MAPK inhibitor resulted in decreased B-cell differentiation levels. Collectively, this study demonstrates that exogenous TGF-β1 restrains the production and class switch recombination of IgA antibodies by inhibiting p38-MAPK signaling in porcine PPs B cells, which may constitute a component of TGF-β1-mediated inhibition of B-cell activation.
Collapse
Affiliation(s)
- Caiying Wang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Yue Zhang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yabin Lu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xin Huang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huazheng Jiang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guohui Chen
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yongheng Shao
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Christine A Jansen
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Guangliang Liu
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
11
|
Nishihara K, Villot C, Cangiano L, Guan LL, Steele M. Bacteria colonization and gene expression related to immune function in colon mucosa is associated with growth in neonatal calves regardless of live yeast supplementation. J Anim Sci Biotechnol 2024; 15:76. [PMID: 38835065 DOI: 10.1186/s40104-024-01030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/01/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND As Holstein calves are susceptible to gastrointestinal disorders during the first week of life, understanding how intestinal immune function develops in neonatal calves is important to promote better intestinal health. Feeding probiotics in early life may contribute to host intestinal health by facilitating beneficial bacteria colonization and developing intestinal immune function. The objective of this study was to characterize the impact of early life yeast supplementation and growth on colon mucosa-attached bacteria and host immune function. RESULTS Twenty Holstein bull calves received no supplementation (CON) or Saccharomyces cerevisiae boulardii (SCB) from birth to 5 d of life. Colon tissue biopsies were taken within 2 h of life (D0) before the first colostrum feeding and 3 h after the morning feeding at d 5 of age (D5) to analyze mucosa-attached bacteria and colon transcriptome. Metagenome sequencing showed that there was no difference in α and β diversity of mucosa-attached bacteria between day and treatment, but bacteria related to diarrhea were more abundant in the colon mucosa on D0 compared to D5. In addition, qPCR indicated that the absolute abundance of Escherichia coli (E. coli) decreased in the colon mucosa on D5 compared to D0; however, that of Bifidobacterium, Lactobacillus, and Faecalibacterium prausnitzii, which could competitively exclude E. coli, increased in the colon mucosa on D5 compared to D0. RNA-sequencing showed that there were no differentially expressed genes between CON and SCB, but suggested that pathways related to viral infection such as "Interferon Signaling" were activated in the colon mucosa of D5 compared to D0. CONCLUSIONS Growth affected mucosa-attached bacteria and host immune function in the colon mucosa during the first 5 d of life in dairy calves independently of SCB supplementation. During early life, opportunistic pathogens may decrease due to intestinal environmental changes by beneficial bacteria and/or host immune function. Predicted activation of immune function-related pathways may be the result of host immune function development or suggest other antigens in the intestine during early life. Further studies focusing on the other antigens and host immune function in the colon mucosa are required to better understand intestinal immune function development.
Collapse
Affiliation(s)
- Koki Nishihara
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, N1G 1Y2, Canada
| | - Clothilde Villot
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
- Lallemand SAS, Blagnac, F-31702, France
| | - Lautaro Cangiano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Le Luo Guan
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Michael Steele
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, N1G 1Y2, Canada.
- Present Address: Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
12
|
Cangiano LR, Villot C, Guan LL, Ipharraguerre IR, Steele MA. Graduate Student Literature Review: Developmental adaptations of immune function in calves and the influence of the intestinal microbiota in health and disease. J Dairy Sci 2024; 107:2543-2555. [PMID: 37939842 DOI: 10.3168/jds.2023-24195] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
This graduate student literature review provides an examination of the ontological adaptations of the calf's immune system and how the intestinal microbiota influences calf immune function in health and disease. Within dairy rearing systems, various nutritional and management factors have emerged as critical determinants of development influencing multiple physiological axes in the calf. Furthermore, we discuss how multiple pre- and postnatal maternal factors influence the trajectory of immune development in favor of establishing regulatory networks to successfully cope with the new environment, while providing early immune protection via immune passive transfer from colostrum. Additionally, our review provides insights into the current understanding of how the intestinal microbiota contributes to the development of the intestinal and systemic immune system in calves. Lastly, we address potential concerns related to the use of prophylactic antimicrobials and waste milk, specifically examining their adverse effects on intestinal health and metabolic function. By examining these factors, we aim to better understand the intricate relationship between current management practices and their long-term effect on animal health.
Collapse
Affiliation(s)
- L R Cangiano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706; Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2.
| | - C Villot
- Lallemand Animal Nutrition, F-31702 Blagnac, France, and Milwaukee, WI 53218
| | - L L Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5
| | - I R Ipharraguerre
- Institute of Human Nutrition and Food Science, University of Kiel, D-24118 Kiel, Germany
| | - M A Steele
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2
| |
Collapse
|
13
|
Leontieva G, Gupalova T, Desheva Y, Kramskaya T, Bormotova E, Koroleva I, Kopteva O, Suvorov A. Evaluation of Immune Response to Mucosal Immunization with an Oral Probiotic-Based Vaccine in Mice: Potential for Prime-Boost Immunization against SARS-CoV-2. Int J Mol Sci 2023; 25:215. [PMID: 38203387 PMCID: PMC10779021 DOI: 10.3390/ijms25010215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Following the conclusion of the COVID-19 pandemic, the persistent genetic variability in the virus and its ongoing circulation within the global population necessitate the enhancement of existing preventive vaccines and the development of novel ones. A while back, we engineered an orally administered probiotic-based vaccine, L3-SARS, by integrating a gene fragment that encodes the spike protein S of the SARS-CoV-2 virus into the genome of the probiotic strain E. faecium L3, inducing the expression of viral antigen on the surface of bacteria. Previous studies demonstrated the efficacy of this vaccine candidate in providing protection against the virus in Syrian hamsters. In this present study, utilizing laboratory mice, we assess the immune response subsequent to immunization via the gastrointestinal mucosa and discuss its potential as an initial phase in a two-stage vaccination strategy. Our findings indicate that the oral administration of L3-SARS elicits an adaptive immune response in mice. Pre-immunization with L3-SARS enhances and prolongs the humoral immune response following a single subcutaneous immunization with a recombinant S-protein analogous to the S-insert of the coronavirus in Enterococcus faecium L3.
Collapse
Affiliation(s)
| | | | - Yulia Desheva
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, 197376 Saint Petersburg, Russia; (G.L.); (T.G.); (T.K.); (E.B.); (I.K.); (O.K.); (A.S.)
| | | | | | | | | | | |
Collapse
|
14
|
Shao T, Hsu R, Rafizadeh DL, Wang L, Bowlus CL, Kumar N, Mishra J, Timilsina S, Ridgway WM, Gershwin ME, Ansari AA, Shuai Z, Leung PSC. The gut ecosystem and immune tolerance. J Autoimmun 2023; 141:103114. [PMID: 37748979 DOI: 10.1016/j.jaut.2023.103114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
The gastrointestinal tract is home to the largest microbial population in the human body. The gut microbiota plays significant roles in the development of the gut immune system and has a substantial impact on the maintenance of immune tolerance beginning in early life. These microbes interact with the immune system in a dynamic and interdependent manner. They generate immune signals by presenting a vast repertoire of antigenic determinants and microbial metabolites that influence the development, maturation and maintenance of immunological function and homeostasis. At the same time, both the innate and adaptive immune systems are involved in modulating a stable microbial ecosystem between the commensal and pathogenic microorganisms. Hence, the gut microbial population and the host immune system work together to maintain immune homeostasis synergistically. In susceptible hosts, disruption of such a harmonious state can greatly affect human health and lead to various auto-inflammatory and autoimmune disorders. In this review, we discuss our current understanding of the interactions between the gut microbiota and immunity with an emphasis on: a) important players of gut innate and adaptive immunity; b) the contribution of gut microbial metabolites; and c) the effect of disruption of innate and adaptive immunity as well as alteration of gut microbiome on the molecular mechanisms driving autoimmunity in various autoimmune diseases.
Collapse
Affiliation(s)
- Tihong Shao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Ronald Hsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Desiree L Rafizadeh
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Li Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, China
| | - Christopher L Bowlus
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Narendra Kumar
- Department of Pharmaceutical Science, ILR-College of Pharmacy, Texas A&M University, 1010 W. Ave B. MSC 131, Kingsville, TX, 78363, USA
| | - Jayshree Mishra
- Department of Pharmaceutical Science, ILR-College of Pharmacy, Texas A&M University, 1010 W. Ave B. MSC 131, Kingsville, TX, 78363, USA
| | - Suraj Timilsina
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - William M Ridgway
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Aftab A Ansari
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Patrick S C Leung
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
15
|
Viney M, Cheynel L. Gut immune responses and evolution of the gut microbiome-a hypothesis. DISCOVERY IMMUNOLOGY 2023; 2:kyad025. [PMID: 38567055 PMCID: PMC10917216 DOI: 10.1093/discim/kyad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 04/04/2024]
Abstract
The gut microbiome is an assemblage of microbes that have profound effects on their hosts. The composition of the microbiome is affected by bottom-up, among-taxa interactions and by top-down, host effects, which includes the host immune response. While the high-level composition of the microbiome is generally stable over time, component strains and genotypes will constantly be evolving, with both bottom-up and top-down effects acting as selection pressures, driving microbial evolution. Secretory IgA is a major feature of the gut's adaptive immune response, and a substantial proportion of gut bacteria are coated with IgA, though the effect of this on bacteria is unclear. Here we hypothesize that IgA binding to gut bacteria is a selection pressure that will drive the evolution of IgA-bound bacteria, so that they will have a different evolutionary trajectory than those bacteria not bound by IgA. We know very little about the microbiome of wild animals and even less about their gut immune responses, but it must be a priority to investigate this hypothesis to understand if and how host immune responses contribute to microbiome evolution.
Collapse
Affiliation(s)
- Mark Viney
- Department of Evolution, Ecology & Behaviour, University of Liverpool, Liverpool, UK
| | - Louise Cheynel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| |
Collapse
|
16
|
He P, Shen X, Guo S. Intestinal flora and linear growth in children. Front Pediatr 2023; 11:1252035. [PMID: 38034825 PMCID: PMC10687454 DOI: 10.3389/fped.2023.1252035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
The gut microbiota plays a critical role in human growth and development as well as the regulation of human pathophysiological processes. According to research, the gut microbiota controls the host's growth and development in areas such as nutrition, metabolism, endocrine hormones, and immune modulation. The human gut microbiota has an important role in child and adolescent growth, especially when nutritional conditions are poor. In this review, we focus on recent findings about the gut microbiota's influence on child growth, including the relationship between the gut microbiota and linear growth during pregnancy, infancy, childhood, and adolescence. Furthermore, we also review some mechanisms by which intestinal flora influence the host's linear growth. Although the data supports a link between intestinal flora and linear development in children, our review has limitations that prohibit us from fully verifying the causal relationship between gut flora and linear development in children. Improving the gut microbiota, in conjunction with renutrition techniques, has the potential to ameliorate the growth and development impairments currently associated with chronic illness and malnutrition in children.
Collapse
Affiliation(s)
| | | | - Sheng Guo
- Department of Endocrine, Genetics and Metabolism, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Li J, Guo Y, Ma L, Liu Y, Zou C, Kuang H, Han B, Xiao Y, Wang Y. Synergistic effects of alginate oligosaccharide and cyanidin-3-O-glucoside on the amelioration of intestinal barrier function in mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
18
|
Popovic A, Cao EY, Han J, Nursimulu N, Alves-Ferreira EVC, Burrows K, Kennard A, Alsmadi N, Grigg ME, Mortha A, Parkinson J. The commensal protist Tritrichomonas musculus exhibits a dynamic life cycle that induces extensive remodeling of the gut microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.528774. [PMID: 37090671 PMCID: PMC10120700 DOI: 10.1101/2023.03.06.528774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Commensal protists and gut bacterial communities exhibit complex relationships, mediated at least in part through host immunity. To improve our understanding of this tripartite interplay, we investigated community and functional dynamics between the murine protist Tritrichomonas musculus ( T. mu ) and intestinal bacteria in healthy and B cell-deficient mice. We identified dramatic, protist-driven remodeling of resident microbiome growth and activities, in parallel with T. mu functional changes, accelerated in the absence of B cells. Metatranscriptomic data revealed nutrient-based competition between bacteria and the protist. Single cell transcriptomics identified distinct T. mu life stages, providing new evidence for trichomonad sexual replication and the formation of pseudocysts. Unique cell states were validated in situ through microscopy and flow cytometry. Our results reveal complex microbial dynamics during the establishment of a commensal protist in the gut, and provide valuable datasets to drive future mechanistic studies.
Collapse
|
19
|
Planchais C, Molinos-Albert LM, Rosenbaum P, Hieu T, Kanyavuz A, Clermont D, Prazuck T, Lefrou L, Dimitrov JD, Hüe S, Hocqueloux L, Mouquet H. HIV-1 treatment timing shapes the human intestinal memory B-cell repertoire to commensal bacteria. Nat Commun 2023; 14:6326. [PMID: 37816704 PMCID: PMC10564866 DOI: 10.1038/s41467-023-42027-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
HIV-1 infection causes severe alterations of gut mucosa, microbiota and immune system, which can be curbed by early antiretroviral therapy. Here, we investigate how treatment timing affects intestinal memory B-cell and plasmablast repertoires of HIV-1-infected humans. We show that only class-switched memory B cells markedly differ between subjects treated during the acute and chronic phases of infection. Intestinal memory B-cell monoclonal antibodies show more prevalent polyreactive and commensal bacteria-reactive clones in late- compared to early-treated individuals. Mirroring this, serum IgA polyreactivity and commensal-reactivity are strongly increased in late-treated individuals and correlate with intestinal permeability and systemic inflammatory markers. Polyreactive blood IgA memory B cells, many of which egressed from the gut, are also substantially enriched in late-treated individuals. Our data establish gut and systemic B-cell polyreactivity to commensal bacteria as hallmarks of chronic HIV-1 infection and suggest that initiating treatment early may limit intestinal B-cell abnormalities compromising HIV-1 humoral response.
Collapse
Affiliation(s)
- Cyril Planchais
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, INSERM U1222, F-75015, Paris, France
| | - Luis M Molinos-Albert
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, INSERM U1222, F-75015, Paris, France
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036, Barcelona, Spain
| | - Pierre Rosenbaum
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, INSERM U1222, F-75015, Paris, France
| | - Thierry Hieu
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, INSERM U1222, F-75015, Paris, France
| | - Alexia Kanyavuz
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006, Paris, France
| | - Dominique Clermont
- Collection of the Institut Pasteur, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| | - Thierry Prazuck
- Service des Maladies Infectieuses et Tropicales, CHR d'Orléans-La Source, 45067, Orléans, France
| | - Laurent Lefrou
- Service d'Hépato-Gastro-Entérologie, CHR d'Orléans-La Source, 45067, Orléans, France
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006, Paris, France
| | - Sophie Hüe
- INSERM U955-Équipe 16, Université Paris-Est Créteil, Faculté de Médecine, 94000, Créteil, France
| | - Laurent Hocqueloux
- Service des Maladies Infectieuses et Tropicales, CHR d'Orléans-La Source, 45067, Orléans, France
| | - Hugo Mouquet
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, INSERM U1222, F-75015, Paris, France.
| |
Collapse
|
20
|
Rostoll Cangiano L, Villot C, Amorin-Hegedus R, Malmuthuge N, Gruninger R, Guan LL, Steele M. Saccharomyces cerevisiae boulardii accelerates intestinal microbiota maturation and is correlated with increased secretory IgA production in neonatal dairy calves. Front Microbiol 2023; 14:1129250. [PMID: 37795296 PMCID: PMC10546063 DOI: 10.3389/fmicb.2023.1129250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/30/2023] [Indexed: 10/06/2023] Open
Abstract
Neonatal calves have a limited capacity to initiate immune responses due to a relatively immature adaptive immune system, which renders them susceptible to many on-farm diseases. At birth, the mucosal surfaces of the intestine are rapidly colonized by microbes in a process that promotes mucosal immunity and primes the development of the adaptive immune system. In a companion study, our group demonstrated that supplementation of a live yeast probiotic, Saccharomyces cerevisiae boulardii (SCB) CNCM I-1079, to calves from birth to 1 week of age stimulates secretory IgA (sIgA) production in the intestine. The objective of the study was to evaluate how SCB supplementation impacts the intestinal microbiota of one-week-old male calves, and how changes in the bacterial community in the intestine relate to the increase in secretory IgA. A total of 20 calves were randomly allocated to one of two treatments at birth: Control (CON, n = 10) fed at 5 g/d of carrier with no live yeast; and SCB (n = 10) fed at 5 g of live SCB per day (10 × 109 CFU/d). Our study revealed that supplementing calves with SCB from birth to 1 week of age had its most marked effects in the ileum, increasing species richness and phylogenetic diversity in addition to expediting the transition to a more interconnected bacterial community. Furthermore, LEfSe analysis revealed that there were several differentially abundant taxa between treatments and that SCB increased the relative abundance the family Eubacteriaceae, Corynebacteriaceae, Eggerthellaceae, Bacillaceae, and Ruminococcaceae. Furthermore, network analysis suggests that SCB promoted a more stable bacterial community and appears to reduce colonization with Shigella. Lastly, we observed that the probiotic-driven increase in microbial diversity was highly correlated with the enhanced secretory IgA capacity of the ileum, suggesting that the calf's gut mucosal immune system relies on the development of a stable and highly diverse microbial community to provide the necessary cues to train and promote its proper function. In summary, this data shows that supplementation of SCB promoted establishment of a diverse and interconnected microbiota, prevented colonization of Escherichia Shigella and indicates a possible role in stimulating humoral mucosal immunity.
Collapse
Affiliation(s)
| | - Clothilde Villot
- Lallemand Animal Nutrition, Blagnac, France
- Lallemand Animal Nutrition, Milwaukee, WI, United States
| | | | - Nilusha Malmuthuge
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Robert Gruninger
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Michael Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
21
|
Kigel A, Vanetik S, Mangel L, Friedman G, Nozik C, Terracina C, Taussig D, Dror Y, Samra H, Mandel D, Lubetzky R, Wine Y. Maternal Immunization During the Second Trimester with BNT162b2 mRNA Vaccine Induces a Robust IgA Response in Human Milk: A Prospective Cohort Study. Am J Clin Nutr 2023; 118:572-578. [PMID: 37479184 DOI: 10.1016/j.ajcnut.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND The human milk antibody response following maternal immunization with the BNT162b2 mRNA vaccine is important for the protection of the infant during infancy. The vaccine-specific antibody response is still unclear at different stages of human milk production, as are the effects of maternal immunization timing on the robustness of the antibody response. OBJECTIVES The study aimed to assess the antibody response (IgG/IgA/IgM) during various lactation stages and identify the best vaccination timing during pregnancy. METHODS A prospective cohort study of 73 postpartum women who were administered the BNT162b2 COVID-19 mRNA vaccine during the second or third trimester of pregnancy were recruited. Statistical comparison was conducted using 16 human milk samples from a prepandemic control group. RESULTS Excluding 11 women, the study included 62 lactating women who were administered the mRNA vaccine during the second or third trimester of pregnancy. A total of 149 samples of human milk were collected at different lactation stages. Our findings reveal that colostrum exhibits significantly higher levels of IgG (95% confidence interval [CI]: 1.3, 9.0; P = 0.023), IgA (95% CI: 55.98, 100.2; P = 0.0034), and IgM (95% CI: 0.03, 0.62; P < 0.0001) compared with mature milk IgG (95% CI: 0.25, 0.43), IgA (95% CI: 9.65, 13.74), IgM (95% CI: 0.03, 0.04). The timing of maternal immunization affected the antibody response. The level of IgA in mature milk was higher when immunization occurred in the second trimester (95% CI: 11.14, 19.66; P = 0.006) than in the third trimester (95% CI: 7.16, 11.49). Conversely, IgG levels in mature milk were higher when immunization occurred during the third trimester (95% CI: 0.36, 0.65; P < 0.0001) than in the second trimester (95% CI: 0.09, 0.38). CONCLUSIONS Our study provides evidence that administering the mRNA vaccine to pregnant women during the second trimester increases vaccine-specific IgA levels during lactation. Considering the significance of human milk IgA in mucosal tissues and its prevalence throughout lactation, it is reasonable to recommend maternal immunization with the BNT162b2 mRNA vaccine during the second trimester. This trial was registered at the Helsinki Committee of the Tel Aviv Medical Center as clinical trial number 0172-TLV.
Collapse
Affiliation(s)
- Aya Kigel
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; The Center for Combating Pandemics, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Vanetik
- Department of Neonatology, Dana Dwek Children's Hospital, Tel Aviv Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Laurence Mangel
- Department of Neonatology, Dana Dwek Children's Hospital, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Gal Friedman
- Department of Neonatology, Dana Dwek Children's Hospital, Tel Aviv Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Nozik
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Pediatrics, Dana Dwek Children's Hospital, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Camilla Terracina
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - David Taussig
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yael Dror
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hadar Samra
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dror Mandel
- Department of Neonatology, Dana Dwek Children's Hospital, Tel Aviv Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Lubetzky
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Pediatrics, Dana Dwek Children's Hospital, Tel Aviv Medical Center, Tel Aviv, Israel.
| | - Yariv Wine
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; The Center for Combating Pandemics, Tel Aviv University, Tel Aviv, Israel; The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
22
|
Satitsuksanoa P, Iwasaki S, Boersma J, Bel Imam M, Schneider SR, Chang I, van de Veen W, Akdis M. B cells: The many facets of B cells in allergic diseases. J Allergy Clin Immunol 2023; 152:567-581. [PMID: 37247640 DOI: 10.1016/j.jaci.2023.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
B cells play a key role in our immune system through their ability to produce antibodies, suppress a proinflammatory state, and contribute to central immune tolerance. We aim to provide an in-depth knowledge of the molecular biology of B cells, including their origin, developmental process, types and subsets, and functions. In allergic diseases, B cells are well known to induce and maintain immune tolerance through the production of suppressor cytokines such as IL-10. Similarly, B cells protect against viral infections such as severe acute respiratory syndrome coronavirus 2 that caused the recent coronavirus disease 2019 pandemic. Considering the unique and multifaceted functions of B cells, we hereby provide a comprehensive overview of the current knowledge of B-cell biology and its clinical applications in allergic diseases, organ transplantation, and cancer.
Collapse
Affiliation(s)
- Pattraporn Satitsuksanoa
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| | - Sayuri Iwasaki
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Jolien Boersma
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Iris Chang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Sean N. Parker Centre for Allergy and Asthma Research, Department of Medicine, Stanford University, Palo Alto, Calif
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| |
Collapse
|
23
|
Peppas I, Ford AM, Furness CL, Greaves MF. Gut microbiome immaturity and childhood acute lymphoblastic leukaemia. Nat Rev Cancer 2023; 23:565-576. [PMID: 37280427 PMCID: PMC10243253 DOI: 10.1038/s41568-023-00584-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 06/08/2023]
Abstract
Acute lymphoblastic leukaemia (ALL) is the most common cancer of childhood. Here, we map emerging evidence suggesting that children with ALL at the time of diagnosis may have a delayed maturation of the gut microbiome compared with healthy children. This finding may be associated with early-life epidemiological factors previously identified as risk indicators for childhood ALL, including caesarean section birth, diminished breast feeding and paucity of social contacts. The consistently observed deficiency in short-chain fatty-acid-producing bacterial taxa in children with ALL has the potential to promote dysregulated immune responses and to, ultimately, increase the risk of transformation of preleukaemic clones in response to common infectious triggers. These data endorse the concept that a microbiome deficit in early life may contribute to the development of the major subtypes of childhood ALL and encourage the notion of risk-reducing microbiome-targeted intervention in the future.
Collapse
Affiliation(s)
- Ioannis Peppas
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Department of Paediatric Oncology, The Royal Marsden Hospital Sutton, Surrey, UK
| | - Anthony M Ford
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Caroline L Furness
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Department of Paediatric Oncology, The Royal Marsden Hospital Sutton, Surrey, UK
| | - Mel F Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
24
|
Smilowitz JT, Allen LH, Dallas DC, McManaman J, Raiten DJ, Rozga M, Sela DA, Seppo A, Williams JE, Young BE, McGuire MK. Ecologies, synergies, and biological systems shaping human milk composition-a report from "Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN)" Working Group 2. Am J Clin Nutr 2023; 117 Suppl 1:S28-S42. [PMID: 37173059 DOI: 10.1016/j.ajcnut.2022.11.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 05/15/2023] Open
Abstract
Human milk is universally recognized as the preferred food for infants during the first 6 mo of life because it provides not only essential and conditionally essential nutrients in necessary amounts but also other biologically active components that are instrumental in protecting, communicating important information to support, and promoting optimal development and growth in infants. Despite decades of research, however, the multifaceted impacts of human milk consumption on infant health are far from understood on a biological or physiological basis. Reasons for this lack of comprehensive knowledge of human milk functions are numerous, including the fact that milk components tend to be studied in isolation, although there is reason to believe that they interact. In addition, milk composition can vary greatly within an individual as well as within and among populations. The objective of this working group within the Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN) Project was to provide an overview of human milk composition, factors impacting its variation, and how its components may function to coordinately nourish, protect, and communicate complex information to the recipient infant. Moreover, we discuss the ways whereby milk components might interact such that the benefits of an intact milk matrix are greater than the sum of its parts. We then apply several examples to illustrate how milk is better thought of as a biological system rather than a more simplistic "mixture" of independent components to synergistically support optimal infant health.
Collapse
Affiliation(s)
- Jennifer T Smilowitz
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA.
| | - Lindsay H Allen
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, University of California Davis, Davis, CA, USA
| | - David C Dallas
- Nutrition Program, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - James McManaman
- Division of Reproductive Sciences, University of Colorado, Aurora, CO, USA
| | - Daniel J Raiten
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Mary Rozga
- Evidence Analysis Center, Academy of Nutrition and Dietetics, Chicago, IL, USA
| | - David A Sela
- Department of Food Science, University of Massachusetts, Amherst, MA, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Antti Seppo
- Department of Pediatrics, Division of Allergy and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Janet E Williams
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, USA
| | - Bridget E Young
- Department of Pediatrics, Division of Allergy and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Michelle K McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
25
|
Abstract
Abstract The gut has been hypothesized to be the "motor" of multiple organ dysfunction in sepsis. Although there are multiple ways in which the gut can drive systemic inflammation, increasing evidence suggests that the intestinal microbiome plays a more substantial role than previously appreciated. An English language literature review was performed to summarize the current knowledge of sepsis-induced gut microbiome dysbiosis. Conversion of a normal microbiome to a pathobiome in the setting of sepsis is associated with worsened mortality. Changes in microbiome composition and diversity signal the intestinal epithelium and immune system resulting in increased intestinal permeability and a dysregulated immune response to sepsis. Clinical approaches to return to microbiome homeostasis may be theoretically possible through a variety of methods including probiotics, prebiotics, fecal microbial transplant, and selective decontamination of the digestive tract. However, more research is required to determine the efficacy (if any) of targeting the microbiome for therapeutic gain. The gut microbiome rapidly loses diversity with emergence of virulent bacteria in sepsis. Restoring normal commensal bacterial diversity through various therapies may be an avenue to improve sepsis mortality.
Collapse
Affiliation(s)
- Nathan J. Klingensmith
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Craig M. Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
26
|
Zhang L, Xiao H, Zhao L, Liu Z, Chen L, Liu C. Comparison of the Effects of Prebiotics and Synbiotics Supplementation on the Immune Function of Male University Football Players. Nutrients 2023; 15:nu15051158. [PMID: 36904156 PMCID: PMC10004888 DOI: 10.3390/nu15051158] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
This study was conducted to compare the effects of long-term prebiotic and synbiotic supplementations on the immunosuppression of male football players after daily high-intensity training and a one-time strenuous exercise. A total of 30 male university student-athletes were recruited and randomly assigned to the prebiotic (PG, n = 15) or synbiotic group (SG, n = 15), receiving a prebiotic or synbiotic once per day for six weeks. Physiological assessments were conducted by a maximal oxygen uptake (VO2max) test and an exhaustive constant load exercise (75% VO2max test). Inflammatory cytokine and secretory immunoglobulin A (SIgA) were measured. VO2max, maximal heart rate (HRmax), and lactic acid elimination rate (ER) were used to evaluate aerobic capacity. Upper respiratory tract infection (URTI) complaints were evaluated using a questionnaire. URTI incidence and duration were significantly lower in the SG group than that in the PG group (p < 0.05). At baseline, SIgA and interleukin-1β (IL-1β) levels in the SG group (p < 0.01) as well as IL-1β and IL-6 in the PG group (p < 0.05) were significantly increased, and IL-4 concentration was markedly reduced in the PG group (p < 0.01). The concentrations of IL-4, IL-10 and transforming growth factor-β1 (TGF-β1) were significantly reduced in the PG and SG group immediately after the constant load exercise. Significantly decreased HRmax and enhanced ER (increased by 193.78%) were detected in the SG group, not in the PG group, during the constant load experiment (p < 0.05) and the recovery period (p < 0.01), respectively. However, VO2max value was not changed. These data suggest that synbiotic supplementation for six weeks has a more positive effect than prebiotics on the immune function and athletic performance of male university football players.
Collapse
Affiliation(s)
- Lufang Zhang
- Department of Exercise Physiology, School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Hui Xiao
- School of China Football Sports, Beijing Sport University, Beijing 100084, China
| | - Li Zhao
- Department of Exercise Physiology, School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Zeting Liu
- Department of Mathematic Science, School of Sport Engineering, Beijing Sport University, Beijing 100084, China
| | - Lanmu Chen
- Department of Exercise Physiology, School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Chenzhe Liu
- Department of Exercise Physiology, School of Sport Science, Beijing Sport University, Beijing 100084, China
- Correspondence:
| |
Collapse
|
27
|
Campbell C, Kandalgaonkar MR, Golonka RM, Yeoh BS, Vijay-Kumar M, Saha P. Crosstalk between Gut Microbiota and Host Immunity: Impact on Inflammation and Immunotherapy. Biomedicines 2023; 11:294. [PMID: 36830830 PMCID: PMC9953403 DOI: 10.3390/biomedicines11020294] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Gut microbes and their metabolites are actively involved in the development and regulation of host immunity, which can influence disease susceptibility. Herein, we review the most recent research advancements in the gut microbiota-immune axis. We discuss in detail how the gut microbiota is a tipping point for neonatal immune development as indicated by newly uncovered phenomenon, such as maternal imprinting, in utero intestinal metabolome, and weaning reaction. We describe how the gut microbiota shapes both innate and adaptive immunity with emphasis on the metabolites short-chain fatty acids and secondary bile acids. We also comprehensively delineate how disruption in the microbiota-immune axis results in immune-mediated diseases, such as gastrointestinal infections, inflammatory bowel diseases, cardiometabolic disorders (e.g., cardiovascular diseases, diabetes, and hypertension), autoimmunity (e.g., rheumatoid arthritis), hypersensitivity (e.g., asthma and allergies), psychological disorders (e.g., anxiety), and cancer (e.g., colorectal and hepatic). We further encompass the role of fecal microbiota transplantation, probiotics, prebiotics, and dietary polyphenols in reshaping the gut microbiota and their therapeutic potential. Continuing, we examine how the gut microbiota modulates immune therapies, including immune checkpoint inhibitors, JAK inhibitors, and anti-TNF therapies. We lastly mention the current challenges in metagenomics, germ-free models, and microbiota recapitulation to a achieve fundamental understanding for how gut microbiota regulates immunity. Altogether, this review proposes improving immunotherapy efficacy from the perspective of microbiome-targeted interventions.
Collapse
Affiliation(s)
- Connor Campbell
- Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Mrunmayee R. Kandalgaonkar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Rachel M. Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Beng San Yeoh
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
28
|
Liu EG, Zhang B, Martin V, Anthonypillai J, Kraft M, Grishin A, Grishina G, Catanzaro JR, Chinthrajah S, Sindher T, Manohar M, Quake AZ, Nadeau K, Burks AW, Kim EH, Kulis MD, Henning AK, Jones SM, Leung DYM, Sicherer SH, Wood RA, Yuan Q, Shreffler W, Sampson H, Shabanova V, Eisenbarth SC. Food-specific immunoglobulin A does not correlate with natural tolerance to peanut or egg allergens. Sci Transl Med 2022; 14:eabq0599. [PMID: 36383680 PMCID: PMC10219469 DOI: 10.1126/scitranslmed.abq0599] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
ImmunoglobulinA (IgA) is the predominant antibody isotype in the gut, where it regulates commensal flora and neutralizes toxins and pathogens. The function of food-specific IgA in the gut is unknown but is presumed to protect from food allergy. Specifically, it has been hypothesized that food-specific IgA binds ingested allergens and promotes tolerance by immune exclusion; however, the evidence to support this hypothesis is indirect and mixed. Although it is known that healthy adults have peanut-specific IgA in the gut, it is unclear whether children also have gut peanut-specific IgA. We found in a cohort of non-food-allergic infants (n = 112) that there is detectable stool peanut-specific IgA that is similar to adult quantities of gut peanut-specific IgA. To investigate whether this peanut-specific IgA is associated with peanut tolerance, we examined a separate cohort of atopic children (n = 441) and found that gut peanut-specific IgA does not predict protection from development of future peanut allergy in infants nor does it correlate with concurrent oral tolerance of peanut in older children. We observed higher plasma peanut-specific IgA in those with peanut allergy. Similarly, egg white-specific IgA was detectable in infant stools and did not predict egg tolerance or outgrowth of egg allergy. Bead-based epitope assay analysis of gut peanut-specific IgA revealed similar epitope specificity between children with peanut allergy and those without; however, gut peanut-specific IgA and plasma peanut-specific IgE had different epitope specificities. These findings call into question the presumed protective role of food-specific IgA in food allergy.
Collapse
Affiliation(s)
- Elise G. Liu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
- Department of Medicine, Section of Rheumatology, Allergy, and Immunology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Biyan Zhang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore 138648, Singapore
| | - Victoria Martin
- Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Food Allergy Center, Massachusetts General Hospital, MGH Professional Office Building, Suite 530, 275 Cambridge Street, Boston, MA 02114, USA
- Food Allergy Science Initiative, Broad Institute, Cambridge, MA 02142, USA
| | - John Anthonypillai
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
- Department of Medicine, Section of Rheumatology, Allergy, and Immunology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Magdalena Kraft
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Alexander Grishin
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Galina Grishina
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jason R. Catanzaro
- Section of Pulmonology, Allergy, Immunology, and Sleep Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Sharon Chinthrajah
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA 94040, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, CA 94305, USA
| | - Tina Sindher
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA 94040, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, CA 94305, USA
| | - Monali Manohar
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA 94040, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, CA 94305, USA
| | - Antonia Zoe Quake
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA 94040, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA 94040, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, CA 94305, USA
| | - A. Wesley Burks
- University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Edwin H. Kim
- University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Michael D. Kulis
- University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | - Stacie M. Jones
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children’s Hospital, Little Rock, AR 72205, USA
| | - Donald Y. M. Leung
- Department of Pediatrics, Division of Pediatric Allergy-Immunology, National Jewish Health, Denver, CO 80206, USA
| | - Scott H. Sicherer
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert A. Wood
- Department of Pediatrics, Division of Allergy, Immunology, and Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Qian Yuan
- Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Food Allergy Center, Massachusetts General Hospital, MGH Professional Office Building, Suite 530, 275 Cambridge Street, Boston, MA 02114, USA
- Food Allergy Science Initiative, Broad Institute, Cambridge, MA 02142, USA
- Pediatrics at Newton Wellesley, Newton, MA 02462, USA
| | - Wayne Shreffler
- Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Food Allergy Center, Massachusetts General Hospital, MGH Professional Office Building, Suite 530, 275 Cambridge Street, Boston, MA 02114, USA
- Food Allergy Science Initiative, Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hugh Sampson
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Veronika Shabanova
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stephanie C. Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
- Department of Medicine, Section of Rheumatology, Allergy, and Immunology, Yale University School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
29
|
The Mechanisms of Systemic Inflammatory and Immunosuppressive Acute-on-Chronic Liver Failure and Application Prospect of Single-Cell Sequencing. J Immunol Res 2022; 2022:5091275. [PMID: 36387424 PMCID: PMC9646330 DOI: 10.1155/2022/5091275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a complex clinical syndrome, and patients often have high short-term mortality. It occurs with intense systemic inflammation, often accompanied by a proinflammatory event (such as infection or alcoholic hepatitis), and is closely related to single or multiple organ failure. Liver inflammation begins when innate immune cells (such as Kupffer cells (KCs)) are activated by binding of pathogen-associated molecular patterns (PAMPs) from pathogenic microorganisms or damage-associated molecular patterns (DAMPs) of host origin to their pattern recognition receptors (PRRs). Activated KCs can secrete inflammatory factors as well as chemokines and recruit bone marrow-derived cells such as neutrophils and monocytes to the liver to enhance the inflammatory process. Bacterial translocation may contribute to ACLF when there are no obvious precipitating events. Immunometabolism plays an important role in the process (including mitochondrial dysfunction, amino acid metabolism, and lipid metabolism). The late stage of ACLF is mainly characterized by immunosuppression. In this process, the dysfunction of monocyte and macrophage is reflected in the downregulation of HLA-DR and upregulation of MER tyrosine kinase (MERTK), which weakens the antigen presentation function and reduces the secretion of inflammatory cytokines. We also describe the specific function of bacterial translocation and the gut-liver axis in the process of ACLF. Finally, we also describe the transcriptomics in HBV-ACLF and the recent progress of single-cell RNA sequencing as well as its potential application in the study of ACLF in the future, in order to gain a deeper understanding of ACLF in terms of single-cell gene expression.
Collapse
|
30
|
Tian B, Zhang Y, Deng C, Guo C. Efficacy of Probiotic Consortium Transplantation on Experimental Necrotizing Enterocolitis. J Surg Res 2022; 279:598-610. [PMID: 35926310 DOI: 10.1016/j.jss.2022.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/22/2022] [Accepted: 05/22/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Fecal microbiota transplantation (FMT) is a promising therapy, but it has not been used to treat neonatal necrotizing enterocolitis (NEC) due to reports of adverse side effects. Probiotics are considered relatively safe with practicable administrative procedures; however, no systematic research has compared the results of FMT and probiotic consortium transplantation (PCT) on oxidative stress in the intestines of patients with NEC. We conducted this study to provide a basis for optimizing NEC therapy. METHODS Eight-day-old newborn C57BL/6 mice were randomly divided into the following four groups: the dam-fed group (control group); the NEC induction group (NEC group); the NEC induction and transplantation of Lactobacillus reuteri and Bifidobacterium infantis consortium group (NEC + PCT group); and the NEC induction and the FMT group (NEC + FMT). Intestinal injury, oxidative stress indexes, intestinal barrier function, and inflammatory cytokines were assessed in the terminal ileum. RESULTS FMT more effectively modulates oxidative stress in the intestine than does PCT; however, the difference between the effects of PCT and FMT was not significant. The protective effect was associated with enhanced antioxidant capacity, regulation of the main components of the mucus layer, reduced inflammatory reactions, and improved intestinal integrity. CONCLUSIONS Intestinal dysbiosis affects oxidative stress, inflammatory response, and mucosal integrity. Although FMT is more effective than PCT in regulating oxidative stress, PCT may be preferred in pediatrics because the proportion and dose of transplanted bacteria can be standardized and individualized according to individual conditions.
Collapse
Affiliation(s)
- Bing Tian
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China; Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqin, China
| | - Yunfei Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China; School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China; National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital, Chongqing Medical University, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Chun Deng
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqin, China; School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Children's Hospital, Chongqing Medical University, Chongqing, China.
| | - Chunbao Guo
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Children's Hospital, Chongqing Medical University, Chongqing, China; Department of Pediatric Surgery, Women and Chidren's Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
31
|
Collinet A, Grimm P, Jacotot E, Julliand V. Biomarkers for monitoring the equine large intestinal inflammatory response to stress-induced dysbiosis and probiotic supplementation. J Anim Sci 2022; 100:skac268. [PMID: 35980768 PMCID: PMC9576022 DOI: 10.1093/jas/skac268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/16/2022] [Indexed: 11/14/2022] Open
Abstract
Large intestine barrier disturbances can have serious consequences for the health of horses. The loss of mucosal integrity that leads to increased intestinal permeability may result from a local inflammatory immune response following alterations of the microbiota, known as dysbiosis. Therefore, our research aimed to identify noninvasive biomarkers for studying the intestinal permeability and the local inflammatory immune response in horses. Regarding the biomarkers used in other mammalian species, we measured the concentrations of lipopolysaccharides (LPS), reflected by 3-OH C14, C16, and C18 fatty acids, in blood, and fecal secretory immunoglobulin-A (SIgA). These biomarkers were evaluated in two trials including 9 and 12 healthy horses, which developed large intestinal dysbiosis experimentally induced by 5 d of antibiotic administration (trimethoprim sulfadiazine [TMS]) or 5 d of abrupt introduction of high starch levels (barley) into the diet. Horses were either control or supplemented with Lactobacillus acidophilus, Ligilactobacillus salivarius, and Bifidobacterium lactis. Correlations were performed between biomarkers and fecal bacterial diversity, composition, and function. No significant interaction between day and supplementation, or supplementation effect were observed for each biomarker. However, with the dietary stressor, a significant increase in blood concentrations of 3-OH C16 (P = 0.0125) and C14 (P = 0.0252) fatty acids was measured 2 d after the cessation of barley administration. Furthermore, with the antibiotic stressor, blood levels of 3-OH C16 progressively increased (P = 0.0114) from the first day to 2 d after the end of TMS administration. No significant day effect was observed for fecal SIgA concentrations for both stressors. These results indicate that both antibiotic- and diet-induced dysbiosis resulted in a local translocation of LPS 2 d after the cessation of the stressor treatments, suggesting an impairment of intestinal permeability, without detectable local inflammation. Blood LPS and fecal SIgA concentrations were significantly correlated with several bacterial variations in the large intestine, which are features of antibiotic- and diet-induced dysbiosis. These findings support the hypothesis that a relationship exists between dysbiosis and the loss of mucosal integrity in the large intestine of horses.
Collapse
Affiliation(s)
- Axelle Collinet
- Lab To Field, 21000 Dijon, France
- Univ. Bourgogne Franche–Comté, L’Institut Agro Dijon, PAM UMR A 02.102, 21000 Dijon, France
| | | | - Emmanuel Jacotot
- Univ. Bourgogne Franche–Comté, L’Institut Agro Dijon, PAM UMR A 02.102, 21000 Dijon, France
| | - Véronique Julliand
- Univ. Bourgogne Franche–Comté, L’Institut Agro Dijon, PAM UMR A 02.102, 21000 Dijon, France
| |
Collapse
|
32
|
Enhanced cultured diversity of the mouse gut microbiota enables custom-made synthetic communities. Cell Host Microbe 2022; 30:1630-1645.e25. [DOI: 10.1016/j.chom.2022.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/30/2022] [Accepted: 09/13/2022] [Indexed: 12/26/2022]
|
33
|
Hazime R, Eddehbi FE, El Mojadili S, Lakhouaja N, Souli I, Salami A, M’Raouni B, Brahim I, Oujidi M, Guennouni M, Bousfiha AA, Admou B. Inborn errors of immunity and related microbiome. Front Immunol 2022; 13:982772. [PMID: 36177048 PMCID: PMC9513548 DOI: 10.3389/fimmu.2022.982772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022] Open
Abstract
Inborn errors of immunity (IEI) are characterized by diverse clinical manifestations that are dominated by atypical, recurrent, chronic, or severe infectious or non-infectious features, including autoimmunity, lymphoproliferative disease, granulomas, and/or malignancy, which contribute substantially to morbidity and mortality. Some data suggest a correlation between clinical manifestations of IEI and altered gut microbiota. Many IEI display microbial dysbiosis resulting from the proliferation of pro-inflammatory bacteria or a decrease in anti-inflammatory bacteria with variations in the composition and function of numerous microbiota. Dysbiosis is considered more established, mainly within common variable immunodeficiency, selective immunoglobulin A deficiency, severe combined immunodeficiency diseases, Wiskott–Aldrich syndrome, Hyper-IgE syndrome, autoimmune polyendocrinopathy–candidiasis–ectodermal-dystrophy (APECED), immune dysregulation, polyendocrinopathy, enteropathy X-linked (IPEX) syndrome, IL-10 receptor deficiency, chronic granulomatous disease, and Kostmann disease. For certain IEIs, the specific predominance of gastrointestinal, respiratory, and cutaneous involvement, which is frequently associated with dysbiosis, justifies the interest for microbiome identification. With the better understanding of the relationship between gut microbiota, host immunity, and infectious diseases, the integration of microbiota modulation as a therapeutic approach or a preventive measure of infection becomes increasingly relevant. Thus, a promising strategy is to develop optimized prebiotics, probiotics, postbiotics, and fecal microbial transplantation to rebalance the intestinal microbiota and thereby attenuate the disease activity of many IEIs.
Collapse
Affiliation(s)
- Raja Hazime
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
- Biosciences Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Fatima-Ezzohra Eddehbi
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Saad El Mojadili
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Nadia Lakhouaja
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Ikram Souli
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Abdelmouïne Salami
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Bouchra M’Raouni
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Imane Brahim
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Mohamed Oujidi
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Morad Guennouni
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Ahmed Aziz Bousfiha
- Pediatric infectious and Immunology Department, Ibn Rochd University Hospital, Casablanca, Morocco
- Laboratory of Clinical Immunology inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Brahim Admou
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
- Biosciences Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
- *Correspondence: Brahim Admou,
| |
Collapse
|
34
|
Chen Q, Xie Q, Jiang C, Evivie SE, Cao T, Wang Z, Zhao L, Liang S, Li B, Huo G. Infant formula supplemented with 1,3-olein-2-palmitin regulated the immunity, gut microbiota, and metabolites of mice colonized by feces from healthy infants. J Dairy Sci 2022; 105:6405-6421. [PMID: 35840401 DOI: 10.3168/jds.2021-21736] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/11/2022] [Indexed: 01/14/2023]
Abstract
Infant formula is currently an important food to cope with insufficient breastfeeding. Although 1,3-olein-2-palmitin (OPO) has been used in infant formula, its effects on the immune system, gut microbiota, and metabolites for infants remain unclear. This study constructed a mouse model of colonizing healthy infant feces using antibiotic treatment and fecal microbial transplantation. Thus, the gap between the infant formula supplemented with OPO and human milk in mouse serum biochemistry, immune system, intestinal microbiota, short-chain fatty acid production, and metabolites was evaluated. Our results showed that regarding IL-9, IL-10 levels, fecal secretory IgA, and endotoxin, formula supplemented with OPO and human milk types had comparable levels. Additionally, OPO slightly increased the content of short-chain fatty acids. The 16S rRNA gene sequence analysis and metabonomics analysis demonstrated that feeding different foods affects the gut microbiota of mice; in particular, supplementing formula feeding with OPO enriched the abundance of bifidobacteria. Furthermore, feeding different foods leads to unique intestinal content of metabolites, and the gut microbiota regulates the metabolites' differences. Our results reveal a brand new perspective of OPO regarding gut microbiota and metabolites.
Collapse
Affiliation(s)
- Qingxue Chen
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Qinggang Xie
- Heilongjiang Feihe Dairy Co. Ltd., Qiqihaer 164800, China
| | - Chuqi Jiang
- Heilongjiang Feihe Dairy Co. Ltd., Qiqihaer 164800, China
| | - Smith Etareri Evivie
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Department of Food Science and Human Nutrition, Faculty of Agriculture, University of Benin, Benin City 300001, Nigeria; Department of Animal Science, Faculty of Agriculture, University of Benin, Benin City 300001, Nigeria
| | - Ting Cao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Zengbo Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Lina Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Shengnan Liang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
35
|
Gut microbiome in modulating immune checkpoint inhibitors. EBioMedicine 2022; 82:104163. [PMID: 35841869 PMCID: PMC9297075 DOI: 10.1016/j.ebiom.2022.104163] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Funding
Collapse
|
36
|
Zhang C, Zhang J, Yu Z, Zhou G, Yao J. Effects of supplementation with Saccharomyces cerevisiae products on dairy calves: A meta-analysis. J Dairy Sci 2022; 105:7386-7398. [PMID: 35879169 DOI: 10.3168/jds.2021-21519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/20/2022] [Indexed: 11/19/2022]
Abstract
Saccharomyces cerevisiae products (SCP) have the potential to promote the growth and development of the gastrointestinal tract and immunity in young livestock animals. However, the effects of SCP supplementation on calves are inconsistent among the reported studies in the literature. Hence, we performed a meta-analysis to comprehensively assess the effects of SCP on the growth performance, ruminal fermentation parameters, nutrients digestibility, ruminal histological morphology, serum immune response, and fecal pathogen colony counts in calves. We searched the Web of Science, ScienceDirect, PubMed, and China National Knowledge Infrastructure for relevant studies published up to October 1, 2021. After screening against a set of criteria, the data of 36 studies were included in our meta-analysis (2,126 calves in total). We evaluated the quality of the data using sensitivity analysis and assessed publication bias. Our meta-analysis revealed several important findings. First, SCP supplementation increased the ruminal short-chain fatty acid concentration, ruminal papilla height, and fiber digestibility, pointing toward stimulation of the development of the rumen in calves. Second, SCP supplementation increased the serum concentrations of total protein, IgA, and IgG but decreased fecal pathogen colony counts, suggesting that SCP could help calves to promote immunity (especially maintaining circulating concentrations of immunoglobulins in preweaning calves) and resistance to pathogens. Third, a subgroup analysis between preweaning and postweaning calves showed that SCP increased average daily gain and dry matter intake preweaning but not postweaning, suggesting that SCP is better supplemented to preweaning calves to achieve the best results. Forth, based on the dose-response curve, 24 to 25 g/d might be the optimal dose range of SCP supplementation (into starter feed) preweaning to achieve the best overall effect, meanwhile, we need more studies to improve the consistency and accuracy of the dose-response curve prediction. Overall, SCP supplementation improved growth performance, rumen development, and immunocompetence in calves, particularly in preweaning calves.
Collapse
Affiliation(s)
- Chenguang Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jun Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - Guilian Zhou
- New Hope Liuhe Company Limited/Quality Control for Feed and Products of Livestock and Poultry Key Laboratory of Sichuan Province, Chengdu, 610023, Sichuan, China.
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
37
|
Mucosal vaccine delivery: A focus on the breakthrough of specific barriers. Acta Pharm Sin B 2022; 12:3456-3474. [PMID: 35818435 PMCID: PMC9259023 DOI: 10.1016/j.apsb.2022.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/03/2022] [Accepted: 06/30/2022] [Indexed: 12/30/2022] Open
Abstract
Mucosal vaccines can effectively induce an immune response at the mucosal site and form the first line of defense against microbial invasion. The induced mucosal immunity includes the proliferation of effector T cells and the production of IgG and IgA antibodies, thereby effectively blocking microbial infection and transmission. However, after a long period of development, the transformation of mucosal vaccines into clinical use is still relatively slow. To date, fewer than ten mucosal vaccines have been approved. Only seven mucosal vaccines against coronavirus disease 2019 (COVID-19) are under investigation in clinical trials. A representative vaccine is the adenovirus type-5 vectored COVID-19 vaccine (Ad5-nCoV) developed by Chen and coworkers, which is currently in phase III clinical trials. The reason for the limited progress of mucosal vaccines may be the complicated mucosal barriers. Therefore, this review summarizes the characteristics of mucosal barriers and highlights strategies to overcome these barriers for effective mucosal vaccine delivery.
Collapse
|
38
|
Ohm M, Boef AGC, Stoof SP, van Ravenhorst MB, van der Klis FRM, Berbers GAM, Knol MJ. Sex-Related Differences in the Immune Response to Meningococcal Vaccinations During Adolescence. Front Public Health 2022; 10:871670. [PMID: 35602158 PMCID: PMC9120633 DOI: 10.3389/fpubh.2022.871670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Immune responses to pediatric vaccinations have been reported to differ according to sex. Such sex-differential responses may become more pronounced during adolescence due to hormonal differences. We investigated whether the vaccine response following primary vaccination against meningococcal serogroup A (MenA), MenW and MenY and booster vaccination against MenC differed between girls and boys using data from two clinical studies. Methods Children aged 10, 12, and 15 years, who had been primed with MenC vaccination between 14 months and 6 years of age, received a booster MenC vaccination or MenACWY vaccination. Polysaccharide-specific IgG concentrations and functional antibody titers [determined with the serum bactericidal antibody (SBA) assay] were measured at baseline, 1 month, 1 year, and 3 years (only MenC group) after vaccination. We calculated geometric mean concentrations and titers (GMC and GMT) ratios for girls vs. boys adjusted for age group. Additionally, we compared the proportion protected individuals between girls and boys at all timepoints. Results This study included 342 girls and 327 boys from two clinical trials. While MenAWY antibody levels did not differ consistently 1 month after vaccination, all GMC- and GMT-ratios were in favor of girls 1 year after vaccination [range: 1.31 (1.02–1.70) for MenA IgG to 1.54 (1.10–2.16) for MenW IgG]. Overall, MenC antibody levels were slightly higher in girls at all postvaccination timepoints (GMC- and GMT-ratios: 1.16/1.17 at 1 month, 1.16/1.22 at 1 year and 1.12/1.15 3 years postvaccination). Higher MenC antibody levels were observed in 12- and 15-year-old girls compared to boys of the same age, whereas 10-year-old boys and girls had similar antibody levels. The percentage of participants protected (SBA titer ≥ 8) was very high (95–100%) at all timepoints, and did not differ significantly between boys and girls. Conclusion Antibody responses were higher in girls than in boys for all serogroups at most timepoints after primary MenAWY vaccination and booster MenC vaccination. The differences in average titers were however small and the percentage participants with protective titers was very high for both sexes.
Collapse
|
39
|
Liang H, Zhang Y, Miao Z, Cheng R, Jiang F, Ze X, Shen X, He F. Anti-allergic effects of two potential probiotic strains isolated from infant feces in China. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
40
|
Suvorov A, Gupalova T, Desheva Y, Kramskaya T, Bormotova E, Koroleva I, Kopteva O, Leontieva G. Construction of the Enterococcal Strain Expressing Immunogenic Fragment of SARS-Cov-2 Virus. Front Pharmacol 2022; 12:807256. [PMID: 35145407 PMCID: PMC8823703 DOI: 10.3389/fphar.2021.807256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/01/2021] [Indexed: 12/05/2022] Open
Abstract
Contemporary SARS-Cov-2 pandemic, besides its dramatic global influence on the human race including health care systems, economies, and political decisions, opened a window for the global experiment with human vaccination employing novel injectable vaccines providing predominantly specific IgG response with little knowledge of their impact on the mucosal immunity. However, it is widely accepted that protection against the pathogens at the gates of the infection - on mucosal surfaces—predominantly rely on an IgA response. Some genetically modified bacteria, including probiotics, represent attractive vehicles for oral or nasal mucosal delivery of therapeutic molecules. Probiotic-based vaccines for mucous membranes are easy to produce in large quantities; they have low cost, provide quite a long T-cell memory, and gut IgA response to oral vaccines is highly synchronized and strongly oligoclonal. Here we present a study demonstrating construction of the novel SARS-Cov-2 vaccine candidate employing the gene fragment of S1 SARS-Cov-2 gene. This DNA fragment was inserted in frame into major pili protein gene with d2 domain of enterococcal operon encoding for pili. The DNA sequencing proved the presence of the insert in enterococcal genome. RNA transcription, immunoprecipitation, and immune electron microscopy with human sera obtained from the SARS-Cov-2 patients demonstrated expression of SARS-Cov-2 antigens in bacteria. Taken together the data obtained allowed considering this genetically modified probiotic strain as an interesting candidate for vaccine against SARS-Cov-2.
Collapse
Affiliation(s)
- Alexander Suvorov
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, Saint-Petersburg, Russia
| | - Tatiana Gupalova
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, Saint-Petersburg, Russia
| | - Yulia Desheva
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, Saint-Petersburg, Russia
| | - Tatiana Kramskaya
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, Saint-Petersburg, Russia
| | - Elena Bormotova
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, Saint-Petersburg, Russia
| | - Irina Koroleva
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, Saint-Petersburg, Russia
| | - Olga Kopteva
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, Saint-Petersburg, Russia
| | - Galina Leontieva
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, Saint-Petersburg, Russia
| |
Collapse
|
41
|
George S, Aguilera X, Gallardo P, Farfán M, Lucero Y, Torres JP, Vidal R, O'Ryan M. Bacterial Gut Microbiota and Infections During Early Childhood. Front Microbiol 2022; 12:793050. [PMID: 35069488 PMCID: PMC8767011 DOI: 10.3389/fmicb.2021.793050] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota composition during the first years of life is variable, dynamic and influenced by both prenatal and postnatal factors, such as maternal antibiotics administered during labor, delivery mode, maternal diet, breastfeeding, and/or antibiotic consumption during infancy. Furthermore, the microbiota displays bidirectional interactions with infectious agents, either through direct microbiota-microorganism interactions or indirectly through various stimuli of the host immune system. Here we review these interactions during childhood until 5 years of life, focusing on bacterial microbiota, the most common gastrointestinal and respiratory infections and two well characterized gastrointestinal diseases related to dysbiosis (necrotizing enterocolitis and Clostridioides difficile infection). To date, most peer-reviewed studies on the bacterial microbiota in childhood have been cross-sectional and have reported patterns of gut dysbiosis during infections as compared to healthy controls; prospective studies suggest that most children progressively return to a "healthy microbiota status" following infection. Animal models and/or studies focusing on specific preventive and therapeutic interventions, such as probiotic administration and fecal transplantation, support the role of the bacterial gut microbiota in modulating both enteric and respiratory infections. A more in depth understanding of the mechanisms involved in the establishment and maintenance of the early bacterial microbiota, focusing on specific components of the microbiota-immunity-infectious agent axis is necessary in order to better define potential preventive or therapeutic tools against significant infections in children.
Collapse
Affiliation(s)
- Sergio George
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Ximena Aguilera
- School of Medicine, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Pablo Gallardo
- Department of Pediatrics and Pediatric Surgery, Dr. Luis Calvo Mackenna Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mauricio Farfán
- Department of Pediatrics and Pediatric Surgery, Dr. Luis Calvo Mackenna Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Yalda Lucero
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Department of Pediatrics and Pediatric Surgery, Dr. Roberto del Río Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juan Pablo Torres
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Department of Pediatrics and Pediatric Surgery, Dr. Luis Calvo Mackenna Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Roberto Vidal
- Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile.,ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Miguel O'Ryan
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
42
|
The Mediating Role of the Gut Microbiota in the Physical Growth of Children. Life (Basel) 2022; 12:life12020152. [PMID: 35207440 PMCID: PMC8880549 DOI: 10.3390/life12020152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota succession overlaps with intensive growth in infancy and early childhood. The multitude of functions performed by intestinal microbes, including participation in metabolic, hormonal, and immune pathways, makes the gut bacterial community an important player in cross-talk between intestinal processes and growth. Long-term disturbances in the colonization pattern may affect the growth trajectory, resulting in stunting or wasting. In this review, we summarize the evidence on the mediating role of gut microbiota in the mechanisms controlling the growth of children.
Collapse
|
43
|
Suvorov A, Gupalova T, Desheva Y, Kramskaya T, Bormotova E, Koroleva I, Kopteva O, Leontieva G. Construction of the Enterococcal Strain Expressing Immunogenic Fragment of SARS-Cov-2 Virus. Front Pharmacol 2022. [DOI: 10.3389/fphar.2022.807256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Contemporary SARS-Cov-2 pandemic, besides its dramatic global influence on the human race including health care systems, economies, and political decisions, opened a window for the global experiment with human vaccination employing novel injectable vaccines providing predominantly specific IgG response with little knowledge of their impact on the mucosal immunity. However, it is widely accepted that protection against the pathogens at the gates of the infection - on mucosal surfaces—predominantly rely on an IgA response. Some genetically modified bacteria, including probiotics, represent attractive vehicles for oral or nasal mucosal delivery of therapeutic molecules. Probiotic-based vaccines for mucous membranes are easy to produce in large quantities; they have low cost, provide quite a long T-cell memory, and gut IgA response to oral vaccines is highly synchronized and strongly oligoclonal. Here we present a study demonstrating construction of the novel SARS-Cov-2 vaccine candidate employing the gene fragment of S1 SARS-Cov-2 gene. This DNA fragment was inserted in frame into major pili protein gene with d2 domain of enterococcal operon encoding for pili. The DNA sequencing proved the presence of the insert in enterococcal genome. RNA transcription, immunoprecipitation, and immune electron microscopy with human sera obtained from the SARS-Cov-2 patients demonstrated expression of SARS-Cov-2 antigens in bacteria. Taken together the data obtained allowed considering this genetically modified probiotic strain as an interesting candidate for vaccine against SARS-Cov-2.
Collapse
|
44
|
Blanco-Rojo R, Maldonado J, Schaubeck M, Özen M, López-Huertas E, Olivares M. Beneficial Effects of Limosilactobacillus fermentum CECT 5716 Administration to Infants Delivered by Cesarean Section. Front Pediatr 2022; 10:906924. [PMID: 35874592 PMCID: PMC9301023 DOI: 10.3389/fped.2022.906924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Cesarean section (CS) disrupts the natural microbiota colonization process in infants, which might compromise immune system maturation, leading to a higher risk of infections. We evaluated the effect of the probiotic Limosilactobacillus (L.) fermentum CECT 5716 on the incidence of gastrointestinal and respiratory infections in the CS infant subgroups (n = 173) of three randomized clinical trials in which this probiotic strain was demonstrated to be safe and effective for preventing infections. Therefore, the data for the CS infants were extracted to obtain the incidence rate ratio (IRR) and 95% CI for gastrointestinal and respiratory infections for each study and were then combined to obtain a pooled IRR and 95% CI using the generic inverse variance method. There was a significant reduction of 73% in the incidence of gastrointestinal infections in CS infants receiving L. fermentum CECT 5716 compared with those receiving the control formula [n = 173, IRR: 0.27 (0.13, 0.53), p = 0.0002]. Regarding respiratory infections, although pooled results showed a reduction of 14% in the probiotic group, the difference was not statistically significant [n = 173, IRR (95% CI): 0.86 (0.67, 1.11), p = 0.25]. In conclusion, the administration of L. fermentum CECT 5716 to CS-born infants protects them from gastrointestinal infections by reducing the risk by up to 73% in this population.
Collapse
Affiliation(s)
- Ruth Blanco-Rojo
- Research and Development Department, Biosearch Life, a Kerry Company, Granada, Spain
| | - José Maldonado
- Pediatric Unit, University Hospital Virgen de las Nieves, Granada, Spain.,Department of Pediatric, University of Granada, Granada, Spain.,Biosanitary Research Institute (IBS), Granada, Spain
| | | | - Metehan Özen
- Department of Pediatrics, School of Medicine, Acibadem University, Istanbul, Turkey
| | - Eduardo López-Huertas
- Estación Experimental Zaidín, Consejo Superior Investigaciones Científicas, Granada, Spain
| | - Mónica Olivares
- Research and Development Department, Biosearch Life, a Kerry Company, Granada, Spain
| |
Collapse
|
45
|
Liao TH, Lin CL, Lin CH, Wu MC, Wei JCC. Children with appendectomy have increased risk of future sepsis: Real-world data in Taiwan. Int J Clin Pract 2021; 75:e14912. [PMID: 34549868 DOI: 10.1111/ijcp.14912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/27/2021] [Accepted: 09/19/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Appendectomy is one of the most commonly performed surgeries worldwide. Sepsis is a major aetiology of morbidity and mortality in children. Our preliminary research revealed a positive correlation amongst appendectomy and future risk of sepsis in adults. However, to date, the relationship between appendectomy and future risk of sepsis in children remains unknown. The aim of this research was to investigate the relationship between appendectomy and the hazard of future sepsis in children. METHODS We applied a nationwide population-based cohort to assess whether children who received appendectomy were at increased risk of subsequent sepsis. Overall, 57 261 subjects aged below 18 undergoing appendectomy as appendectomy group and 57 261 matched controls were identified as a non-appendectomy group from the National Health Insurance Research Database in Taiwan. We use propensity score analysis to match the age, sex, urbanisation level and parental occupation at the ratio to 1:1. Multiple Cox regression and stratified analyses were used to appraise the adjusted hazard ratio (aHR) for developing sepsis in children. RESULTS Children who received appendectomy had a 2.38 times higher risk (aHR: 2.38; 95% confidence interval [CI] = 1.98, 2.87) of developing sepsis than those who did not, and the risk was higher in all age groups (aHR: 2.98, 95% CI = 1.84, 4.83; aHR: 2.45, 95% CI = 1.08, 2.05; aHR: 2.18, 95% CI = 1.70, 2.80 in children aged <6, 7-12 and 13-18 years, respectively). Patients with <1-year follow-up showed a 4.53-fold risk of sepsis in the appendectomy cohort (aHR: 4.53, 95% CI = 2.80, 7.35). Patients with 1-4 and ≥5 years' follow-up showed a 2.19- and 1.94-times risk of sepsis (aHR: 2.19, 95% CI = 1.61, 2.97; aHR: 1.94, 95% CI = 1.48, 2.56 in 1-4 and >5 years, respectively). CONCLUSION Appendectomy was correlative to a 2.38-fold increased future sepsis risk in children, and the risk in all age groups was higher. More studies to interpret the possible biological mechanisms of the associations amongst sepsis and appendectomy are warranted.
Collapse
Affiliation(s)
- Tzu-Han Liao
- Division of Pediatric Gastroenterology, Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Pediatrics, Chen-Chin Hospital, Taichung, Taiwan
| | - Cheng-Li Lin
- College of Medicine, China Medical University, Taichung, Taiwan
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Chien-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Meng-Che Wu
- Division of Pediatric Gastroenterology, Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan
- College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Inflammatory Bowel Disease Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - James Cheng-Chung Wei
- Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital; Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
46
|
Allergic diseases in infancy: I - Epidemiology and current interpretation. World Allergy Organ J 2021; 14:100591. [PMID: 34820047 PMCID: PMC8593659 DOI: 10.1016/j.waojou.2021.100591] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Objective Among non-communicable diseases, the prevalence of allergic diseases has increased significantly in the new millennium. The increase of allergic diseases is linked to the changing environment of infants. Methods This narrative review summarizes the discussions and conclusions from the 8th Human Milk Workshop. Information from the fields of pediatrics, epidemiology, biology, microbiology, and immunology are summarized to establish a framework describing potential avenues for the prevention of allergic diseases in the future. Results Several environmental circumstances are linked to the development of allergic diseases. While cesarean section is increasing the risk of allergies, early childhood exposure to a farm environment has a protective effect. From their analysis, nutritive and non-nutritive factors influencing the allergy risk in later life have been identified. The effect of breastfeeding on food allergy development is non-univocal. Human milk components including immunoglobulins, cytokines, and prebiotics have been indicated as important for allergy prevention. Conclusion Many factors linked to the western lifestyle have been associated with the development of allergic diseases. This suggests several theories that may serve as a basis for new protective interventions. While it is indubitable that mother's milk protects from infectious diseases, its role in the prevention of allergic diseases is to be elucidated.
Collapse
|
47
|
Popov J, Caputi V, Nandeesha N, Rodriguez DA, Pai N. Microbiota-Immune Interactions in Ulcerative Colitis and Colitis Associated Cancer and Emerging Microbiota-Based Therapies. Int J Mol Sci 2021; 22:11365. [PMID: 34768795 PMCID: PMC8584103 DOI: 10.3390/ijms222111365] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic autoimmune disorder affecting the colonic mucosa. UC is a subtype of inflammatory bowel disease along with Crohn's disease and presents with varying extraintestinal manifestations. No single etiology for UC has been found, but a combination of genetic and environmental factors is suspected. Research has focused on the role of intestinal dysbiosis in the pathogenesis of UC, including the effects of dysbiosis on the integrity of the colonic mucosal barrier, priming and regulation of the host immune system, chronic inflammation, and progression to tumorigenesis. Characterization of key microbial taxa and their implications in the pathogenesis of UC and colitis-associated cancer (CAC) may present opportunities for modulating intestinal inflammation through microbial-targeted therapies. In this review, we discuss the microbiota-immune crosstalk in UC and CAC, as well as the evolution of microbiota-based therapies.
Collapse
Affiliation(s)
- Jelena Popov
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada;
- College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| | - Valentina Caputi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Nandini Nandeesha
- School of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland;
| | | | - Nikhil Pai
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
48
|
Luu M, Binder K, Hartmann S, Kespohl M, Bazant J, Romero R, Schütz B, Steinhoff U, Visekruna A. Transcription factor c-Rel mediates communication between commensal bacteria and mucosal lymphocytes. J Leukoc Biol 2021; 111:1001-1007. [PMID: 34622991 DOI: 10.1002/jlb.3ab0621-350r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The NF-κB transcription factor c-Rel plays a crucial role in promoting and regulating immune responses and inflammation. However, the function of c-Rel in modulating the mucosal immune system is poorly understood. T follicular helper (Tfh) cells and IgA production in gut-associated lymphoid tissues (GALT) such as Peyer's patches (PPs) are important for maintaining the intestinal homeostasis. Here, c-Rel was identified as an essential factor regulating intestinal IgA generation and function of Tfh cells. Genetic deletion of c-Rel resulted in the aberrant formation of germinal centers (GCs) in PPs, significantly reduced IgA generation and defective Tfh cell differentiation. Supporting these findings, the Ag-specific IgA response to Citrobacter rodentium was strongly impaired in c-Rel-deficient mice. Interestingly, an excessive expansion of segmented filamentous bacteria (SFB) was observed in the small intestine of animals lacking c-Rel. Yet, the production of IL-17A, IgA, and IL-21, which are induced by SFB, was impaired due to the lack of transcriptional control by c-Rel. Collectively, the transcriptional activity of c-Rel regulates Tfh cell function and IgA production in the gut, thus preserving the intestinal homeostasis.
Collapse
Affiliation(s)
- Maik Luu
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany.,Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Kai Binder
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Sabrina Hartmann
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany.,Institute for Pathology, Universitätsklinikum Giessen, Giessen, Germany
| | - Meike Kespohl
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany.,Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jasmin Bazant
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany.,Institute for Medical Microbiology, Justus Liebig University, Giessen, Germany
| | - Rossana Romero
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Burkhard Schütz
- Institute for Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| |
Collapse
|
49
|
Bilal M, Achard C, Barbe F, Chevaux E, Ronholm J, Zhao X. Bacillus pumilus and Bacillus subtilis Promote Early Maturation of Cecal Microbiota in Broiler Chickens. Microorganisms 2021; 9:1899. [PMID: 34576794 PMCID: PMC8465073 DOI: 10.3390/microorganisms9091899] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Mature and stable intestinal microbiota in chickens is essential for health and production. Slow development of microbiota in young chickens prolongs the precarious period before reaching mature configuration. Whether probiotics can play a role in the early maturation of intestinal microbiota is unknown. To address this, day-old chicks were assigned into six groups: NC (basal diet), PC (virginiamycin), low (BPL) and high-dose (BPH) of Bacillus pumilus, and low (BSL) and high-dose (BSH) of Bacillus subtilis. Cecal contents at days 7, 14, 28 and 42 were used to analyze the treatment and time effects on the diversity and composition of microbiota. Overall, the alpha diversity was significantly decreased in the NC group between days 7 and 14, while this decline was prevented in the Bacillus subtilis probiotic (BSL and BSH) and even reversed in the BPH group. The beta-diversity showed significant responses of microbial communities to probiotics in first two weeks of life. Analyses of the abundance of microbiota reflected that members of the family Ruminococcaceae (Ruminnococcus, Oscillospira, Faecalibacterium, Butyricicoccus, and Subdoligranulum), which were dominant in mature microbiota, were significantly higher in abundance at day 14 in the probiotic groups. Conversely, the abundance of genera within the family Lachnospiraceae (Ruminococcus, Blautia, and Coprococcus) was dominant in early dynamic microbiota but was significantly lower in the probiotic groups at day 14. The Lactobacillus and Bifidobacterium abundance was higher, while the Enterobacteriaceae abundance was lower in the probiotic groups. In summary, the probiotics efficiently helped the cecal microbiota reach mature configuration earlier in life. These results could be used for the future manipulation of microbiota from the perspective of improving poultry performance.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (M.B.); (J.R.)
| | - Caroline Achard
- Lallemand Animal Nutrition, 31702 Blagnac, France; (C.A.); (F.B.); (E.C.)
| | - Florence Barbe
- Lallemand Animal Nutrition, 31702 Blagnac, France; (C.A.); (F.B.); (E.C.)
| | - Eric Chevaux
- Lallemand Animal Nutrition, 31702 Blagnac, France; (C.A.); (F.B.); (E.C.)
| | - Jennifer Ronholm
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (M.B.); (J.R.)
- Department of Food Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Xin Zhao
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (M.B.); (J.R.)
| |
Collapse
|
50
|
Acetate differentially regulates IgA reactivity to commensal bacteria. Nature 2021; 595:560-564. [PMID: 34262176 DOI: 10.1038/s41586-021-03727-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/15/2021] [Indexed: 12/22/2022]
Abstract
The balance between bacterial colonization and its containment in the intestine is indispensable for the symbiotic relationship between humans and their bacteria. One component to maintain homeostasis at the mucosal surfaces is immunoglobulin A (IgA), the most abundant immunoglobulin in mammals1,2. Several studies have revealed important characteristics of poly-reactive IgA3,4, which is produced naturally without commensal bacteria. Considering the dynamic changes within the gut environment, however, it remains uncertain how the commensal-reactive IgA pool is shaped and how such IgA affects the microbial community. Here we show that acetate-one of the major gut microbial metabolites-not only increases the production of IgA in the colon, but also alters the capacity of the IgA pool to bind to specific microorganisms including Enterobacterales. Induction of commensal-reactive IgA and changes in the IgA repertoire by acetate were observed in mice monocolonized with Escherichia coli, which belongs to Enterobacterales, but not with the major commensal Bacteroides thetaiotaomicron, which suggests that acetate directs selective IgA binding to certain microorganisms. Mechanistically, acetate orchestrated the interactions between epithelial and immune cells, induced microbially stimulated CD4 T cells to support T-cell-dependent IgA production and, as a consequence, altered the localization of these bacteria within the colon. Collectively, we identified a role for gut microbial metabolites in the regulation of differential IgA production to maintain mucosal homeostasis.
Collapse
|