1
|
Sarji M, Ankawa R, Yampolsky M, Fuchs Y. A near death experience: The secret stem cell life of caspase-3. Semin Cell Dev Biol 2025; 171:103617. [PMID: 40344690 DOI: 10.1016/j.semcdb.2025.103617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 05/11/2025]
Abstract
Caspase-3 is known to play a pivotal role in mediating apoptosis, a key programmed cell death pathway. While extensive research has focused on understanding how caspase-3 is activated and functions during apoptosis, emerging evidence has revealed its significant non-apoptotic roles across various cell types, including stem cells. This review explores the critical involvement of caspase-3 in regulating stem cell properties, maintaining stem cell populations, and facilitating tissue regeneration. We also explore the potential pathological consequences of caspase-3 dysfunction in stem cells and cancer cells alongside the therapeutic opportunities of targeting caspase-3.
Collapse
Affiliation(s)
- Mahasen Sarji
- Faculty of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Roi Ankawa
- Augmanity, Rehovot, Israel; Elixr Bio, Rehovot, Israel
| | | | - Yaron Fuchs
- Augmanity, Rehovot, Israel; Elixr Bio, Rehovot, Israel.
| |
Collapse
|
2
|
Ros U, Martinez-Osorio V, Valiente PA, Abdelwahab Y, Gojkovic M, Shalaby R, Zanna S, Saggau J, Wachsmuth L, Nemade HN, Zoeller J, Lottermoser H, Chen YG, Ibrahim M, Kelepouras K, Vasilikos L, Bedoya P, Espiritu RA, Müller S, Altmannova V, Tieleman DP, Weir J, Langer J, Adam M, Walczak H, Wong WWL, Liccardi G, Mollenhauer M, Pasparakis M, Peltzer N, García-Sáez AJ. MLKL activity requires a splicing-regulated, druggable intramolecular interaction. Mol Cell 2025; 85:1589-1605.e12. [PMID: 40209701 DOI: 10.1016/j.molcel.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/10/2025] [Accepted: 03/17/2025] [Indexed: 04/12/2025]
Abstract
Necroptosis is an inflammatory form of regulated cell death implicated in a range of human pathologies, whose execution depends on the poorly understood pseudokinase mixed lineage kinase domain-like (MLKL). Here, we report that splicing-dependent insertion of a short amino acid sequence in the C-terminal α-helix (Hc) of MLKL abolishes cell killing activity and creates an anti-necroptotic isoform that counteracts cell death induced by the necroptosis-proficient protein in mice and humans. We show that interaction of Hc with a previously unrecognized hydrophobic groove is essential for necroptosis, which we exploited in a strategy to identify small molecules that inhibit MLKL and substantially ameliorate disease in murine models of necroptosis-driven dermatitis and abdominal aortic aneurysm. Thus, alternative splicing of microexons controls the ability of MLKL to undergo an intramolecular rearrangement essential for necroptosis with potential to guide the development of allosteric MLKL inhibitors for the treatment of human disease.
Collapse
Affiliation(s)
- Uris Ros
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany; Max Planck Institute of Biophysics, Frankfurt am Main 60439, Germany.
| | - Veronica Martinez-Osorio
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Pedro A Valiente
- Center for Protein Studies, Faculty of Biology, Havana University, Havana 10400, Cuba
| | - Yasmin Abdelwahab
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Milos Gojkovic
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Raed Shalaby
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Silvia Zanna
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Julia Saggau
- Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne 50931, Germany; Center for Molecular Medicine Cologne, Cologne 50931, Germany
| | - Laurens Wachsmuth
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Harshal N Nemade
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne 50931, Germany
| | - Jonathan Zoeller
- Max Planck Institute of Biophysics, Frankfurt am Main 60439, Germany
| | - Hannah Lottermoser
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne 50931, Germany
| | - Yu-Guang Chen
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London WC1E 6DD, UK; Division of Hematology/Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Mohamed Ibrahim
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany; Center for Molecular Medicine Cologne, Cologne 50931, Germany
| | - Konstantinos Kelepouras
- Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne 50931, Germany; Center for Molecular Medicine Cologne, Cologne 50931, Germany
| | - Lazaros Vasilikos
- Institute of Experimental Immunology, University of Zürich, Zürich 8057, Switzerland
| | - Paula Bedoya
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Rafael A Espiritu
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen 72076, Germany
| | - Stefan Müller
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Veronika Altmannova
- Friedrich Miescher Laboratory and Max Planck Institute, Tübingen 72076, Germany
| | - D Peter Tieleman
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary T2N 1N4, Canada
| | - John Weir
- Friedrich Miescher Laboratory and Max Planck Institute, Tübingen 72076, Germany
| | - Julian Langer
- Max Planck Institute of Biophysics, Frankfurt am Main 60439, Germany
| | - Matti Adam
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne 50931, Germany
| | - Henning Walczak
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany; Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne 50931, Germany; Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - W Wei-Lynn Wong
- Institute of Experimental Immunology, University of Zürich, Zürich 8057, Switzerland
| | - Gianmaria Liccardi
- Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne 50931, Germany; Center for Molecular Medicine Cologne, Cologne 50931, Germany
| | - Martin Mollenhauer
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne 50931, Germany
| | - Manolis Pasparakis
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Nieves Peltzer
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany; Center for Molecular Medicine Cologne, Cologne 50931, Germany; Department of Genome Editing, Institute of Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart 70569, Germany
| | - Ana J García-Sáez
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany; Max Planck Institute of Biophysics, Frankfurt am Main 60439, Germany.
| |
Collapse
|
3
|
Sun Y, Yu H, Zhan Z, Liu W, Liu P, Sun J, Zhang P, Wang X, Liu X, Xu X. TRIF-TAK1 signaling suppresses caspase-8/3-mediated GSDMD/E activation and pyroptosis in influenza A virus-infected airway epithelial cells. iScience 2025; 28:111581. [PMID: 39811662 PMCID: PMC11732511 DOI: 10.1016/j.isci.2024.111581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Pyroptosis plays an important role in attracting innate immune cells to eliminate infected niches. Our study focuses on how influenza A virus (IAV) infection triggers pyroptosis in respiratory epithelial cells. Here, we report that IAV infection induces pyroptosis in a human and murine airway epithelial cell line. Mechanistically, IAV infection activates caspase-8 and caspase-3, which cleave and activate gasdermin (GSDM) D and GSDME, respectively. Z-nucleic acid-binding protein 1 (ZBP1) and receptor-interacting protein kinase (RIPK) 1 activity but not RIPK3 are required for caspase-8/3 and GSDMD/E activation and pyroptosis. GSDMD/E, ZBP1, and RIPK1 knockout all block IAV-induced pyroptosis but enhance virus replication. Transforming growth factor β-activated kinase 1 (TAK1) activation via the adaptor protein TRIF suppresses RIPK1, caspase-8/3, and GSDMD/E activation and pyroptosis. The TAK1 inhibitor 5Z-oxzeneonal (5Z) enhances IAV-induced caspase-8/3 and GSDMD/E cleavage in the lung tissues of IAV-infected mice. Our study unveils a previously unrecognized mechanism of regulation of IAV-induced pyroptosis in respiratory epithelial cells.
Collapse
Affiliation(s)
- Yuling Sun
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P.R. China
| | - Huidi Yu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P.R. China
| | - Zhihao Zhan
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P.R. China
| | - Wei Liu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P.R. China
| | - Penggang Liu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P.R. China
| | - Jing Sun
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P.R. China
| | - Pinghu Zhang
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou 225009, Jiangsu Province, P.R. China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Xiulong Xu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P.R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| |
Collapse
|
4
|
Chen YG, Rieser E, Bhamra A, Surinova S, Kreuzaler P, Ho MH, Tsai WC, Peltzer N, de Miguel D, Walczak H. LUBAC enables tumor-promoting LTβ receptor signaling by activating canonical NF-κB. Cell Death Differ 2024; 31:1267-1284. [PMID: 39215104 PMCID: PMC11445442 DOI: 10.1038/s41418-024-01355-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Lymphotoxin β receptor (LTβR), a member of the TNF receptor superfamily (TNFR-SF), is essential for development and maturation of lymphoid organs. In addition, LTβR activation promotes carcinogenesis by inducing a proinflammatory secretome. Yet, we currently lack a detailed understanding of LTβR signaling. In this study we discovered the linear ubiquitin chain assembly complex (LUBAC) as a previously unrecognized and functionally crucial component of the native LTβR signaling complex (LTβR-SC). Mechanistically, LUBAC-generated linear ubiquitin chains enable recruitment of NEMO, OPTN and A20 to the LTβR-SC, where they act coordinately to regulate the balance between canonical and non-canonical NF-κB pathways. Thus, different from death receptor signaling, where LUBAC prevents inflammation through inhibition of cell death, in LTβR signaling LUBAC is required for inflammatory signaling by enabling canonical and interfering with non-canonical NF-κB activation. This results in a LUBAC-dependent LTβR-driven inflammatory, protumorigenic secretome. Intriguingly, in liver cancer patients with high LTβR expression, high expression of LUBAC correlates with poor prognosis, providing clinical relevance for LUBAC-mediated inflammatory LTβR signaling.
Collapse
Affiliation(s)
- Yu-Guang Chen
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
- Division of Hematology/Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Eva Rieser
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Research Centre, University of Cologne, Cologne, Germany
| | - Amandeep Bhamra
- Proteomics Research Translational Technology Platform, UCL Ciancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, UK
| | - Silvia Surinova
- Proteomics Research Translational Technology Platform, UCL Ciancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, UK
| | - Peter Kreuzaler
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Research Centre, University of Cologne, Cologne, Germany
| | - Meng-Hsing Ho
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Nieves Peltzer
- CECAD Research Centre, University of Cologne, Cologne, Germany
- Department of Translational Genomics and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Medical Faculty, Cologne, Germany
- Department of Genome Editing, University of Stuttgart, Stuttgart, Germany
| | - Diego de Miguel
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Research Centre, University of Cologne, Cologne, Germany
- Aragon Health Research Institute (IIS Aragon), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain
| | - Henning Walczak
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK.
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany.
- CECAD Research Centre, University of Cologne, Cologne, Germany.
| |
Collapse
|
5
|
Geng Y, Lou J, Wu J, Tao Z, Yang N, Kuang J, Wu Y, Zhang J, Xiang L, Shi J, Cai Y, Wang X, Chen J, Xiao J, Zhou K. NEMO-Binding Domain/IKKγ Inhibitory Peptide Alleviates Neuronal Pyroptosis in Spinal Cord Injury by Inhibiting ASMase-Induced Lysosome Membrane Permeabilization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405759. [PMID: 39225315 PMCID: PMC11516130 DOI: 10.1002/advs.202405759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/16/2024] [Indexed: 09/04/2024]
Abstract
A short peptide termed NEMO-binding domain (NBD) peptide has an inhibitory effect on nuclear factor kappa-B (NF-κB). Despite its efficacy in inhibiting inflammatory responses, the precise neuroprotective mechanisms of NBD peptide in spinal cord injury (SCI) remain unclear. This study aims to determine whether the pyroptosis-related aspects involved in the neuroprotective effects of NBD peptide post-SCI.Using RNA sequencing, the molecular mechanisms of NBD peptide in SCI are explored. The evaluation of functional recovery is performed using the Basso mouse scale, Nissl staining, footprint analysis, Masson's trichrome staining, and HE staining. Western blotting, enzyme-linked immunosorbent assays, and immunofluorescence assays are used to examine pyroptosis, autophagy, lysosomal membrane permeabilization (LMP), acid sphingomyelinase (ASMase), and the NF-κB/p38-MAPK related signaling pathway.NBD peptide mitigated glial scar formation, reduced motor neuron death, and enhanced functional recovery in SCI mice. Additionally, NBD peptide inhibits pyroptosis, ameliorate LMP-induced autophagy flux disorder in neuron post-SCI. Mechanistically, NBD peptide alleviates LMP and subsequently enhances autophagy by inhibiting ASMase through the NF-κB/p38-MAPK/Elk-1/Egr-1 signaling cascade, thereby mitigating neuronal death. NBD peptide contributes to functional restoration by suppressing ASMase-mediated LMP and autophagy depression, and inhibiting pyroptosis in neuron following SCI, which may have potential clinical application value.
Collapse
Affiliation(s)
- Yibo Geng
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Junsheng Lou
- Department of Orthopedic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Junnan Wu
- Department of PharmacyThe Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhou People's HospitalQuzhou324000China
| | - Zhichao Tao
- Renji College of Wenzhou Medical UniversityWenzhou325027China
| | - Ningning Yang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Jiaxuan Kuang
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
| | - Yuzhe Wu
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Jiacheng Zhang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Linyi Xiang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Jingwei Shi
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
| | - Yuepiao Cai
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
- Molecular Pharmacology Research CenterSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhou325027China
| | - Xiangyang Wang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Jiaoxiang Chen
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Jian Xiao
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
- Molecular Pharmacology Research CenterSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhou325027China
| | - Kailiang Zhou
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
| |
Collapse
|
6
|
Cao Q, Fang H, Tian H. mRNA vaccines contribute to innate and adaptive immunity to enhance immune response in vivo. Biomaterials 2024; 310:122628. [PMID: 38820767 DOI: 10.1016/j.biomaterials.2024.122628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/02/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
Messenger RNA (mRNA) therapeutics have been widely employed as strategies for the treatment and prevention of diseases. Amid the global outbreak of COVID-19, mRNA vaccines have witnessed rapid development. Generally, in the case of mRNA vaccines, the initiation of the innate immune system serves as a prerequisite for triggering subsequent adaptive immune responses. Critical cells, cytokines, and chemokines within the innate immune system play crucial and beneficial roles in coordinating tailored immune reactions towards mRNA vaccines. Furthermore, immunostimulators and delivery systems play a significant role in augmenting the immune potency of mRNA vaccines. In this comprehensive review, we systematically delineate the latest advancements in mRNA vaccine research, present an in-depth exploration of strategies aimed at amplifying the immune effectiveness of mRNA vaccines, and offer some perspectives and recommendations regarding the future advancements in mRNA vaccine development.
Collapse
Affiliation(s)
- Qiannan Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China; Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
| |
Collapse
|
7
|
Veli Ö, Kaya Ö, Varanda AB, Hildebrandt X, Xiao P, Estornes Y, Poggenberg M, Wang Y, Pasparakis M, Bertrand MJM, Walczak H, Annibaldi A, Cardozo AK, Peltzer N. RIPK1 is dispensable for cell death regulation in β-cells during hyperglycemia. Mol Metab 2024; 87:101988. [PMID: 39004142 PMCID: PMC11295703 DOI: 10.1016/j.molmet.2024.101988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024] Open
Abstract
OBJECTIVE Receptor-interacting protein kinase 1 (RIPK1) orchestrates the decision between cell survival and cell death in response to tumor necrosis factor (TNF) and other cytokines. Whereas the scaffolding function of RIPK1 is crucial to prevent TNF-induced apoptosis and necroptosis, its kinase activity is required for necroptosis and partially for apoptosis. Although TNF is a proinflammatory cytokine associated with β-cell loss in diabetes, the mechanism by which TNF induces β-cell demise remains unclear. METHODS Here, we dissected the contribution of RIPK1 scaffold versus kinase functions to β-cell death regulation using mice lacking RIPK1 specifically in β-cells (Ripk1β-KO mice) or expressing a kinase-dead version of RIPK1 (Ripk1D138N mice), respectively. These mice were challenged with streptozotocin, a model of autoimmune diabetes. Moreover, Ripk1β-KO mice were further challenged with a high-fat diet to induce hyperglycemia. For mechanistic studies, pancreatic islets were subjected to various killing and sensitising agents. RESULTS Inhibition of RIPK1 kinase activity (Ripk1D138N mice) did not affect the onset and progression of hyperglycemia in a type 1 diabetes model. Moreover, the absence of RIPK1 expression in β-cells did not affect normoglycemia under basal conditions or hyperglycemia under diabetic challenges. Ex vivo, primary pancreatic islets are not sensitised to TNF-induced apoptosis and necroptosis in the absence of RIPK1. Intriguingly, we found that pancreatic islets display high levels of the antiapoptotic cellular FLICE-inhibitory protein (cFLIP) and low levels of apoptosis (Caspase-8) and necroptosis (RIPK3) components. Cycloheximide treatment, which led to a reduction in cFLIP levels, rendered primary islets sensitive to TNF-induced cell death which was fully blocked by caspase inhibition. CONCLUSIONS Unlike in many other cell types (e.g., epithelial, and immune), RIPK1 is not required for cell death regulation in β-cells under physiological conditions or diabetic challenges. Moreover, in vivo and in vitro evidence suggest that pancreatic β-cells do not undergo necroptosis but mainly caspase-dependent death in response to TNF. Last, our results show that β-cells have a distinct mode of regulation of TNF-cytotoxicity that is independent of RIPK1 and that may be highly dependent on cFLIP.
Collapse
Affiliation(s)
- Önay Veli
- Department of Translational Genomics, Faculty of Medicine, University of Cologne, Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Öykü Kaya
- Department of Translational Genomics, Faculty of Medicine, University of Cologne, Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Ana Beatriz Varanda
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Ximena Hildebrandt
- Department of Translational Genomics, Faculty of Medicine, University of Cologne, Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Peng Xiao
- Inflammation and Cell Death Signalling group, Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Yann Estornes
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Matea Poggenberg
- Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Yuan Wang
- Department of Translational Genomics, Faculty of Medicine, University of Cologne, Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Manolis Pasparakis
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Institute for Genetics, University of Cologne, Cologne, Germany
| | - Mathieu J M Bertrand
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Henning Walczak
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Alessandro Annibaldi
- Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Alessandra K Cardozo
- Inflammation and Cell Death Signalling group, Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Nieves Peltzer
- Department of Translational Genomics, Faculty of Medicine, University of Cologne, Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.
| |
Collapse
|
8
|
Sun ND, Carr AR, Krogman EN, Chawla Y, Zhong J, Guttormson MC, Chan M, Hsu MA, Dong H, Bogunovic D, Pandey A, Rogers LM, Ting AT. TBK1 and IKKε protect target cells from IFNγ-mediated T cell killing via an inflammatory apoptotic mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606693. [PMID: 39149268 PMCID: PMC11326184 DOI: 10.1101/2024.08.06.606693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Cytotoxic T cells produce interferon gamma (IFNγ), which plays a critical role in anti-microbial and anti-tumor responses. However, it is not clear whether T cell-derived IFNγ directly kills infected and tumor target cells, and how this may be regulated. Here, we report that target cell expression of the kinases TBK1 and IKKε regulate IFNγ cytotoxicity by suppressing the ability of T cell-derived IFNγ to kill target cells. In tumor targets lacking TBK1 and IKKε, IFNγ induces expression of TNFR1 and the Z-nucleic acid sensor, ZBP1, to trigger RIPK1-dependent apoptosis, largely in a target cell-autonomous manner. Unexpectedly, IFNγ, which is not known to signal to NFκB, induces hyperactivation of NFκB in TBK1 and IKKε double-deficient cells. TBK1 and IKKε suppress IKKα/β activity and in their absence, IFNγ induces elevated NFκB-dependent expression of inflammatory chemokines and cytokines. Apoptosis is thought to be non-inflammatory, but our observations demonstrate that IFNγ can induce an inflammatory form of apoptosis, and this is suppressed by TBK1 and IKKε. The two kinases provide a critical connection between innate and adaptive immunological responses by regulating three key responses: (1) phosphorylation of IRF3/7 to induce type I IFN; (2) inhibition of RIPK1-dependent death; and (3) inhibition of NFκB-dependent inflammation. We propose that these kinases evolved these functions such that their inhibition by pathogens attempting to block type I IFN expression would enable IFNγ to trigger apoptosis accompanied by an alternative inflammatory response. Our findings show that loss of TBK1 and IKKε in target cells sensitizes them to inflammatory apoptosis induced by T cell-derived IFNγ.
Collapse
Affiliation(s)
- Nicholas D. Sun
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Allison R. Carr
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Yogesh Chawla
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jun Zhong
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Mark Chan
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Michelle A. Hsu
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Haidong Dong
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Urology, Mayo Clinic, Rochester, MN 55905, USA
| | - Dusan Bogunovic
- Columbia Center for Genetic Errors of Immunity, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Laura M. Rogers
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Adrian T. Ting
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Cui Y, Hu Z, Wang L, Zhu B, Deng L, Zhang H, Wang X. DL-3-n-Butylphthalide Ameliorates Post-stroke Emotional Disorders by Suppressing Neuroinflammation and PANoptosis. Neurochem Res 2024; 49:2215-2227. [PMID: 38834844 DOI: 10.1007/s11064-024-04171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/22/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Post-stroke emotional disorders such as post-stroke anxiety and post-stroke depression are typical symptoms in patients with stroke. They are closely associated with poor prognosis and low quality of life. The State Food and Drug Administration of China has approved DL-3-n-butylphthalide (NBP) as a treatment for ischemic stroke (IS). Clinical research has shown that NBP alleviates anxiety and depressive symptoms in patients with IS. Therefore, this study explored the role and molecular mechanisms of NBP in cases of post-stroke emotional disorders using network pharmacology and experimental validation. The results showed that NBP treatment significantly increased the percentage of time spent in the center of the middle cerebral artery occlusion (MCAO) rats in the open field test and the percentage of sucrose consumption in the sucrose preference test. Network pharmacology results suggest that NBP may regulate neuroinflammation and cell death. Further experiments revealed that NBP inhibited the toll-like receptor 4/nuclear factor kappa B signaling pathway, decreased the level of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, and interleukin-6, and M1-type microglia markers (CD68, inducible nitric oxide synthase), and reduced the expression of PANoptosis-related molecules including caspase-1, caspase-3, caspase-8, gasdermin D, and mixed lineage kinase domain-like protein in the hippocampus of the MACO rats. These findings demonstrate that the mechanisms through which NBP ameliorates post-stroke emotional disorders in rats are associated with inhibiting neuroinflammation and PANoptosis, providing a new strategy and experimental basis for treating post-stroke emotional disorders.
Collapse
Affiliation(s)
- Yanhui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Zhaolan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Laifa Wang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, "The 14Th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, Changsha Medical University, Changsha, 410000, China
| | - Bi Zhu
- Class 2011 Clinical Medicine Eight-year Program of Central, South University, Changsha, 410000, China
| | - Ling Deng
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, "The 14Th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, Changsha Medical University, Changsha, 410000, China
| | - Hui Zhang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, "The 14Th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, Changsha Medical University, Changsha, 410000, China.
| | - Xueqin Wang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, "The 14Th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, Changsha Medical University, Changsha, 410000, China.
- Wuzhou Medical College, Wuzhou, 543199, China.
| |
Collapse
|
10
|
Mannion J, Gifford V, Bellenie B, Fernando W, Ramos Garcia L, Wilson R, John SW, Udainiya S, Patin EC, Tiu C, Smith A, Goicoechea M, Craxton A, Moraes de Vasconcelos N, Guppy N, Cheung KMJ, Cundy NJ, Pierrat O, Brennan A, Roumeliotis TI, Benstead-Hume G, Alexander J, Muirhead G, Layzell S, Lyu W, Roulstone V, Allen M, Baldock H, Legrand A, Gabel F, Serrano-Aparicio N, Starling C, Guo H, Upton J, Gyrd-Hansen M, MacFarlane M, Seddon B, Raynaud F, Roxanis I, Harrington K, Haider S, Choudhary JS, Hoelder S, Tenev T, Meier P. A RIPK1-specific PROTAC degrader achieves potent antitumor activity by enhancing immunogenic cell death. Immunity 2024; 57:1514-1532.e15. [PMID: 38788712 PMCID: PMC11236506 DOI: 10.1016/j.immuni.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/14/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) functions as a critical stress sentinel that coordinates cell survival, inflammation, and immunogenic cell death (ICD). Although the catalytic function of RIPK1 is required to trigger cell death, its non-catalytic scaffold function mediates strong pro-survival signaling. Accordingly, cancer cells can hijack RIPK1 to block necroptosis and evade immune detection. We generated a small-molecule proteolysis-targeting chimera (PROTAC) that selectively degraded human and murine RIPK1. PROTAC-mediated depletion of RIPK1 deregulated TNFR1 and TLR3/4 signaling hubs, accentuating the output of NF-κB, MAPK, and IFN signaling. Additionally, RIPK1 degradation simultaneously promoted RIPK3 activation and necroptosis induction. We further demonstrated that RIPK1 degradation enhanced the immunostimulatory effects of radio- and immunotherapy by sensitizing cancer cells to treatment-induced TNF and interferons. This promoted ICD, antitumor immunity, and durable treatment responses. Consequently, targeting RIPK1 by PROTACs emerges as a promising approach to overcome radio- or immunotherapy resistance and enhance anticancer therapies.
Collapse
Affiliation(s)
- Jonathan Mannion
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Valentina Gifford
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Benjamin Bellenie
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Winnie Fernando
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Laura Ramos Garcia
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Rebecca Wilson
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Sidonie Wicky John
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Savita Udainiya
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Emmanuel C Patin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Crescens Tiu
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Angel Smith
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Maria Goicoechea
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Andrew Craxton
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Cambridge CB2 1QR, UK
| | | | - Naomi Guppy
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Kwai-Ming J Cheung
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Nicholas J Cundy
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Olivier Pierrat
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Alfie Brennan
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | | | - Graeme Benstead-Hume
- Functional Proteomics Group, The Institute of Cancer Research, London SW3 6JB, UK
| | - John Alexander
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Gareth Muirhead
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Scott Layzell
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, UK
| | - Wenxin Lyu
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Victoria Roulstone
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Mark Allen
- Biological Services Unit, The Institute of Cancer Research, London SW3 6JB, UK
| | - Holly Baldock
- Biological Services Unit, The Institute of Cancer Research, London SW3 6JB, UK
| | - Arnaud Legrand
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Florian Gabel
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | | | - Chris Starling
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Hongyan Guo
- Department of Microbiology and Immunology, LSU Health Shreveport, Shreveport, LA, USA
| | - Jason Upton
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Mads Gyrd-Hansen
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Marion MacFarlane
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Cambridge CB2 1QR, UK
| | - Benedict Seddon
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, UK
| | - Florence Raynaud
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Ioannis Roxanis
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Kevin Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Jyoti S Choudhary
- Functional Proteomics Group, The Institute of Cancer Research, London SW3 6JB, UK
| | - Swen Hoelder
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Tencho Tenev
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK.
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
11
|
Savulescu-Fiedler I, Mihalcea R, Dragosloveanu S, Scheau C, Baz RO, Caruntu A, Scheau AE, Caruntu C, Benea SN. The Interplay between Obesity and Inflammation. Life (Basel) 2024; 14:856. [PMID: 39063610 PMCID: PMC11277997 DOI: 10.3390/life14070856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity is an important condition affecting the quality of life of numerous patients and increasing their associated risk for multiple diseases, including tumors and immune-mediated disorders. Inflammation appears to play a major role in the development of obesity and represents a central point for the activity of cellular and humoral components in the adipose tissue. Macrophages play a key role as the main cellular component of the adipose tissue regulating the chronic inflammation and modulating the secretion and differentiation of various pro- and anti-inflammatory cytokines. Inflammation also involves a series of signaling pathways that might represent the focus for new therapies and interventions. Weight loss is essential in decreasing cardiometabolic risks and the degree of associated inflammation; however, the latter can persist for long after the excess weight is lost, and can involve changes in macrophage phenotypes that can ensure the metabolic adjustment. A clear understanding of the pathophysiological processes in the adipose tissue and the interplay between obesity and chronic inflammation can lead to a better understanding of the development of comorbidities and may ensure future targets for the treatment of obesity.
Collapse
Affiliation(s)
- Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Razvan Mihalcea
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania (C.C.)
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 030167 Bucharest, Romania
| | - Radu Octavian Baz
- Clinical Laboratory of Radiology and Medical Imaging, “Sf. Apostol Andrei” County Emergency Hospital, 900591 Constanta, Romania
- Department of Radiology and Medical Imaging, Faculty of Medicine, “Ovidius” University, 900527 Constanta, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania (C.C.)
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Serban Nicolae Benea
- Department of Infectious Diseases, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- “Prof. Dr. Matei Balș” National Institute for Infectious Diseases, 021105 Bucharest, Romania
| |
Collapse
|
12
|
Takeda Y, Ueki M, Matsuhiro J, Walinda E, Tanaka T, Yamada M, Fujita H, Takezaki S, Kobayashi I, Tamaki S, Nagata S, Miyake N, Matsumoto N, Osawa M, Yasumi T, Heike T, Ohtake F, Saito MK, Toguchida J, Takita J, Ariga T, Iwai K. A de novo dominant-negative variant is associated with OTULIN-related autoinflammatory syndrome. J Exp Med 2024; 221:e20231941. [PMID: 38652464 PMCID: PMC11040501 DOI: 10.1084/jem.20231941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/21/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
OTULIN-related autoinflammatory syndrome (ORAS), a severe autoinflammatory disease, is caused by biallelic pathogenic variants of OTULIN, a linear ubiquitin-specific deubiquitinating enzyme. Loss of OTULIN attenuates linear ubiquitination by inhibiting the linear ubiquitin chain assembly complex (LUBAC). Here, we report a patient who harbors two rare heterozygous variants of OTULIN (p.P152L and p.R306Q). We demonstrated accumulation of linear ubiquitin chains upon TNF stimulation and augmented TNF-induced cell death in mesenchymal stem cells differentiated from patient-derived iPS cells, which confirms that the patient has ORAS. However, although the de novo p.R306Q variant exhibits attenuated deubiquitination activity without reducing the amount of OTULIN, the deubiquitination activity of the p.P152L variant inherited from the mother was equivalent to that of the wild-type. Patient-derived MSCs in which the p.P152L variant was replaced with wild-type also exhibited augmented TNF-induced cell death and accumulation of linear chains. The finding that ORAS can be caused by a dominant-negative p.R306Q variant of OTULIN furthers our understanding of disease pathogenesis.
Collapse
Affiliation(s)
- Yukiko Takeda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Ueki
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Junpei Matsuhiro
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Erik Walinda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayuki Tanaka
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masafumi Yamada
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Food and Human Wellness, Rakuno Gakuen University, Ebetsu, Japan
| | - Hiroaki Fujita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shunichiro Takezaki
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ichiro Kobayashi
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Sakura Tamaki
- Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Sanae Nagata
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mitsujiro Osawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshio Heike
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fumiaki Ohtake
- Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Megumu K. Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Junya Toguchida
- Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tadashi Ariga
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Zhuo F, Jia X, Wang Z, Zhang Y, Yan X. Platelet-rich plasma alleviates knee arthritis in rats by inhibiting p65. Cell Tissue Bank 2024; 25:463-473. [PMID: 37501011 DOI: 10.1007/s10561-023-10102-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Knee osteoarthritis (KOA) is a chronic joint disease characterized by the degeneration of articular cartilage. In this study, we explored the potential therapeutic effects of platelet-rich plasma (PRP) and identified molecular targets for treating KOA. A rat model of KOA was established via the Hulth method and primary knee joint chondrocytes were isolated to evaluate the effects of PRP and shRNA targeting p65 (sh-p65). ELISA was used to detect inflammatory factors, including IL-6, IL-1β, and TNF-α. HE staining, Safranin O/Fast Green staining and Masson staining were performed to evaluate the morphology of articular cartilage, followed by detection of p65, COL2A1, ACAN, MMP13, and ADAMTS5 expression. The proliferation and apoptosis of primary knee chondrocytes were detected by the CCK-8 assay and TUNEL staining, respectively. Treatment with either PRP or sh-p65 decreased IL-6, IL-1β, and TNF-α levels in the peripheral blood of KOA rats and chondrocyte culture supernatants, increased COL2A1 and ACAN levels, and decreased MMP13 and ADAMTS5 expression. Furthermore, administration of PRP or sh-p65 exerted protective effects on articular cartilage, enhanced the vitality of knee joint chondrocytes, and inhibited apoptosis. Collectively, PRP inhibited inflammation, promoted chondrocyte proliferation and cartilage matrix secretion, and induced cartilage regeneration by suppressing p65 expression; these effects allow PRP to alleviate KOA progression. P65-based targeted therapy administered in combination with PRP might be a promising strategy for treating KOA.
Collapse
Affiliation(s)
- Feng Zhuo
- Department of Joint Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Lixia District, No. 16766, Jingshi Road, Jinan, 271000, Shandong, China
- Department of Joint Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Longtan Road, Taian, 271000, Shandong, China
| | - Xiaojing Jia
- Orthopedics Department, The Affiliated Taian City Central Hospital of Qingdao University, Longtan Road, Taian, 271000, Shandong, China
| | - Zongru Wang
- Department of Joint Surgery, Municipal Hospital of Taian, Tianpinghu Road, Taian, 271021, Shandong, China
| | - Yeyong Zhang
- Department of Joint Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Lixia District, No. 16766, Jingshi Road, Jinan, 271000, Shandong, China
| | - Xinfeng Yan
- Department of Joint Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Lixia District, No. 16766, Jingshi Road, Jinan, 271000, Shandong, China.
| |
Collapse
|
14
|
Dong J, Liu W, Liu W, Wen Y, Liu Q, Wang H, Xiang G, Liu Y, Hao H. Acute lung injury: a view from the perspective of necroptosis. Inflamm Res 2024; 73:997-1018. [PMID: 38615296 DOI: 10.1007/s00011-024-01879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/23/2024] [Accepted: 03/31/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND ALI/ARDS is a syndrome of acute onset characterized by progressive hypoxemia and noncardiogenic pulmonary edema as the primary clinical manifestations. Necroptosis is a form of programmed cell necrosis that is precisely regulated by molecular signals. This process is characterized by organelle swelling and membrane rupture, is highly immunogenic, involves extensive crosstalk with various cellular stress mechanisms, and is significantly implicated in the onset and progression of ALI/ARDS. METHODS The current body of literature on necroptosis and ALI/ARDS was thoroughly reviewed. Initially, an overview of the molecular mechanism of necroptosis was provided, followed by an examination of its interactions with apoptosis, pyroptosis, autophagy, ferroptosis, PANOptosis, and NETosis. Subsequently, the involvement of necroptosis in various stages of ALI/ARDS progression was delineated. Lastly, drugs targeting necroptosis, biomarkers, and current obstacles were presented. CONCLUSION Necroptosis plays an important role in the progression of ALI/ARDS. However, since ALI/ARDS is a clinical syndrome caused by a variety of mechanisms, we emphasize that while focusing on necroptosis, it may be more beneficial to treat ALI/ARDS by collaborating with other mechanisms.
Collapse
Affiliation(s)
- Jinyan Dong
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Weihong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Wenli Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Yuqi Wen
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Qingkuo Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Hongtao Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Guohan Xiang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Yang Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China.
| | - Hao Hao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China.
| |
Collapse
|
15
|
Human SHARPIN deficiency is linked to inborn errors of cell death. Nat Immunol 2024; 25:733-734. [PMID: 38684924 DOI: 10.1038/s41590-024-01838-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
|
16
|
Albert MC, Uranga-Murillo I, Arias M, De Miguel D, Peña N, Montinaro A, Varanda AB, Theobald SJ, Areso I, Saggau J, Koch M, Liccardi G, Peltzer N, Rybniker J, Hurtado-Guerrero R, Merino P, Monzón M, Badiola JJ, Reindl-Schwaighofer R, Sanz-Pamplona R, Cebollada-Solanas A, Megyesfalvi Z, Dome B, Secrier M, Hartmann B, Bergmann M, Pardo J, Walczak H. Identification of FasL as a crucial host factor driving COVID-19 pathology and lethality. Cell Death Differ 2024; 31:544-557. [PMID: 38514848 PMCID: PMC11093991 DOI: 10.1038/s41418-024-01278-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
The dysregulated immune response and inflammation resulting in severe COVID-19 are still incompletely understood. Having recently determined that aberrant death-ligand-induced cell death can cause lethal inflammation, we hypothesized that this process might also cause or contribute to inflammatory disease and lung failure following SARS-CoV-2 infection. To test this hypothesis, we developed a novel mouse-adapted SARS-CoV-2 model (MA20) that recapitulates key pathological features of COVID-19. Concomitantly with occurrence of cell death and inflammation, FasL expression was significantly increased on inflammatory monocytic macrophages and NK cells in the lungs of MA20-infected mice. Importantly, therapeutic FasL inhibition markedly increased survival of both, young and old MA20-infected mice coincident with substantially reduced cell death and inflammation in their lungs. Intriguingly, FasL was also increased in the bronchoalveolar lavage fluid of critically-ill COVID-19 patients. Together, these results identify FasL as a crucial host factor driving the immuno-pathology that underlies COVID-19 severity and lethality, and imply that patients with severe COVID-19 may significantly benefit from therapeutic inhibition of FasL.
Collapse
Affiliation(s)
- Marie-Christine Albert
- Cell death, inflammation and immunity laboratory, CECAD Cluster of Excellence, University of Cologne, Cologne, 50931, Germany
- Cell death, inflammation and immunity laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, 50931, Germany
| | - Iratxe Uranga-Murillo
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Aragón Health Research Institute (IIS Aragón), San Juan Bosco 13, Zaragoza, 50009, Spain
- Department of Microbiology, Paediatrics, Radiology and Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, 50009, Spain
| | - Maykel Arias
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Aragón Health Research Institute (IIS Aragón), San Juan Bosco 13, Zaragoza, 50009, Spain
- Department of Microbiology, Paediatrics, Radiology and Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, 50009, Spain
| | - Diego De Miguel
- Aragón Health Research Institute (IIS Aragón), San Juan Bosco 13, Zaragoza, 50009, Spain
| | - Natacha Peña
- Aragón Health Research Institute (IIS Aragón), San Juan Bosco 13, Zaragoza, 50009, Spain
| | - Antonella Montinaro
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Ana Beatriz Varanda
- Cell death, inflammation and immunity laboratory, CECAD Cluster of Excellence, University of Cologne, Cologne, 50931, Germany
- Cell death, inflammation and immunity laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, 50931, Germany
| | - Sebastian J Theobald
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, 50931, Germany
- Faculty of Medicine and University Hospital of Cologne, Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, 50931, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, 50931, Germany
| | - Itziar Areso
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Julia Saggau
- Cell death, inflammation and immunity laboratory, CECAD Cluster of Excellence, University of Cologne, Cologne, 50931, Germany
- Cell death, inflammation and immunity laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, 50931, Germany
- Genome instability, inflammation and cell death laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, 50931, Germany
| | - Manuel Koch
- Institue for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, Cologne, 50931, Germany
| | - Gianmaria Liccardi
- Genome instability, inflammation and cell death laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, 50931, Germany
| | - Nieves Peltzer
- Cell death, inflammation and immunity laboratory, CECAD Cluster of Excellence, University of Cologne, Cologne, 50931, Germany
- Faculty of Medicine and University Hospital of Cologne, Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, 50931, Germany
- Department of Translational Genomics, University of Cologne, Cologne, 50931, Germany
| | - Jan Rybniker
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, 50931, Germany
- Faculty of Medicine and University Hospital of Cologne, Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, 50931, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, 50931, Germany
| | - Ramón Hurtado-Guerrero
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), University of Zaragoza, Zaragoza, 50018, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, 2200, Denmark
- Fundación ARAID, Zaragoza, 50018, Spain
| | - Pedro Merino
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), University of Zaragoza, Zaragoza, 50018, Spain
| | - Marta Monzón
- Research Centre for Encephalopaties and Transmissible Emerging Diseases, Institute for Health Research Aragón (IIS), University of Zaragoza, Zaragoza, 50013, Spain
- Department of Human Anatomy and Histology, University of Zaragoza, Zaragoza, 50009, Spain
| | - Juan J Badiola
- Research Centre for Encephalopaties and Transmissible Emerging Diseases, Institute for Health Research Aragón (IIS), University of Zaragoza, Zaragoza, 50013, Spain
| | | | - Rebeca Sanz-Pamplona
- Aragón Health Research Institute (IIS Aragón), San Juan Bosco 13, Zaragoza, 50009, Spain
- Fundación ARAID, Zaragoza, 50018, Spain
- CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Alberto Cebollada-Solanas
- Aragon Biomedical Research Center (CIBA), Instituto Aragonés de Ciencias de la Salud (IACS), Unidad de Biocomputación, Zaragoza, 50018, Spain
| | - Zsolt Megyesfalvi
- Deparment of Thoracic Surgery, Medical University of Vienna, Vienna, 1090, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, 1122, Hungary
- National Koranyi Institute of Pulmonology, Budapest, 1121, Hungary
| | - Balazs Dome
- Deparment of Thoracic Surgery, Medical University of Vienna, Vienna, 1090, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, 1122, Hungary
- National Koranyi Institute of Pulmonology, Budapest, 1121, Hungary
- Department of Translational Medicine, Lund University, Lund, SE-22100, Sweden
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, United Kingdom
| | - Boris Hartmann
- Virology Group, Institute for Veterinary Disease Control at AGES, Moedling, 2340, Austria
| | - Michael Bergmann
- Div. of Visceral Surgery, Dept. of General Surgery, Comprehensive Cancer Centre, Medical University of Vienna, Vienna, 1090, Austria
| | - Julián Pardo
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Aragón Health Research Institute (IIS Aragón), San Juan Bosco 13, Zaragoza, 50009, Spain
- Department of Microbiology, Paediatrics, Radiology and Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, 50009, Spain
| | - Henning Walczak
- Cell death, inflammation and immunity laboratory, CECAD Cluster of Excellence, University of Cologne, Cologne, 50931, Germany.
- Cell death, inflammation and immunity laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, 50931, Germany.
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, WC1E 6DD, UK.
| |
Collapse
|
17
|
Abstract
Ubiquitination is an essential regulator of most, if not all, signalling pathways, and defects in cellular signalling are central to cancer initiation, progression and, eventually, metastasis. The attachment of ubiquitin signals by E3 ubiquitin ligases is directly opposed by the action of approximately 100 deubiquitinating enzymes (DUBs) in humans. Together, DUBs and E3 ligases coordinate ubiquitin signalling by providing selectivity for different substrates and/or ubiquitin signals. The balance between ubiquitination and deubiquitination is exquisitely controlled to ensure properly coordinated proteostasis and response to cellular stimuli and stressors. Not surprisingly, then, DUBs have been associated with all hallmarks of cancer. These relationships are often complex and multifaceted, highlighted by the implication of multiple DUBs in certain hallmarks and by the impact of individual DUBs on multiple cancer-associated pathways, sometimes with contrasting cancer-promoting and cancer-inhibiting activities, depending on context and tumour type. Although it is still understudied, the ever-growing knowledge of DUB function in cancer physiology will eventually identify DUBs that warrant specific inhibition or activation, both of which are now feasible. An integrated appreciation of the physiological consequences of DUB modulation in relevant cancer models will eventually lead to the identification of patient populations that will most likely benefit from DUB-targeted therapies.
Collapse
Affiliation(s)
- Grant Dewson
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Pieter J A Eichhorn
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - David Komander
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
18
|
Kulkarni M, Hardwick JM. Programmed Cell Death in Unicellular Versus Multicellular Organisms. Annu Rev Genet 2023; 57:435-459. [PMID: 37722687 PMCID: PMC11491101 DOI: 10.1146/annurev-genet-033123-095833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Programmed cell death (self-induced) is intrinsic to all cellular life forms, including unicellular organisms. However, cell death research has focused on animal models to understand cancer, degenerative disorders, and developmental processes. Recently delineated suicidal death mechanisms in bacteria and fungi have revealed ancient origins of animal cell death that are intertwined with immune mechanisms, allaying earlier doubts that self-inflicted cell death pathways exist in microorganisms. Approximately 20 mammalian death pathways have been partially characterized over the last 35 years. By contrast, more than 100 death mechanisms have been identified in bacteria and a few fungi in recent years. However, cell death is nearly unstudied in most human pathogenic microbes that cause major public health burdens. Here, we consider how the current understanding of programmed cell death arose through animal studies and how recently uncovered microbial cell death mechanisms in fungi and bacteria resemble and differ from mechanisms of mammalian cell death.
Collapse
Affiliation(s)
- Madhura Kulkarni
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA; ,
| | - J Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA; ,
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Clucas J, Meier P. Roles of RIPK1 as a stress sentinel coordinating cell survival and immunogenic cell death. Nat Rev Mol Cell Biol 2023; 24:835-852. [PMID: 37568036 DOI: 10.1038/s41580-023-00623-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 08/13/2023]
Abstract
Cell death and inflammation are closely linked arms of the innate immune response to combat infection and tissue malfunction. Recent advancements in our understanding of the intricate signals originating from dying cells have revealed that cell death serves as more than just an end point. It facilitates the exchange of information between the dying cell and cells of the tissue microenvironment, particularly immune cells, alerting and recruiting them to the site of disturbance. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is emerging as a critical stress sentinel that functions as a molecular switch, governing cellular survival, inflammatory responses and immunogenic cell death signalling. Its tight regulation involves multiple layers of post-translational modifications. In this Review, we discuss the molecular mechanisms that regulate RIPK1 to maintain homeostasis and cellular survival in healthy cells, yet drive cell death in a context-dependent manner. We address how RIPK1 mutations or aberrant regulation is associated with inflammatory and autoimmune disorders and cancer. Moreover, we tease apart what is known about catalytic and non-catalytic roles of RIPK1 and discuss the successes and pitfalls of current strategies that aim to target RIPK1 in the clinic.
Collapse
Affiliation(s)
- Jarama Clucas
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK.
| |
Collapse
|
20
|
Hrncir HR, Hantelys F, Gracz AD. Panic at the Bile Duct: How Intrahepatic Cholangiocytes Respond to Stress and Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1440-1454. [PMID: 36870530 PMCID: PMC10548281 DOI: 10.1016/j.ajpath.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023]
Abstract
In the liver, biliary epithelial cells (BECs) line intrahepatic bile ducts (IHBDs) and are primarily responsible for modifying and transporting hepatocyte-produced bile to the digestive tract. BECs comprise only 3% to 5% of the liver by cell number but are critical for maintaining choleresis through homeostasis and disease. To this end, BECs drive an extensive morphologic remodeling of the IHBD network termed ductular reaction (DR) in response to direct injury or injury to the hepatic parenchyma. BECs are also the target of a broad and heterogenous class of diseases termed cholangiopathies, which can present with phenotypes ranging from defective IHBD development in pediatric patients to progressive periductal fibrosis and cancer. DR is observed in many cholangiopathies, highlighting overlapping similarities between cell- and tissue-level responses by BECs across a spectrum of injury and disease. The following core set of cell biological BEC responses to stress and injury may moderate, initiate, or exacerbate liver pathophysiology in a context-dependent manner: cell death, proliferation, transdifferentiation, senescence, and acquisition of neuroendocrine phenotype. By reviewing how IHBDs respond to stress, this review seeks to highlight fundamental processes with potentially adaptive or maladaptive consequences. A deeper understanding of how these common responses contribute to DR and cholangiopathies may identify novel therapeutic targets in liver disease.
Collapse
Affiliation(s)
- Hannah R Hrncir
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia; Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia
| | - Fransky Hantelys
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia
| | - Adam D Gracz
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia; Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia.
| |
Collapse
|
21
|
Martinez Lagunas K, Savcigil DP, Zrilic M, Carvajal Fraile C, Craxton A, Self E, Uranga-Murillo I, de Miguel D, Arias M, Willenborg S, Piekarek M, Albert MC, Nugraha K, Lisewski I, Janakova E, Igual N, Tonnus W, Hildebrandt X, Ibrahim M, Ballegeer M, Saelens X, Kueh A, Meier P, Linkermann A, Pardo J, Eming S, Walczak H, MacFarlane M, Peltzer N, Annibaldi A. Cleavage of cFLIP restrains cell death during viral infection and tissue injury and favors tissue repair. SCIENCE ADVANCES 2023; 9:eadg2829. [PMID: 37494451 PMCID: PMC10371024 DOI: 10.1126/sciadv.adg2829] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
Cell death coordinates repair programs following pathogen attack and tissue injury. However, aberrant cell death can interfere with such programs and cause organ failure. Cellular FLICE-like inhibitory protein (cFLIP) is a crucial regulator of cell death and a substrate of Caspase-8. However, the physiological role of cFLIP cleavage by Caspase-8 remains elusive. Here, we found an essential role for cFLIP cleavage in restraining cell death in different pathophysiological scenarios. Mice expressing a cleavage-resistant cFLIP mutant, CflipD377A, exhibited increased sensitivity to severe acute respiratory syndrome coronavirus (SARS-CoV)-induced lethality, impaired skin wound healing, and increased tissue damage caused by Sharpin deficiency. In vitro, abrogation of cFLIP cleavage sensitizes cells to tumor necrosis factor(TNF)-induced necroptosis and apoptosis by favoring complex-II formation. Mechanistically, the cell death-sensitizing effect of the D377A mutation depends on glutamine-469. These results reveal a crucial role for cFLIP cleavage in controlling the amplitude of cell death responses occurring upon tissue stress to ensure the execution of repair programs.
Collapse
Affiliation(s)
- Kristel Martinez Lagunas
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
| | - Deniz Pinar Savcigil
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
| | - Matea Zrilic
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
| | - Carlos Carvajal Fraile
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
| | - Andrew Craxton
- MRC Toxicology Unit, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Emily Self
- MRC Toxicology Unit, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Iratxe Uranga-Murillo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Diego de Miguel
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Maykel Arias
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Michael Piekarek
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
| | - Marie Christine Albert
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Kalvin Nugraha
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
| | - Ina Lisewski
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
| | - Erika Janakova
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
| | - Natalia Igual
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
| | - Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Ximena Hildebrandt
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Department of Translational Genomics, University of Cologne, Weyertal 115b, 50931 Köln, Germany
| | - Mohammed Ibrahim
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Department of Translational Genomics, University of Cologne, Weyertal 115b, 50931 Köln, Germany
| | - Marlies Ballegeer
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Andrew Kueh
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julian Pardo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Sabine Eming
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Institute of Zoology, Developmental Biology Unit, University of Cologne, 50674 Cologne, Germany
| | - Henning Walczak
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College, London WC1E 6BT, UK
| | - Marion MacFarlane
- MRC Toxicology Unit, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Nieves Peltzer
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Department of Translational Genomics, University of Cologne, Weyertal 115b, 50931 Köln, Germany
| | - Alessandro Annibaldi
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
| |
Collapse
|
22
|
Huyghe J, Priem D, Bertrand MJM. Cell death checkpoints in the TNF pathway. Trends Immunol 2023:S1471-4906(23)00105-9. [PMID: 37357102 DOI: 10.1016/j.it.2023.05.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/27/2023]
Abstract
Tumor necrosis factor (TNF) plays a central role in orchestrating mammalian inflammatory responses. It promotes inflammation either directly by inducing inflammatory gene expression or indirectly by triggering cell death. TNF-mediated cell death-driven inflammation can be beneficial during infection by providing cell-extrinsic signals that help to mount proper immune responses. Uncontrolled cell death caused by TNF is instead highly detrimental and is believed to cause several human autoimmune diseases. Death is not the default response to TNF sensing. Molecular brakes, or cell death checkpoints, actively repress TNF cytotoxicity to protect the organism from its detrimental consequences. These checkpoints therefore constitute essential safeguards against inflammatory diseases. Recent advances in the field have revealed the existence of several new and unexpected brakes against TNF cytotoxicity and pathogenicity.
Collapse
Affiliation(s)
- Jon Huyghe
- Cell Death and Inflammation Unit, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Dario Priem
- Cell Death and Inflammation Unit, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Mathieu J M Bertrand
- Cell Death and Inflammation Unit, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
23
|
Tambe PK, Qsee HS, Bharati S. Mito-TEMPO mitigates 5-fluorouracil-induced intestinal injury via attenuating mitochondrial oxidative stress, inflammation, and apoptosis: an in vivo study. Inflammopharmacology 2023:10.1007/s10787-023-01261-6. [PMID: 37338659 DOI: 10.1007/s10787-023-01261-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Recent evidences highlight role of mitochondria in the development of 5-fluorouracil (5-FU)-induced intestinal toxicity. Mitochondria-targeted antioxidants are well-known for their protective effects in mitochondrial oxidative stress- mediated diseases. In the present study, we investigated protective effect of Mito-TEMPO in 5-FU-induced intestinal toxicity. METHODS Mito-TEMPO (0.1 mg/kg b.w.) was administered intraperitoneally to male BALB/c mice for 7 days, followed by co-administration of 5-FU for next 4 days (intraperitoneal 12 mg/kg b.w.). Protective effect of Mito-TEMPO on intestinal toxicity was assessed in terms of histopathological alterations, modulation in inflammatory markers, apoptotic cell death, expression of 8-OhDG, mitochondrial functional status and oxidative stress. RESULTS 5-FU administered animals showed altered intestinal histoarchitecture wherein a shortening and atrophy of the villi was observed. The crypts were disorganized and inflammatory cell infiltration was noted. Mito-TEMPO pre-protected animals demonstrated improved histoarchitecture with normalization of villus height, better organized crypts and reduced inflammatory cell infiltration. The inflammatory markers and myeloperoxidase activity were normalized in mito-TEMPO protected group. A significant reduction in intestinal apoptotic cell death and expression of 8-OhDG was also observed in mito-TEMPO group as compared to 5-FU group. Further, mtROS, mtLPO and mitochondrial antioxidant defense status were improved by mito-TEMPO. CONCLUSION Mito-TEMPO exerted significant protective effect against 5-FU-induced intestinal toxicity. Therefore, it may be used as an adjuvant in 5-FU chemotherapy.
Collapse
Affiliation(s)
- Prasad Kisan Tambe
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - H S Qsee
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanjay Bharati
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
24
|
Resistance To Poxvirus Lethality Does Not Require the Necroptosis Proteins RIPK3 or MLKL. J Virol 2023; 97:e0194522. [PMID: 36651749 PMCID: PMC9973014 DOI: 10.1128/jvi.01945-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like pseudokinase (MLKL) are proteins that are critical for necroptosis, a mechanism of programmed cell death that is both activated when apoptosis is inhibited and thought to be antiviral. Here, we investigated the role of RIPK3 and MLKL in controlling the Orthopoxvirus ectromelia virus (ECTV), a natural pathogen of the mouse. We found that C57BL/6 (B6) mice deficient in RIPK3 (Ripk3-/-) or MLKL (Mlkl-/-) were as susceptible as wild-type (WT) B6 mice to ECTV lethality after low-dose intraperitoneal infection and were as resistant as WT B6 mice after ECTV infection through the natural footpad route. Additionally, after footpad infection, Mlkl-/- mice, but not Ripk3-/- mice, endured lower viral titers than WT mice in the draining lymph node (dLN) at three days postinfection and in the spleen or in the liver at seven days postinfection. Despite the improved viral control, Mlkl-/- mice did not differ from WT mice in the expression of interferons or interferon-stimulated genes or in the recruitment of natural killer (NK) cells and inflammatory monocytes (iMOs) to the dLN. Additionally, the CD8 T-cell responses in Mlkl-/- and WT mice were similar, even though in the dLNs of Mlkl-/- mice, professional antigen-presenting cells were more heavily infected. Finally, the histopathology in the livers of Mlkl-/- and WT mice at 7 dpi did not differ. Thus, the mechanism of the increased virus control by Mlkl-/- mice remains to be defined. IMPORTANCE The molecules RIPK3 and MLKL are required for necroptotic cell death, which is widely thought of as an antiviral mechanism. Here we show that C57BL/6 (B6) mice deficient in RIPK3 or MLKL are as susceptible as WT B6 mice to ECTV lethality after a low-dose intraperitoneal infection and are as resistant as WT B6 mice after ECTV infection through the natural footpad route. Mice deficient in MLKL are more efficient than WT mice at controlling virus loads in various organs. This improved viral control is not due to enhanced interferon, natural killer cell, or CD8 T-cell responses. Overall, the data indicate that deficiencies in the molecules that are critical to necroptosis do not necessarily result in worse outcomes following viral infection and may improve virus control.
Collapse
|
25
|
Hildebrandt X, Ibrahim M, Peltzer N. Cell death and inflammation during obesity: "Know my methods, WAT(son)". Cell Death Differ 2023; 30:279-292. [PMID: 36175539 PMCID: PMC9520110 DOI: 10.1038/s41418-022-01062-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/08/2022] Open
Abstract
Obesity is a state of low-grade chronic inflammation that causes multiple metabolic diseases. During obesity, signalling via cytokines of the TNF family mediate cell death and inflammation within the adipose tissue, eventually resulting in lipid spill-over, glucotoxicity and insulin resistance. These events ultimately lead to ectopic lipid deposition, glucose intolerance and other metabolic complications with life-threatening consequences. Here we review the literature on how inflammatory responses affect metabolic processes such as energy homeostasis and insulin signalling. This review mainly focuses on the role of cell death in the adipose tissue as a key player in metabolic inflammation.
Collapse
Affiliation(s)
- Ximena Hildebrandt
- University of Cologne, Faculty of Medicine, Centre for Molecular Medicine Cologne (CMMC); Department of Translational Genomics and; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Mohamed Ibrahim
- University of Cologne, Faculty of Medicine, Centre for Molecular Medicine Cologne (CMMC); Department of Translational Genomics and; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Nieves Peltzer
- University of Cologne, Faculty of Medicine, Centre for Molecular Medicine Cologne (CMMC); Department of Translational Genomics and; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.
| |
Collapse
|
26
|
Imanishi T, Unno M, Yoneda N, Motomura Y, Mochizuki M, Sasaki T, Pasparakis M, Saito T. RIPK1 blocks T cell senescence mediated by RIPK3 and caspase-8. SCIENCE ADVANCES 2023; 9:eadd6097. [PMID: 36696505 PMCID: PMC9876550 DOI: 10.1126/sciadv.add6097] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Receptor-interacting protein kinase 1 (RIPK1) regulates cell death and inflammation. Here, we show that T cell-specific RIPK1 deficiency in mice leads to the premature senescence of T cells and induces various age-related diseases, resulting in premature death. RIPK1 deficiency causes higher basal activation of mTORC1 (mechanistic target of rapamycin complex 1) that drives enhanced cytokine production, induction of senescence-related genes, and increased activation of caspase-3/7, which are restored by inhibition of mTORC1. Critically, normal aged T cells exhibit similar phenotypes and responses. Mechanistically, a combined deficiency of RIPK3 and caspase-8 inhibition restores the impaired proliferative responses; the elevated activation of Akt, mTORC1, extracellular signal-regulated kinase, and caspase-3/7; and the increased expression of senescence-related genes in RIPK1-deficient CD4 T cells. Last, we revealed that the senescent phenotype of RIPK1-deficient and aged CD4 T cells is restored in the normal tissue environment. Thus, we have clarified the function of RIPK3 and caspase-8 in inducing CD4 T cell senescence, which is modulated by environmental signals.
Collapse
Affiliation(s)
- Takayuki Imanishi
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Midori Unno
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Natsumi Yoneda
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Yasutaka Motomura
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory for Innate Immune Systems, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Miho Mochizuki
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Takaharu Sasaki
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
- Present address: Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Manolis Pasparakis
- Institute for Genetics, Centre for Molecular Medicine (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
- Laboratory for Cell Signaling, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
27
|
The Protective Role of Interleukin 17A in Acinetobacter baumannii Pneumonia Is Associated with Candida albicans in the Airway. Infect Immun 2023; 91:e0037822. [PMID: 36602381 PMCID: PMC9872622 DOI: 10.1128/iai.00378-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recent studies have found that the coexistence of fungi and bacteria in the airway may increase the risk of infection, contribute to the development of pneumonia, and increase the severity of disease. Interleukin 17A (IL-17A) plays important roles in host resistance to bacterial and fungal infections. The objective of this study was to determine the effects of IL-17A on Acinetobacter baumannii-infected rats with a previous Candida albicans airway inoculation. The incidence of A. baumannii pneumonia was higher in rats with C. albicans in the airway than in noninoculated rats, and it decreased when amphotericin B was used to clear C. albicans, which influenced IL-17A levels. IL-17A had a protective effect in A. baumannii pneumonia associated with C. albicans in the airway. Compared with A. baumannii-infected rats with C. albicans in the airway that did not receive IL-17A, recombinant IL-17A (rIL-17A) supplementation decreased the incidence of A. baumannii pneumonia (10/15 versus 5/17; P = 0.013) and the proportion of neutrophils in the lung (84 ± 3.5 versus 74 ± 4.3%; P = 0.033), reduced tissue destruction and inflammation, and decreased levels of myeloperoxidase (MPO) (1.267 ± 0.15 versus 0.233 ± 0.06 U/g; P = 0.0004), reactive oxygen species (ROS) (132,333 ± 7,505 versus 64,667 ± 10,115 AU; P = 0.0007) and lactate dehydrogenase (LDH) (2.736 ± 0.05 versus 2.1816 ± 0.29 U/g; P = 0.0313). In vitro experiments revealed that IL-17A had no significant effect on the direct migration ability and bactericidal capability of neutrophils. However, IL-17A restrained lysis cell death and increased apoptosis of neutrophils (2.9 ± 1.14 versus 7 ± 0.5%; P = 0.0048). Taken together, our results suggest that C. albicans can depress IL-17A levels, which when supplemented may have a regulatory function that limits the accumulation of neutrophils in inflammatory areas, providing inflammatory response homeostasis.
Collapse
|
28
|
Li W, Yuan J. Targeting RIPK1 kinase for modulating inflammation in human diseases. Front Immunol 2023; 14:1159743. [PMID: 36969188 PMCID: PMC10030951 DOI: 10.3389/fimmu.2023.1159743] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Receptor-Interacting Serine/Threonine-Protein Kinase 1 (RIPK1) is a master regulator of TNFR1 signaling in controlling cell death and survival. While the scaffold of RIPK1 participates in the canonical NF-κB pathway, the activation of RIPK1 kinase promotes not only necroptosis and apoptosis, but also inflammation by mediating the transcriptional induction of inflammatory cytokines. The nuclear translocation of activated RIPK1 has been shown to interact BAF-complex to promote chromatin remodeling and transcription. This review will highlight the proinflammatory role of RIPK1 kinase with focus on human neurodegenerative diseases. We will discuss the possibility of targeting RIPK1 kinase for the treatment of inflammatory pathology in human diseases.
Collapse
Affiliation(s)
- Wanjin Li
- *Correspondence: Wanjin Li, ; Junying Yuan,
| | | |
Collapse
|
29
|
Karlowitz R, van Wijk SJL. Surviving death: emerging concepts of RIPK3 and MLKL ubiquitination in the regulation of necroptosis. FEBS J 2023; 290:37-54. [PMID: 34710282 DOI: 10.1111/febs.16255] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 01/14/2023]
Abstract
Lytic forms of programmed cell death, like necroptosis, are characterised by cell rupture and the release of cellular contents, often provoking inflammatory responses. In the recent years, necroptosis has been shown to play important roles in human diseases like cancer, infections and ischaemia/reperfusion injury. Coordinated interactions between RIPK1, RIPK3 and MLKL lead to the formation of a dedicated death complex called the necrosome that triggers MLKL-mediated membrane rupture and necroptotic cell death. Necroptotic cell death is tightly controlled by post-translational modifications, among which especially phosphorylation has been characterised in great detail. Although selective ubiquitination is relatively well-explored in the early initiation stages of necroptosis, the mechanisms and functional consequences of RIPK3 and MLKL ubiquitination for necrosome function and necroptosis are only starting to emerge. This review provides an overview on how site-specific ubiquitination of RIPK3 and MLKL regulates, fine-tunes and reverses the execution of necroptotic cell death.
Collapse
Affiliation(s)
- Rebekka Karlowitz
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| | - Sjoerd J L van Wijk
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| |
Collapse
|
30
|
Kumar Das A, Ghosh N, Mandal A, Sil PC. Glycobiology of cellular expiry: Decrypting the role of glycan-lectin regulatory complex and therapeutic strategies focusing on cancer. Biochem Pharmacol 2023; 207:115367. [PMID: 36481348 DOI: 10.1016/j.bcp.2022.115367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Often the outer leaflets of living cells bear a coat of glycosylated proteins, which primarily regulates cellular processes. Glycosylation of such proteins occurs as part of their post-translational modification. Within the endoplasmic reticulum, glycosylation enables the attachment of specific oligosaccharide moieties such as, 'glycan' to the transmembrane receptor proteins which confers precise biological information for governing the cell fate. The nature and degree of glycosylation of cell surface receptors are regulated by a bunch of glycosyl transferases and glycosidases which fine-tune attachment or detachment of glycan moieties. In classical death receptors, upregulation of glycosylation by glycosyl transferases is capable of inducing cell death in T cells, tumor cells, etc. Thus, any deregulated alternation at surface glycosylation of these death receptors can result in life-threatening disorder like cancer. In addition, transmembrane glycoproteins and lectin receptors can transduce intracellular signals for cell death execution. Exogenous interaction of lectins with glycan containing death receptors signals for cell death initiation by modulating downstream signalings. Subsequently, endogenous glycan-lectin interplay aids in the customization and implementation of the cell death program. Lastly, the glycan-lectin recognition system dictates the removal of apoptotic cells by sending accurate signals to the extracellular milieu. Since glycosylation has proven to be a biomarker of cellular death and disease progression; glycans serve as specific therapeutic targets of cancers. In this context, we are reviewing the molecular mechanisms of the glycan-lectin regulatory network as an integral part of cell death machinery in cancer to target them for successful therapeutic and clinical approaches.
Collapse
Affiliation(s)
- Abhishek Kumar Das
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Ankita Mandal
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India.
| |
Collapse
|
31
|
Chen J, Simmen T. LUBAC and NF-κB trigger a nuclear response from mitochondria. EMBO J 2022; 41:e112920. [PMID: 36398765 PMCID: PMC9753448 DOI: 10.15252/embj.2022112920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Mitochondria are key signaling hubs for innate immune responses. In this issue, Wu et al (2022) report that remodeling of the outer mitochondrial membrane by the linear ubiquiting chain assembly complex (LUBAC) facilitates transport of activated NF-κB to the nucleus in response to TNF signaling.
Collapse
Affiliation(s)
- Junsheng Chen
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
32
|
Liu RZ, Li WJ, Zhang JJ, Liu ZY, Li Y, Liu C, Qin S. The Inhibitory Effect of Phycocyanin Peptide on Pulmonary Fibrosis In Vitro. Mar Drugs 2022; 20:696. [PMID: 36355019 PMCID: PMC9694904 DOI: 10.3390/md20110696] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 07/29/2023] Open
Abstract
Phycocyanin is an excellent antioxidant with anti-inflammatory effects on which recent studies are growing; however, its specific target remains unclear. Linear tetrapyrrole compounds such as bilirubin have been shown to lead to the induction of heme oxygenase 1 expression in vivo, thus achieving antioxidant and anti-inflammatory effects. Phycocyanin is bound internally with linear tetrapyrrole phycocyanobilin in a similar structure to bilirubin. We speculate that there is probably a way of inducing the expression of heme oxygenase 1, with which tissue oxidative stress and inflammation can be inhibited, thus inhibiting pulmonary fibrosis caused by oxidative damage and inflammation of lung. By optimizing the enzymatic hydrolysis process, phycocyanobilin-bound phycocyanin peptide were obtained, and its in vitro antioxidant, anti-inflammatory, and anti-pulmonary fibrosis activities were investigated. The results show that the phycocyanobilin peptide was able to alleviate oxidative and inflammatory damage in cells through the Keap1-Nrf2-HO-1 pathway, which in turn relieved pulmonary fibrosis symptoms.
Collapse
Affiliation(s)
- Run-Ze Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Wen-Jun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | | | - Zheng-Yi Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ya Li
- Yantai Jiahui Biotech Co., Ltd., Yantai 264003, China
| | - Chao Liu
- Yantai Jiahui Biotech Co., Ltd., Yantai 264003, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
33
|
Tu H, Xiong W, Zhang J, Zhao X, Lin X. Tyrosine phosphorylation regulates RIPK1 activity to limit cell death and inflammation. Nat Commun 2022; 13:6603. [PMID: 36329033 PMCID: PMC9632600 DOI: 10.1038/s41467-022-34080-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is a cytosolic protein kinase that regulates multiple inflammatory and cell death pathways. Serine/Threonine phosphorylation of RIPK1 is known to suppress RIPK1 kinase-mediated cell death in the contexts of inflammation, infection and embryogenesis, however, regulation by tyrosine phosphorylation has not been reported. Here, we show that non-receptor tyrosine kinases Janus kinase 1 (JAK1) and SRC are able to phosphorylate RIPK1 at Y384 (Y383 in murine RIPK1), leading to suppression of TNF-induced cell death. Mice bearing a homozygous Ripk1 mutation that prevents tyrosine phosphorylation of RIPK1 (Ripk1Y383F/Y383F), develop systemic inflammation and emergency haematopoiesis. Mechanistically, Ripk1Y383F/Y383F mutation promotes RIPK1 kinase activation and enhances TNF-induced apoptosis and necroptosis, which is partially due to impaired recruitment and activation of MAP kinase-activated protein kinase 2 (MK2). The systemic inflammation and emergency haematopoiesis in Ripk1Y383F/Y383F mice are largely alleviated by RIPK1 kinase inhibition, and prevented by genomic deletions targeted to the upstream pathway (either to Tumor necrosis factor receptor 1 or RIPK3 and Caspase8 simultaneously). In summary, our results demonstrate that tyrosine phosphorylation of RIPK1 is critical for regulating RIPK1 activity to limit cell death and inflammation.
Collapse
Affiliation(s)
- Hailin Tu
- grid.12527.330000 0001 0662 3178Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Weihang Xiong
- grid.12527.330000 0001 0662 3178Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China ,grid.452723.50000 0004 7887 9190Tsinghua University–Peking University Center for Life Sciences, Beijing, 100084 China
| | - Jie Zhang
- grid.12527.330000 0001 0662 3178Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Xueqiang Zhao
- grid.12527.330000 0001 0662 3178Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Xin Lin
- grid.12527.330000 0001 0662 3178Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China ,grid.452723.50000 0004 7887 9190Tsinghua University–Peking University Center for Life Sciences, Beijing, 100084 China
| |
Collapse
|
34
|
Zhu Z, Lian X, Bhatia M. Hydrogen Sulfide: A Gaseous Mediator and Its Key Role in Programmed Cell Death, Oxidative Stress, Inflammation and Pulmonary Disease. Antioxidants (Basel) 2022; 11:2162. [PMID: 36358533 PMCID: PMC9687070 DOI: 10.3390/antiox11112162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Hydrogen sulfide (H2S) has been acknowledged as a novel gaseous mediator. The metabolism of H2S in mammals is tightly controlled and is mainly achieved by many physiological reactions catalyzed by a suite of enzymes. Although the precise actions of H2S in regulating programmed cell death, oxidative stress and inflammation are yet to be fully understood, it is becoming increasingly clear that H2S is extensively involved in these crucial processes. Since programmed cell death, oxidative stress and inflammation have been demonstrated as three important mechanisms participating in the pathogenesis of various pulmonary diseases, it can be inferred that aberrant H2S metabolism also functions as a critical contributor to pulmonary diseases, which has also been extensively investigated. In the meantime, substantial attention has been paid to developing therapeutic approaches targeting H2S for pulmonary diseases. In this review, we summarize the cutting-edge knowledge on the metabolism of H2S and the relevance of H2S to programmed cell death, oxidative stress and inflammation. We also provide an update on the crucial roles played by H2S in the pathogenesis of several pulmonary diseases. Finally, we discuss the perspective on targeting H2S metabolism in the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Zhixing Zhu
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China
| | - Xihua Lian
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|
35
|
Liu A, Li Y, Shen L, Li N, Shen L, Li Z. Pan-cancer analysis of a novel indicator of necroptosis with its application in human cancer. Aging (Albany NY) 2022; 14:7587-7616. [PMID: 36170029 PMCID: PMC9550240 DOI: 10.18632/aging.204307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022]
Abstract
As a type of programmed cell death, necroptosis is thought to play a dual role in tumorigenesis. However, a comprehensive assessment of necroptosis-related regulators across human cancers has not been reported. Therefore, in this study, we established a quantitative index to evaluate the necroptosis rate and determine its correlations with clinical prognosis, signaling pathways and molecular features, immune cell infiltration and regulation, immunotherapy, and chemotherapy sensitivity across cancers. Our results indicated that the necroptosis score can act as a favorable or risky prognostic factor in various cancer types. A gene set variation analysis suggested that necroptosis is significantly associated with immune- and inflammation-related signaling pathways, cell growth and apoptosis, and energy metabolism. Furthermore, necroptosis can affect the tumor microenvironment and immunity regulation, and the effect of necroptosis on immunity is different in different tumor types. There is crosstalk between components of necroptosis, pyroptosis, ferroptosis and autophagy pathways in multiple types of cancers. Finally, the necroptosis rate can be an indicator of immunotherapy effectiveness in multiple cancers and can affect the chemotherapy sensitivity of cancer cells. Our study presents a characterization of necroptosis across human cancers, highlights the potential necroptotic effects on immune regulation, and provides new insights into the development of individualized tumor treatments and clinical applications of immunotherapy.
Collapse
Affiliation(s)
- Aibin Liu
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Yanyan Li
- Department of Nursing, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Lin Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Na Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| |
Collapse
|
36
|
Peltzer N. Linear ubiquitin as a common regulator of cellular stress. FEBS J 2022; 289:5176-5179. [DOI: 10.1111/febs.16427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Nieves Peltzer
- Faculty of Medicine Center for Molecular Medicine Cologne Department of Translational Genomics and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) Research Center University of Cologne Germany
| |
Collapse
|
37
|
The role of RHIM in necroptosis. Biochem Soc Trans 2022; 50:1197-1205. [PMID: 36040212 PMCID: PMC9444067 DOI: 10.1042/bst20220535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022]
Abstract
The RIP homotypic interaction motif (RHIM) is a conserved protein domain that is approximately 18–22 amino acids in length. In humans, four proteins carrying RHIM domains have been identified: receptor-interacting serine/threonine protein kinase (RIPK) 1, RIPK3, Z-DNA-binding protein 1 (ZBP1), and TIR domain-containing adapter-inducing IFN-β (TRIF), which are all major players in necroptosis, a distinct form of regulated cell death. Necroptosis is mostly presumed to be a fail-safe form of cell death, occurring in cells in which apoptosis is compromised. Upon activation, RIPK1, ZBP1, and TRIF each hetero-oligomerize with RIPK3 and induce the assembly of an amyloid-like structure of RIPK3 homo-oligomers. These act as docking stations for the recruitment of the pseudokinase mixed-lineage kinase domain like (MLKL), the pore-forming executioner of necroptosis. As RHIM domain interactions are a vital component of the signaling cascade and can also be involved in apoptosis and pyroptosis activation, it is unsurprising that viral and bacterial pathogens have developed means of disrupting RHIM-mediated signaling to ensure survival. Moreover, as these mechanisms play an essential part of regulated cell death signaling, they have received much attention in recent years. Herein, we present the latest insights into the supramolecular structure of interacting RHIM proteins and their distinct signaling cascades in inflammation and infection. Their uncovering will ultimately contribute to the development of new therapeutic strategies in the regulation of lytic cell death.
Collapse
|
38
|
Peltzer N, Annibaldi A. Cell Death-Related Ubiquitin Modifications in Inflammatory Syndromes: From Mice to Men. Biomedicines 2022; 10:biomedicines10061436. [PMID: 35740456 PMCID: PMC9219782 DOI: 10.3390/biomedicines10061436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Aberrant cell death can cause inflammation and inflammation-related diseases. While the link between cell death and inflammation has been widely established in mouse models, evidence supporting a role for cell death in the onset of inflammatory and autoimmune diseases in patients is still missing. In this review, we discuss how the lessons learnt from mouse models can help shed new light on the initiating or contributing events leading to immune-mediated disorders. In addition, we discuss how multiomic approaches can provide new insight on the soluble factors released by dying cells that might contribute to the development of such diseases.
Collapse
Affiliation(s)
- Nieves Peltzer
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Strasse 21, 50931 Köln, Germany
- Department of Translational Genomics, University of Cologne, Weyertal 115b, 50931 Köln, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) Research Center, University of Cologne, Joseph-Steltzmann-Strasse 26, 50931 Köln, Germany
- Correspondence: (N.P.); (A.A.)
| | - Alessandro Annibaldi
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Strasse 21, 50931 Köln, Germany
- Correspondence: (N.P.); (A.A.)
| |
Collapse
|
39
|
Linear ubiquitination in immune and neurodegenerative diseases, and beyond. Biochem Soc Trans 2022; 50:799-811. [PMID: 35343567 DOI: 10.1042/bst20211078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/28/2022]
Abstract
Ubiquitin regulates numerous aspects of biology via a complex ubiquitin code. The linear ubiquitin chain is an atypical code that forms a unique structure, with the C-terminal tail of the distal ubiquitin linked to the N-terminal Met1 of the proximal ubiquitin. Thus far, LUBAC is the only known ubiquitin ligase complex that specifically generates linear ubiquitin chains. LUBAC-induced linear ubiquitin chains regulate inflammatory responses, cell death and immunity. Genetically modified mouse models and cellular assays have revealed that LUBAC is also involved in embryonic development in mice. LUBAC dysfunction is associated with autoimmune diseases, myopathy, and neurodegenerative diseases in humans, but the underlying mechanisms are poorly understood. In this review, we focus on the roles of linear ubiquitin chains and LUBAC in immune and neurodegenerative diseases. We further discuss LUBAC inhibitors and their potential as therapeutics for these diseases.
Collapse
|
40
|
Raafat Ibrahim R, Shafik NM, El-Esawy RO, El-Sakaa MH, Arakeeb HM, El-Sharaby RM, Ali DA, Safwat El-deeb O, Ragab Abd El-Khalik S. The emerging role of irisin in experimentally induced arthritis: a recent update involving HMGB1/MCP1/Chitotriosidase I–mediated necroptosis. Redox Rep 2022; 27:21-31. [PMID: 35094663 PMCID: PMC8803109 DOI: 10.1080/13510002.2022.2031516] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Objectives Methods Results Conclusions Abbreviations
Collapse
Affiliation(s)
- Rowida Raafat Ibrahim
- Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Noha M. Shafik
- Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Mervat H. El-Sakaa
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Heba M. Arakeeb
- Anatomy & Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Dina Adam Ali
- Clinical pathology department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Omnia Safwat El-deeb
- Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Sara Ragab Abd El-Khalik
- Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
41
|
Madiraju C, Novack JP, Reed JC, Matsuzawa SI. K63 ubiquitination in immune signaling. Trends Immunol 2022; 43:148-162. [PMID: 35033428 PMCID: PMC8755460 DOI: 10.1016/j.it.2021.12.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022]
Abstract
Ubc13-catalyzed K63 ubiquitination is a major control point for immune signaling. Recent evidence has shown that the control of multiple immune functions, including chronic inflammation, pathogen responses, lymphocyte activation, and regulatory signaling, is altered by K63 ubiquitination. In this review, we detail the novel cellular sensors that are dependent on K63 ubiquitination for their function in the immune signaling network. Many pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can target K63 ubiquitination to inhibit pathogen immune responses; we describe novel details of the pathways involved and summarize recent clinically relevant SARS-CoV-2-specific responses. We also discuss recent evidence that regulatory T cell (Treg) versus T helper (TH) 1 and TH17 cell subset regulation might involve K63 ubiquitination. Knowledge gaps that merit future investigation and clinically relevant pathways are also addressed.
Collapse
Affiliation(s)
| | - Jeffrey P Novack
- Pacific Northwest University of Health Sciences, Yakima, WA, USA
| | - John C Reed
- Sanofi, Paris, France & University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA.
| | - Shu-Ichi Matsuzawa
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
42
|
Bolik J, Krause F, Stevanovic M, Gandraß M, Thomsen I, Schacht SS, Rieser E, Müller M, Schumacher N, Fritsch J, Wichert R, Galun E, Bergmann J, Röder C, Schafmayer C, Egberts JH, Becker-Pauly C, Saftig P, Lucius R, Schneider-Brachert W, Barikbin R, Adam D, Voss M, Hitzl W, Krüger A, Strilic B, Sagi I, Walczak H, Rose-John S, Schmidt-Arras D. Inhibition of ADAM17 impairs endothelial cell necroptosis and blocks metastasis. J Exp Med 2022; 219:212921. [PMID: 34919140 PMCID: PMC8689681 DOI: 10.1084/jem.20201039] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/08/2021] [Accepted: 11/03/2021] [Indexed: 01/12/2023] Open
Abstract
Metastasis is the major cause of death in cancer patients. Circulating tumor cells need to migrate through the endothelial layer of blood vessels to escape the hostile circulation and establish metastases at distant organ sites. Here, we identified the membrane-bound metalloprotease ADAM17 on endothelial cells as a key driver of metastasis. We show that TNFR1-dependent tumor cell-induced endothelial cell death, tumor cell extravasation, and subsequent metastatic seeding is dependent on the activity of endothelial ADAM17. Moreover, we reveal that ADAM17-mediated TNFR1 ectodomain shedding and subsequent processing by the γ-secretase complex is required for the induction of TNF-induced necroptosis. Consequently, genetic ablation of ADAM17 in endothelial cells as well as short-term pharmacological inhibition of ADAM17 prevents long-term metastases formation in the lung. Thus, our data identified ADAM17 as a novel essential regulator of necroptosis and as a new promising target for antimetastatic and advanced-stage cancer therapies.
Collapse
Affiliation(s)
- Julia Bolik
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Freia Krause
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany.,Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Marija Stevanovic
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Monja Gandraß
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Ilka Thomsen
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | - Eva Rieser
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, United Kingdom.,Institute for Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | - Miryam Müller
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Neele Schumacher
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Jürgen Fritsch
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.,Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - Rielana Wichert
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Eithan Galun
- The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Juri Bergmann
- Institute of Anatomy, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Christian Röder
- Institute for Experimental Cancer Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Clemens Schafmayer
- Department of General Surgery and Thoracic Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jan-Hendrik Egberts
- Department of General Surgery and Thoracic Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Ralph Lucius
- Institute of Anatomy, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Wulf Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - Roja Barikbin
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dieter Adam
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Matthias Voss
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Wolfgang Hitzl
- Research Office (Biostatistics), Paracelsus Medical University, Salzburg, Austria.,Research Program for Experimental Ophthalmology and Glaucoma, Paracelsus Medical University, Salzburg, Austria.,Department of Ophthalmology and Optometry, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Achim Krüger
- Institutes for Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Boris Strilic
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, United Kingdom.,Institute for Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Dirk Schmidt-Arras
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany.,Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, Austria
| |
Collapse
|
43
|
Wang S, Liu X, Liu Y. Hydrogen sulfide protects from acute kidney injury via attenuating inflammation activated by necroptosis in canine. J Vet Sci 2022; 23:e72. [PMID: 36174977 PMCID: PMC9523336 DOI: 10.4142/jvs.22064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/08/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Shuang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - XingYao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yun Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilingjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
44
|
Guo Y, Mao R, Xie Q, Cheng X, Xu T, Wang X, Du Y, Qi X. Francisella novicida Mutant XWK4 Triggers Robust Inflammasome Activation Favoring Infection. Front Cell Dev Biol 2021; 9:743335. [PMID: 34869331 PMCID: PMC8637620 DOI: 10.3389/fcell.2021.743335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial infection tendentiously triggers inflammasome activation, whereas the roles of inflammasome activation in host defense against diverse infections remain unclear. Here, we identified that an ASC-dependent inflammasome activation played opposite roles in host defense against Francisella novicida wild-type (WT) U112 and mutant strain XWK4. Comparing with U112, XWK4 infection induced robust cytokine production, ASC-dependent inflammasome activation, and pyroptosis. Both AIM2 and NLRP3 were involved and played independent roles in XWK4-induced inflammasome activation. Type II interferon was partially required for XWK4-triggered inflammasome activation, which was different from type I interferon dependency in U112-induced inflammasome activation. Distinct from F. novicida U112 and Acinetobacter baumannii infection, Asc-/- mice were more resistant than WT mice response to XWK4 infection by limiting bacterial burden in vivo. The excessive inflammasome activation triggered by XWK4 infection caused dramatical cell death and pathological damage. Our study offers novel insights into mechanisms of inflammasome activation in host defense and provides potential therapeutic approach against bacterial infections and inflammatory diseases.
Collapse
Affiliation(s)
- Yu Guo
- School of Life Sciences, University of Science and Technology of China, Hefei, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Rudi Mao
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingqing Xie
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaojie Cheng
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yan Du
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| | - Xiaopeng Qi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
45
|
Gomez-Diaz C, Jonsson G, Schodl K, Deszcz L, Bestehorn A, Eislmayr K, Almagro J, Kavirayani A, Seida M, Fennell LM, Hagelkruys A, Kovarik P, Penninger JM, Ikeda F. The ubiquitin ligase HOIL-1L regulates immune responses by interacting with linear ubiquitin chains. iScience 2021; 24:103241. [PMID: 34755089 PMCID: PMC8561004 DOI: 10.1016/j.isci.2021.103241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/30/2021] [Accepted: 10/05/2021] [Indexed: 11/28/2022] Open
Abstract
The Linear Ubiquitin Chain Assembly Complex (LUBAC), composed of HOIP, HOIL-1L, and SHARPIN, promotes tumor necrosis factor (TNF)-dependent NF-κB signaling in diverse cell types. HOIL-1L contains an Npl4 Zinc Finger (NZF) domain that specifically recognizes linear ubiquitin chains, but its physiological role in vivo has remained unclear. Here, we demonstrate that the HOIL-1L NZF domain has important regulatory functions in inflammation and immune responses in mice. We generated knockin mice (Hoil-1l T201A;R208A/T201A;R208A ) expressing a HOIL-1L NZF mutant and observed attenuated responses to TNF- and LPS-induced shock, including prolonged survival, stabilized body temperature, reduced cytokine production, and liver damage markers. Cells derived from Hoil-1l T201A;R208A/T201A;R208A mice show reduced TNF-dependent NF-κB activation and incomplete recruitment of HOIL-1L into TNF Receptor (TNFR) Complex I. We further show that HOIL-1L NZF cooperates with SHARPIN to prevent TNFR-dependent skin inflammation. Collectively, our data suggest that linear ubiquitin-chain binding by HOIL-1L regulates immune responses and inflammation in vivo.
Collapse
Affiliation(s)
- Carlos Gomez-Diaz
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Gustav Jonsson
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Katrin Schodl
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Luiza Deszcz
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Annika Bestehorn
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Kevin Eislmayr
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Jorge Almagro
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Anoop Kavirayani
- Vienna Biocenter Core Facilities (VBCF), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Mayu Seida
- Medical Institute of Bioregulation (MIB), Kyushu University, Fukuoka 812-8582, Japan
| | - Lilian M. Fennell
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Astrid Hagelkruys
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Pavel Kovarik
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Josef M. Penninger
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Fumiyo Ikeda
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
- Medical Institute of Bioregulation (MIB), Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
46
|
Shi S, Verstegen MMA, Roest HP, Ardisasmita AI, Cao W, Roos FJM, de Ruiter PE, Niemeijer M, Pan Q, IJzermans JNM, van der Laan LJW. Recapitulating Cholangiopathy-Associated Necroptotic Cell Death In Vitro Using Human Cholangiocyte Organoids. Cell Mol Gastroenterol Hepatol 2021; 13:541-564. [PMID: 34700031 PMCID: PMC8688721 DOI: 10.1016/j.jcmgh.2021.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Liver and bile duct diseases often are associated with extensive cell death of cholangiocytes. Necroptosis represents a common mode of programmed cell death in cholangiopathy, however, detailed mechanistic knowledge is limited owing to the lack of appropriate in vitro models. To address this void, we investigated whether human intrahepatic cholangiocyte organoids (ICOs) can recapitulate cholangiopathy-associated necroptosis and whether this model can be used for drug screening. METHODS We evaluated the clinical relevance of necroptosis in end-stage liver diseases and liver transplantation by immunohistochemistry. Cholangiopathy-associated programmed cell death was evoked in ICOs derived from healthy donors or patients with primary sclerosing cholangitis or alcoholic liver diseases by the various stimuli. RESULTS The expression of key necroptosis mediators, receptor-interacting protein 3 and phosphorylated mixed lineage kinase domain-like, in cholangiocytes during end-stage liver diseases was confirmed. The phosphorylated mixed lineage kinase domain-like expression was etiology-dependent. Gene expression analysis confirmed that primary cholangiocytes are more prone to necroptosis compared with primary hepatocytes. Both apoptosis and necroptosis could be specifically evoked using tumor necrosis factor α and second mitochondrial-derived activator of caspases mimetic, with or without caspase inhibition in healthy and patient-derived ICOs. Necroptosis also was induced by ethanol metabolites or human bile in ICOs from donors and patients. The organoid cultures further uncovered interdonor variable and species-specific drug responses. Dabrafenib was identified as a potent necroptosis inhibitor and showed a protective effect against ethanol metabolite toxicity. CONCLUSIONS Human ICOs recapitulate cholangiopathy-associated necroptosis and represent a useful in vitro platform for the study of biliary cytotoxicity and preclinical drug evaluation.
Collapse
Affiliation(s)
- Shaojun Shi
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Henk P Roest
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Arif I Ardisasmita
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Wanlu Cao
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Oncology, Shanghai East Hospital, Tongji University, Shanghai, P. R. China
| | - Floris J M Roos
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Petra E de Ruiter
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marije Niemeijer
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jan N M IJzermans
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
47
|
Chen J, Zhou Y, Zhu E, Yang P, Li M, Zhang S, Yue J, Wen M, Wang K, Cheng Z. Mycoplasma ovipneumoniae induces caspase-8-dependent extrinsic apoptosis and p53- and ROS-dependent intrinsic apoptosis in murine alveolar macrophages. Virulence 2021; 12:2703-2720. [PMID: 34678131 PMCID: PMC8923071 DOI: 10.1080/21505594.2021.1984714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mycoplasma ovipneumoniae (MO) is a principle causative agent of chronic respiratory disease in ruminants, including sheep, goats, and deer, posing a great threat to the ruminant industry worldwide. However, the pathogenesis of MO infection still remains not well understood and needs further clarification. Here we report a time-dependent apoptosis in cultured murine alveolar macrophage (MH-S) cell lines in response to MO infection in vitro. Mechanistically, MO infection activated apoptosis in MH-S cells through caspase-8-dependent extrinsic pathway and through tumor protein 53 (p53)- and reactive oxygen species (ROS)-dependent intrinsic mitochondrial pathways. Moreover, MO infection promoted both transcription and translation of proinflammatory cytokine genes including interleukin-1β (IL-1β), IL-18, and tumor necrosis factor-α (TNF-α), in a caspase-8-, p53-, and ROS-dependent manner, implying a potential link between MO-induced inflammation and apoptotic cell death. Collectively, our results suggest that MO infection induces the activation of extrinsic and intrinsic apoptotic pathways in cultured MH-S cells, which is related to upregulated expression of proinflammatory cytokines. Our findings will contribute to the elucidation of pathogenesis in MO infection and provide valuable reference for the development of new strategies for controlling MO infection.
Collapse
Affiliation(s)
- Jing Chen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Yi Zhou
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Erpeng Zhu
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Peng Yang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Mei Li
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Shuangxiang Zhang
- The Laboratory of Veterinary Medicine, Animal Disease Prevention and Control Center of Guizhou Province, Guiyang, China
| | - Jun Yue
- The Laboratory of Veterinary Medicine, Animal Disease Prevention and Control Center of Guizhou Province, Guiyang, China
| | - Ming Wen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Kaigong Wang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Zhentao Cheng
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
48
|
Hoste E, Lecomte K, Annusver K, Vandamme N, Roels J, Maschalidi S, Verboom L, Vikkula HK, Sze M, Van Hove L, Verstaen K, Martens A, Hochepied T, Saeys Y, Ravichandran K, Kasper M, van Loo G. OTULIN maintains skin homeostasis by controlling keratinocyte death and stem cell identity. Nat Commun 2021; 12:5913. [PMID: 34625556 PMCID: PMC8501048 DOI: 10.1038/s41467-021-25944-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 09/09/2021] [Indexed: 12/23/2022] Open
Abstract
OTULIN is a deubiquitinase that specifically cleaves linear ubiquitin chains. Here we demonstrate that the ablation of Otulin selectively in keratinocytes causes inflammatory skin lesions that develop into verrucous carcinomas. Genetic deletion of Tnfr1, knockin expression of kinase-inactive Ripk1 or keratinocyte-specific deletion of Fadd and Mlkl completely rescues mice with OTULIN deficiency from dermatitis and tumorigenesis, thereby identifying keratinocyte cell death as the driving force for inflammation. Single-cell RNA-sequencing comparing non-lesional and lesional skin reveals changes in epidermal stem cell identity in OTULIN-deficient keratinocytes prior to substantial immune cell infiltration. Keratinocytes lacking OTULIN display a type-1 interferon and IL-1β response signature, and genetic or pharmacologic inhibition of these cytokines partially inhibits skin inflammation. Finally, expression of a hypomorphic mutant Otulin allele, previously shown to cause OTULIN-related autoinflammatory syndrome in humans, induces a similar inflammatory phenotype, thus supporting the importance of OTULIN for restraining skin inflammation and maintaining immune homeostasis.
Collapse
Affiliation(s)
- Esther Hoste
- VIB Center for Inflammation Research, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Kim Lecomte
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Karl Annusver
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Niels Vandamme
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Sciences and Statistics, Ghent University, Ghent, Belgium
| | - Jana Roels
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Sciences and Statistics, Ghent University, Ghent, Belgium
| | - Sophia Maschalidi
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lien Verboom
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Hanna-Kaisa Vikkula
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mozes Sze
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lisette Van Hove
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kevin Verstaen
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Sciences and Statistics, Ghent University, Ghent, Belgium
| | - Arne Martens
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tino Hochepied
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yvan Saeys
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Sciences and Statistics, Ghent University, Ghent, Belgium
| | - Kodi Ravichandran
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Center for Cell Clearance and Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Geert van Loo
- VIB Center for Inflammation Research, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
49
|
Jain R, Zhao K, Sheridan JM, Heinlein M, Kupresanin F, Abeysekera W, Hall C, Rickard J, Bouillet P, Walczak H, Strasser A, Silke J, Gray DHD. Dual roles for LUBAC signaling in thymic epithelial cell development and survival. Cell Death Differ 2021; 28:2946-2956. [PMID: 34381167 PMCID: PMC8481470 DOI: 10.1038/s41418-021-00850-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 01/08/2023] Open
Abstract
Thymic epithelial cells (TECs) form a unique microenvironment that orchestrates T cell differentiation and immunological tolerance. Despite the importance of TECs for adaptive immunity, there is an incomplete understanding of the signalling networks that support their differentiation and survival. We report that the linear ubiquitin chain assembly complex (LUBAC) is essential for medullary TEC (mTEC) differentiation, cortical TEC survival and prevention of premature thymic atrophy. TEC-specific loss of LUBAC proteins, HOIL-1 or HOIP, severely impaired expansion of the thymic medulla and AIRE-expressing cells. Furthermore, HOIL-1-deficiency caused early thymic atrophy due to Caspase-8/MLKL-dependent apoptosis/necroptosis of cortical TECs. By contrast, deficiency in the LUBAC component, SHARPIN, caused relatively mild defects only in mTECs. These distinct roles for LUBAC components in TECs correlate with their function in linear ubiquitination, NFκB activation and cell survival. Thus, our findings reveal dual roles for LUBAC signaling in TEC differentiation and survival.
Collapse
Affiliation(s)
- Reema Jain
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kelin Zhao
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Julie M Sheridan
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Melanie Heinlein
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Molecular Oncology, Genentech, Inc., South San Francisco, CA, USA
| | - Fiona Kupresanin
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- ANZAC Research Institute, Concord, Australia
| | - Waruni Abeysekera
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Cathrine Hall
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - James Rickard
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Philippe Bouillet
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
- Centre for Biochemistry, University of Cologne, Cologne, Germany
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - John Silke
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Daniel H D Gray
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
50
|
Taft J, Markson M, Legarda D, Patel R, Chan M, Malle L, Richardson A, Gruber C, Martín-Fernández M, Mancini GMS, van Laar JAM, van Pelt P, Buta S, Wokke BHA, Sabli IKD, Sancho-Shimizu V, Chavan PP, Schnappauf O, Khubchandani R, Cüceoğlu MK, Özen S, Kastner DL, Ting AT, Aksentijevich I, Hollink IHIM, Bogunovic D. Human TBK1 deficiency leads to autoinflammation driven by TNF-induced cell death. Cell 2021; 184:4447-4463.e20. [PMID: 34363755 DOI: 10.1016/j.cell.2021.07.026] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/11/2021] [Accepted: 07/20/2021] [Indexed: 12/30/2022]
Abstract
TANK binding kinase 1 (TBK1) regulates IFN-I, NF-κB, and TNF-induced RIPK1-dependent cell death (RCD). In mice, biallelic loss of TBK1 is embryonically lethal. We discovered four humans, ages 32, 26, 7, and 8 from three unrelated consanguineous families with homozygous loss-of-function mutations in TBK1. All four patients suffer from chronic and systemic autoinflammation, but not severe viral infections. We demonstrate that TBK1 loss results in hypomorphic but sufficient IFN-I induction via RIG-I/MDA5, while the system retains near intact IL-6 induction through NF-κB. Autoinflammation is driven by TNF-induced RCD as patient-derived fibroblasts experienced higher rates of necroptosis in vitro, and CC3 was elevated in peripheral blood ex vivo. Treatment with anti-TNF dampened the baseline circulating inflammatory profile and ameliorated the clinical condition in vivo. These findings highlight the plasticity of the IFN-I response and underscore a cardinal role for TBK1 in the regulation of RCD.
Collapse
Affiliation(s)
- Justin Taft
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michael Markson
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Diana Legarda
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Roosheel Patel
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mark Chan
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Louise Malle
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ashley Richardson
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Conor Gruber
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marta Martín-Fernández
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus University Medical Center, 3015GD Rotterdam, the Netherlands
| | - Jan A M van Laar
- Department of Immunology, Erasmus University Medical Center, 3015GD Rotterdam, the Netherlands
| | - Philomine van Pelt
- Department of Rheumatology, Erasmus University Medical Center, 3015GD Rotterdam, the Netherlands
| | - Sofija Buta
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Beatrijs H A Wokke
- Department of Neurology, Erasmus University Medical Center, 3015GD Rotterdam, the Netherlands
| | - Ira K D Sabli
- Department of Paediatric Infectious Diseases and Virology, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
| | - Vanessa Sancho-Shimizu
- Department of Paediatric Infectious Diseases and Virology, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
| | - Pallavi Pimpale Chavan
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD, 20892, USA; Pediatric Rheumatology, SRCC Children's Hospital, Mumbai, India
| | - Oskar Schnappauf
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | - Raju Khubchandani
- Pediatric Rheumatology, SRCC Children's Hospital, Mumbai, India; Consultant Pediatrician, Jaslok and Breach Candy Hospitals, Mumbai, India
| | | | - Seza Özen
- Department of Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| | - Daniel L Kastner
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | - Adrian T Ting
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | - Iris H I M Hollink
- Department of Clinical Genetics, Erasmus University Medical Center, 3015GD Rotterdam, the Netherlands
| | - Dusan Bogunovic
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|