1
|
El-Khoueiry A, Saavedra O, Thomas J, Livings C, Garralda E, Hintzen G, Kohlhas L, Vanosmael D, Koch J, Rajkovic E, Ravenstijn P, Nuciforo P, Fehniger TA, Foster M, Berrien-Elliott MM, Wingert S, Stäble S, Morales-Espinosa D, Rivas D, Emig M, Lopez J. First-in-Human Phase I Study of a CD16A Bispecific Innate Cell Engager, AFM24, Targeting EGFR-Expressing Solid Tumors. Clin Cancer Res 2025; 31:1257-1267. [PMID: 39846810 PMCID: PMC11964176 DOI: 10.1158/1078-0432.ccr-24-1991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/02/2024] [Accepted: 01/21/2025] [Indexed: 01/24/2025]
Abstract
PURPOSE Innate immune cell-based therapies have shown promising antitumor activity against solid and hematologic malignancies. AFM24, a bispecific innate cell engager, binds CD16A on NK cells/macrophages and EGFR on tumor cells, redirecting antitumor activity toward tumors. The safety and tolerability of AFM24 were evaluated in this phase I/IIa dose-escalation/dose-expansion study in patients with recurrent or persistent, advanced solid tumors known to express EGFR. PATIENTS AND METHODS The main objective in phase I was to determine the MTD and/or recommended phase II dose. The primary endpoint was the incidence of dose-limiting toxicities during the observation period. Secondary endpoints included the incidence of treatment-emergent adverse events and pharmacokinetics. RESULTS In the dose-escalation phase, 35 patients received AFM24 weekly across seven dose cohorts (14-720 mg). One patient experienced a dose-limiting toxicity of grade 3 infusion-related reaction. Infusion-related reactions were mainly reported after the first infusion; these were manageable with premedication and a gradual increase in infusion rate. Pharmacokinetics was dose-proportional, and CD16A receptor occupancy on NK cells approached saturation between 320 and 480 mg. Paired tumor biopsies demonstrated the activation of innate and adaptive immune responses within the tumor. The best objective response was stable disease in 10/35 patients; four patients had stable disease for 4.3 to 7.1 months. CONCLUSIONS AFM24 was well tolerated, with 480 mg established as the recommended phase II dose. AFM24 could be a novel therapy for patients with EGFR-expressing solid tumors, with suitable tolerability and appropriate pharmacokinetic properties for further development in combination with other immuno-oncology therapeutics.
Collapse
Affiliation(s)
- Anthony El-Khoueiry
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Omar Saavedra
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, Barcelona, Spain
- Departamento de Medicina, Universidad Autónoma de Barcelona (UAB), Barcelona, Spain
| | - Jacob Thomas
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Claire Livings
- Drug Development Unit, Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, Sutton, United Kingdom
| | - Elena Garralda
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, Barcelona, Spain
| | | | | | | | | | | | | | - Paolo Nuciforo
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, Barcelona, Spain
| | - Todd A. Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Mark Foster
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Melissa M. Berrien-Elliott
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | | | | - Juanita Lopez
- Drug Development Unit, Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, Sutton, United Kingdom
| |
Collapse
|
2
|
Jiang P, Wang K, Wei Y, Chen H, Cai X, Hua Y, Li M. Serum autoantibody-based biomarkers for prognosis in early-stage lung cancer patients with surgical resection. Biomarkers 2025; 30:131-139. [PMID: 39824510 DOI: 10.1080/1354750x.2025.2456023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
BACKGROUND Lung cancer is the cancer with the highest morbidity and mortality in the world. With the increasing diagnosis rate of patients with early-stage lung cancer, surgery treatment becomes an option for more patients. However, there is a lack of effective indicators to assess the risk of recurrence after lung cancer surgery. METHODS We collected levels of serum autoantibodies and evaluated their roles as biomarkers especially for postoperative recurrence of lung cancer. In vitro experiments including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and complement-dependent cytotoxicity (CDC) were performed to explore the functions of serum autoantibodies. RESULTS Our study demonstrated that serum autoantibody-positive patients with early-stage lung cancer had a longer postoperative progression period. The levels of serum autoantibodies in patients with lung cancer were higher than that in patients with benign lung diseases. But all the serum autoantibodies had no difference between patients with stage I and II. In addition, the results of in vitro experiments indicated that serum autoantibodies can mediate immune responses and enhance anti-tumour effects. CONCLUSION This study proposed effective biomarkers for prognosis in lung cancer patients after surgery which is critical to reduce the recurrence.
Collapse
Affiliation(s)
- Panpan Jiang
- Anhui University of Science and Technology, Huainan, Anhui, China
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Kaili Wang
- Anhui University of Science and Technology, Huainan, Anhui, China
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yaqin Wei
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Bengbu Medical University, Bengbu, Anhui, China
| | - Haonan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Bengbu Medical University, Bengbu, Anhui, China
| | - Xueqin Cai
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Laboratory Medicine, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Yan Hua
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Laboratory Medicine, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Ming Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Laboratory Medicine, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| |
Collapse
|
3
|
Ehlers FAI, Blise KE, Betts CB, Sivagnanam S, Kooreman LFS, Hwang ES, Bos GMJ, Wieten L, Coussens LM. Natural killer cells occupy unique spatial neighborhoods in HER2 - and HER2 + human breast cancers. Breast Cancer Res 2025; 27:14. [PMID: 39856748 PMCID: PMC11762118 DOI: 10.1186/s13058-025-01964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Tumor-infiltrating lymphocytes are considered clinically beneficial in breast cancer, but the significance of natural killer (NK) cells is less well characterized. As increasing evidence has demonstrated that the spatial organization of immune cells in tumor microenvironments is a significant parameter for impacting disease progression as well as therapeutic responses, an improved understanding of tumor-infiltrating NK cells and their location within tumor contextures is needed to improve the design of effective NK cell-based therapies. In this study, we developed a multiplex immunohistochemistry (mIHC) antibody panel designed to quantitatively interrogate leukocyte lineages, focusing on NK cells and their phenotypes, in two independent breast cancer patient cohorts (n = 26 and n = 30). Owing to the clinical evidence supporting a significant role for NK cells in HER2+ breast cancer in mediating responses to Trastuzumab, we further evaluated HER2- and HER2+ specimens separately. Consistent with literature, we found that CD3+ T cells were the dominant leukocyte subset across breast cancer specimens. In comparison, NK cells, identified by CD56 or NKp46 expression, were scarce in all specimens with low granzyme B expression indicating reduced cytotoxic functionality. Whereas NK cell density and phenotype did not appear to be influenced by HER2 status, spatial analysis revealed distinct NK cells phenotypes regarding their proximity to neoplastic tumor cells that associated with HER2 status. Spatial cellular neighborhood analysis revealed multiple unique neighborhood compositions surrounding NK cells, where NK cells from HER2- tumors were more frequently found proximal to neoplastic tumor cells, whereas NK cells from HER2+ tumors were instead more frequently found proximal to CD3+ T cells. This study establishes the utility of quantitative mIHC to evaluate NK cells at the single-cell spatial proteomics level and illustrates how spatial characteristics of NK cell neighborhoods vary within the context of HER2- and HER2+ breast cancers.
Collapse
Affiliation(s)
- Femke A I Ehlers
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, 6229, HX, The Netherlands
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, Maastricht, 6229 HX, The Netherlands
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, 6229 GT, The Netherlands
| | - Katie E Blise
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Courtney B Betts
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Shamilene Sivagnanam
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Loes F S Kooreman
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, 6229 GT, The Netherlands
- Department of Pathology, Maastricht University Medical Center+, Maastricht, 6229 HX, The Netherlands
| | - E Shelley Hwang
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Gerard M J Bos
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, Maastricht, 6229 HX, The Netherlands
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, 6229 GT, The Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, 6229, HX, The Netherlands.
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, 6229 GT, The Netherlands.
| | - Lisa M Coussens
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, 97239, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA.
- , 2720 S Moody Ave, #KC-CDCB, Portland, OR, 97201 - 5012, USA.
| |
Collapse
|
4
|
Nohara J, Evangelous T, Berry M, Beck W, Mudrak S, Jha S, Reeves RK, Wiehe KJ, Pollara J, Tomaras GD, Bradley T, Ferrari G. Increased Chemokine Production is a Hallmark of Rhesus Macaque Natural Killer Cells Mediating Robust Anti-HIV Envelope-Specific Antibody-Dependent Cell-Mediated Cytotoxicity. Pathog Immun 2025; 10:49-79. [PMID: 39911143 PMCID: PMC11792536 DOI: 10.20411/pai.v10i1.734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/02/2024] [Indexed: 02/07/2025] Open
Abstract
Background Antibody-dependent cell-mediated cytotoxic (ADCC) response mediated by natural killer (NK) cells correlates with decreased infection risk in studies involving simian immunodeficiency virus (SIV)/simian-human immunodeficiency virus (SHIV), and human immunodeficiency virus (HIV) vaccine candidates. Currently, the heterogeneities of the functional subset of rhesus macaque natural killer (RMNK) cells are under-characterized. Method We engaged the RMNK cells with ADCC-mediating anti-HIV-1 monoclonal antibodies (ADCCAbs) or anti-CD16 antibodies and used CD107a expression as the surrogate marker for RMNK cells actively involved in ADCC. CD107a+ and CD107a- populations were analyzed individually using single-cell RNA sequencing. Results Subsets of CD107a+ RMNK cells produced more chemokines than the others, suggesting that these cells not only eliminate infected cells but also provide immunoregulatory signals and potentially curb HIV-1 replication. Crosslinking of Fc gamma receptor IIIa via anti-CD16 antibodies resulted in a significantly higher percentage of degranulating cells than via ADCCAbs. However, the magnitude of degranulation and chemokine production was reduced by 6- to 30-fold. Conclusion The quality and quantity of receptor engagement are important determinants of achieving an optimal level of the RMNK response.
Collapse
Affiliation(s)
- Junsuke Nohara
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC
- Department of Surgery, Duke University School of Medicine, Durham, NC
| | - Tyler Evangelous
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Madison Berry
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Whitney Beck
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Sarah Mudrak
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC
- Department of Surgery, Duke University School of Medicine, Durham, NC
| | - Shalini Jha
- Department of Surgery, Duke University School of Medicine, Durham, NC
| | - R. Keith Reeves
- Department of Surgery, Duke University School of Medicine, Durham, NC
- Duke Research and Discovery at RTP, Duke University Health System, Durham, NC
- Center for Human Systems Immunology, Duke University, Durham, NC
- Department of Pathology, Duke University School of Medicine, Durham, NC
| | - Kevin J. Wiehe
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Justin Pollara
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC
- Department of Surgery, Duke University School of Medicine, Durham, NC
- Center for Human Systems Immunology, Duke University, Durham, NC
| | - Georgia D. Tomaras
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC
- Department of Surgery, Duke University School of Medicine, Durham, NC
- Center for Human Systems Immunology, Duke University, Durham, NC
| | - Todd Bradley
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO
- Departments of Pediatrics and Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO
- Department of Pediatrics, UMKC School of Medicine, Kansas City, MO
| | - Guido Ferrari
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC
- Department of Surgery, Duke University School of Medicine, Durham, NC
- Center for Human Systems Immunology, Duke University, Durham, NC
| |
Collapse
|
5
|
Gonzàlez Gutierrez C, Aimard A, Biarnes-Pélicot M, Kerfelec B, Puech PH, Robert P, Piazza F, Chames P, Limozin L. Decoupling Individual Host Response and Immune Cell Engager Cytotoxic Potency. ACS NANO 2025; 19:2089-2098. [PMID: 39791371 DOI: 10.1021/acsnano.4c08541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Immune cell engagers are molecular agents, usually antibody-based constructs, engineered to recruit immune cells against cancer cells and kill them. They are versatile and powerful tools for cancer immunotherapy. Despite the multiplication of engagers tested and accepted in the clinic, how molecular and cellular parameters influence their actions is poorly understood. In particular, disentangling the respective roles of host immune cells and engager biophysical characteristics is needed to improve their design and efficiency. Focusing here on harnessing antibody-dependent Natural Killer cell cytotoxicity, we measure the efficiency of 6 original bispecific antibodies (bsAb), associating an anti-HER2 nanobody and an anti-CD16 nanobody. In vitro cytotoxicity data using primary human NK cells on different target cell lines exposing different antigen densities were collected, exhibiting a wide range of bsAb dose response. In order to rationalize our observations, we introduce a simple multiscale model, postulating that the density of bsAb bridging the two cells is the main parameter triggering the cytotoxic response. We introduce two microscopic parameters: the surface cooperativity describing bsAb affinity at the bridging step and the threshold of bridge density determining the donor-dependent response. Both parameters permit ranking Abs and donors and predicting bsAb potency as a function of antibodies bulk affinities and receptor surface densities on cells. Our approach thus provides a general way to decouple donor response from immune engager characteristics, rationalizing the landscape of molecule design.
Collapse
Affiliation(s)
| | - Adrien Aimard
- Aix-Marseille Univ., CNRS, INSERM, Institut Paoli Calmettes, CRCM, 13009 Marseille, France
| | | | - Brigitte Kerfelec
- Aix-Marseille Univ., CNRS, INSERM, Institut Paoli Calmettes, CRCM, 13009 Marseille, France
| | - Pierre-Henri Puech
- Aix-Marseille Univ., CNRS, INSERM, LAI, Centuri Living Systems, 13009 Marseille, France
| | - Philippe Robert
- Aix-Marseille Univ., CNRS, INSERM, LAI, Centuri Living Systems, 13009 Marseille, France
- Assistance Publique Hôpitaux de Marseille, 13005 Marseille, France
| | - Francesco Piazza
- CNRS, Univ. Orleans, CBM, 45000 Orleans, France
- Dipartimento di Fisica e Astronomia, Università di Firenze and INFN sezione di Firenze, 50019 Sesto Fiorentino, Italy
| | - Patrick Chames
- Aix-Marseille Univ., CNRS, INSERM, Institut Paoli Calmettes, CRCM, 13009 Marseille, France
| | - Laurent Limozin
- Aix-Marseille Univ., CNRS, INSERM, LAI, Centuri Living Systems, 13009 Marseille, France
| |
Collapse
|
6
|
Chapdelaine A, Sun G. Molecular Pharmacology of Dasatinib Provides Unique Insights into the Mechanistic Basis of Success and Failure of Targeted Cancer Therapy. ACS Pharmacol Transl Sci 2025; 8:1-9. [PMID: 39816794 PMCID: PMC11729423 DOI: 10.1021/acsptsci.4c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 01/18/2025]
Abstract
Despite the enthusiasm for targeted cancer therapies in preclinical studies and the success of a select few drugs, many promising drug candidates fail in clinical trials. The gap between preclinical promise and clinical outcomes underscores the need to investigate factors influencing the success or failure of targeted therapies. Dasatinib, an inhibitor of Abl and Src protein tyrosine kinases, is highly effective toward chronic myeloid leukemia (CML) by targeting BCR-Abl, but it is ineffective against solid tumors when targeting Src kinases. A review reveals cytotoxic inhibition is a key attribute predictive of dasatinib's clinical efficacy toward CML, and cytostatic inhibition by targeting Src kinases is the underlying reason for the preclinical promise and clinical inefficacy toward solid tumors. The analysis reveals that preclinical cytotoxic inhibition is highly predictive of clinical efficacy and shows that cancer regression can only be achieved when the drug-target is an essential oncogenic driver in a monodriver cancer. The analysis highlights dasatinib's potential in achieving stable disease in solid tumors, supporting its use in combination therapies.
Collapse
Affiliation(s)
- Abygail
G. Chapdelaine
- Department of Cell and Molecular
Biology, University of Rhode Island, 120 Flagg Rd, Kingston, Rhode Island 02881, United States
| | - Gongqin Sun
- Department of Cell and Molecular
Biology, University of Rhode Island, 120 Flagg Rd, Kingston, Rhode Island 02881, United States
| |
Collapse
|
7
|
Kim WS, Shortt J, Zinzani PL, Mikhailova N, Radeski D, Ribrag V, Domingo Domenech E, Sawas A, Alexis K, Emig M, Elbadri R, Hajela P, Ravenstijn P, Pinto S, Garcia L, Overesch A, Pietzko K, Horwitz S. A Phase II Study of Acimtamig (AFM13) in Patients with CD30-Positive, Relapsed, or Refractory Peripheral T-cell Lymphomas. Clin Cancer Res 2025; 31:65-73. [PMID: 39531538 PMCID: PMC11701429 DOI: 10.1158/1078-0432.ccr-24-1913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/20/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Patients with relapsed or refractory (R/R) peripheral T-cell lymphoma (PTCL) generally have poor prognoses and limited treatment options. This study evaluated the efficacy of a novel CD30/CD16A bispecific innate cell engager, acimtamig (AFM13), in patients with R/R PTCL. PATIENTS AND METHODS Patients included those with CD30 expression in ≥1% of tumor cells and who were R/R following ≥1 prior line of systemic therapy. Acimtamig (200 mg) was administered once weekly in 8-week cycles. The primary endpoint was the overall response rate by fluorodeoxyglucose-PET per independent review committee; secondary and exploratory endpoints included duration of response, safety, progression-free survival, and overall survival. RESULTS The overall response rate in 108 patients was 32.4% [95% confidence interval (CI), 23.7, 42.1] with a complete response rate of 10.2% (95% CI, 5.2, 17.5); the median duration of response was 2.3 months (95% CI, 1.9, 6.5). Patients with R/R angioimmunoblastic T-cell lymphoma exhibited the greatest number of responses [53.3% (95% CI, 34.3, 71.7)]. Responses were independent of CD30 expression level, prior brentuximab vedotin treatment, or steroid premedication. Acimtamig exhibited a tolerable safety profile; the most common treatment-related adverse events were infusion-related reactions in 27 patients (25.0%) and neutropenia in 11 patients (10.2%). No cases of cytokine release syndrome or acimtamig-related deaths were reported. Despite exhibiting promising clinical activity and tolerable safety in a heavily pretreated PTCL population, the study did not meet the criteria for the primary endpoint. CONCLUSIONS The promising clinical efficacy observed warrants further investigation, and development of acimtamig for patients with R/R CD30+ lymphomas continues in combination with allogeneic NK cells.
Collapse
MESH Headings
- Humans
- Lymphoma, T-Cell, Peripheral/drug therapy
- Lymphoma, T-Cell, Peripheral/mortality
- Lymphoma, T-Cell, Peripheral/pathology
- Male
- Female
- Middle Aged
- Ki-1 Antigen/metabolism
- Aged
- Adult
- Aged, 80 and over
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/pathology
- Antibodies, Bispecific/administration & dosage
- Antibodies, Bispecific/adverse effects
- Antibodies, Bispecific/therapeutic use
- Treatment Outcome
- Receptors, IgG/metabolism
- Drug Resistance, Neoplasm
- Young Adult
Collapse
Affiliation(s)
- Won Seog Kim
- Department of Hematology-Oncology, Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jake Shortt
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Victoria, Australia
- Monash Hematology, Monash Health, Clayton, Victoria, Australia
| | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Istituto di Ematologia “Seràgnoli,” Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Natalia Mikhailova
- Raisa Gorbacheva Memorial Institute of Children Oncology Hematology and Transplantation, First Saint Petersburg State Pavlov Medical University, Saint Petersburg, Russia
| | - Dejan Radeski
- Linear Clinical Research & Sir Charles Gairdner Hospital, Perth, Western Australia
| | | | - Eva Domingo Domenech
- Institut Catala d’Oncologia, Hospital Duran i Reynals, IDIBELL, Barcelona, Spain
| | - Ahmed Sawas
- Columbia University Medical Center, New York, New York
| | | | | | | | | | | | | | | | | | | | - Steven Horwitz
- Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
8
|
Sun J, Tan L, Ye BC, Bi X. Engineered Outer Membrane Vesicles as Nanosized Immune Cell Engagers for Enhanced Solid Tumor Immunotherapy. ACS NANO 2024; 18:30332-30344. [PMID: 39454084 DOI: 10.1021/acsnano.4c07364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Although tumor immunotherapy has achieved significant success in recent years, tackling solid tumors remains a formidable challenge. Here, we present an approach that utilizes outer membrane vesicles (OMVs) from bacterial cells as scaffolds to engage immune cells in solid tumor immunotherapy. Two types of nanobodies targeting CD47/SIRPα and PD-1/PD-L1 pathways were simultaneously conjugated onto the surfaces of the OMVs in divalent and trivalent forms using orthogonal SpyCatcher-SpyTag and SnoopCatcher-SnoopTag chemistry. This resulted in the generation of an OMV-based nanosized immune cell engager (OMV-NICE) with dual-targeting abilities. In vitro assays confirmed the retention of the function of the two nanobodies on the OMV-NICE, as evidenced by the synergistically enhanced macrophage phagocytosis and T cell cytotoxicity against tumor cells. In vivo studies using a B16-F10 melanoma mouse model also revealed the superior antitumor activity of OMV-NICE compared to those of unconjugated nanobodies and OMVs alone. Subsequent mechanistic investigations further supported the enhanced recruitment of macrophages and T cells to the tumor region by OMV-NICE. Overall, this work expands the current repertoire of immune cell engagers, and the developed OMV-NICE platform holds great promise for broad applications, particularly in solid tumor immunotherapy.
Collapse
Affiliation(s)
- Jianan Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Liu Tan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bang-Ce Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiaobao Bi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
9
|
Leau R, Duplouye P, Huchet V, Nerrière-Daguin V, Martinet B, Néel M, Morin M, Danger R, Braudeau C, Josien R, Blancho G, Haspot F. Correct stimulation of CD28H arms NK cells against tumor cells. Eur J Immunol 2024; 54:e2350901. [PMID: 39101623 DOI: 10.1002/eji.202350901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Tumor evasion has recently been associated with a novel member of the B7 family, HERV-H LTR-associating 2 (HHLA2), which is mostly overexpressed in PDL-1neg tumors. HHLA2 can either induce a costimulation signal when bound to CD28H or inhibit it by binding to KIR3DL3 on T- and NK cells. Given the broad distribution of CD28H expression on NK cells and its role, we compared two monoclonal antibodies targeting this novel NK-cell engager in this study. We show that targeting CD28H at a specific epitope not only strongly activates Ca2+ flux but also results in NK-cell activation. CD28H-activated NK cells further display increased cytotoxic activity against hematopoietic cell lines and bypass HHLA2 and HLA-E inhibitory signals. Additionally, scRNA-seq analysis of clear cell renal cancer cells revealed that HHLA2+ clear cell renal cancer cell tumors were infiltrated with CD28H+ NK cells, which could be targeted by finely chosen anti-CD28H Abs.
Collapse
Affiliation(s)
- Raphaëlle Leau
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Pierre Duplouye
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Virginie Huchet
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Véronique Nerrière-Daguin
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Bernard Martinet
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Mélanie Néel
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Martin Morin
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Richard Danger
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Cécile Braudeau
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
- CHU Nantes, Laboratoire d'Immunologie, CIMNA, Nantes, France
| | - Régis Josien
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
- CHU Nantes, Laboratoire d'Immunologie, CIMNA, Nantes, France
| | - Gilles Blancho
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Fabienne Haspot
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| |
Collapse
|
10
|
Pu J, Liu T, Sharma A, Jiang L, Wei F, Ren X, Schmidt-Wolf IGH, Hou J. Advances in adoptive cellular immunotherapy and therapeutic breakthroughs in multiple myeloma. Exp Hematol Oncol 2024; 13:105. [PMID: 39468695 PMCID: PMC11514856 DOI: 10.1186/s40164-024-00576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
The basic idea of modulating the immune system to better recognize and fight tumor cells has led to the successful introduction of adoptive cellular immunotherapy (ACT). ACT-based treatment regimens, in which the patient's own immune cells are isolated and subsequently expanded (ex vivo) and reinfused, have also contributed significantly to the development of a personalized treatment strategy. Complementing this, the unprecedented advances in ACTs as chimeric antigen receptor (CAR)-T cell therapies and their derivatives such as CAR-NK, CAR-macrophages, CAR-γδT and CAR-NKT have further maximized the therapeutic outcomes. Herein, we provide a comprehensive overview of the development of ACTs in multiple myeloma (MM) and outline how they have evolved from an experimental form to a mainstay of standard clinical settings. Besides, we provide insights into cytokine-induced killer cell (CIK) therapy, an alternative form of ACT that (as CIK or CAR-CIK) has enormous potential in the clinical spectrum of MM. We also summarize the results of the major preclinical and clinical studies of adoptive cell therapy in MM and address the current challenges (such as cytokine release syndrome (CRS) and neurotoxicity) that limit its complete success in the cancer landscape.
Collapse
Affiliation(s)
- Jingjing Pu
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ting Liu
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, NRW, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
| | - Liping Jiang
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Feng Wei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300070, China
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300070, China.
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany.
| | - Jian Hou
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
11
|
Shin MH, Oh E, Minn D. Current Developments in NK Cell Engagers for Cancer Immunotherapy: Focus on CD16A and NKp46. Immune Netw 2024; 24:e34. [PMID: 39513028 PMCID: PMC11538608 DOI: 10.4110/in.2024.24.e34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 11/15/2024] Open
Abstract
NK cells are specialized immune effector cells crucial for triggering immune responses against aberrant cells. Although recent advancements have concentrated on creating or releasing T-cell responses specific to tumor Ags, the clinical advantages of this approach have been limited to certain groups of patients and tumor types. This emphasizes the need for alternative strategies. One pioneering approach involves broadening and enhancing anti-tumor immune responses by targeting innate immunity. Consequently, the advent of bi-, tri-, and multi-specific Abs has facilitated the advancement of targeted cancer immunotherapies by redirecting immune effector cells to eradicate tumor cells. These Abs enable the simultaneous binding of surface Ags on tumor cells and the activation of receptors on innate immune cells, such as NK cells, with the ability to facilitate Ab-dependent cellular cytotoxicity to enhance their immunotherapeutic effectiveness in patients with solid tumors. Here, we review the recent advances in NK cell engagers (NKCEs) focusing on NK cell-activating receptors CD16A and NKp46. In addition, we provide an overview of the ongoing clinical trials investigating the safety, efficacy, and potential of NKCEs.
Collapse
Affiliation(s)
- Min Hwa Shin
- Immune Research Institute, Seegene Medical Foundation, Seoul 04805, Korea
| | - Eunha Oh
- Immune Research Institute, Seegene Medical Foundation, Seoul 04805, Korea
| | - Dohsik Minn
- Immune Research Institute, Seegene Medical Foundation, Seoul 04805, Korea
- Department of Diagnostic Immunology, Seegene Medical Foundation, Seoul 04805, Korea
| |
Collapse
|
12
|
Hungria V, Sureda A, Campelo GR, Salvino MA, Ramasamy K. Proceedings from the First Onco Summit: LATAM Chapter, 19-20 May 2023, Rio de Janeiro, Brazil. Cancers (Basel) 2024; 16:3063. [PMID: 39272921 PMCID: PMC11394439 DOI: 10.3390/cancers16173063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
The Onco Summit 2023: The Latin American (LATAM) Chapter took place over two days, from 19-20 May 2023, in Brazil. The event aimed to share the latest updates across various oncology disciplines, address critical clinical challenges, and exchange best practices to ensure optimal patient treatment. More than 30 international and regional speakers and more than 300 oncology specialists participated in the Summit. The Summit discussions centered on common challenges and therapeutic advances in cancer care, with a specific focus on the unique obstacles faced in LATAM and examples of adaptable strategies to address these challenges. The Summit also facilitated the establishment of a network of oncologists, hematologists, and scientists in LATAM, enabling collaboration to improve cancer care, both in this region and globally, through drug development and clinical research. This report summarizes the key discussions from the Summit for the global and LATAM oncology community.
Collapse
Affiliation(s)
- Vania Hungria
- Hematology, Faculty of Medical Sciences of Santa Casa de São Paulo, São Paulo 01224-001, Brazil
| | - Anna Sureda
- Clinical Hematology Department, Catalan Institut Català d'Oncologia-L'Hospitalet, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), University of Barcelona (UB), 08908 Barcelona, Spain
| | - Garcia Rosario Campelo
- Thoracic Tumors Unit, Medical Oncology Department, University Hospital A Coruña Biomedical Research Institute (INIBIC), 15006 A Coruña, Spain
| | - Marco Aurélio Salvino
- Cell Therapy, D'OR Institute Research & Education (IDOR)/PPGMS-Federal University of Bahia (UFBA), Salvador 40110-100, Brazil
| | - Karthik Ramasamy
- Oxford Translational Myeloma Centre, NDORMS, University of Oxford, Oxford OX3 7LD, UK
| |
Collapse
|
13
|
Sun C, Li S, Ding J. Biomaterials-Boosted Immunotherapy for Osteosarcoma. Adv Healthc Mater 2024; 13:e2400864. [PMID: 38771618 DOI: 10.1002/adhm.202400864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor that emanates from mesenchymal cells, commonly found in the epiphyseal end of long bones. The highly recurrent and metastatic nature of OS poses significant challenges to the efficacy of treatment and negatively affects patient prognosis. Currently, available clinical treatment strategies primarily focus on maximizing tumor resection and reducing localized symptoms rather than the complete eradication of malignant tumor cells to achieve ideal outcomes. The biomaterials-boosted immunotherapy for OS is characterized by high effectiveness and a favorable safety profile. This therapeutic approach manipulates the tumor microenvironments at the cellular and molecular levels to impede tumor progression. This review delves into the mechanisms underlying the treatment of OS, emphasizing biomaterials-enhanced tumor immunity. Moreover, it summarizes the immune cell phenotype and tumor microenvironment regulation, along with the ability of immune checkpoint blockade to activate the autoimmune system. Gaining a profound comprehension of biomaterials-boosted OS immunotherapy is imperative to explore more efficacious immunotherapy protocols and treatment options in this setting.
Collapse
Affiliation(s)
- Chao Sun
- Department of Orthopedic Surgery, Orthopedic Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Shuqiang Li
- Department of Orthopedic Surgery, Orthopedic Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| |
Collapse
|
14
|
Lewis RI, Vom Stein AF, Hallek M. Targeting the tumor microenvironment for treating double-refractory chronic lymphocytic leukemia. Blood 2024; 144:601-614. [PMID: 38776510 DOI: 10.1182/blood.2023022861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
ABSTRACT The introduction of BTK inhibitors and BCL2 antagonists to the treatment of chronic lymphocytic leukemia (CLL) has revolutionized therapy and improved patient outcomes. These agents have replaced chemoimmunotherapy as standard of care. Despite this progress, a new group of patients is currently emerging, which has become refractory or intolerant to both classes of agents, creating an unmet medical need. Here, we propose that the targeted modulation of the tumor microenvironment provides new therapeutic options for this group of double-refractory patients. Furthermore, we outline a sequential strategy for tumor microenvironment-directed combination therapies in CLL that can be tested in clinical protocols.
Collapse
Affiliation(s)
- Richard I Lewis
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne, University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Alexander F Vom Stein
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne, University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne, University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| |
Collapse
|
15
|
Bakhtiyaridovvombaygi M, Yazdanparast S, Kheyrandish S, Safdari SM, Amiri Samani F, Sohani M, Jaafarian AS, Damirchiloo F, Izadpanah A, Parkhideh S, Mikanik F, Roshandel E, Hajifathali A, Gharehbaghian A. Harnessing natural killer cells for refractory/relapsed non-Hodgkin lymphoma: biological roles, clinical trials, and future prospective. Biomark Res 2024; 12:66. [PMID: 39020411 PMCID: PMC11253502 DOI: 10.1186/s40364-024-00610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/28/2024] [Indexed: 07/19/2024] Open
Abstract
Non-Hodgkin lymphomas (NHLs) are heterogeneous and are among the most common hematological malignancies worldwide. Despite the advances in the treatment of patients with NHLs, relapse or resistance to treatment is anticipated in several patients. Therefore, novel therapeutic approaches are needed. Recently, natural killer (NK) cell-based immunotherapy alone or in combination with monoclonal antibodies, chimeric antigen receptors, or bispecific killer engagers have been applied in many investigations for NHL treatment. The functional defects of NK cells and the ability of cancerous cells to escape NK cell-mediated cytotoxicity within the tumor microenvironment of NHLs, as well as the beneficial results from previous studies in the context of NK cell-based immunotherapy in NHLs, direct our attention to this therapeutic strategy. This review aims to summarize clinical studies focusing on the applications of NK cells in the immunotherapy of patients with NHL.
Collapse
Affiliation(s)
- Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Yazdanparast
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Setare Kheyrandish
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mehrab Safdari
- Departments of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fateme Amiri Samani
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Mahsa Sohani
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Akram Sadat Jaafarian
- Departments of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fateme Damirchiloo
- Departments of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Izadpanah
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Parkhideh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mikanik
- Laboratory Hematology and Blood Bank Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ahmad Gharehbaghian
- Laboratory Hematology and Blood Bank Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Mirsalami SM, Mirsalami M. Evolutionary adaptation in the laboratory and the process of retrograde engineering augment autotrophic proliferation in Saccharomyces cerevisiae. Biochem Eng J 2024; 205:109278. [DOI: 10.1016/j.bej.2024.109278] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
|
17
|
Eitler J, Rackwitz W, Wotschel N, Gudipati V, Murali Shankar N, Sidorenkova A, Huppa JB, Ortiz-Montero P, Opitz C, Künzel SR, Michen S, Temme A, Loureiro LR, Feldmann A, Bachmann M, Boissel L, Klingemann H, Wels WS, Tonn T. CAR-mediated targeting of NK cells overcomes tumor immune escape caused by ICAM-1 downregulation. J Immunother Cancer 2024; 12:e008155. [PMID: 38417916 PMCID: PMC10900364 DOI: 10.1136/jitc-2023-008155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2023] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND The antitumor activity of natural killer (NK) cells can be enhanced by specific targeting with therapeutic antibodies that trigger antibody-dependent cell-mediated cytotoxicity (ADCC) or by genetic engineering to express chimeric antigen receptors (CARs). Despite antibody or CAR targeting, some tumors remain resistant towards NK cell attack. While the importance of ICAM-1/LFA-1 interaction for natural cytotoxicity of NK cells is known, its impact on ADCC induced by the ErbB2 (HER2)-specific antibody trastuzumab and ErbB2-CAR-mediated NK cell cytotoxicity against breast cancer cells has not been investigated. METHODS Here we used NK-92 cells expressing high-affinity Fc receptor FcγRIIIa in combination with trastuzumab or ErbB2-CAR engineered NK-92 cells (NK-92/5.28.z) as well as primary human NK cells combined with trastuzumab or modified with the ErbB2-CAR and tested cytotoxicity against cancer cells varying in ICAM-1 expression or alternatively blocked LFA-1 on NK cells. Furthermore, we specifically stimulated Fc receptor, CAR and/or LFA-1 to study their crosstalk at the immunological synapse and their contribution to degranulation and intracellular signaling in antibody-targeted or CAR-targeted NK cells. RESULTS Blockade of LFA-1 or absence of ICAM-1 significantly reduced cell killing and cytokine release during trastuzumab-mediated ADCC against ErbB2-positive breast cancer cells, but not so in CAR-targeted NK cells. Pretreatment with 5-aza-2'-deoxycytidine induced ICAM-1 upregulation and reversed NK cell resistance in ADCC. Trastuzumab alone did not sufficiently activate NK cells and required additional LFA-1 co-stimulation, while activation of the ErbB2-CAR in CAR-NK cells induced efficient degranulation independent of LFA-1. Total internal reflection fluorescence single molecule imaging revealed that CAR-NK cells formed an irregular immunological synapse with tumor cells that excluded ICAM-1, while trastuzumab formed typical peripheral supramolecular activation cluster (pSMAC) structures. Mechanistically, the absence of ICAM-1 did not affect cell-cell adhesion during ADCC, but rather resulted in decreased signaling via Pyk2 and ERK1/2, which was intrinsically provided by CAR-mediated targeting. Furthermore, while stimulation of the inhibitory NK cell checkpoint molecule NKG2A markedly reduced FcγRIIIa/LFA-1-mediated degranulation, retargeting by CAR was only marginally affected. CONCLUSIONS Downregulation of ICAM-1 on breast cancer cells is a critical escape mechanism from trastuzumab-triggered ADCC. In contrast, CAR-NK cells are able to overcome cancer cell resistance caused by ICAM-1 reduction, highlighting the potential of CAR-NK cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Jiri Eitler
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Wiebke Rackwitz
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Natalie Wotschel
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Venugopal Gudipati
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Nivedha Murali Shankar
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Anastasia Sidorenkova
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Johannes B Huppa
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Paola Ortiz-Montero
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Corinna Opitz
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Stephan R Künzel
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Susanne Michen
- TU Dresden, Medical Faculty and University Hospital Carl Gustav Carus, Department of Neurosurgery, Division of Experimental Neurosurgery and Tumor Immunology, Dresden, Germany
| | - Achim Temme
- TU Dresden, Medical Faculty and University Hospital Carl Gustav Carus, Department of Neurosurgery, Division of Experimental Neurosurgery and Tumor Immunology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany, National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Liliana Rodrigues Loureiro
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anja Feldmann
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), Dresden, Germany
| | - Michael Bachmann
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), Dresden, Germany
| | | | | | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Torsten Tonn
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| |
Collapse
|
18
|
Kalailingam P, Mohd‐Kahliab K, Ngan SC, Iyappan R, Melekh E, Lu T, Zien GW, Sharma B, Guo T, MacNeil AJ, MacPherson REK, Tsiani EL, O'Leary DD, Lim KL, Su IH, Gao Y, Richards AM, Kalaria RN, Chen CP, McCarthy NE, Sze SK. Immunotherapy targeting isoDGR-protein damage extends lifespan in a mouse model of protein deamidation. EMBO Mol Med 2023; 15:e18526. [PMID: 37971164 PMCID: PMC10701600 DOI: 10.15252/emmm.202318526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/21/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
Aging results from the accumulation of molecular damage that impairs normal biochemical processes. We previously reported that age-linked damage to amino acid sequence NGR (Asn-Gly-Arg) results in "gain-of-function" conformational switching to isoDGR (isoAsp-Gly-Arg). This integrin-binding motif activates leukocytes and promotes chronic inflammation, which are characteristic features of age-linked cardiovascular disorders. We now report that anti-isoDGR immunotherapy mitigates lifespan reduction of Pcmt1-/- mouse. We observed extensive accumulation of isoDGR and inflammatory cytokine expression in multiple tissues from Pcmt1-/- and naturally aged WT animals, which could also be induced via injection of isoDGR-modified plasma proteins or synthetic peptides into young WT animals. However, weekly injection of anti-isoDGR mAb (1 mg/kg) was sufficient to significantly reduce isoDGR-protein levels in body tissues, decreased pro-inflammatory cytokine concentrations in blood plasma, improved cognition/coordination metrics, and extended the average lifespan of Pcmt1-/- mice. Mechanistically, isoDGR-mAb mediated immune clearance of damaged isoDGR-proteins via antibody-dependent cellular phagocytosis (ADCP). These results indicate that immunotherapy targeting age-linked protein damage may represent an effective intervention strategy in a range of human degenerative disorders.
Collapse
Affiliation(s)
| | | | - SoFong Cam Ngan
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Ranjith Iyappan
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Evelin Melekh
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Tian Lu
- iMarker Lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life SciencesWestlake UniversityHangzhouChina
| | - Gan Wei Zien
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Bhargy Sharma
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Tiannan Guo
- iMarker Lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life SciencesWestlake UniversityHangzhouChina
| | - Adam J MacNeil
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Rebecca EK MacPherson
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Evangelia Litsa Tsiani
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Deborah D O'Leary
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Kah Leong Lim
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
| | - I Hsin Su
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Yong‐Gui Gao
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - A Mark Richards
- Department of CardiologyNational University Heart CentreSingaporeSingapore
- Department of CardiologyUniversity of OtagoChristchurchNew Zealand
| | - Raj N Kalaria
- Institute of Neuroscience, Campus for Ageing and VitalityNewcastle UniversityNewcastle upon TyneUK
| | - Christopher P Chen
- Memory, Aging and Cognition CentreNational University Health SystemSingaporeSingapore
| | - Neil E McCarthy
- Centre for Immunobiology, The Blizard Institute, Bart's and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Siu Kwan Sze
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| |
Collapse
|
19
|
Ning Z, Liu Y, Guo D, Lin WJ, Tang Y. Natural killer cells in the central nervous system. Cell Commun Signal 2023; 21:341. [PMID: 38031097 PMCID: PMC10685650 DOI: 10.1186/s12964-023-01324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/17/2023] [Indexed: 12/01/2023] Open
Abstract
Natural killer (NK) cells are essential components of the innate lymphoid cell family that work as both cytotoxic effectors and immune regulators. Accumulating evidence points to interactions between NK cells and the central nervous system (CNS). Here, we review the basic knowledge of NK cell biology and recent advances in their roles in the healthy CNS and pathological conditions, with a focus on normal aging, CNS autoimmune diseases, neurodegenerative diseases, cerebrovascular diseases, and CNS infections. We highlight the crosstalk between NK cells and diverse cell types in the CNS and the potential value of NK cells as novel therapeutic targets for CNS diseases. Video Abstract.
Collapse
Affiliation(s)
- Zhiyuan Ning
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ying Liu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Daji Guo
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Wei-Jye Lin
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| |
Collapse
|
20
|
Nersesian S, Carter EB, Lee SN, Westhaver LP, Boudreau JE. Killer instincts: natural killer cells as multifactorial cancer immunotherapy. Front Immunol 2023; 14:1269614. [PMID: 38090565 PMCID: PMC10715270 DOI: 10.3389/fimmu.2023.1269614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Natural killer (NK) cells integrate heterogeneous signals for activation and inhibition using germline-encoded receptors. These receptors are stochastically co-expressed, and their concurrent engagement and signaling can adjust the sensitivity of individual cells to putative targets. Against cancers, which mutate and evolve under therapeutic and immunologic pressure, the diversity for recognition provided by NK cells may be key to comprehensive cancer control. NK cells are already being trialled as adoptive cell therapy and targets for immunotherapeutic agents. However, strategies to leverage their naturally occurring diversity and agility have not yet been developed. In this review, we discuss the receptors and signaling pathways through which signals for activation or inhibition are generated in NK cells, focusing on their roles in cancer and potential as targets for immunotherapies. Finally, we consider the impacts of receptor co-expression and the potential to engage multiple pathways of NK cell reactivity to maximize the scope and strength of antitumor activities.
Collapse
Affiliation(s)
- Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Emily B. Carter
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Stacey N. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | - Jeanette E. Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
21
|
Giang KA, Boxaspen T, Diao Y, Nilvebrant J, Kosugi-Kanaya M, Kanaya M, Krokeide SZ, Lehmann F, Svensson Gelius S, Malmberg KJ, Nygren PÅ. Affibody-based hBCMA x CD16 dual engagers for NK cell-mediated killing of multiple myeloma cells. N Biotechnol 2023; 77:139-148. [PMID: 37673373 DOI: 10.1016/j.nbt.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/16/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
We describe the development and characterization of the (to date) smallest Natural Killer (NK) cell re-directing human B Cell Maturation Antigen (hBCMA) x CD16 dual engagers for potential treatment of multiple myeloma, based on combinations of small 58 amino acid, non-immunoglobulin, affibody affinity proteins. Affibody molecules to human CD16a were selected from a combinatorial library by phage display resulting in the identification of three unique binders with affinities (KD) for CD16a in the range of 100 nM-3 µM. The affibody exhibiting the highest affinity demonstrated insensitivity towards the CD16a allotype (158F/V) and did not interfere with IgG (Fc) binding to CD16a. For the construction of hBCMA x CD16 dual engagers, different CD16a binding arms, including bi-paratopic affibody combinations, were genetically fused to a high-affinity hBCMA-specific affibody. Such 15-23 kDa dual engager constructs showed simultaneous hBCMA and CD16a binding ability and could efficiently activate resting primary NK cells and trigger specific lysis of a panel of hBCMA-positive multiple myeloma cell lines. Hence, we report a novel class of uniquely small NK cell engagers with specific binding properties and potent functional profiles.
Collapse
Affiliation(s)
- Kim Anh Giang
- Department of Protein Science, Div. Protein Engineering, AlbaNova University Center, KTH Royal Institute of Technology, S-114 21 Stockholm, Sweden
| | - Thorstein Boxaspen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, N-0424 Oslo, Norway; Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, N-0313 Oslo, Norway
| | - Yumei Diao
- Oncopeptides AB, S-171 48 Stockholm, Sweden
| | - Johan Nilvebrant
- Department of Protein Science, Div. Protein Engineering, AlbaNova University Center, KTH Royal Institute of Technology, S-114 21 Stockholm, Sweden
| | - Mizuha Kosugi-Kanaya
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, N-0424 Oslo, Norway; Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, N-0313 Oslo, Norway
| | - Minoru Kanaya
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, N-0424 Oslo, Norway; Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, N-0313 Oslo, Norway
| | - Silje Zandstra Krokeide
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, N-0424 Oslo, Norway; Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, N-0313 Oslo, Norway
| | | | | | - Karl-Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, N-0424 Oslo, Norway; Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, N-0313 Oslo, Norway.
| | - Per-Åke Nygren
- Department of Protein Science, Div. Protein Engineering, AlbaNova University Center, KTH Royal Institute of Technology, S-114 21 Stockholm, Sweden; Science For Life Laboratory, S-171 65 Solna, Sweden.
| |
Collapse
|
22
|
Melero I, Ochoa MC, Molina C, Sanchez‐Gregorio S, Garasa S, Luri‐Rey C, Hervas‐Stubbs S, Casares N, Elizalde E, Gomis G, Cirella A, Berraondo P, Teijeira A, Alvarez M. Intratumoral co-injection of NK cells and NKG2A-neutralizing monoclonal antibodies. EMBO Mol Med 2023; 15:e17804. [PMID: 37782273 PMCID: PMC10630884 DOI: 10.15252/emmm.202317804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023] Open
Abstract
NK-cell reactivity against cancer is conceivably suppressed in the tumor microenvironment by the interaction of the inhibitory receptor NKG2A with the non-classical MHC-I molecules HLA-E in humans or Qa-1b in mice. We found that intratumoral delivery of NK cells attains significant therapeutic effects only if co-injected with anti-NKG2A and anti-Qa-1b blocking monoclonal antibodies against solid mouse tumor models. Such therapeutic activity was contingent on endogenous CD8 T cells and type-1 conventional dendritic cells (cDC1). Moreover, the anti-tumor effects were enhanced upon combination with systemic anti-PD-1 mAb treatment and achieved partial abscopal efficacy against distant non-injected tumors. In xenografted mice bearing HLA-E-expressing human cancer cells, intratumoral co-injection of activated allogeneic human NK cells and clinical-grade anti-NKG2A mAb (monalizumab) synergistically achieved therapeutic effects. In conclusion, these studies provide evidence for the clinical potential of intratumoral NK cell-based immunotherapies that exert their anti-tumor efficacy as a result of eliciting endogenous T-cell responses.
Collapse
Affiliation(s)
- Ignacio Melero
- Program for Immunology and Immunotherapy, CIMAUniversidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Departments of Immunology and OncologyClínica Universidad de NavarraPamplonaSpain
| | - Maria C Ochoa
- Program for Immunology and Immunotherapy, CIMAUniversidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Carmen Molina
- Program for Immunology and Immunotherapy, CIMAUniversidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| | - Sandra Sanchez‐Gregorio
- Program for Immunology and Immunotherapy, CIMAUniversidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| | - Saray Garasa
- Program for Immunology and Immunotherapy, CIMAUniversidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| | - Carlos Luri‐Rey
- Program for Immunology and Immunotherapy, CIMAUniversidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| | - Sandra Hervas‐Stubbs
- Program for Immunology and Immunotherapy, CIMAUniversidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| | - Noelia Casares
- Program for Immunology and Immunotherapy, CIMAUniversidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| | - Edurne Elizalde
- Program for Immunology and Immunotherapy, CIMAUniversidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| | - Gabriel Gomis
- Program for Immunology and Immunotherapy, CIMAUniversidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| | - Assunta Cirella
- Program for Immunology and Immunotherapy, CIMAUniversidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| | - Pedro Berraondo
- Program for Immunology and Immunotherapy, CIMAUniversidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Alvaro Teijeira
- Program for Immunology and Immunotherapy, CIMAUniversidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, CIMAUniversidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Cell Therapy, Stem Cells and Tissue GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
- Research Unit, Basque Center for Blood Transfusion and Human TissuesOsakidetzaGaldakaoSpain
| |
Collapse
|
23
|
Bordoloi D, Kulkarni AJ, Adeniji OS, Pampena MB, Bhojnagarwala PS, Zhao S, Ionescu C, Perales-Puchalt A, Parzych EM, Zhu X, Ali AR, Cassel J, Zhang R, Betts MR, Abdel-Mohsen M, Weiner DB. Siglec-7 glyco-immune binding mAbs or NK cell engager biologics induce potent antitumor immunity against ovarian cancers. SCIENCE ADVANCES 2023; 9:eadh4379. [PMID: 37910620 PMCID: PMC10619929 DOI: 10.1126/sciadv.adh4379] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023]
Abstract
Ovarian cancer (OC) is a lethal gynecologic malignancy, with modest responses to CPI. Engagement of additional immune arms, such as NK cells, may be of value. We focused on Siglec-7 as a surface antigen for engaging this population. Human antibodies against Siglec-7 were developed and characterized. Coculture of OC cells with PBMCs/NKs and Siglec-7 binding antibodies showed NK-mediated killing of OC lines. Anti-Siglec-7 mAb (DB7.2) enhanced survival in OC-challenged mice. In addition, the combination of DB7.2 and anti-PD-1 demonstrated further improved OC killing in vitro. To use Siglec-7 engagement as an OC-specific strategy, we engineered an NK cell engager (NKCE) to simultaneously engage NK cells through Siglec-7, and OC targets through FSHR. The NKCE demonstrated robust in vitro killing of FSHR+ OC, controlled tumors, and improved survival in OC-challenged mice. These studies support additional investigation of the Siglec-7 targeting approaches as important tools for OC and other recalcitrant cancers.
Collapse
Affiliation(s)
- Devivasha Bordoloi
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | | | - Opeyemi S. Adeniji
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - M. Betina Pampena
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Shushu Zhao
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Candice Ionescu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | | | | | - Xizhou Zhu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Ali R. Ali
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Joel Cassel
- Molecular Screening and Protein Expression facility, The Wistar Institute, Philadelphia, PA, USA
| | - Rugang Zhang
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Michael R. Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - David B. Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
24
|
Bjorgen JC, Dick JK, Cromarty R, Hart GT, Rhein J. NK cell subsets and dysfunction during viral infection: a new avenue for therapeutics? Front Immunol 2023; 14:1267774. [PMID: 37928543 PMCID: PMC10620977 DOI: 10.3389/fimmu.2023.1267774] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
In the setting of viral challenge, natural killer (NK) cells play an important role as an early immune responder against infection. During this response, significant changes in the NK cell population occur, particularly in terms of their frequency, location, and subtype prevalence. In this review, changes in the NK cell repertoire associated with several pathogenic viral infections are summarized, with a particular focus placed on changes that contribute to NK cell dysregulation in these settings. This dysregulation, in turn, can contribute to host pathology either by causing NK cells to be hyperresponsive or hyporesponsive. Hyperresponsive NK cells mediate significant host cell death and contribute to generating a hyperinflammatory environment. Hyporesponsive NK cell populations shift toward exhaustion and often fail to limit viral pathogenesis, possibly enabling viral persistence. Several emerging therapeutic approaches aimed at addressing NK cell dysregulation have arisen in the last three decades in the setting of cancer and may prove to hold promise in treating viral diseases. However, the application of such therapeutics to treat viral infections remains critically underexplored. This review briefly explores several therapeutic approaches, including the administration of TGF-β inhibitors, immune checkpoint inhibitors, adoptive NK cell therapies, CAR NK cells, and NK cell engagers among other therapeutics.
Collapse
Affiliation(s)
- Jacob C. Bjorgen
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jenna K. Dick
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Ross Cromarty
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Geoffrey T. Hart
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Joshua Rhein
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
25
|
Murali Shankar N, Ortiz-Montero P, Kurzyukova A, Rackwitz W, Künzel SR, Wels WS, Tonn T, Knopf F, Eitler J. Preclinical assessment of CAR-NK cell-mediated killing efficacy and pharmacokinetics in a rapid zebrafish xenograft model of metastatic breast cancer. Front Immunol 2023; 14:1254821. [PMID: 37885894 PMCID: PMC10599014 DOI: 10.3389/fimmu.2023.1254821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
Natural killer (NK) cells are attractive effectors for adoptive immunotherapy of cancer. Results from first-in-human studies using chimeric antigen receptor (CAR)-engineered primary NK cells and NK-92 cells are encouraging in terms of efficacy and safety. In order to further improve treatment strategies and to test the efficacy of CAR-NK cells in a personalized manner, preclinical screening assays using patient-derived tumor samples are needed. Zebrafish (Danio rerio) embryos and larvae represent an attractive xenograft model to study growth and dissemination of patient-derived tumor cells because of their superb live cell imaging properties. Injection into the organism's circulation allows investigation of metastasis, cancer cell-to-immune cell-interactions and studies of the tumor cell response to anti-cancer drugs. Here, we established a zebrafish larval xenograft model to test the efficacy of CAR-NK cells against metastatic breast cancer in vivo by injecting metastatic breast cancer cells followed by CAR-NK cell injection into the Duct of Cuvier (DoC). We validated the functionality of the system with two different CAR-NK cell lines specific for PD-L1 and ErbB2 (PD-L1.CAR NK-92 and ErbB2.CAR NK-92 cells) against the PD-L1-expressing MDA-MB-231 and ErbB2-expressing MDA-MB-453 breast cancer cell lines. Injected cancer cells were viable and populated peripheral regions of the larvae, including the caudal hematopoietic tissue (CHT), simulating homing of cancer cells to blood forming sites. CAR-NK cells injected 2.5 hours later migrated to the CHT and rapidly eliminated individual cancer cells throughout the organism. Unmodified NK-92 also demonstrated minor in vivo cytotoxicity. Confocal live-cell imaging demonstrated intravascular migration and real-time interaction of CAR-NK cells with MDA-MB-231 cells, explaining the rapid and effective in vivo cytotoxicity. Thus, our data suggest that zebrafish larvae can be used for rapid and cost-effective in vivo assessment of CAR-NK cell potency and to predict patient response to therapy.
Collapse
Affiliation(s)
- Nivedha Murali Shankar
- Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden University of Technology, Dresden, Germany
- Center for Healthy Aging, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Paola Ortiz-Montero
- Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Anastasia Kurzyukova
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden University of Technology, Dresden, Germany
- Center for Healthy Aging, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Wiebke Rackwitz
- Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Stephan R. Künzel
- Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Winfried S. Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| | - Torsten Tonn
- Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Franziska Knopf
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden University of Technology, Dresden, Germany
- Center for Healthy Aging, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Jiri Eitler
- Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| |
Collapse
|
26
|
Kiaei SZF, Nouralishahi A, Ghasemirad M, Barkhordar M, Ghaffari S, Kheradjoo H, Saleh M, Mohammadzadehsaliani S, Molaeipour Z. Advances in natural killer cell therapies for breast cancer. Immunol Cell Biol 2023; 101:705-726. [PMID: 37282729 DOI: 10.1111/imcb.12658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 06/08/2023]
Abstract
Breast cancer (BC) is the most common cause of cancer death in women. According to the American Cancer Society's yearly cancer statistics, BC constituted almost 15% of all the newly diagnosed cancer cases in 2022 for both sexes. Metastatic disease occurs in 30% of patients with BC. The currently available treatments fail to cure metastatic BC, and the average survival time for patients with metastatic BC is approximately 2 years. Developing a treatment method that terminates cancer stem cells without harming healthy cells is the primary objective of novel therapeutics. Adoptive cell therapy is a branch of cancer immunotherapy that utilizes the immune cells to attack cancer cells. Natural killer (NK) cells are an essential component of innate immunity and are critical in destroying tumor cells without prior stimulation with antigens. With the advent of chimeric antigen receptors (CARs), the autologous or allogeneic use of NK/CAR-NK cell therapy has raised new hopes for treating patients with cancer. Here, we describe recent developments in NK and CAR-NK cell immunotherapy, including the biology and function of NK cells, clinical trials, different sources of NK cells and their future perspectives on BC.
Collapse
Affiliation(s)
- Seyedeh Zahra Fotook Kiaei
- Department of Pulmonary and Critical Care, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Ghasemirad
- Department of Periodontics, Faculty of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Barkhordar
- Hematology, Oncology and Stem Cell Transplantation Research Center (HORCSCT), Tehran University of Medical Sciences, Tehran, Iran
| | - Sasan Ghaffari
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | - Mahshid Saleh
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, Madison, WI, USA
| | | | - Zahra Molaeipour
- Hematology Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Jiang D, Zhang J, Mao Z, Shi J, Ma P. Driving natural killer cell-based cancer immunotherapy for cancer treatment: An arduous journey to promising ground. Biomed Pharmacother 2023; 165:115004. [PMID: 37352703 DOI: 10.1016/j.biopha.2023.115004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023] Open
Abstract
Immunotherapy represents one of the most effective strategies for cancer treatment. Recently, progress has been made in using natural killer (NK) cells for cancer therapy. NK cells can directly kill tumor cells without pre-sensitization and thus show promise in clinical applications, distinct from the use of T cells. Whereas, research and development on NK cell-based immunotherapy is still in its infancy, and enhancing the therapeutic effects of NK cells remains a key problem to be solved. An incompletely understanding of the mechanisms of action of NK cells, immune resistance in the tumor microenvironment, and obstacles associated with the delivery of therapeutic agents in vivo, represent three mountains that need to be scaled. Here, we firstly describe the mechanisms underlying the development, activity, and maturation of NK cells, and the formation of NK‑cell immunological synapses. Secondly, we discuss strategies for NK cell-based immunotherapy strategies, including adoptive transfer of NK cell therapy and treatment with cytokines, monoclonal antibodies, and immune checkpoint inhibitors targeting NK cells. Finally, we review the use of nanotechnology to overcome immune resistance, including enhancing the anti-tumor efficiency of chimeric antigen receptor-NK, cytokines and immunosuppressive-pathways inhibitors, promoting NK cell homing and developing NK cell-based nano-engagers.
Collapse
Affiliation(s)
- Dandan Jiang
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Jingya Zhang
- Patent Examination Cooperation (Henan) Center of the Patent office, China National Intellectual Property Administration, Henan 450046, China
| | - Zhenkun Mao
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China.
| | - Peizhi Ma
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
28
|
Zhang M, Lam KP, Xu S. Natural Killer Cell Engagers (NKCEs): a new frontier in cancer immunotherapy. Front Immunol 2023; 14:1207276. [PMID: 37638058 PMCID: PMC10450036 DOI: 10.3389/fimmu.2023.1207276] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/03/2023] [Indexed: 08/29/2023] Open
Abstract
Natural Killer (NK) cells are a type of innate lymphoid cells that play a crucial role in immunity by killing virally infected or tumor cells and secreting cytokines and chemokines. NK cell-mediated immunotherapy has emerged as a promising approach for cancer treatment due to its safety and effectiveness. NK cell engagers (NKCEs), such as BiKE (bispecific killer cell engager) or TriKE (trispecific killer cell engager), are a novel class of antibody-based therapeutics that exhibit several advantages over other cancer immunotherapies harnessing NK cells. By bridging NK and tumor cells, NKCEs activate NK cells and lead to tumor cell lysis. A growing number of NKCEs are currently undergoing development, with some already in clinical trials. However, there is a need for more comprehensive studies to determine how the molecular design of NKCEs affects their functionality and manufacturability, which are crucial for their development as off-the-shelf drugs for cancer treatment. In this review, we summarize current knowledge on NKCE development and discuss critical factors required for the production of effective NKCEs.
Collapse
Affiliation(s)
- Minchuan Zhang
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, Singapore
| | - Shengli Xu
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
29
|
Tapia-Galisteo A, Álvarez-Vallina L, Sanz L. Bi- and trispecific immune cell engagers for immunotherapy of hematological malignancies. J Hematol Oncol 2023; 16:83. [PMID: 37501154 PMCID: PMC10373336 DOI: 10.1186/s13045-023-01482-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
Immune cell engagers are engineered antibodies with at least one arm binding a tumor-associated antigen and at least another one directed against an activating receptor in immune effector cells: CD3 for recruitment of T cells and CD16a for NK cells. The first T cell engager (the anti-CD19 blinatumomab) was approved by the FDA in 2014, but no other one hit the market until 2022. Now the field is gaining momentum, with three approvals in 2022 and 2023 (as of May): the anti-CD20 × anti-CD3 mosunetuzumab and epcoritamab and the anti-B cell maturation antigen (BCMA) × anti-CD3 teclistamab, and another three molecules in regulatory review. T cell engagers will likely revolutionize the treatment of hematological malignancies in the short term, as they are considerably more potent than conventional monoclonal antibodies recognizing the same tumor antigens. The field is thriving, with a plethora of different formats and targets, and around 100 bispecific T cell engagers more are already in clinical trials. Bispecific NK cell engagers are also in early-stage clinical studies and may offer similar efficacy with milder side effects. Trispecific antibodies (engaging either T cell or NK cell receptors) raise the game even further with a third binding moiety, which allows either the targeting of an additional tumor-associated antigen to increase specificity and avoid immune escape or the targeting of additional costimulatory receptors on the immune cell to improve its effector functions. Altogether, these engineered molecules may change the paradigm of treatment for relapsed or refractory hematological malignancies.
Collapse
Affiliation(s)
- Antonio Tapia-Galisteo
- Immuno-Oncology and Immunotherapy Group, Biomedical Research Institute Hospital Universitario, 12 de Octubre, Madrid, Spain
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario, 12 de Octubre, Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Luis Álvarez-Vallina
- Immuno-Oncology and Immunotherapy Group, Biomedical Research Institute Hospital Universitario, 12 de Octubre, Madrid, Spain.
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario, 12 de Octubre, Madrid, Spain.
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.
| | - Laura Sanz
- Molecular Immunology Unit, Biomedical Research Institute Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain.
| |
Collapse
|
30
|
Kim HW, Wang S, Davies AJ, Oh SB. The therapeutic potential of natural killer cells in neuropathic pain. Trends Neurosci 2023:S0166-2236(23)00133-9. [PMID: 37385878 DOI: 10.1016/j.tins.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 07/01/2023]
Abstract
Novel disease-modifying treatments for neuropathic pain are urgently required. The cellular immune response to nerve injury represents a promising target for therapeutic development. Recently, the role of natural killer (NK) cells in both CNS and PNS disease has been the subject of growing interest. In this opinion article, we set out the case for NK cell-based intervention as a promising avenue for development in the management of neuropathic pain. We explore the potential cellular and molecular targets of NK cells in the PNS by contrasting with their reported functional roles in CNS diseases, and we suggest strategies for using the beneficial functions of NK cells and immune-based therapeutics in the context of neuropathic pain.
Collapse
Affiliation(s)
- Hyoung Woo Kim
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Shuaiwei Wang
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Alexander J Davies
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Seog Bae Oh
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
31
|
Djermane R, Nieto C, Vega MA, Del Valle EMM. Antibody-Loaded Nanoplatforms for Colorectal Cancer Diagnosis and Treatment: An Update. Pharmaceutics 2023; 15:pharmaceutics15051514. [PMID: 37242756 DOI: 10.3390/pharmaceutics15051514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
At present, colorectal cancer (CRC) is the second deadliest type of cancer, partly because a high percentage of cases are diagnosed at advanced stages when tumors have already metastasized. Thus, there is an urgent need to develop novel diagnostic systems that allow early detection as well as new therapeutic systems that are more specific than those currently available. In this context, nanotechnology plays a very important role in the development of targeted platforms. In recent decades, many types of nanomaterials with advantageous properties have been used for nano-oncology applications and have been loaded with different types of targeted agents, capable of recognizing tumor cells or biomarkers. Indeed, among the different types of targeted agents, the most widely used are monoclonal antibodies, as the administration of many of them is already approved by the main drug regulatory agencies for the treatment of several types of cancer, including CRC. In this way, this review comprehensively discusses the main drawbacks of the conventional screening technologies and treatment for CRC, and it presents recent advances in the application of antibody-loaded nanoplatforms for CRC detection, therapy or theranostics applications.
Collapse
Affiliation(s)
- Rania Djermane
- Chemical Engineering Department, University of Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain
| | - Celia Nieto
- Chemical Engineering Department, University of Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain
- Biomedical Research Institute of Salamanca (IBSAL), University Care Complex of Salamanca, Paseo de San Vicente 58, 37007 Salamanca, Spain
| | - Milena A Vega
- Chemical Engineering Department, University of Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain
- Biomedical Research Institute of Salamanca (IBSAL), University Care Complex of Salamanca, Paseo de San Vicente 58, 37007 Salamanca, Spain
| | - Eva M Martín Del Valle
- Chemical Engineering Department, University of Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain
- Biomedical Research Institute of Salamanca (IBSAL), University Care Complex of Salamanca, Paseo de San Vicente 58, 37007 Salamanca, Spain
| |
Collapse
|
32
|
Groeneveldt C, van den Ende J, van Montfoort N. Preexisting immunity: Barrier or bridge to effective oncolytic virus therapy? Cytokine Growth Factor Rev 2023; 70:1-12. [PMID: 36732155 DOI: 10.1016/j.cytogfr.2023.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Oncolytic viruses (OVs) represent a highly promising treatment strategy for a wide range of cancers, by mediating both the direct killing of tumor cells as well as mobilization of antitumor immune responses. As many OVs circulate in the human population, preexisting OV-specific immune responses are prevalent. Indeed, neutralizing antibodies (NAbs) are abundantly present in the human population for commonly used OVs, such as Adenovirus type 5 (Ad5), Herpes Simplex Virus-1 (HSV-1), Vaccinia virus, Measles virus, and Reovirus. This review discusses (pre)clinical evidence regarding the effect of preexisting immunity against OVs on two distinct aspects of OV therapy; OV infection and spread, as well as the immune response induced upon OV therapy. Combined, this review provides evidence that consideration of preexisting immunity is crucial in realizing the full potential of the highly promising therapeutic implementation of OVs. Future investigation of current gaps in knowledge highlighted in this review should yield a more complete understanding of this topic, ultimately allowing for better and more personalized OV therapies.
Collapse
Affiliation(s)
- Christianne Groeneveldt
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - Jasper van den Ende
- Master Infection & Immunity, Utrecht University, 3584 CS Utrecht, the Netherlands
| | - Nadine van Montfoort
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| |
Collapse
|
33
|
Whalen KA, Rakhra K, Mehta NK, Steinle A, Michaelson JS, Baeuerle PA. Engaging natural killer cells for cancer therapy via NKG2D, CD16A and other receptors. MAbs 2023; 15:2208697. [PMID: 37165468 PMCID: PMC10173799 DOI: 10.1080/19420862.2023.2208697] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023] Open
Abstract
The field of immuno-oncology has revolutionized cancer patient care and improved survival and quality of life for patients. Much of the focus in the field has been on exploiting the power of the adaptive immune response through therapeutic targeting of T cells. While these approaches have markedly advanced the field, some challenges remain, and the clinical benefit of T cell therapies does not extend to all patients or tumor indications. Alternative strategies, such as engaging the innate immune system, have become an intense area of focus in the field. In particular, the engagement of natural killer (NK) cells as potent effectors of the innate immune response has emerged as a promising modality in immunotherapy. Here, we review therapeutic approaches for selective engagement of NK cells for cancer therapy, with a particular focus on targeting the key activating receptors NK Group 2D (NKG2D) and cluster of differentiation 16A (CD16A).
Collapse
Affiliation(s)
- Kerry A. Whalen
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
| | - Kavya Rakhra
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
| | - Naveen K. Mehta
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Preclinical and Early Development, Frankfurt Cancer Institute, Frankfurt am Main, Germany
| | | | - Patrick A. Baeuerle
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
- Institute for Immunology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|