1
|
Zheng Z, Song Y, Li X, Luo T, Tan X. Dissecting the causal effects of smoking, alcohol consumption, and related DNA methylation markers on electrocardiographic indices. Clin Epigenetics 2025; 17:40. [PMID: 40038836 PMCID: PMC11881420 DOI: 10.1186/s13148-025-01851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/19/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Tobacco and alcohol are recognized risk factors for heart disease, yet their causal effects on electrocardiogram (ECG) signaling and mechanisms remain unclear. Previous studies may be susceptible to confounding or bias, and this study dissected the genetic architecture linking tobacco and alcohol consumption with P-wave duration, PR interval, and QT interval. METHODS Utilizing genetic instruments for tobacco and alcohol consumption, associated methylation quantitative trait locus (mQTL), and summary-level GWAS data for ECG indices, we assessed heritability and genetic causal associations using linkage disequilibrium score regression and Mendelian randomization (MR) analysis. Fine mapping was performed via colocalization analysis and summary-data-based MR (SMR) to identify potential shared genetic variants. RESULTS A positive causal relationship was found between drinks per week (DrnkWk) and QT interval [β (95%CI): 1.06 (0.91, 5.05), P = 0.005], with causality substantiated through multiple robust MR models. Multivariable MR confirmed independence from smoking phenotypes. In epigenetic MR analyses, two alcohol-related CpG loci (cg03345232 and cg04605617) were causally associated with QT interval changes, with cg04605617 mapping to PLA2G2C gene significantly prolonging QT. The mQTL rs10916683 at cg04605617 is a strong eQTL for PLA2G2C. Additionally, cg03345232 shared a causal variant (rs12881206) with QT interval predisposition through colocalization analysis. SMR analysis did not identify shared putative functional genes passing the HEIDI test between DrnkWk and the QT interval. CONCLUSIONS There is a causal relationship between DrnkWk and QT interval prolongation, and targeting specific DNA methylation sites like cg04605617 mapped to PLA2G2C may provide novel targets for preventing QT interval prolongation.
Collapse
Affiliation(s)
- Zequn Zheng
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Clinical Research Center, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
- Human Phenome institute of SUMC, Guangdong Engineering Research Center of Human Phenome, Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong, China
| | - Yongfei Song
- Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
- Center for Molecular Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinhan Li
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Tao Luo
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuerui Tan
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
- Clinical Research Center, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
- Human Phenome institute of SUMC, Guangdong Engineering Research Center of Human Phenome, Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong, China.
| |
Collapse
|
2
|
Zhang S, Huang Y, Han C, Chen M, Yang Z, Wang C. Circulating mitochondria carrying cGAS promote endothelial Secreted group IIA phospholipase A2-mediated neuroinflammation through activating astroglial/microglial Integrin-alphavbeta3 in subfornical organ to augment central sympathetic overdrive in heart failure rats. Int Immunopharmacol 2025; 144:113649. [PMID: 39586230 DOI: 10.1016/j.intimp.2024.113649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Sympathoexcitation, a manifestation of heart-brain axis dysregulation, contributes to the progression of heart failure (HF). Our recent study revealed that circulating mitochondria (C-Mito), a newly identified mediator of multi-organ communication, promote sympathoexcitation in HF by aggravating endothelial cell (EC)-derived neuroinflammation in the subfornical organ (SFO), the cardiovascular autonomic neural center. The precise molecular mechanism by which C-Mito promotes SFO-induced endothelial neuroinflammation has not been fully elucidated. OBJECTIVE C-Mito carrying cGAS promote sympathoexcitation by targeting PLA2G2A in ECs of the SFO in HF rats. METHODS Male Sprague-Dawley (SD) rats received a subcutaneous injection of isoprenaline (ISO) at a dosage of 5 mg/kg/day for seven consecutive days to establish a HF model. C-Mito were isolated from HF rats and evaluated. The level of cGAS, a dsDNA sensor recently discovered to be directly localized on the outer membrane of mitochondria, was detected in C-Mito. C-Mito from HF rats (C-MitoHF) or control rats (C-MitoCtrl) were intravenously infused into HF rats. The accumulation of C-Mito in the ECs in the SFO was detected via double immunofluorescence staining. The SFO was processed for RNA sequencing (RNA-Seq) analysis. Secreted group IIA phospholipase A2 (PLA2G2A), the key gene involved in C-MitoHF-associated SFO dysfunction, was identified via bioinformatics analysis. Upregulation of PLA2G2A in the SFO ECs was assessed via immunofluorescence staining and immunoblotting, and PLA2G2A activity was evaluated. The interaction between cGAS and PLA2G2A was detected via co-immunoprecipitation. The dowstream molecular mechanisms of which PLA2G2A induced astroglial/microglial activation were also investigated. AAV9-TIE-shRNA (PLA2G2A) was introduced into the SFO to specifically knockdown endothelial PLA2G2A. Neuronal activation and glial proinflammatory polarization in the SFO were also evaluated. Renal sympathetic nerve activity (RSNA) was measured to evaluate central sympathetic output. Cardiac sympathetic hyperinnervation, myocardial remodeling, and left ventricular systolic function were assessed in C-Mito-treated HF rats. RESULTS Respiratory functional incompetence and oxidative damage were observed in C-MitoHF compared with C-MitoCtrl. Surprisingly, cGAS protein levels in C-MitoHF were significantly higher than those in C-MitoCtrl, while blocking cGAS with its specific inhibitor, RU.521, mitigated respiratory dysfunction and oxidative injury in C-MitoHF. C-Mito entered the ECs of the SFO in HF rats. RNA sequencing revealed that PLA2G2A is a key molecule for the induction of SFO dysfunction by C-MitoHF. The immunoblotting and immunofluorescence results confirmed that, compared with C-MitoCtrl, C-MitoHF increased endothelial PLA2G2A expression in the SFO of HF rats, which could be alleviated by attenuating C-MitoHF-localized cGAS. Furthermore, we found that cGAS directly interacts with PLA2G2A, increased the activity of PLA2AG2, which produced arachidonic acid, and also promoted PLA2G2A secretion in brain ECs. In addition, the inhibition of PLA2G2A in brain ECs significantly mitigated the proinflammatory effect of conditioned cell culture medium from C-MitoHF-treated ECs on astroglia and microglia. Also, we found that PLA2G2A secreted from ECs insulted by C-Mito induced neuroinflammation through activating astriglial/microglial Integrin-alphavbeta3 in the SFO, which further promote central sympathetic overdrive in HF rats. Specific knockdown of endothelial PLA2G2A in the SFO mitigated C-MitoHF-induced presympathetic neuronal sensitization, cardiac sympathetic hyperinnervation, RSNA activation, myocardial remodeling, and systolic dysfunction in HF rats. CONCLUSION C-Mito carrying cGAS promoted cardiac sympathoexcitation by directly targeting PLA2G2A in the ECs of the SFO in HF rats. Secreted PLA2G2A derived from ECs insulted by C-Mito induced neuroinflammation through activating astriglial/microglial Integrin-alphavbeta3 in the SFO, which further promote central sympathetic overdrive in HF rats. Our study indicated that inhibiting cGAS in C-Mito might be a potential treatment for central sympathetic overdrive in HF.
Collapse
Affiliation(s)
- Shutian Zhang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Yijun Huang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Chengzhi Han
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Maoxiang Chen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Zhaohua Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| |
Collapse
|
3
|
Hara A, Lu E, Johnstone L, Wei M, Sun S, Hallmark B, Watkins JC, Zhang HH, Yao G, Chilton FH. Identification of an Allele-Specific Transcription Factor Binding Interaction that May Regulate PLA2G2A Gene Expression. Bioinform Biol Insights 2024; 18:11779322241261427. [PMID: 39081667 PMCID: PMC11287738 DOI: 10.1177/11779322241261427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/24/2024] [Indexed: 08/02/2024] Open
Abstract
The secreted phospholipase A2 (sPLA2) isoform, sPLA2-IIA, has been implicated in a variety of diseases and conditions, including bacteremia, cardiovascular disease, COVID-19, sepsis, adult respiratory distress syndrome, and certain cancers. Given its significant role in these conditions, understanding the regulatory mechanisms impacting its levels is crucial. Genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs), including rs11573156, that are associated with circulating levels of sPLA2-IIA. The work in the manuscript leveraged 4 publicly available datasets to investigate the mechanism by which rs11573156 influences sPLA2-IIA levels via bioinformatics and modeling analysis. Through genotype-tissue expression (GTEx), 234 expression quantitative trait loci (eQTLs) were identified for the gene that encodes for sPLA2-IIA, PLA2G2A. SNP2TFBS was used to ascertain the binding affinities between transcription factors (TFs) to both the reference and alternative alleles of identified eQTL SNPs. Subsequently, candidate TF-SNP interactions were cross-referenced with the ChIP-seq results in matched tissues from ENCODE. SP1-rs11573156 emerged as the significant TF-SNP pair in the liver. Further analysis revealed that the upregulation of PLA2G2A transcript levels through the rs11573156 variant was likely affected by tissue SP1 protein levels. Using an ordinary differential equation based on Michaelis-Menten kinetic assumptions, we modeled the dependence of PLA2G2A transcription on SP1 protein levels, incorporating the SNP influence. Collectively, our analysis strongly suggests that the difference in the binding dynamics of SP1 to different rs11573156 alleles may underlie the allele-specific PLA2G2A expression in different tissues, a mechanistic model that awaits future direct experimental validation. This mechanism likely contributes to the variation in circulating sPLA2-IIA protein levels in the human population, with implications for a wide range of human diseases.
Collapse
Affiliation(s)
- Aki Hara
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, USA
| | - Eric Lu
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ, USA
| | - Laurel Johnstone
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, USA
| | - Michelle Wei
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ, USA
| | - Shudong Sun
- Department of Mathematics, The University of Arizona, Tucson, AZ, USA
- Statistics Interdisciplinary Program, The University of Arizona, Tucson, AZ, USA
| | - Brian Hallmark
- BIO5 Institute, The University of Arizona, Tucson, AZ, USA
| | - Joseph C Watkins
- Department of Mathematics, The University of Arizona, Tucson, AZ, USA
- Statistics Interdisciplinary Program, The University of Arizona, Tucson, AZ, USA
| | - Hao Helen Zhang
- Department of Mathematics, The University of Arizona, Tucson, AZ, USA
- Statistics Interdisciplinary Program, The University of Arizona, Tucson, AZ, USA
| | - Guang Yao
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ, USA
| | - Floyd H Chilton
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ, USA
- Center for Precision Nutrition and Wellness, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
4
|
Liang L, Song J, Miao S, Xie Q, Li W, Huang H, Shen D, Zhang W. Modulation of lipid profile by secretory phospholipase A2 group IIA: Verification with a transgenic mouse model. Biochem Biophys Res Commun 2024; 712-713:149955. [PMID: 38640737 DOI: 10.1016/j.bbrc.2024.149955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
We previously demonstrated a positive relation of secretory phospholipase A2 group IIA (sPLA2-IIA) with circulating high-density lipoprotein cholesterol (HDL-C) in patients with coronary artery disease, and sPLA2-IIA increased cholesterol efflux in THP-1 cells through peroxisome proliferator-activated receptor-γ (PPAR-γ)/liver X receptor α/ATP-binding cassette transporter A1 (ABCA1) signaling pathway. The aim of the present study was to examine the role of sPLA2-IIA over-expression on lipid profile in a transgenic mouse model. Fifteen apoE-/- and C57BL/7 female mice received bone marrow transplantation from transgenic SPLA2-IIA mice, and treated with specific PPAR-γ inhibitor GW9662. High fat diet was given after one week of bone marrow transplantation, and animals were sacrificed after twelve weeks. Immunohistochemical staining showed over-expression of sPLA2-IIA protein in the lung and spleen. The circulating level of HDL-C, but not that of low-density lipoprotein cholesterol (LDL-C), total cholesterol, or total triglyceride, was increased by sPLA2-IIA over-expression, and was subsequently reversed by GW9662 treatment. Over-expression of sPLA2-IIA resulted in augmented expression of cholesterol transporter ABCA1 at mRNA level in the aortas, and at protein level in macrophages, co-localized with macrophage specific antigen CD68. GW9662 exerted potent inhibitory effects on sPLA2-IIA-induced ABCA1 expression. Conclusively, we demonstrated the effects of sPLA2-IIA on circulating HDL-C level and the expression of ABCA1, possibly through regulation of PPAR-γ signaling in transgenic mouse model, that is in concert with the conditions in patients with coronary artery disease.
Collapse
Affiliation(s)
- Ling Liang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| | - Jing Song
- Laboratory Animal Center, Xiamen University, Xiamen, 361005, China
| | - Shisheng Miao
- Department of Cardiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Qiang Xie
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China; Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Weihua Li
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China; Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Honglang Huang
- Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Dongyan Shen
- Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Wei Zhang
- Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| |
Collapse
|
5
|
Holmes MV, Kartsonaki C, Boxall R, Lin K, Reeve N, Yu C, Lv J, Bennett DA, Hill MR, Yang L, Chen Y, Du H, Turnbull I, Collins R, Clarke RJ, Tobin MD, Li L, Millwood IY, Chen Z, Walters RG. PCSK9 genetic variants and risk of vascular and non-vascular diseases in Chinese and UK populations. Eur J Prev Cardiol 2024; 31:1015-1025. [PMID: 38198221 PMCID: PMC11144468 DOI: 10.1093/eurjpc/zwae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
AIMS Lowering low-density lipoprotein cholesterol (LDL-C) through PCSK9 inhibition represents a new therapeutic approach to preventing and treating cardiovascular disease (CVD). Phenome-wide analyses of PCSK9 genetic variants in large biobanks can help to identify unexpected effects of PCSK9 inhibition. METHODS AND RESULTS In the prospective China Kadoorie Biobank, we constructed a genetic score using three variants at the PCSK9 locus associated with directly measured LDL-C [PCSK9 genetic score (PCSK9-GS)]. Logistic regression gave estimated odds ratios (ORs) for PCSK9-GS associations with CVD and non-CVD outcomes, scaled to 1 SD lower LDL-C. PCSK9-GS was associated with lower risks of carotid plaque [n = 8340 cases; OR = 0.61 (95% confidence interval: 0.45-0.83); P = 0.0015], major occlusive vascular events [n = 15 752; 0.80 (0.67-0.95); P = 0.011], and ischaemic stroke [n = 11 467; 0.80 (0.66-0.98); P = 0.029]. However, PCSK9-GS was also associated with higher risk of hospitalization with chronic obstructive pulmonary disease [COPD: n = 6836; 1.38 (1.08-1.76); P = 0.0089] and with even higher risk of fatal exacerbations amongst individuals with pre-existing COPD [n = 730; 3.61 (1.71-7.60); P = 7.3 × 10-4]. We also replicated associations for a PCSK9 variant, reported in UK Biobank, with increased risks of acute upper respiratory tract infection (URTI) [pooled OR after meta-analysis of 1.87 (1.38-2.54); P = 5.4 × 10-5] and self-reported asthma [pooled OR of 1.17 (1.04-1.30); P = 0.0071]. There was no association of a polygenic LDL-C score with COPD hospitalization, COPD exacerbation, or URTI. CONCLUSION The LDL-C-lowering PCSK9 genetic variants are associated with lower risk of subclinical and clinical atherosclerotic vascular disease but higher risks of respiratory diseases. Pharmacovigilance studies may be required to monitor patients treated with therapeutic PCSK9 inhibitors for exacerbations of respiratory diseases or respiratory tract infections. LAY SUMMARY Genetic analyses of over 100 000 participants of the China Kadoorie Biobank, mimicking the effect of new drugs intended to reduce cholesterol by targeting the PCSK9 protein, have identified potential severe effects of lower PCSK9 activity in patients with existing respiratory disease.PCSK9 genetic variants that are associated with lower cholesterol and reduced rates of cardiovascular disease are also associated with increased risk of a range of respiratory diseases, including asthma, upper respiratory tract infections, and hospitalization with chronic obstructive pulmonary disease (COPD).These genetic variants are not associated with whether or not individuals have COPD; instead, they are specifically associated with an increase in the chance of those who already have COPD being hospitalized and even dying, suggesting that careful monitoring of such patients should be considered during development of and treatment with anti-PCSK9 medication.
Collapse
Affiliation(s)
- Michael V Holmes
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
| | - Christiana Kartsonaki
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
| | - Ruth Boxall
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
| | - Kuang Lin
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
| | - Nicola Reeve
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Derrick A Bennett
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
| | - Michael R Hill
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
| | - Ling Yang
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
| | - Yiping Chen
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
| | - Huaidong Du
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
| | - Iain Turnbull
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
| | - Rory Collins
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
| | - Robert J Clarke
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
| | - Martin D Tobin
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- National Institute for Health and Care Research, Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Iona Y Millwood
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
| | - Zhengming Chen
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
| | - Robin G Walters
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
| |
Collapse
|
6
|
Kazemi Asl S, Rahimzadegan M, Kazemi Asl A. Pharmacogenomics-based systematic review of coronary artery disease based on personalized medicine procedure. Heliyon 2024; 10:e28983. [PMID: 38601677 PMCID: PMC11004819 DOI: 10.1016/j.heliyon.2024.e28983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Background Coronary artery disease (CAD) is the most common reason for mortality and disability-adjusted life years (DALYs) lost globally. This study aimed to suggest a new gene list for the treatment of CAD by a systematic review of bioinformatics analyses of pharmacogenomics impacts of potential genes and variants. Methods PubMed search was filtered by the title including Coronary Artery Disease during 2020-2023. To find the genes with pharmacogenetic impact on the CAD, additional filtrations were considered according to the variant annotations. Protein-Protein Interactions (PPIs), Gene-miRNA Interactions (GMIs), Protein-Drug Interactions (PDIs), and variant annotation assessments (VAAs) performed by STRING-MODEL (ver. 12), Cytoscape (ver. 3.10), miRTargetLink.2., NetworkAnalyst (ver 0.3.0), and PharmGKB. Results Results revealed 5618 publications, 1290 papers were qualified, and finally, 650 papers were included. 4608 protein-coding genes were extracted, among them, 1432 unique genes were distinguished and 530 evidence-based repeated genes remained. 71 genes showed a pharmacogenetics-related variant annotation in at least (entirely 6331 annotations). Variant annotation assessment (VAA) showed 532 potential variants for the final report, and finally, the concluding PGs list represented 175 variants. Based on the function and MAF, 57 nonsynonymous variants of 29 Pharmacogenomics-related genes were associated with CAD. Conclusion Conclusively, evaluating circulating miR33a in individuals' plasma with CAD, and genotyping of rs2230806, rs2230808, rs2487032, rs12003906, rs2472507, rs2515629, and rs4149297 (ABCA1 variants) lead to precisely prescribing of well-known drugs. Also, the findings of this review can be used in both whole-genome sequencing (WGS) and whole-exome sequencing (WES) analysis in the prognosis and diagnosis of CAD.
Collapse
Affiliation(s)
- Siamak Kazemi Asl
- Deputy of Education, Ministry of Health and Medical Education, Tehran, Iran
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Kazemi Asl
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Williams KJ. Eradicating Atherosclerotic Events by Targeting Early Subclinical Disease: It Is Time to Retire the Therapeutic Paradigm of Too Much, Too Late. Arterioscler Thromb Vasc Biol 2024; 44:48-64. [PMID: 37970716 DOI: 10.1161/atvbaha.123.320065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Recent decades have seen spectacular advances in understanding and managing atherosclerotic cardiovascular disease, but paradoxically, clinical progress has stalled. Residual risk of atherosclerotic cardiovascular disease events is particularly vexing, given recognized lifestyle interventions and powerful modern medications. Why? Atherosclerosis begins early in life, yet clinical trials and mechanistic studies often emphasize terminal, end-stage plaques, meaning on the verge of causing heart attacks and strokes. Thus, current clinical evidence drives us to emphasize aggressive treatments that are delayed until patients already have advanced arterial disease. I call this paradigm "too much, too late." This brief review covers exciting efforts that focus on preventing, or finding and treating, arterial disease before its end-stage. Also included are specific proposals to establish a new evidence base that could justify intensive short-term interventions (induction-phase therapy) to treat subclinical plaques that are early enough perhaps to heal. If we can establish that such plaques are actionable, then broad screening to find them in early midlife individuals would become imperative-and achievable. You have a lump in your coronaries! can motivate patients and clinicians. We must stop thinking of a heart attack as a disease. The real disease is atherosclerosis. In my opinion, an atherosclerotic heart attack is a medical failure. It is a manifestation of longstanding arterial disease that we had allowed to progress to its end-stage, despite knowing that atherosclerosis begins early in life and despite the availability of remarkably safe and highly effective therapies. The field needs a transformational advance to shift the paradigm out of end-stage management and into early interventions that hold the possibility of eradicating the clinical burden of atherosclerotic cardiovascular disease, currently the biggest killer in the world. We urgently need a new evidence base to redirect our main focus from terminal, end-stage atherosclerosis to earlier, and likely reversible, human arterial disease.
Collapse
Affiliation(s)
- Kevin Jon Williams
- Department of Cardiovascular Sciences, Department of Medicine, Lewis Katz School of Medicine at Temple University, PA
| |
Collapse
|
8
|
Zhou X, Wu X, Wang R, Han L, Li H, Zhao W. Mechanisms of 3-Hydroxyl 3-Methylglutaryl CoA Reductase in Alzheimer's Disease. Int J Mol Sci 2023; 25:170. [PMID: 38203341 PMCID: PMC10778631 DOI: 10.3390/ijms25010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide and has a high incidence in the elderly. Unfortunately, there is no effective therapy for AD owing to its complicated pathogenesis. However, the development of lipid-lowering anti-inflammatory drugs has heralded a new era in the treatment of Alzheimer's disease. Several studies in recent years have shown that lipid metabolic dysregulation and neuroinflammation are associated with the pathogenesis of AD. 3-Hydroxyl 3-methylglutaryl CoA reductase (HMGCR) is a rate-limiting enzyme in cholesterol synthesis that plays a key role in cholesterol metabolism. HMGCR inhibitors, known as statins, have changed from being solely lipid-lowering agents to neuroprotective compounds because of their effects on lipid levels and inflammation. In this review, we first summarize the main regulatory mechanism of HMGCR affecting cholesterol biosynthesis. We also discuss the pathogenesis of AD induced by HMGCR, including disordered lipid metabolism, oxidative stress, inflammation, microglial proliferation, and amyloid-β (Aβ) deposition. Subsequently, we explain the possibility of HMGCR as a potential target for AD treatment. Statins-based AD treatment is an ascent field and currently quite controversial; therefore, we also elaborate on the current application prospects and limitations of statins in AD treatment.
Collapse
Affiliation(s)
- Xun Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
- Department of Endocrinology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China;
| | - Xiaolang Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
| | - Rui Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
| | - Lu Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
| | - Huilin Li
- Department of Endocrinology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China;
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
| |
Collapse
|
9
|
Hara A, Lu E, Johnstone L, Wei M, Sun S, Hallmark B, Watkins JC, Zhang HH, Yao G, Chilton FH. Identification of an allele-specific transcription factor binding interaction that regulates PLA2G2A gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571290. [PMID: 38168258 PMCID: PMC10760018 DOI: 10.1101/2023.12.12.571290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The secreted phospholipase A 2 (sPLA 2 ) isoform, sPLA 2 -IIA, has been implicated in a variety of diseases and conditions, including bacteremia, cardiovascular disease, COVID-19, sepsis, adult respiratory distress syndrome, and certain cancers. Given its significant role in these conditions, understanding the regulatory mechanisms impacting its levels is crucial. Genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs), including rs11573156, that are associated with circulating levels of sPLA 2 -IIA. Through Genotype-Tissue Expression (GTEx), 234 expression quantitative trait loci (eQTLs) were identified for the gene that encodes for sPLA 2 -IIA, PLA2G2A . SNP2TFBS ( https://ccg.epfl.ch/snp2tfbs/ ) was utilized to ascertain the binding affinities between transcription factors (TFs) to both the reference and alternative alleles of identified SNPs. Subsequently, ChIP-seq peaks highlighted the TF combinations that specifically bind to the SNP, rs11573156. SP1 emerged as a significant TF/SNP pair in liver cells, with rs11573156/SP1 interaction being most prominent in liver, prostate, ovary, and adipose tissues. Further analysis revealed that the upregulation of PLA2G2A transcript levels through the rs11573156 variant was affected by tissue SP1 protein levels. By leveraging an ordinary differential equation, structured upon Michaelis-Menten enzyme kinetics assumptions, we modeled the PLA2G2A transcription's dependence on SP1 protein levels, incorporating the SNP's influence. Collectively, these data strongly suggest that the binding affinity differences of SP1 for the different rs11573156 alleles can influence PLA2G2A expression. This, in turn, can modulate sPLA2-IIA levels, impacting a wide range of human diseases.
Collapse
|
10
|
Sobczyk MK, Zheng J, Davey Smith G, Gaunt TR. Systematic comparison of Mendelian randomisation studies and randomised controlled trials using electronic databases. BMJ Open 2023; 13:e072087. [PMID: 37751957 PMCID: PMC10533809 DOI: 10.1136/bmjopen-2023-072087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023] Open
Abstract
OBJECTIVE To scope the potential for (semi)-automated triangulation of Mendelian randomisation (MR) and randomised controlled trials (RCTs) evidence since the two methods have distinct assumptions that make comparisons between their results invaluable. METHODS We mined ClinicalTrials.Gov, PubMed and EpigraphDB databases and carried out a series of 26 manual literature comparisons among 54 MR and 77 RCT publications. RESULTS We found that only 13% of completed RCTs identified in ClinicalTrials.Gov submitted their results to the database. Similarly low coverage was revealed for Semantic Medline (SemMedDB) semantic triples derived from MR and RCT publications -36% and 12%, respectively. Among intervention types that can be mimicked by MR, only trials of pharmaceutical interventions could be automatically matched to MR results due to insufficient annotation with Medical Subject Headings ontology. A manual survey of the literature highlighted the potential for triangulation across a number of exposure/outcome pairs if these challenges can be addressed. CONCLUSIONS We conclude that careful triangulation of MR with RCT evidence should involve consideration of similarity of phenotypes across study designs, intervention intensity and duration, study population demography and health status, comparator group, intervention goal and quality of evidence.
Collapse
Affiliation(s)
- Maria K Sobczyk
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jie Zheng
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
11
|
Chang L, Zhou G, Xia J. mGWAS-Explorer 2.0: Causal Analysis and Interpretation of Metabolite-Phenotype Associations. Metabolites 2023; 13:826. [PMID: 37512533 PMCID: PMC10384390 DOI: 10.3390/metabo13070826] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Metabolomics-based genome-wide association studies (mGWAS) are key to understanding the genetic regulations of metabolites in complex phenotypes. We previously developed mGWAS-Explorer 1.0 to link single-nucleotide polymorphisms (SNPs), metabolites, genes and phenotypes for hypothesis generation. It has become clear that identifying potential causal relationships between metabolites and phenotypes, as well as providing deep functional insights, are crucial for further downstream applications. Here, we introduce mGWAS-Explorer 2.0 to support the causal analysis between >4000 metabolites and various phenotypes. The results can be interpreted within the context of semantic triples and molecular quantitative trait loci (QTL) data. The underlying R package is released for reproducible analysis. Using two case studies, we demonstrate that mGWAS-Explorer 2.0 is able to detect potential causal relationships between arachidonic acid and Crohn's disease, as well as between glycine and coronary heart disease.
Collapse
Affiliation(s)
- Le Chang
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Guangyan Zhou
- Institute of Parasitology, McGill University, Montreal, QC H9X 3V9, Canada
| | - Jianguo Xia
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Institute of Parasitology, McGill University, Montreal, QC H9X 3V9, Canada
| |
Collapse
|
12
|
Schmidt AF, Bourfiss M, Alasiri A, Puyol-Anton E, Chopade S, van Vugt M, van der Laan SW, Gross C, Clarkson C, Henry A, Lumbers TR, van der Harst P, Franceschini N, Bis JC, Velthuis BK, te Riele AS, Hingorani AD, Ruijsink B, Asselbergs FW, van Setten J, Finan C. Druggable proteins influencing cardiac structure and function: Implications for heart failure therapies and cancer cardiotoxicity. SCIENCE ADVANCES 2023; 9:eadd4984. [PMID: 37126556 PMCID: PMC10132758 DOI: 10.1126/sciadv.add4984] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Dysfunction of either the right or left ventricle can lead to heart failure (HF) and subsequent morbidity and mortality. We performed a genome-wide association study (GWAS) of 16 cardiac magnetic resonance (CMR) imaging measurements of biventricular function and structure. Cis-Mendelian randomization (MR) was used to identify plasma proteins associating with CMR traits as well as with any of the following cardiac outcomes: HF, non-ischemic cardiomyopathy, dilated cardiomyopathy (DCM), atrial fibrillation, or coronary heart disease. In total, 33 plasma proteins were prioritized, including repurposing candidates for DCM and/or HF: IL18R (providing indirect evidence for IL18), I17RA, GPC5, LAMC2, PA2GA, CD33, and SLAF7. In addition, 13 of the 25 druggable proteins (52%; 95% confidence interval, 0.31 to 0.72) could be mapped to compounds with known oncological indications or side effects. These findings provide leads to facilitate drug development for cardiac disease and suggest that cardiotoxicities of several cancer treatments might represent mechanism-based adverse effects.
Collapse
Affiliation(s)
- Amand F. Schmidt
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL BHF Research Accelerator Centre, London, UK
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Mimount Bourfiss
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Abdulrahman Alasiri
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Esther Puyol-Anton
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, London, UK
| | - Sandesh Chopade
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL BHF Research Accelerator Centre, London, UK
| | - Marion van Vugt
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL BHF Research Accelerator Centre, London, UK
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Sander W. van der Laan
- Central Diagnostics Laboratory, Division Laboratory, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Christian Gross
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Chris Clarkson
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL BHF Research Accelerator Centre, London, UK
| | - Albert Henry
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL BHF Research Accelerator Centre, London, UK
- Institute of Health Informatics, Faculty of Population Health, University College London, London, UK
| | - Tom R. Lumbers
- UCL BHF Research Accelerator Centre, London, UK
- Institute of Health Informatics, Faculty of Population Health, University College London, London, UK
| | - Pim van der Harst
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Birgitta K. Velthuis
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Anneline S. J. M. te Riele
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Netherlands Heart Institute, Utrecht, Netherlands
- Member of the European Reference Network for rare, low prevalence, and complex diseases of the heart (ERN GUARD HEART; http://guardheart.ern-net.eu)
| | - Aroon D. Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL BHF Research Accelerator Centre, London, UK
| | - Bram Ruijsink
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, London, UK
| | - Folkert W. Asselbergs
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands
- Institute of Health Informatics, Faculty of Population Health, University College London, London, UK
- Member of the European Reference Network for rare, low prevalence, and complex diseases of the heart (ERN GUARD HEART; http://guardheart.ern-net.eu)
| | - Jessica van Setten
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL BHF Research Accelerator Centre, London, UK
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
13
|
Beccacece L, Abondio P, Bini C, Pelotti S, Luiselli D. The Link between Prostanoids and Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24044193. [PMID: 36835616 PMCID: PMC9962914 DOI: 10.3390/ijms24044193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Cardiovascular diseases are the leading cause of global deaths, and many risk factors contribute to their pathogenesis. In this context, prostanoids, which derive from arachidonic acid, have attracted attention for their involvement in cardiovascular homeostasis and inflammatory processes. Prostanoids are the target of several drugs, but it has been shown that some of them increase the risk of thrombosis. Overall, many studies have shown that prostanoids are tightly associated with cardiovascular diseases and that several polymorphisms in genes involved in their synthesis and function increase the risk of developing these pathologies. In this review, we focus on molecular mechanisms linking prostanoids to cardiovascular diseases and we provide an overview of genetic polymorphisms that increase the risk for cardiovascular disease.
Collapse
Affiliation(s)
- Livia Beccacece
- Computational Genomics Lab, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Correspondence: (L.B.); (P.A.)
| | - Paolo Abondio
- aDNA Lab, Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
- Correspondence: (L.B.); (P.A.)
| | - Carla Bini
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Susi Pelotti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Donata Luiselli
- aDNA Lab, Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
| |
Collapse
|
14
|
Khasawneh LQ, Al-Mahayri ZN, Ali BR. Mendelian randomization in pharmacogenomics: The unforeseen potentials. Biomed Pharmacother 2022; 150:112952. [PMID: 35429744 DOI: 10.1016/j.biopha.2022.112952] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/08/2023] Open
Abstract
Mendelian randomization (MR) is an epidemiological method that uses genetic variants to proxy an exposure predicting its causal association with an outcome. It occupies a valuable niche between observational studies and randomized trials. MR applications expanded lately, facilitated by the availability of big data, to include disease risk causation prediction, supporting evidence of prior observational data, identifying new drug targets, and drug repurposing. Concurrently, the last decade witnessed the growth of pharmacogenomics (PGx) research as a cornerstone in precision medicine. PGx research, conducted at discovery and implementation levels, resulted in validated PGx biomarkers and tests. Despite many clinically relevant PGx associations that could be translated into clinical applications, worldwide implementation is lagging far behind. The current review examines the intersection zones between MR and PGx research. MR can provide supporting evidence that allows generalizing PGx findings supporting its implementation. Interchangeability, PGx research can fuel MR studies with libraries of genetic variants of validated biological relevance. Furthermore, PGx and MR exhibit a synergistic relationship in drug discovery that can accelerate identifying new targets and repurposing old drugs. Interdisciplinary research applied by PGx researchers, epidemiologists with MR experience, and data scientists' collaborations can unlock unforeseen opportunities in accelerating precision medicine acquisition.
Collapse
Affiliation(s)
- Lubna Q Khasawneh
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, United Arab Emirates
| | - Zeina N Al-Mahayri
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, United Arab Emirates; Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
15
|
Abstract
Insights into the genetic basis of human disease are helping to address some of the key challenges in new drug development including the very high rates of failure. Here we review the recent history of an emerging, genomics-assisted approach to pharmaceutical research and development, and its relationship to Mendelian randomization (MR), a well-established analytical approach to causal inference. We demonstrate how human genomic data linked to pharmaceutically relevant phenotypes can be used for (1) drug target identification (mapping relevant drug targets to diseases), (2) drug target validation (inferring the likely effects of drug target perturbation), (3) evaluation of the effectiveness and specificity of compound-target engagement (inferring the extent to which the effects of a compound are exclusive to the target and distinguishing between on-target and off-target compound effects), and (4) the selection of end points in clinical trials (the diseases or conditions to be evaluated as trial outcomes). We show how genomics can help identify indication expansion opportunities for licensed drugs and repurposing of compounds developed to clinical phase that proved safe but ineffective for the original intended indication. We outline statistical and biological considerations in using MR for drug target validation (drug target MR) and discuss the obstacles and challenges for scaled applications of these genomics-based approaches.
Collapse
Affiliation(s)
- Amand F Schmidt
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London WC1E 6BT, United Kingdom
- UCL British Heart Foundation Research Accelerator, London WC1E 6BT, United Kingdom
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London WC1E 6BT, United Kingdom
- UCL British Heart Foundation Research Accelerator, London WC1E 6BT, United Kingdom
- Health Data Research UK, London NW1 2BE, United Kingdom
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London WC1E 6BT, United Kingdom
- UCL British Heart Foundation Research Accelerator, London WC1E 6BT, United Kingdom
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
- Health Data Research UK, London NW1 2BE, United Kingdom
| |
Collapse
|
16
|
Liang L, Xie Q, Sun C, Wu Y, Zhang W, Li W. Phospholipase A2 group IIA correlates with circulating high-density lipoprotein cholesterol and modulates cholesterol efflux possibly through regulation of PPAR-γ/LXR-α/ABCA1 in macrophages. J Transl Med 2021; 19:484. [PMID: 34838043 PMCID: PMC8626914 DOI: 10.1186/s12967-021-03151-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Background Secretory phospholipase A2 group IIA (sPLA2-IIA) is an independent risk factor for cardiovascular disease, but its role on high-density lipoprotein cholesterol (HDL-C) level has not been clarified. The aim of the present study was to explore the association between circulating sPLA2-IIA and HDL-C, and to evaluate if sPLA2-IIA enhances cholesterol efflux capacity through regulation of peroxisome proliferator-activated receptor γ (PPAR-γ), liver X receptor α (LXR-α), and ATP-binding cassette A1 (ABCA1). Methods 131 patients with coronary artery disease were enrolled. The plasma level of sPLA2-IIA was tested with enzyme-linked immunosorbent assay kit, and serum lipids were assessed by biochemical analyzer. Human monocyte-macrophage cell line THP-1 was co-incubated with sPLA2-IIA in the presence/absence of selective PPAR-γ antagonist GW9662 in vitro. Real-time PCR and Western-blot were employed to measure the mRNA and protein expressions of PPAR-γ, LXR-α, and ABCA1, respectively. The cholesterol efflux was evaluated by using an assay kit. Results In subjects, circulating level of sPLA2-IIA was positively related with that of HDL-C (r = 0.196, p = 0.024). The plasma level of sPLA2-IIA was significantly higher in the high HDL-C (≥ 1.04 mmol/L) group (7477.828 pg/mL) than that in low HDL-C (< 1.04 mmol/L) group (5836.92 pg/mL, p = 0.004). For each increase of 1 pg/μl in sPLA2-IIA level, the adjusted odds ratio for HDL-C ≥ 1.04 mmol/L was 1.143. Co-incubation of THP-1 cells with sPLA2-IIA resulted in increased expressions of PPAR-γ, LXR-α, and ABCA1, as well as enhanced cholesterol efflux capacity, that were all reversed by administration of GW9662. Conclusions Circulating sPLA2-IIA was positively associated with HDL-C. PPAR-γ/LXR-α/ABCA1 might be responsible for sPLA2-IIA-regulated cholesterol efflux in macrophages. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03151-3.
Collapse
Affiliation(s)
- Ling Liang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.,Department of Cardiology, The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350122, China
| | - Qiang Xie
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.,Department of Cardiology, The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350122, China
| | - Changqing Sun
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Yuanhui Wu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Wei Zhang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| | - Weihua Li
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China. .,Department of Cardiology, The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
17
|
Abstract
During the past decade, genome-wide association studies (GWAS) have transformed our understanding of many heritable traits. Three recent large-scale GWAS meta-analyses now further markedly expand the knowledge on coronary artery disease (CAD) genetics in doubling the number of loci with genome-wide significant signals. Here, we review the unprecedented discoveries of CAD GWAS on low-frequency variants, underrepresented populations, sex differences and integrated polygenic risk. We present the milestones of CAD GWAS and post-GWAS studies from 2007 to 2021, and the trend in identification of variants with smaller odds ratio by year due to the increasing sample size. We compile the 321 CAD loci discovered thus far and classify candidate genes as well as distinct functional pathways on the road to indepth biological investigation and identification of novel treatment targets. We draw attention to systems genetics in integrating these loci into gene regulatory networks within and across tissues. We review the traits, biomarkers and diseases scrutinized by Mendelian randomization studies for CAD. Finally, we discuss the potentials and concerns of polygenic scores in predicting CAD risk in patient care as well as future directions of GWAS and post-GWAS studies in the field of precision medicine.
Collapse
Affiliation(s)
- Zhifen Chen
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany.,Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany.,Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Munich Heart Alliance, Munich, Germany
| |
Collapse
|
18
|
Pungerčar J, Bihl F, Lambeau G, Križaj I. What do secreted phospholipases A 2 have to offer in combat against different viruses up to SARS-CoV-2? Biochimie 2021; 189:40-50. [PMID: 34097986 PMCID: PMC8449419 DOI: 10.1016/j.biochi.2021.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 12/09/2022]
Abstract
Secreted phospholipases A2 (sPLA2s) form a widespread group of structurally-related enzymes that catalyse the hydrolysis of the sn-2 ester bond of glycerophospholipids to produce free fatty acids and lysophospholipids. In humans, nine catalytically active and two inactive sPLA2 proteins have been identified. These enzymes play diverse biological roles, including host defence against bacteria, parasites and viruses. Several of these endogenous sPLA2s may play a defensive role in viral infections, as they display in vitro antiviral activity by both direct and indirect mechanisms. However, endogenous sPLA2s may also exert an offensive and negative role, dampening the antiviral response or promoting inflammation in animal models of viral infection. Similarly, several exogenous sPLA2s, most of them from snake venoms and other animal venoms, possess in vitro antiviral activities. Thus, both endogenous and exogenous sPLA2s may be exploited for the development of new antiviral substances or as therapeutic targets for antagonistic drugs that may promote a more robust antiviral response. In this review, the antiviral versus proviral role of both endogenous and exogenous sPLA2s against various viruses including coronaviruses is presented. Based on the highlighted developments in this area of research, possible directions of future investigation are envisaged. One of them is also a possibility of exploiting sPLA2s as biological markers of the severity of the Covid-19 pandemic caused by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jože Pungerčar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Franck Bihl
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France
| | - Gérard Lambeau
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France.
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
19
|
Dacheux M, Chaouch S, Joy A, Labat A, Payré C, Petit-Paitel A, Bihl F, Lagrange I, Grellier P, Touqui L, Lambeau G, Deregnaucourt C. Role of human group IIA secreted phospholipase A2 in malaria pathophysiology: Insights from a transgenic mouse model. Biochimie 2021; 189:120-136. [PMID: 34175441 DOI: 10.1016/j.biochi.2021.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 01/08/2023]
Abstract
We previously showed that injection of recombinant human group IIA secreted phospholipase A2 (hGIIA sPLA2) to Plasmodium chabaudi-infected mice lowers parasitaemia by 20%. Here, we show that transgenic (TG) mice overexpressing hGIIA sPLA2 have a peak of parasitaemia about 30% lower than WT littermates. During infection, levels of circulating sPLA2, enzymatic activity and plasma lipid peroxidation were maximal at day-14, the peak of parasitaemia. Levels of hGIIA mRNA increased in liver but not in spleen and blood cells, suggesting that liver may contribute as a source of circulating hGIIA sPLA2. Before infection, baseline levels of leukocytes and pro-inflammatory cytokines were higher in TG mice than WT littermates. Upon infection, the number of neutrophils, lymphocytes and monocytes increased and were maximal at the peak of parasitaemia in both WT and TG mice, but were higher in TG mice. Similarly, levels of the Th1 cytokines IFN-γ and IL-2 increased in WT and TG mice, but were 7.7- and 1.7-fold higher in TG mice. The characteristic shift towards Th2 cytokines was observed during infection in both WT and TG mice, with increased levels of IL-10 and IL-4 at day-14. The current data are in accordance with our previous in vitro findings showing that hGIIA kills parasites by releasing toxic lipids from oxidized lipoproteins. They further show that hGIIA sPLA2 is induced during mouse experimental malaria and has a protective in vivo role, lowering parasitaemia by likely releasing toxic lipids from oxidized lipoproteins but also indirectly by promoting a more sustained innate immune response.
Collapse
Affiliation(s)
- Mélanie Dacheux
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, Paris Cedex 05 75231, France
| | - Soraya Chaouch
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, Paris Cedex 05 75231, France
| | - Alonso Joy
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, Paris Cedex 05 75231, France
| | - Amandine Labat
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, Paris Cedex 05 75231, France
| | - Christine Payré
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France
| | - Agnès Petit-Paitel
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France
| | - Franck Bihl
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France
| | - Isabelle Lagrange
- Ecole Nationale Vétérinaire d'Alfort, BioPôle, Laboratoire d'hématologie, 94704 Maisons-Alfort, France
| | - Philippe Grellier
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, Paris Cedex 05 75231, France
| | - Lhousseine Touqui
- Cystic fibrosis and Bronchial diseases team - INSERM U938, Institut Pasteur, 75015 Paris, France; Sorbonne Université, INSERM UMRS938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Gérard Lambeau
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France.
| | - Christiane Deregnaucourt
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, Paris Cedex 05 75231, France.
| |
Collapse
|
20
|
Holmes MV, Richardson TG, Ference BA, Davies NM, Davey Smith G. Integrating genomics with biomarkers and therapeutic targets to invigorate cardiovascular drug development. Nat Rev Cardiol 2021; 18:435-453. [PMID: 33707768 DOI: 10.1038/s41569-020-00493-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 01/30/2023]
Abstract
Drug development in cardiovascular disease is stagnating, with lack of efficacy and adverse effects being barriers to innovation. Human genetics can provide compelling evidence of causation through approaches such as Mendelian randomization, with genetic support for causation increasing the probability of a clinical trial succeeding. Mendelian randomization applied to quantitative traits can identify risk factors for disease that are both causal and amenable to therapeutic modification. However, important differences exist between genetic investigations of a biomarker (such as HDL cholesterol) and a drug target aimed at modifying the same biomarker of interest (such as cholesteryl ester transfer protein), with implications for the methodology, interpretation and application of Mendelian randomization to drug development. Differences include the comparative nature of the genetic architecture - that is, biomarkers are typically polygenic, whereas protein drug targets are influenced by either cis-acting or trans-acting genetic variants - and the potential for drug targets to show disease associations that might differ from those of the biomarker that they are intended to modify (target-mediated pleiotropy). In this Review, we compare and contrast the use of Mendelian randomization to evaluate potential drug targets versus quantitative traits. We explain how genetic epidemiological studies can be used to assess the aetiological roles of biomarkers in disease and to prioritize drug targets, including designing their evaluation in clinical trials.
Collapse
Affiliation(s)
- Michael V Holmes
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK.
| | - Tom G Richardson
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Brian A Ference
- Centre for Naturally Randomised Trials, University of Cambridge, Cambridge, UK
| | - Neil M Davies
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| |
Collapse
|
21
|
Porcu E, Sjaarda J, Lepik K, Carmeli C, Darrous L, Sulc J, Mounier N, Kutalik Z. Causal Inference Methods to Integrate Omics and Complex Traits. Cold Spring Harb Perspect Med 2021; 11:a040493. [PMID: 32816877 PMCID: PMC8091955 DOI: 10.1101/cshperspect.a040493] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Major biotechnological advances have facilitated a tremendous boost to the collection of (gen-/transcript-/prote-/methyl-/metabol-)omics data in very large sample sizes worldwide. Coordinated efforts have yielded a deluge of studies associating diseases with genetic markers (genome-wide association studies) or with molecular phenotypes. Whereas omics-disease associations have led to biologically meaningful and coherent mechanisms, the identified (non-germline) disease biomarkers may simply be correlates or consequences of the explored diseases. To move beyond this realm, Mendelian randomization provides a principled framework to integrate information on omics- and disease-associated genetic variants to pinpoint molecular traits causally driving disease development. In this review, we show the latest advances in this field, flag up key challenges for the future, and propose potential solutions.
Collapse
Affiliation(s)
- Eleonora Porcu
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland
| | - Jennifer Sjaarda
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland
| | - Kaido Lepik
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland
- Institute of Computer Science, University of Tartu, Tartu 50409, Estonia
| | - Cristian Carmeli
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland
| | - Liza Darrous
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland
| | - Jonathan Sulc
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland
| | - Ninon Mounier
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland
| | - Zoltán Kutalik
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter EX2 5AX, United Kingdom
| |
Collapse
|
22
|
Liberale L, Montecucco F, Schwarz L, Lüscher TF, Camici GG. Inflammation and cardiovascular diseases: lessons from seminal clinical trials. Cardiovasc Res 2021; 117:411-422. [PMID: 32666079 DOI: 10.1093/cvr/cvaa211] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammation has been long regarded as a key contributor to atherosclerosis. Inflammatory cells and soluble mediators play critical roles throughout arterial plaque development and accordingly, targeting inflammatory pathways effectively reduces atherosclerotic burden in animal models of cardiovascular (CV) diseases. Yet, clinical translation often led to inconclusive or even contradictory results. The Canakinumab Anti-inflammatory Thrombosis Outcome Study (CANTOS) followed by the Colchicine Cardiovascular Outcomes Trial (COLCOT) were the first two randomized clinical trials to convincingly demonstrate the effectiveness of specific anti-inflammatory treatments in the field of CV prevention, while other phase III trials-including the Cardiovascular Inflammation Reduction Trial one using methotrexate-were futile. This manuscript reviews the main characteristics and findings of recent anti-inflammatory Phase III trials in cardiology and discusses their similarities and differences in order to get further insights into the contribution of specific inflammatory pathways on CV outcomes. CANTOS and COLCOT demonstrated efficacy of two anti-inflammatory drugs (canakinumab and colchicine, respectively) in the secondary prevention of major adverse CV events (MACE) thus providing the first confirmation of the involvement of a specific inflammatory pathway in human atherosclerotic CV disease (ASCVD). Also, they highlighted the NOD-, LRR-, and pyrin domain-containing protein 3 inflammasome-related pathway as an effective therapeutic target to blunt ASCVD. In contrast, other trials interfering with a number of inflammasome-independent pathways failed to provide benefit. Lastly, all anti-inflammatory trials underscored the importance of balancing the risk of impaired host defence with an increase in infections and the prevention of MACE in CV patients with residual inflammatory risk.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zurich, 12 Wagistrasse, 8952 Schlieren, Switzerland
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Lena Schwarz
- Center for Molecular Cardiology, University of Zurich, 12 Wagistrasse, 8952 Schlieren, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, 12 Wagistrasse, 8952 Schlieren, Switzerland
- Royal Brompton and Harefield Hospitals and Imperial College, London, UK
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, 12 Wagistrasse, 8952 Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Rämistrasse 100, 8092 Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Rämistrasse 100, 8092, Zurich, Switzerland
| |
Collapse
|
23
|
Lyall DM, Ward J, Banach M, Smith GD, Gill JG, Pell JP, Holmes MV, Sattar N. PCSK9 genetic variants and cognitive abilities: a large-scale Mendelian randomization study. Arch Med Sci 2021; 17:241-244. [PMID: 33488877 PMCID: PMC7811317 DOI: 10.5114/aoms/127226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/17/2020] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION PCSK9 inhibitors lower low-density lipoprotein (LDL) cholesterol and are efficacious at reducing vascular disease, however questions remain about potential effects on cognitive function. METHODS We examined the association of genetic variants in PCSK9 with continuous measures of cognitive ability in UK Biobank. Six independent polymorphisms in PCSK9 were used in up to 337,348 individuals. RESULTS The PCSK9 allele score was associated with a lower risk of CHD, and weakly with worse log reaction time. CONCLUSIONS We are unable to rule out meaningful associations of PCSK9 genetic variants with cognition, emphasising the potential need for continued pharmacovigilance for patients currently treated with PCSK9 inhibitors.
Collapse
Affiliation(s)
- Donald M. Lyall
- Institute of Health and Wellbeing, University of Glasgow, Scotland, UK
| | - Joey Ward
- Institute of Health and Wellbeing, University of Glasgow, Scotland, UK
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Lodz, Poland
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Jason G. Gill
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, UK
| | - Jill P. Pell
- Institute of Health and Wellbeing, University of Glasgow, Scotland, UK
| | - Michael V. Holmes
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, UK
- National Institute for Health Research, Oxford Biomedical Research Centre, Oxford University Hospital, Oxford, UK
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, UK
| |
Collapse
|
24
|
Ajala ON, Everett BM. Targeting Inflammation to Reduce Residual Cardiovascular Risk. Curr Atheroscler Rep 2020; 22:66. [DOI: 10.1007/s11883-020-00883-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
25
|
Scholz M, Henger S, Beutner F, Teren A, Baber R, Willenberg A, Ceglarek U, Pott J, Burkhardt R, Thiery J. Cohort Profile: The Leipzig Research Center for Civilization Diseases–Heart Study (LIFE-Heart). Int J Epidemiol 2020; 49:1439-1440h. [DOI: 10.1093/ije/dyaa075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Markus Scholz
- Institute for Medical Informatics, Statistic and Epidemiology, University of Leipzig, Leipzig, Germany
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
| | - Sylvia Henger
- Institute for Medical Informatics, Statistic and Epidemiology, University of Leipzig, Leipzig, Germany
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
| | - Frank Beutner
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
- Heart Center Leipzig, Leipzig, Germany
| | - Andrej Teren
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
- Heart Center Leipzig, Leipzig, Germany
| | - Ronny Baber
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Anja Willenberg
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Uta Ceglarek
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Janne Pott
- Institute for Medical Informatics, Statistic and Epidemiology, University of Leipzig, Leipzig, Germany
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
| | - Ralph Burkhardt
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Joachim Thiery
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
26
|
Targeted anti-inflammatory therapy is a new insight for reducing cardiovascular events: A review from physiology to the clinic. Life Sci 2020; 253:117720. [PMID: 32360620 DOI: 10.1016/j.lfs.2020.117720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022]
Abstract
Despite considerable progressions, cardiovascular disease (CVD) is still one of the major causes of mortality around the world, indicates an important and unmet clinical need. Recently, extensive studies have been performed on the role of inflammatory factors as either a major or surrogate factor in the pathophysiology of CVD. Epidemiological observations suggest the theory of the role of inflammatory mediators in the development of cardiovascular events. This may support the idea that targeted anti-inflammatory therapies, on the background of traditional validated medical therapies, can play a significant role in prevention and even reduction of cardiovascular disorders. Many randomized controlled trials have shown that drugs commonly useful for primary and secondary prevention of CVD have an anti-inflammatory mechanism. Further, many anti-inflammatory drugs are being examined because of their potential to reduce the risk of cardiovascular problems. In this study, we review the process of inflammation in the development of cardiovascular events, both in vivo and clinical evidence in immunotherapy for CVD.
Collapse
|
27
|
Bovijn J, Krebs K, Chen CY, Boxall R, Censin JC, Ferreira T, Pulit SL, Glastonbury CA, Laber S, Millwood IY, Lin K, Li L, Chen Z, Milani L, Smith GD, Walters RG, Mägi R, Neale BM, Lindgren CM, Holmes MV. Evaluating the cardiovascular safety of sclerostin inhibition using evidence from meta-analysis of clinical trials and human genetics. Sci Transl Med 2020; 12:eaay6570. [PMID: 32581134 PMCID: PMC7116615 DOI: 10.1126/scitranslmed.aay6570] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/26/2019] [Accepted: 05/26/2020] [Indexed: 12/23/2022]
Abstract
Inhibition of sclerostin is a therapeutic approach to lowering fracture risk in patients with osteoporosis. However, data from phase 3 randomized controlled trials (RCTs) of romosozumab, a first-in-class monoclonal antibody that inhibits sclerostin, suggest an imbalance of serious cardiovascular events, and regulatory agencies have issued marketing authorizations with warnings of cardiovascular disease. Here, we meta-analyze published and unpublished cardiovascular outcome trial data of romosozumab and investigate whether genetic variants that mimic therapeutic inhibition of sclerostin are associated with higher risk of cardiovascular disease. Meta-analysis of up to three RCTs indicated a probable higher risk of cardiovascular events with romosozumab. Scaled to the equivalent dose of romosozumab (210 milligrams per month; 0.09 grams per square centimeter of higher bone mineral density), the SOST genetic variants were associated with lower risk of fracture and osteoporosis (commensurate with the therapeutic effect of romosozumab) and with a higher risk of myocardial infarction and/or coronary revascularization and major adverse cardiovascular events. The same variants were also associated with increased risk of type 2 diabetes mellitus and higher systolic blood pressure and central adiposity. Together, our findings indicate that inhibition of sclerostin may elevate cardiovascular risk, warranting a rigorous evaluation of the cardiovascular safety of romosozumab and other sclerostin inhibitors.
Collapse
Affiliation(s)
- Jonas Bovijn
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Kristi Krebs
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Chia-Yen Chen
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ruth Boxall
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Jenny C Censin
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Teresa Ferreira
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Sara L Pulit
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Genetics, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Craig A Glastonbury
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Samantha Laber
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Iona Y Millwood
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Kuang Lin
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Liming Li
- Department of Epidemiology and Biostatistics, Peking University Health Science Centre, Peking University, Beijing 100191, China
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Lili Milani
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Robin G Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cecilia M Lindgren
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Michael V Holmes
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK.
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
28
|
Khajeniazi S, Marjani A, Shakeri R, Hakimi S. Polymorphism of Secretary PLA2G2A Gene Associated with Its Serum Level in Type2 Diabetes Mellitus Patients in Northern Iran. Endocr Metab Immune Disord Drug Targets 2020; 19:1192-1197. [PMID: 31132981 DOI: 10.2174/1871530319666190528111225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/14/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Inflammation may occur in Type2 diabetes mellitus. sPLA2 is among the factors that contribute to the activation of pathways involved in inflammation. Several agents affect serum sPLA2 level, one of which is genetic diversity. OBJECTIVE The current study was performed to determine whether there is a relationship between sPLA2 gene (-763C > G) polymorphism and circulating sPLA2 level in patients with Type 2 diabetes. METHODS DNA was extracted from blood samples and used for the amplification of sPLA2 gene using ARMS-PCR. RESULTS A statistical analysis using SPSS (version 16) revealed a significant correlation between -763C > G sPLA2 gene polymorphisms and the disease incidence in patients with T2DM. Among the three possible genotypes (GG, CC, and CG), CG genotype was found to have a higher frequency(53%) in T2DM patients. GG and CC genotypes frequencies were 20 and 27%, respectively. In healthy individuals, the frequencies of CC, GG, and GC genotypes were 77, 9.8% and 13.2%, respectively). Patients with genotype GG had the highest level of sPLA2. We showed that C>G polymorphism at position- 763 is associated with a high level of sPLA2 in both T2DM patients and healthy individuals. The average of sPLA2 circulating level was (170.48± 84.90), (106.62 ± 74.31), in patients and normal individuals, respectively. CONCLUSION Our findings show that sPLA2 serum level is significantly higher in patients with T2DM disease than that in healthy individuals.
Collapse
Affiliation(s)
- Safoura Khajeniazi
- Department of Medical Technology, Faculty of Advanced Medical Sciences and Technology, Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abdoljalal Marjani
- Department of Biochemistry and Biophysics, Faculty of Medicine, Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Raheleh Shakeri
- Department of Biochemistry and Biophysics, Faculty of Medicine, Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Safoura Hakimi
- Department of Biochemistry and Biophysics, Faculty of Medicine, Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
29
|
Karjalainen MK, Holmes MV, Wang Q, Anufrieva O, Kähönen M, Lehtimäki T, Havulinna AS, Kristiansson K, Salomaa V, Perola M, Viikari JS, Raitakari OT, Järvelin MR, Ala-Korpela M, Kettunen J. Apolipoprotein A-I concentrations and risk of coronary artery disease: A Mendelian randomization study. Atherosclerosis 2020; 299:56-63. [PMID: 32113648 DOI: 10.1016/j.atherosclerosis.2020.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/14/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Apolipoprotein A-I (apoA-I) infusions represent a potential novel therapeutic approach for the prevention of coronary artery disease (CAD). Although circulating apoA-I concentrations inversely associate with risk of CAD, the evidence base of this representing a causal relationship is lacking. The aim was to assess the causal role of apoA-I using human genetics. METHODS We identified a variant (rs12225230) in APOA1 locus that associated with circulating apoA-I concentrations (p < 5 × 10-8) in 20,370 Finnish participants, and meta-analyzed our data with a previous GWAS of apoA-I. We obtained genetic estimates of CAD from UK Biobank and CARDIoGRAMplusC4D (totaling 122,733 CAD cases) and conducted a two-sample Mendelian randomization analysis. We compared our genetic findings to observational associations of apoA-I with risk of CAD in 918 incident CAD cases among 11,535 individuals from population-based prospective cohorts. RESULTS ApoA-I was associated with a lower risk of CAD in observational analyses (HR 0.81; 95%CI: 0.75, 0.88; per 1-SD higher apoA-I), with the association showing a dose-response relationship. Rs12225230 associated with apoA-I concentrations (per-C allele beta 0.076 SD; SE: 0.013; p = 1.5 × 10-9) but not with confounders. In Mendelian randomization analyses, apoA-I was not related to risk of CAD (OR 1.13; 95%CI: 0.98,1.30 per 1-SD higher apoA-I), which was different from the observational association. Similar findings were observed using an independent ABCA1 variant in sensitivity analysis. CONCLUSIONS Genetic evidence fails to support a cardioprotective role for apoA-I. This is in line with the cumulative evidence showing that HDL-related phenotypes are unlikely to have a protective role in CAD.
Collapse
Affiliation(s)
- Minna K Karjalainen
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland; Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - Michael V Holmes
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK; Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK; National Institute for Health Research, Oxford Biomedical Research Centre, Oxford University Hospital, Oxford, UK; Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK.
| | - Qin Wang
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland; Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland; Systems Epidemiology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Olga Anufrieva
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland; Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratoriesand Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Aki S Havulinna
- National Institute for Health and Welfare, Helsinki, Finland; Institute for Molecular Medicine Finland (FIMM-HiLIFE), Helsinki, Finland
| | | | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Markus Perola
- National Institute for Health and Welfare, Helsinki, Finland; Diabetes and Obesity Research Program, University of Helsinki, Helsinki, Finland; Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Jorma S Viikari
- Department of Medicine, University of Turku, Turku, Finland; Division of Medicine, Turku University Hospital, Turku, Finland
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Marjo-Riitta Järvelin
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland; Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland; Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Department of Life Sciences, College of Health and Life Sciences, Brunel University London, UK
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland; Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland; NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, The Alfred Hospital, Monash University, Melbourne, VIC, Australia.
| | - Johannes Kettunen
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland; Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland; National Institute for Health and Welfare, Helsinki, Finland.
| |
Collapse
|
30
|
Sales TA, Marcussi S, Ramalho TC. Current Anti-Inflammatory Therapies and the Potential of Secretory Phospholipase A2 Inhibitors in the Design of New Anti-Inflammatory Drugs: A Review of 2012 - 2018. Curr Med Chem 2020; 27:477-497. [PMID: 30706775 DOI: 10.2174/0929867326666190201120646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 11/12/2018] [Accepted: 12/11/2018] [Indexed: 01/30/2023]
Abstract
The inflammatory process is a natural self-defense response of the organism to damage agents and its action mechanism involves a series of complex reactions. However, in some cases, this process can become chronic, causing much harm to the body. Therefore, over the years, many anti-inflammatory drugs have been developed aiming to decrease the concentrations of inflammatory mediators in the organism, which is a way of controlling these abnormal chain reactions. The main target of conventional anti-inflammatory drugs is the cyclooxygenase (COX) enzyme, but its use implies several side effects. Thus, based on these limitations, many studies have been performed, aiming to create new drugs, with new action mechanisms. In this sense, the phospholipase A2 (PLA2) enzymes stand out. Among all the existing isoforms, secretory PLA2 is the major target for inhibitor development, since many studies have proven that this enzyme participates in various inflammatory conditions, such as cancer, Alzheimer and arthritis. Finally, for the purpose of developing anti-inflammatory drugs that are sPLA2 inhibitors, many molecules have been designed. Accordingly, this work presents an overview of inflammatory processes and mediators, the current available anti-inflammatory drugs, and it briefly covers the PLA2 enzymes, as well as the diverse structural array of the newest sPLA2 inhibitors as a possible target for the production of new anti-inflammatory drugs.
Collapse
Affiliation(s)
- Thais A Sales
- Molecular Modeling Laboratory, Chemistry Department, Federal University of Lavras, 37200-000 Lavras, Brazil
| | - Silvana Marcussi
- Biochemistry Laboratory, Chemistry Department, Federal University of Lavras, 37200-000 Lavras, Brazil
| | - Teodorico C Ramalho
- Molecular Modeling Laboratory, Chemistry Department, Federal University of Lavras, 37200-000 Lavras, Brazil.,Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, 62, 50003 Rokitanskeho, Czech Republic
| |
Collapse
|
31
|
Akinkuolie AO, Lawler PR, Chu AY, Caulfield M, Mu J, Ding B, Nyberg F, Glynn RJ, Ridker PM, Hurt-Camejo E, Chasman DI, Mora S. Group IIA Secretory Phospholipase A 2, Vascular Inflammation, and Incident Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2020; 39:1182-1190. [PMID: 31070471 DOI: 10.1161/atvbaha.118.311894] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Objective- Inflammation is a causal risk factor for cardiovascular disease (CVD). sPLA2-IIA (group IIA secretory phospholipase A2) plays an integral role in regulating vascular inflammation. Although studies investigated sPLA2-IIA in secondary prevention, we prospectively evaluated sPLA2-IIA mass and genetic variants with CVD events in a primary prevention population with chronic inflammation. Approach and Results- The JUPITER trial (Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin) randomized participants with LDL (low-density lipoprotein) <130 mg/dL and hsCRP (high-sensitivity C-reactive protein) ≥2 mg/L to high-intensity rosuvastatin versus placebo. Baseline and 1-year plasma sPLA2-IIA mass was measured (N=11 269 baseline; N=9620 1 year). We also identified genetic variants influencing sPLA2-IIA using genome-wide association and examined them with CVD. Three hundred thirteen incident CVD events occurred during follow-up. Baseline sPLA2-IIA mass (median, 25th-75th percentile: 3.81, 2.49-6.03 ng/mL) was associated with increased risk of CVD: risk factor-adjusted hazard ratio (95% CI; P) per SD increment: 1.22 (1.08-1.38; P=0.002). This remained significant (1.18; 1.04-1.35; P=0.01) after incrementally adjusting for hsCRP. Similar estimates were observed in rosuvastatin and placebo groups ( P treatment interaction>0.05). The rs11573156C variant in PLA2G2A (encoding sPLA2-IIA) had the strongest effect on sPLA2-II: median (25th-75th percentile, ng/mL) for CC and GG genotypes: 2.79 (1.97-4.01) and 7.38 (5.38-10.19), respectively; and had nonsignificant trend for higher CVD risk (hazard ratio, 1.11; 95% CI, 0.89-1.38; P=0.34). Conclusions- In the JUPITER population recruited on chronic inflammation, sPLA2-IIA mass was associated with CVD risk relating to vascular inflammation not fully reflected by hsCRP. Additional studies, including larger functional genetic and clinical studies, are needed to determine whether sPLA2-IIA may be a potential pharmacological target for primary prevention of CVD. Clinical Trial Registration- URL: http://www.clinicaltrials.gov . Unique identifier: NCT00239681.
Collapse
Affiliation(s)
- Akintunde O Akinkuolie
- From the Center for Lipid Metabolomics, Division of Preventive Medicine (A.O.A., P.R.L., R.J.G., P.M.R., D.I.C., S.M.), Department of Medicine, Brigham and Women's Hospital, Boston, MA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston (A.O.A.)
| | - Patrick R Lawler
- From the Center for Lipid Metabolomics, Division of Preventive Medicine (A.O.A., P.R.L., R.J.G., P.M.R., D.I.C., S.M.), Department of Medicine, Brigham and Women's Hospital, Boston, MA.,Peter Munk Cardiac Centre, Toronto General Hospital, ON, Canada (P.R.L.).,Heart and Stroke/Richard Lewar Centre for Excellence in Cardiovascular Research, University of Toronto, ON, Canada (P.R.L.)
| | - Audrey Y Chu
- Merck Research Laboratories, Boston, MA (A.Y.C.)
| | - Michael Caulfield
- Department of Endocrinology & CVD, Quest Diagnostics Nichols Institute, San Juan Capistrano, CA (M.C., J.M.)
| | - Jianying Mu
- Department of Endocrinology & CVD, Quest Diagnostics Nichols Institute, San Juan Capistrano, CA (M.C., J.M.)
| | - Bo Ding
- Medical Evidence & Observational Research, Global Medical Affairs (B.D., F.N.), AstraZeneca R&D, Mölndal, Sweden
| | - Fredrik Nyberg
- Medical Evidence & Observational Research, Global Medical Affairs (B.D., F.N.), AstraZeneca R&D, Mölndal, Sweden.,Occupational and Environmental Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden (F.N.)
| | - Robert J Glynn
- From the Center for Lipid Metabolomics, Division of Preventive Medicine (A.O.A., P.R.L., R.J.G., P.M.R., D.I.C., S.M.), Department of Medicine, Brigham and Women's Hospital, Boston, MA.,Department of Biostatistics, Harvard School of Public Health, Boston, MA (R.J.G.)
| | - Paul M Ridker
- From the Center for Lipid Metabolomics, Division of Preventive Medicine (A.O.A., P.R.L., R.J.G., P.M.R., D.I.C., S.M.), Department of Medicine, Brigham and Women's Hospital, Boston, MA.,Cardiovascular Medicine (P.M.R., S.M.), Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Eva Hurt-Camejo
- Cardiovascular & Metabolic Diseases, Innovative Medicines (E.H.-C.), AstraZeneca R&D, Mölndal, Sweden.,Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden (E.H.-C.)
| | - Daniel I Chasman
- From the Center for Lipid Metabolomics, Division of Preventive Medicine (A.O.A., P.R.L., R.J.G., P.M.R., D.I.C., S.M.), Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Samia Mora
- From the Center for Lipid Metabolomics, Division of Preventive Medicine (A.O.A., P.R.L., R.J.G., P.M.R., D.I.C., S.M.), Department of Medicine, Brigham and Women's Hospital, Boston, MA.,Cardiovascular Medicine (P.M.R., S.M.), Department of Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
32
|
Santoso A, Heriansyah T, Rohman MS. Phospholipase A2 is an Inflammatory Predictor in Cardiovascular Diseases: Is there any Spacious Room to Prove the Causation? Curr Cardiol Rev 2020; 16:3-10. [PMID: 31146670 PMCID: PMC7393598 DOI: 10.2174/1573403x15666190531111932] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/01/2019] [Accepted: 05/05/2019] [Indexed: 12/17/2022] Open
Abstract
Lipoprotein-associated phospholipase A2 (Lp-PLA2) is an enzyme family of phospholipase A2 produced by the inflammatory cell in atherosclerotic plaque. It is transported in the circulation, attached mainly to low-density lipoprotein-cholesterol (LDL-C). It hydrolyzes glycerophospholipids particularly fatty acids at the sn-2 position and produces numerous bioactive lipids; and leads to endothelial dysfunction, atherosclerotic plaque inflammation, and development of the necrotic core in plaques. There are two kinds of phospholipase A2, namely: secretory phospholipase A2 (sPLA2) and Lp- PLA2. They are deemed as evolving predictors of cardiovascular disease (CVD) risk in hospitaland population-based studies, including healthy subjects, acute coronary syndromes (ACS) and patients with CVD. Unfortunately, Lp-PLA2 inhibitor (darapladib) and s-PLA2 inhibitor (varespladib methyl) failed to prove to lower the risk of composite CVD mortality, myocardial infarction and stroke in those with stable CVD and ACS. Herein, we describe the explanation based on the existing data why there is still a discrepancy among them. So, it highlights the opinion that phospholipase A2 is merely the inflammatory biomarkers of CVD and playing an important role in atherosclerosis. Further, there is more spacious room to prove the causation.
Collapse
Affiliation(s)
- Anwar Santoso
- Address correspondence to this author at the Department of Cardiology and Vascular Medicine, National Cardiovascular Centre, Harapan Kita Hospital, Universitas Indonesia, Jakarta, Indonesia; Tel: +62 21 5684093;
E-mail:
| | | | | |
Collapse
|
33
|
Hingorani AD, Kuan V, Finan C, Kruger FA, Gaulton A, Chopade S, Sofat R, MacAllister RJ, Overington JP, Hemingway H, Denaxas S, Prieto D, Casas JP. Improving the odds of drug development success through human genomics: modelling study. Sci Rep 2019; 9:18911. [PMID: 31827124 PMCID: PMC6906499 DOI: 10.1038/s41598-019-54849-w] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 11/06/2019] [Indexed: 01/19/2023] Open
Abstract
Lack of efficacy in the intended disease indication is the major cause of clinical phase drug development failure. Explanations could include the poor external validity of pre-clinical (cell, tissue, and animal) models of human disease and the high false discovery rate (FDR) in preclinical science. FDR is related to the proportion of true relationships available for discovery (γ), and the type 1 (false-positive) and type 2 (false negative) error rates of the experiments designed to uncover them. We estimated the FDR in preclinical science, its effect on drug development success rates, and improvements expected from use of human genomics rather than preclinical studies as the primary source of evidence for drug target identification. Calculations were based on a sample space defined by all human diseases - the 'disease-ome' - represented as columns; and all protein coding genes - 'the protein-coding genome'- represented as rows, producing a matrix of unique gene- (or protein-) disease pairings. We parameterised the space based on 10,000 diseases, 20,000 protein-coding genes, 100 causal genes per disease and 4000 genes encoding druggable targets, examining the effect of varying the parameters and a range of underlying assumptions, on the inferences drawn. We estimated γ, defined mathematical relationships between preclinical FDR and drug development success rates, and estimated improvements in success rates based on human genomics (rather than orthodox preclinical studies). Around one in every 200 protein-disease pairings was estimated to be causal (γ = 0.005) giving an FDR in preclinical research of 92.6%, which likely makes a major contribution to the reported drug development failure rate of 96%. Observed success rate was only slightly greater than expected for a random pick from the sample space. Values for γ back-calculated from reported preclinical and clinical drug development success rates were also close to the a priori estimates. Substituting genome wide (or druggable genome wide) association studies for preclinical studies as the major information source for drug target identification was estimated to reverse the probability of late stage failure because of the more stringent type 1 error rate employed and the ability to interrogate every potential druggable target in the same experiment. Genetic studies conducted at much larger scale, with greater resolution of disease end-points, e.g. by connecting genomics and electronic health record data within healthcare systems has the potential to produce radical improvement in drug development success rate.
Collapse
Affiliation(s)
- Aroon D Hingorani
- Institute of Cardiovascular Science, University College London, London, UK.
- Health Data Research UK and UCL BHF Research Accelerator, London, UK.
| | - Valerie Kuan
- Institute of Cardiovascular Science, University College London, London, UK
- Health Data Research UK and UCL BHF Research Accelerator, London, UK
| | - Chris Finan
- Institute of Cardiovascular Science, University College London, London, UK
- Health Data Research UK and UCL BHF Research Accelerator, London, UK
| | | | - Anna Gaulton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Sandesh Chopade
- Institute of Cardiovascular Science, University College London, London, UK
- Health Data Research UK and UCL BHF Research Accelerator, London, UK
| | - Reecha Sofat
- Health Data Research UK and UCL BHF Research Accelerator, London, UK
- Institute of Health Informatics, University College London, London, UK
| | | | - John P Overington
- Institute of Cardiovascular Science, University College London, London, UK
- Medicines Discovery Catapult, Mereside, Alderley Park, Alderley Edge, Cheshire, UK
| | - Harry Hemingway
- Health Data Research UK and UCL BHF Research Accelerator, London, UK
- Institute of Health Informatics, University College London, London, UK
| | - Spiros Denaxas
- Health Data Research UK and UCL BHF Research Accelerator, London, UK
- Institute of Health Informatics, University College London, London, UK
| | - David Prieto
- Institute of Health Informatics, University College London, London, UK
- Applied Statistics in Medical Research Group, Catholic University of Murcia (UCAM), Murcia, Spain
| | - Juan Pablo Casas
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), Veterans Administration, Boston, MA, USA
| |
Collapse
|
34
|
Benn M, Nordestgaard BG. From genome-wide association studies to Mendelian randomization: novel opportunities for understanding cardiovascular disease causality, pathogenesis, prevention, and treatment. Cardiovasc Res 2019; 114:1192-1208. [PMID: 29471399 DOI: 10.1093/cvr/cvy045] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/16/2018] [Indexed: 12/22/2022] Open
Abstract
The Mendelian randomization approach is an epidemiological study design incorporating genetic information into traditional epidemiological studies to infer causality of biomarkers, risk factors, or lifestyle factors on disease risk. Mendelian randomization studies often draw on novel information generated in genome-wide association studies on causal associations between genetic variants and a risk factor or lifestyle factor. Such information can then be used in a largely unconfounded study design free of reverse causation to understand if and how risk factors and lifestyle factors cause cardiovascular disease. If causation is demonstrated, an opportunity for prevention of disease is identified; importantly however, before prevention or treatment can be implemented, randomized intervention trials altering risk factor levels or improving deleterious lifestyle factors needs to document reductions in cardiovascular disease in a safe and side-effect sparse manner. Documentation of causality can also inform on potential drug targets, more likely to be successful than prior approaches often relying on animal or cell studies mainly. The present review summarizes the history and background of Mendelian randomization, the study design, assumptions for using the design, and the most common caveats, followed by a discussion on advantages and disadvantages of different types of Mendelian randomization studies using one or more samples and different levels of information on study participants. The review also provides an overview of results on many of the risk factors and lifestyle factors for cardiovascular disease examined to date using the Mendelian randomization study design.
Collapse
Affiliation(s)
- Marianne Benn
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Børge G Nordestgaard
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark.,The Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen University Hospital, Denmark
| |
Collapse
|
35
|
Zhao TX, Mallat Z. Targeting the Immune System in Atherosclerosis. J Am Coll Cardiol 2019; 73:1691-1706. [DOI: 10.1016/j.jacc.2018.12.083] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/20/2018] [Accepted: 12/30/2018] [Indexed: 02/08/2023]
|
36
|
Affiliation(s)
- Michael V Holmes
- From the Medical Research Council Population Health Research Unit and the Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Chung O, Juonala M, Mallat Z, Hutri‐Kähönen N, Viikari JS, Raitakari OT, Magnussen CG. Tracking of secretory phospholipase A2 enzyme activity levels from childhood to adulthood: a 21‐year cohort. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2019. [DOI: 10.1016/j.jpedp.2018.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
38
|
Tracking of secretory phospholipase A2 enzyme activity levels from childhood to adulthood: a 21-year cohort. J Pediatr (Rio J) 2019; 95:247-254. [PMID: 29476705 DOI: 10.1016/j.jped.2018.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Secretory phospholipase A2 (sPLA2) enzyme activity is a potential inflammatory biomarker for cardiovascular disease. We examined the tracking, or persistence, of sPLA2 enzyme activity levels from childhood to adulthood, and identify potentially modifiable factors affecting tracking. METHOD Prospective cohort of 1735 children (45% females) who had serum sPLA2 enzyme activity levels and other cardiovascular disease risk factors measured in 1980 that were followed-up in 2001. RESULTS sPLA2 activity tracked from childhood to adulthood for males (r=0.39) and females (r=0.45). Those who decreased body mass index relative to their peers were more likely to resolve elevated childhood sPLA2 levels than have persistent elevated sPLA2 levels in childhood and adulthood. Those who consumed less fruit, and gained more body mass index relative to their peers, began smoking or were a persistent smoker between childhood and adulthood were more likely to develop incident elevated sPLA2 levels than those with persistent not elevated sPLA2 levels. CONCLUSIONS Childhood sPLA2 enzyme activity levels associate with adult sPLA2 levels 21 years later. Healthful changes in modifiable risk factors that occur between childhood and adulthood might prevent children from developing elevated sPLA2 levels in adulthood.
Collapse
|
39
|
Park JG, Oh GT. Current pharmacotherapies for atherosclerotic cardiovascular diseases. Arch Pharm Res 2019; 42:206-223. [DOI: 10.1007/s12272-019-01116-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022]
|
40
|
Graham I, Shear C, De Graeff P, Boulton C, Catapano AL, Stough WG, Carlsson SC, De Backer G, Emmerich J, Greenfeder S, Kim AM, Lautsch D, Nguyen T, Nissen SE, Prasad K, Ray KK, Robinson JG, Sasiela WJ, Bruins Slot K, Stroes E, Thuren T, Van der Schueren B, Velkovski-Rouyer M, Wasserman SM, Wiklund O, Zouridakis E. New strategies for the development of lipid-lowering therapies to reduce cardiovascular risk. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2019; 4:119-127. [PMID: 29194462 DOI: 10.1093/ehjcvp/pvx031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/27/2017] [Indexed: 12/29/2022]
Abstract
The very high occurrence of cardiovascular events presents a major public health issue, because treatment remains suboptimal. Lowering LDL cholesterol (LDL-C) with statins or ezetimibe in combination with a statin reduces major adverse cardiovascular events. The cardiovascular risk reduction in relation to the absolute LDL-C reduction is linear for most interventions without evidence of attenuation or increase in risk at low LDL-C levels. Opportunities for innovation in dyslipidaemia treatment should address the substantial risk of lipid-associated cardiovascular events among patients optimally treated per guidelines but who cannot achieve LDL-C goals and who could benefit from additional LDL-C-lowering therapy or experience side effects of statins. Fresh approaches are needed to identify promising drug targets early and develop them efficiently. The Cardiovascular Round Table of the European Society of Cardiology (ESC) convened a workshop to discuss new lipid-lowering strategies for cardiovascular risk reduction. Opportunities to improve treatment approaches and the efficient study of new therapies were explored. Circulating biomarkers may not be fully reliable proxy indicators of the relationship between treatment effect and clinical outcome. Mendelian randomization studies may better inform development strategies and refine treatment targets before Phase 3. Trials should match the drug to appropriate lipid and patient profile, and guidelines may move towards a precision-based approach to individual patient management. Stakeholder collaboration is needed to ensure continued innovation and better international coordination of both regulatory aspects and guidelines. It should be noted that risk may also be addressed through increased attention to other risk factors such as smoking, hypertension, overweight, and inactivity.
Collapse
Affiliation(s)
- Ian Graham
- Trinity College, Adelaide Health Foundation, Tallaght Hospital, Dublin 24, Ireland
| | - Chuck Shear
- Global Product Development/Internal Medicine, Pfizer, Inc., 235 E. 42nd Street, New York, New York 10017, NY, USA
| | - Pieter De Graeff
- Dutch Medicines Evaluation Board (CBG-MEB), Graadt Van Roggenweg 500, 3531 AH Utrecht, The Netherlands.,Department of Pharmacy and Clinical Pharmacology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences and Multimedica IRCCS, University of Milan, via Balzaretti 9, 20133 Milano, Italy
| | - Wendy Gattis Stough
- Departments of Clinical Research and Pharmacy Practice, Campbell University College of Pharmacy and Health Sciences, 217 Main St., Buies Creek, NC 27506, USA
| | - Stefan C Carlsson
- Cardiovascular Pharmacology, AstraZeneca, Pepparredsleden 1, SE-431 83 Mölndal, Sweden
| | - Guy De Backer
- Department of Public Health, Faculty of Medicine and Health Sciences, Ghent University, University Hospital, K3, 4th floor, De Pintelaan 185, B9000 Ghent, Belgium
| | - Joseph Emmerich
- Université Paris-Descartes, Cochin-Hôtel Dieu Hospital, French National Agency for Medicines and Health Products Safety, 143/147, Boulevard, Anatole France 93285, Saint-Denis, France
| | - Scott Greenfeder
- Regulatory Affairs, Daiichi-Sankyo, 211 Mt. Airy Road, Basking Ridge, NJ 07920, USA
| | - Albert M Kim
- Internal Medicine Research Unit, Pfizer, Inc., 1 Portland St., 4th floor, Cambridge, MA 02139, USA
| | - Dominik Lautsch
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Tu Nguyen
- Sanofi, 55 Corporate Drive, Bridgewater, NJ, USA
| | - Steven E Nissen
- Department of Cardiovascular Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Krishna Prasad
- Licensing Division, United Kingdom Medicines and Healthcare Products Regulatory Agency, 151 Buckingham Palace Road, London SW1W 9SZ, UK
| | - Kausik K Ray
- Department of Primary Care and Public Health, Imperial College, 323 Reynolds Building, Room 320, Charing Cross Hospital, London W68RF, UK
| | - Jennifer G Robinson
- Department of Epidemiology, College of Public Health, University of Iowa, 145 N. Riverside Dr S455 CPHB, Iowa City, IA 52242, USA
| | - William J Sasiela
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Karsten Bruins Slot
- Oslo University Hospital, Ullevål, Medical Department, Postboks 4956 Nydalen, 0424 Oslo, Norway
| | - Erik Stroes
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Tom Thuren
- Novartis Pharma AG, Asklepios 8, 4056 Basel, Switzerland
| | - Bart Van der Schueren
- Laboratory of Experimental Medicine and Endocrinology, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | - Scott M Wasserman
- Amgen, One Amgen Center Drive, MS 38.2.C, Thousand Oaks, CA 91320, USA
| | - Olov Wiklund
- Wallenberg Laboratory, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Emmanouil Zouridakis
- Licensing Division, United Kingdom Medicines and Healthcare Products Regulatory Agency, 151 Buckingham Palace Road, London SW1W 9SZ, UK
| | | |
Collapse
|
41
|
Roberts R. Mendelian Randomization Studies Promise to Shorten the Journey to FDA Approval. JACC Basic Transl Sci 2018; 3:690-703. [PMID: 30456340 PMCID: PMC6234613 DOI: 10.1016/j.jacbts.2018.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/19/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022]
Abstract
There has been a dearth of new drugs approved for cardiovascular disorders. The cost is prohibitive, averaging to $2.5 billion, and requiring 12.5 years. This is in large part due to the high failure rate, with only 5% approval by the Food and Drug Administration. Despite preclinical studies showing potential safety and efficacy, most fail when they go to clinical trials phase I to III. One cause for failure is the drug target, often discovered to be a biomarker rather than causative for the disease. Mendelian randomization (MR) studies would determine whether the drug target is causative and could save millions of dollars and time, and prevent unnecessary exposure to adverse drug effects. This was demonstrated in 3 clinical trials that were negative with 2 drugs, veraspladib and darapladib. MR studies during the trials showed the targets of secretory and lipoprotein-associated phospholipids A2 are not causative for coronary artery disease and predicted negative results. The requirement for MR studies is a genetic risk variant with altered function, randomized at conception that remains fixed throughout one’s lifetime. It is not confounded by dietary, lifestyle, or socioeconomic factors. It is more sensitive than randomized controlled trials because exposure to the risk factor is fixed for a lifetime. MR studies showed plasma high-density lipoprotein cholesterol is not a causative target of coronary artery disease, and neither is uric acid, C-reactive protein, and others. MR studies are highly sensitive in determining whether drug targets are causative, and are relatively easy, inexpensive, and not time consuming. It is recommended that drug targets undergo MR studies before proceeding to randomized controlled trials.
Collapse
Affiliation(s)
- Robert Roberts
- Department of Medicine, University of Arizona College of Medicine, Phoenix, Arizona
| |
Collapse
|
42
|
Groot HE, Al Ali L, van der Horst ICC, Schurer RAJ, van der Werf HW, Lipsic E, van Veldhuisen DJ, Karper JC, van der Harst P. Plasma interleukin 6 levels are associated with cardiac function after ST-elevation myocardial infarction. Clin Res Cardiol 2018; 108:612-621. [PMID: 30367209 PMCID: PMC6529378 DOI: 10.1007/s00392-018-1387-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/16/2018] [Indexed: 12/28/2022]
Abstract
Background and aims Myocardial infarction triggers an inflammatory response involved in cardiac repair. We studied the association of the interleukin 6 (IL-6) cascade with infarct size and cardiac function after ST-elevation myocardial infarction (STEMI). Methods In 369 STEMI patients IL-6, soluble IL-6 receptor (sIL-6R), and soluble glycoprotein (sgp) 130 were measured at baseline (hospital admission), 24 h, 2 weeks, 7 weeks, 4 months, and 1 year post-PCI and sIL-6R/IL-6 ratio was calculated. At 4 months, infarct size and left ventricular ejection fraction (LVEF) were assessed by magnetic resonance imaging. Diastolic function (E/e′) was determined by echocardiography. Results Hospital admission levels for IL-6, sIL-6R, sgp 130 were 3.7 pg/ml (IQR 2.1–6.7 pg/ml), 51.6 ng/ml (IQR 37.3–69.0 ng/ml), and 332 ng/ml (IQR 280–399 ng/ml), respectively. 24 h after admission, IL-6 had increased threefold compared to baseline (p < 0.001) and returned below baseline (p < 0.001) 2 weeks after STEMI. sIL-6R and sgp130 levels at 24 h remained similar to baseline but were increased at 2 weeks (p < 0.001; p < 0.001, respectively). IL-6 and sIL-6R/IL-6 ratio at 24 h were independently associated with infarct size [β 5.4 (95% CI 3.3–7.5); p < 0.001, β − 4.0 (95% CI − 6.1 to − 1.9); p < 0.001, respectively]. Higher levels of IL-6 at 24 h were associated with lower LVEF [β − 4.2 (95% CI -6.7 to − 1.8); p = 0.001]. Conclusions Higher IL-6 and lower sIL-6R/IL-6 ratio early after presentation with STEMI are indicative for larger infarct size and decreased cardiac function at 4 months. Electronic supplementary material The online version of this article (10.1007/s00392-018-1387-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hilde E Groot
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Lawien Al Ali
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Iwan C C van der Horst
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Remco A J Schurer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Hindrik W van der Werf
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Erik Lipsic
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Dirk J van Veldhuisen
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Jacco C Karper
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
43
|
Young EP, Stitziel NO. Capitalizing on Insights from Human Genetics to Identify Novel Therapeutic Targets for Coronary Artery Disease. Annu Rev Med 2018; 70:19-32. [PMID: 30355262 DOI: 10.1146/annurev-med-041717-085853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Coronary artery disease (CAD) is a major cause of morbidity and mortality. Unfortunately, despite decades of research focused on disease pathogenesis, we still lack a sufficient pharmacopeia for preventing CAD. The failure of many novel cardiovascular drugs to improve clinical outcomes reflects the major substantial challenge of drug development: identifying causal mechanisms that can be therapeutically manipulated to lower disease risk. Identifying genetic variants that are associated with risk of CAD has emerged as a clear path toward improving our understanding of the underlying mechanisms that lead to disease and to the development of new therapies. Here, we review the potential utility and limitations of using human genetics to guide the identification of therapeutic targets for CAD.
Collapse
Affiliation(s)
- Erica P Young
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Nathan O Stitziel
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, USA; .,Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.,McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, Missouri 63108, USA;
| |
Collapse
|
44
|
Nelson CP, Erridge C. Are toll-like receptors potential drug targets for atherosclerosis? Evidence from genetic studies to date. Immunogenetics 2018; 71:1-11. [PMID: 30327825 DOI: 10.1007/s00251-018-1092-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/09/2018] [Indexed: 01/08/2023]
Abstract
Low-density lipoprotein cholesterol lowering, most notably via statin therapy, has successfully reduced the burden of coronary artery disease (CAD) in recent decades. However, the residual risk remaining even after aggressive lipid lowering has renewed interest in alternative targets. Anti-inflammatory drugs are thought to have much potential in this context, but side effects associated with long-term use of conventional anti-inflammatories, such as NSAIDs and glucocorticoids, preclude their use as preventive agents for CAD. Evidence from epidemiological studies and murine models of atherosclerosis suggests that toll-like receptors (TLRs) may have utility as targets for more focused anti-inflammatories, but it remains unclear if this pathway is causally related to CAD in man. Here, we review recent insight into this question gained from genetic studies of cardiovascular risk and innate immune function, focussing on the potential of Mendelian randomisation approaches based on intracellular-signalling pathways to identify and prioritise targets for drug development.
Collapse
Affiliation(s)
- Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, LE3 9QP, UK.,NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Groby Road, Leicester, LE3 9QP, UK
| | - Clett Erridge
- Department of Cardiovascular Sciences, University of Leicester, Leicester, LE3 9QP, UK. .,Department of Biomedical and Forensic Sciences, Anglia Ruskin University, East Rd, Cambridge, CB1 1PT, UK.
| |
Collapse
|
45
|
Manichaikul A, Wang XQ, Li L, Erdmann J, Lettre G, Bis JC, Waterworth D, Cushman M, Jenny NS, Post WS, Palmas W, Tsai MY, Wallentin L, White H, Schunkert H, O’Donnell CJ, Herrington DM, Rich SS, O’Donoghue ML, Rodriguez A. Lp-PLA2, scavenger receptor class B type I gene (SCARB1) rs10846744 variant, and cardiovascular disease. PLoS One 2018; 13:e0204352. [PMID: 30289950 PMCID: PMC6173398 DOI: 10.1371/journal.pone.0204352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/06/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND We previously reported association of SCARB1 SNP rs10846744 with common carotid IMT (cIMT) and cardiovascular disease (CVD) events. Since rs10846744 has been reported in association with Lp-PLA2 mass and activity, we hypothesized that inflammatory pathways might mediate the association of rs10846744 with atherosclerosis. METHODS We first examined association of rs10846744 in CVD in multiple large-scale consortium-based genome-wide association studies. We further examined 27 parameters of interest, including Lp-PLA2 mass and activity, inflammatory markers, and plasma phospholipid fatty acids, and fatty acid ratios in participants from the Multi-Ethnic Study of Atherosclerosis (MESA), as potential mediators in the pathway linking rs10846744 with cIMT and incident CVD. Finally, we examined the association of rs10846744 with Lp-PLA2 activity, cardiovascular outcomes, and interaction with the Lp-PLA2 inhibitor, darapladib, in the Stabilization of Atherosclerotic Plaque by Initiation of Darapladib Therapy (STABILITY) and Stabilization of Plaque using Darapladib-Thrombolysis in Myocardial Infarction 52 (SOLID-TIMI 52) studies. RESULTS SCARB1 rs10846744 was associated with coronary artery disease events in CARDIoGRAMplusC4D (odds ratio 1.05; 95% CI [1.02, 1.07]; P = 1.4x10-4). In combined analysis across race/ethnic groups in MESA, rs10846744 was associated with Lp-PLA2 mass (P = 0.04) and activity (P = 0.001), homocysteine (P = 0.03), LDL particle number (P = 0.01), docosahexaenoic acid [DHA] (P = 0.01), docosapentaenoic acid [DPA] (P = 0.04), DPA/ eicosapentaenoic acid [EPA] ratio (P = 0.002), and DHA/EPA ratio (P = 0.008). Lp-PLA2 activity was identified as a mediator of rs10846744 with cIMT in a basic model (P = 8x10-5), but not after adjustment for CVD risk factors. There was no interaction or modifier effect of the Lp-PLA2 inhibitor darapladib assignment on the relationship between rs10846744 and major CVD events in either STABILITY or SOLID-TIMI 52. SUMMARY SCARB1 rs10846744 is significantly associated with Lp-PLA2 activity, atherosclerosis, and CVD events, but Lp-PLA2 activity is not a mediator in the association of rs10846744 with cIMT in MESA.
Collapse
Affiliation(s)
- Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States of America
- Department of Public Health Sciences, Biostatistics Section, University of Virginia, Charlottesville, VA, United States of America
| | - Xin-Qun Wang
- Department of Public Health Sciences, Biostatistics Section, University of Virginia, Charlottesville, VA, United States of America
| | - Li Li
- Genomic Medicine, PAREXEL International, Durham, NC, United States of America
| | - Jeanette Erdmann
- Institut für Integrative und Experimentelle Genomik, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg, Kiel, Lübeck, Germany
| | - Guillaume Lettre
- Montreal Heart Institute, Montreal, Quebec, Canada
- Université de Montréal, Montreal, Quebec, Canada
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, United States of America
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Dawn Waterworth
- Genetics, GlaxoSmithKline, King of Prussia, PA, United States of America
| | - Mary Cushman
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States of America
| | - Nancy S. Jenny
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States of America
| | - Wendy S. Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine and Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Walter Palmas
- Division of General Medicine, Department of Medicine, Columbia University College of Physicians & Surgeons, New York, NY, United States of America
| | - Michael Y. Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States of America
| | - Lars Wallentin
- Uppsala Clinical Research Center and Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Harvey White
- Auckland City Hospital Green Lane Cardiovascular Sciences, Auckland, New Zealand
| | - Heribert Schunkert
- DZHK (German Research Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Christopher J. O’Donnell
- Cardiology Section, Boston Veteran’s Administration Healthcare, Boston, MA, United States of America
- NHLBI and Boston University Framingham Heart Study, Framingham, MA, United States of America
| | - David M. Herrington
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States of America
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States of America
- Department of Public Health Sciences, Biostatistics Section, University of Virginia, Charlottesville, VA, United States of America
| | - Michelle L. O’Donoghue
- TIMI Study Group, Cardiovascular Division, Brigham and Women's Hospital, Boston MA, United States of America
| | - Annabelle Rodriguez
- Department of Cell Biology, Center for Vascular Biology, University of Connecticut Health, Farmington, CT, United States of America
| |
Collapse
|
46
|
Yarmolinsky J, Wade KH, Richmond RC, Langdon RJ, Bull CJ, Tilling KM, Relton CL, Lewis SJ, Davey Smith G, Martin RM. Causal Inference in Cancer Epidemiology: What Is the Role of Mendelian Randomization? Cancer Epidemiol Biomarkers Prev 2018; 27:995-1010. [PMID: 29941659 PMCID: PMC6522350 DOI: 10.1158/1055-9965.epi-17-1177] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/15/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023] Open
Abstract
Observational epidemiologic studies are prone to confounding, measurement error, and reverse causation, undermining robust causal inference. Mendelian randomization (MR) uses genetic variants to proxy modifiable exposures to generate more reliable estimates of the causal effects of these exposures on diseases and their outcomes. MR has seen widespread adoption within cardio-metabolic epidemiology, but also holds much promise for identifying possible interventions for cancer prevention and treatment. However, some methodologic challenges in the implementation of MR are particularly pertinent when applying this method to cancer etiology and prognosis, including reverse causation arising from disease latency and selection bias in studies of cancer progression. These issues must be carefully considered to ensure appropriate design, analysis, and interpretation of such studies. In this review, we provide an overview of the key principles and assumptions of MR, focusing on applications of this method to the study of cancer etiology and prognosis. We summarize recent studies in the cancer literature that have adopted a MR framework to highlight strengths of this approach compared with conventional epidemiological studies. Finally, limitations of MR and recent methodologic developments to address them are discussed, along with the translational opportunities they present to inform public health and clinical interventions in cancer. Cancer Epidemiol Biomarkers Prev; 27(9); 995-1010. ©2018 AACR.
Collapse
Affiliation(s)
- James Yarmolinsky
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Kaitlin H Wade
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Rebecca C Richmond
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Ryan J Langdon
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Caroline J Bull
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Kate M Tilling
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Sarah J Lewis
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Richard M Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
47
|
Yarmolinsky J, Bonilla C, Haycock PC, Langdon RJQ, Lotta LA, Langenberg C, Relton CL, Lewis SJ, Evans DM, Davey Smith G, Martin RM. Circulating Selenium and Prostate Cancer Risk: A Mendelian Randomization Analysis. J Natl Cancer Inst 2018; 110:1035-1038. [PMID: 29788239 PMCID: PMC6136927 DOI: 10.1093/jnci/djy081] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/21/2018] [Accepted: 03/30/2018] [Indexed: 01/01/2023] Open
Abstract
In the Selenium and Vitamin E Cancer Prevention Trial (SELECT), selenium supplementation (causing a median 114 μg/L increase in circulating selenium) did not lower overall prostate cancer risk, but increased risk of high-grade prostate cancer and type 2 diabetes. Mendelian randomization analysis uses genetic variants to proxy modifiable risk factors and can strengthen causal inference in observational studies. We constructed a genetic instrument comprising 11 single nucleotide polymorphisms robustly (P < 5 × 10-8) associated with circulating selenium in genome-wide association studies. In a Mendelian randomization analysis of 72 729 men in the PRACTICAL Consortium (44 825 case subjects, 27 904 control subjects), 114 μg/L higher genetically elevated circulating selenium was not associated with prostate cancer (odds ratio [OR] = 1.01, 95% confidence interval [CI] = 0.89 to 1.13). In concordance with findings from SELECT, selenium was weakly associated with advanced (including high-grade) prostate cancer (OR = 1.21, 95% CI = 0.98 to 1.49) and type 2 diabetes (OR = 1.18, 95% CI = 0.97 to 1.43; in a type 2 diabetes genome-wide association study meta-analysis with up to 49 266 case subjects and 249 906 control subjects). Our Mendelian randomization analyses do not support a role for selenium supplementation in prostate cancer prevention and suggest that supplementation could have adverse effects on risks of advanced prostate cancer and type 2 diabetes.
Collapse
Affiliation(s)
- James Yarmolinsky
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Carolina Bonilla
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Philip C Haycock
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ryan J Q Langdon
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Luca A Lotta
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | | | - Caroline L Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sarah J Lewis
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - David M Evans
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | | | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Richard M Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- University Hospitals Bristol NHS Foundation Trust National Institute for Health Research Bristol Nutrition Biomedical Research Unit, University of Bristol, Bristol, UK
| |
Collapse
|
48
|
Patel VB, Shah S, Verma S, Oudit GY. Epicardial adipose tissue as a metabolic transducer: role in heart failure and coronary artery disease. Heart Fail Rev 2018; 22:889-902. [PMID: 28762019 DOI: 10.1007/s10741-017-9644-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Obesity and diabetes are strongly associated with metabolic and cardiovascular disorders including dyslipidemia, coronary artery disease, hypertension, and heart failure. Adipose tissue is identified as a complex endocrine organ, which by exerting a wide array of regulatory functions at the cellular, tissue and systemic levels can have profound effects on the cardiovascular system. Different terms including "epicardial," "pericardial," and "paracardial" have been used to describe adipose tissue deposits surrounding the heart. Epicardial adipose tissue (EAT) is a unique and multifaceted fat depot with local and systemic effects. The functional and anatomic proximity of EAT to the myocardium enables endocrine, paracrine, and vasocrine effects on the heart. EAT displays a large secretosome, which regulates physiological and pathophysiological processes in the heart. Perivascular adipose tissue (PVAT) secretes adipose-derived relaxing factor, which is a "cocktail" of cytokines, adipokines, microRNAs, and cellular mediators, with a potent effect on paracrine regulation of vascular tone, vascular smooth muscle cell proliferation, migration, atherosclerosis-susceptibility, and restenosis. Although there are various physiological functions of the EAT and PVAT, a phenotypic transformation can lead to a major pathogenic role in various cardiovascular diseases. The equilibrium between the physiological and pathophysiological properties of EAT is very delicate and susceptible to the influences of intrinsic and extrinsic factors. Various adipokines secreted from EAT and PVAT have a profound effect on the myocardium and coronary arteries; targeting these adipokines could be an important therapeutic approach to counteract cardiovascular disease.
Collapse
Affiliation(s)
- Vaibhav B Patel
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2S2, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
- Department of Physiology and Pharmacology and Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Saumya Shah
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2S2, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada.
- Department of Physiology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
49
|
van der Laan SW, Harshfield EL, Hemerich D, Stacey D, Wood AM, Asselbergs FW. From lipid locus to drug target through human genomics. Cardiovasc Res 2018; 114:1258-1270. [PMID: 29800275 DOI: 10.1093/cvr/cvy120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/16/2018] [Indexed: 12/14/2022] Open
Abstract
In the last decade, over 175 genetic loci have robustly been associated to levels of major circulating blood lipids. Most loci are specific to one or two lipids, whereas some (SUGP1, ZPR1, TRIB1, HERPUD1, and FADS1) are associated to all. While exposing the polygenic architecture of circulating lipids and the underpinnings of dyslipidaemia, these genome-wide association studies (GWAS) have provided further evidence of the critical role that lipids play in coronary heart disease (CHD) risk, as indicated by the 2.7-fold enrichment for macrophage gene expression in atherosclerotic plaques and the association of 25 loci (such as PCSK9, APOB, ABCG5-G8, KCNK5, LPL, HMGCR, NPC1L1, CETP, TRIB1, ABO, PMAIP1-MC4R, and LDLR) with CHD. These GWAS also confirmed known and commonly used therapeutic targets, including HMGCR (statins), PCSK9 (antibodies), and NPC1L1 (ezetimibe). As we head into the post-GWAS era, we offer suggestions for how to move forward beyond genetic risk loci, towards refining the biology behind the associations and identifying causal genes and therapeutic targets. Deep phenotyping through lipidomics and metabolomics will refine and increase the resolution to find causal and druggable targets, and studies aimed at demonstrating gene transcriptional and regulatory effects of lipid associated loci will further aid in identifying these targets. Thus, we argue the need for deeply phenotyped, large genetic association studies to reduce costs and failures and increase the efficiency of the drug discovery pipeline. We conjecture that in the next decade a paradigm shift will tip the balance towards a data-driven approach to therapeutic target development and the application of precision medicine where human genomics takes centre stage.
Collapse
Affiliation(s)
- Sander W van der Laan
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Eric L Harshfield
- Department of Public Health and Primary Care, University of Cambridge, 2 Worts Causeway, Cambridge CB1 8RN, UK
- Department of Clinical Neurosciences, University of Cambridge, R3, Box 83, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Daiane Hemerich
- Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - David Stacey
- Department of Public Health and Primary Care, University of Cambridge, 2 Worts Causeway, Cambridge CB1 8RN, UK
| | - Angela M Wood
- Department of Public Health and Primary Care, University of Cambridge, 2 Worts Causeway, Cambridge CB1 8RN, UK
| | - Folkert W Asselbergs
- Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
- Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht, the Netherlands
- Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London, UK
- Farr Institute of Health Informatics Research, Institute of Health Informatics, University College London, London, UK
| |
Collapse
|
50
|
Roberts R. 1986 American Heart Association Bugher Program Pivotal to Current Management and Research of Heart Disease. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2018; 11:e002222. [PMID: 29875128 DOI: 10.1161/circgen.118.002222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|