1
|
Bruno P, Pala D, Micoli A, Corsi M, Accetta A, Carzaniga L, Ronchi P, Fiorelli C, Formica M, Pizzirani D, Mazzucato R, Guariento S, Bertolini S, Martucci C, Allen AD, Mileo V, Capacchi S, Gallo PM, Fioni A, Xanxo Fernandez S, Villetti G, Puccini P, Civelli M, Guala M, Retini M, Martinelli P, Visentini F, Pavoni V, Daldosso M, Fontana S, Biagetti M, Capelli AM. Discovery of CHF-6523, an Inhaled Selective PI3Kδ Inhibitor for the Treatment of Chronic Obstructive Pulmonary Disease. J Med Chem 2025; 68:2444-2465. [PMID: 39635891 DOI: 10.1021/acs.jmedchem.4c02062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The design of inhaled selective phosphatidylinositol 3-kinase delta (PI3Kδ) inhibitors for the treatment of inflammatory lung diseases was pursued. Knowledge-based design of a novel isocoumarin scaffold that was able to adopt a propeller-shape topology ensured the desired PI3Kδ selectivity. Achievement of low nanomolar cellular potencies through hinge binder group optimization, reduction of intrinsic permeability through head group optimization to extend lung retention, and screening of crystalline forms suitable for administration as dry powders culminated in the identification of compound 18. This novel inhaled selective PI3Kδ inhibitor displayed durable anti-inflammatory activity in a disease-relevant rat model of Th-2-driven acute lung inflammation and safe in vitro and in vivo preclinical profiles. Therefore, compound 18 showed the appropriate discovery profile and was progressed to clinical trials in healthy volunteers and chronic obstructive pulmonary disease (COPD) patients as CHF-6523.
Collapse
Affiliation(s)
- Paolo Bruno
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Daniele Pala
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Alessandra Micoli
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Mauro Corsi
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Alessandro Accetta
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Laura Carzaniga
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Paolo Ronchi
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Claudio Fiorelli
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Michele Formica
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Daniela Pizzirani
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Roberta Mazzucato
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Sara Guariento
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Serena Bertolini
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Cataldo Martucci
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Andrew Dennis Allen
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Valentina Mileo
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Silvia Capacchi
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Paola Maria Gallo
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Alessandro Fioni
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | | | - Gino Villetti
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Paola Puccini
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Maurizio Civelli
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Matilde Guala
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Michele Retini
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Prisca Martinelli
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Filippo Visentini
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Valentina Pavoni
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Matteo Daldosso
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Stefano Fontana
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Matteo Biagetti
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Anna Maria Capelli
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| |
Collapse
|
2
|
Li Y, Yang T, Jiang B. Neutrophil and neutrophil extracellular trap involvement in neutrophilic asthma: A review. Medicine (Baltimore) 2024; 103:e39342. [PMID: 39183388 PMCID: PMC11346896 DOI: 10.1097/md.0000000000039342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/21/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
Asthma is a highly prevalent chronic inflammatory disease characterized by variable airflow obstruction and airway hyperresponsiveness. Neutrophilic asthma (NA) is classified as "type 2 low" asthma, defined as 65% or more neutrophils in the total cell count. There is no clear consensus on the pathogenesis of NA, and the accumulation of neutrophils and release of neutrophil extracellular traps (NETs) may be responsible for its development. A NET is a large extracellular meshwork comprising cell membrane and granule proteins. It is a powerful antimicrobial defence system that traps, neutralizes, and kills bacteria, fungi, viruses, and parasites and prevents the spread of microorganisms. However, dysregulation of NETs may lead to chronic airway inflammation, is associated with worsening of asthma, and has been the subject of major research advances in chronic lung diseases in recent years. NA is insensitive to steroids, and there is a need to find effective biomarkers as targets for the treatment of NA to replace steroids. This review analyses the mechanisms of action between asthmatic neutrophil recruitment and NET formation and their impact on NA development. It also discusses their possible therapeutic significance in NA, summarizing the advances made in NA agents and providing strategies for the treatment of NA, provide a theoretical basis for the development of new therapeutic drugs, thereby improving the level of diagnosis and treatment, and promoting the research progress in the field of asthma.
Collapse
Affiliation(s)
- Yuemu Li
- Institutes of Integrative Medicine, Heilongjiang Provincial Hospital of Traditional Chinese Medicine, Heilongjiang, China
| | - Tianyi Yang
- Institutes of Integrative Medicine, Heilongjiang Provincial Hospital of Traditional Chinese Medicine, Heilongjiang, China
| | - Baihua Jiang
- Institutes of Integrative Medicine, Heilongjiang Provincial Hospital of Traditional Chinese Medicine, Heilongjiang, China
| |
Collapse
|
3
|
Xu LT, Wang T, Han QT, Xu ZP, Wen XS, Wang XN, Shen T. Integrated network pharmacology and pharmacological investigations to explore the potential mechanism of Ding-Chuan-Tang against chronic obstructive pulmonary disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117983. [PMID: 38432578 DOI: 10.1016/j.jep.2024.117983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ding-Chuan-Tang (Abbreviated as DCT) is frequently prescribed for treatment of respiratory diseases, including chronic obstructive pulmonary disease (COPD), which is characterized by coughing, wheezing, and chest tightness in traditional Chinese medicine (TCM). However, the potential mechanism of DCT has not been investigated. AIM OF STUDY The aim of the study is to explore the efficiency of DCT in the treatment of COPD in vivo and in vitro, and to illustrate the possible mechanism against COPD. METHODS COPD model was induced by exposure of mice to cigarette smoke (CS) for 16 weeks. Enzyme-linked immunosorbent assay (ELISA), immunofluorescence assay, Western blot, etc., were used to explore the efficiency and mechanisms of DCT. Network pharmacology analysis, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, etc., was performed to explore the potential targets in the treatment of DCT on COPD. RESULTS DCT significantly alleviated pulmonary pathological changes in mouse COPD model, and inhibited inflammatory response induced by CS and LPS in vivo and in vitro. Network pharmacology analysis suggested that DCT alleviated COPD via inhibiting inflammation by regulating PI3K-AKT pathway. In cell-based models, DCT suppressed the phosphorylation of PI3K and AKT, which further regulated its downstream targets Nrf2 and NF-κB, and inhibited inflammatory response. CONCLUSIONS DCT effectively attenuated COPD in the mouse model induced by CS. The therapeutic mechanism of DCT against COPD was closely associated with the regulation of PI3K-AKT pathway and its downstream transcription factors, Nrf2 and NF-κB.
Collapse
Affiliation(s)
- Lin-Tao Xu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tian Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qing-Tong Han
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Zhen-Peng Xu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xue-Sen Wen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
4
|
Salvato I, Ricciardi L, Dal Col J, Nigro A, Giurato G, Memoli D, Sellitto A, Lamparelli EP, Crescenzi MA, Vitale M, Vatrella A, Nucera F, Brun P, Caicci F, Dama P, Stiff T, Castellano L, Idrees S, Johansen MD, Faiz A, Wark PA, Hansbro PM, Adcock IM, Caramori G, Stellato C. Expression of targets of the RNA-binding protein AUF-1 in human airway epithelium indicates its role in cellular senescence and inflammation. Front Immunol 2023; 14:1192028. [PMID: 37483631 PMCID: PMC10360199 DOI: 10.3389/fimmu.2023.1192028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction The RNA-binding protein AU-rich-element factor-1 (AUF-1) participates to posttranscriptional regulation of genes involved in inflammation and cellular senescence, two pathogenic mechanisms of chronic obstructive pulmonary disease (COPD). Decreased AUF-1 expression was described in bronchiolar epithelium of COPD patients versus controls and in vitro cytokine- and cigarette smoke-challenged human airway epithelial cells, prompting the identification of epithelial AUF-1-targeted transcripts and function, and investigation on the mechanism of its loss. Results RNA immunoprecipitation-sequencing (RIP-Seq) identified, in the human airway epithelial cell line BEAS-2B, 494 AUF-1-bound mRNAs enriched in their 3'-untranslated regions for a Guanine-Cytosine (GC)-rich binding motif. AUF-1 association with selected transcripts and with a synthetic GC-rich motif were validated by biotin pulldown. AUF-1-targets' steady-state levels were equally affected by partial or near-total AUF-1 loss induced by cytomix (TNFα/IL1β/IFNγ/10 nM each) and siRNA, respectively, with differential transcript decay rates. Cytomix-mediated decrease in AUF-1 levels in BEAS-2B and primary human small-airways epithelium (HSAEC) was replicated by treatment with the senescence- inducer compound etoposide and associated with readouts of cell-cycle arrest, increase in lysosomal damage and senescence-associated secretory phenotype (SASP) factors, and with AUF-1 transfer in extracellular vesicles, detected by transmission electron microscopy and immunoblotting. Extensive in-silico and genome ontology analysis found, consistent with AUF-1 functions, enriched RIP-Seq-derived AUF-1-targets in COPD-related pathways involved in inflammation, senescence, gene regulation and also in the public SASP proteome atlas; AUF-1 target signature was also significantly represented in multiple transcriptomic COPD databases generated from primary HSAEC, from lung tissue and from single-cell RNA-sequencing, displaying a predominant downregulation of expression. Discussion Loss of intracellular AUF-1 may alter posttranscriptional regulation of targets particularly relevant for protection of genomic integrity and gene regulation, thus concurring to airway epithelial inflammatory responses related to oxidative stress and accelerated aging. Exosomal-associated AUF-1 may in turn preserve bound RNA targets and sustain their function, participating to spreading of inflammation and senescence to neighbouring cells.
Collapse
Affiliation(s)
- Ilaria Salvato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Luca Ricciardi
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Giorgio Giurato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Domenico Memoli
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Assunta Sellitto
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Maria Assunta Crescenzi
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Monica Vitale
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Francesco Nucera
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Paola Dama
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Thomas Stiff
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Leandro Castellano
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Sobia Idrees
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Matt D. Johansen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Alen Faiz
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Peter A. Wark
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Ian M. Adcock
- National Heart and Lung Institute, Imperial College London and the National Institute for Health and Care Research (NIHR) Imperial Biomedical Research Centre, London, United Kingdom
| | - Gaetano Caramori
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| |
Collapse
|
5
|
Tiao-Bu-Fei-Shen Formula Improves Glucocorticoid Resistance of Chronic Obstructive Pulmonary Disease via Downregulating the PI3K-Akt Signaling Pathway and Promoting GR α Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:4359616. [PMID: 36820399 PMCID: PMC9938767 DOI: 10.1155/2023/4359616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 11/24/2022] [Indexed: 02/12/2023]
Abstract
Objective To predict and determine the mechanism through which Tiao-Bu-Fei-Shen (TBFS) formula improves glucocorticoid resistance in chronic obstructive pulmonary disease (COPD), using network pharmacology, molecular docking technology, and in vitro studies. Methods The main active components and associated targets of TBFS were screened using the systems pharmacology database of traditional Chinese medicine database (TCMSP). The main COPD targets were retrieved from the Human Gene (GeneCards) and DrugBank databases. A protein-protein interaction (PPI) network was constructed using the protein interaction platform STRING and Cytoscape 3.6.1. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genome Pathway (KEGG) analyses were performed using the biological information annotation database Metascape. Molecular docking was performed using the AutoDock Vina software. THP-1 monocytes were treated with TBFS-containing serum and cigarette smoke extract (CSE) for 48 h, and cell proliferation in each group was determined using cell counting kit-8 (CCK-8). A COPD cell model was constructed by stimulating THP-1 monocytes with CSE for 12 h. A lentivirus vector for RNA interference of histone deacetylase 2 (HDAC2) gene was constructed and transfected into the THP-1 monocytes, and the transfection efficiency was verified using quantitative polymerase chain reaction (qPCR) and western blotting (WB). The expression of HDAC2 in each group of cells was detected using qPCR, and the expression of HDAC2, phosphoinositide-3 kinase (PI3K) p85α, glucocorticoid receptor α (GRα), and P-AKT1 in each group of cells was detected through WB. Results A total of 344 TBFS active components, 249 related drug targets, 1,171 COPD target proteins, and 138 drug and disease intersection targets were obtained. Visual analysis of the PPI network map revealed that the core COPD targets of TBFS were AKT1, IL-6, TNF, TP53, and IL1-β. KEGG pathway enrichment analysis resulted in the identification of 20 signaling pathways as the main pathways involved in the action of TBFS against COPD, including the PI3K-Akt, TNF, and IL-17 signaling pathways. Molecular docking experiments revealed a strong binding capacity of kaempferol, luteolin, and quercetin to the ATK1 protein in TBFS, with quercetin performing the best. PCR results showed that treatment with TBFS significantly increased the expression levels of HDAC2 in the COPD model. WB results showed that TBFS treatment significantly increased the expression levels of GRα and HDAC2 in the COPD model, while reducing the expression levels of P-AKT1. Conclusion TBFS treatment improves glucocorticoid resistance observed in COPD through downregulation of the PI3K-Akt signaling pathway and promotion of GRα expression.
Collapse
|
6
|
Xie T, Huang R, Deng D, Tang P, Fu Y, Zheng Y, Wan Y. Cryptotanshinone Reverses Corticosteroid Insensitivity by Inhibition of Phosphoinositide-3-Kinase-δ in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:797-809. [PMID: 37180749 PMCID: PMC10171224 DOI: 10.2147/copd.s405757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023] Open
Abstract
Purpose Corticosteroid insensitivity has become a major barrier in the treatment of chronic obstructive pulmonary disease (COPD). It is known that oxidative stress reduces the expression and activity of histone deacetylase (HDAC)-2 by activating phosphoinositide-3-kinase-δ(PI3Kδ)/Akt pathway, which is a common mechanism. The aim of this study was to investigate whether cryptotanshinone (CPT) can improve corticosteroid sensitivity and to investigate the molecular mechanisms by which this occurs. Patients and Methods Corticosteroid sensitivity in peripheral blood mononuclear cells (PBMCs) collected from COPD patients, or in human monocytic U937 monocytic cells exposed to cigarette smoke extract (CSE), was quantified as the dexamethasone concentration required to achieve 30% inhibition of tumor necrosis factor-α (TNFα)-induced interleukin 8 (IL-8) production in the presence or absence of cryptotanshinone. PI3K/Akt activity (measured as the relative ratio of phosphorylated Akt at Ser-473 to total Akt) and HDAC2 expression levels were determined by western blotting. HDAC activity was evaluated by a Fluo-Lys HDAC activity assay kit in U937 monocytic cells. Results Both PBMCs in patients with COPD and U937 cells exposed to CSE were found to be insensitive to dexamethasone, accompanied by increased phosphorylated Akt (pAkt) and decreased HDAC2 protein expression. The pretreatment of cryptotanshinone restored their sensitivity to dexamethasone, and simultaneously downregulated the level of phosphorylated Akt and upregulated the level of HDAC2 protein. Pretreatment with cryptotanshinone or IC87114 reversed the decrease in HDAC activity in CSE-stimulated U937 cells. Conclusion Cryptotanshinone restores corticosteroid sensitivity induced by oxidative stress via inhibition of PI3Kδ and is a potential treatment for corticosteroid-insensitive diseases such as COPD.
Collapse
Affiliation(s)
- Tao Xie
- Department of Respiratory Diseases, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, People’s Republic of China
| | - Rong Huang
- Department of Respiratory Diseases, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, People’s Republic of China
| | - Daishuo Deng
- Department of Respiratory Diseases, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, People’s Republic of China
| | - Peipei Tang
- Institute of Medicinal Biotechnology, Jiangsu College of Nursing, Huai’an, Jiangsu, People’s Republic of China
| | - Yufeng Fu
- Institute of Medicinal Biotechnology, Jiangsu College of Nursing, Huai’an, Jiangsu, People’s Republic of China
| | - Yulong Zheng
- Department of Respiratory Diseases, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, People’s Republic of China
- Correspondence: Yulong Zheng; Yufeng Wan, Department of Respiratory Diseases, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, People’s Republic of China, Tel +86 137 7670 7363; +86 158 0523 0282, Fax +86 517 8087 1636; +86 517 8087 1616, Email ;
| | - Yufeng Wan
- Department of Respiratory Diseases, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, People’s Republic of China
| |
Collapse
|
7
|
The Use of Inhaled Corticosteroids for Patients with COPD Who Continue to Smoke Cigarettes: An Evaluation of Current Practice. Am J Med 2022; 135:302-312. [PMID: 34655541 DOI: 10.1016/j.amjmed.2021.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022]
Abstract
The use of inhaled corticosteroids (ICS) in combination with inhaled bronchodilators for patients with chronic obstructive pulmonary disease (COPD) is a common practice in primary care settings. However, ICS-containing therapies may be less effective in patients with COPD compared with asthma, and in individuals with COPD who continue to smoke cigarettes. Preclinical studies suggest that inflammation in COPD is very different from in asthma. Glucocorticoid receptor functioning and other innate anti-inflammatory mechanisms are altered in cells exposed to cigarette smoke. COPD may be relatively insensitive to ICS, especially in individuals who continue to smoke. ICS-containing therapies in patients with asthma who continue to smoke may also be less effective compared with patients who do not smoke. ICS-containing therapies may be inappropriately used in some patients with COPD, and their long-term use is associated with an increased risk for side effects, including pneumonia and bone fractures in some patients. Treatment for patients with COPD should be carefully evaluated, and anti-inflammatory/bronchodilatory strategies should be chosen based on individual patient characteristics and recommendations in current guidelines.
Collapse
|
8
|
Ho CH, Huang YJ, Lai YJ, Mukherjee R, Hsiao CK. The misuse of distributional assumptions in functional class scoring gene-set and pathway analysis. G3-GENES GENOMES GENETICS 2021; 12:6409857. [PMID: 34791175 PMCID: PMC8728032 DOI: 10.1093/g3journal/jkab365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022]
Abstract
Gene-set analysis (GSA) is a standard procedure for exploring potential biological functions of a group of genes. The development of its methodology has been an active research topic in recent decades. Many GSA methods, when newly proposed, rely on simulation studies to evaluate their performance with an implicit assumption that the multivariate expression values are normally distributed. This assumption is commonly adopted in GSAs, particularly those in the group of functional class scoring (FCS) methods. The validity of the normality assumption, however, has been disputed in several studies, yet no systematic analysis has been carried out to assess the effect of this distributional assumption. Our goal in this study is not to propose a new GSA method but to first examine if the multi-dimensional gene expression data in gene sets follow a multivariate normal (MVN) distribution. Six statistical methods in three categories of MVN tests were considered and applied to a total of 24 RNA data sets. These RNA values were collected from cancer patients as well as normal subjects, and the values were derived from microarray experiments, RNA sequencing, and single-cell RNA sequencing. Our first finding suggests that the MVN assumption is not always satisfied. This assumption does not hold true in many applications tested here. In the second part of this research, we evaluated the influence of non-normality on the statistical power of current FCS methods, both parametric and nonparametric ones. Specifically, the scenario of mixture distributions representing more than one population for the RNA values was considered. This second investigation demonstrates that the non-normality distribution of the RNA values causes a loss in the statistical power of these GSA tests, especially when subtypes exist. Among the FCS GSA tools examined here and among the scenarios studied in this research, the N-statistics outperform the others. Based on the results from these two investigations, we conclude that the assumption of MVN should be used with caution when evaluating new GSA tools, since this assumption cannot be guaranteed and violation may lead to spurious results, loss of power, and incorrect comparison between methods. If a newly proposed GSA tool is to be evaluated, we recommend the incorporation of a wide range of multivariate non-normal distributions or sampling from large databases if available.
Collapse
Affiliation(s)
- Chi-Hsuan Ho
- Division of Biostatistics and Data Science, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Yu-Jyun Huang
- Division of Biostatistics and Data Science, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Ying-Ju Lai
- Division of Biostatistics and Data Science, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 10055, Taiwan
| | | | - Chuhsing Kate Hsiao
- Division of Biostatistics and Data Science, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 10055, Taiwan.,Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei 10055, Taiwan
| |
Collapse
|
9
|
Xiang Q, Dong S, Li XH. A Review of Phosphocreatine 3 Kinase δ Subtype (PI3Kδ) and Its Inhibitors in Malignancy. Med Sci Monit 2021; 27:e932772. [PMID: 34625526 PMCID: PMC8513496 DOI: 10.12659/msm.932772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Most cancer deaths are caused by metastasis. The phosphocreatine 3-kinase (PI3K) family includes the I–III classes, with class I divided into 4 subtypes (α, β, γ, δ); and PI3K signaling participates in the regulatory processes of cell proliferation, differentiation, apoptosis, and glucose transport. Moreover, PI3Ks are modulators of cellular membrane lipids involved in signaling and trafficking events. The PI3Kdelta isoform (PI3Kδ), which is not only specifically expressed in hematopoietic cells, but also in different tumor cell lines, is expressed extensively. The increase in PI3Kδ activity is often associated with a variety of cancers. Currently, the strategy of tumor therapy based on PI3Kδ and its related signaling pathway is developing. Besides its established role in controlling functions in autoimmunity and inflammation, the role of PI3Kδ in tumor and metastasis is not clearly elucidated, with the effects of inhibiting PI3Kδ in several types of tumors also remaining unexplored. In addition, the specific inhibitor of PI3Kδ in tumor progression and metastasis and its underlying mechanism need to be further studied. The purpose of this review is to rationalize the existing functions and mechanisms of PI3Kδ in tumor metastasis and the relationship with hematopoietic cells in cancers as well cross-talking with miRNA, which provides a new theoretical basis and potential therapeutic target for the drug therapy of tumor metastasis.
Collapse
Affiliation(s)
- Qiong Xiang
- Institute of Medicine, Medical Research Center, Jishou University, Jishou, Hunan, China (mainland)
| | - Shuai Dong
- Institute of Medicine, Medical Research Center, Jishou University, Jishou, Hunan, China (mainland)
| | - Xian-Hui Li
- Institute of Pharmaceutical Sciences, Jishou University, Jishou, Hunan, China (mainland)
| |
Collapse
|
10
|
Liu G, Särén L, Douglasson H, Zhou XH, Åberg PM, Ollerstam A, Betts CJ, Balogh Sivars K. Precision cut lung slices: an ex vivo model for assessing the impact of immunomodulatory therapeutics on lung immune responses. Arch Toxicol 2021; 95:2871-2877. [PMID: 34191076 DOI: 10.1007/s00204-021-03096-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/15/2021] [Indexed: 11/28/2022]
Abstract
Chronic inflammatory diseases of the respiratory tract, such as chronic obstructive pulmonary disease (COPD) and asthma, are severe lung diseases that require effective treatments. In search for new medicines for these diseases, there is an unmet need for predictive and translatable disease-relevant in vitro/ex vivo models to determine the safety and efficacy of novel drug candidates. Here, we report the use of precision cut lung slices (PCLS) as a potential ex vivo platform to study compound effects in a physiologically relevant environment. PCLS derived from an elastase-challenged mouse model display key characteristics of increased inflammation ex vivo, which is exacerbated further upon challenge with LPS, mimicking the immune insult of a pathogen triggering disease exacerbation. Such LPS-induced inflammatory conditions are significantly abrogated by immunomodulatory agents targeting specific inflammatory signaling pathways in the absence of cytotoxic effects in lung slices. Thus, an ex vivo model of PCLS with a simulated pathogenic insult can replicate proposed in vivo pharmacological effects and thus could potentially act as a valuable tool to investigate the underlying mechanisms associated with lung safety, therapeutic efficacy and exacerbations with infection.
Collapse
Affiliation(s)
- Guanghui Liu
- Respiratory and Immunology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Linnea Särén
- Animal Sciences and Technologies, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Helena Douglasson
- Bioscience Cough and in Vivo, Early Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Xiao-Hong Zhou
- Patient Safety, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Per M Åberg
- Respiratory and Immunology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Ollerstam
- Respiratory and Immunology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Catherine J Betts
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK.
| | - Kinga Balogh Sivars
- Clinical Testing, Global Procurement, Operations, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
11
|
Moradi S, Jarrahi E, Ahmadi A, Salimian J, Karimi M, Zarei A, Azimzadeh Jamalkandi S, Ghanei M. PI3K signalling in chronic obstructive pulmonary disease and opportunities for therapy. J Pathol 2021; 254:505-518. [PMID: 33959951 DOI: 10.1002/path.5696] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 11/08/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic lung disease characterised by airway inflammation and progressive obstruction of the lung airflow. Current pharmacological treatments include bronchodilators, alone or in combination with steroids, or other anti-inflammatory agents, which have only partially contributed to the inhibition of disease progression and mortality. Therefore, further research unravelling the underlying mechanisms is necessary to develop new anti-COPD drugs with both lower toxicity and higher efficacy. Extrinsic signalling pathways play crucial roles in COPD development and exacerbations. In particular, phosphoinositide 3-kinase (PI3K) signalling has recently been shown to be a major driver of the COPD phenotype. Therefore, several small-molecule inhibitors have been identified to block the hyperactivation of this signalling pathway in COPD patients, many of them showing promising outcomes in both preclinical animal models of COPD and human clinical trials. In this review, we discuss the critically important roles played by hyperactivated PI3K signalling in the pathogenesis of COPD. We also critically review current therapeutics based on PI3K inhibition, and provide suggestions focusing on PI3K signalling for the further improvement of the COPD phenotype. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sharif Moradi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Esmaeil Jarrahi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Karimi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Zarei
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Wang T, Du X, Wang Z, Gu Y, Huang Q, Wu J, Zhan Y, Chen J, Xiao C, Xie J. p55PIK deficiency and its NH 2-terminal derivative inhibit inflammation and emphysema in COPD mouse model. Am J Physiol Lung Cell Mol Physiol 2021; 321:L159-L173. [PMID: 33949204 DOI: 10.1152/ajplung.00560.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is composed of chronic airway inflammation and emphysema. Recent studies show that Class IA phosphatidylinositol 3-kinases (PI3Ks) play an important role in the regulation of inflammation and emphysema. However, there are few studies on their regulatory subunits. p55PIK is a regulatory subunit of Class IA PI3Ks, and its unique NH2-terminal gives it special functions. p55PIK expression in the lungs of nonsmokers, smokers, and patients with COPD was examined. We established a fusion protein TAT-N15 from the NH2-terminal effector sequence of p55PIK and TAT (the transduction domain of HIV transactivator protein) and investigated the effects of silencing p55PIK or adding TAT-N15 on cigarette smoke exposure at the cellular and animal level. p55PIK expression was increased in patients with COPD. p55PIK deficiency and TAT-N15 significantly inhibited the cigarette smoke extract-induced IL-6, IL-8, and activation of the Akt and the NF-κB pathway in BEAS-2B. p55PIK deficiency and TAT-N15 intranasal administration prevented emphysema and the lung function decline in mice exposed to smoke for 6 mo. p55PIK deficiency and TAT-N15 significantly inhibited lung inflammatory infiltration, reduced levels of IL-6 and KC in mice lung homogenate, and inhibited activation of the Akt and the NF-κB signaling in COPD mice lungs. Our studies indicate that p55PIK is involved in the pathogenesis of COPD, and its NH2-terminal derivative TAT-N15 could be an effective drug in the treatment of COPD by inhibiting the activation of the Akt and the NF-κB pathway.
Collapse
Affiliation(s)
- Ting Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohui Du
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihua Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiya Gu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Huang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jixing Wu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Zhan
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Chengfeng Xiao
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Evaluation of Naringenin as a Promising Treatment Option for COPD Based on Literature Review and Network Pharmacology. Biomolecules 2020; 10:biom10121644. [PMID: 33302350 PMCID: PMC7762561 DOI: 10.3390/biom10121644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease characterized by incompletely reversible airflow limitation and seriously threatens the health of humans due to its high morbidity and mortality. Naringenin, as a natural flavanone, has shown various potential pharmacological activities against multiple pathological stages of COPD, but available studies are scattered and unsystematic. Thus, we combined literature review with network pharmacology analysis to evaluate the potential therapeutic effects of naringenin on COPD and predict its underlying mechanisms, expecting to provide a promising tactic for clinical treatment of COPD.
Collapse
|
14
|
Li F, Liang X, Jiang Z, Wang A, Wang J, Chen C, Wang W, Zou F, Qi Z, Liu Q, Hu Z, Cao J, Wu H, Wang B, Wang L, Liu J, Liu Q. Discovery of (S)-2-(1-(4-Amino-3-(3-fluoro-4-methoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)propyl)-3-cyclopropyl-5-fluoroquinazolin-4(3H)-one (IHMT-PI3Kδ-372) as a Potent and Selective PI3Kδ Inhibitor for the Treatment of Chronic Obstructive Pulmonary Disease. J Med Chem 2020; 63:13973-13993. [DOI: 10.1021/acs.jmedchem.0c01544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Feng Li
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaofei Liang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Zongru Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Aoli Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Junjie Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Cheng Chen
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wenliang Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Qingwang Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Zhenquan Hu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Jiangyan Cao
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Li Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| |
Collapse
|
15
|
Heijink IH, Kuchibhotla VNS, Roffel MP, Maes T, Knight DA, Sayers I, Nawijn MC. Epithelial cell dysfunction, a major driver of asthma development. Allergy 2020; 75:1902-1917. [PMID: 32460363 PMCID: PMC7496351 DOI: 10.1111/all.14421] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
Abstract
Airway epithelial barrier dysfunction is frequently observed in asthma and may have important implications. The physical barrier function of the airway epithelium is tightly interwoven with its immunomodulatory actions, while abnormal epithelial repair responses may contribute to remodelling of the airway wall. We propose that abnormalities in the airway epithelial barrier play a crucial role in the sensitization to allergens and pathogenesis of asthma. Many of the identified susceptibility genes for asthma are expressed in the airway epithelium, supporting the notion that events at the airway epithelial surface are critical for the development of the disease. However, the exact mechanisms by which the expression of epithelial susceptibility genes translates into a functionally altered response to environmental risk factors of asthma are still unknown. Interactions between genetic factors and epigenetic regulatory mechanisms may be crucial for asthma susceptibility. Understanding these mechanisms may lead to identification of novel targets for asthma intervention by targeting the airway epithelium. Moreover, exciting new insights have come from recent studies using single‐cell RNA sequencing (scRNA‐Seq) to study the airway epithelium in asthma. This review focuses on the role of airway epithelial barrier function in the susceptibility to develop asthma and novel insights in the modulation of epithelial cell dysfunction in asthma.
Collapse
Affiliation(s)
- Irene H. Heijink
- Department of Pathology & Medical Biology GRIAC Research Institute University Medical Center Groningen University of Groningen Groningen The Netherlands
- Department of Pulmonology University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Virinchi N. S. Kuchibhotla
- Department of Pathology & Medical Biology GRIAC Research Institute University Medical Center Groningen University of Groningen Groningen The Netherlands
- School of Biomedical Sciences and Pharmacy University of Newcastle Callaghan NSW Australia
| | - Mirjam P. Roffel
- Department of Pathology & Medical Biology GRIAC Research Institute University Medical Center Groningen University of Groningen Groningen The Netherlands
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent University Ghent Belgium
| | - Tania Maes
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent University Ghent Belgium
| | - Darryl A. Knight
- School of Biomedical Sciences and Pharmacy University of Newcastle Callaghan NSW Australia
- UBC Providence Health Care Research Institute Vancouver BC Canada
- Department of Anesthesiology, Pharmacology and Therapeutics University of British Columbia Vancouver BC Canada
| | - Ian Sayers
- Division of Respiratory Medicine National Institute for Health Research Nottingham Biomedical Research Centre University of Nottingham Biodiscovery Institute University of Nottingham Nottingham UK
| | - Martijn C. Nawijn
- Department of Pathology & Medical Biology GRIAC Research Institute University Medical Center Groningen University of Groningen Groningen The Netherlands
| |
Collapse
|
16
|
Sun XJ, Li ZH, Zhang Y, Zhong XN, He ZY, Zhou JH, Chen SN, Feng Y. Theophylline and dexamethasone in combination reduce inflammation and prevent the decrease in HDAC2 expression seen in monocytes exposed to cigarette smoke extract. Exp Ther Med 2020; 19:3425-3431. [PMID: 32269608 PMCID: PMC7138918 DOI: 10.3892/etm.2020.8584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Lung and systemic inflammation are associated with impaired lung function and increased mortality in patients with chronic obstructive pulmonary disease (COPD). Theophylline and glucocorticoids have been shown to have an anti-inflammatory effect in some respiratory diseases. However, corticosteroid insensitivity is a major barrier to the anti-inflammatory management of COPD. This study aimed to explore whether a combined treatment of theophylline and dexamethasone (Dex) could decrease cigarette smoke extract (CSE)-induced inflammation via prevention of a reduction in histone deacetylase 2 (HDAC2) expression and through inhibition of the PI3K/Akt pathway, which may be related to corticosteroid sensitivity. The half-maximal inhibitory concentration (IC50) of Dex (IC50-Dex) was used to as a marker of corticosteroid sensitivity. IC50-Dex was determined through observation of Dex inhibition of tumor necrosis factor-α (TNF-α)-induced interleukin (IL)-8 release. Using reverse transcription quantitative PCR and western blotting, U937 cells treated with CSE were assessed for HDAC2 expression levels and phosphorylation levels of Akt. Theophylline and Dex pre-treatment was shown to significantly reduce the CSE-induced release of IL-8 and TNF-α. The combination of theophylline and Dex pretreatment also reversed corticosteroid insensitivity in CSE-induced U937 cells and inhibited the PI3K/AKT pathway to a greater extent than theophylline treatment alone. CSE-treated U937 cells showed a reduction in HDAC2 mRNA and protein expression compared with the control group. However, this effect was reduced after pre-incubation with the combined therapy or theophylline alone. In conclusion, pretreatment with theophylline and Dex decreased CSE-induced inflammation via inhibition of the PI3K/Akt pathway and increase in HDAC2 protein expression.
Collapse
Affiliation(s)
- Xue-Jiao Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Department of Respiratory and Critical Care Medicine, Liuzhou People's Hospital, Liuzhou, Guangxi 545006, P.R. China
| | - Zhan-Hua Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Department of Respiratory Medicine, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi 530021, P.R. China
| | - Yang Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiao-Ning Zhong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhi-Yi He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ji-Hong Zhou
- Department of Respiratory Medicine, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi 530021, P.R. China
| | - Si-Ning Chen
- Department of Respiratory Medicine, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi 530021, P.R. China
| | - Yuan Feng
- Department of Respiratory Medicine, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
17
|
Li K, Tao N, Zheng L, Sun T. LL-37 restored glucocorticoid sensitivity impaired by virus dsRNA in lung. Int Immunopharmacol 2019; 79:106057. [PMID: 31877496 DOI: 10.1016/j.intimp.2019.106057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022]
Abstract
Glucocorticoids play a key role in treatment of inflammatory lung diseases including both airway and parenchymal lung diseases. RNA viral infections are major causes of chronic lung disease exacerbations and can determine glucocorticoid resistance. The antibacterial peptide LL-37, the only member of human cathelicidin family, also functions as antiviral-activity enhancer. However, whether it can alleviate the glucocorticoid resistance caused by RNA viruses remains unclear. Here, we used type I (BEAS-2B) and type II (A549) lung epithelial cells to assess the effect of LL-37 on dsRNA-induced glucocorticoid resistance. We verified that LL-37 and polyinosinic-polycytidylic acid (poly I:C, a mimic of viral dsRNA) interact and enter both cell lines. Co-treatment with LL-37 and poly I:C increased glucocorticoid-induced expression of promyelocytic leukemia zinc finger (PLZF), an anti-inflammatory protein, compared to poly I:C alone. Pre-treatment with LL-37 also restored transactivation of the glucocorticoid response element (GRE). Moreover, LL-37 rescued poly I:C-induced glucocorticoid resistance by increasing phosphorylation and nuclear translocation of glucocorticoid receptor. Importantly, LL-37 downregulated poly I:C-induced Erk and Akt signaling pathways in lung epithelial cells. Finally, we verified our data in vivo, showing that mCRAMP, the mouse LL-37 ortholog, can alleviate poly I:C-induced glucocorticoid insensitivity in a murine asthma model. In summary, this study showed that LL-37 restored glucocorticoid sensitivity impaired by dsRNA possibly by inhibiting Akt pathway, in addition to Erk1/2 pathway. These findings suggest LL-37 as a therapeutic agent for treatment of viral infections in inflammatory pulmonary diseases.
Collapse
Affiliation(s)
- Kang Li
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, Beijing 100730, China; Graduate School of Peking Union Medical College, Beijing 100730, China; The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Ningning Tao
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, Beijing 100730, China; Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Lu Zheng
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, Beijing 100730, China; Graduate School of Peking Union Medical College, Beijing 100730, China; Hebei Cancer Hospital, Hebei 050011, China
| | - Tieying Sun
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, Beijing 100730, China; Graduate School of Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
18
|
Pirozzi F, Ren K, Murabito A, Ghigo A. PI3K Signaling in Chronic Obstructive Pulmonary Disease: Mechanisms, Targets, and Therapy. Curr Med Chem 2019; 26:2791-2800. [DOI: 10.2174/0929867325666180320120054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/20/2018] [Accepted: 03/06/2018] [Indexed: 12/31/2022]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a progressive respiratory disorder characterized by irreversible chronic inflammation and airflow obstruction. It affects more than 64 million patients worldwide and it is predicted to become the third cause of death in the industrialized world by 2030. Currently available therapies are not able to block disease progression and to reduce mortality, underlying the need for a better understanding of COPD pathophysiological mechanisms to identify new molecular therapeutic targets. Recent studies demonstrated that phosphoinositide 3-kinase (PI3K) signaling is prominently activated in COPD and correlates with an increased susceptibility of patients to lung infections. PI3Ks have thus emerged as promising alternative drug targets for COPD and a wide array of pan-isoform and isoform-selective inhibitors have been tested in preclinical models and are currently being evaluated in clinical studies. Here, we summarize the recent knowledge on the involvement of PI3K enzymes in the pathophysiology of COPD, and we discuss the most recent results arising from the preclinical as well as the clinical testing of PI3K inhibitors as novel therapeutics for COPD.
Collapse
Affiliation(s)
- Flora Pirozzi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Kai Ren
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Alessandra Murabito
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
19
|
Jeong JS, Kim JS, Kim SR, Lee YC. Defining Bronchial Asthma with Phosphoinositide 3-Kinase Delta Activation: Towards Endotype-Driven Management. Int J Mol Sci 2019; 20:ijms20143525. [PMID: 31323822 PMCID: PMC6679152 DOI: 10.3390/ijms20143525] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K) pathways play a critical role in orchestrating the chronic inflammation and the structural changes of the airways in patients with asthma. Recently, a great deal of progress has been made in developing selective and effective PI3K-targeted therapies on the basis of a vast amount of studies on the roles of specific PI3K isoforms and fine-tuned modulators of PI3Ks in a particular disease context. In particular, the pivotal roles of delta isoform of class I PI3Ks (PI3K-δ) in CD4-positive type 2 helper T cells-dominant disorders such as asthma have been consistently reported since the early investigations. Furthermore, there has been great advancement in our knowledge of the implications of PI3K-δ in various facets of allergic inflammation. This has involved the airway epithelial interface, adaptive T and B cells, potent effector cells (eosinophils and neutrophils), and, more recently, subcellular organelles (endoplasmic reticulum and mitochondria) and cytoplasmic innate immune receptors such as NLRP3 inflammasome, all of which make this PI3K isoform an important druggable target for treating asthma. Defining subpopulations of asthma patients with PI3K-δ activation, namely PI3K-δ-driven asthma endotype, may therefore provide us with a novel framework for the treatment of the disease, particularly for corticosteroid-resistant severe form, an important unresolved aspect of the current asthma management. In this review, we specifically summarize the recent advancement of our knowledge on the critical roles of PI3K-δ in the pathogenesis of bronchial asthma.
Collapse
Affiliation(s)
- Jae Seok Jeong
- Department of Internal Medicine, Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju 54907, Korea
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea
| | - Jong Seung Kim
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - So Ri Kim
- Department of Internal Medicine, Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju 54907, Korea
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea
| | - Yong Chul Lee
- Department of Internal Medicine, Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju 54907, Korea.
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea.
| |
Collapse
|
20
|
Caramori G, Coppolino I, Cannavò MF, Nucera F, Proietto A, Mumby S, Ruggeri P, Adcock IM. Transcription inhibitors and inflammatory cell activity. Curr Opin Pharmacol 2019; 46:82-89. [PMID: 31207387 DOI: 10.1016/j.coph.2019.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/04/2019] [Accepted: 05/15/2019] [Indexed: 12/24/2022]
Abstract
Inflammation is a central feature of asthma and chronic obstructive pulmonary disease (COPD). Despite recent advances in the knowledge of the pathogenesis of asthma and COPD, much more research on the molecular mechanisms of asthma and COPD are needed to aid the logical development of new therapies for these common and important diseases, particularly in COPD where no new effective treatments currently exist. In the future the role of the activation/repression of different transcription factors and the genetic regulation of their expression in asthma and COPD may be an increasingly important aspect of research, as this may be one of the critical mechanisms regulating the expression of different clinical phenotypes and their responsiveness to therapy, particularly to anti-inflammatory drugs.
Collapse
Affiliation(s)
- Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy.
| | - Irene Coppolino
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Mario Francesco Cannavò
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Alfio Proietto
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Sharon Mumby
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, UK
| | - Paolo Ruggeri
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
21
|
Cathelicidin LL-37 restoring glucocorticoid function in smoking and lipopolysaccharide-induced airway inflammation in rats. Chin Med J (Engl) 2019; 132:569-576. [PMID: 30741829 PMCID: PMC6415994 DOI: 10.1097/cm9.0000000000000107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Glucocorticoids have been widely used to treat patients with chronic obstructive pulmonary disease (COPD). Nevertheless, corticosteroid insensitivity is a major barrier to the effective treatment of COPD and its mechanism remains unclear. This study aimed to evaluate the effect of cathelicidin LL-37 on corticosteroid insensitivity in COPD rat model, and to explore the involved mechanisms. Methods COPD model was established by exposing male Wistar rats to cigarette smoke combined with intratracheal instillation of lipopolysaccharide (LPS). Inhaled budesonide and LL-37 were consequently applied to COPD models separately or collectively to confirm the effects on inflammatory cytokines (tumor necrosis factor [TNF]-α and transforming growth factor [TGF]-β) by enzyme-linked immunosorbent assay (ELISA) and lung tissue histopathological morphology. Expression of histone deacetylase-2 (HDAC2) and phosphorylation of Akt (p-AKT) in lung were also measured. Results Briefly, COPD model rats showed an increased basal release of inflammatory cytokines (lung TNF-α: 45.7 ± 6.1 vs. 20.1 ± 3.8 pg/mL, P < 0.01; serum TNF-α: 8.9 ± 1.2 vs. 6.7 ± 0.5 pg/mL, P = 0.01; lung TGF-β: 122.4 ± 20.8 vs. 81.9 ± 10.8 pg/mL, P < 0.01; serum TGF-β: 38.9 ± 8.5 vs. 20.6 ± 2.3 pg/mL, P < 0.01) and COPD related lung tissue histopathological changes, as well as corticosteroid resistance molecular profile characterized by an increase in phosphoinositide 3-kinase (PI3K)/Akt (0.5 ± 0.1 fold of control vs. 0.2 ± 0.1 fold of control, P = 0.04) and a decrease in HDAC2 expression and activity (expression: 13.1 ± 0.4 μmol/μg vs. 17.4 ± 1.1 μmol/μg, P < 0.01; activity: 1.1 ± 0.1 unit vs. 1.4 ± 0.1 unit, P < 0.01), compared with control group. In addition, LL-37 enhanced the anti-inflammatory effect of budesonide in an additive manner. Treatment with combination of inhaled corticosteroids (ICS) and LL-37 led to a significant increase of HDAC2 expression and activity (expression: 15.7 ± 0.4 μmol/μg vs. 14.1 ± 0.9 μmol/μg, P < 0.01; activity: 1.3 ± 0.1 unit vs. 1.0 ± 0.1 unit, P < 0.01), along with decrease of p-AKT compared to budesonide monotherapy (0.1 ± 0.0 fold of control vs. 0.3 ± 0.1 fold of control, P < 0.01). Conclusions This study suggested that LL-37 could improve the anti-inflammatory activity of budesonide in cigarette smoke and LPS-induced COPD rat model by enhancing the expression and activity of HDAC2. The mechanism of this function of LL-37 might involve the inhibition of PI3K/Akt pathway.
Collapse
|
22
|
Begg M, Wilson R, Hamblin JN, Montembault M, Green J, Deans A, Amour A, Worsley S, Fantom K, Cui Y, Dear G, Ahmad S, Kielkowska A, Clark J, Boyce M, Cahn A, Hessel EM. Relationship between Pharmacokinetics and Pharmacodynamic Responses in Healthy Smokers Informs a Once-Daily Dosing Regimen for Nemiralisib. J Pharmacol Exp Ther 2019; 369:337-344. [PMID: 30886125 DOI: 10.1124/jpet.118.255109] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/15/2019] [Indexed: 03/08/2025] Open
Abstract
Nemiralisib (GSK2269557), a potent inhaled inhibitor of phosphoinositide 3-kinase δ (PI3Kδ), is being developed for the treatment of respiratory disorders including chronic obstructive pulmonary disease. Determining the pharmacokinetic (PK) and pharmacodynamic (PD) responses of inhaled drugs early during drug development is key to informing the appropriate dose and preferred dose regimen in patients. We set out to measure PD changes in induced sputum in combination with drug concentrations in plasma and bronchoalveolar lavage (BAL) taken from healthy smokers (n = 56) treated for up to 14 days with increasing doses of inhaled nemiralisib (0.1-6.4 mg). Induced sputum analysis demonstrated a dose-dependent reduction in phosphatidylinositol-(4,5)-trisphosphate (PIP3, the product of PI3K activation), with a maximum placebo-corrected reduction of 23% (90% confidence interval [CI], 11%-34%) and 36% (90% CI, 11%-64%) after a single dose or after 14 days of treatment with nemiralisib, respectively (2 mg, once daily). Plasma analysis suggested a linear PK relationship with an observed accumulation of ∼3- to 4.5-fold (peak vs. trough) in plasma exposure after 14 days of nemiralisib treatment. The BAL analysis at trough confirmed higher levels of the drug in the lungs versus plasma (32-fold in the BAL fluid component, and 214-fold in the BAL cellular fraction). A comparison of the drug levels in plasma and the reductions in sputum PIP3 showed a direct relationship between exposure and PIP3 reduction. These results demonstrated target engagement upon treatment with inhaled nemiralisib and provide confidence for a once-daily dosing regimen.
Collapse
Affiliation(s)
- M Begg
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage (M.Be., J.N.H., A.A., E.M.H.); GlaxoSmithKline, Stevenage (R.W., J.G., K.F., A.C.); GlaxoSmithKline, Stockley Park, Uxbridge (M.M., A.D., S.W., Y.C.); GlaxoSmithKline, Ware (G.D., S.A.); Babraham Institute, Babraham (A.K., J.C.); and Hammersmith Medicines Research, London (M.Bo.), United Kingdom
| | - R Wilson
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage (M.Be., J.N.H., A.A., E.M.H.); GlaxoSmithKline, Stevenage (R.W., J.G., K.F., A.C.); GlaxoSmithKline, Stockley Park, Uxbridge (M.M., A.D., S.W., Y.C.); GlaxoSmithKline, Ware (G.D., S.A.); Babraham Institute, Babraham (A.K., J.C.); and Hammersmith Medicines Research, London (M.Bo.), United Kingdom
| | - J N Hamblin
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage (M.Be., J.N.H., A.A., E.M.H.); GlaxoSmithKline, Stevenage (R.W., J.G., K.F., A.C.); GlaxoSmithKline, Stockley Park, Uxbridge (M.M., A.D., S.W., Y.C.); GlaxoSmithKline, Ware (G.D., S.A.); Babraham Institute, Babraham (A.K., J.C.); and Hammersmith Medicines Research, London (M.Bo.), United Kingdom
| | - M Montembault
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage (M.Be., J.N.H., A.A., E.M.H.); GlaxoSmithKline, Stevenage (R.W., J.G., K.F., A.C.); GlaxoSmithKline, Stockley Park, Uxbridge (M.M., A.D., S.W., Y.C.); GlaxoSmithKline, Ware (G.D., S.A.); Babraham Institute, Babraham (A.K., J.C.); and Hammersmith Medicines Research, London (M.Bo.), United Kingdom
| | - J Green
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage (M.Be., J.N.H., A.A., E.M.H.); GlaxoSmithKline, Stevenage (R.W., J.G., K.F., A.C.); GlaxoSmithKline, Stockley Park, Uxbridge (M.M., A.D., S.W., Y.C.); GlaxoSmithKline, Ware (G.D., S.A.); Babraham Institute, Babraham (A.K., J.C.); and Hammersmith Medicines Research, London (M.Bo.), United Kingdom
| | - A Deans
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage (M.Be., J.N.H., A.A., E.M.H.); GlaxoSmithKline, Stevenage (R.W., J.G., K.F., A.C.); GlaxoSmithKline, Stockley Park, Uxbridge (M.M., A.D., S.W., Y.C.); GlaxoSmithKline, Ware (G.D., S.A.); Babraham Institute, Babraham (A.K., J.C.); and Hammersmith Medicines Research, London (M.Bo.), United Kingdom
| | - A Amour
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage (M.Be., J.N.H., A.A., E.M.H.); GlaxoSmithKline, Stevenage (R.W., J.G., K.F., A.C.); GlaxoSmithKline, Stockley Park, Uxbridge (M.M., A.D., S.W., Y.C.); GlaxoSmithKline, Ware (G.D., S.A.); Babraham Institute, Babraham (A.K., J.C.); and Hammersmith Medicines Research, London (M.Bo.), United Kingdom
| | - S Worsley
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage (M.Be., J.N.H., A.A., E.M.H.); GlaxoSmithKline, Stevenage (R.W., J.G., K.F., A.C.); GlaxoSmithKline, Stockley Park, Uxbridge (M.M., A.D., S.W., Y.C.); GlaxoSmithKline, Ware (G.D., S.A.); Babraham Institute, Babraham (A.K., J.C.); and Hammersmith Medicines Research, London (M.Bo.), United Kingdom
| | - K Fantom
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage (M.Be., J.N.H., A.A., E.M.H.); GlaxoSmithKline, Stevenage (R.W., J.G., K.F., A.C.); GlaxoSmithKline, Stockley Park, Uxbridge (M.M., A.D., S.W., Y.C.); GlaxoSmithKline, Ware (G.D., S.A.); Babraham Institute, Babraham (A.K., J.C.); and Hammersmith Medicines Research, London (M.Bo.), United Kingdom
| | - Y Cui
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage (M.Be., J.N.H., A.A., E.M.H.); GlaxoSmithKline, Stevenage (R.W., J.G., K.F., A.C.); GlaxoSmithKline, Stockley Park, Uxbridge (M.M., A.D., S.W., Y.C.); GlaxoSmithKline, Ware (G.D., S.A.); Babraham Institute, Babraham (A.K., J.C.); and Hammersmith Medicines Research, London (M.Bo.), United Kingdom
| | - G Dear
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage (M.Be., J.N.H., A.A., E.M.H.); GlaxoSmithKline, Stevenage (R.W., J.G., K.F., A.C.); GlaxoSmithKline, Stockley Park, Uxbridge (M.M., A.D., S.W., Y.C.); GlaxoSmithKline, Ware (G.D., S.A.); Babraham Institute, Babraham (A.K., J.C.); and Hammersmith Medicines Research, London (M.Bo.), United Kingdom
| | - S Ahmad
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage (M.Be., J.N.H., A.A., E.M.H.); GlaxoSmithKline, Stevenage (R.W., J.G., K.F., A.C.); GlaxoSmithKline, Stockley Park, Uxbridge (M.M., A.D., S.W., Y.C.); GlaxoSmithKline, Ware (G.D., S.A.); Babraham Institute, Babraham (A.K., J.C.); and Hammersmith Medicines Research, London (M.Bo.), United Kingdom
| | - A Kielkowska
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage (M.Be., J.N.H., A.A., E.M.H.); GlaxoSmithKline, Stevenage (R.W., J.G., K.F., A.C.); GlaxoSmithKline, Stockley Park, Uxbridge (M.M., A.D., S.W., Y.C.); GlaxoSmithKline, Ware (G.D., S.A.); Babraham Institute, Babraham (A.K., J.C.); and Hammersmith Medicines Research, London (M.Bo.), United Kingdom
| | - J Clark
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage (M.Be., J.N.H., A.A., E.M.H.); GlaxoSmithKline, Stevenage (R.W., J.G., K.F., A.C.); GlaxoSmithKline, Stockley Park, Uxbridge (M.M., A.D., S.W., Y.C.); GlaxoSmithKline, Ware (G.D., S.A.); Babraham Institute, Babraham (A.K., J.C.); and Hammersmith Medicines Research, London (M.Bo.), United Kingdom
| | - M Boyce
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage (M.Be., J.N.H., A.A., E.M.H.); GlaxoSmithKline, Stevenage (R.W., J.G., K.F., A.C.); GlaxoSmithKline, Stockley Park, Uxbridge (M.M., A.D., S.W., Y.C.); GlaxoSmithKline, Ware (G.D., S.A.); Babraham Institute, Babraham (A.K., J.C.); and Hammersmith Medicines Research, London (M.Bo.), United Kingdom
| | - A Cahn
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage (M.Be., J.N.H., A.A., E.M.H.); GlaxoSmithKline, Stevenage (R.W., J.G., K.F., A.C.); GlaxoSmithKline, Stockley Park, Uxbridge (M.M., A.D., S.W., Y.C.); GlaxoSmithKline, Ware (G.D., S.A.); Babraham Institute, Babraham (A.K., J.C.); and Hammersmith Medicines Research, London (M.Bo.), United Kingdom
| | - E M Hessel
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage (M.Be., J.N.H., A.A., E.M.H.); GlaxoSmithKline, Stevenage (R.W., J.G., K.F., A.C.); GlaxoSmithKline, Stockley Park, Uxbridge (M.M., A.D., S.W., Y.C.); GlaxoSmithKline, Ware (G.D., S.A.); Babraham Institute, Babraham (A.K., J.C.); and Hammersmith Medicines Research, London (M.Bo.), United Kingdom
| |
Collapse
|
23
|
Mahdaviani SA, Rezaei N. Pulmonary Manifestations of Predominantly Antibody Deficiencies. PULMONARY MANIFESTATIONS OF PRIMARY IMMUNODEFICIENCY DISEASES 2019. [PMCID: PMC7123456 DOI: 10.1007/978-3-030-00880-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Predominantly antibody deficiencies (PADs) are the most frequent forms of primary immunodeficiency diseases (PIDs). Commonly accompanied with complications involving several body systems, immunoglobulin substitution therapy along with prophylactic antibiotics remained the cornerstone of treatment for PADs and related complications. Patients with respiratory complications should be prescribed an appropriate therapy as soon as possible and have to be adhering to more and longer medical therapies. Recent studies identified a gap for screening protocols to monitor respiratory manifestations in patients with PADs. In the present chapter, the pulmonary manifestations of different PADs for each have been discussed. The chapter is mainly focused on X-linked agammaglobulinemia, common variable immunodeficiency, activated PI3K-δ syndrome, LRBA deficiency, CD19 complex deficiencies, CD20 deficiency, other monogenic defects associated with hypogammaglobulinemia, immunoglobulin class switch recombination deficiencies affecting B-cells, transient hypogammaglobulinemia of infancy, and selective IgA deficiency.
Collapse
Affiliation(s)
- Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies Children’s Medical Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
24
|
Ricciardi L, Col JD, Casolari P, Memoli D, Conti V, Vatrella A, Vonakis BM, Papi A, Caramori G, Stellato C. Differential expression of RNA-binding proteins in bronchial epithelium of stable COPD patients. Int J Chron Obstruct Pulmon Dis 2018; 13:3173-3190. [PMID: 30349226 PMCID: PMC6190813 DOI: 10.2147/copd.s166284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Inflammatory gene expression is modulated by posttranscriptional regulation via RNA-binding proteins (RBPs), which regulate mRNA turnover and translation by binding to conserved mRNA sequences. Their role in COPD is only partially defined. This study evaluated RBPs tristetraprolin (TTP), human antigen R (HuR), and AU-rich element-binding factor 1 (AUF-1) expression using lung tissue from COPD patients and control subjects and probed their function in epithelial responses in vitro. Patients and methods RBPs were detected by immunohistochemistry in bronchial and peripheral lung samples from mild-to-moderate stable COPD patients and age/smoking history-matched controls; RBPs and RBP-regulated genes were evaluated by Western blot, ELISA, protein array, and real-time PCR in human airway epithelial BEAS-2B cell line stimulated with hydrogen peroxide, cytokine combination (cytomix), cigarette smoke extract (CSE), and following siRNA-mediated silencing. Results were verified in a microarray database from bronchial brushings of COPD patients and controls. RBP transcripts were measured in peripheral blood mononuclear cell samples from additional stable COPD patients and controls. Results Specific, primarily nuclear immunostaining for the RBPs was detected in structural and inflammatory cells in bronchial and lung tissues. Immunostaining for AUF-1, but not TTP or HuR, was significantly decreased in bronchial epithelium of COPD samples vs controls. In BEAS-2B cells, cytomix and CSE stimulation reproduced the RBP pattern while increasing expression of AUF-1-regulated genes, interleukin-6, CCL2, CXCL1, and CXCL8. Silencing expression of AUF-1 reproduced, but not enhanced, target upregulation induced by cytomix compared to controls. Analysis of bronchial brushing-derived transcriptomic confirmed the selective decrease of AUF-1 in COPD vs controls and revealed significant changes in AUF-1-regulated genes by genome ontology. Conclusion Downregulated AUF-1 may be pathogenic in stable COPD by altering posttranscriptional control of epithelial gene expression.
Collapse
Affiliation(s)
- Luca Ricciardi
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy,
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy,
| | - Paolo Casolari
- Interdepartmental Study Center for Inflammatory and Smoke-related Airway Diseases (CEMICEF), Cardiorespiratory and Internal Medicine Section, University of Ferrara, Ferrara, Italy
| | - Domenico Memoli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy,
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy,
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy,
| | - Becky M Vonakis
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,
| | - Alberto Papi
- Interdepartmental Study Center for Inflammatory and Smoke-related Airway Diseases (CEMICEF), Cardiorespiratory and Internal Medicine Section, University of Ferrara, Ferrara, Italy
| | - Gaetano Caramori
- Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy, .,Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,
| |
Collapse
|
25
|
Ino H, Wilson R, Terao T, Ogura H, Igarashi H, Cahn A, Numachi Y. Evaluation of the Safety, Tolerability, and Pharmacokinetics of GSK2269557 (Nemiralisib) Administered Via Dry Powder Inhaler to Healthy Japanese Subjects. Clin Pharmacol Drug Dev 2018; 8:78-86. [DOI: 10.1002/cpdd.614] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Hiroko Ino
- Medicines Development (Clinical Pharmacology Office); Japan Development Division; GlaxoSmithKline K.K.; Tokyo Japan
| | - Robert Wilson
- Clinical Pharmacology Modelling and Simulation; Medicine's Research Centre; GlaxoSmithKline; Stevenage Hertfordshire UK
| | - Takumi Terao
- Biomedical Data Sciences Department; Japan Development Division; GlaxoSmithKline K.K.; Tokyo Japan
| | - Hirofumi Ogura
- Medicines Development (Clinical Pharmacology Office); Japan Development Division; GlaxoSmithKline K.K.; Tokyo Japan
| | - Harue Igarashi
- Pre-Clinical Development; Japan Development Division; GlaxoSmithKline K.K.; Tokyo Japan
| | - Anthony Cahn
- Pharma Research & Development; Respiratory TAU; GlaxoSmithKline; Stevenage UK
| | - Yotaro Numachi
- Medicines Development; Japan Development Division; GlaxoSmithKline K.K.; Tokyo Japan
| |
Collapse
|
26
|
Khan A, Southworth T, Worsley S, Sriskantharajah S, Amour A, Hessel EM, Singh D. An investigation of the anti-inflammatory effects and a potential biomarker of PI3Kδ inhibition in COPD T cells. Clin Exp Pharmacol Physiol 2018; 44:932-940. [PMID: 28508433 DOI: 10.1111/1440-1681.12784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 12/28/2022]
Abstract
Lymphocyte numbers are increased in the lungs of chronic obstructive pulmonary disease (COPD) patients. Phosphatidylinositol-3-kinase delta (PI3Kδ) is involved in lymphocyte activation. We investigated the effect of PI3Kδ inhibition on cytokine release from COPD lymphocytes. We also evaluated phosphorylated ribosomal S6 protein (rS6) as a potential biomarker of PI3Kδ activation. Peripheral blood mononuclear cells (PBMCs) and bronchoalveolar lavage (BAL) cells isolated from healthy never smokers (HNS), smokers (S) and COPD patients were stimulated to induce a T cell receptor response. The effects of a PI3Kδ specific inhibitor (GSK045) on cytokine release and rS6 phosphorylation were measured by Luminex and flow cytometry respectively. The effects of GSK045 on cytokine production from PHA stimulated chopped lung samples were investigated. GSK045 reduced cytokine release from PBMCs, BAL cells and chopped lung. Inhibition was greatest in the chopped lung model, with approximately 80% inhibition of interferon (IFN) γ, interleukin (IL)-2, IL-17 and IL-10. PI3Kδ inhibition suppressed rS6 phosphorylation in unstimulated airway T-lymphocytes by up to 60%. Inhibition of PI3Kδ suppressed T cell cytokine production in COPD patients. rS6 phosphorylation shows potential as a biomarker to assess PI3Kδ activity.
Collapse
Affiliation(s)
- Abid Khan
- The University of Manchester, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University Hospital of South Manchester NHS Foundation Trust, The University of Manchester, Manchester, UK.,The University of Manchester, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester, UK
| | - Thomas Southworth
- The University of Manchester, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University Hospital of South Manchester NHS Foundation Trust, The University of Manchester, Manchester, UK
| | - Sally Worsley
- Refractory Respiratory Inflammation DPU, GlaxoSmithKline, Stevenage, UK
| | | | - Augustin Amour
- Refractory Respiratory Inflammation DPU, GlaxoSmithKline, Stevenage, UK
| | - Edith M Hessel
- Refractory Respiratory Inflammation DPU, GlaxoSmithKline, Stevenage, UK
| | - Dave Singh
- The University of Manchester, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University Hospital of South Manchester NHS Foundation Trust, The University of Manchester, Manchester, UK
| |
Collapse
|
27
|
Abstract
Defining features of chronic airway diseases include abnormal and persistent inflammatory processes, impaired airway epithelial integrity and function, and increased susceptibility to recurrent respiratory infections. Phosphoinositide 3-kinases (PI3K) are lipid kinases, which contribute to multiple physiological and pathological processes within the airway, with abnormal PI3K signalling contributing to the pathogenesis of several respiratory diseases. Consequently, the potential benefit of targeting PI3K isoforms has received considerable attention, being viewed as a viable therapeutic option in inflammatory and infectious lung disorders. The class I PI3K isoform, PI3Kδ (Phosphoinositide 3-kinases δ) is of particular interest given its multiple roles in modulating innate and adaptive immune cell functions, airway inflammation and corticosteroid sensitivity. In this mini-review, we explore the role of PI3Kδ in airway inflammation and infection, focusing on oxidative stress, ER stress, histone deacetylase 2 and neutrophil function. We also describe the importance of PI3Kδ in adaptive immune cell function, as highlighted by the recently described Activated PI3K Delta Syndrome, and draw attention to some of the potential clinical applications and benefits of targeting this molecule.
Collapse
|
28
|
Shaddox E, Stingo FC, Peterson CB, Jacobson S, Cruickshank-Quinn C, Kechris K, Bowler R, Vannucci M. A Bayesian Approach for Learning Gene Networks Underlying Disease Severity in COPD. STATISTICS IN BIOSCIENCES 2018; 10:59-85. [PMID: 33912251 DOI: 10.1007/s12561-016-9176-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this paper, we propose a Bayesian hierarchical approach to infer network structures across multiple sample groups where both shared and differential edges may exist across the groups. In our approach, we link graphs through a Markov random field prior. This prior on network similarity provides a measure of pairwise relatedness that borrows strength only between related groups. We incorporate the computational efficiency of continuous shrinkage priors, improving scalability for network estimation in cases of larger dimensionality. Our model is applied to patient groups with increasing levels of chronic obstructive pulmonary disease severity, with the goal of better understanding the break down of gene pathways as the disease progresses. Our approach is able to identify critical hub genes for four targeted pathways. Furthermore, it identifies gene connections that are disrupted with increased disease severity and that characterize the disease evolution. We also demonstrate the superior performance of our approach with respect to competing methods, using simulated data.
Collapse
Affiliation(s)
- Elin Shaddox
- Department of Statistics, Rice University, Houston, USA
| | - Francesco C Stingo
- Dipartimento di Statistica, Informatica, Applicazioni "G.Parenti", University of Florence, Florence, Italy
| | | | - Sean Jacobson
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Charmion Cruickshank-Quinn
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Denver, CO, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Denver, CO, USA
| | - Russell Bowler
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | | |
Collapse
|
29
|
Gu W, Yuan Y, Yang H, Wu H, Wang L, Tang Z, Li Q. Role of miR-195 in cigarette smoke-induced chronic obstructive pulmonary disease. Int Immunopharmacol 2017; 55:49-54. [PMID: 29223853 DOI: 10.1016/j.intimp.2017.11.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 01/03/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is regarded as a persistent respiratory symptom, mainly caused by cigarette smoking. Recent data have suggested that some miRNAs are involved in the pathogenesis of COPD. Here, we found that miR-195 was significantly upregulated in the lung tissues of patients with COPD compared to in never smokers. miR-195 expression was also upregulated in cigarette smoke (CS)-exposed mice. Lentivirus-mediated knockdown of miR-195 alleviated CS-induced lung pathological changes and reduced inflammatory cell infiltration as well as production of interleukin-6 and tumor necrosis factor-α in bronchoalveolar lavage fluid. Mechanically, a positive correlation was found between miR-195 and phosphorylation of Akt in lung tissues of COPD patients. PHLPP2 was confirmed as a direct downstream target of miR-195 and negative regulator of miR-195 expression. Inhibition of PHLPP2 enhanced Akt phosphorylation and increased interleukin-6 and tumor necrosis factor-α production in BEAS-2B cells, resembling the effects of miR-195 overexpression. Collectively, our data indicate that miR-195 has a pathogenetic role in CS-induced COPD and regulates Akt signaling by suppressing PHLPP2 expression. miR-195 may be an effective therapeutic target in COPD.
Collapse
Affiliation(s)
- Wenchao Gu
- Department of Respiratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200080, China; Department of Respiratory Medicine, Shanghai Pudong New Area People' s Hospital, Shanghai 201200, China
| | - Yaping Yuan
- Department of Respiratory Medicine, Shanghai Pudong New Area People' s Hospital, Shanghai 201200, China
| | - Hua Yang
- Department of Respiratory Medicine, Shanghai Pudong New Area People' s Hospital, Shanghai 201200, China
| | - Hao Wu
- Department of Respiratory Medicine, Shanghai Pudong New Area People' s Hospital, Shanghai 201200, China
| | - Linxuan Wang
- Department of Respiratory Medicine, Shanghai Pudong New Area People' s Hospital, Shanghai 201200, China
| | - Zhijun Tang
- Department of Respiratory Medicine, Shanghai Pudong New Area People' s Hospital, Shanghai 201200, China
| | - Qiang Li
- Department of Respiratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200080, China.
| |
Collapse
|
30
|
Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K Pathway in Human Disease. Cell 2017; 170:605-635. [PMID: 28802037 PMCID: PMC5726441 DOI: 10.1016/j.cell.2017.07.029] [Citation(s) in RCA: 1856] [Impact Index Per Article: 232.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 02/08/2023]
Abstract
Phosphoinositide 3-kinase (PI3K) activity is stimulated by diverse oncogenes and growth factor receptors, and elevated PI3K signaling is considered a hallmark of cancer. Many PI3K pathway-targeted therapies have been tested in oncology trials, resulting in regulatory approval of one isoform-selective inhibitor (idelalisib) for treatment of certain blood cancers and a variety of other agents at different stages of development. In parallel to PI3K research by cancer biologists, investigations in other fields have uncovered exciting and often unpredicted roles for PI3K catalytic and regulatory subunits in normal cell function and in disease. Many of these functions impinge upon oncology by influencing the efficacy and toxicity of PI3K-targeted therapies. Here we provide a perspective on the roles of class I PI3Ks in the regulation of cellular metabolism and in immune system functions, two topics closely intertwined with cancer biology. We also discuss recent progress developing PI3K-targeted therapies for treatment of cancer and other diseases.
Collapse
Affiliation(s)
- David A Fruman
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA.
| | - Honyin Chiu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Benjamin D Hopkins
- Meyer Cancer Center, Weill Cornell Medical College, 413 E. 69(th) Street, New York, NY 10021, USA
| | - Shubha Bagrodia
- Oncology R&D Group, Pfizer Worldwide Research and Development, 10646/CB4 Science Center Drive, San Diego, CA 92121, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medical College, 413 E. 69(th) Street, New York, NY 10021, USA
| | - Robert T Abraham
- Oncology R&D Group, Pfizer Worldwide Research and Development, 10646/CB4 Science Center Drive, San Diego, CA 92121, USA
| |
Collapse
|
31
|
Erra M, Taltavull J, Gréco A, Bernal FJ, Caturla JF, Gràcia J, Domínguez M, Sabaté M, Paris S, Soria S, Hernández B, Armengol C, Cabedo J, Bravo M, Calama E, Miralpeix M, Lehner MD. Discovery of a Potent, Selective, and Orally Available PI3Kδ Inhibitor for the Treatment of Inflammatory Diseases. ACS Med Chem Lett 2017; 8:118-123. [PMID: 28105286 DOI: 10.1021/acsmedchemlett.6b00438] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022] Open
Abstract
The delta isoform of the phosphatidylinositol 3-kinase (PI3Kδ) has been shown to have an essential role in specific immune cell functions and thus represents a potential therapeutic target for autoimmune and inflammatory diseases. Herein, the optimization of a series of pyrrolotriazinones as potent and selective PI3Kδ inhibitors is described. The main challenge of the optimization process was to identify an orally available compound with a good pharmacokinetic profile in preclinical species that predicted a suitable dosing regimen in humans. Structure-activity relationships and structure-property relationships are discussed. This medicinal chemistry exercise led to the identification of LAS191954 as a candidate for clinical development.
Collapse
Affiliation(s)
- Montse Erra
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Systems Biology, and ∥Respiratory Therapeutic Area, Almirall R&D, Barcelona 08980, Spain
| | - Joan Taltavull
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Systems Biology, and ∥Respiratory Therapeutic Area, Almirall R&D, Barcelona 08980, Spain
| | - Angelique Gréco
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Systems Biology, and ∥Respiratory Therapeutic Area, Almirall R&D, Barcelona 08980, Spain
| | - Francisco Javier Bernal
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Systems Biology, and ∥Respiratory Therapeutic Area, Almirall R&D, Barcelona 08980, Spain
| | - Juan Francisco Caturla
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Systems Biology, and ∥Respiratory Therapeutic Area, Almirall R&D, Barcelona 08980, Spain
| | - Jordi Gràcia
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Systems Biology, and ∥Respiratory Therapeutic Area, Almirall R&D, Barcelona 08980, Spain
| | - María Domínguez
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Systems Biology, and ∥Respiratory Therapeutic Area, Almirall R&D, Barcelona 08980, Spain
| | - Mar Sabaté
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Systems Biology, and ∥Respiratory Therapeutic Area, Almirall R&D, Barcelona 08980, Spain
| | - Stéphane Paris
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Systems Biology, and ∥Respiratory Therapeutic Area, Almirall R&D, Barcelona 08980, Spain
| | - Salomé Soria
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Systems Biology, and ∥Respiratory Therapeutic Area, Almirall R&D, Barcelona 08980, Spain
| | - Begoña Hernández
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Systems Biology, and ∥Respiratory Therapeutic Area, Almirall R&D, Barcelona 08980, Spain
| | - Clara Armengol
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Systems Biology, and ∥Respiratory Therapeutic Area, Almirall R&D, Barcelona 08980, Spain
| | - Judit Cabedo
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Systems Biology, and ∥Respiratory Therapeutic Area, Almirall R&D, Barcelona 08980, Spain
| | - Mónica Bravo
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Systems Biology, and ∥Respiratory Therapeutic Area, Almirall R&D, Barcelona 08980, Spain
| | - Elena Calama
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Systems Biology, and ∥Respiratory Therapeutic Area, Almirall R&D, Barcelona 08980, Spain
| | - Montserrat Miralpeix
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Systems Biology, and ∥Respiratory Therapeutic Area, Almirall R&D, Barcelona 08980, Spain
| | - Martin D. Lehner
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Systems Biology, and ∥Respiratory Therapeutic Area, Almirall R&D, Barcelona 08980, Spain
| |
Collapse
|
32
|
Milara J, Cervera A, de Diego A, Sanz C, Juan G, Gavaldà A, Miralpeix M, Morcillo E, Cortijo J. Non-neuronal cholinergic system contributes to corticosteroid resistance in chronic obstructive pulmonary disease patients. Respir Res 2016; 17:145. [PMID: 27825347 PMCID: PMC5101693 DOI: 10.1186/s12931-016-0467-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/02/2016] [Indexed: 12/21/2022] Open
Abstract
Background Inhaled corticosteroid (ICS) with long-acting beta-2 agonists is a well-documented combination therapy for chronic obstructive pulmonary disease (COPD) based on its additive anti-inflammatory properties. By contrast, the recommendation of ICS in combination with long-acting muscarinic antagonist (LAMA) is not evidence-based. In this study, neutrophils obtained from COPD patients were used to compare the anti-inflammatory effects of aclidinium bromide (a long-acting muscarinic antagonist) with corticosteroids and their potential additive effect. Methods Human sputum and blood neutrophils were isolated from healthy individuals (n = 37), patients with stable COPD (n = 52) and those with exacerbated COPD (n = 16). The cells were incubated with corticosteroid fluticasone propionate (0.1 nM–1 μM), aclidinium bromide (0.1 nM–1 μM) or a combination thereof and stimulated with 1 μg of lipopolysaccharide/ml or 5 % cigarette smoke extract. Levels of the pro-inflammatory mediators interleukin-8, matrix metalloproteinase-9, CCL-5, granulocyte-macrophage colony-stimulating factor and interleukin-1β were measured and the mechanisms of corticosteroid resistance evaluated at the end of the incubation. Results The non-neuronal cholinergic system was over-expressed in neutrophils from COPD patients, as evidenced by increases in the expression of muscarinic receptors (M2, M4 and M5), choline acetyltransferase and vesicular acetylcholine transporter. Aclidinium bromide demonstrated anti-inflammatory effects on neutrophils from COPD patients, reversing their resistance to corticosteroids. Additive effects of combined aclidinium bromide and fluticasone propionate in blocking M2 receptor levels, inhibiting phosphoinositide 3-kinase-δ and enhancing the glucocorticoid response element transcription factor were demonstrated and were accompanied by an increase in the corticosteroid-induced expression of anti-inflammatory-related genes. Conclusions LAMAs potentiate the anti-inflammatory effects of corticosteroids in neutrophils from COPD patients in vitro, thus providing a scientific rationale for their use in combination with corticosteroids in the treatment of COPD. Electronic supplementary material The online version of this article (doi:10.1186/s12931-016-0467-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Javier Milara
- Department of pharmacology, faculty of medicine, Jaume I University, Castellón, Spain. .,Pharmacy Unit, University General Hospital Consortium, Valencia, Spain. .,CIBERES, Health Institute Carlos III, Valencia, Spain. .,Unidad de Investigación Clínica, Consorcio Hospital General Universitario, Avenida tres cruces s/n, E-46014, Valencia, Spain.
| | - Angela Cervera
- Respiratory Unit, University General Hospital Consortium, Valencia, Spain
| | - Alfredo de Diego
- Respiratory Unit, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Celia Sanz
- Department of pharmacology, faculty of medicine, Jaume I University, Castellón, Spain.,Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Gustavo Juan
- Respiratory Unit, University General Hospital Consortium, Valencia, Spain
| | | | | | - Esteban Morcillo
- CIBERES, Health Institute Carlos III, Valencia, Spain.,Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Health Research Institute INCLIVA, Valencia, Spain
| | - Julio Cortijo
- CIBERES, Health Institute Carlos III, Valencia, Spain.,Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Research and teaching Unit, University General Hospital Consortium, Valencia, Spain
| |
Collapse
|
33
|
Southworth T, Plumb J, Gupta V, Pearson J, Ramis I, Lehner MD, Miralpeix M, Singh D. Anti-inflammatory potential of PI3Kδ and JAK inhibitors in asthma patients. Respir Res 2016; 17:124. [PMID: 27716212 PMCID: PMC5051065 DOI: 10.1186/s12931-016-0436-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/17/2016] [Indexed: 01/20/2023] Open
Abstract
Background Phosphatidylinositol 3-kinase delta (PI3Kδ) and Janus-activated kinases (JAK) are both novel anti-inflammatory targets in asthma that affect lymphocyte activation. We have investigated the anti-inflammatory effects of PI3Kδ and JAK inhibition on cytokine release from asthma bronchoalveolar lavage (BAL) cells and T-cell activation, and measured lung PI3Kδ and JAK signalling pathway expression. Method Cells isolated from asthma patients and healthy subjects were treated with PI3Kδ or JAK inhibitors, and/or dexamethasone, before T-cell receptor stimulation. Levels of IFNγ, IL-13 and IL-17 were measured by ELISA and flow cytometry was used to assess T-cell activation. PI3Kδ, PI3Kγ, phosphorylated protein kinase B (pAKT) and Signal Transducer and Activator of Transcription (STAT) protein expression were assessed by immunohistochemistry in bronchial biopsy tissue from asthma patients and healthy subjects. PI3Kδ expression in BAL CD3 cells was measured by flow cytometry. Results JAK and PI3Kδ inhibitors reduced cytokine levels from both asthma and healthy BAL cells. Combining dexamethasone with either a JAK or PI3Kδ inhibitor showed an additive anti-inflammatory effect. JAK and PI3Kδ inhibitors were shown to have direct effects on T-cell activation. Immunohistochemistry showed increased numbers of PI3Kδ expressing cells in asthma bronchial tissue compared to controls. Asthma CD3 cells in BAL expressed higher levels of PI3Kδ protein compared to healthy cells. Conclusions Targeting PI3Kδ or JAK may prove effective in reducing T-cell activation and the resulting cytokine production in asthma. Electronic supplementary material The online version of this article (doi:10.1186/s12931-016-0436-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Southworth
- The University of Manchester; Division of Infection, Immunity & Respiratory Medicine; Manchester Academic Health Science Centre; University Hospital South Manchester NHS Foundation Trust, Southmoor Road, Manchester, M23 9LT, UK.
| | - Jonathan Plumb
- The University of Manchester; Division of Infection, Immunity & Respiratory Medicine; Manchester Academic Health Science Centre; University Hospital South Manchester NHS Foundation Trust, Southmoor Road, Manchester, M23 9LT, UK
| | - Vandana Gupta
- The University of Manchester; Division of Infection, Immunity & Respiratory Medicine; Manchester Academic Health Science Centre; University Hospital South Manchester NHS Foundation Trust, Southmoor Road, Manchester, M23 9LT, UK
| | - James Pearson
- The University of Manchester; Division of Infection, Immunity & Respiratory Medicine; Manchester Academic Health Science Centre; University Hospital South Manchester NHS Foundation Trust, Southmoor Road, Manchester, M23 9LT, UK
| | - Isabel Ramis
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | - Martin D Lehner
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | | | - Dave Singh
- The University of Manchester; Division of Infection, Immunity & Respiratory Medicine; Manchester Academic Health Science Centre; University Hospital South Manchester NHS Foundation Trust, Southmoor Road, Manchester, M23 9LT, UK
| |
Collapse
|
34
|
Abstract
Chronic airway diseases are a significant cause of morbidity and mortality worldwide, and their prevalence is predicted to increase in the future. Respiratory viruses are the most common cause of acute pulmonary infection, and there is clear evidence of their role in acute exacerbations of inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease. Studies have reported impaired host responses to virus infection in these diseases, and a better understanding of the mechanisms of these abnormal immune responses has the potential to lead to the development of novel therapeutic targets for virus-induced exacerbations. The aim of this article is to review the current knowledge regarding the role of viruses and immune modulation in acute exacerbations of chronic pulmonary diseases and to discuss exciting areas for future research and novel treatments.
Collapse
|
35
|
Barnes PJ. Kinases as Novel Therapeutic Targets in Asthma and Chronic Obstructive Pulmonary Disease. Pharmacol Rev 2016; 68:788-815. [PMID: 27363440 DOI: 10.1124/pr.116.012518] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multiple kinases play a critical role in orchestrating the chronic inflammation and structural changes in the respiratory tract of patients with asthma and chronic obstructive pulmonary disease (COPD). Kinases activate signaling pathways that lead to contraction of airway smooth muscle and release of inflammatory mediators (such as cytokines, chemokines, growth factors) as well as cell migration, activation, and proliferation. For this reason there has been great interest in the development of kinase inhibitors as anti-inflammatory therapies, particular where corticosteroids are less effective, as in severe asthma and COPD. However, it has proven difficult to develop selective kinase inhibitors that are both effective and safe after oral administration and this has led to a search for inhaled kinase inhibitors, which would reduce systemic exposure. Although many kinases have been implicated in inflammation and remodeling of airway disease, very few classes of drug have reached the stage of clinical studies in these diseases. The most promising drugs are p38 MAP kinases, isoenzyme-selective PI3-kinases, Janus-activated kinases, and Syk-kinases, and inhaled formulations of these drugs are now in development. There has also been interest in developing inhibitors that block more than one kinase, because these drugs may be more effective and with less risk of losing efficacy with time. No kinase inhibitors are yet on the market for the treatment of airway diseases, but as kinase inhibitors are improved from other therapeutic areas there is hope that these drugs may eventually prove useful in treating refractory asthma and COPD.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
36
|
Abstract
Noneosinophilic airway inflammation occurs in approximately 50% of patients with asthma. It is subdivided into neutrophilic or paucigranulocytic inflammation, although the proportion of each subtype is uncertain because of variable cut-off points used to define neutrophilia. This article reviews the evidence for noneosinophilic inflammation being a target for therapy in asthma and assesses clinical trials of licensed drugs, novel small molecules and biologics agents in noneosinophilic inflammation. Current symptoms, rate of exacerbations and decline in lung function are generally less in noneosinophilic asthma than eosinophilic asthma. Noneosinophilic inflammation is associated with corticosteroid insensitivity. Neutrophil activation in the airways and systemic inflammation is reported in neutrophilic asthma. Neutrophilia in asthma may be due to corticosteroids, associated chronic pulmonary infection, altered airway microbiome or delayed neutrophil apoptosis. The cause of poorly controlled noneosinophilic asthma may differ between patients and involve several mechanism including neutrophilic inflammation, T helper 2 (Th2)-low or other subtypes of airway inflammation or corticosteroid insensitivity as well as noninflammatory pathways such as airway hyperreactivity and remodelling. Smoking cessation in asthmatic smokers and removal from exposure to some occupational agents reduces neutrophilic inflammation. Preliminary studies of 'off-label' use of licensed drugs suggest that macrolides show efficacy in nonsmokers with noneosinophilic severe asthma and statins, low-dose theophylline and peroxisome proliferator-activated receptor gamma (PPARγ) agonists may benefit asthmatic smokers with noneosinophilic inflammation. Novel small molecules targeting neutrophilic inflammation, such as chemokine (CXC) receptor 2 (CXCR2) antagonists reduce neutrophils, but do not improve clinical outcomes in studies to date. Inhaled phosphodiesterase (PDE)4 inhibitors, dual PDE3 and PDE4 inhibitors, p38MAPK (mitogen-activated protein kinase) inhibitors, tyrosine kinase inhibitors and PI (phosphoinositide) 3kinase inhibitors are under development and these compounds may be of benefit in noneosinophilic inflammation. The results of clinical trials of biological agents targeting mediators associated with noneosinophilic inflammation, such as interleukin (IL)-17 and tumor necrosis factor (TNF)-α are disappointing. Greater understanding of the mechanisms of noneosinophilic inflammation in asthma should lead to improved therapies.
Collapse
Affiliation(s)
- Neil C Thomson
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 0YN, UK
| |
Collapse
|
37
|
Gupta V, Khan A, Higham A, Lemon J, Sriskantharajah S, Amour A, Hessel EM, Southworth T, Singh D. The effect of phosphatidylinositol-3 kinase inhibition on matrix metalloproteinase-9 and reactive oxygen species release from chronic obstructive pulmonary disease neutrophils. Int Immunopharmacol 2016; 35:155-162. [PMID: 27049289 DOI: 10.1016/j.intimp.2016.03.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 03/01/2016] [Accepted: 03/21/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) is characterised by increased neutrophilic inflammation. A potential novel anti-inflammatory target in COPD is phosphatidylinositol-3 kinase (PI3 kinase), which targets neutrophil function. This study evaluated the effects of selective PI3Kδ inhibition on COPD blood and sputum neutrophils both in the stable state and during exacerbations. METHODS Blood and sputum neutrophils from stable and exacerbating COPD patients were cultured with the corticosteroid dexamethasone, a pan PI3 kinase inhibitor (ZSTK474), a δ selective PI3 kinase inhibitor (GSK045) and a p38 mitogen activated protein (MAP) kinase inhibitor (BIRB 796); matrix metalloproteinase (MMP)-9 and reactive oxygen species (ROS) release were analysed. RESULTS PI3Kδ inhibition significantly reduced MMP-9, intracellular ROS and extracellular ROS release from blood neutrophils (45.6%, 30.1% and 47.4% respectively; p<0.05) and intracellular ROS release from sputum neutrophils (16.6%; p<0.05) in stable patients. PI3Kδ selective inhibition significantly reduced stimulated MMP-9 (36.4%; p<0.05) and unstimulated and stimulated ROS release (12.6 and 26.7%; p<0.05) from blood neutrophils from exacerbating patients. The effects of the p38 MAP kinase inhibitor and dexamethasone in these experiments were generally lower than PI3Kδ inhibition. CONCLUSION PI3Kδ selective inhibition is a potential strategy for targeting glucocorticoid insensitive MMP-9 and ROS secretion from COPD neutrophils, both in the stable state and during exacerbations.
Collapse
Affiliation(s)
- V Gupta
- University of Manchester, Medicines Evaluation Unit, Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University Hospital of South Manchester, NHS Foundation Trust, Manchester M23 9LT, UK.
| | - A Khan
- University of Manchester, Medicines Evaluation Unit, Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University Hospital of South Manchester, NHS Foundation Trust, Manchester M23 9LT, UK
| | - A Higham
- University of Manchester, Medicines Evaluation Unit, Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University Hospital of South Manchester, NHS Foundation Trust, Manchester M23 9LT, UK
| | - J Lemon
- University of Manchester, Medicines Evaluation Unit, Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University Hospital of South Manchester, NHS Foundation Trust, Manchester M23 9LT, UK
| | - S Sriskantharajah
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, UK
| | - A Amour
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, UK
| | - E M Hessel
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, UK
| | - T Southworth
- University of Manchester, Medicines Evaluation Unit, Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University Hospital of South Manchester, NHS Foundation Trust, Manchester M23 9LT, UK
| | - D Singh
- University of Manchester, Medicines Evaluation Unit, Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University Hospital of South Manchester, NHS Foundation Trust, Manchester M23 9LT, UK
| |
Collapse
|
38
|
Abstract
Corticosteroids are the most effective treatment for asthma, but the therapeutic response varies markedly between individuals, with up to one third of patients showing evidence of insensitivity to corticosteroids. This article summarizes information on genetic, environmental and asthma-related factors as well as demographic and pharmacokinetic variables associated with corticosteroid insensitivity in asthma. Molecular mechanisms proposed to explain corticosteroid insensitivity are reviewed including alterations in glucocorticoid receptor subtype, binding and nuclear translocation, increased proinflammatory transcription factors and defective histone acetylation. Current therapies and future interventions that may restore corticosteroid sensitivity in asthma are discussed, including small molecule drugs and biological agents. In the future, biomarkers may be used in the clinic to predict corticosteroid sensitivity in patients with poorly controlled asthma.
Collapse
Affiliation(s)
- Neil C Thomson
- a Institute of Infection, Immunity & Inflammation , University of Glasgow , Glasgow , UK
| |
Collapse
|
39
|
Ingawale DK, Mandlik SK, Patel SS. An emphasis on molecular mechanisms of anti-inflammatory effects and glucocorticoid resistance. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2015; 12:1-13. [PMID: 25503867 DOI: 10.1515/jcim-2014-0051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/16/2014] [Indexed: 11/15/2022]
Abstract
Glucocorticoids (GC) are universally accepted agents for the treatment of anti-inflammatory and immunosuppressive disorders. They are used in the treatment of rheumatic diseases and various inflammatory diseases such as allergy, asthma and sepsis. They bind with GC receptor (GR) and form GC-GR complex with the receptor and exert their actions. On activation the GC-GR complex up-regulates the expression of nucleus anti-inflammatory proteins called as transactivation and down-regulates the expression of cytoplasmic pro-inflammatory proteins called as transrepression. It has been observed that transactivation mechanisms are notorious for side effects and transrepressive mechanisms are identified for beneficial anti-inflammatory effects of GC therapy. GC hampers the function of numerous inflammatory mediators such as cytokines, chemokines, adhesion molecules, arachidonic acid metabolites, release of platelet-activating factor (PAF), inflammatory peptides and enzyme modulation involved in the process of inflammation. The GC resistance is a serious therapeutic problem and limits the therapeutic response of GC in chronic inflammatory patients. It has been observed that the GC resistance can be attributed to cellular microenvironment changes, as a consequence of chronic inflammation. Various other factors responsible for resistance have been identified, including alterations in both GR-dependent and GR-independent signaling pathways of cytokine action, hypoxia, oxidative stress, allergen exposure and serum-derived factors. The present review enumerates various aspects of inflammation such as use of GC for treatment of inflammation and its mechanism of action. Molecular mechanisms of anti-inflammatory action of GC and GC resistance, alternative anti-inflammatory treatments and new strategy for reversing the GC resistance have also been discussed.
Collapse
|
40
|
Ngkelo A, Hoffmann RF, Durham AL, Marwick JA, Brandenburg SM, de Bruin HG, Jonker MR, Rossios C, Tsitsiou E, Caramori G, Contoli M, Casolari P, Monaco F, Andò F, Speciale G, Kilty I, Chung KF, Papi A, Lindsay MA, Ten Hacken NHT, van den Berge M, Timens W, Barnes PJ, van Oosterhout AJ, Adcock IM, Kirkham PA, Heijink IH. Glycogen synthase kinase-3β modulation of glucocorticoid responsiveness in COPD. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1112-23. [PMID: 26320152 PMCID: PMC4652154 DOI: 10.1152/ajplung.00077.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/06/2015] [Indexed: 01/24/2023] Open
Abstract
In chronic obstructive pulmonary disease (COPD), oxidative stress regulates the inflammatory response of bronchial epithelium and monocytes/macrophages through kinase modulation and has been linked to glucocorticoid unresponsiveness. Glycogen synthase-3β (GSK3β) inactivation plays a key role in mediating signaling processes upon reactive oxygen species (ROS) exposure. We hypothesized that GSK3β is involved in oxidative stress-induced glucocorticoid insensitivity in COPD. We studied levels of phospho-GSK3β-Ser9, a marker of GSK3β inactivation, in lung sections and cultured monocytes and bronchial epithelial cells of COPD patients, control smokers, and nonsmokers. We observed increased levels of phospho-GSK3β-Ser9 in monocytes, alveolar macrophages, and bronchial epithelial cells from COPD patients and control smokers compared with nonsmokers. Pharmacological inactivation of GSK3β did not affect CXCL8 or granulocyte-macrophage colony-stimulating factor (GM-CSF) expression but resulted in glucocorticoid insensitivity in vitro in both inflammatory and structural cells. Further mechanistic studies in monocyte and bronchial epithelial cell lines showed that GSK3β inactivation is a common effector of oxidative stress-induced activation of the MEK/ERK-1/2 and phosphatidylinositol 3-kinase/Akt signaling pathways leading to glucocorticoid unresponsiveness. In primary monocytes, the mechanism involved modulation of histone deacetylase 2 (HDAC2) activity in response to GSK3β inactivation. In conclusion, we demonstrate for the first time that ROS-induced glucocorticoid unresponsiveness in COPD is mediated through GSK3β, acting as a ROS-sensitive hub.
Collapse
Affiliation(s)
- Anta Ngkelo
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Roland F Hoffmann
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Andrew L Durham
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - John A Marwick
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Simone M Brandenburg
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Harold G de Bruin
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Marnix R Jonker
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Christos Rossios
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Eleni Tsitsiou
- Respiratory Research Group, Faculty of Medical and Human Sciences, University of Manchester, and National Institute for Health Research Translational Research Facility in Respiratory Medicine, University Hospital of South Manchester, Manchester, United Kingdom
| | - Gaetano Caramori
- Dipartimento di Scienze Mediche, Sezione di Medicina Interna e Cardiorespiratoria, Centro per lo Studio delle Malattie Infiammatorie Croniche delle Vie Aeree e Patologie Fumo Correlate dell'Apparato Respiratorio (formerly termed Centro di Ricerca su Asma e BPCO), Università di Ferrara, Ferrara, Italy
| | - Marco Contoli
- Dipartimento di Scienze Mediche, Sezione di Medicina Interna e Cardiorespiratoria, Centro per lo Studio delle Malattie Infiammatorie Croniche delle Vie Aeree e Patologie Fumo Correlate dell'Apparato Respiratorio (formerly termed Centro di Ricerca su Asma e BPCO), Università di Ferrara, Ferrara, Italy
| | - Paolo Casolari
- Dipartimento di Scienze Mediche, Sezione di Medicina Interna e Cardiorespiratoria, Centro per lo Studio delle Malattie Infiammatorie Croniche delle Vie Aeree e Patologie Fumo Correlate dell'Apparato Respiratorio (formerly termed Centro di Ricerca su Asma e BPCO), Università di Ferrara, Ferrara, Italy
| | - Francesco Monaco
- Thoracic Surgery Unit, Cardiovascular and Thoracic Department, University of Messina, Messina, Italy
| | - Filippo Andò
- Pneumology Unit, Cardiovascular and Thoracic Department, University of Messina, Italy
| | - Giuseppe Speciale
- Department of Human Pathology "Gaetano Barresi," University of Messina, Messina, Italy
| | - Iain Kilty
- Pfizer, Inflammation and Remodeling Research Unit, Cambridge, Massachusetts
| | - Kian F Chung
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Alberto Papi
- Dipartimento di Scienze Mediche, Sezione di Medicina Interna e Cardiorespiratoria, Centro per lo Studio delle Malattie Infiammatorie Croniche delle Vie Aeree e Patologie Fumo Correlate dell'Apparato Respiratorio (formerly termed Centro di Ricerca su Asma e BPCO), Università di Ferrara, Ferrara, Italy
| | - Mark A Lindsay
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, United Kingdom
| | - Nick H T Ten Hacken
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands; and University of Groningen, University Medical Center Groningen, Groningen, Groningen Research Institute for Asthma Research Institute, Groningen, The Netherlands
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands; and University of Groningen, University Medical Center Groningen, Groningen, Groningen Research Institute for Asthma Research Institute, Groningen, The Netherlands
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Groningen, Groningen Research Institute for Asthma Research Institute, Groningen, The Netherlands
| | - Peter J Barnes
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Antoon J van Oosterhout
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Groningen, Groningen Research Institute for Asthma Research Institute, Groningen, The Netherlands
| | - Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom;
| | - Paul A Kirkham
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands; and University of Groningen, University Medical Center Groningen, Groningen, Groningen Research Institute for Asthma Research Institute, Groningen, The Netherlands
| |
Collapse
|
41
|
Hsu ACY, Starkey MR, Hanish I, Parsons K, Haw TJ, Howland LJ, Barr I, Mahony JB, Foster PS, Knight DA, Wark PA, Hansbro PM. Targeting PI3K-p110α Suppresses Influenza Virus Infection in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2015; 191:1012-23. [PMID: 25751541 DOI: 10.1164/rccm.201501-0188oc] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RATIONALE Chronic obstructive pulmonary disease (COPD) and influenza virus infections are major global health issues. Patients with COPD are more susceptible to infection, which exacerbates their condition and increases morbidity and mortality. The mechanisms of increased susceptibility remain poorly understood, and current preventions and treatments have substantial limitations. OBJECTIVES To characterize the mechanisms of increased susceptibility to influenza virus infection in COPD and the potential for therapeutic targeting. METHODS We used a combination of primary bronchial epithelial cells (pBECs) from COPD and healthy control subjects, a mouse model of cigarette smoke-induced experimental COPD, and influenza infection. The role of the phosphoinositide-3-kinase (PI3K) pathway was characterized using molecular methods, and its potential for targeting assessed using inhibitors. MEASUREMENTS AND MAIN RESULTS COPD pBECs were susceptible to increased viral entry and replication. Infected mice with experimental COPD also had more severe infection (increased viral titer and pulmonary inflammation, and compromised lung function). These processes were associated with impaired antiviral immunity, reduced retinoic acid-inducible gene-I, and IFN/cytokine and chemokine responses. Increased PI3K-p110α levels and activity in COPD pBECs and/or mice were responsible for increased infection and reduced antiviral responses. Global PI3K, specific therapeutic p110α inhibitors, or exogenous IFN-β restored protective antiviral responses, suppressed infection, and improved lung function. CONCLUSIONS The increased susceptibility of individuals with COPD to influenza likely results from impaired antiviral responses, which are mediated by increased PI3K-p110α activity. This pathway may be targeted therapeutically in COPD, or in healthy individuals, during seasonal or pandemic outbreaks to prevent and/or treat influenza.
Collapse
Affiliation(s)
- Alan Chen-Yu Hsu
- 1 Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kimura G, Kizawa Y. [Corticosteroid sensitivity in intractable respiratory disease]. Nihon Yakurigaku Zasshi 2015; 145:329. [PMID: 26063157 DOI: 10.1254/fpj.145.329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Oxidants induce a corticosteroid-insensitive phosphorylation of histone 3 at serine 10 in monocytes. PLoS One 2015; 10:e0124961. [PMID: 25905622 PMCID: PMC4407905 DOI: 10.1371/journal.pone.0124961] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/20/2015] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress enhances inflammation and reduces the effectiveness of corticosteroids, but the inflammatory signalling pathways induced by oxidants remain ill-defined. Phosphorylation of histone 3 at serine 10 (H3-Pser10) marks out a subset of inflammatory genes for transcription, several of which are induced in oxidant-associated inflammation. However, the influence of oxidants or of corticosteroids on this modification remains unknown. We assessed the regulation of H3-Pser10 by oxidants and lipopolysaccharide (LPS) in human blood monocytes and lung macrophages and the effectiveness of its abolition in controlling inflammatory gene expression in cells from asthmatic subjects compared to corticosteroids alone. Both oxidants and LPS promoted the induction of H3-Pser10 which was unaffected by corticosteroids. The induction of H3-Pser10 was mediated through p38α mitogen-activated protein kinase (MAPK) and IκB kinase 2 (IKK-2) signalling. Consequently, inhibitors of p38α MAPK or IKK-2 used in combination with dexamethasone were more effective at controlling inflammatory gene expression from monocytes and lung macrophages from asthmatic patients than the corticosteroid alone. Therefore, reduction of H3-Pser10 by inhibition of p38α MAPK or of IKK-2 may provide greater anti-inflammatory control than corticosteroids alone in oxidant-associated inflammation such as severe asthma.
Collapse
|
44
|
Rider CF, Shah S, Miller-Larsson A, Giembycz MA, Newton R. Cytokine-induced loss of glucocorticoid function: effect of kinase inhibitors, long-acting β(2)-adrenoceptor [corrected] agonist and glucocorticoid receptor ligands. PLoS One 2015; 10:e0116773. [PMID: 25625944 PMCID: PMC4308083 DOI: 10.1371/journal.pone.0116773] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/13/2014] [Indexed: 11/19/2022] Open
Abstract
Acting on the glucocorticoid receptor (NR3C1), glucocorticoids are widely used to treat inflammatory diseases. However, glucocorticoid resistance often leads to suboptimal asthma control. Since glucocorticoid-induced gene expression contributes to glucocorticoid activity, the aim of this study was to use a 2 × glucocorticoid response element (GRE) reporter and glucocorticoid-induced gene expression to investigate approaches to combat cytokine-induced glucocorticoid resistance. Pre-treatment with tumor necrosis factor-α (TNF) or interleukin-1β inhibited dexamethasone-induced mRNA expression of the putative anti-inflammatory genes RGS2 and TSC22D3, or just TSC22D3, in primary human airway epithelial and smooth muscle cells, respectively. Dexamethasone-induced DUSP1 mRNA was unaffected. In human bronchial epithelial BEAS-2B cells, dexamethasone-induced TSC22D3 and CDKN1C expression (at 6 h) was reduced by TNF pre-treatment, whereas DUSP1 and RGS2 mRNAs were unaffected. TNF pre-treatment also reduced dexamethasone-dependent 2×GRE reporter activation. This was partially reversed by PS-1145 and c-jun N-terminal kinase (JNK) inhibitor VIII, inhibitors of IKK2 and JNK, respectively. However, neither inhibitor affected TNF-dependent loss of dexamethasone-induced CDKN1C or TSC22D3 mRNA. Similarly, inhibitors of the extracellular signal-regulated kinase, p38, phosphoinositide 3-kinase or protein kinase C pathways failed to attenuate TNF-dependent repression of the 2×GRE reporter. Fluticasone furoate, fluticasone propionate and budesonide were full agonists relative to dexamethasone, while GSK9027, RU24858, des-ciclesonide and GW870086X were partial agonists on the 2×GRE reporter. TNF reduced reporter activity in proportion with agonist efficacy. Full and partial agonists showed various degrees of agonism on RGS2 and TSC22D3 expression, but were equally effective at inducing CDKN1C and DUSP1, and did not affect the repression of CDKN1C or TSC22D3 expression by TNF. Finally, formoterol-enhanced 2×GRE reporter activity was also proportional to agonist efficacy and functionally reversed repression by TNF. As similar effects were apparent on glucocorticoid-induced gene expression, the most effective strategy to overcome glucocorticoid resistance in this model was addition of formoterol to high efficacy NR3C1 agonists.
Collapse
Affiliation(s)
- Christopher F. Rider
- Airways Inflammation Research Group, Snyder Institute of Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Suharsh Shah
- Airways Inflammation Research Group, Snyder Institute of Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Mark A. Giembycz
- Airways Inflammation Research Group, Snyder Institute of Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert Newton
- Airways Inflammation Research Group, Snyder Institute of Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
45
|
Caramori G, Kirkham P, Barczyk A, Di Stefano A, Adcock I. Molecular pathogenesis of cigarette smoking-induced stable COPD. Ann N Y Acad Sci 2015; 1340:55-64. [PMID: 25639503 DOI: 10.1111/nyas.12619] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation is a central feature of stable chronic obstructive pulmonary disease (COPD) and involves both activation of structural cells of the airways and the lungs and the activation and/or recruitment of infiltrating inflammatory cells. This results in enhanced expression of many pro-inflammatory proteins and reduced expression of some anti-inflammatory mediators. An altered protein expression is generally associated with concomitant changes in gene expression profiles in a cell-specific manner. Increased understanding of the role of transcription factors and of the signaling pathways leading to their activation in stable COPD will provide new targets to enable the development of potential anti-inflammatory drugs. Several new compounds targeting these pathways and/or transcription factors are now in development for the treatment of stable COPD. Furthermore, glucocorticoids drugs already in clinical use act through their own transcription factor, the glucocorticoid receptor, to control the expression of inflammatory and anti-inflammatory genes.
Collapse
Affiliation(s)
- Gaetano Caramori
- Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-correlate (CEMICEF), Sezione di Medicina Interna e Cardiorespiratoria, Università di Ferrara, Ferrara, Italy
| | | | | | | | | |
Collapse
|
46
|
Liang Z, Zhang Q, Thomas CM, Chana KK, Gibeon D, Barnes PJ, Chung KF, Bhavsar PK, Donnelly LE. Impaired macrophage phagocytosis of bacteria in severe asthma. Respir Res 2014; 15:72. [PMID: 24972601 PMCID: PMC4086996 DOI: 10.1186/1465-9921-15-72] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/20/2014] [Indexed: 01/18/2023] Open
Abstract
Background Bacteria are frequently cultured from sputum samples of severe asthma patients suggesting a defect in bacterial clearance from the airway. We measured the capacity of macrophages from patients with asthma to phagocytose bacteria. Methods Phagocytosis of fluorescently-labelled polystyrene beads, Haemophilus influenzae or Staphylococcus aureus by broncholaveolar lavage alveolar macrophages (AM) and by monocyte-derived macrophages (MDM) from non-asthmatics, mild-moderate and severe asthmatic patients was assessed using fluorimetry. Results There were no differences in phagocytosis of polystyrene beads by AMs or MDMs from any of the subject groups. There was reduced phagocytosis of Haemophilus influenzae and Staphylococcus aureus in MDMs from patients with severe asthma compared to non-severe asthma (p < 0.05 and p < 0.01, respectively) and healthy subjects (p < 0.01and p < 0.001, respectively). Phagocytosis of Haemophilus influenzae and Staphylococcus aureus by AM was also reduced in severe asthma compared to normal subjects (p < 0.05). Dexamethasone and formoterol did not suppress phagocytosis of bacteria by MDMs from any of the groups. Conclusions Persistence of bacteria in the lower airways may result partly from a reduced phagocytic capacity of macrophages for bacteria. This may contribute to increased exacerbations, airway colonization and persistence of inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pankaj K Bhavsar
- Airway Disease, National Heart and Lung Institute, Imperial College London, & Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London SW3, UK.
| | | |
Collapse
|
47
|
Novel drug targets for asthma and COPD: lessons learned from in vitro and in vivo models. Pulm Pharmacol Ther 2014; 29:181-98. [PMID: 24929072 DOI: 10.1016/j.pupt.2014.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/20/2014] [Accepted: 05/31/2014] [Indexed: 12/28/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are highly prevalent respiratory diseases characterized by airway inflammation, airway obstruction and airway hyperresponsiveness. Whilst current therapies, such as β-agonists and glucocorticoids, may be effective at reducing symptoms, they do not reduce disease progression. Thus, there is a need to identify new therapeutic targets. In this review, we summarize the potential of novel targets or tools, including anti-inflammatories, phosphodiesterase inhibitors, kinase inhibitors, transient receptor potential channels, vitamin D and protease inhibitors, for the treatment of asthma and COPD.
Collapse
|
48
|
Kobayashi Y, Bossley C, Gupta A, Akashi K, Tsartsali L, Mercado N, Barnes PJ, Bush A, Ito K. Passive smoking impairs histone deacetylase-2 in children with severe asthma. Chest 2014; 145:305-312. [PMID: 24030221 PMCID: PMC3913299 DOI: 10.1378/chest.13-0835] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: Parental smoking is known to worsen asthma symptoms in children and to make them refractory to asthma treatment, but the molecular mechanism is unclear. Oxidative stress from tobacco smoke has been reported to impair histone deacetylase-2 (HDAC2) via phosphoinositide-3-kinase (PI3K)/Akt activation and, thus, to reduce corticosteroid sensitivity. The aim of this study was to investigate passive smoking-dependent molecular abnormalities in alveolar macrophages (AMs) by comparing passive smoke-exposed children and non-passive smoke-exposed children with uncontrolled severe asthma. Methods: BAL fluid (BALF) was obtained from 19 children with uncontrolled severe asthma (10 non-passive smoking-exposed subjects and nine passive smoking-exposed subjects), and HDAC2 expression/activity, Akt/HDAC2 phosphorylation levels, and corticosteroid responsiveness in AMs were evaluated. Results: Parental smoking reduced HDAC2 protein expression by 54% and activity by 47%, with concomitant enhancement of phosphorylation of Akt1 and HDAC2. In addition, phosphorylation levels of Akt1 correlated positively with HDAC2 phosphorylation levels and negatively with HDAC2 activity. Furthermore, passive smoke exposure reduced the inhibitory effects of dexamethasone on tumor necrosis factor-α-induced CXCL8 release in AMs. There were relatively higher neutrophil counts and CXCL8 concentrations in BALF and lower Asthma Control Test scores compared with non-passive smoke-exposed children with uncontrolled severe asthma. Conclusions: Passive smoking impairs HDAC2 function via PI3K signaling activation, which could contribute to corticosteroid-insensitive inflammation in children with severe asthma. This novel mechanism will be a treatment target in children with severe asthma and stresses the need for a smoke-free environment for asthmatic children.
Collapse
Affiliation(s)
- Yoshiki Kobayashi
- Airway Disease Section, National Heart and Lung Institute, Imperial College London
| | - Cara Bossley
- Airway Disease Section, National Heart and Lung Institute, Imperial College London; Department of Respiratory Paediatrics, Royal Brompton Hospital, London, England
| | - Atul Gupta
- Airway Disease Section, National Heart and Lung Institute, Imperial College London; Department of Respiratory Paediatrics, Royal Brompton Hospital, London, England
| | - Kenichi Akashi
- Airway Disease Section, National Heart and Lung Institute, Imperial College London
| | - Lemonia Tsartsali
- Airway Disease Section, National Heart and Lung Institute, Imperial College London; Department of Respiratory Paediatrics, Royal Brompton Hospital, London, England
| | - Nicolas Mercado
- Airway Disease Section, National Heart and Lung Institute, Imperial College London
| | - Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College London
| | - Andrew Bush
- Airway Disease Section, National Heart and Lung Institute, Imperial College London; Department of Respiratory Paediatrics, Royal Brompton Hospital, London, England
| | - Kazuhiro Ito
- Airway Disease Section, National Heart and Lung Institute, Imperial College London.
| |
Collapse
|
49
|
Pathological changes in the COPD lung mesenchyme--novel lessons learned from in vitro and in vivo studies. Pulm Pharmacol Ther 2014; 29:121-8. [PMID: 24747433 DOI: 10.1016/j.pupt.2014.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/01/2014] [Accepted: 04/08/2014] [Indexed: 12/11/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is currently the fourth leading cause of death worldwide and, in contrast to the trend for cardiovascular diseases, mortality rates still continue to climb. This increase is in part due to an aging population, being expanded by the "Baby boomer" generation who grew up when smoking rates were at their peak and by people in developing countries living longer. Sadly, there has been a disheartening lack of new therapeutic approaches to counteract the progressive decline in lung function associated with the disease that leads to disability and death. COPD is characterized by irreversible chronic airflow limitation that is caused by emphysematous destruction of lung elastic tissue and/or obstruction in the small airways due to occlusion of their lumen by inflammatory mucus exudates, narrowing and obliteration. These lesions are mainly produced by the response of the tissue to the repetitive inhalational injury inflicted by noxious gases, including cigarette smoke, which involves interaction between infiltrating inflammatory immune cells, resident cells (e.g. epithelial cells and fibroblasts) and the extra cellular matrix. This interaction leads to tissue destruction and airway remodeling with changes in elastin and collagen, such that the epithelial-mesenchymal trophic unit is dysregulated in both the disease pathologies. This review focuses on: 1--novel inflammatory and remodeling factors that are altered in COPD; 2--in vitro and in vivo models to understand the mechanism whereby the extra cellular matrix environment in altered in COPD; and 3--COPD in the context of wound-repair tissue responses, with a focus on the regulation of mesenchymal cell fate and phenotype.
Collapse
|
50
|
Heijink IH, Nawijn MC, Hackett TL. Airway epithelial barrier function regulates the pathogenesis of allergic asthma. Clin Exp Allergy 2014; 44:620-30. [DOI: 10.1111/cea.12296] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- I. H. Heijink
- Department of Pathology and Medical Biology; Experimental Pulmonology and Inflammation Research; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
- Department of Pulmonology; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
- GRIAC Research Institute; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - M. C. Nawijn
- Department of Pathology and Medical Biology; Experimental Pulmonology and Inflammation Research; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
- GRIAC Research Institute; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - T.-L. Hackett
- Centre for Heart Lung Innovation; St Paul's Hospital; University of British Columbia; Vancouver BC Canada
| |
Collapse
|