1
|
Fisk M, Gomez EA, Sun Y, Mickute M, McEniery C, Cockcroft JR, Bolton C, Fuld J, Cheriyan J, Yasmin, MacNee W, Tal-Singer R, Polkey M, Wilkinson I, Dalli J. Dysregulation of lipid mediators in patients with frequent exacerbations of COPD. ERJ Open Res 2025; 11:00950-2023. [PMID: 40129548 PMCID: PMC11931572 DOI: 10.1183/23120541.00950-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/15/2024] [Indexed: 03/26/2025] Open
Abstract
Introduction Specialised pro-resolving mediators (SPMs) are endogenously produced lipid mediators (LMs) that regulate the propagation of inflammation and promote tissue repair. We hypothesised that SPM production is dysregulated in COPD and is associated with disease severity, defined by patients with stable COPD (no exacerbations) versus patients with frequent exacerbations. Methods LMs were measured in plasma samples from patients with COPD (stable patients and patients with frequent exacerbations) and from healthy controls, matched for age, sex and body mass index, using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The LM profiles of controls were compared with those of stable COPD patients, and the LM profiles of stable COPD patients were compared with those of COPD patients with frequent exacerbations. We explored whether or not there was an association between LM profile and ever having a severe COPD exacerbation over 4.1 years of follow-up. Data are presented as mean±sem in pg·mL-1 for LMs, or mean±sd. Results 49 stable COPD patients had increased levels of pro-inflammatory mediators and some SPMs, compared with 28 controls (prostaglandin (PG)D2: 13.97±2.44 versus 0.53±0.13; p<0.001; lipoxins: 226.83±23.84 versus 59.84±20.25; p<0.01, respectively). 52 patients with frequent exacerbations had lower levels of PGD2 (3.07±0.97 versus 13.97±2.44; p<0.01) and SPMs (D-resolvins: 8.73±1.25 versus 34.53±8.95; p<0.01; lipoxins: 53.93±9.23 versus 226.83±23.84; p<0.01) than stable COPD patients, despite having a higher neutrophil count (5.28±2.16×109 L-1 versus 4.28±1.60×109 L-1; p=0.004). Among patients with frequent exacerbations, D-resolvin levels were independently inversely associated with occurrence of severe exacerbation (OR 0.88, 95% confidence interval (CI) 0.79-0.97; p=0.03) during follow-up. Conclusion These findings demonstrate distinct LM profiles of stable COPD patients and patients with frequent exacerbations. In those with exacerbations, D-resolvins were downregulated, compared with stable COPD patients, and associated with future risk of severe exacerbations during follow-up. Further work is needed to understand these findings.
Collapse
Affiliation(s)
- Marie Fisk
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- University of Cambridge, Cambridge, UK
| | - Esteban A. Gomez
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Yuan Sun
- University of Cambridge, Cambridge, UK
| | - Monika Mickute
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- University of Cambridge, Cambridge, UK
| | | | | | - Charlotte Bolton
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Jonathan Fuld
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Joseph Cheriyan
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Yasmin
- University of Cambridge, Cambridge, UK
| | | | | | | | - Ian Wilkinson
- University of Cambridge, Cambridge, UK
- Joint senior authors
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Joint senior authors
| |
Collapse
|
2
|
Zhang G, Ichikawa K, Iitani K, Iwasaki Y, Mitsubayashi K. A handheld biofluorometric system for acetone detection in exhaled breath condensates. Analyst 2025; 150:505-512. [PMID: 39745085 DOI: 10.1039/d4an01281j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
As a marker of human metabolism, acetone is important for lipid metabolism monitoring and early detection of diabetes. In this study, we developed a handheld biosensor for acetone based on fluorescence detection by utilizing the enzymatic reaction of secondary alcohol dehydrogenase (S-ADH) with β-nicotinamide adenine dinucleotide (NADH, λex = 340 nm, λem = 490 nm). In the reaction, NADH is oxidized when acetone is reduced to 2-propanol by S-ADH, and the acetone concentration can be measured by detecting the amount of NADH consumed in this reaction. First, we constructed a compact and light-weight fluorometric NADH detection system (209 g for the sensing system and 342 g for the PC), which worked using battery power. Then, sensor characteristics were evaluated after optimization of the working conditions. The developed system was able to quantify acetone in a range of 510 nM-1 mM within 1 minute. The developed battery-operated acetone biosensor demonstrated its ability to measure the acetone concentration in the exhaled breath condensate of 10 healthy subjects at rest (23.4 ± 15.1 μM) and after 16 h of fasting (37.7 ± 14.7 μM) and it distinguished the results with significant differences (p = 0.011). With the advantages of handheld portability, and high levels of sensitivity and selectivity, this sensor is expected to be widely used in clinical diagnosis and wearable biochemical sensors in the future.
Collapse
Affiliation(s)
- Geng Zhang
- Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| | - Kenta Ichikawa
- Department of Biomedical Devices and Instrumentation, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kenta Iitani
- Department of Biomedical Devices and Instrumentation, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yasuhiko Iwasaki
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan
| | - Kohji Mitsubayashi
- Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
- Department of Biomedical Devices and Instrumentation, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
3
|
Peh HY, Chen J. Pro-resolving lipid mediators and therapeutic innovations in resolution of inflammation. Pharmacol Ther 2025; 265:108753. [PMID: 39566561 DOI: 10.1016/j.pharmthera.2024.108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
This review summarizes findings presented at the 19th World Congress of Basic & Clinical Pharmacology 2023 (Glasgow, Scotland, July 3rd to 7th, 2023) from 8 speakers in the field of resolution of inflammation, resolution pharmacology and resolution biology. It is now accepted that the acute inflammatory response is protective to defend the host against infection or tissue injury. Acute inflammation is self-limited and programmed to be limited in space and time: this is achieved through endogenous resolution processes that ensure return to homeostasis. Resolution is brought about by agonist mediators that include specialized pro-resolving lipid mediators (SPMs) and pro-resolving proteins and peptides such as annexin A1 and angiotensin-(1-7), all acting to initiate anti-inflammatory and pro-resolving processes. If the inflammatory reaction remains unchecked through dysfunctional resolution mechanism, it can become chronic and contribute to a plethora of human diseases, including respiratory, cardiovascular, metabolic, allergic diseases, and arthritis. Herein, we discuss how non-resolving inflammation plays a role in the pathogenesis of these diseases. In addition to SPMs, we highlight the discovery, biosynthesis, biofunctions, and latest research updates on innovative therapeutics (including annexin-A1 peptide-mimetic RTP-026, small molecule FPR2 agonist BM-986235/LAR-1219, biased agonist for FPR1/FPR2 Cmpd17b, lipoxin mimetics AT-01-KG and AT-02-CT, melanocortin receptor agonist AP1189, gold nanoparticles, angiotensin-(1-7), and CD300a) that can promote resolution of inflammation directly or through modulation of SPMs production. Drug development strategies based on the biology of the resolution of inflammation can offer novel therapeutic means and/or add-on therapies for the treatment of chronic diseases.
Collapse
Affiliation(s)
- Hong Yong Peh
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Pharmacology, Singapore; Immunology Programme and Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore; Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Jianmin Chen
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
4
|
Kita K, Gawinowska M, Chełmińska M, Niedoszytko M. The Role of Exhaled Breath Condensate in Chronic Inflammatory and Neoplastic Diseases of the Respiratory Tract. Int J Mol Sci 2024; 25:7395. [PMID: 39000502 PMCID: PMC11242091 DOI: 10.3390/ijms25137395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are among the most common chronic respiratory diseases. Chronic inflammation of the airways leads to an increased production of inflammatory markers by the effector cells of the respiratory tract and lung tissue. These biomarkers allow the assessment of physiological and pathological processes and responses to therapeutic interventions. Lung cancer, which is characterized by high mortality, is one of the most frequently diagnosed cancers worldwide. Current screening methods and tissue biopsies have limitations that highlight the need for rapid diagnosis, patient differentiation, and effective management and monitoring. One promising non-invasive diagnostic method for respiratory diseases is the assessment of exhaled breath condensate (EBC). EBC contains a mixture of volatile and non-volatile biomarkers such as cytokines, leukotrienes, oxidative stress markers, and molecular biomarkers, providing significant information about inflammatory and neoplastic states in the lungs. This article summarizes the research on the application and development of EBC assessment in diagnosing and monitoring respiratory diseases, focusing on asthma, COPD, and lung cancer. The process of collecting condensate, potential issues, and selected groups of markers for detailed disease assessment in the future are discussed. Further research may contribute to the development of more precise and personalized diagnostic and treatment methods.
Collapse
Affiliation(s)
- Karolina Kita
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marika Gawinowska
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marta Chełmińska
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
5
|
Rong Y, Liu F, Zhou H, Yu T, Qin Z, Cao Q, Liu L, Ma X, Qu L, Xu P, Liao X, Jiang Q, Zhang N, Xu X. Reprogramming of arachidonic acid metabolism using α-terpineol to alleviate asthma: insights from metabolomics. Food Funct 2024; 15:4292-4309. [PMID: 38526853 DOI: 10.1039/d3fo04078j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Asthma is a chronic inflammatory disorder in airways with typical pathologic features of airway inflammation and mucus hypersecretion. α-Terpineol is a monocyclic terpene found in many natural plants and foods. It has been reported to possess a wide range of pharmacological activities including anti-inflammatory and expectorant effects. However, the role of α-terpineol in asthma and its potential protective mechanism have not been well elucidated. This study is designed to investigate the pharmacological effect and mechanism of α-terpineol on asthmatic mice using the metabolomics platform. A murine model of asthma was established using ovalbumin (OVA) sensitization and then challenged for one week. The leukocyte count and inflammatory cytokines in the bronchoalveolar lavage fluid (BALF), lung histopathology, inflammatory infiltrate and mucus secretion were evaluated. An ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS)-based metabolomics study was performed on lung tissues and serum to explore endogenous small molecule metabolites affected by α-terpineol in asthmatic mice. After α-terpineol treatment, leukocyte count, inflammatory cytokines in the BALF, and peribronchial inflammation infiltration were significantly downregulated. Goblet cell hyperplasia and mucus secretion were attenuated, with the level of Muc5ac in BALF decreased. These results proved the protective effect of α-terpineol against airway inflammation, mucus hypersecretion and Th1/Th2 immune imbalance. To further investigate the underlying mechanisms of α-terpineol in asthma treatment, UPLC-MS/MS-based metabolomics analysis was performed. 26 and 15 identified significant differential metabolites were found in the lung tissues and serum of the control, model and α-terpineol groups, respectively. Based on the above differential metabolites, enrichment analysis showed that arachidonic acid (AA) metabolism was reprogrammed in both mouse lung tissues and serum. 5-Lipoxygenase (5-LOX) and cysteinyl leukotrienes (CysLTs) are the key enzyme and the end product of AA metabolism, respectively. In-depth studies have shown that pretreatment with α-terpineol can alleviate asthma by decreasing the AA level, downregulating the expression of 5-LOX and reducing the accumulation of CysLTs in mouse lung tissues. In summary, this study demonstrates that α-terpineol is a potential agent that can prevent asthma via regulating disordered AA metabolism.
Collapse
Affiliation(s)
- Ying Rong
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Fanglin Liu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Hui Zhou
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Tong Yu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Zhaolong Qin
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Qianwen Cao
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Luyao Liu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Xiaoge Ma
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Lingbo Qu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Peirong Xu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Xinglin Liao
- Nanyang LANHAISENYUAN Medical Technology Ltd, CO. Nanyang, Henan, 473000, China
| | - Qiman Jiang
- Nanyang LANHAISENYUAN Medical Technology Ltd, CO. Nanyang, Henan, 473000, China
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Xia Xu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
6
|
Savin IA, Zenkova MA, Sen’kova AV. Bronchial Asthma, Airway Remodeling and Lung Fibrosis as Successive Steps of One Process. Int J Mol Sci 2023; 24:16042. [PMID: 38003234 PMCID: PMC10671561 DOI: 10.3390/ijms242216042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Bronchial asthma is a heterogeneous disease characterized by persistent respiratory system inflammation, airway hyperreactivity, and airflow obstruction. Airway remodeling, defined as changes in airway wall structure such as extensive epithelial damage, airway smooth muscle hypertrophy, collagen deposition, and subepithelial fibrosis, is a key feature of asthma. Lung fibrosis is a common occurrence in the pathogenesis of fatal and long-term asthma, and it is associated with disease severity and resistance to therapy. It can thus be regarded as an irreversible consequence of asthma-induced airway inflammation and remodeling. Asthma heterogeneity presents several diagnostic challenges, particularly in distinguishing between chronic asthma and other pulmonary diseases characterized by disruption of normal lung architecture and functions, such as chronic obstructive pulmonary disease. The search for instruments that can predict the development of irreversible structural changes in the lungs, such as chronic components of airway remodeling and fibrosis, is particularly difficult. To overcome these challenges, significant efforts are being directed toward the discovery and investigation of molecular characteristics and biomarkers capable of distinguishing between different types of asthma as well as between asthma and other pulmonary disorders with similar structural characteristics. The main features of bronchial asthma etiology, pathogenesis, and morphological characteristics as well as asthma-associated airway remodeling and lung fibrosis as successive stages of one process will be discussed in this review. The most common murine models and biomarkers of asthma progression and post-asthmatic fibrosis will also be covered. The molecular mechanisms and key cellular players of the asthmatic process described and systematized in this review are intended to help in the search for new molecular markers and promising therapeutic targets for asthma prediction and therapy.
Collapse
Affiliation(s)
| | | | - Aleksandra V. Sen’kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrent’ev Ave 8, 630090 Novosibirsk, Russia; (I.A.S.); (M.A.Z.)
| |
Collapse
|
7
|
Chiarella SE, Barnes PJ. Endogenous inhibitory mechanisms in asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100135. [PMID: 37781649 PMCID: PMC10509980 DOI: 10.1016/j.jacig.2023.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 10/03/2023]
Abstract
Endogenous inhibitory mechanisms promote resolution of inflammation, enhance tissue repair and integrity, and promote homeostasis in the lung. These mechanisms include steroid hormones, regulatory T cells, IL-10, prostaglandin E2, prostaglandin I2, lipoxins, resolvins, protectins, maresins, glucagon-like peptide-1 receptor, adrenomedullin, nitric oxide, and carbon monoxide. Here we review the most recent literature regarding these endogenous inhibitory mechanisms in asthma, which remain a promising target for the prevention and treatment of asthma.
Collapse
|
8
|
Lee S, Jung GT, Cho M, Lee JW, Eghan K, Lee J, Yoon S, Kim KP, Kim WK. Plausibility of Daphnia magna as an alternative experimental model to evaluate effects on eicosanoid synthesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115119. [PMID: 37327520 DOI: 10.1016/j.ecoenv.2023.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
Eicosanoids play important roles in inflammation, allergy, fever, and immune responses. In the eicosanoid pathway, cyclooxygenase (COX) catalyzes the conversion of arachidonic acid to prostaglandins and is a crucial target of nonsteroidal anti-inflammatory drugs (NSAIDs). Thus, toxicological studies on the eicosanoid pathway are important for drug discovery and the evaluation of adverse health outcomes due to environmental contaminants. However, experimental models are limited owing to concerns regarding ethical standards. Thus, new alternative models for evaluating toxic effects on the eicosanoid pathway must be developed. To this end, we adopted an invertebrate species, Daphnia magna, as an alternative model. D. magna was exposed to ibuprofen, a major NSAID, for 6 and 24 h. Transcription of eicosanoid-related genes (pla2, cox, pgd synthase, pgd2r2, ltb4dh, and lox) was analyzed by qPCR, eicosanoids (arachidonic acid, prostaglandin F2, dihydroxy prostaglandin F2, and 5-hydroxyeicosatetraenoate) were quantified by multiple reaction monitoring, and enzyme-linked immunosorbent assay was used to determine protein levels of arachidonic acid and prostaglandin E2 (PGE2). After 6 h of exposure, transcription of the pla2 and cox genes was downregulated. In addition, the whole-body level of arachidonic acid, an upstream of COX pathway, increased by over 1.5-fold. The levels of PGE2, a downstream of COX pathway, decreased after 24 h of exposure. According to our results, it is expected that the eicosanoid pathway might be conserved in D. magna, at least partially. This indicates the plausibility of D. magna as an alternative model for the screening of new drugs or chemical toxicity.
Collapse
Affiliation(s)
- Sangwoo Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, the Republic of Korea
| | - Gun Tae Jung
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul 02453, the Republic of Korea
| | - Mina Cho
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, the Republic of Korea
| | - Jae Won Lee
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, the Republic of Korea
| | - Kojo Eghan
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, the Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, the Republic of Korea
| | - Jieon Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, the Republic of Korea
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, the Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, the Republic of Korea
| | - Kwang Pyo Kim
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul 02453, the Republic of Korea; Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, the Republic of Korea.
| | - Woo-Keun Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, the Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, the Republic of Korea.
| |
Collapse
|
9
|
Goretzki A, Zimmermann J, Rainer H, Lin YJ, Schülke S. Immune Metabolism in TH2 Responses: New Opportunities to Improve Allergy Treatment - Disease-Specific Findings (Part 1). Curr Allergy Asthma Rep 2023; 23:29-40. [PMID: 36441389 PMCID: PMC9832111 DOI: 10.1007/s11882-022-01057-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW Recent high-level publications have shown an intricate connection between immune effector function and the metabolic state of the respective cells. In the last years, studies have begun analyzing the metabolic changes associated with allergies. As the first part of a two-article series, this review will briefly summarize the basics of immune metabolism and then focus on the recently published studies on metabolic changes observed in allergic patients. RECENT FINDINGS In the last 3 years, immune-metabolic research in allergology had a clear focus on asthma with some studies also reporting findings in food allergy and atopic dermatitis. Current results suggest asthma to be associated with a shift in cellular metabolism towards increased aerobic glycolysis (Warburg metabolism), while also displaying substantial changes in fatty acid- and amino acid metabolism (depending on investigated patient collective, asthma phenotype, and disease severity). Understanding immune-metabolic changes in allergies will allow us to (I) better understand allergic disease pathology and (II) modulate immune-metabolic pathways to improve allergy treatment.
Collapse
Affiliation(s)
- A. Goretzki
- Vice President’s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - J. Zimmermann
- Vice President’s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - H. Rainer
- Vice President’s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - Y.-J. Lin
- Vice President’s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - Stefan Schülke
- Vice President's Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225, Langen, Germany.
| |
Collapse
|
10
|
McCunney RJ, Borm P, Driscoll K, Krueger N, Levy L. Editorial: Particles and Health 2021: An international conference addressing issues in science and regulation. Front Public Health 2022; 10:1062221. [PMID: 36582379 PMCID: PMC9793851 DOI: 10.3389/fpubh.2022.1062221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 12/07/2022] Open
Affiliation(s)
- Robert J. McCunney
- Brigham and Women's Hospital, Pulmonary Division and Harvard Medical School, Boston, MA, United States,*Correspondence: Robert J. McCunney
| | - Paul Borm
- Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Kevin Driscoll
- Rutgers, The State University of New Jersey—Busch Campus, Piscataway, NJ, United States
| | | | - Len Levy
- Cranfield University, Cranfield, United Kingdom
| |
Collapse
|
11
|
Md Idris MH, Mohd Amin SN, Mohd Amin SN, Nyokat N, Khong HY, Selvaraj M, Zakaria ZA, Shaameri Z, Hamzah AS, Teh LK, Salleh MZ. Flavonoids as dual inhibitors of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX): molecular docking and in vitro studies. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00296-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Inflammation is known to involve in many pathological processes of different diseases, but the current therapy causes adverse effects. Thus, there is a great interest for the discovery of flavonoids as a valuable alternative to classical analgesic and anti-inflammatory agent with dual-inhibitory action, especially on both COX-2 and 5-LOX which can minimize or overcome this problem.
Results
In the present work, drug-likeness properties of the synthesized flavonoids via Lipinski’s Rule of Five were predicted using QikProp prior to evaluation of their COX and LOX inhibitory activities using enzyme assays. Subsequently, molecular docking was performed using GLIDE to analyse their binding behaviour. The results showed that all compounds obeyed the Lipinski’s Rule of Five. NPC6 and NPC7 had displayed better selectivity towards COX-2 as compared to Indomethacin with less than 50% inhibition against COX-1. In addition, these compounds also inhibited activity of 5-LOX. Their selectivity to COX-2 was due to the binding to hydrophobic region and extends to lobby region near the entrance of COX binding site forming hydrogen bond with Ser530. Interestingly, these compounds showed a similar binding mode as Zileuton in the active site of 5-LOX and formed hydrogen bond interaction with Ala424.
Conclusion
NPC6 and NPC7 had potential as dual inhibitor of COX-2 and 5-LOX. The scaffolds of these chemical entities are useful to be as lead compounds for the dual inhibition of COX-2 and 5-LOX.
Collapse
|
12
|
Takkinsatian P, Mairiang D, Sangkanjanavanich S, Chiewchalermsri C, Tripipitsiriwat A, Sompornrattanaphan M. Dietary Factors Associated with Asthma Development: A Narrative Review and Summary of Current Guidelines and Recommendations. J Asthma Allergy 2022; 15:1125-1141. [PMID: 36046721 PMCID: PMC9420923 DOI: 10.2147/jaa.s364964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Asthma is a complex disease, caused by a combination of genetic and environmental factors. The prevalence of asthma is increasing too rapidly to be attributable to genetic factors alone. Thus, environmental factors are becoming increasingly recognized as the cause of asthma. Modifying these environmental factors may be a simple approach for asthma prevention. To date, dietary intervention is an interesting modifiable factor because it can be implemented at the population level. The modification of systemic inflammation, oxidation, and microbial composition might be a mechanistic basis for prevention. This review summarizes the mechanistic basis and evidence from clinical studies on the association between dietary factors and asthma development. We also summarize the recommendations from many organizations and regional guidelines to assist the practicing physician to improve patient care.
Collapse
Affiliation(s)
- Preyanit Takkinsatian
- Department of Pediatrics, Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Dara Mairiang
- Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sasipa Sangkanjanavanich
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Department of Medicine, Phyathai 2 International Hospital, Bangkok, Thailand
| | - Chirawat Chiewchalermsri
- Department of Medicine, Panyananthaphikkhu Chonprathan Medical Center, Srinakharinwirot University, Nonthaburi, Thailand
| | - Athiwat Tripipitsiriwat
- Division of Respiratory Disease and Tuberculosis, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mongkhon Sompornrattanaphan
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
13
|
Marzec JM, Nadadur SS. Inflammation resolution in environmental pulmonary health and morbidity. Toxicol Appl Pharmacol 2022; 449:116070. [PMID: 35618031 PMCID: PMC9872158 DOI: 10.1016/j.taap.2022.116070] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/04/2022] [Accepted: 05/14/2022] [Indexed: 02/07/2023]
Abstract
Inflammation and resolution are dynamic processes comprised of inflammatory activation and neutrophil influx, followed by mediator catabolism and efferocytosis. These critical pathways ensure a return to homeostasis and promote repair. Over the past decade research has shown that diverse mediators play a role in the active process of resolution. Specialized pro-resolving mediators (SPMs), biosynthesized from fatty acids, are released during inflammation to facilitate resolution and are deficient in a variety of lung disorders. Failed resolution results in remodeling and cellular deposition through pro-fibrotic myofibroblast expansion that irreversibly narrows the airways and worsens lung function. Recent studies indicate environmental exposures may perturb and deregulate critical resolution pathways. Environmental xenobiotics induce lung inflammation and generate reactive metabolites that promote oxidative stress, injuring the respiratory mucosa and impairing gas-exchange. This warrants recognition of xenobiotic associated molecular patterns (XAMPs) as new signals in the field of inflammation biology, as many environmental chemicals generate free radicals capable of initiating the inflammatory response. Recent studies suggest that unresolved, persistent inflammation impacts both resolution pathways and endogenous regulatory mediators, compromising lung function, which over time can progress to chronic lung disease. Chronic ozone (O3) exposure overwhelms successful resolution, and in susceptible individuals promotes asthma onset. The industrial contaminant cadmium (Cd) bioaccumulates in the lung to impair resolution, and recurrent inflammation can result in chronic obstructive pulmonary disease (COPD). Persistent particulate matter (PM) exposure increases systemic cardiopulmonary inflammation, which reduces lung function and can exacerbate asthma, COPD, and idiopathic pulmonary fibrosis (IPF). While recurrent inflammation underlies environmentally induced pulmonary morbidity and may drive the disease process, our understanding of inflammation resolution in this context is limited. This review aims to explore inflammation resolution biology and its role in chronic environmental lung disease(s).
Collapse
Affiliation(s)
- Jacqui M Marzec
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Srikanth S Nadadur
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
14
|
LipoxinA4 as a Potential Prognostic Marker of COVID-19. J Lipids 2022; 2022:8527305. [PMID: 35812307 PMCID: PMC9259546 DOI: 10.1155/2022/8527305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
This pilot study aimed to determine early changes of LXA4 levels among the hospitalized patients confirmed as COVID-19 cases following the clinical management and its correlation with commonly used inflammatory markers, including erythrocyte sedimentation rate (ESR), c-reactive protein (CRP), and ferritin. Thirty-one adult hospitalized patients infected with the non-severe COVID-19 were included. LXA4 levels were measured at the baseline and 48-72 hours after hospitalization. Accordingly, ESR and CRP levels were collected on the first day of hospitalization. Moreover, the maximum serum ferritin levels were determined during the five days. LXA4 levels significantly increased at 48-72 hours compared to the baseline. ESR, CRP, and ferritin levels were positively correlated with the increased LXA4. In contrast, aging was shown to negatively correlate with the increased LXA4 levels. LXA4 may be known as a valuable marker to assess the treatment response among non-elderly patients with non-severe COVID-19. Furthermore, LXA4 could be considered as a potential treatment option under inflammatory conditions. Further studies are necessary to clarify LXA4 role in COVID-19 pathogenesis, as well as the balance between such pro-resolving mediators and inflammatory parameters.
Collapse
|
15
|
Novel Immunomodulatory Therapies for Respiratory Pathologies. COMPREHENSIVE PHARMACOLOGY 2022. [PMCID: PMC8238403 DOI: 10.1016/b978-0-12-820472-6.00073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Luo Y, Jin M, Lou L, Yang S, Li C, Li X, Zhou M, Cai C. Role of arachidonic acid lipoxygenase pathway in Asthma. Prostaglandins Other Lipid Mediat 2021; 158:106609. [PMID: 34954219 DOI: 10.1016/j.prostaglandins.2021.106609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/15/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022]
Abstract
The arachidonic acid (AA) metabolism pathways play a key role in immunological response and inflammation diseases, such as asthma, etc. AA in cell membranes can be metabolized by lipoxygenases (LOXs) to a screen of bioactive substances that include leukotrienes (LTs), lipoxins (LXs), and eicosatetraenoic acids (ETEs), which are considered closely related to the pathophysiology of respiratory allergic disease. Studies also verified that drugs regulating AA LOXs pathway have better rehabilitative intervention for asthma. This review aims to summarize the physiological and pathophysiological importance of AA LOXs metabolism pathways in asthma and to discuss its prospects of therapeutic strategies.
Collapse
Affiliation(s)
- Yacan Luo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Minli Jin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Lejing Lou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Song Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Chengye Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Meixi Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| | - Chang Cai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| |
Collapse
|
17
|
Rama TA, Paciência I, Cavaleiro Rufo J, Silva D, Cunha P, Severo M, Padrão P, Moreira P, Delgado L, Moreira A. Exhaled breath condensate pH determinants in school-aged children: A population-based study. Pediatr Allergy Immunol 2021; 32:1474-1481. [PMID: 34018256 DOI: 10.1111/pai.13564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Exhaled breath condensate (EBC) pH is a promising biomarker of airway inflammation. Lack of method standardization and interstudy variability precludes its use in clinical practice. While endogenous determinants have been described, underlying mechanisms for variability are mostly unknown. Thus, we aimed to assess the association between asthma and EBC pH in children, while studying potential environmental factors for interstudy variability. METHODS A cross-sectional analysis of exhaled breath condensates from 613 children, aged 7-12 years, was conducted. Assessments included lung function and airway reversibility, exhaled nitric oxide, allergic sensitization, and body mass index (BMI). Indoor air quality (IAQ) was assessed in children's classrooms during 5 school days. Post-deaeration EBC pH showed a bimodal distribution, and the sample was split into acidic and alkaline groups. Regression models were constructed to assess the effects of asthma and asthma adjusted to IAQ parameters on EBC pH. RESULTS Following adjustment to gender and BMI, asthma was significantly associated with a lower EBC pH in the acidic group. The effect of asthma on EBC pH was independent of IAQ, in both groups. In the acidic group, EBC pH was significantly affected by temperature [β = -0.09 (-0.15, -0.02)] and PM 2.5 concentration [β = -0.16 (-0.32, -0.01)], and in the alkaline group by relative humidity [β = 0.07 (0.02, 0.13)] and concentration of endotoxins [β = -0.06 (-0.1, -0.01)]. CONCLUSION Our study shows that in addition to individual determinants such as asthma, environmental factors may influence and should be taken into consideration when interpreting EBC pH level in children.
Collapse
Affiliation(s)
- Tiago Azenha Rama
- Immunoallergology unit, Centro Hospitalar Universitário São João, Porto, Portugal.,Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Inês Paciência
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,Epidemiology Research Unit, Institute of Public Health (EPIUnit), University of Porto, Porto, Portugal
| | - João Cavaleiro Rufo
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,Epidemiology Research Unit, Institute of Public Health (EPIUnit), University of Porto, Porto, Portugal
| | - Diana Silva
- Immunoallergology unit, Centro Hospitalar Universitário São João, Porto, Portugal.,Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Pedro Cunha
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Milton Severo
- Epidemiology Research Unit, Institute of Public Health (EPIUnit), University of Porto, Porto, Portugal
| | - Patrícia Padrão
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Pedro Moreira
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Luís Delgado
- Immunoallergology unit, Centro Hospitalar Universitário São João, Porto, Portugal.,Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - André Moreira
- Immunoallergology unit, Centro Hospitalar Universitário São João, Porto, Portugal.,Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,Epidemiology Research Unit, Institute of Public Health (EPIUnit), University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Yang A, Wu Y, Yu G, Wang H. Role of specialized pro-resolving lipid mediators in pulmonary inflammation diseases: mechanisms and development. Respir Res 2021; 22:204. [PMID: 34261470 PMCID: PMC8279385 DOI: 10.1186/s12931-021-01792-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammation is an essential mechanism of various diseases. The development and resolution of inflammation are complex immune-modulation processes which induce the involvement of various types of immune cells. Specialized pro-resolving lipid mediators (SPMs) have been demonstrated to be signaling molecules in inflammation. SPMs are involved in the pathophysiology of different diseases, especially respiratory diseases, including asthma, pneumonia, and chronic obstructive pulmonary disease. All of these diseases are related to the inflammatory response and its persistence. Therefore, a deeper understanding of the mechanisms and development of inflammation in respiratory disease, and the roles of the SPM family in the resolution process, might be useful in the quest for novel therapies and preventive measures for pulmonary diseases.
Collapse
Affiliation(s)
- Ailin Yang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng, , Beijing, 100050, China
| | - Yanjun Wu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng, , Beijing, 100050, China
| | - Ganggang Yu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng, , Beijing, 100050, China.
| | - Haoyan Wang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng, , Beijing, 100050, China.
| |
Collapse
|
19
|
Hinks TSC, Levine SJ, Brusselle GG. Treatment options in type-2 low asthma. Eur Respir J 2021; 57:13993003.00528-2020. [PMID: 32586877 DOI: 10.1183/13993003.00528-2020] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Monoclonal antibodies targeting IgE or the type-2 cytokines interleukin (IL)-4, IL-5 and IL-13 are proving highly effective in reducing exacerbations and symptoms in people with severe allergic and eosinophilic asthma, respectively. However, these therapies are not appropriate for 30-50% of patients in severe asthma clinics who present with non-allergic, non-eosinophilic, "type-2 low" asthma. These patients constitute an important and common clinical asthma phenotype, driven by distinct, yet poorly understood pathobiological mechanisms. In this review we describe the heterogeneity and clinical characteristics of type-2 low asthma and summarise current knowledge on the underlying pathobiological mechanisms, which includes neutrophilic airway inflammation often associated with smoking, obesity and occupational exposures and may be driven by persistent bacterial infections and by activation of a recently described IL-6 pathway. We review the evidence base underlying existing treatment options for specific treatable traits that can be identified and addressed. We focus particularly on severe asthma as opposed to difficult-to-treat asthma, on emerging data on the identification of airway bacterial infection, on the increasing evidence base for the use of long-term low-dose macrolides, a critical appraisal of bronchial thermoplasty, and evidence for the use of biologics in type-2 low disease. Finally, we review ongoing research into other pathways including tumour necrosis factor, IL-17, resolvins, apolipoproteins, type I interferons, IL-6 and mast cells. We suggest that type-2 low disease frequently presents opportunities for identification and treatment of tractable clinical problems; it is currently a rapidly evolving field with potential for the development of novel targeted therapeutics.
Collapse
Affiliation(s)
- Timothy S C Hinks
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Nuffield Dept of Medicine, Experimental Medicine, University of Oxford, Oxford, UK
| | - Stewart J Levine
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guy G Brusselle
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.,Depts of Epidemiology and Respiratory Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
20
|
Sandhaus S, Swick AG. Specialized proresolving mediators in infection and lung injury. Biofactors 2021; 47:6-18. [PMID: 33249673 PMCID: PMC7744833 DOI: 10.1002/biof.1691] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Specialized proresolving mediators (SPMs) are endogenous lipid metabolites of long-chain polyunsaturated fatty acids that are involved in promoting the resolution of inflammation. Many disease conditions characterized by excessive inflammation have impaired or altered SPM biosynthesis, which may lead to chronic, unresolved inflammation. Exogenous administration of SPMs in infectious conditions has been shown to be effective at improving infection clearance and survival in preclinical models. SPMs have also shown tremendous promise in the context of inflammatory lung conditions, such as acute respiratory distress syndrome and chronic obstructive pulmonary disease, mostly in preclinical settings. To date, SPMs have not been studied in the context of the novel Coronavirus, severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2), however their preclinical efficacy in combatting infections and improving acute respiratory distress suggest they may be a valuable resource in the fight against Coronavirus disease-19 (COVID-19). Overall, while the research on SPMs is still evolving, they may offer a novel therapeutic option for inflammatory conditions.
Collapse
MESH Headings
- Anti-Inflammatory Agents/therapeutic use
- COVID-19/metabolism
- COVID-19/pathology
- COVID-19/virology
- Docosahexaenoic Acids/therapeutic use
- Herpes Simplex/drug therapy
- Herpes Simplex/metabolism
- Herpes Simplex/pathology
- Humans
- Influenza, Human/drug therapy
- Influenza, Human/metabolism
- Influenza, Human/pathology
- Lipoxins/therapeutic use
- Lung/drug effects
- Lung/metabolism
- Lung/pathology
- Lung Injury/drug therapy
- Lung Injury/metabolism
- Lung Injury/pathology
- Lung Injury/virology
- Periodontitis/drug therapy
- Periodontitis/metabolism
- Periodontitis/pathology
- Pulmonary Disease, Chronic Obstructive/drug therapy
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/pathology
- Pulmonary Disease, Chronic Obstructive/virology
- Respiratory Distress Syndrome/drug therapy
- Respiratory Distress Syndrome/metabolism
- Respiratory Distress Syndrome/pathology
- Respiratory Distress Syndrome/virology
- SARS-CoV-2/pathogenicity
- Sepsis/drug therapy
- Sepsis/metabolism
- Sepsis/pathology
- Tuberculosis, Pulmonary/drug therapy
- Tuberculosis, Pulmonary/metabolism
- Tuberculosis, Pulmonary/pathology
- COVID-19 Drug Treatment
Collapse
|
21
|
Sokolowska M, Rovati GE, Diamant Z, Untersmayr E, Schwarze J, Lukasik Z, Sava F, Angelina A, Palomares O, Akdis CA, O’Mahony L, Sanak M, Dahlen S, Woszczek G. Current perspective on eicosanoids in asthma and allergic diseases: EAACI Task Force consensus report, part I. Allergy 2021; 76:114-130. [PMID: 32279330 DOI: 10.1111/all.14295] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 12/25/2022]
Abstract
Eicosanoids are biologically active lipid mediators, comprising prostaglandins, leukotrienes, thromboxanes, and lipoxins, involved in several pathophysiological processes relevant to asthma, allergies, and allied diseases. Prostaglandins and leukotrienes are the most studied eicosanoids and established inducers of airway pathophysiology including bronchoconstriction and airway inflammation. Drugs inhibiting the synthesis of lipid mediators or their effects, such as leukotriene synthesis inhibitors, leukotriene receptors antagonists, and more recently prostaglandin D2 receptor antagonists, have been shown to modulate features of asthma and allergic diseases. This review, produced by an European Academy of Allergy and Clinical Immunology (EAACI) task force, highlights our current understanding of eicosanoid biology and its role in mediating human pathology, with a focus on new findings relevant for clinical practice, development of novel therapeutics, and future research opportunities.
Collapse
Affiliation(s)
- Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Christine Kühne ‐ Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - G. Enrico Rovati
- Department of Pharmaceutical Sciences University of Milan Milan Italy
| | - Zuzana Diamant
- Department of Respiratory Medicine & Allergology Skane University Hospital Lund Sweden
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Jargen Schwarze
- Child Life and Health and Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| | - Zuzanna Lukasik
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
| | - Florentina Sava
- London North Genomic Laboratory Hub Great Ormond Street Hospital for Children NHS Foundation Trust London UK
| | - Alba Angelina
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Christine Kühne ‐ Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Liam O’Mahony
- Departments of Medicine and Microbiology APC Microbiome Ireland University College Cork Cork Ireland
| | - Marek Sanak
- Department of Medicine Jagiellonian University Medical College Krakow Poland
| | - Sven‐Erik Dahlen
- Institute of Environmental Medicine Karolinska Institute Stockholm Sweden
- Centre for Allergy Research Karolinska Institute Stockholm Sweden
| | - Grzegorz Woszczek
- MRC/Asthma UK Centre in Allergic Mechanisms of Asthma School of Immunology & Microbial Sciences King's College London London UK
| |
Collapse
|
22
|
Insuela DBR, Ferrero MR, Coutinho DDS, Martins MA, Carvalho VF. Could Arachidonic Acid-Derived Pro-Resolving Mediators Be a New Therapeutic Strategy for Asthma Therapy? Front Immunol 2020; 11:580598. [PMID: 33362766 PMCID: PMC7755608 DOI: 10.3389/fimmu.2020.580598] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Asthma represents one of the leading chronic diseases worldwide and causes a high global burden of death and disability. In asthmatic patients, the exacerbation and chronification of the inflammatory response are often related to a failure in the resolution phase of inflammation. We reviewed the role of the main arachidonic acid (AA) specialized pro-resolving mediators (SPMs) in the resolution of chronic lung inflammation of asthmatics. AA is metabolized by two classes of enzymes, cyclooxygenases (COX), which produce prostaglandins (PGs) and thromboxanes, and lypoxygenases (LOX), which form leukotrienes and lipoxins (LXs). In asthma, two primary pro-resolving derived mediators from COXs are PGE2 and the cyclopentenone prostaglandin15-Deoxy-Delta-12,14-PGJ2 (15d-PGJ2) while from LOXs are the LXA4 and LXB4. In different models of asthma, PGE2, 15d-PGJ2, and LXs reduced lung inflammation and remodeling. Furthermore, these SPMs inhibited chemotaxis and function of several inflammatory cells involved in asthma pathogenesis, such as eosinophils, and presented an antiremodeling effect in airway epithelial, smooth muscle cells and fibroblasts in vitro. In addition, PGE2, 15d-PGJ2, and LXs are all able to induce macrophage reprogramming to an alternative M2 pro-resolving phenotype in vitro and in vivo. Although PGE2 and LXA4 showed some beneficial effects in asthmatic patients, there are limitations to their clinical use, since PGE2 caused side effects, while LXA4 presented low stability. Therefore, despite the strong evidence that these AA-derived SPMs induce resolution of both inflammatory response and tissue remodeling in asthma, safer and more stable analogs must be developed for further clinical investigation of their application in asthma treatment.
Collapse
Affiliation(s)
| | - Maximiliano Ruben Ferrero
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Diego de Sá Coutinho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Marco Aurélio Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Vinicius Frias Carvalho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.,Laboratory of Inflammation, National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Soma T, Uchida Y, Nakagome K, Hoshi R, Nagata M. Eicosanoids seasonally impact pulmonary function in asthmatic patients with Japanese cedar pollinosis. Allergol Int 2020; 69:594-600. [PMID: 32600924 DOI: 10.1016/j.alit.2020.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 03/21/2020] [Accepted: 04/04/2020] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Condition of asthma in patients with asthma and concomitant seasonal allergic rhinitis (SAR) deteriorates during the Japanese cedar pollen (JCP) season. However, the underlying mechanisms remain unclear. METHODS We analyzed seasonal variations in eicosanoid levels in the airways of patients with asthma and concomitant SAR sensitized to JCP (N = 29, BA-SAR-JCP group) and those not sensitized (N = 13, BA-AR-non-JCP group) during the JCP season. The association between changes in eicosanoid concentrations and pulmonary function was assessed. Exhaled breath condensate (EBC) was collected, and pulmonary function tests were performed during the JCP and non-JCP seasons. The cysteinyl leukotriene (CysLT), thromboxane B2 (TXB2), prostaglandin D2-methoxime (PGD2-MOX), and leukotriene B4 (LTB4) levels in the collected EBC were measured via enzyme-linked immunosorbent immunoassays. RESULTS The log CysLT levels significantly increased in the BA-SAR-JCP group during the JCP season compared with the non-JCP season (1.78 ± 0.55, 1.39 ± 0.63 pg/mL, mean ± standard deviation, respectively, p = 0.01) and those in the BA-AR-non-JCP group during the JCP season (1.39 ± 0.38 pg/mL, p = 0.04). Moreover, the log TXB2 levels seemed to increase. However, the log LTB4 and log PGD2-MOX levels did not increase. The changes in the log CysLT levels during the two seasons were negatively correlated to forced expiratory volume in one second (FEV1) in the BA-SAR-JCP group (r = -0.52, p < 0.01). CONCLUSIONS In the BA-SAR-JCP group, seasonal increases in eicosanoid levels in the airway likely promoted deterioration in pulmonary function despite optimal maintenance treatment.
Collapse
Affiliation(s)
- Tomoyuki Soma
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan; Allergy Center, Saitama Medical University, Saitama, Japan.
| | - Yoshitaka Uchida
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan; Allergy Center, Saitama Medical University, Saitama, Japan
| | - Kazuyuki Nakagome
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan; Allergy Center, Saitama Medical University, Saitama, Japan
| | - Rie Hoshi
- Allergy Center, Saitama Medical University, Saitama, Japan; Hoshi Clinic, Saitama, Japan
| | - Makoto Nagata
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan; Allergy Center, Saitama Medical University, Saitama, Japan
| |
Collapse
|
24
|
Miyata J, Fukunaga K, Kawashima Y, Ohara O, Kawana A, Asano K, Arita M. Dysregulated metabolism of polyunsaturated fatty acids in eosinophilic allergic diseases. Prostaglandins Other Lipid Mediat 2020; 150:106477. [PMID: 32711128 DOI: 10.1016/j.prostaglandins.2020.106477] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 01/06/2023]
Abstract
Polyunsaturated fatty acids (PUFAs), represented by the omega-6 fatty acid arachidonic acid (AA) and omega-3 fatty acid docosahexaenoic acid (DHA), are essential components of the human body. PUFAs are converted enzymatically into bioactive lipid mediators, including AA-derived cysteinyl leukotrienes (cys-LTs) and lipoxins and DHA-derived protectins, which orchestrate a wide range of immunological responses. For instance, eosinophils possess the biosynthetic capacity of various lipid mediators through multiple enzymes, including 5-lipoxygenase and 15-lipoxygenase, and play central roles in the regulation of allergic diseases. Dysregulated metabolism of PUFAs is reported, especially in severe asthma, aspirin-exacerbated respiratory disease, and eosinophilic chronic rhinosinusitis (ECRS), which is characterized by the overproduction of cys-LTs and impaired synthesis of pro-resolving mediators. Recently, by performing a multi-omics analysis (lipidomics, proteomics, and transcriptomics), we demonstrated the metabolic derangement of eosinophils in inflamed tissues of patients with ECRS. This abnormality occurred subsequent to altered enzyme expression of gamma-glutamyl transferase-5. In this review, we summarize the previous findings of dysregulated PUFA metabolism in allergic diseases, and discuss future prospective therapeutic strategies for correcting this imbalance.
Collapse
Affiliation(s)
- Jun Miyata
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan; Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan; Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan; Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan; Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.
| | - Akihiko Kawana
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan.
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University, School of Medicine, Kanagawa, Japan.
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan; Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan.
| |
Collapse
|
25
|
Hirakata T, Matsuda A, Yokomizo T. Leukotriene B 4 receptors as therapeutic targets for ophthalmic diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158756. [PMID: 32535236 DOI: 10.1016/j.bbalip.2020.158756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 11/26/2022]
Abstract
Leukotriene B4 (LTB4) is an inflammatory lipid mediator produced from arachidonic acid by multiple reactions catalyzed by two enzymes 5-lipoxygenase (5-LOX) and LTA4 hydrolase (LTA4H). The two receptors for LTB4 have been identified: a high-affinity receptor, BLT1, and a low-affinity receptor, BLT2. Our group identified 12(S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid (12-HHT) as a high-affinity BLT2 ligand. Numerous studies have revealed critical roles for LTB4 and its receptors in various systemic diseases. Recently, we also reported the roles of LTB4, BLT1 and BLT2 in the murine ophthalmic disease models of mice including cornea wound, allergic conjunctivitis, and age-related macular degeneration. Moreover, other groups revealed the evidence of the ocular function of LTB4. In the present review, we introduce the roles of LTB4 and its receptors both in ophthalmic diseases and systemic inflammatory diseases. LTB4 and its receptors are putative novel therapeutic targets for systemic and ophthalmic diseases.
Collapse
Affiliation(s)
- Toshiaki Hirakata
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, Japan; Department of Biochemistry, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, Japan
| | - Akira Matsuda
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
26
|
Parashar K, Schulte F, Hardt M, Baker OJ. Sex-mediated elevation of the specialized pro-resolving lipid mediator levels in a Sjögren's syndrome mouse model. FASEB J 2020; 34:7733-7744. [PMID: 32277856 DOI: 10.1096/fj.201902196r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
Abstract
Our previous results showed that the specialized pro-resolving mediator (SPM) Resolvin D1 (RvD1) promotes resolution of inflammation in salivary glands in non-obese diabetic (NOD)/ShiLtJ, a mouse model for Sjögren's syndrome (SS). Additionally, mice lacking the RvD1 receptor ALX/FPR2 show defective innate and adaptive immune responses in salivary glands. Particularly, ALX/FPR2 KO mice exhibit exacerbated inflammation in their salivary glands in response to systemic LPS treatment. Moreover, female ALX/FPR2 KO mice show increased autoantibody production and loss of salivary gland function with age. Together, these studies suggest that an underlying SPM dysregulation could be contributing to SS progression. Therefore, we investigated whether SPM production is altered in NOD/ShiLtJ using metabololipidomics and enzyme-linked immunosorbent assay (ELISA). Our results demonstrate that SPM levels were broadly elevated in plasma collected from NOD/ShiLtJ female mice after disease onset, whereas these drastic changes did not occur in male mice. Moreover, gene expression of enzymes involved in SPM biosynthesis were altered in submandibular glands (SMG) from NOD/ShiLtJ female mice after disease onset, with 5-LOX and 12/15-LOX being downregulated and upregulated, respectively. Despite this dysregulation, the abundances of the SPM products of these enzymes (ie, RvD1 and RvD2) were unaltered in freshly isolated SMG cells suggesting that other cell populations (eg, lymphocytes) may be responsible for the overabundance of SPMs that we observed. The elevation of SPMs noted here appeared to be sex mediated, meaning that it was observed only in one sex (females). Given that SS primarily affects females (roughly 90% of diagnosed cases), these results may provide some insights into the mechanisms underlying the observed sexual dimorphism.
Collapse
Affiliation(s)
- Kaustubh Parashar
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| | - Fabian Schulte
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA
| | - Markus Hardt
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Olga J Baker
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
27
|
Mohd Amin SN, Md Idris MH, Selvaraj M, Mohd Amin SN, Jamari H, Kek TL, Salleh MZ. Virtual screening, ADME study, and molecular dynamic simulation of chalcone and flavone derivatives as 5-Lipoxygenase (5-LO) inhibitor. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1732961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Siti Norhidayah Mohd Amin
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Malaysia
| | - Muhd Hanis Md Idris
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Malaysia
| | | | - Siti Norhidayu Mohd Amin
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Malaysia
| | - Hisyam Jamari
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Malaysia
| | - Teh Lay Kek
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Malaysia
| |
Collapse
|
28
|
Schmidt AJ, Borras E, Nguyen AP, Yeap D, Kenyon NJ, Davis CE. Portable exhaled breath condensate metabolomics for daily monitoring of adolescent asthma. J Breath Res 2020; 14:026001. [PMID: 31344695 DOI: 10.1088/1752-7163/ab35b5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Alexander J Schmidt
- Department of Mechanical and Aerospace Engineering, One Shields Avenue, University of California Davis, Davis, CA 95616, United States of America
| | | | | | | | | | | |
Collapse
|
29
|
Kytikova OY, Perelman JM, Novgorodtseva TP, Denisenko YK, Kolosov VP, Antonyuk MV, Gvozdenko TA. Peroxisome Proliferator-Activated Receptors as a Therapeutic Target in Asthma. PPAR Res 2020; 2020:8906968. [PMID: 32395125 PMCID: PMC7201810 DOI: 10.1155/2020/8906968] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/04/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022] Open
Abstract
The complexity of the pathogenetic mechanisms of the development of chronic inflammation in asthma determines its heterogeneity and insufficient treatment effectiveness. Nuclear transcription factors, which include peroxisome proliferator-activated receptors, that is, PPARs, play an important role in the regulation of initiation and resolution of the inflammatory process. The ability of PPARs to modulate not only lipid homeostasis but also the activity of the inflammatory response makes them an important pathogenetic target in asthma therapy. At present, special attention is focused on natural (polyunsaturated fatty acids (PUFAs), endocannabinoids, and eicosanoids) and synthetic (fibrates, thiazolidinediones) PPAR ligands and the study of signaling mechanisms involved in the implementation of their anti-inflammatory effects in asthma. This review summarizes current views on the structure and function of PPARs, as well as their participation in the pathogenesis of chronic inflammation in asthma. The potential use of PPAR ligands as therapeutic agents for treating asthma is under discussion.
Collapse
Affiliation(s)
- Oxana Yu. Kytikova
- Vladivostok Branch of Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Juliy M. Perelman
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Russian Academy of Sciences, Blagoveshchensk, Russia
| | - Tatyana P. Novgorodtseva
- Vladivostok Branch of Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Yulia K. Denisenko
- Vladivostok Branch of Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Viktor P. Kolosov
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Russian Academy of Sciences, Blagoveshchensk, Russia
| | - Marina V. Antonyuk
- Vladivostok Branch of Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Tatyana A. Gvozdenko
- Vladivostok Branch of Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| |
Collapse
|
30
|
Jo-Watanabe A, Okuno T, Yokomizo T. The Role of Leukotrienes as Potential Therapeutic Targets in Allergic Disorders. Int J Mol Sci 2019; 20:ijms20143580. [PMID: 31336653 PMCID: PMC6679143 DOI: 10.3390/ijms20143580] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022] Open
Abstract
Leukotrienes (LTs) are lipid mediators that play pivotal roles in acute and chronic inflammation and allergic diseases. They exert their biological effects by binding to specific G-protein-coupled receptors. Each LT receptor subtype exhibits unique functions and expression patterns. LTs play roles in various allergic diseases, including asthma (neutrophilic asthma and aspirin-sensitive asthma), allergic rhinitis, atopic dermatitis, allergic conjunctivitis, and anaphylaxis. This review summarizes the biology of LTs and their receptors, recent developments in the area of anti-LT strategies (in settings such as ongoing clinical studies), and prospects for future therapeutic applications.
Collapse
Affiliation(s)
- Airi Jo-Watanabe
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8421, Japan.
| |
Collapse
|
31
|
Proresolving Lipid Mediators: Endogenous Modulators of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8107265. [PMID: 31316721 PMCID: PMC6604337 DOI: 10.1155/2019/8107265] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023]
Abstract
Specialized proresolving mediators (SPMs) are a novel class of endogenous lipids, derived by ω-6 and ω-3 essential polyunsaturated fatty acids such as arachidonic acid (AA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) that trigger and orchestrate the resolution of inflammation, which is the series of cellular and molecular events that leads to spontaneous regression of inflammatory processes and restoring of tissue homeostasis. These lipids are emerging as highly effective therapeutic agents that exert their immunoregulatory activity by activating the proresolving pathway, as reported by a consistent bulk of evidences gathered in the last two decades since their discovery. The production of reactive oxygen (ROS) and nitrogen (RNS) species by immune cells plays indeed an important role in the inflammatory mechanisms of host defence, and it is now clear that oxidative stress, viewed as an imbalance between such species and their elimination, can lead to many chronic inflammatory diseases. This review, the first of its kind, is aimed at exploring the manifold effects of SPMs on modulation of reactive species production, along with the mechanisms through which they either inhibit molecular signalling pathways that are activated by oxidative stress or induce the expression of endogenous antioxidant systems. Furthermore, the possible role of SPMs in oxidative stress-mediated chronic disorders is also summarized, suggesting not only that their anti-inflammatory and proresolving properties are strictly associated with their antioxidant role but also that these endogenous lipids might be exploited in the treatment of several pathologies in which uncontrolled production of ROS and RNS or impairment of the antioxidant machinery represents a main pathogenetic mechanism.
Collapse
|
32
|
Kytikova O, Novgorodtseva T, Denisenko Y, Antonyuk M, Gvozdenko T. Pro-Resolving Lipid Mediators in the Pathophysiology of Asthma. ACTA ACUST UNITED AC 2019; 55:medicina55060284. [PMID: 31216723 PMCID: PMC6631965 DOI: 10.3390/medicina55060284] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/09/2019] [Accepted: 06/14/2019] [Indexed: 12/20/2022]
Abstract
Asthma is one of the most important medical and social problems of our time due to the prevalence and the complexity of its treatment. Chronic inflammation that is characteristic of asthma is accompanied by bronchial obstruction, which involves various lipid mediators produced from n-6 and n-3 polyunsaturated fatty acids (PUFAs). The review is devoted to modern ideas about the PUFA metabolites—eicosanoids (leukotrienes, prostaglandins, thromboxanes) and specialized pro-resolving lipid mediators (SPMs) maresins, lipoxins, resolvins, protectins. The latest advances in clinical lipidomics for identifying and disclosing the mechanism of synthesis and the biological action of SPMs have been given. The current views on the peculiarities of the inflammatory reaction in asthma and the role of highly specialized metabolites of arachidonic, eicosapentaenoic and docosahexaenoic acids in this process have been described. The possibility of using SPMs as therapeutic agents aimed at controlling the resolution of inflammation in asthma is discussed.
Collapse
Affiliation(s)
- Oxana Kytikova
- Vladivostok Branch of Federal State Budgetary Science Institution "Far Eastern Scientific Center of Physiology and Pathology of Respiration"-Institute of Medical Climatology and Rehabilitative Treatment, Russian Street 73-g, Vladivostok 690105, Russia.
| | - Tatyana Novgorodtseva
- Vladivostok Branch of Federal State Budgetary Science Institution "Far Eastern Scientific Center of Physiology and Pathology of Respiration"-Institute of Medical Climatology and Rehabilitative Treatment, Russian Street 73-g, Vladivostok 690105, Russia.
| | - Yulia Denisenko
- Vladivostok Branch of Federal State Budgetary Science Institution "Far Eastern Scientific Center of Physiology and Pathology of Respiration"-Institute of Medical Climatology and Rehabilitative Treatment, Russian Street 73-g, Vladivostok 690105, Russia.
| | - Marina Antonyuk
- Vladivostok Branch of Federal State Budgetary Science Institution "Far Eastern Scientific Center of Physiology and Pathology of Respiration"-Institute of Medical Climatology and Rehabilitative Treatment, Russian Street 73-g, Vladivostok 690105, Russia.
| | - Tatyana Gvozdenko
- Vladivostok Branch of Federal State Budgetary Science Institution "Far Eastern Scientific Center of Physiology and Pathology of Respiration"-Institute of Medical Climatology and Rehabilitative Treatment, Russian Street 73-g, Vladivostok 690105, Russia.
| |
Collapse
|
33
|
Uchida Y, Soma T, Nakagome K, Kobayashi T, Nagata M. Implications of prostaglandin D2 and leukotrienes in exhaled breath condensates of asthma. Ann Allergy Asthma Immunol 2019; 123:81-88.e1. [PMID: 30986547 DOI: 10.1016/j.anai.2019.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Various inflammatory eicosanoid levels in biomaterials from airways of asthma and their associations with clinical parameters remain uncertain. We hypothesized that prostaglandin and leukotriene levels differ between in exhaled breath condensates (EBCs) and in sputum in mild, moderate, and severe levels of asthma and that EBC and sputum eicosanoid levels are associated with indexes of pulmonary function and inflammation. OBJECTIVE To determine the differences between EBC and sputum eicosanoid levels in healthy participants and patients with asthma with different asthma severity levels. METHODS Collected EBC and sputum, as well as pulmonary function, were examined in adult patients with asthma and healthy participants. Exhaled breath condensate prostaglandin D2-methoxime (PGD2-MOX), cysteinyl leukotrienes (CysLTs), leukotriene B4 (LTB4), and thromboxane B2 levels, and some sputum eicosanoid and tryptase levels were measured. Differences in eicosanoid levels among participants and their associations with pulmonary function and tryptase and granulocyte levels in sputum were then evaluated. RESULTS Analysis of 94 EBCs and 43 sputa revealed that EBC and sputum PGD2-MOX and CysLT levels were significantly higher in patients with asthma than in healthy participants. Exhaled breath condensate PGD2-MOX, CysLT, and LTB4 levels were significantly higher in patients with severe asthma. Exhaled breath condensate PGD2-MOX level was also significantly correlated with sputum tryptase levels and lower pulmonary function in patients with asthma. Sputum PGD2-MOX and CysLT levels were significantly correlated with the proportion of eosinophils among all cells in sputum in patients with asthma. CONCLUSION The results suggest that EBC PGD2 levels are associated with impairment of pulmonary function in adults with asthma who have undergone guideline treatment. Exhaled breath condensate or sputum PGD2 and CysLTs may represent severity or airway inflammation in asthma.
Collapse
Affiliation(s)
- Yoshitaka Uchida
- Department of Respiratory Medicine, Saitama Medical University, Iruma-gun, Saitama, Japan; Allergy Center, Saitama Medical University Hospital, Iruma-gun, Saitama, Japan
| | - Tomoyuki Soma
- Department of Respiratory Medicine, Saitama Medical University, Iruma-gun, Saitama, Japan; Allergy Center, Saitama Medical University Hospital, Iruma-gun, Saitama, Japan.
| | - Kazuyuki Nakagome
- Department of Respiratory Medicine, Saitama Medical University, Iruma-gun, Saitama, Japan; Allergy Center, Saitama Medical University Hospital, Iruma-gun, Saitama, Japan
| | - Takehito Kobayashi
- Department of Respiratory Medicine, Saitama Medical University, Iruma-gun, Saitama, Japan; Department of General Internal Medicine, Saitama Medical University, Iruma-gun, Saitama, Japan
| | - Makoto Nagata
- Department of Respiratory Medicine, Saitama Medical University, Iruma-gun, Saitama, Japan; Allergy Center, Saitama Medical University Hospital, Iruma-gun, Saitama, Japan
| |
Collapse
|
34
|
Non-type 2 inflammation in severe asthma is propelled by neutrophil cytoplasts and maintained by defective resolution. Allergol Int 2019; 68:143-149. [PMID: 30573389 DOI: 10.1016/j.alit.2018.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 12/31/2022] Open
Abstract
Asthma is a highly prevalent heterogeneous inflammatory disorder of the airways. Not all patients respond to anti-inflammatory treatment with corticosteroids, leading to significant morbidity in severe asthma. Much attention has been paid to defining the cellular and molecular mechanisms of type 2 inflammation that are operative in asthma. Development of targeted therapies for pathologic type 2 inflammation is opening a new approach to asthma treatment; however, not all asthmatics have type 2 airway inflammation, especially those with severe corticosteroid-refractory asthma. Much less is known about non-type 2 immunological mechanisms in asthma. In health, inflammation triggers resolution mechanisms that control immune (type 1 and type 2) responses and enable the restoration of tissue homeostasis. The resolution response is comprised of cellular and molecular events, including production of specialized pro-resolving mediators (SPMs). SPMs halt leukocyte recruitment, promote macrophage efferocytosis, and restore epithelial barrier integrity, all of which are critical to resolution of inflammation in the lungs. Here, we review recent insights into the disruption of these homeostatic mechanisms and their contributions to non-type 2 inflammation in severe asthma immunopathogenesis.
Collapse
|
35
|
Krishnamoorthy N, Abdulnour REE, Walker KH, Engstrom BD, Levy BD. Specialized Proresolving Mediators in Innate and Adaptive Immune Responses in Airway Diseases. Physiol Rev 2018; 98:1335-1370. [PMID: 29717929 DOI: 10.1152/physrev.00026.2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Airborne pathogens and environmental stimuli evoke immune responses in the lung. It is critical to health that these responses be controlled to prevent tissue damage and the compromise of organ function. Resolution of inflammation is a dynamic process that is coordinated by biochemical and cellular mechanisms. Recently, specialized proresolving mediators (SPMs) have been identified in resolution exudates. These molecules orchestrate anti-inflammatory and proresolving actions that are cell type specific. In this review, we highlight SPM biosynthesis, the influence of SPMs on the innate and adaptive immune responses in the lung, as well as recent insights from SPMs on inflammatory disease pathophysiology. Uncovering these mediators and cellular mechanisms for resolution is providing new windows into physiology and disease pathogenesis.
Collapse
Affiliation(s)
- Nandini Krishnamoorthy
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Raja-Elie E Abdulnour
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Katherine H Walker
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Braden D Engstrom
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
36
|
Rahimpour E, Khoubnasabjafari M, Jouyban-Gharamaleki V, Jouyban A. Non-volatile compounds in exhaled breath condensate: review of methodological aspects. Anal Bioanal Chem 2018; 410:6411-6440. [PMID: 30046867 DOI: 10.1007/s00216-018-1259-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
Abstract
In contrast to bronchial and nasal lavages, the analysis of exhaled breath condensate (EBC) is a promising, simple, non-invasive, repeatable, and diagnostic method for studying the composition of airway lining fluid with the potential to assess lung inflammation, exacerbations, and disease severity, and to monitor the effectiveness of treatment regimens. Recent investigations have revealed the potential applications of EBC analysis in systemic diseases. In this review, we highlight the analytical studies conducted on non-volatile compounds/biomarkers in EBC. In contrast to other related articles, this review is classified on the basis of analytical techniques and includes almost all the applied methods and their methodological limitations for quantification of non-volatile compounds in EBC samples, providing a guideline for further researches. The studies were identified by searching the SCOPUS database with the keywords "biomarkers," "non-volatile compounds," "determination method," and "EBC."
Collapse
Affiliation(s)
- Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Jouyban-Gharamaleki
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
37
|
Pyrillou K, Chairakaki AD, Tamvakopoulos C, Andreakos E. Dexamethasone induces ω3-derived immunoresolvents driving resolution of allergic airway inflammation. J Allergy Clin Immunol 2018; 142:691-695.e4. [PMID: 29698628 DOI: 10.1016/j.jaci.2018.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/25/2018] [Accepted: 04/06/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Katerina Pyrillou
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Division of Pharmacology-Pharmacotechnology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Aikaterini-Dimitra Chairakaki
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Constantin Tamvakopoulos
- Division of Pharmacology-Pharmacotechnology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
38
|
Bagnasco D, Ferrando M, Caminati M, Bragantini A, Puggioni F, Varricchi G, Passalacqua G, Canonica GW. Targeting Interleukin-5 or Interleukin-5Rα: Safety Considerations. Drug Saf 2018; 40:559-570. [PMID: 28321782 DOI: 10.1007/s40264-017-0522-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Asthma is a highly prevalent chronic disease of the airways; approximately 10% of patients with asthma will experience a severe form of the disease. New understanding of the pathogenesis of asthma has enabled the development of novel drugs and provided hope for patients with asthma. Interleukin (IL)-5 and IL-5 receptor subunit α (IL-5-Rα) plays a crucial role in the development, maturation, and operation of eosinophils so were the first important therapeutic target of these new drugs. While the results of early clinical trials of these drugs were not promising, results improved once researchers discovered the drugs worked best in patients with high eosinophil levels. Patients treated with both anti-IL-5 and IL-5-Rα experienced significant decreases in exacerbations. Trials have also demonstrated promising safety profiles; adverse events have been few and frequently only observed with placebo or considered unrelated to the study drug. The positive efficacy and safety profiles of these drugs has led to trials with interesting results in other diseases that are also secondary to the action of eosinophils: Churg-Strauss syndrome, hypereosinophilic syndrome, nasal polyposis, chronic obstructive pulmonary disease, atopic dermatitis, and esophagitis. In this review, we explore the main clinical trials of anti-IL-5 and IL-5-Rα, both in asthma and in other pathologies, with particular reference to the interesting safety and efficacy results.
Collapse
Affiliation(s)
- Diego Bagnasco
- Allergy and Respiratory Diseases, Department of Internal Medicine, IRCCS AOU San Martino-IST, University of Genoa, Genoa, Italy
| | - Matteo Ferrando
- Allergy and Respiratory Diseases, Department of Internal Medicine, IRCCS AOU San Martino-IST, University of Genoa, Genoa, Italy
| | - Marco Caminati
- Allergy Unit, University Hospital of Verona, Verona, Italy
| | - Alice Bragantini
- Allergy and Respiratory Diseases, Department of Internal Medicine, IRCCS AOU San Martino-IST, University of Genoa, Genoa, Italy
| | - Francesca Puggioni
- Respiratory Disease Clinic, Department of Internal Medicine, IRCCS Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
| | - Gilda Varricchi
- Division of Clinical Immunology and Allergy, Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Giovanni Passalacqua
- Allergy and Respiratory Diseases, Department of Internal Medicine, IRCCS AOU San Martino-IST, University of Genoa, Genoa, Italy
| | - Giorgio Walter Canonica
- Allergy and Respiratory Diseases, Department of Internal Medicine, IRCCS AOU San Martino-IST, University of Genoa, Genoa, Italy.
- Respiratory Disease Clinic, Department of Internal Medicine, IRCCS Humanitas Clinical and Research Center, Humanitas University, Milan, Italy.
| |
Collapse
|
39
|
Chen LC, Tseng HM, Kuo ML, Chiu CY, Liao SL, Su KW, Tsai MH, Hua MC, Lai SH, Yao TC, Yeh KW, Wu AH, Huang JL, Huang SK. A composite of exhaled LTB 4 , LXA 4 , FeNO, and FEV 1 as an "asthma classification ratio" characterizes childhood asthma. Allergy 2018; 73:627-634. [PMID: 28944471 DOI: 10.1111/all.13318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Aberrant generation of eicosanoids is associated with asthma, but the evidence remains incomplete and its potential utility as biomarkers is unclear. Major eicosanoids in exhaled breath condensates (EBCs) were assessed as candidate markers for childhood asthma. METHODS Ten exhaled eicosanoid species was evaluated using ELISA in the discovery phase, followed by prediction model-building and validation phases. RESULTS Exhaled LTB4 , LTE4 , PGE2, and LXA4 showed significant difference between asthmatics (N = 60) and controls (N = 20). For validation, an expanded study population consisting of 626 subjects with asthma and 161 healthy controls was partitioned into a training subset to establish a prediction model and a test sample subset for validation. Receiver operating characteristic (ROC) analyses of the training subset revealed the level of exhaled LTB4 to be the most discriminative among all parameters, including FeNO, and a composite of exhaled LTB4 , LXA4 , together with FeNO and FEV1 , distinguishing asthma with high sensitivity and specificity. Further, the Youden index (J) indicated the cut point value of 0.598 for this composite of markers as having the strongest discriminatory ability (sensitivity = 85.2% and specificity = 83.6%). The predictive algorithm as "asthma classification ratio" was further validated in an independent test sample with sensitivity and specificity being 84.4% and 84.8%, respectively. CONCLUSIONS In a pediatric study population in Taiwan, the levels of exhaled LTB4 , LTE4 , LXA4, and PGE2 in asthmatic children were significantly different from those of healthy controls, and the combination of exhaled LTB4 and LXA4 , together with FeNO and FEV1 , best characterized childhood asthma.
Collapse
Affiliation(s)
- L.-C. Chen
- Division of Allergy, Asthma and Rheumatology; Department of Pediatrics; Chang Gung Memorial Hospital; Taoyuan Taiwan
- Community Medicine Research Center; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
- Department of Pediatrics; Xiamen Chang Gung Hospital; Fujian Sheng China
| | - H.-M. Tseng
- Department of Healthcare Management; Chang Gung University & Medical Education Research Centre, Chang Gung Memorial Hospital; Taoyuan Taiwan
| | - M.-L. Kuo
- Division of Allergy, Asthma and Rheumatology; Department of Pediatrics; Chang Gung Memorial Hospital; Taoyuan Taiwan
- Department of Microbiology and Immunology; Graduate Institute of Basic Medical Research; Chang Gung University; Taoyuan Taiwan
| | - C.-Y. Chiu
- Community Medicine Research Center; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
- Department of Pediatrics; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
| | - S.-L. Liao
- Community Medicine Research Center; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
- Department of Pediatrics; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
| | - K.-W. Su
- Community Medicine Research Center; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
- Department of Pediatrics; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
| | - M.-H. Tsai
- Community Medicine Research Center; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
- Department of Pediatrics; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
| | - M.-C. Hua
- Community Medicine Research Center; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
- Department of Pediatrics; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
| | - S.-H. Lai
- Community Medicine Research Center; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
- Division of Pediatric Pulmonology; Department of Pediatrics; Chang Gung Memorial Hospital; Taoyuan Taiwan
| | - T.-C. Yao
- Division of Allergy, Asthma and Rheumatology; Department of Pediatrics; Chang Gung Memorial Hospital; Taoyuan Taiwan
- Community Medicine Research Center; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
| | - K.-W. Yeh
- Division of Allergy, Asthma and Rheumatology; Department of Pediatrics; Chang Gung Memorial Hospital; Taoyuan Taiwan
- Community Medicine Research Center; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
| | - A.-H. Wu
- Division of Allergy, Asthma and Rheumatology; Department of Pediatrics; Chang Gung Memorial Hospital; Taoyuan Taiwan
| | - J.-L. Huang
- Division of Allergy, Asthma and Rheumatology; Department of Pediatrics; Chang Gung Memorial Hospital; Taoyuan Taiwan
- Community Medicine Research Center; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
| | - S.-K. Huang
- National Institute of Environmental Health Sciences; National Health Research Institutes; Zhunan Taiwan
- Research Center for Environmental Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
- Shen-Zhen University Lo-Hu Hospital; Shen-Zhen China
- Johns Hopkins Asthma and Allergy Center; Johns Hopkins University School of Medicine; Baltimore MD USA
| |
Collapse
|
40
|
Barnig C, Frossard N, Levy BD. Towards targeting resolution pathways of airway inflammation in asthma. Pharmacol Ther 2018; 186:98-113. [PMID: 29352860 DOI: 10.1016/j.pharmthera.2018.01.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Asthma is a chronic disorder characterized by persistent inflammation of the airways with mucosal infiltration of eosinophils, T lymphocytes, and mast cells, and release of proinflammatory cytokines and lipid mediators. The natural resolution of airway inflammation is now recognized as an active host response, with highly coordinated cellular events under the control of endogenous pro-resolving mediators that enable the restoration of tissue homeostasis. Lead members of proresolving mediators are enzymatically derived from essential polyunsaturated fatty acids, including arachidonic acid-derived lipoxins, eicosapentaenoic acid-derived E-series resolvins, and docosahexaenoic acid-derived D-series resolvins, protectins, and maresins. Functionally, these specialized pro-resolving mediators can limit further leukocyte recruitment, induce granulocyte apoptosis, and enhance efferocytosis by macrophages. They can also switch macrophages from classical to alternatively activated cells, promote the return of non-apoptotic cells to lymphatics and blood vessels, and help initiate tissue repair and healing. In this review, we highlight cellular and molecular mechanisms for successful resolution of inflammation, and describe the main specialized pro-resolving mediators that drive these processes. Furthermore, we report recent data suggesting that the pathobiology of severe asthma may result in part from impaired resolution of airway inflammation, including defects in the biosynthesis of these specialized pro-resolving mediators. Finally, we discuss resolution-based therapeutic perspectives.
Collapse
Affiliation(s)
- Cindy Barnig
- Department of Chest Disease, Strasbourg University Hospital, 1, place de l'Hôpital, 67091 Strasbourg, France; EA 3072, University of Strasbourg, France.
| | - Nelly Frossard
- UMR 7200 CNRS/Université de Strasbourg, Laboratoire d'Innovation Thérapeutique and LabEx MEDALIS, Faculté de Pharmacie, Strasbourg, France
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
41
|
Uwaezuoke SN, Ayuk AC, Eze JN. Severe bronchial asthma in children: a review of novel biomarkers used as predictors of the disease. J Asthma Allergy 2018; 11:11-18. [PMID: 29398922 PMCID: PMC5774744 DOI: 10.2147/jaa.s149577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Severe asthma or therapy-resistant asthma in children is a heterogeneous disease that affects all age-groups. Given its heterogeneity, precision in diagnosis and treatment has become imperative, in order to achieve better outcomes. If one is thus able to identify specific patient phenotypes and endotypes using the appropriate biomarkers, it will assist in providing the patient with more personalized and appropriate treatment. However, there appears to be a huge diagnostic gap in severe asthma, as there is no single test yet that accurately determines disease phenotype. In this paper, we review the published literature on some of these biomarkers and their possible role in bridging this diagnostic gap. We also highlight the cellular and molecular mechanisms involved in severe asthma, in order to show the basis for the novel biomarkers. Some markers useful for monitoring therapy and assessing airway remodeling in the disease are also discussed. A review of the literature was conducted with PubMed to gather baseline data on the subject. The literature search extended to articles published within the last 40 years. Although biomarkers specific to different severe asthma phenotypes have been identified, progress in their utility remains slow, because of several disease mechanisms, the variation of biomarkers at different levels of inflammation, changes in relying on one test over time (eg, from sputum eosinophilia to blood eosinophilia), and the degree of invasive tests required to collect biomarkers, which limits their applicability in clinical settings. In conclusion, several biomarkers remain useful in recognizing various asthma phenotypes. However, due to disease heterogeneity, identification and utilization of ideal and defined biomarkers in severe asthma are still inconclusive. The development of novel serum/sputum-based biomarker panels with enhanced sensitivity and specificity may lead to prompt diagnosis of the disease in the future.
Collapse
Affiliation(s)
- Samuel N Uwaezuoke
- Department of Pediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Nigeria
| | - Adaeze C Ayuk
- Department of Pediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Nigeria
| | - Joy N Eze
- Department of Pediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Nigeria
| |
Collapse
|
42
|
Sinha A, Desiraju K, Aggarwal K, Kutum R, Roy S, Lodha R, Kabra SK, Ghosh B, Sethi T, Agrawal A. Exhaled breath condensate metabolome clusters for endotype discovery in asthma. J Transl Med 2017; 15:262. [PMID: 29273025 PMCID: PMC5741898 DOI: 10.1186/s12967-017-1365-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/10/2017] [Indexed: 11/12/2022] Open
Abstract
Background Asthma is a complex, heterogeneous disorder with similar presenting symptoms but with varying underlying pathologies. Exhaled breath condensate (EBC) is a relatively unexplored matrix which reflects the signatures of respiratory epithelium, but is difficult to normalize for dilution. Methods Here we explored whether internally normalized global NMR spectrum patterns, combined with machine learning, could be useful for diagnostics or endotype discovery. Nuclear magnetic resonance (NMR) spectroscopy of EBC was performed in 89 asthmatic subjects from a prospective cohort and 20 healthy controls. A random forest classifier was built to differentiate between asthmatics and healthy controls. Clustering of the spectra was done using k-means to identify potential endotypes. Results NMR spectra of the EBC could differentiate between asthmatics and healthy controls with 80% sensitivity and 75% specificity. Unsupervised clustering within the asthma group resulted in three clusters (n = 41,11, and 9). Cluster 1 patients had lower long-term exacerbation scores, when compared with other two clusters. Cluster 3 patients had lower blood eosinophils and higher neutrophils, when compared with other two clusters with a strong family history of asthma. Conclusion Asthma clusters derived from NMR spectra of EBC show important clinical and chemical differences, suggesting this as a useful tool in asthma endotype-discovery. Electronic supplementary material The online version of this article (10.1186/s12967-017-1365-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anirban Sinha
- Department of Lung Disease, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Koundinya Desiraju
- Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrated Biology, Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Kunal Aggarwal
- Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrated Biology, Mall Road, Delhi, 110007, India
| | - Rintu Kutum
- Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrated Biology, Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Siddhartha Roy
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - S K Kabra
- Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Balaram Ghosh
- Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrated Biology, Mall Road, Delhi, 110007, India
| | - Tavpritesh Sethi
- Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), New Delhi, India. .,Indraprastha Institute of Information Technology Delhi, Delhi, India.
| | - Anurag Agrawal
- Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrated Biology, Mall Road, Delhi, 110007, India. .,Academy of Scientific and Innovative Research (AcSIR), Chennai, India. .,Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
43
|
Rodriguez‐Perez N, Schiavi E, Frei R, Ferstl R, Wawrzyniak P, Smolinska S, Sokolowska M, Sievi N, Kohler M, Schmid‐Grendelmeier P, Michalovich D, Simpson K, Hessel E, Jutel M, Martin‐Fontecha M, Palomares O, Akdis C, O'Mahony L. Altered fatty acid metabolism and reduced stearoyl-coenzyme a desaturase activity in asthma. Allergy 2017; 72:1744-1752. [PMID: 28397284 DOI: 10.1111/all.13180] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Fatty acids and lipid mediator signaling play an important role in the pathogenesis of asthma, yet this area remains largely underexplored. The aims of this study were (i) to examine fatty acid levels and their metabolism in obese and nonobese asthma patients and (ii) to determine the functional effects of altered fatty acid metabolism in experimental models. METHODS Medium- and long-chain fatty acid levels were quantified in serum from 161 human volunteers by LC/MS. Changes in stearoyl-coenzyme A desaturase (SCD) expression and activity were evaluated in the ovalbumin (OVA) and house dust mite (HDM) murine models. Primary human bronchial epithelial cells from asthma patients and controls were evaluated for SCD expression and activity. RESULTS The serum desaturation index (an indirect measure of SCD) was significantly reduced in nonobese asthma patients and in the OVA murine model. SCD1 gene expression was significantly reduced within the lungs following OVA or HDM challenge. Inhibition of SCD in mice promoted airway hyper-responsiveness. SCD1 expression was suppressed in bronchial epithelial cells from asthma patients. IL-4 and IL-13 reduced epithelial cell SCD1 expression. Inhibition of SCD reduced surfactant protein C expression and suppressed rhinovirus-induced IP-10 secretion, which was associated with increased viral titers. CONCLUSIONS This is the first study to demonstrate decreased fatty acid desaturase activity in humans with asthma. Experimental models in mice and human epithelial cells suggest that inhibition of desaturase activity leads to airway hyper-responsiveness and reduced antiviral defense. SCD may represent a new target for therapeutic intervention in asthma patients.
Collapse
Affiliation(s)
- N. Rodriguez‐Perez
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - E. Schiavi
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - R. Frei
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - R. Ferstl
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - P. Wawrzyniak
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - S. Smolinska
- Department of Clinical ImmunologyWroclaw Medical University Wroclaw Poland
- ”ALL‐MED” Medical Research Institute Wroclaw Poland
| | - M. Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - N.A. Sievi
- Pulmonary Division University Hospital of Zürich Zürich Switzerland
| | - M. Kohler
- Pulmonary Division University Hospital of Zürich Zürich Switzerland
| | - P. Schmid‐Grendelmeier
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
- Allergy Unit Department of Dermatology University Hospital of Zürich Zürich Switzerland
| | - D. Michalovich
- Refractory Respiratory Inflammation Discovery Performance Unit GlaxoSmithKlineStevenage UK
| | - K.D. Simpson
- Refractory Respiratory Inflammation Discovery Performance Unit GlaxoSmithKlineStevenage UK
| | - E.M. Hessel
- Refractory Respiratory Inflammation Discovery Performance Unit GlaxoSmithKlineStevenage UK
| | - M. Jutel
- Department of Clinical ImmunologyWroclaw Medical University Wroclaw Poland
- ”ALL‐MED” Medical Research Institute Wroclaw Poland
| | - M. Martin‐Fontecha
- Departamento de Química Orgánica I Facultad de Ciencias Químicas Universidad Complutense de Madrid Madrid Spain
| | - O. Palomares
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - C.A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - L. O'Mahony
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| |
Collapse
|
44
|
Larose MC, Archambault AS, Provost V, Laviolette M, Flamand N. Regulation of Eosinophil and Group 2 Innate Lymphoid Cell Trafficking in Asthma. Front Med (Lausanne) 2017; 4:136. [PMID: 28848734 PMCID: PMC5554517 DOI: 10.3389/fmed.2017.00136] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/27/2017] [Indexed: 12/17/2022] Open
Abstract
Asthma is an inflammatory disease usually characterized by increased Type 2 cytokines and by an infiltration of eosinophils to the airways. While the production of Type 2 cytokines has been associated with TH2 lymphocytes, increasing evidence indicates that group 2 innate lymphoid cells (ILC2) play an important role in the production of the Type 2 cytokines interleukin (IL)-5 and IL-13, which likely amplifies the recruitment of eosinophils from the blood to the airways. In that regard, recent asthma treatments have been focusing on blocking Type 2 cytokines, notably IL-4, IL-5, and IL-13. These treatments mainly result in decreased blood or sputum eosinophil counts as well as decreased asthma symptoms. This supports that therapies blocking eosinophil recruitment and activation are valuable tools in the management of asthma and its severity. Herein, we review the mechanisms involved in eosinophil and ILC2 recruitment to the airways, with an emphasis on eotaxins, other chemokines as well as their receptors. We also discuss the involvement of other chemoattractants, notably the bioactive lipids 5-oxo-eicosatetraenoic acid, prostaglandin D2, and 2-arachidonoyl-glycerol. Given that eosinophil biology differs between human and mice, we also highlight and discuss their responsiveness toward the different eosinophil chemoattractants.
Collapse
Affiliation(s)
- Marie-Chantal Larose
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, Québec City, QC, Canada
| | - Anne-Sophie Archambault
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, Québec City, QC, Canada
| | - Véronique Provost
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, Québec City, QC, Canada
| | - Michel Laviolette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, Québec City, QC, Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
45
|
Ricklefs I, Barkas I, Duvall MG, Cernadas M, Grossman NL, Israel E, Bleecker ER, Castro M, Erzurum SC, Fahy JV, Gaston BM, Denlinger LC, Mauger DT, Wenzel SE, Comhair SA, Coverstone AM, Fajt ML, Hastie AT, Johansson MW, Peters MC, Phillips BR, Levy BD. ALX receptor ligands define a biochemical endotype for severe asthma. JCI Insight 2017; 2:93534. [PMID: 28724795 DOI: 10.1172/jci.insight.93534] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/01/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In health, inflammation resolution is an active process governed by specialized proresolving mediators and receptors. ALX/FPR2 receptors (ALX) are targeted by both proresolving and proinflammatory ligands for opposing signaling events, suggesting pivotal roles for ALX in the fate of inflammatory responses. Here, we determined if ALX expression and ligands were linked to severe asthma (SA). METHODS ALX expression and levels of proresolving ligands (lipoxin A4 [LXA4], 15-epi-LXA4, and annexin A1 [ANXA1]), and a proinflammatory ligand (serum amyloid A [SAA]) were measured in bronchoscopy samples collected in Severe Asthma Research Program-3 (SA [n = 69], non-SA [NSA, n = 51] or healthy donors [HDs, n = 47]). RESULTS Bronchoalveolar lavage (BAL) fluid LXA4 and 15-epi-LXA4 were decreased and SAA was increased in SA relative to NSA. BAL macrophage ALX expression was increased in SA. Subjects with LXA4loSAAhi levels had increased BAL neutrophils, more asthma symptoms, lower lung function, increased relative risk for asthma exacerbation, sinusitis, and gastroesophageal reflux disease, and were assigned more frequently to SA clinical clusters. SAA and aliquots of LXA4loSAAhi BAL fluid induced IL-8 production by lung epithelial cells expressing ALX receptors, which was inhibited by coincubation with 15-epi-LXA4. CONCLUSIONS Together, these findings have established an association between select ALX receptor ligands and asthma severity that define a potentially new biochemical endotype for asthma and support a pivotal functional role for ALX signaling in the fate of lung inflammation. TRIAL REGISTRATION Severe Asthma Research Program-3 (SARP-3; ClinicalTrials.gov NCT01606826)FUNDING Sources. National Heart, Lung and Blood Institute, the NIH, and the German Society of Pediatric Pneumology.
Collapse
Affiliation(s)
- Isabell Ricklefs
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital, and
| | - Ioanna Barkas
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital, and
| | - Melody G Duvall
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital, and.,Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Manuela Cernadas
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital, and
| | - Nicole L Grossman
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital, and
| | - Elliot Israel
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital, and
| | - Eugene R Bleecker
- Center for Genomics and Personalized Medicine Research, School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Mario Castro
- Division of Pulmonary and Critical Care Medicine, Departments of Medicine and Pediatrics, Washington University, St. Louis, Missouri, USA
| | - Serpil C Erzurum
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - John V Fahy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and the Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | - Benjamin M Gaston
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, Ohio, USA
| | - Loren C Denlinger
- Division of Allergy, Pulmonary, and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - David T Mauger
- Division of Statistics and Bioinformatics, Department of Public Health Sciences, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Sally E Wenzel
- Pulmonary, Allergy and Critical Care Medicine Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Suzy A Comhair
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Andrea M Coverstone
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Merritt L Fajt
- Pulmonary, Allergy and Critical Care Medicine Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Annette T Hastie
- Center for Genomics and Personalized Medicine Research, School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Mats W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Michael C Peters
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and the Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | - Brenda R Phillips
- Division of Statistics and Bioinformatics, Department of Public Health Sciences, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital, and
| | | |
Collapse
|
46
|
Sommakia S, Baker OJ. Regulation of inflammation by lipid mediators in oral diseases. Oral Dis 2017; 23:576-597. [PMID: 27426637 PMCID: PMC5243936 DOI: 10.1111/odi.12544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023]
Abstract
Lipid mediators (LM) of inflammation are a class of compounds derived from ω-3 and ω-6 fatty acids that play a wide role in modulating inflammatory responses. Some LM possess pro-inflammatory properties, while others possess proresolving characteristics, and the class switch from pro-inflammatory to proresolving is crucial for tissue homeostasis. In this article, we review the major classes of LM, focusing on their biosynthesis and signaling pathways, and their role in systemic and, especially, oral health and disease. We discuss the detection of these LM in various body fluids, focusing on diagnostic and therapeutic applications. We also present data showing gender-related differences in salivary LM levels in healthy controls, leading to a hypothesis on the etiology of inflammatory diseases, particularly Sjögren's syndrome. We conclude by enumerating open areas of research where further investigation of LM is likely to result in therapeutic and diagnostic advances.
Collapse
Affiliation(s)
- Salah Sommakia
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| | - Olga J. Baker
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
47
|
Phipatanakul W, Mauger DT, Sorkness RL, Gaffin JM, Holguin F, Woodruff PG, Ly NP, Bacharier LB, Bhakta NR, Moore WC, Bleecker ER, Hastie AT, Meyers DA, Castro M, Fahy JV, Fitzpatrick AM, Gaston BM, Jarjour NN, Levy BD, Peters SP, Teague WG, Fajt M, Wenzel SE, Erzurum SC, Israel E. Effects of Age and Disease Severity on Systemic Corticosteroid Responses in Asthma. Am J Respir Crit Care Med 2017; 195:1439-1448. [PMID: 27967215 PMCID: PMC5470749 DOI: 10.1164/rccm.201607-1453oc] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/13/2016] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Phenotypic distinctions between severe asthma (SA) and nonsevere asthma (NONSA) may be confounded by differential adherence or incorrect use of corticosteroids. OBJECTIVES To determine if there are persistent phenotypic distinctions between SA (as defined by 2014 American Thoracic Society/European Respiratory Society guidelines) and NONSA after intramuscular triamcinolone acetonide (TA), and to identify predictors of a corticosteroid response in these populations. METHODS A total of 526 adults age 18 years and older (315 SA) and 188 children age 6 to less than 18 years (107 SA) in the NHLBI Severe Asthma Research Program III were characterized before and 3 weeks after TA. The primary outcome for corticosteroid response was defined as greater than or equal to 10-point improvement in percent predicted FEV1. MEASUREMENTS AND MAIN RESULTS Adult asthma groups exhibited a small but significant mean FEV1% predicted improvement after TA (SA group mean difference, 3.4%; 95% confidence interval, 2.2-4.7%; P = 0.001), whereas children did not. Adult SA continued to manifest lower FEV1 and worse asthma control as compared with NONSA after TA. In children, after TA only prebronchodilator FEV1 distinguished SA from NONSA. A total of 21% of adults with SA and 20% of children with SA achieved greater than or equal to 10% improvement after TA. Baseline bronchodilator response and fractional exhaled nitric oxide had good sensitivity and specificity for predicting response in all groups except children with NONSA. CONCLUSIONS One in five patients with SA exhibit greater than or equal to 10% improvement in FEV1 with parenteral corticosteroid. Those likely to respond had greater bronchodilator responsiveness and fractional exhaled nitric oxide levels. In adults, differences in airflow obstruction and symptoms between SA and NONSA persist after parenteral corticosteroids, suggesting a component of corticosteroid nonresponsive pathobiology in adults with SA that may differ in children. Clinical trial registered with www.clinicaltrials.gov (NCT 01606826).
Collapse
Affiliation(s)
- Wanda Phipatanakul
- Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - David T. Mauger
- Pennsylvania State University, University Park, Pennsylvania
| | | | - Jonathan M. Gaffin
- Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | | | - Ngoc P. Ly
- University of San Francisco, San Francisco, California
| | | | | | | | | | | | | | | | - John V. Fahy
- University of San Francisco, San Francisco, California
| | | | | | | | - Bruce D. Levy
- Harvard Medical School, Boston, Massachusetts
- Brigham and Women’s Hospital, Boston, Massachusetts
| | | | | | - Merritt Fajt
- University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | - Elliot Israel
- Harvard Medical School, Boston, Massachusetts
- Brigham and Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
48
|
Bronchoprotective mechanisms for specialized pro-resolving mediators in the resolution of lung inflammation. Mol Aspects Med 2017; 58:44-56. [PMID: 28455109 DOI: 10.1016/j.mam.2017.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 04/20/2017] [Indexed: 12/31/2022]
Abstract
Bronchi are exposed daily to irritants, microbes and allergens as well as extremes of temperature and acid. The airway mucosal epithelium plays a pivotal role as a sentinel, releasing alarmins when danger is encountered. To maintain homeostasis, an elaborate counter-regulatory network of signals and cellular effector mechanisms are needed. Specialized pro-resolving mediators (SPMs) are chemical mediators that enact resolution programs in response to injury, infection or allergy. SPMs are enzymatically derived from essential polyunsaturated fatty acids with potent cell-type specific immunoresolvent properties. SPMs signal by engaging cell-based receptors to turn off acute inflammatory responses and restore tissue homeostasis. Several common lung diseases involving the airways, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF), are characterized by unresolved bronchial inflammation. In preclinical murine models of lung disease, SPMs carry potent bronchoprotective actions. Here, we review cellular and molecular effects for SPM-initiated catabasis in the lung and their human translation.
Collapse
|
49
|
Edwards MR, Saglani S, Schwarze J, Skevaki C, Smith JA, Ainsworth B, Almond M, Andreakos E, Belvisi MG, Chung KF, Cookson W, Cullinan P, Hawrylowicz C, Lommatzsch M, Jackson D, Lutter R, Marsland B, Moffatt M, Thomas M, Virchow JC, Xanthou G, Edwards J, Walker S, Johnston SL. Addressing unmet needs in understanding asthma mechanisms: From the European Asthma Research and Innovation Partnership (EARIP) Work Package (WP)2 collaborators. Eur Respir J 2017; 49:49/5/1602448. [PMID: 28461300 DOI: 10.1183/13993003.02448-2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/13/2017] [Indexed: 12/27/2022]
Abstract
Asthma is a heterogeneous, complex disease with clinical phenotypes that incorporate persistent symptoms and acute exacerbations. It affects many millions of Europeans throughout their education and working lives and puts a heavy cost on European productivity. There is a wide spectrum of disease severity and control. Therapeutic advances have been slow despite greater understanding of basic mechanisms and the lack of satisfactory preventative and disease modifying management for asthma constitutes a significant unmet clinical need. Preventing, treating and ultimately curing asthma requires co-ordinated research and innovation across Europe. The European Asthma Research and Innovation Partnership (EARIP) is an FP7-funded programme which has taken a co-ordinated and integrated approach to analysing the future of asthma research and development. This report aims to identify the mechanistic areas in which investment is required to bring about significant improvements in asthma outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Rene Lutter
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Benjamin Marsland
- University of Lausanne, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | | | | | - Georgina Xanthou
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | | | | | | |
Collapse
|
50
|
Kim N, Thatcher TH, Sime PJ, Phipps RP. Corticosteroids inhibit anti-IgE activities of specialized proresolving mediators on B cells from asthma patients. JCI Insight 2017; 2:e88588. [PMID: 28194434 DOI: 10.1172/jci.insight.88588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Specialized proresolving mediators (SPMs) promote the resolution of inflammation and exert beneficial effects in animal models of chronic inflammatory diseases, including asthma. Previously, we have shown that certain SPMs reduce IgE production in B cells from healthy individuals, which has a critical role in allergic asthma. Here, we investigated the effects of SPMs on B cell IgE production in asthma patients. Peripheral blood mononuclear cells from asthma patients were treated with 17-HDHA or RvD1, and IgE levels were measured. RvD1 and 17-HDHA dampened IgE production in B cells from most asthma patients, whereas B cells from a subset of patients taking oral steroids were refractory to SPM treatment. Molecular mechanisms underlying the interaction between corticosteroids and SPMs were investigated by treating B cells from nonasthmatic donors with corticosteroids in vitro. Corticosteroids blocked the inhibitory effects of 17-HDHA and RvD1 on B cell IgE production by abolishing the suppressive activity of these mediators on IgE class switching. Corticosteroids decreased the expression of transcriptional repressor Bcl-6 as well as its suppressive activity on epsilon germline transcription. We conclude that 17-HDHA and RvD1 can reduce IgE production in asthma patients not taking high doses of steroids but that corticosteroids interfere with the ability of B cells to respond to proresolving mediators.
Collapse
Affiliation(s)
- Nina Kim
- Department of Microbiology and Immunology
| | | | - Patricia J Sime
- Division of Pulmonary and Critical Care Medicine, and.,Department of Environmental Medicine, University of Rochester, Rochester, New York, USA
| | - Richard P Phipps
- Department of Microbiology and Immunology.,Department of Environmental Medicine, University of Rochester, Rochester, New York, USA
| |
Collapse
|