1
|
Kuang Z, Li R, Lu S, Wang Y, Luo Y, Shen Y, Yuan L, Yang Y, Song Z, Jiang N, Tong C. Uncovering host response in adults with severe community-acquired pneumonia: a proteomics and metabolomics perspective study. World J Emerg Med 2025; 16:248-255. [PMID: 40406290 PMCID: PMC12093443 DOI: 10.5847/wjem.j.1920-8642.2025.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 04/10/2025] [Indexed: 05/26/2025] Open
Abstract
BACKGROUND Community-acquired pneumonia (CAP) represents a significant public health concern due to its widespread prevalence and substantial healthcare costs. This study was to utilize an integrated proteomic and metabolomic approach to explore the mechanisms involved in severe CAP. METHODS We integrated proteomics and metabolomics data to identify potential biomarkers for early diagnosis of severe CAP. Plasma samples were collected from 46 CAP patients (including 27 with severe CAP and 19 with non-severe CAP) and 19 healthy controls upon admission. A comprehensive analysis of the combined proteomics and metabolomics data was then performed to elucidate the key pathological features associated with CAP severity. RESULTS The proteomic and metabolic signature was markedly different between CAPs and healthy controls. Pathway analysis of changes revealed complement and coagulation cascades, ribosome, tumor necrosis factor (TNF) signaling pathway and lipid metabolic process as contributors to CAP. Furthermore, alterations in lipid metabolism, including sphingolipids and phosphatidylcholines (PCs), and dysregulation of cadherin binding were observed, potentially contributing to the development of severe CAP. Specifically, within the severe CAP group, sphingosine-1-phosphate (S1P) and apolipoproteins (APOC1 and APOA2) levels were downregulated, while S100P level was significantly upregulated. CONCLUSION The combined proteomic and metabolomic analysis may elucidate the complexity of CAP severity and inform the development of improved diagnostic tools.
Collapse
Affiliation(s)
- Zhongshu Kuang
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Runrong Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200030, China
| | - Su Lu
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Yusong Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200030, China
| | - Yue Luo
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Yongqi Shen
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Li Yuan
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Yilin Yang
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Zhenju Song
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China
- Institute of Emergency Rescue and Critical Care, Fudan University, Shanghai 200030, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200030, China
| | - Ning Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200030, China
| | - Chaoyang Tong
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| |
Collapse
|
2
|
Castillo-Aleman YM, Sotomayor-Lugo F, Sana S, Al-Saadawi NARK, Ventura-Carmenate Y, Dennison D, Statache G, Osorio-Zuluaga J, Raza A, Grossman D. Hemizygous Moesin (MSN) Gene Deletion in an Adult With Chronic Neutropenia. Case Reports Immunol 2024; 2024:3860726. [PMID: 39781543 PMCID: PMC11707056 DOI: 10.1155/crii/3860726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
X-linked moesin-associated immunodeficiency (X-MAID) is a recently identified combined immunodeficiency caused by a mutation in the moesin (MSN) gene. It is characterized by cytopenias, hypogammaglobulinemia, poor immune response to vaccine antigens, and increased susceptibility to early-life infections. We report a patient with adult-onset neutropenia, lymphopenia, inadequate response to the pneumococcal polysaccharide vaccine (PPSV23), and recurrent bacterial infections associated with a hemizygous MSN deletion. Notably, the patient has no history of significant childhood infections, cytopenias, or hypogammaglobulinemia. Although only a few cases have been documented worldwide, we underscore the importance of whole-genome sequencing (WES) in diagnosing this atypical immunodeficiency disease in adulthood. Moreover, this report may shed light on our understanding of further variants of X-MAID and enrich the known spectrum of the disease.
Collapse
Affiliation(s)
| | | | - Sherjeel Sana
- Department of Medical Oncology and Hematology, Oncology Institute, Cleveland Clinic Abu Dhabi (CCAD), Abu Dhabi, UAE
| | | | | | - David Dennison
- Department of Hematology, Abu Dhabi Stem Cells Center (ADSCC), Abu Dhabi, UAE
| | - Gianina Statache
- Department of Rheumatology, Abu Dhabi Stem Cells Center (ADSCC), Abu Dhabi, UAE
| | - Julieta Osorio-Zuluaga
- Department of Medical Oncology and Hematology, Oncology Institute, Cleveland Clinic Abu Dhabi (CCAD), Abu Dhabi, UAE
| | - Ahmad Raza
- Department of Medical Oncology and Hematology, Oncology Institute, Cleveland Clinic Abu Dhabi (CCAD), Abu Dhabi, UAE
| | - David Grossman
- Department of Medical Oncology and Hematology, Oncology Institute, Cleveland Clinic Abu Dhabi (CCAD), Abu Dhabi, UAE
| |
Collapse
|
3
|
Lin M, Xu F, Sun J, Song J, Shen Y, Lu S, Ding H, Lan L, Chen C, Ma W, Wu X, Song Z, Wang W. Integrative multi-omics analysis unravels the host response landscape and reveals a serum protein panel for early prognosis prediction for ARDS. Crit Care 2024; 28:213. [PMID: 38956604 PMCID: PMC11218270 DOI: 10.1186/s13054-024-05000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND The multidimensional biological mechanisms underpinning acute respiratory distress syndrome (ARDS) continue to be elucidated, and early biomarkers for predicting ARDS prognosis are yet to be identified. METHODS We conducted a multicenter observational study, profiling the 4D-DIA proteomics and global metabolomics of serum samples collected from patients at the initial stage of ARDS, alongside samples from both disease control and healthy control groups. We identified 28-day prognosis biomarkers of ARDS in the discovery cohort using the LASSO method, fold change analysis, and the Boruta algorithm. The candidate biomarkers were validated through parallel reaction monitoring (PRM) targeted mass spectrometry in an external validation cohort. Machine learning models were applied to explore the biomarkers of ARDS prognosis. RESULTS In the discovery cohort, comprising 130 adult ARDS patients (mean age 72.5, 74.6% male), 33 disease controls, and 33 healthy controls, distinct proteomic and metabolic signatures were identified to differentiate ARDS from both control groups. Pathway analysis highlighted the upregulated sphingolipid signaling pathway as a key contributor to the pathological mechanisms underlying ARDS. MAP2K1 emerged as the hub protein, facilitating interactions with various biological functions within this pathway. Additionally, the metabolite sphingosine 1-phosphate (S1P) was closely associated with ARDS and its prognosis. Our research further highlights essential pathways contributing to the deceased ARDS, such as the downregulation of hematopoietic cell lineage and calcium signaling pathways, contrasted with the upregulation of the unfolded protein response and glycolysis. In particular, GAPDH and ENO1, critical enzymes in glycolysis, showed the highest interaction degree in the protein-protein interaction network of ARDS. In the discovery cohort, a panel of 36 proteins was identified as candidate biomarkers, with 8 proteins (VCAM1, LDHB, MSN, FLG2, TAGLN2, LMNA, MBL2, and LBP) demonstrating significant consistency in an independent validation cohort of 183 patients (mean age 72.6 years, 73.2% male), confirmed by PRM assay. The protein-based model exhibited superior predictive accuracy compared to the clinical model in both the discovery cohort (AUC: 0.893 vs. 0.784; Delong test, P < 0.001) and the validation cohort (AUC: 0.802 vs. 0.738; Delong test, P = 0.008). INTERPRETATION Our multi-omics study demonstrated the potential biological mechanism and therapy targets in ARDS. This study unveiled several novel predictive biomarkers and established a validated prediction model for the poor prognosis of ARDS, offering valuable insights into the prognosis of individuals with ARDS.
Collapse
Affiliation(s)
- Mengna Lin
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feixiang Xu
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Sun
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianfeng Song
- Department of Emergency Medicine, Minhang Hospital, Fudan University, Shanghai, China
| | - Yao Shen
- Department of Respiratory Medicine, Pudong Hospital, Fudan University, Shanghai, China
| | - Su Lu
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hailin Ding
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lulu Lan
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Chen
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen Ma
- School of Public Health, Fudan University, Shanghai, China
| | - Xueling Wu
- Department of Respiratory Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Zhenju Song
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China.
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
- Institute of Emergency Rescue and Critical Care, Fudan University, Shanghai, China.
| | - Weibing Wang
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China.
- School of Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Sun B, Liu L, Han L, Li Q, Wu Q, Hou J, Wang W, Ying W, Zhou Q, Qian F, Lu W, Wang X, Sun J. Novel Mutation in the Moesin (MSN) Gene Leads to Immunodeficiency with Epstein-Barr Virus (EBV) Infection and Dermatomyositis-Like Symptoms. J Clin Immunol 2024; 44:155. [PMID: 38922539 DOI: 10.1007/s10875-024-01755-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE Moesin (MSN) deficiency is a recently reported combined immunodeficiency, and few cases have been reported to date. We describe a Chinese patient with a novel mutation causing MSN deficiency and a novel phenotype. METHODS Clinical and immunological data were collected. Whole-exome sequencing was performed to identify gene mutations. MSN protein expression and T cell proliferation and activation were determined by flow cytometry. Cell migration was confirmed with a Transwell assay. Autoantibody levels were analyzed using antigen microarrays. RESULTS The patient was a 10-year-old boy who presented with recurrent fever, oral ulcers and dermatomyositis-like symptoms, such as periorbital edema, facial swelling, elevated creatine kinase levels, and abnormal electromyography and muscle biopsy results. Epstein-Barr virus (EBV) DNA was detected in the serum, cells and tissues of this patient. He further developed nasal-type NK/T-cell lymphoma. A novel hemizygous mutation (c.68 A > G, p.N23S) in the MSN gene was found. The immunological phenotype of this patient included persistent decreases in T and B lymphocyte counts but normal immunoglobulin IgG levels. The patient had attenuated MSN protein expression and impaired T-cell proliferation and migration. The proportions of Tfh cells and CD21low B cells in the patient were higher than those in the controls. Moreover, 82 IgG and 102 IgM autoantibodies were more abundant in the patient than in the healthy controls. CONCLUSIONS The novel mutation N23S is pathogenic and leads to a severe clinical phenotype. EBV infection, tumor, and dermatomyositis-like autoimmune symptoms may be associated with MSN deficiency, further expanding the understanding of the disease.
Collapse
Affiliation(s)
- Bijun Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Luyao Liu
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Lingli Han
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Qifan Li
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Qi Wu
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Jia Hou
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Wenjie Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Wenjing Ying
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Qinhua Zhou
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Feng Qian
- Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wei Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiaochuan Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children Medical Center, 399 Wanyuan Road, Shanghai, 201102, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 200032, China.
| | - Jinqiao Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children Medical Center, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
5
|
Ichioka S, Satooka H, Maruo Y, Hirata T. Moesin deficiency leads to lupus-like nephritis with accumulation of CXCL13-producing patrolling monocytes. Biochem Biophys Res Commun 2024; 712-713:149943. [PMID: 38640733 DOI: 10.1016/j.bbrc.2024.149943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Moesin is a member of the ezrin-radixin-moesin (ERM) family of proteins that link plasma membrane proteins to the cortical cytoskeleton and thus regulate diverse cellular processes. Mutations in the human moesin gene cause a primary immunodeficiency called X-linked moesin-associated immunodeficiency (X-MAID), which may be complicated by an autoimmune phenotype with kidney involvement. We previously reported that moesin-deficient mice exhibit lymphopenia similar to that of X-MAID and develop a lupus-like autoimmune phenotype with age. However, the mechanism through which moesin defects cause kidney pathology remains obscure. Here, we characterized immune cell infiltration and chemokine expression in the kidney of moesin-deficient mice. We found accumulation of CD4+ T and CD11b+ myeloid cells and high expression of CXCL13, whose upregulation was detected before the onset of overt nephritis. CD4+ T cell population contained IFN-γ-producing effectors and expressed the CXCL13 receptor CXCR5. Among myeloid cells, Ly6Clo patrolling monocytes and MHCIIlo macrophages markedly accumulated in moesin-deficient kidneys and expressed high CXCL13 levels, implicating the CXCL13-CXCR5 axis in nephritis development. Functionally, Ly6Clo monocytes from moesin-deficient mice showed reduced migration toward sphingosine 1-phosphate. These findings suggest that moesin plays a role in regulating patrolling monocyte homeostasis, and that its defects lead to nephritis associated with accumulation of CXCL13-producing monocytes and macrophages.
Collapse
Affiliation(s)
- Satoko Ichioka
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan; Department of Pediatrics, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Hiroki Satooka
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan.
| | - Yoshihiro Maruo
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Takako Hirata
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan.
| |
Collapse
|
6
|
Li M, Luo S, Zhuo Z, Shu M. Two cases of pediatric primary immunodeficiency caused by a familial moesin(MSN)gene mutation. Clin Immunol 2024; 258:109858. [PMID: 38052292 DOI: 10.1016/j.clim.2023.109858] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND We investigated two brothers who presented with repeated lung infections after 6 months of age. Lymphocytes and neutrophils were significantly decreased, and both had bronchiectasis and emphysema. OBJECTIVE We sought to characterize the complete picture of lung injury in some types of primary immunodeficiency disease, followed by verification and analysis. METHODS We performed immune function determination, a complete examination of the respiratory system, genetic analysis, and literature research. RESULTS The levels of lymphocytes, neutrophils, monocytes, and natural killer cells in the brothers were significantly decreased. The IgM and IgG levels of the older brother were decreased, while the IgM and IgA levels of the younger brother were decreased. Both brothers had bronchial wall erosion with a worm-eaten appearance and decreased lung function. Genetic testing revealed a hemizygous missense mutation (c.511C > T:p.R171W) in exon 5 of the MSN gene, which was inherited from the mother. A literature review showed that the primary immunodeficiency caused by MSN gene mutations is an X-linked recessive genetic disease with four known gene mutation sites, including nonsense and missense mutations. Nonsense mutations result in a higher incidence of autoimmune diseases and a lower degree of immune function impairment. Nonsense mutations closer to the front of the MSN gene may cause more severe disease. Neonatal disease screening can improve the early diagnosis rate, but hematopoietic stem cell transplantation (HSCT) treatment is controversial. CONCLUSION The primary immunodeficiency disease caused by MSN gene mutation is an X-linked recessive genetic disease that involves structural and functional damage to the respiratory system, and the worm-eaten appearance of the bronchial wall under endoscopy may be a relatively specific sign. The general manifestations of this disease are recurrent infections from 1 month to 6 months after birth, significantly reduced counts of lymphocytes and neutrophils, and decreased cellular and humoral immune function. Different types of MSN gene mutations and nonsense mutations at different sites have different clinical phenotypes. This study enriches the known spectrum of this disease.
Collapse
Affiliation(s)
- Muquan Li
- Department of Pediatrics, West China Xiamen Hospital (Research Institute), Sichuan University, Xiamen, China; The Xiamen Key Laboratory of Psychoradiology and Neuromodulation, Xiamen, China
| | - Shuanghong Luo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | | | - Min Shu
- Department of Pediatrics, West China Xiamen Hospital (Research Institute), Sichuan University, Xiamen, China; The Xiamen Key Laboratory of Psychoradiology and Neuromodulation, Xiamen, China; Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Sams L, Wijetilleka S, Ponsford M, Gennery A, Jolles S. Atopic manifestations of inborn errors of immunity. Curr Opin Allergy Clin Immunol 2023; 23:478-490. [PMID: 37755421 PMCID: PMC10621644 DOI: 10.1097/aci.0000000000000943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
PURPOSE OF REVIEW Allergy and atopic features are now well recognized manifestations of many inborn errors of immunity (IEI), and indeed may be the hallmark in some, such as DOCK8 deficiency. In this review, we describe the current IEI associated with atopy, using a comprehensive literature search and updates from the IUIS highlighting clinical clues for underlying IEI such as very early onset of atopic disease or treatment resistance to enable early and accurate genetic diagnosis. RECENT FINDINGS We focus on recently described genes, their categories of pathogenic mechanisms and the expanding range of potential therapies. SUMMARY We highlight in this review that patients with very early onset or treatment resistant atopic disorders should be investigated for an IEI, as targeted and effective therapies exist. Early and accurate genetic diagnosis is crucial in this cohort to reduce the burden of disease and mortality.
Collapse
Affiliation(s)
- Laura Sams
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital (GNCH), Royal Victoria Infirmary, Queen Victoria Road
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Sonali Wijetilleka
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, UK
| | - Mark Ponsford
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, UK
| | - Andrew Gennery
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital (GNCH), Royal Victoria Infirmary, Queen Victoria Road
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, UK
| |
Collapse
|
8
|
Alshafie W, Ayoubi R, Fotouhi M, Southern K, Laflamme C, NeuroSGC/YCharOS collaborative group. Identification of high-performing antibodies for Moesin for use in Western Blot, immunoprecipitation, and immunofluorescence. F1000Res 2023; 12:172. [PMID: 38106655 PMCID: PMC10724652 DOI: 10.12688/f1000research.130126.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 12/19/2023] Open
Abstract
Moesin is a cytoskeletal adaptor protein, involved in the modification of the actin cytoskeleton, with relevance to Alzheimer's Disease. Well characterized anti-Moesin antibodies would benefit the scientific community. In this study, we have characterized ten Moesin commercial antibodies in Western Blot, immunoprecipitation, and immunofluorescence using a standardized experimental protocol based on comparing read-outs in knockout cell lines and isogenic parental controls. These studies are part of a larger, collaborative initiative seeking to address antibody reproducibility by characterizing commercially available antibodies for human proteins and publishing the results openly as a resource for the scientific community. While use of antibodies and protocols vary between laboratories, we encourage readers to use this report as a guide to select the most appropriate antibodies for their specific needs.
Collapse
Affiliation(s)
- Walaa Alshafie
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Riham Ayoubi
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Maryam Fotouhi
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Kathleen Southern
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Carl Laflamme
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - NeuroSGC/YCharOS collaborative group
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| |
Collapse
|
9
|
García-Solís B, Van Den Rym A, Martinez-Martínez L, Franco T, Pérez-Caraballo JJ, Markle J, Cubillos-Zapata C, Marín AV, Recio MJ, Regueiro JR, Navarro-Zapata A, Mestre-Durán C, Ferreras C, Martín Cotázar C, Mena R, de la Calle-Fabregat C, López-Lera A, Fernández Arquero M, Pérez-Martínez A, López-Collazo E, Sánchez-Ramón S, Casanova JL, Martínez-Barricarte R, de la Calle-Martín O, Pérez de Diego R. Inherited human ezrin deficiency impairs adaptive immunity. J Allergy Clin Immunol 2023; 152:997-1009.e11. [PMID: 37301410 PMCID: PMC11009781 DOI: 10.1016/j.jaci.2023.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Inborn errors of immunity (IEI) are a group of monogenic diseases that confer susceptibility to infection, autoimmunity, and cancer. Despite the life-threatening consequences of some IEI, their genetic cause remains unknown in many patients. OBJECTIVE We investigated a patient with an IEI of unknown genetic etiology. METHODS Whole-exome sequencing identified a homozygous missense mutation of the gene encoding ezrin (EZR), substituting a threonine for an alanine at position 129. RESULTS Ezrin is one of the subunits of the ezrin, radixin, and moesin (ERM) complex. The ERM complex links the plasma membrane to the cytoskeleton and is crucial for the assembly of an efficient immune response. The A129T mutation abolishes basal phosphorylation and decreases calcium signaling, leading to complete loss of function. Consistent with the pleiotropic function of ezrin in myriad immune cells, multidimensional immunophenotyping by mass and flow cytometry revealed that in addition to hypogammaglobulinemia, the patient had low frequencies of switched memory B cells, CD4+ and CD8+ T cells, MAIT, γδ T cells, and centralnaive CD4+ cells. CONCLUSIONS Autosomal-recessive human ezrin deficiency is a newly recognized genetic cause of B-cell deficiency affecting cellular and humoral immunity.
Collapse
Affiliation(s)
- Blanca García-Solís
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Ana Van Den Rym
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | | | - Teresa Franco
- Immunology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jareb J Pérez-Caraballo
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tenn; Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tenn
| | - Janet Markle
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tenn; Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tenn
| | - Carolina Cubillos-Zapata
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Centre for Biomedical Research Network, CIBEres, Madrid, Spain
| | - Ana V Marín
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - María J Recio
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain; Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - José R Regueiro
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Alfonso Navarro-Zapata
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Carmen Mestre-Durán
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Cristina Ferreras
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Carla Martín Cotázar
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Roció Mena
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | | | - Alberto López-Lera
- IdiPAZ Institute for Health Research, La Paz University Hospital, CIBERER U-754, Madrid, Spain
| | - Miguel Fernández Arquero
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain; Clinical Immunology Department, San Carlos Clinical Hospital, Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Eduardo López-Collazo
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Silvia Sánchez-Ramón
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain; Clinical Immunology Department, San Carlos Clinical Hospital, Madrid, Spain
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Imagine Institute, University Paris Descartes, Paris, France; Howard Hughes Medical Institute, New York, NY
| | - Rubén Martínez-Barricarte
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tenn; Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tenn
| | | | - Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Interdepartmental Group of Immunodeficiencies, Madrid, Spain.
| |
Collapse
|
10
|
Wang Y, Jiang Y, Wang J, Li S, Jia X, Xiao X, Sun W, Wang P, Zhang Q. Retinopathy as an initial sign of hereditary immunological diseases: report of six families and challenges in eye clinic. Front Immunol 2023; 14:1239886. [PMID: 37711606 PMCID: PMC10498122 DOI: 10.3389/fimmu.2023.1239886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Retinal degenerative or inflammatory changes may occur with hereditary immunological disorders (HID) due to variants in approximately 20 genes. This study aimed to investigate if such retinopathy may present as an initial sign of immunological disorders in eye clinic. Methods The variants in the 20 genes were selected from in-house exome sequencing data from 10,530 individuals with different eye conditions. Potential pathogenic variants were assessed by multistep bioinformatic analysis. Pathogenic variants were defined according to the ACMG/AMP criteria and confirmed by Sanger sequencing, co-segregation analysis, and consistency with related phenotypes. Ocular clinical data were thoroughly reviewed, especially fundus changes. Results A total of seven pathogenic variants in four of the 20 genes were detected in six probands from six families, including three with hemizygous nonsense variants p.(Q308*), p.(Q416*), and p.(R550*) in MSN, one with homozygous nonsense variants p.(R257*) in AIRE, one with compound heterozygous nonsense variants p.(R176*) and p.(T902*) in LAMB2, and one with a known c.1222T>C (p.W408R) heterozygous variant in CBL. Ocular presentation, as the initial signs of the diseases, was mainly retinopathy mimicking other forms of hereditary retinal degeneration, including exudative vitreoretinopathy in the three patients with MSN variants or tapetoretinal degeneration in the other three patients. Neither extraocular symptoms nor extraocular manifestations were recorded at the time of visit to our eye clinic. However, of the 19 families in the literature with retinopathy caused by variants in these four genes, only one family with an AIRE homozygous variant had retinopathy as an initial symptom, while the other 18 families had systemic abnormalities that preceded retinopathy. Discussion This study, for the first time, identified six unrelated patients with retinopathy as their initial and only presenting sign of HID, contrary to the previous reports where retinopathy was the accompanying sign of systemic HID. Recognizing such phenotype of HID may facilitate the clinical care of these patients. Follow-up visits to such patients and additional studies are expected to validate and confirm our findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| |
Collapse
|
11
|
Gao YQ, Xu CL, Fu HY, Zhu TT, Chu JH. [Clinical significance and pathogenesis analysis of Moesin in multiple myeloma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:672-675. [PMID: 37803842 PMCID: PMC10520239 DOI: 10.3760/cma.j.issn.0253-2727.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 10/08/2023]
Affiliation(s)
- Y Q Gao
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Suzhou 215000, China Children's Hospital of Soochow University, Suzhou 215000, China
| | - C L Xu
- Department of Clinical Laboratory, Dongtai Municipal People's Hospital, Dongtai 224200, China
| | - H Y Fu
- Children's Hospital of Soochow University, Suzhou 215000, China
| | - T T Zhu
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Suzhou 215000, China
| | - J H Chu
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Suzhou 215000, China
| |
Collapse
|
12
|
Deciphering actin remodelling in immune cells through the prism of actin-related inborn errors of immunity. Eur J Cell Biol 2023; 102:151283. [PMID: 36525824 DOI: 10.1016/j.ejcb.2022.151283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Actin cytoskeleton remodelling drives cell motility, cell to cell contacts, as well as membrane and organelle dynamics. Those cellular activities operate at a particularly high pace in immune cells since these cells migrate through various tissues, interact with multiple cellular partners, ingest microorganisms and secrete effector molecules. The central and multifaceted role of actin cytoskeleton remodelling in sustaining immune cell tasks in humans is highlighted by rare inborn errors of immunity due to mutations in genes encoding proximal and distal actin regulators. In line with the specificity of some of the actin-based processes at work in immune cells, the expression of some of the affected genes, such as WAS, ARPC1B and HEM1 is restricted to the hematopoietic compartment. Exploration of these natural deficiencies highlights the fact that the molecular control of actin remodelling is tuned distinctly in the various subsets of myeloid and lymphoid immune cells and sustains different networks associated with a vast array of specialized tasks. Furthermore, defects in individual actin remodelling proteins are usually associated with partial cellular impairments highlighting the plasticity of actin cytoskeleton remodelling. This review covers the roles of disease-associated actin regulators in promoting the actin-based processes of immune cells. It focuses on the specific molecular function of those regulators across various immune cell subsets and in response to different stimuli. Given the fact that numerous immune-related actin defects have only been characterized recently, we further discuss the challenges lying ahead to decipher the underlying patho-mechanisms.
Collapse
|
13
|
Dvorak CC, Haddad E, Heimall J, Dunn E, Cowan MJ, Pai SY, Kapoor N, Satter LF, Buckley RH, O'Reilly RJ, Chandra S, Bednarski JJ, Williams O, Rayes A, Moore TB, Ebens CL, Davila Saldana BJ, Petrovic A, Chellapandian D, Cuvelier GDE, Vander Lugt MT, Caywood EH, Chandrakasan S, Eissa H, Goldman FD, Shereck E, Aquino VM, Desantes KB, Madden LM, Miller HK, Yu L, Broglie L, Gillio A, Shah AJ, Knutsen AP, Andolina JP, Joshi AY, Szabolcs P, Kapadia M, Martinez CA, Parrot RE, Sullivan KE, Prockop SE, Abraham RS, Thakar MS, Leiding JW, Kohn DB, Pulsipher MA, Griffith LM, Notarangelo LD, Puck JM. The diagnosis of severe combined immunodeficiency: Implementation of the PIDTC 2022 Definitions. J Allergy Clin Immunol 2023; 151:547-555.e5. [PMID: 36456360 PMCID: PMC9905305 DOI: 10.1016/j.jaci.2022.10.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Shearer et al in 2014 articulated well-defined criteria for the diagnosis and classification of severe combined immunodeficiency (SCID) as part of the Primary Immune Deficiency Treatment Consortium's (PIDTC's) prospective and retrospective studies of SCID. OBJECTIVE Because of the advent of newborn screening for SCID and expanded availability of genetic sequencing, revision of the PIDTC 2014 Criteria was needed. METHODS We developed and tested updated PIDTC 2022 SCID Definitions by analyzing 379 patients proposed for prospective enrollment into Protocol 6901, focusing on the ability to distinguish patients with various SCID subtypes. RESULTS According to PIDTC 2022 Definitions, 18 of 353 patients eligible per 2014 Criteria were considered not to have SCID, whereas 11 of 26 patients ineligible per 2014 Criteria were determined to have SCID. Of note, very low numbers of autologous T cells (<0.05 × 109/L) characterized typical SCID under the 2022 Definitions. Pathogenic variant(s) in SCID-associated genes was identified in 93% of patients, with 7 genes (IL2RG, RAG1, ADA, IL7R, DCLRE1C, JAK3, and RAG2) accounting for 89% of typical SCID. Three genotypes (RAG1, ADA, and RMRP) accounted for 57% of cases of leaky/atypical SCID; there were 13 other rare genotypes. Patients with leaky/atypical SCID were more likely to be diagnosed at more than age 1 year than those with typical SCID lacking maternal T cells: 20% versus 1% (P < .001). Although repeat testing proved important, an initial CD3 T-cell count of less than 0.05 × 109/L differentiated cases of typical SCID lacking maternal cells from leaky/atypical SCID: 97% versus 7% (P < .001). CONCLUSIONS The PIDTC 2022 Definitions describe SCID and its subtypes more precisely than before, facilitating analyses of SCID characteristics and outcomes.
Collapse
Affiliation(s)
- Christopher C Dvorak
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif.
| | - Elie Haddad
- Department of Pediatrics, University of Montreal, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Jennifer Heimall
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania and the Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Elizabeth Dunn
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif
| | - Morton J Cowan
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif
| | - Sung-Yun Pai
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, Bethesda, Md
| | - Neena Kapoor
- Hematology, Oncology and TCT, Children's Hospital Los Angeles, Los Angeles, Calif
| | - Lisa Forbes Satter
- Pediatric Immunology Allergy and Retrovirology, Baylor College of Medicine, Houston, Tex
| | - Rebecca H Buckley
- Division of Pediatric Allergy and Immunology, Duke University Medical Center, Durham, NC
| | - Richard J O'Reilly
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering, New York, NY
| | - Sharat Chandra
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jeffrey J Bednarski
- Division of Pediatric Hematology and Oncology, Washington University School of Medicine, St Louis, Mo
| | | | - Ahmad Rayes
- Division of Pediatric Hematology and Oncology, Intermountain Primary Childrens Hospital, Huntsman Cancer Institute at the University of Utah, Salt Lake City, Utah
| | - Theodore B Moore
- Department of Pediatrics, UCLA David Geffen School of Medicine, Los Angeles, Calif
| | - Christen L Ebens
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, Minn
| | | | - Aleksandra Petrovic
- Division of Pediatric Immunology and Bone Marrow Transplantation, University of Washington, Seattle Children's Hospital, Seattle, Wash
| | - Deepak Chellapandian
- Center for Cell and Gene Therapy for Non Malignant Conditions, Johns Hopkins All Children's Hospital, St Petersburg, Fla
| | - Geoffrey D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mark T Vander Lugt
- Blood and Marrow Transplant Program, University of Michigan, Ann Arbor, Mich
| | - Emi H Caywood
- Nemours Children's Health Delaware, Thomas Jefferson University, Wilmington, Del
| | - Shanmuganathan Chandrakasan
- Bone Marrow Transplantation Program, Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, Ga
| | - Hesham Eissa
- Division of Pediatric Hematology-Oncology-BMT, University of Colorado, Aurora, Colo
| | - Frederick D Goldman
- Division of Hematology/Oncology/BMT, Department of Pediatrics, University of Alabama, Birmingham, Ala
| | - Evan Shereck
- Division of Pediatric Hematology/Oncology, Oregon Health & Science University, Portland, Ore
| | - Victor M Aquino
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Kenneth B Desantes
- Division of Pediatric Heme/Onc & Bone Marrow Transplant, University of Wisconsin School of Medicine, Madison, Wis
| | - Lisa M Madden
- Pediatric Bone Marrow Transplant Program, Texas Transplant Institute, San Antonio, Tex
| | | | - Lolie Yu
- Division of Pediatric Hematology-Oncology/HSCT, LSUHSC and Children's Hospital, New Orleans, La
| | - Larisa Broglie
- Division of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Medical College of Wisconsin, Milwaukee, Wis
| | - Alfred Gillio
- Joseph M. Sanzani's Children's Hospital at Hackensack University Medical Center, Hackensack, NJ
| | - Ami J Shah
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Palo Alto, Calif
| | - Alan P Knutsen
- Division of Pediatric Allergy & Immunology, Saint Louis University, St Louis, Mo
| | - Jeffrey P Andolina
- Department of Pediatrics, Golisano Children's Hospital, University of Rochester, Rochester, NY
| | - Avni Y Joshi
- Division of Pediatric Allergy and Immunology, Mayo Clinic Childrens Center, Rochester, Minn
| | - Paul Szabolcs
- Division of Blood and Marrow Transplantation and Cellular Therapies, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Malika Kapadia
- Division of Pediatric Oncology, Dana Farber/Boston Children's Cancer and Blood Disorders Center, Department of Pediatrics, Harvard University Medical School, Boston, Mass
| | - Caridad A Martinez
- Hematology/Oncology/BMT, Texas Children's Hospital, Baylor College of Medicine, Houston, Tex
| | - Roberta E Parrot
- Division of Pediatric Allergy and Immunology, Duke University Medical Center, Durham, NC
| | - Kathleen E Sullivan
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania and the Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Susan E Prockop
- Division of Pediatric Oncology, Dana Farber/Boston Children's Cancer and Blood Disorders Center, Department of Pediatrics, Harvard University Medical School, Boston, Mass
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio
| | - Monica S Thakar
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Department of Pediatrics, University of Washington, Seattle, Wash
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University, Baltimore, Md
| | - Donald B Kohn
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, Calif; Department of Pediatrics, University of California, Los Angeles, Los Angeles, Calif
| | - Michael A Pulsipher
- Division of Pediatric Hematology and Oncology, Intermountain Primary Childrens Hospital, Huntsman Cancer Institute at the University of Utah, Salt Lake City, Utah
| | - Linda M Griffith
- Division of Allergy Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Luigi D Notarangelo
- Division of Allergy Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jennifer M Puck
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif
| |
Collapse
|
14
|
Scurt FG, Bose K, Hammoud B, Brandt S, Bernhardt A, Gross C, Mertens PR, Chatzikyrkou C. Old known and possible new biomarkers of ANCA-associated vasculitis. J Autoimmun 2022; 133:102953. [PMID: 36410262 DOI: 10.1016/j.jaut.2022.102953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/06/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022]
Abstract
Antineutrophil cytoplasm antibody (ANCA)-associated vasculitis (AAV) comprises a group of multisystem disorders involving severe, systemic, small-vessel vasculitis with short- and long term serious and life-threating complications. Despite the simplification of treatment, fundamental aspects concerning assessment of its efficacy and its adaptation to encountered complications or to the relapsing/remitting/subclinical disease course remain still unknown. The pathogenesis of AAV is complex and unique, and despite the progress achieved in the last years, much has not to be learnt. Foremost, there is still no accurate marker enabling us to monitoring disease and guide therapy. Therefore, the disease management relays often on clinical judgment and follows a" trial and error approach". In the recent years, an increasing number of new molecules s have been explored and used for this purpose including genomics, B- and T-cell subpopulations, complement system factors, cytokines, metabolomics, biospectroscopy and components of our microbiome. The aim of this review is to discuss both the role of known historical and clinically established biomarkers of AAV, as well as to highlight potential new ones, which could be used for timely diagnosis and monitoring of this devastating disease, with the goal to improve the effectiveness and ameliorate the complications of its demanding therapy.
Collapse
Affiliation(s)
- Florian G Scurt
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany.
| | - K Bose
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - Ben Hammoud
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - S Brandt
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - A Bernhardt
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - C Gross
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - Peter R Mertens
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | | |
Collapse
|
15
|
Kovács AL, Kárteszi J, Prohászka Z, Kalmár T, Késmárky G, Koltai K, Nagy Z, Sebők J, Vas T, Molnár K, Berki T, Böröcz K, Gyömörei C, Szalma J, Egyed M, Horváth S, Oláh P, Csuka D, Németh V, Gyulai R. Hemizygous nonsense variant in the moesin gene (MSN) leads to a new autoimmune phenotype of Immunodeficiency 50. Front Immunol 2022; 13:919411. [PMID: 36119109 PMCID: PMC9477008 DOI: 10.3389/fimmu.2022.919411] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Here, we present the findings of an investigation involving two male siblings with juvenile total tooth loss, early-onset chronic leg ulcers, and autoimmune thyroiditis, as well as focal segmental glomerulosclerosis with associated pulmonary emphysema in one and diabetes mellitus in the other. The clinical picture and lupus anticoagulant, cryoglobulin, and cold agglutinin positivity suggested the diagnosis of antiphospholipid syndrome. Flow cytometry analysis showed immunophenotypes consistent with immune dysregulation: a low number of naive T cells, elevated CD4+ T cell counts, and decreased CD8+ T-cell counts were detected, and more than half of the T-helper population was activated. Considering the siblings' almost identical clinical phenotype, the genetic alteration was suspected in the background of the immunodeficiency. Whole exome sequencing identified a previously not described hemizygous nonsense variant (c.650G>A, p.W217X) within exon 6 of the moesin (MSN) gene localized on chromosome X, resulting in significantly decreased MSN mRNA expression compared to healthy controls. We present a putative new autoimmune phenotype of Immunodeficiency 50 (MIM300988) characterized by antiphospholipid syndrome, Hashimoto's thyroiditis, leg ulcers, and juvenile tooth loss, associated with W217X mutation of the MSN gene.
Collapse
Affiliation(s)
- András L. Kovács
- Department of Dermatology, Venereology and Oncodermatology, Medical School, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Judit Kárteszi
- Genetic Counseling, Saint Rafael Hospital of Zala County, Zalaegerszeg, Hungary
| | - Zoltán Prohászka
- Research Group for Immunology and Haematology, Eötvös Loránd Research Network (Office for Supported Research Groups), Semmelweis University, Budapest, Hungary
| | - Tibor Kalmár
- Genetic Diagnostic Laboratory, Department of Pediatrics and Pedriatic Health Center, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Gábor Késmárky
- Division of Angiology, 1st Department of Internal Medicine, Medical School, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Katalin Koltai
- Division of Angiology, 1st Department of Internal Medicine, Medical School, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Nagy
- Nephrological and Diabetological Center, 2nd Department of Internal Medicine, Medical School, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Judit Sebők
- Nephrological and Diabetological Center, 2nd Department of Internal Medicine, Medical School, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Tibor Vas
- Nephrological and Diabetological Center, 2nd Department of Internal Medicine, Medical School, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Krisztián Molnár
- Department of Medical Imaging, Medical School, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology, Medical School, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Katalin Böröcz
- Department of Immunology and Biotechnology, Medical School, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Csaba Gyömörei
- Department of Pathology, Medical School, Clinical Centre, University of Pécs, Pécs, Hungary
| | - József Szalma
- Oral and Maxillofacial Surgery, Department of Dentistry, Medical School, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Miklós Egyed
- Department of Hematology, Somogy County Mór Kaposi General Hospital, Kaposvár, Hungary
| | - Szabina Horváth
- Department of Dermatology, Venereology and Oncodermatology, Medical School, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Péter Oláh
- Department of Dermatology, Venereology and Oncodermatology, Medical School, Clinical Centre, University of Pécs, Pécs, Hungary
- Department of Dermatology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dorottya Csuka
- Research Group for Immunology and Haematology, Eötvös Loránd Research Network (Office for Supported Research Groups), Semmelweis University, Budapest, Hungary
| | - Viktória Németh
- Department of Dermatology, Venereology and Oncodermatology, Medical School, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Rolland Gyulai
- Department of Dermatology, Venereology and Oncodermatology, Medical School, Clinical Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
16
|
Fang Y, Luo Y, Liu Y, Chen J. A Novel Variant of X-Linked Moesin Gene in a Boy With Inflammatory Bowel Disease Like Disease-A Case Report. Front Genet 2022; 13:873635. [PMID: 35754805 PMCID: PMC9224403 DOI: 10.3389/fgene.2022.873635] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022] Open
Abstract
Variants in the MSN gene were recently reported as the cause of a primary immunodeficiency disease called X-linked moesin-associated immunodeficiency (X-MAID). Hitherto, only 10 patients were reported worldwide. Here, we report a boy who presented with recurrent high fever, oral ulcers, abdominal pain, and hematochezia for over 2 weeks. His serum inflammatory markers were elevated, and colonoscopy showed multiple colon ulcers and terminal ileum ulcers which resemble colitis caused by inflammatory bowel disease. A novel heterozygous variant c.934G>T(p.Glu312Ter) in the MSN gene was identified using whole exome sequencing (WES) and trio analysis. Intestinal ulcers were almost healed after inducing therapy with steroids and maintenance treatment of anti-TNFα therapy. We summarized the genotype and phenotype of reported X-MAID patients and presented the patient’s unique phenotype in this study. This study also expanded the spectrum of MSN mutation-caused immunodeficiency.
Collapse
Affiliation(s)
- Youhong Fang
- Department of Gastroenterology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Youyou Luo
- Department of Gastroenterology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yang Liu
- Department of Pathology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jie Chen
- Department of Gastroenterology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
17
|
Avalos A, Tietsort JT, Suwankitwat N, Woods JD, Jackson SW, Christodoulou A, Morrill C, Liggitt HD, Zhu C, Li QZ, Bui KK, Park H, Iritani BM. Hem-1 regulates protective humoral immunity and limits autoantibody production in a B cell-specific manner. JCI Insight 2022; 7:e153597. [PMID: 35531955 PMCID: PMC9090261 DOI: 10.1172/jci.insight.153597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Hematopoietic protein-1 (Hem-1) is a member of the actin-regulatory WASp family verprolin homolog (WAVE) complex. Loss-of-function variants in the NCKAP1L gene encoding Hem-1 were recently discovered to result in primary immunodeficiency disease (PID) in children, characterized by poor specific Ab responses, increased autoantibodies, and high mortality. However, the mechanisms of how Hem-1 deficiency results in PID are unclear. In this study, we utilized constitutive and B cell-specific Nckap1l-KO mice to dissect the importance of Hem-1 in B cell development and functions. B cell-specific disruption of Hem-1 resulted in reduced numbers of recirculating follicular (FO), marginal zone (MZ), and B1 B cells. B cell migration in response to CXCL12 and -13 were reduced. T-independent Ab responses were nearly abolished, resulting in failed protective immunity to Streptococcus pneumoniae challenge. In contrast, T-dependent IgM and IgG2c, memory B cell, and plasma cell responses were more robust relative to WT control mice. B cell-specific Hem-1-deficient mice had increased autoantibodies against multiple autoantigens, and this correlated with hyperresponsive BCR signaling and increased representation of CD11c+T-bet+ age-associated B cell (ABC cells) - alterations associated with autoimmune diseases. These results suggest that dysfunctional B cells may be part of a mechanism explaining why loss-of-function Hem-1 variants result in recurring infections and autoimmunity.
Collapse
Affiliation(s)
- Alan Avalos
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Jacob T. Tietsort
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Nutthakarn Suwankitwat
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | | | | | | | - Christopher Morrill
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - H. Denny Liggitt
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Chengsong Zhu
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Quan-Zhen Li
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kevin K. Bui
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Heon Park
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Brian M. Iritani
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
18
|
Yuan O, Ugale A, de Marchi T, Anthonydhason V, Konturek-Ciesla A, Wan H, Eldeeb M, Drabe C, Jassinskaja M, Hansson J, Hidalgo I, Velasco-Hernandez T, Cammenga J, Magee JA, Niméus E, Bryder D. A somatic mutation in moesin drives progression into acute myeloid leukemia. SCIENCE ADVANCES 2022; 8:eabm9987. [PMID: 35442741 PMCID: PMC9020775 DOI: 10.1126/sciadv.abm9987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Acute myeloid leukemia (AML) arises when leukemia-initiating cells, defined by a primary genetic lesion, acquire subsequent molecular changes whose cumulative effects bypass tumor suppression. The changes that underlie AML pathogenesis not only provide insights into the biology of transformation but also reveal novel therapeutic opportunities. However, backtracking these events in transformed human AML samples is challenging, if at all possible. Here, we approached this question using a murine in vivo model with an MLL-ENL fusion protein as a primary molecular event. Upon clonal transformation, we identified and extensively verified a recurrent codon-changing mutation (Arg295Cys) in the ERM protein moesin that markedly accelerated leukemogenesis. Human cancer-associated moesin mutations at the conserved arginine-295 residue similarly enhanced MLL-ENL-driven leukemogenesis. Mechanistically, the mutation interrupted the stability of moesin and conferred a neomorphic activity to the protein, which converged on enhanced extracellular signal-regulated kinase activity. Thereby, our studies demonstrate a critical role of ERM proteins in AML, with implications also for human cancer.
Collapse
Affiliation(s)
- Ouyang Yuan
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Amol Ugale
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
- Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology of the University of Vienna, Max F. Perutz Laboratories, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Tommaso de Marchi
- Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, 223 62, Lund, Sweden
| | - Vimala Anthonydhason
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Medicinaregatan 1F, 413 90, Gothenburg, Sweden
| | - Anna Konturek-Ciesla
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Haixia Wan
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Mohamed Eldeeb
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Caroline Drabe
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Maria Jassinskaja
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
- York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Jenny Hansson
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Isabel Hidalgo
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | | | - Jörg Cammenga
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Jeffrey A. Magee
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emma Niméus
- Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, 223 62, Lund, Sweden
- Department of Surgery, Skåne University Hospital, Entrégatan 7, 222 42 Lund, Sweden
| | - David Bryder
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
19
|
Moesin: A novel receptor on NK lymphocytes binds to TOMM40 on K562 leukemia cells initiating cytolysis. Hum Immunol 2022; 83:418-427. [DOI: 10.1016/j.humimm.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
|
20
|
Avery L, Robertson TF, Wu CF, Roy NH, Chauvin SD, Perkey E, Vanderbeck A, Maillard I, Burkhardt JK. A Murine Model of X-Linked Moesin-Associated Immunodeficiency (X-MAID) Reveals Defects in T Cell Homeostasis and Migration. Front Immunol 2022; 12:726406. [PMID: 35069520 PMCID: PMC8770857 DOI: 10.3389/fimmu.2021.726406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022] Open
Abstract
X-linked moesin associated immunodeficiency (X-MAID) is a primary immunodeficiency disease in which patients suffer from profound lymphopenia leading to recurrent infections. The disease is caused by a single point mutation leading to a R171W amino acid change in the protein moesin (moesinR171W). Moesin is a member of the ERM family of proteins, which reversibly link the cortical actin cytoskeleton to the plasma membrane. Here, we describe a novel mouse model with global expression of moesinR171W that recapitulates multiple facets of patient disease, including severe lymphopenia. Further analysis reveals that these mice have diminished numbers of thymocytes and bone marrow precursors. X-MAID mice also exhibit systemic inflammation that is ameliorated by elimination of mature lymphocytes through breeding to a Rag1-deficient background. The few T cells in the periphery of X-MAID mice are highly activated and have mostly lost moesinR171W expression. In contrast, single-positive (SP) thymocytes do not appear activated and retain high expression levels of moesinR171W. Analysis of ex vivo CD4 SP thymocytes reveals defects in chemotactic responses and reduced migration on integrin ligands. While chemokine signaling appears intact, CD4 SP thymocytes from X-MAID mice are unable to polarize and rearrange cytoskeletal elements. This mouse model will be a valuable tool for teasing apart the complexity of the immunodeficiency caused by moesinR171W, and will provide new insights into how the actin cortex regulates lymphocyte function.
Collapse
Affiliation(s)
- Lyndsay Avery
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Tanner F. Robertson
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Christine F. Wu
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nathan H. Roy
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Samuel D. Chauvin
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Eric Perkey
- Graduate Program in Cellular and Molecular Biology and Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, United States
| | - Ashley Vanderbeck
- Division of Hematology/Oncology, Department of Medicine and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Janis K. Burkhardt
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
21
|
Kamnev A, Lacouture C, Fusaro M, Dupré L. Molecular Tuning of Actin Dynamics in Leukocyte Migration as Revealed by Immune-Related Actinopathies. Front Immunol 2021; 12:750537. [PMID: 34867982 PMCID: PMC8634686 DOI: 10.3389/fimmu.2021.750537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023] Open
Abstract
Motility is a crucial activity of immune cells allowing them to patrol tissues as they differentiate, sample or exchange information, and execute their effector functions. Although all immune cells are highly migratory, each subset is endowed with very distinct motility patterns in accordance with functional specification. Furthermore individual immune cell subsets adapt their motility behaviour to the surrounding tissue environment. This review focuses on how the generation and adaptation of diversified motility patterns in immune cells is sustained by actin cytoskeleton dynamics. In particular, we review the knowledge gained through the study of inborn errors of immunity (IEI) related to actin defects. Such pathologies are unique models that help us to uncover the contribution of individual actin regulators to the migration of immune cells in the context of their development and function.
Collapse
Affiliation(s)
- Anton Kamnev
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Claire Lacouture
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.,Laboratoire De Physique Théorique, IRSAMC, Université De Toulouse (UPS), CNRS, Toulouse, France
| | - Mathieu Fusaro
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| |
Collapse
|
22
|
Gómez-Henao W, Saavedra R, Chávez-Sánchez FR, Lascurain R, Zenteno E, Tenorio EP. Expression Dynamics of the O-Glycosylated Proteins Recognized by Amaranthus leucocarpus Lectin in T Lymphocytes and Its Relationship With Moesin as an Alternative Mechanism of Cell Activation. Front Immunol 2021; 12:788880. [PMID: 34917095 PMCID: PMC8669815 DOI: 10.3389/fimmu.2021.788880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
T lymphocyte activation begins with antigen/MHC recognition by the TCR/CD3 complex followed by a costimulatory signal provided by CD28. The search for novel costimulatory molecules has been extensive due to their potential use as immunotherapeutic targets. Although some molecules have been identified, they are unable to provide sustainable signaling to allow for proper T cell activation and proliferation. It has been shown that the Amaranthus leucocarpus lectin (ALL) can be used as an in vitro costimulator of CD4+ lymphocytes in the presence of anti-CD3 mAb; this lectin specifically recognizes O-glycans of the Galβ1-3GalNAc-O-Ser/Thr type, including a 70-kDa moesin-like protein that has been suggested as the costimulatory molecule. However, the identity of this molecule has not been confirmed and such costimulation has not been analyzed in CD8+ lymphocytes. We show herein that the expression kinetics of the glycoproteins recognized by ALL (gpALL) is different in CD4+ and CD8+ T cells, unlike moesin expression. Results from IP experiments demonstrate that the previously described 70-kDa moesin-like protein is an O-glycosylated form of moesin (O-moesin) and that in vitro stimulation with anti-CD3 and anti-moesin mAb induces expression of the activation molecules CD69 and CD25, proliferation and IL-2 production as efficiently as cells costimulated with ALL or anti-CD28. Overall, our results demonstrate that O-moesin is expressed in CD4+ and CD8+ T lymphocytes and that moesin provides a new costimulatory activation signal in both T cell subsets.
Collapse
Affiliation(s)
- Wilton Gómez-Henao
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rafael Saavedra
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Ricardo Lascurain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eda Patricia Tenorio
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
23
|
Satooka H, Matsui M, Ichioka S, Nakamura Y, Hirata T. The ERM protein moesin regulates natural killer cell homeostasis in vivo. Cell Immunol 2021; 371:104456. [PMID: 34798556 DOI: 10.1016/j.cellimm.2021.104456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/15/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022]
Abstract
Moesin is a member of the ezrin-radixin-moesin (ERM) family of proteins that link plasma membrane proteins with actin filaments in the cell cortex. Hemizygous mutations in the X-linked moesin gene are associated with primary immunodeficiency with T and B cell lymphopenia, which also affects natural killer (NK) cells in most cases. We previously showed that moesin deficiency in mice substantially affects lymphocyte homeostasis, but its impact on NK cells remains unexplored. Here, we found that in moesin-deficient mice, NK cells were decreased in the peripheral blood and bone marrow but increased in the spleen. Analysis of female heterozygous mice showed a selective advantage for moesin-expressing NK cells in the blood. Moesin-deficient NK cells exhibited increased cell death and impaired signaling in response to IL-15, suggesting that moesin regulates NK cell survival through IL-15-mediated signaling. Our findings thus identify moesin as an NK cell homeostasis regulator in vivo.
Collapse
Affiliation(s)
- Hiroki Satooka
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| | - Makoto Matsui
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| | - Satoko Ichioka
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| | - Yuzuki Nakamura
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| | - Takako Hirata
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| |
Collapse
|
24
|
Shamseldin HE, AlAbdi L, Maddirevula S, Alsaif HS, Alzahrani F, Ewida N, Hashem M, Abdulwahab F, Abuyousef O, Kuwahara H, Gao X, Alkuraya FS. Lethal variants in humans: lessons learned from a large molecular autopsy cohort. Genome Med 2021; 13:161. [PMID: 34645488 PMCID: PMC8511862 DOI: 10.1186/s13073-021-00973-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Molecular autopsy refers to DNA-based identification of the cause of death. Despite recent attempts to broaden its scope, the term remains typically reserved to sudden unexplained death in young adults. In this study, we aim to showcase the utility of molecular autopsy in defining lethal variants in humans. METHODS We describe our experience with a cohort of 481 cases in whom the cause of premature death was investigated using DNA from the index or relatives (molecular autopsy by proxy). Molecular autopsy tool was typically exome sequencing although some were investigated using targeted approaches in the earlier stages of the study; these include positional mapping, targeted gene sequencing, chromosomal microarray, and gene panels. RESULTS The study includes 449 cases from consanguineous families and 141 lacked family history (simplex). The age range was embryos to 18 years. A likely causal variant (pathogenic/likely pathogenic) was identified in 63.8% (307/481), a much higher yield compared to the general diagnostic yield (43%) from the same population. The predominance of recessive lethal alleles allowed us to implement molecular autopsy by proxy in 55 couples, and the yield was similarly high (63.6%). We also note the occurrence of biallelic lethal forms of typically non-lethal dominant disorders, sometimes representing a novel bona fide biallelic recessive disease trait. Forty-six disease genes with no OMIM phenotype were identified in the course of this study. The presented data support the candidacy of two other previously reported novel disease genes (FAAH2 and MSN). The focus on lethal phenotypes revealed many examples of interesting phenotypic expansion as well as remarkable variability in clinical presentation. Furthermore, important insights into population genetics and variant interpretation are highlighted based on the results. CONCLUSIONS Molecular autopsy, broadly defined, proved to be a helpful clinical approach that provides unique insights into lethal variants and the clinical annotation of the human genome.
Collapse
Affiliation(s)
- Hanan E Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Lama AlAbdi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hessa S Alsaif
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Center of Excellence for Biomedicine, King Abdulaziz City for Science and Technology, Riyadh, 12354, Saudi Arabia
| | - Fatema Alzahrani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nour Ewida
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Omar Abuyousef
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hiroyuki Kuwahara
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| |
Collapse
|
25
|
Urdinez L, Goris V, Falbo J, Oleastro M, Danielian S. Argentinian X-MAID Siblings with One of Them Manifesting a Rare Ophthalmological Complication. J Clin Immunol 2021; 41:1960-1963. [PMID: 34453634 DOI: 10.1007/s10875-021-01125-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/18/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Luciano Urdinez
- Immunology and Rheumatology Department, Hospital Nacional de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina.
| | - Veronica Goris
- Immunology and Rheumatology Department, Hospital Nacional de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Jorgelina Falbo
- Ophthalmology Department, Hospital Nacional de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Matias Oleastro
- Immunology and Rheumatology Department, Hospital Nacional de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Silvia Danielian
- Immunology and Rheumatology Department, Hospital Nacional de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| |
Collapse
|
26
|
Dupré L, Boztug K, Pfajfer L. Actin Dynamics at the T Cell Synapse as Revealed by Immune-Related Actinopathies. Front Cell Dev Biol 2021; 9:665519. [PMID: 34249918 PMCID: PMC8266300 DOI: 10.3389/fcell.2021.665519] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
The actin cytoskeleton is composed of dynamic filament networks that build adaptable local architectures to sustain nearly all cellular activities in response to a myriad of stimuli. Although the function of numerous players that tune actin remodeling is known, the coordinated molecular orchestration of the actin cytoskeleton to guide cellular decisions is still ill defined. T lymphocytes provide a prototypical example of how a complex program of actin cytoskeleton remodeling sustains the spatio-temporal control of key cellular activities, namely antigen scanning and sensing, as well as polarized delivery of effector molecules, via the immunological synapse. We here review the unique knowledge on actin dynamics at the T lymphocyte synapse gained through the study of primary immunodeficiences caused by mutations in genes encoding actin regulatory proteins. Beyond the specific roles of individual actin remodelers, we further develop the view that these operate in a coordinated manner and are an integral part of multiple signaling pathways in T lymphocytes.
Collapse
Affiliation(s)
- Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Laurène Pfajfer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| |
Collapse
|
27
|
Robertson TF, Chengappa P, Gomez Atria D, Wu CF, Avery L, Roy NH, Maillard I, Petrie RJ, Burkhardt JK. Lymphocyte egress signal sphingosine-1-phosphate promotes ERM-guided, bleb-based migration. J Cell Biol 2021; 220:211919. [PMID: 33764397 PMCID: PMC8006814 DOI: 10.1083/jcb.202007182] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/07/2021] [Accepted: 03/03/2021] [Indexed: 02/04/2023] Open
Abstract
Ezrin, radixin, and moesin (ERM) family proteins regulate cytoskeletal responses by tethering the plasma membrane to the underlying actin cortex. Mutations in ERM proteins lead to severe combined immunodeficiency, but the function of these proteins in T cells remains poorly defined. Using mice in which T cells lack all ERM proteins, we demonstrate a selective role for these proteins in facilitating S1P-dependent egress from lymphoid organs. ERM-deficient T cells display defective S1P-induced migration in vitro, despite normal responses to standard protein chemokines. Analysis of these defects revealed that S1P promotes a fundamentally different mode of migration than chemokines, characterized by intracellular pressurization and bleb-based motility. ERM proteins facilitate this process, controlling directional migration by limiting blebbing to the leading edge. We propose that the distinct modes of motility induced by S1P and chemokines are specialized to allow T cell migration across lymphatic barriers and through tissue stroma, respectively.
Collapse
Affiliation(s)
- Tanner F Robertson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Daniela Gomez Atria
- Division of Hematology-Oncology, Department of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Christine F Wu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Lyndsay Avery
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nathan H Roy
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ivan Maillard
- Division of Hematology-Oncology, Department of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Ryan J Petrie
- Department of Biology, Drexel University, Philadelphia, PA
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
28
|
Sprenkeler EGG, Guenther C, Faisal I, Kuijpers TW, Fagerholm SC. Molecular Mechanisms of Leukocyte Migration and Its Potential Targeting-Lessons Learned From MKL1/SRF-Related Primary Immunodeficiency Diseases. Front Immunol 2021; 12:615477. [PMID: 33692789 PMCID: PMC7938309 DOI: 10.3389/fimmu.2021.615477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/04/2021] [Indexed: 01/22/2023] Open
Abstract
Megakaryoblastic leukemia 1 (MKL1) deficiency is one of the most recently discovered primary immunodeficiencies (PIDs) caused by cytoskeletal abnormalities. These immunological “actinopathies” primarily affect hematopoietic cells, resulting in defects in both the innate immune system (phagocyte defects) and adaptive immune system (T-cell and B-cell defects). MKL1 is a transcriptional coactivator that operates together with serum response factor (SRF) to regulate gene transcription. The MKL/SRF pathway has been originally described to have important functions in actin regulation in cells. Recent results indicate that MKL1 also has very important roles in immune cells, and that MKL1 deficiency results in an immunodeficiency affecting the migration and function of primarily myeloid cells such as neutrophils. Interestingly, several actinopathies are caused by mutations in genes which are recognized MKL(1/2)-dependent SRF-target genes, namely ACTB, WIPF1, WDR1, and MSN. Here we summarize these and related (ARPC1B) actinopathies and their effects on immune cell function, especially focusing on their effects on leukocyte adhesion and migration. Furthermore, we summarize recent therapeutic efforts targeting the MKL/SRF pathway in disease.
Collapse
Affiliation(s)
- Evelien G G Sprenkeler
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands
| | - Carla Guenther
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Imrul Faisal
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands
| | - Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
29
|
Elliott EK, Haupt LM, Griffiths LR. Mini review: genome and transcriptome editing using CRISPR-cas systems for haematological malignancy gene therapy. Transgenic Res 2021; 30:129-141. [PMID: 33609253 DOI: 10.1007/s11248-020-00232-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/19/2020] [Indexed: 12/26/2022]
Abstract
The recent introduction of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR associated protein (Cas) systems, offer an array of genome and transcriptome editing tools for clinical repair strategies. These include Cas9, Cas12a, dCas9 and more recently Cas13 effectors. RNA targeting CRISPR-Cas13 complexes show unique characteristics with the capability to engineer transcriptomes and modify gene expression, providing a potential clinical cancer therapy tool across various tissue types. Cas13 effectors such as RNA base editing for A to I replacement allows for precise transcript modification. Further applications of Cas13a highlights its capability of producing rapid diagnostic results in a mobile platform. This review will focus on the adaptions of existing CRISPR-Cas systems, along with new Cas effectors for transcriptome or RNA modifications used in disease modelling and gene therapy for haematological malignancy. We also address the current diagnostic and therapeutic potential of CRISPR-Cas systems for personalised haematological malignancy.
Collapse
Affiliation(s)
- Esther K Elliott
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Larisa M Haupt
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Lyn R Griffiths
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia.
| |
Collapse
|
30
|
Papa R, Penco F, Volpi S, Gattorno M. Actin Remodeling Defects Leading to Autoinflammation and Immune Dysregulation. Front Immunol 2021. [PMID: 33488606 DOI: 10.3389/fimmu.2020.604206)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
A growing number of monogenic immune-mediated diseases have been related to genes involved in pathways of actin cytoskeleton remodeling. Increasing evidences associate cytoskeleton defects to autoinflammatory diseases and primary immunodeficiencies. We reviewed the pathways of actin cytoskeleton remodeling in order to identify inflammatory and immunological manifestations associated to pathological variants. We list more than twenty monogenic diseases, ranging from pure autoinflammatory conditions as familial Mediterranean fever, mevalonate kinase deficiency and PAPA syndrome, to classic and novel primary immunodeficiencies as Wiskott-Aldrich syndrome and DOCK8 deficiency, characterized by the presence of concomitant inflammatory and autoimmune manifestations, such as vasculitis and cytopenia, to severe and recurrent infections. We classify these disorders according to the role of the mutant gene in actin cytoskeleton remodeling, and in particular as disorders of transcription, elongation, branching and activation of actin. This expanding field of rare immune disorders offers a new perspective to all immunologists to better understand the physiological and pathological role of actin cytoskeleton in cells of innate and adaptive immunity.
Collapse
Affiliation(s)
- Riccardo Papa
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federica Penco
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
31
|
Papa R, Penco F, Volpi S, Gattorno M. Actin Remodeling Defects Leading to Autoinflammation and Immune Dysregulation. Front Immunol 2021; 11:604206. [PMID: 33488606 PMCID: PMC7817698 DOI: 10.3389/fimmu.2020.604206] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
A growing number of monogenic immune-mediated diseases have been related to genes involved in pathways of actin cytoskeleton remodeling. Increasing evidences associate cytoskeleton defects to autoinflammatory diseases and primary immunodeficiencies. We reviewed the pathways of actin cytoskeleton remodeling in order to identify inflammatory and immunological manifestations associated to pathological variants. We list more than twenty monogenic diseases, ranging from pure autoinflammatory conditions as familial Mediterranean fever, mevalonate kinase deficiency and PAPA syndrome, to classic and novel primary immunodeficiencies as Wiskott-Aldrich syndrome and DOCK8 deficiency, characterized by the presence of concomitant inflammatory and autoimmune manifestations, such as vasculitis and cytopenia, to severe and recurrent infections. We classify these disorders according to the role of the mutant gene in actin cytoskeleton remodeling, and in particular as disorders of transcription, elongation, branching and activation of actin. This expanding field of rare immune disorders offers a new perspective to all immunologists to better understand the physiological and pathological role of actin cytoskeleton in cells of innate and adaptive immunity.
Collapse
Affiliation(s)
- Riccardo Papa
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federica Penco
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
32
|
Zheng WB, Zou Y, He JJ, Liu GH, Hu MH, Zhu XQ. Proteomic alterations in the plasma of Beagle dogs induced by Toxocara canis infection. J Proteomics 2020; 232:104049. [PMID: 33212252 DOI: 10.1016/j.jprot.2020.104049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/23/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Toxocara canis causes ocular larva migrans and visceral larva migrans in humans. Knowledge about the molecular mechanism of T. canis-hosts interaction is limited. The proteomic alterations in the plasma of Beagle dogs induced by T. canis infection were studied by the quantitative mass spectrometry-based data-independent acquisition (DIA). 418, 414 and 411 plasma proteins were identified at 24 h post-infection (hpi), 96 hpi and 36 days post-infection (dpi), including 6, 5 and 23 proteins with differential abundance, respectively. At 24 hpi, the altered proteins, retinoic acid receptor responder protein 2 (RARRES2), WD repeat-containing protein 1 (WDR1), moesin and filamin-A, may participate in pro-inflammatory reaction or promote larvae migration. At 96 hpi, the altered protein C and fibroleukin may maintain the stability of the coagulation system to protect the lung. At 36 dpi, the alterations of C-reactive protein (CRP), ficolin (FCN), complement factor H-related protein 5 (CFHR5) and other complements can affect the three traditional complement system, including the classic pathway, lectin pathway and alternative pathway. These proteins may play important roles in the interaction between T. canis and its definitive hosts. Further study on these altered proteins triggered by T. canis infection may discovery novel therapeutic or diagnostic targets for toxocariasis. SIGNIFICANCE OF THE STUDY: Toxocara canis is one of the globally distributed soil-transmitted helminths, which causes ocular larva migrans and visceral larva migrans in humans and a wide range of warm-blooded animals. T. canis adapts to different microenvironments by resisting and adjusting various biological processes of the hosts. Knowledge about the molecular mechanism of T. canis-hosts interaction is limited. Plasma proteins are good marker for monitoring the occurrence and development of diseases. The proteomic alterations in the plasma of Beagle dogs induced by T. canis infection were studied by the quantitative mass spectrometry-based data-independent acquisition (DIA) in this study. A total of 418, 414 and 411 plasma proteins were identified at 24 h post-infection (hpi), 96 hpi and 36 days post-infection, respectively. Ten protein with differential abundances were validated by using parallel reaction monitoring (PRM). Collectively, our deep proteomic analysis of plasma revealed that proteins alterations were affected by disease development, and proteomic analysis is an ideal method for quantifying changes in circulating factors on a global scale in response to pathophysiological perturbations such as T. canis infection.
Collapse
Affiliation(s)
- Wen-Bin Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, PR China; College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Yang Zou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China.
| | - Guo-Hua Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, PR China
| | - Min-Hua Hu
- National Canine Laboratory Animal Resource Center, Guangzhou General Pharmaceutical Research Institute Co., Ltd, Guangzhou, Guangdong Province 510240, PR China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China.
| |
Collapse
|
33
|
Mastio J, Saeed MB, Wurzer H, Krecke M, Westerberg LS, Thomas C. Higher Incidence of B Cell Malignancies in Primary Immunodeficiencies: A Combination of Intrinsic Genomic Instability and Exocytosis Defects at the Immunological Synapse. Front Immunol 2020; 11:581119. [PMID: 33240268 PMCID: PMC7680899 DOI: 10.3389/fimmu.2020.581119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital defects of the immune system called primary immunodeficiency disorders (PID) describe a group of diseases characterized by a decrease, an absence, or a malfunction of at least one part of the immune system. As a result, PID patients are more prone to develop life-threatening complications, including cancer. PID currently include over 400 different disorders, however, the variety of PID-related cancers is narrow. We discuss here reasons for this clinical phenotype. Namely, PID can lead to cell intrinsic failure to control cell transformation, failure to activate tumor surveillance by cytotoxic cells or both. As the most frequent tumors seen among PID patients stem from faulty lymphocyte development leading to leukemia and lymphoma, we focus on the extensive genomic alterations needed to create the vast diversity of B and T lymphocytes with potential to recognize any pathogen and why defects in these processes lead to malignancies in the immunodeficient environment of PID patients. In the second part of the review, we discuss PID affecting tumor surveillance and especially membrane trafficking defects caused by altered exocytosis and regulation of the actin cytoskeleton. As an impairment of these membrane trafficking pathways often results in dysfunctional effector immune cells, tumor cell immune evasion is elevated in PID. By considering new anti-cancer treatment concepts, such as transfer of genetically engineered immune cells, restoration of anti-tumor immunity in PID patients could be an approach to complement standard therapies.
Collapse
Affiliation(s)
- Jérôme Mastio
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Mezida B Saeed
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hannah Wurzer
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Max Krecke
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Clément Thomas
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| |
Collapse
|
34
|
Sprenkeler EGG, Webbers SDS, Kuijpers TW. When Actin is Not Actin' Like It Should: A New Category of Distinct Primary Immunodeficiency Disorders. J Innate Immun 2020; 13:3-25. [PMID: 32846417 DOI: 10.1159/000509717] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
An increasing number of primary immunodeficiencies (PIDs) have been identified over the last decade, which are caused by deleterious mutations in genes encoding for proteins involved in actin cytoskeleton regulation. These mutations primarily affect hematopoietic cells and lead to defective function of immune cells, such as impaired motility, signaling, proliferative capacity, and defective antimicrobial host defense. Here, we review several of these immunological "actinopathies" and cover both clinical aspects, as well as cellular mechanisms of these PIDs. We focus in particular on the effect of these mutations on human neutrophil function.
Collapse
Affiliation(s)
- Evelien G G Sprenkeler
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, The Netherlands, .,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, AUMC, University of Amsterdam, Amsterdam, The Netherlands,
| | - Steven D S Webbers
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, AUMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, AUMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Whole-Exome Sequencing-Based Approach for Germline Mutations in Patients with Inborn Errors of Immunity. J Clin Immunol 2020; 40:729-740. [PMID: 32506361 DOI: 10.1007/s10875-020-00798-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Owing to recent technological advancements, using next-generation sequencing (NGS) and the accumulation of clinical experiences worldwide, more than 420 genes associated with inborn errors of immunity (IEI) have been identified, which exhibit large genotypic and phenotypic variations. Consequently, NGS-based comprehensive genetic analysis, including whole-exome sequencing (WES), have become more valuable in the clinical setting and have contributed to earlier diagnosis, improved treatment, and prognosis. However, these approaches have the following disadvantages that need to be considered: a relatively low diagnostic rate, high cost, difficulties in the interpretation of each variant, and the risk of incidental findings. Thus, the objective of this study is to review our WES results of a large number of patients with IEI and to elucidate patient characteristics, which are related to the positive WES result. METHODS We performed WES for 136 IEI patients with negative conventional screening results for candidate genes and classified these variants depending on validity of their pathogenicity. RESULTS We identified disease-causing pathogenic mutations in 36 (26.5%) of the patients which were found in known IEI-causing genes. Although the overall diagnostic rate was not high and was not apparently correlated with the clinical subcategories and severity, we revealed that earlier onset with longer duration of diseases were associated with positive WES results, especially in pediatric cases. CONCLUSIONS Most of the disease-causing germline mutations were located in the known IEI genes which could be predicted using patients' clinical characteristics. These results may be useful when considering appropriate genetic approaches in the clinical setting.
Collapse
|
36
|
ERM Proteins at the Crossroad of Leukocyte Polarization, Migration and Intercellular Adhesion. Int J Mol Sci 2020; 21:ijms21041502. [PMID: 32098334 PMCID: PMC7073024 DOI: 10.3390/ijms21041502] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Ezrin, radixin and moesin proteins (ERMs) are plasma membrane (PM) organizers that link the actin cytoskeleton to the cytoplasmic tail of transmembrane proteins, many of which are adhesion receptors, in order to regulate the formation of F-actin-based structures (e.g., microspikes and microvilli). ERMs also effect transmission of signals from the PM into the cell, an action mainly exerted through the compartmentalized activation of the small Rho GTPases Rho, Rac and Cdc42. Ezrin and moesin are the ERMs more highly expressed in leukocytes, and although they do not always share functions, both are mainly regulated through phosphatidylinositol 4,5-bisphosphate (PIP2) binding to the N-terminal band 4.1 protein-ERM (FERM) domain and phosphorylation of a conserved Thr in the C-terminal ERM association domain (C-ERMAD), exerting their functions through a wide assortment of mechanisms. In this review we will discuss some of these mechanisms, focusing on how they regulate polarization and migration in leukocytes, and formation of actin-based cellular structures like the phagocytic cup-endosome and the immune synapse in macrophages/neutrophils and lymphocytes, respectively, which represent essential aspects of the effector immune response.
Collapse
|
37
|
Qin Y, Chen W, Jiang G, Zhou L, Yang X, Li H, He X, Wang HL, Zhou YB, Huang S, Liu S. Interfering MSN-NONO complex-activated CREB signaling serves as a therapeutic strategy for triple-negative breast cancer. SCIENCE ADVANCES 2020; 6:eaaw9960. [PMID: 32128390 PMCID: PMC7030932 DOI: 10.1126/sciadv.aaw9960] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 11/22/2019] [Indexed: 05/28/2023]
Abstract
Triple-negative breast cancer (TNBC) is life-threatening because of limited therapies and lack of effective therapeutic targets. Here, we found that moesin (MSN) was significantly overexpressed in TNBC compared with other subtypes of breast cancer and was positively correlated with poor overall survival. However, little is known about the regulatory mechanisms of MSN in TNBC. We found that MSN significantly stimulated breast cancer cell proliferation and invasion in vitro and tumor growth in vivo, requiring the phosphorylation of MSN and a nucleoprotein NONO-assisted nuclear localization of phosphorylated MSN with protein kinase C (PKC) and then the phosphorylation activation of CREB signaling by PKC. Our study also demonstrated that targeting MSN, NONO, or CREB significantly inhibited breast tumor growth in vivo. These results introduce a new understanding of MSN function in breast cancer and provide favorable evidence that MSN or its downstream molecules might serve as new targets for TNBC treatment.
Collapse
Affiliation(s)
- Yuanyuan Qin
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institutes, Fudan University, Shanghai 200032, China
- School of Life Sciences, CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Weilong Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institutes, Fudan University, Shanghai 200032, China
- School of Life Sciences, CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Guojuan Jiang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institutes, Fudan University, Shanghai 200032, China
| | - Lei Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institutes, Fudan University, Shanghai 200032, China
- School of Life Sciences, CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiaoli Yang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institutes, Fudan University, Shanghai 200032, China
| | - Hongqi Li
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xueyan He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institutes, Fudan University, Shanghai 200032, China
| | - Han-lin Wang
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201203, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yu-bo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institutes, Fudan University, Shanghai 200032, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institutes, Fudan University, Shanghai 200032, China
| |
Collapse
|
38
|
Fatal Hypogammaglobulinemia 3 Years after Rituximab in a Patient with Immune Thrombocytopenia: An Underlying Genetic Predisposition? Case Reports Immunol 2019; 2019:2543038. [PMID: 31956452 PMCID: PMC6949674 DOI: 10.1155/2019/2543038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/07/2019] [Indexed: 12/04/2022] Open
Abstract
We report the case of a young woman who developed, 3 years after stopping Rituximab (RTX) prescribed for immune thrombocytopenia (ITP), a severe immunodeficiency leading to fatal pulmonary Epstein–Barr virus-positive diffuse large B-cell lymphoma. Genetic analysis led us to identify four missense mutations known to affect immune-deficiency–associated genes (FAS-ligand (FASL) gene (p.G167R); perforin-1 (PRF1 (p.R55C) gene; the Bloom syndrome RecQ-Like helicase (BLM) gene and the Moesin (MSN) (p.A122T) gene). The heterozygous mutation in the FASL gene, not present in the Genome Aggregation Database or ClinVar database, could suggest atypical Autoimmune LymphoProliferative Syndrome and its role in this patient's immunodepression is discussed. This observation strengthens the role of FASL gene mutation in severe clinical phenotypes of primary immune deficiency and raises new questions about the genetic background of ITP occurring in young people in a context of immunodeficiency.
Collapse
|
39
|
Janssen E, Geha RS. Primary immunodeficiencies caused by mutations in actin regulatory proteins. Immunol Rev 2019; 287:121-134. [PMID: 30565251 DOI: 10.1111/imr.12716] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/31/2018] [Indexed: 12/31/2022]
Abstract
The identification of patients with monogenic gene defects have illuminated the function of different proteins in the immune system, including proteins that regulate the actin cytoskeleton. Many of these actin regulatory proteins are exclusively expressed in leukocytes and regulate the formation and branching of actin filaments. Their absence or abnormal function leads to defects in immune cell shape, cellular projections, migration, and signaling. Through the study of patients' mutations and generation of mouse models that recapitulate the patients' phenotypes, our laboratory and others have gained a better understanding of the role these proteins play in cell biology and the underlying pathogenesis of immunodeficiencies and immune dysregulatory syndromes.
Collapse
Affiliation(s)
- Erin Janssen
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raif S Geha
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
40
|
Abou-Fadel J, Vasquez M, Grajeda B, Ellis C, Zhang J. Systems-wide analysis unravels the new roles of CCM signal complex (CSC). Heliyon 2019; 5:e02899. [PMID: 31872111 PMCID: PMC6909108 DOI: 10.1016/j.heliyon.2019.e02899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/17/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are characterized by abnormally dilated intracranial capillaries that result in increased susceptibility to stroke. Three genes have been identified as causes of CCMs; KRIT1 (CCM1), MGC4607 (CCM2) and PDCD10 (CCM3); one of them is disrupted in most CCM cases. It was demonstrated that both CCM1 and CCM3 bind to CCM2 to form a CCM signaling complex (CSC) to modulate angiogenesis. In this report, we deployed both RNA-seq and proteomic analysis of perturbed CSC after depletion of one of three CCM genes to generate interactomes for system-wide studies. Our results demonstrated a unique portrait detailing alterations in angiogenesis and vascular integrity. Interestingly, only in-direct overlapped alterations between RNA and protein levels were detected, supporting the existence of multiple layers of regulation in CSC cascades. Notably, this is the first report identifying that both β4 integrin and CAV1 signaling are downstream of CSC, conveying the angiogenic signaling. Our results provide a global view of signal transduction modulated by the CSC, identifies novel regulatory signaling networks and key cellular factors associated with CSC.
Collapse
Affiliation(s)
- Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Mariana Vasquez
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Brian Grajeda
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Cameron Ellis
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| |
Collapse
|
41
|
Roussel L, Landekic M, Golizeh M, Gavino C, Zhong MC, Chen J, Faubert D, Blanchet-Cohen A, Dansereau L, Parent MA, Marin S, Luo J, Le C, Ford BR, Langelier M, King IL, Divangahi M, Foulkes WD, Veillette A, Vinh DC. Loss of human ICOSL results in combined immunodeficiency. J Exp Med 2019; 215:3151-3164. [PMID: 30498080 PMCID: PMC6279397 DOI: 10.1084/jem.20180668] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/21/2018] [Accepted: 11/06/2018] [Indexed: 12/30/2022] Open
Abstract
Primary immunodeficiencies represent naturally occurring experimental models to decipher human immunobiology. We report a patient with combined immunodeficiency, marked by recurrent respiratory tract and DNA-based viral infections, hypogammaglobulinemia, and panlymphopenia. He also developed moderate neutropenia but without prototypical pyogenic infections. Using whole-exome sequencing, we identified a homozygous mutation in the inducible T cell costimulator ligand gene (ICOSLG; c.657C>G; p.N219K). Whereas WT ICOSL is expressed at the cell surface, the ICOSLN219K mutation abrogates surface localization: mutant protein is retained in the endoplasmic reticulum/Golgi apparatus, which is predicted to result from deleterious conformational and biochemical changes. ICOSLN219K diminished B cell costimulation of T cells, providing a compelling basis for the observed defect in antibody and memory B cell generation. Interestingly, ICOSLN219K also impaired migration of lymphocytes and neutrophils across endothelial cells, which normally express ICOSL. These defects likely contributed to the altered adaptive immunity and neutropenia observed in the patient, respectively. Our study identifies human ICOSLG deficiency as a novel cause of a combined immunodeficiency.
Collapse
Affiliation(s)
- Lucie Roussel
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Marija Landekic
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Makan Golizeh
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Christina Gavino
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Ming-Chao Zhong
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Jun Chen
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Denis Faubert
- Proteomics Discovery Platform, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Alexis Blanchet-Cohen
- Bioinformatics, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Luc Dansereau
- Department of Internal Medicine, Hôpital de l'Archipel, Centre intégré de santé et de services sociaux des Îles, Les Îles-de-la-Madeleine, Québec, Canada
| | - Marc-Antoine Parent
- Department of Family Medicine, Centre intégé de santé et de services sociaux des Îles, Les Îles-de-la-Madeleine, Québec, Canada
| | - Sonia Marin
- Hôpital de l'Archipel, Centre intégré de santé et de services sociaux des Îles, Les Îles-de-la-Madeleine, Québec, Canada
| | - Julia Luo
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Catherine Le
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Brinley R Ford
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Mélanie Langelier
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Irah L King
- Meakins-Christie Laboratories, Research Institute-McGill University Health Centre, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Research Institute-McGill University Health Centre, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - William D Foulkes
- Department of Medical Genetics, Research Institute-McGill University Health Centre, Montréal, Québec, Canada.,Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - André Veillette
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada.,Department of Medicine, University of Montréal, Montréal, Québec, Canada
| | - Donald C Vinh
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada .,Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada.,Department of Human Genetics, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
42
|
Tellefsen S, Morthen MK, Richards SM, Lieberman SM, Rahimi Darabad R, Kam WR, Sullivan DA. Sex Effects on Gene Expression in Lacrimal Glands of Mouse Models of Sjögren Syndrome. Invest Ophthalmol Vis Sci 2019; 59:5599-5614. [PMID: 30481277 PMCID: PMC6262646 DOI: 10.1167/iovs.18-25772] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Sjögren syndrome is an autoimmune disease that occurs primarily in women, and is associated with lacrimal gland inflammation and aqueous-deficient dry eye. We hypothesize that sex-associated differences in lacrimal gland gene expression are very important in promoting lymphocyte accumulation in this tissue and contribute to the onset, progression, and/or severity of the inflammatory disease process. To test our hypothesis, we explored the nature and extent of sex-related differences in gene expression in autoimmune lacrimal glands. Methods Lacrimal glands were collected from age-matched, adult, male and female MRL/MpJ-Tnfrsf6lpr (MRL/lpr) and nonobese diabetic/LtJ (NOD) mice. Glands were processed for the analysis of differentially expressed mRNAs by using CodeLink Bioarrays and Affymetrix GeneChips. Data were evaluated with bioinformatics and statistical software. Results Our results show that sex significantly influences the expression of thousands of genes in lacrimal glands of MRL/lpr and NOD mice. The immune nature of this glandular response is very dependent on the Sjögren syndrome model. Lacrimal glands of female, as compared with male, MRL/lpr mice contain a significant increase in the expression of genes related to inflammatory responses, antigen processing, and chemokine pathways. In contrast, it is the lacrimal tissue of NOD males, and not females, that presents with a significantly greater expression of immune-related genes. Conclusions These data support our hypothesis that sex-related differences in gene expression contribute to lacrimal gland disease in Sjögren syndrome. Our findings also suggest that factors in the lacrimal gland microenvironment are critically important in mediating these sex-associated immune effects.
Collapse
Affiliation(s)
- Sara Tellefsen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Medical Biochemistry, Oslo University Hospital/Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mathias Kaurstad Morthen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Medical Biochemistry, Oslo University Hospital/Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Stephen M Richards
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Scott M Lieberman
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Raheleh Rahimi Darabad
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Clinical Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Wendy R Kam
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - David A Sullivan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
43
|
Michie KA, Bermeister A, Robertson NO, Goodchild SC, Curmi PMG. Two Sides of the Coin: Ezrin/Radixin/Moesin and Merlin Control Membrane Structure and Contact Inhibition. Int J Mol Sci 2019; 20:ijms20081996. [PMID: 31018575 PMCID: PMC6515277 DOI: 10.3390/ijms20081996] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/21/2022] Open
Abstract
The merlin-ERM (ezrin, radixin, moesin) family of proteins plays a central role in linking the cellular membranes to the cortical actin cytoskeleton. Merlin regulates contact inhibition and is an integral part of cell–cell junctions, while ERM proteins, ezrin, radixin and moesin, assist in the formation and maintenance of specialized plasma membrane structures and membrane vesicle structures. These two protein families share a common evolutionary history, having arisen and separated via gene duplication near the origin of metazoa. During approximately 0.5 billion years of evolution, the merlin and ERM family proteins have maintained both sequence and structural conservation to an extraordinary level. Comparing crystal structures of merlin-ERM proteins and their complexes, a picture emerges of the merlin-ERM proteins acting as switchable interaction hubs, assembling protein complexes on cellular membranes and linking them to the actin cytoskeleton. Given the high level of structural conservation between the merlin and ERM family proteins we speculate that they may function together.
Collapse
Affiliation(s)
- Katharine A Michie
- School of Physics, University of New South Wales, Sydney 2052, Australia.
| | - Adam Bermeister
- School of Physics, University of New South Wales, Sydney 2052, Australia.
| | - Neil O Robertson
- School of Physics, University of New South Wales, Sydney 2052, Australia.
| | - Sophia C Goodchild
- Department of Molecular Sciences, Macquarie University, Sydney 2109, Australia.
| | - Paul M G Curmi
- School of Physics, University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|
44
|
Dong Z, Coates D, Liu Q, Sun H, Li C. Quantitative proteomic analysis of deer antler stem cells as a model of mammalian organ regeneration. J Proteomics 2019; 195:98-113. [PMID: 30641233 DOI: 10.1016/j.jprot.2019.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/25/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022]
Abstract
The ability to activate and regulate stem cells during wound healing and tissue/organ regeneration is a promising field which could bring innovative approaches to regenerative medicine. The regenerative capacity of invertebrates has been well documented, however in mammals, stem cells that drive organ regeneration are rare. Deer antler is unique in providing a mammalian model of complete organ regeneration based on stem cells. The present study investigated the differentially regulated proteins (DRPs) between different antler stem cell populations (n = 3) using 2D-DIGE. Western blotting was used to validate the proteomics results. Comparative proteomics resulted in protein profiles which were similar for the biological replicates but different between the cells derived from two different stem cell niches involved in antler growth/regeneration and cells derived from facial periosteum. Ninety-two up- and down-regulated proteins were identified by MALDI-TOF MS. The work indicates that the epithelial-mesenchymal transition process may participate in the initiation of antler regeneration including the first stage of scar-less wound healing. Cell mobility is also highly regulated during antler regeneration. Energy and nucleotide metabolism may however be less active in antler regeneration as compared to that in antler generation phase. These results provide new insights into the underlying mechanisms of stem cell-based regeneration of mammalian organs.
Collapse
Affiliation(s)
- Zhen Dong
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China; Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Dawn Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Qingxiu Liu
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Hongmei Sun
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Chunyi Li
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China; Changchun Sci-Tech University, Changchun 130600, China.
| |
Collapse
|
45
|
Tangye SG, Bucciol G, Casas‐Martin J, Pillay B, Ma CS, Moens L, Meyts I. Human inborn errors of the actin cytoskeleton affecting immunity: way beyond WAS and WIP. Immunol Cell Biol 2019; 97:389-402. [DOI: 10.1111/imcb.12243] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/09/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Stuart G Tangye
- Immunology Division Garvan Institute of Medical Research Sydney NSW Australia
- Faculty of Medicine St Vincent's Clinical School UNSW Sydney Sydney NSW Australia
| | - Giorgia Bucciol
- Laboratory for Inborn Errors of Immunity Department of Microbiology and Immunology KU Leuven Leuven Belgium
- Department of Pediatrics University Hospitals Leuven Leuven Belgium
| | - Jose Casas‐Martin
- Laboratory for Inborn Errors of Immunity Department of Microbiology and Immunology KU Leuven Leuven Belgium
| | - Bethany Pillay
- Immunology Division Garvan Institute of Medical Research Sydney NSW Australia
- Faculty of Medicine St Vincent's Clinical School UNSW Sydney Sydney NSW Australia
| | - Cindy S Ma
- Immunology Division Garvan Institute of Medical Research Sydney NSW Australia
- Faculty of Medicine St Vincent's Clinical School UNSW Sydney Sydney NSW Australia
| | - Leen Moens
- Laboratory for Inborn Errors of Immunity Department of Microbiology and Immunology KU Leuven Leuven Belgium
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity Department of Microbiology and Immunology KU Leuven Leuven Belgium
- Department of Pediatrics University Hospitals Leuven Leuven Belgium
| |
Collapse
|
46
|
Bouafia A, Lofek S, Bruneau J, Chentout L, Lamrini H, Trinquand A, Deau MC, Heurtier L, Meignin V, Picard C, Macintyre E, Alibeu O, Bras M, Molina TJ, Cavazzana M, André-Schmutz I, Durandy A, Fischer A, Oksenhendler E, Kracker S. Loss of ARHGEF1 causes a human primary antibody deficiency. J Clin Invest 2019; 129:1047-1060. [PMID: 30521495 DOI: 10.1172/jci120572] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 11/30/2018] [Indexed: 12/24/2022] Open
Abstract
ARHGEF1 is a RhoA-specific guanine nucleotide exchange factor expressed in hematopoietic cells. We used whole-exome sequencing to identify compound heterozygous mutations in ARHGEF1, resulting in the loss of ARHGEF1 protein expression in 2 primary antibody-deficient siblings presenting with recurrent severe respiratory tract infections and bronchiectasis. Both ARHGEF1-deficient patients showed an abnormal B cell immunophenotype, with a deficiency in marginal zone and memory B cells and an increased frequency of transitional B cells. Furthermore, the patients' blood contained immature myeloid cells. Analysis of a mediastinal lymph node from one patient highlighted the small size of the germinal centers and an abnormally high plasma cell content. On the molecular level, T and B lymphocytes from both patients displayed low RhoA activity and low steady-state actin polymerization (even after stimulation of lysophospholipid receptors). As a consequence of disturbed regulation of the RhoA downstream target Rho-associated kinase I/II (ROCK), the patients' lymphocytes failed to efficiently restrain AKT phosphorylation. Enforced ARHGEF1 expression or drug-induced activation of RhoA in the patients' cells corrected the impaired actin polymerization and AKT regulation. Our results indicate that ARHGEF1 activity in human lymphocytes is involved in controlling actin cytoskeleton dynamics, restraining PI3K/AKT signaling, and confining B lymphocytes and myelocytes within their dedicated functional environment.
Collapse
Affiliation(s)
- Amine Bouafia
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Sébastien Lofek
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Julie Bruneau
- Department of Pathology, Hôpital Necker-Enfants Malades, Assistance Publique des Hôpitaux de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Loïc Chentout
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Hicham Lamrini
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Amélie Trinquand
- Hématologie Biologique and INSERM UMR 1151, University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marie-Céline Deau
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Lucie Heurtier
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Véronique Meignin
- Department of Pathology, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France
| | - Capucine Picard
- Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France.,Primary Immunodeficiency Study Center, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France.,Department of Paediatric Immunology, Hematology and Rheumatology, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Elizabeth Macintyre
- Hématologie Biologique and INSERM UMR 1151, University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Olivier Alibeu
- Genomics Facility, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Marc Bras
- Bioinformatics Facility, INSERM UMR 1163, University Paris Descartes, Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Thierry Jo Molina
- Department of Pathology, Hôpital Necker-Enfants Malades, Assistance Publique des Hôpitaux de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marina Cavazzana
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France.,Assistance Publique-Hôpitaux de Paris, Department of Biotherapy and Clinical Investigation Centre, Hôpital Necker-Enfants Malades, Paris, France
| | - Isabelle André-Schmutz
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Anne Durandy
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Alain Fischer
- Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France.,Department of Paediatric Immunology, Hematology and Rheumatology, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.,Collège de France, Paris, France.,INSERM UMR 1163, Imagine Institute, Paris, France
| | - Eric Oksenhendler
- Department of Clinical Immunology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France.,EA3518, Université Paris Diderot Paris 7, Paris, France
| | - Sven Kracker
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| |
Collapse
|
47
|
Henrickson SE, Andre-Schmutz I, Lagresle-Peyrou C, Deardorff MA, Jyonouchi H, Neven B, Bunin N, Heimall JR. Hematopoietic Stem Cell Transplant for the Treatment of X-MAID. Front Pediatr 2019; 7:170. [PMID: 31139601 PMCID: PMC6527778 DOI: 10.3389/fped.2019.00170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 04/12/2019] [Indexed: 12/27/2022] Open
Abstract
We report outcomes after hematopoietic stem cell transplant for three patients with X-MAID, including 1 patient from the originally described cohort and two brothers with positive TREC newborn screening for SCID who were found to have a T-B-NK+ SCID phenotype attributable to X-linked moesin associated immunodeficiency (X-MAID). A c.511C>T variant in moesin was identified via exome sequencing in the older of these siblings in the setting of low lymphocyte counts and poor proliferative responses consistent with SCID. He received reduced intensity conditioning due to CMV, and was transplanted with a T-depleted haploidentical (maternal) donor. His post-transplant course was complicated by hemolytic anemia, neutropenia, and sepsis. He had poor engraftment, requiring a 2nd transplant. His younger brother presented with the same clinical phenotype and was treated with umbilical cord blood transplant following myeloablative conditioning, has engrafted and is doing well. The third case also presented with severe lymphopenia in infancy, received a matched related bone marrow transplant following myeloablative conditioning, has engrafted and is doing well. These cases represent a novel manifestation of non-radiosensitive X-linked form of T-B-NK+ SCID that is able to be detected by TREC based newborn screening and effectively treated with HCT.
Collapse
Affiliation(s)
- Sarah E Henrickson
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA, United States
| | - Isabelle Andre-Schmutz
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France.,Imagine Institute, Paris Descartes - Sorbonne Paris Cité University, Paris, France
| | - Chantal Lagresle-Peyrou
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France.,Imagine Institute, Paris Descartes - Sorbonne Paris Cité University, Paris, France
| | - Matthew A Deardorff
- The Children's Hospital of Philadelphia, Department of Human Genetics, Philadelphia, PA, United States
| | - Harumi Jyonouchi
- Division of Allergy/Immunology and Infectious Diseases, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Benedicte Neven
- Imagine Institute, Paris Descartes - Sorbonne Paris Cité University, Paris, France.,Pediatric Immuno-Hematology Unit, Necker Children Hospital, Assistance-Publique Hopitaux de Paris, Paris, France
| | - Nancy Bunin
- Division of Oncology, Bone Marrow Transplant and Cellular Therapy, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jennifer R Heimall
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Primary immunodeficiency diseases (PIDs) are genetic disorders classically characterized by impaired host defense and an increased susceptibility to infections. It is now appreciated that these conditions broadly include variations in the genetic code that cause dysregulated immune function. This review highlights the newly defined PIDs in the 2017 International Union of Immunologic Societies (IUIS) report, current approaches to diagnosing PIDs, and the implications for the future management of PIDs. RECENT FINDINGS With the advances in and increased commercial availability of genetic testing and the adoption of the TREC assay into the US Newborn Screening program, the number of identified PIDs has exponentially risen in the past few decades, reaching over 350 disorders. The IUIS Inborn Errors of Immunity committee acknowledged at least 50 new disorders between 2015 and 2017. Furthermore, given the greater recognition of disorders with primarily immune dysregulation, the committee proposed a more inclusive term of 'inborn errors of immunity' to encompass primary immunodeficiencies and immune dysregulation disorders. SUMMARY This latest IUIS report underscores the rapid expansion in the PID field with technologic advancements in immunogenetics and clinical screening discovering new genetic diseases, and therefore, paving the way to novel therapeutics and precision medicine.
Collapse
Affiliation(s)
- Joyce E Yu
- Division of Allergy, Immunology, and Rheumatology
| | - Jordan S Orange
- Division of Immunogenetics, Department of Pediatrics, Morgan Stanley Children's Hospital of New York Presbyterian, Columbia University Irving Medical Center, New York, USA
| | | |
Collapse
|
49
|
Bonnet J, Garcia C, Leger T, Couquet MP, Vignoles P, Vatunga G, Ndung'u J, Boudot C, Bisser S, Courtioux B. Proteome characterization in various biological fluids of Trypanosoma brucei gambiense-infected subjects. J Proteomics 2018; 196:150-161. [PMID: 30414516 DOI: 10.1016/j.jprot.2018.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/02/2018] [Accepted: 11/05/2018] [Indexed: 02/04/2023]
Abstract
Human African trypanosomiasis (HAT) is a neglected tropical disease that is endemic in sub-Saharan Africa. Control of the disease has been recently improved by better screening and treatment strategies, and the disease is on the WHO list of possible elimination. However, some physiopathological aspects of the disease transmission and progression remain unclear. We propose a new proteomic approach to identify new targets and thus possible new biomarkers of the disease. We also focused our attention on fluids classically associated with HAT (serum and cerebrospinal fluid (CSF)) and on the more easily accessible biological fluids urine and saliva. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) established the proteomic profile of patients with early and late stage disease. The serum, CSF, urine and saliva of 3 uninfected controls, 3 early stage patients and 4 late stage patients were analyzed. Among proteins identified, in CSF, urine and saliva, respectively, 37, 8 and 24 proteins were differentially expressed and showed particular interest with regards to their function. The most promising proteins (Neogenin, Neuroserpin, secretogranin 2 in CSF; moesin in urine and intelectin 2 in saliva) were quantified by enzyme-linked immunosorbent assay in a confirmatory cohort of 14 uninfected controls, 23 patients with early stage disease and 43 patients with late stage disease. The potential of two proteins, neuroserpin and moesin, with the latter present in urine, were further characterized. Our results showed the potential of proteomic analysis to discover new biomarkers and provide the basis of the establishment of a new proteomic catalogue applied to HAT-infected subjects and controls. SIGNIFICANCE: Sleeping sickness, also called Human African Trypanosomiasis (HAT), is a parasitic infection caused by a parasitic protozoan, Trypanosoma brucei gambiense or T. b. rhodesiense which are transmitted via an infected tsetse fly: Glossina. For both, the haemolymphatic stage (or first stage) signs and symptoms are intermittent fever, lymphadenopathy, hepatosplenomegaly, headaches, pruritus, and for T. b. rhodesiense infection a chancre is often formed at the bite site. Meningoencephalitic stage (or second stage) occurs when parasites invade the CNS, it is characterised by neurological signs and symptoms such as altered gait, tremors, neuropathy, somnolence which can lead to coma and death if untreated. first stage of the disease is characterizing by fevers, headaches, itchiness, and joint pains and progressive lethargy corresponding to the second stage with confusion, poor coordination, numbness and trouble sleeping. Actually, diagnosing HAT requires specialized expertise and significant resources such as well-equipped health centers and qualified staff. Such resources are lacking in many endemic areas that are often in rural locales, so many individuals with HAT die before the diagnosis is established. In this study, we analysed by mass spectrometry the entire proteome of serum, CSF, urine and saliva samples from infected and non-infected Angolan individuals to define new biomarkers of the disease. This work of proteomics analysis is a preliminary stage to the characterization of the whole proteome, of these 4 biological fluids, of HAT patients. We have identified 69 new biomarkers. Five of them have been thoroughly investigated by ELISA quantification. Neuroserpine and Moesin are respectively promising new biomarkers in CSF and urine's patient for a better diagnosis.
Collapse
Affiliation(s)
- Julien Bonnet
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| | - Camille Garcia
- Jacques Monod Institute, Proteomics Facility, University Paris Diderot Sorbonne Paris Cité, Paris, France..
| | - Thibaut Leger
- Jacques Monod Institute, Proteomics Facility, University Paris Diderot Sorbonne Paris Cité, Paris, France..
| | - Marie-Pauline Couquet
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| | - Philippe Vignoles
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| | - Gedeao Vatunga
- Instituto de Combate e controlo das Tripanossomiases (ICCT), Luanda, Angola.
| | - Joseph Ndung'u
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland.
| | - Clotilde Boudot
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| | - Sylvie Bisser
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France; Pasteur Institute in French Guiana, 23 Boulevard Pasteur, 973006, Cayenne Cedex, French Guiana.
| | - Bertrand Courtioux
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| |
Collapse
|
50
|
Abstract
Proper regulation of the immune system is required for protection against pathogens and preventing autoimmune disorders. Inborn errors of the immune system due to inherited or de novo germline mutations can lead to the loss of protective immunity, aberrant immune homeostasis, and the development of autoimmune disease, or combinations of these. Forward genetic screens involving clinical material from patients with primary immunodeficiencies (PIDs) can vary in severity from life-threatening disease affecting multiple cell types and organs to relatively mild disease with susceptibility to a limited range of pathogens or mild autoimmune conditions. As central mediators of innate and adaptive immune responses, T cells are critical orchestrators and effectors of the immune response. As such, several PIDs result from loss of or altered T cell function. PID-associated functional defects range from complete absence of T cell development to uncontrolled effector cell activation. Furthermore, the gene products of known PID causal genes are involved in diverse molecular pathways ranging from T cell receptor signaling to regulators of protein glycosylation. Identification of the molecular and biochemical cause of PIDs can not only guide the course of treatment for patients, but also inform our understanding of the basic biology behind T cell function. In this chapter, we review PIDs with known genetic causes that intrinsically affect T cell function with particular focus on perturbations of biochemical pathways.
Collapse
Affiliation(s)
- William A Comrie
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States.
| |
Collapse
|