1
|
Zouein J, Que LG, Ingram JL. Obesity-driven airway eosinophilia and neutrophilia in asthma. J Asthma 2025:1-15. [PMID: 40372017 DOI: 10.1080/02770903.2025.2505464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/22/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
OBJECTIVE Asthma patients with comorbid obesity tend to have more severe, difficult-to-control asthma than lean asthma patients. This increase in asthma severity may be due, in part, to obesity-related adipokines, such as leptin, which contribute to airway hyperresponsiveness, sustained subclinical chronic inflammation, and treatment resistance. This narrative literature review aims to elucidate the differences in airway eosinophilia and neutrophilia profiles between asthma patients with and without obesity. DATA SOURCES A PubMed search of full journal articles published between 1992 and 2024 was performed in April 2024 using the terms "asthma", "tissue eosinophilia" and "obesity" combined with the Boolean operator "AND". STUDY SELECTIONS Articles detailing airway tissue eosinophilia and neutrophilia in asthma patients or mice were included. Only articles in English were included. RESULTS To date, several studies have reported increased airway tissue eosinophilia in obese mouse asthma models (four studies) and in asthma patients with obesity (three studies). Airway tissue eosinophilia in asthma patients with obesity is driven by altered and elevated levels of adipokines, pro-inflammatory cytokines, and eosinophil-stimulating chemokines such as eotaxin. Leptin and eotaxin levels are increased in asthma with obesity and contribute to enhanced eosinophil recruitment, migration, adhesion to airway smooth muscles and fibroblasts, and reduced apoptosis. CONCLUSION Airway tissue eosinophilia is an important feature of obesity-associated asthma. Airway tissue eosinophilia is mainly driven by obesity-related homeostatic changes. These increased airway tissue eosinophils contribute to a more severe disease.
Collapse
Affiliation(s)
- Joseph Zouein
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Loretta G Que
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Jennifer L Ingram
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC
| |
Collapse
|
2
|
Duffus EK, Holguin F, Rastogi D. Non-T2 asthma. Curr Opin Pulm Med 2025; 31:287-293. [PMID: 40125574 PMCID: PMC11949703 DOI: 10.1097/mcp.0000000000001154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
PURPOSE OF REVIEW This review provides a comprehensive overview of the non-T asthma phenotypes. Asthma is an umbrella term that defines a complex group of heterogenous airway disorders, which are broadly categorized into predominantly T2 or non-T2 phenotypes depending on the presence and levels of airway and systemic biomarkers associated with a T2 inflammatory response. Individuals with predominant T2 asthma have greater numbers of peripheral blood eosinophils, exhaled nitric oxide and IgE. These patients have more atopy and earlier onset asthma. In contrast, the absence or low levels of these biomarkers define non-T2 asthma. This is a heterogenous group with a later onset of asthma that is also more commonly associated with obesity and with females. RECENT FINDINGS This article summarizes new information regarding the plasticity that exists between T2 and non-T2 mechanisms, including their role in exacerbation-prone and nonexacerbating asthma, and many of the risk factors associated with the non-T2 phenotype, such as viral infections, ambient air pollution exposure, smoking, genetic and metabolic factors. It also provides new information on the immunological and metabolic mechanisms associated with non-T2 asthma. We also discuss how to manage this asthma phenotype and how treatment responses differ for these patients. SUMMARY Non-T2 asthma defines a heterogenous group of asthma phenotypes. However, acknowledging that the absence of T2 biomarkers is influenced by several factors is important and can longitudinally change in relation to exacerbations, particularly in children.
Collapse
Affiliation(s)
| | | | - Deepa Rastogi
- The Children's Hospital at Montefiore, Bronx, New York, USA
| |
Collapse
|
3
|
Ingram JL, McQuade VL, Weiss J, Womble JT, Ihrie MD, Zhao K, Francisco D, Theriot B, May K, Kim H, McCravy M, Sauler M, Lugogo NL, Sunday ME, Everitt J, Walker JKL, Tighe RM, Kraft M, Que LG. Leptin augments IL-13-induced airway eotaxins and submucosal eosinophilia in obesity-associated asthma. J Allergy Clin Immunol 2025; 155:819-833.e10. [PMID: 39581293 PMCID: PMC11875949 DOI: 10.1016/j.jaci.2024.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Airway tissue eosinophilia can be an observed feature of obesity-associated type 2 (T2) asthma, but the processes mediating this inflammation are unknown. OBJECTIVE To investigate a process whereby leptin, an adipokine elevated in obesity, potentiates pulmonary eosinophilia and eotaxin production by airway fibroblasts in T2 asthma. METHODS We assessed associations between body mass index and airway eosinophilia as well as leptin and eotaxin production in 82 participants with asthma, 37 of whom exhibited obesity. Cultured human airway fibroblasts and mouse models of chronic allergic airway disease were used to evaluate leptin's effect on eotaxin production and lung eosinophilia. The role of IL-13 receptor alpha 2 (IL-13Rα2) in mediating these processes was examined using specific neutralizing antibodies in vitro. RESULTS In participants with T2 asthma and obesity, we observed that airway tissue eosinophilia did not associate with traditional T2 inflammation metrics such as peripheral and/or bronchoalveolar lavage fluid eosinophil counts or with fractional exhaled nitric oxide. Alternatively, we observed elevated bronchoalveolar lavage fluid leptin and eotaxin-1 levels. In airway fibroblasts from participants with asthma, leptin augmented IL-13-induced eotaxin-1 and eotaxin-3 production and IL13RA2 expression. In mice, elevated leptin promoted airway IL-13Rα2 and eotaxin production by lung fibroblasts and lung tissue eosinophilia following chronic house dust mite allergen exposure. Inhibition of IL-13Rα2 reduced combined leptin and IL-13-stimulated eotaxin secretion by human airway fibroblasts. CONCLUSIONS We identified a potential association explaining airway tissue eosinophil retention in obesity-associated T2 asthma through leptin-mediated enhancement of IL-13-induced eosinophil chemokine production by airway fibroblasts, a process requiring IL-13Rα2.
Collapse
Affiliation(s)
| | | | - Jasmine Weiss
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC
| | - Jack T Womble
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - Mark D Ihrie
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - Karen Zhao
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - Dave Francisco
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Katelynn May
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - Haein Kim
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - Matthew McCravy
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - Maor Sauler
- Department of Internal Medicine, Yale University, New Haven, Conn
| | - Njira L Lugogo
- Department of Medicine, University of Michigan, Ann Arbor, Mich
| | - Mary E Sunday
- Department of Pathology, Duke University Medical Center, Durham, NC
| | - Jeffrey Everitt
- Department of Pathology, Duke University Medical Center, Durham, NC
| | | | - Robert M Tighe
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - Monica Kraft
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Loretta G Que
- Department of Medicine, Duke University Medical Center, Durham, NC
| |
Collapse
|
4
|
Brown AC, Carroll OR, Mayall JR, Zounemat-Kermani N, Vinzenz SLE, Gomez HM, Mills EF, Kim RY, Donovan C, Baines KJ, Williams EJ, Berthon BS, Wynne K, Scott HA, Pinkerton JW, Guo Y, Hansbro PM, Foster PS, Wark PAB, Dahlen SE, Adcock IM, Wood LG, Horvat JC. Female sex hormones and the oral contraceptive pill modulate asthma severity through GLUT-1. Mucosal Immunol 2025:S1933-0219(25)00024-8. [PMID: 40021011 DOI: 10.1016/j.mucimm.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
Females are disproportionately affected by asthma. An increased understanding of how female sex hormones influence key pathophysiological processes that underpin asthma may identify new, more effective asthma therapies, particularly for females with severe, poorly controlled asthma. We assessed the effects of oral ethinylestradiol/levonorgestrel (representing OCP use) and depot-medroxyprogesterone acetate (DMPA) and estradiol injections on key features of experimental asthma, and determined their effects on glucose transporter-1 (GLUT-1). The effects of OCP use on clinical asthma outcomes, and the relationships between estrogen receptors and type 2 (T2), non-T2, and GLUT-1 responses, in clinical asthma were also determined. OCP and DMPA reduce T2 responses, disease features, and lung expression of GLUT-1, whereas estradiol increases lung expression of GLUT-1, and results in severe, corticosteroid-insensitive, neutrophil-enriched disease, in experimental asthma. OCP use is associated with reduced T2 cytokine and GLUT-1 responses in clinical asthma. GLUT-1 expression is increased in sputum of severe asthmatics, and positively correlates with estrogen receptor expression and both T2 and non-T2 inflammatory responses. Significantly, OCP or GLUT-1 inhibition protects against obesity-associated or estradiol-induced, severe, experimental asthma, respectively. Together, these data show how female sex hormones and the OCP likely modulate asthma severity by modifying GLUT-1 responses in the airways.
Collapse
Affiliation(s)
- Alexandra C Brown
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Olivia R Carroll
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Jemma R Mayall
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | | | - Samantha L E Vinzenz
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Henry M Gomez
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Ed F Mills
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Richard Y Kim
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia; Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
| | - Chantal Donovan
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia; Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
| | - Katherine J Baines
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Evan J Williams
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Bronwyn S Berthon
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Katie Wynne
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Hayley A Scott
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - James W Pinkerton
- Respiratory Pharmacology & Toxicology Group, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Yike Guo
- Hong Kong University of Science and Technology, Hong Kong
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Paul S Foster
- Woolcock Institute of Medical Research and Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Peter A B Wark
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia; School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Sven-Erik Dahlen
- Clinical Lung and Allergy Research Unit, Department of Medicine Huddinge, Karolinska Institutet, and, Department of Respiratory Medicine and Allergy, Karolinska University Hospital Huddinge, and Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ian M Adcock
- The Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Lisa G Wood
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Jay C Horvat
- The University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.
| |
Collapse
|
5
|
Nitro L, De Corso E, Borin M, Saibene AM, Arnone F, Ferella F, Gramellini G, Cantiani A, De Maio G, Spanu C, Dragonetti AG, Felisati G, Pipolo C. Role of body mass index as a predictor of dupilumab efficacy in patients with severe chronic rhinosinusitis with nasal polyps. ACTA OTORHINOLARYNGOLOGICA ITALICA : ORGANO UFFICIALE DELLA SOCIETA ITALIANA DI OTORINOLARINGOLOGIA E CHIRURGIA CERVICO-FACCIALE 2025; 45:28-38. [PMID: 40099444 PMCID: PMC11924193 DOI: 10.14639/0392-100x-n2841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/04/2024] [Indexed: 03/19/2025]
Abstract
Objective Response to dupilumab for chronic rhinosinusitis with nasal polyps, albeit almost always excellent, is still not predictable. Our study focuses on the role of body mass index (BMI) on the efficacy of dupilumab. Methods We present a retrospective multicentre study of 106 patients on dupilumab, stratified in 3 subgroups of BMI. The main therapeutic outcomes investigated were Nasal Polyp Score (NPS), Sino-Nasal-Outcome Test - 22 (SNOT-22), Sniffin' Sticks Identification test and visuo-analogical scale, and the different timing of response, according to De Corso et al. criteria. Results Dupilumab treatment led to a progressive improvement for all outcomes at all time points. Comparing the different metabolic subgroups, a late response in terms of decrease in NPS was observed only in 3 obese patients. A significant decrease was also found in SNOT-22 score at 6 and 12 months, which was less marked in overweight/obese patients. Conclusions Our study confirmed the efficacy of dupilumab in each BMI subgroup. However, the efficacy seems to follow different timing with respect to patients' BMI. Our data suggest that patients with a compromised metabolic state present more severe disease at baseline and a possibly delayed response to dupilumab.
Collapse
Affiliation(s)
- Letizia Nitro
- Otolaryngology Unit, Santi Paolo e Carlo Hospital, Department of Health Sciences, University of Milan, Milan, Italy
| | - Eugenio De Corso
- Otolaryngology Unit - Head and Neck Surgery, A. Gemelli Hospital Foundation IRCCS, Rome, Italy
| | - Marco Borin
- Otolaryngology Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Alberto Maria Saibene
- Otolaryngology Unit, Santi Paolo e Carlo Hospital, Department of Health Sciences, University of Milan, Milan, Italy
| | - Flavio Arnone
- Otolaryngology Unit, Santi Paolo e Carlo Hospital, Department of Health Sciences, University of Milan, Milan, Italy
| | - Francesco Ferella
- Otolaryngology Unit, Santi Paolo e Carlo Hospital, Department of Health Sciences, University of Milan, Milan, Italy
| | - Giulia Gramellini
- Otolaryngology Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Gabriele De Maio
- Otorhinolaryngology, Catholic University of The Sacred Heart, Rome, Italy
| | - Camilla Spanu
- Otorhinolaryngology, Catholic University of The Sacred Heart, Rome, Italy
| | | | - Giovanni Felisati
- Otolaryngology Unit, Santi Paolo e Carlo Hospital, Department of Health Sciences, University of Milan, Milan, Italy
| | - Carlotta Pipolo
- Otolaryngology Unit, Santi Paolo e Carlo Hospital, Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Kim JK, Sapkota A, Roh T, Jo EK. The intricate interactions between inflammasomes and bacterial pathogens: Roles, mechanisms, and therapeutic potentials. Pharmacol Ther 2025; 265:108756. [PMID: 39581503 DOI: 10.1016/j.pharmthera.2024.108756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/06/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Inflammasomes are intracellular multiprotein complexes that consist of a sensor, an adaptor, and a caspase enzyme to cleave interleukin (IL)-1β and IL-18 into their mature forms. In addition, caspase-1 and -11 activation results in the cleavage of gasdermin D to form pores, thereby inducing pyroptosis. Activation of the inflammasome and pyroptosis promotes host defense against pathogens, whereas dysregulation of the inflammasome can result in various pathologies. Inflammasomes exhibit versatile microbial signal detection, directly or indirectly, through cellular processes, such as ion fluctuations, reactive oxygen species generation, and the disruption of intracellular organelle function; however, bacteria have adaptive strategies to manipulate the inflammasome by altering microbe-associated molecular patterns, intercepting innate pathways with secreted effectors, and attenuating inflammatory and cell death responses. In this review, we summarize recent advances in the diverse roles of the inflammasome during bacterial infections and discuss how bacteria exploit inflammasome pathways to establish infections or persistence. In addition, we highlight the therapeutic potential of harnessing bacterial immune subversion strategies against acute and chronic bacterial infections. A more comprehensive understanding of the significance of inflammasomes in immunity and their intricate roles in the battle between bacterial pathogens and hosts will lead to the development of innovative strategies to address emerging threats posed by the expansion of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Asmita Sapkota
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Taylor Roh
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
7
|
Sharma V, Ricketts HC, McCombie L, Brosnahan N, Crawford L, Slaughter L, Goodfellow A, Steffensen F, Chaudhuri R, Lean MEJ, Cowan DC. A 1-Year Weight Management Program for Difficult-to-Treat Asthma With Obesity: A Randomized Controlled Study. Chest 2025; 167:42-53. [PMID: 39427706 PMCID: PMC11752128 DOI: 10.1016/j.chest.2024.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/20/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Obesity-associated asthma results in increased morbidity and mortality. We report 1-year asthma outcomes with a weight management regimen, the Counterweight-Plus Programme (CWP), compared with usual care (UC) in a single-center, randomized controlled trial in patients with difficult-to-treat asthma and obesity. RESEARCH QUESTION Can use of the CWP result in improved asthma control and quality of life compared with UC at 1 year in patients with difficult-to-treat asthma and obesity? STUDY DESIGN AND METHODS Adults with difficult-to-treat asthma and BMI ≥ 30 kg/m2 were randomized (1:1 CWP:UC) to treatment. The CWP, with dietitian support, included a 12-week total diet replacement phase (850 kcal/d low-energy formula), and then subsequent food reintroduction and maintenance phases up to 1 year. Outcomes include results of the six-item Asthma Control Questionnaire (ACQ-6) and Asthma Quality of Life Questionnaire (AQLQ), as well as health care usage. A minimal clinically important difference (MCID) is 0.5 for ACQ-6 and AQLQ. RESULTS Of 36 patients recruited, 29 attended visits at 52 weeks (13 CWP and 16 UC). The CWP resulted in greater weight change (median, -14 kg [interquartile range (IQR), -15 to -9 kg]) compared with UC (median, 2 kg [IQR, -7 to 8 kg]; P = .015) at 52 weeks. A greater proportion achieved MCID with the CWP vs UC in AQLQ (71% vs 6%, respectively; P < .001). No between-group differences were observed in ACQ-6. Median exacerbation frequency was reduced over 52 weeks with the CWP from 4 (IQR, 2 to 5) to 0 (IQR, 0 to 2) (P < .001), although no between-group difference was observed. Seventy percent of the CWP group lost ≥ 10% body weight and had improvement in ACQ-6 (mean difference, -1.1; 95% CI, -1.9 to -0.3; P = .018) and AQLQ (mean difference, 1.2; 95% CI, 0.4, 2.1; P = .011) across 52 weeks. INTERPRETATION In this study, the use of a dietitian-supported weight management program resulted in sustained weight loss and is a potential treatment for obesity in asthma. The CWP resulted in a higher proportion achieving MCID improvements in AQLQ compared with UC. Within-group differences in AQLQ and exacerbation frequency suggest potential with the CWP. These encouraging signals justify a larger sample study to further assess asthma-related outcomes.
Collapse
Affiliation(s)
- Varun Sharma
- School of Infection and Immunity, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom; Glasgow Royal, Clinical Research Facility, Glasgow, United Kingdom.
| | - Helen Clare Ricketts
- School of Infection and Immunity, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom; Glasgow Royal, Clinical Research Facility, Glasgow, United Kingdom
| | - Louise McCombie
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Naomi Brosnahan
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom; Counterweight Ltd, London, United Kingdom
| | - Luisa Crawford
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Lesley Slaughter
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anna Goodfellow
- Glasgow Royal, Clinical Research Facility, Glasgow, United Kingdom
| | - Femke Steffensen
- Glasgow Royal, Clinical Research Facility, Glasgow, United Kingdom
| | - Rekha Chaudhuri
- School of Infection and Immunity, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Michael E J Lean
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom; Glasgow Royal, Clinical Research Facility, Glasgow, United Kingdom
| | - Douglas C Cowan
- School of Infection and Immunity, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom; Glasgow Royal, Clinical Research Facility, Glasgow, United Kingdom
| |
Collapse
|
8
|
Vanders RL, Gomez HM, Daly K, Wark PA, Horvat JC, Hansbro PM. Immune checkpoints are suppressed during pregnancy following influenza A virus infection. Am J Physiol Lung Cell Mol Physiol 2024; 327:L890-L904. [PMID: 39254092 DOI: 10.1152/ajplung.00391.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Influenza A virus (IAV) infection is a major health risk during pregnancy. Although vaccination and antiviral agents are widely used and reduce IAV-induced symptoms, they are not sufficient to control IAV infections in pregnancy, especially during pandemics. Respiratory viruses like IAV exploit immune alterations that occur during pregnancy, including the upregulation of immune checkpoint proteins (ICPs) like programmed death ligand-1 (PDL1), programmed cell death receptor 1 (PD1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA4). We hypothesize that blocking expression of PDL1 on innate immune cells will improve maternal immunity following IAV infection. We used murine models of IAV infection during pregnancy with and without treatment with the immune checkpoint inhibitor (ICI), a-PDL1. Pregnant and nonpregnant mice were infected with mouse-adapted IAV (A/PR/8) and assessed at 3 days post infection (3 dpi). Lung cells were analyzed using flow cytometry. Lung mRNA expression of inflammatory and antiviral markers and histology was measured. Protein concentrations of inflammatory and antiviral markers, as well as viral titers were measured from lung bronchiolar lavage fluid (BALF). Lung function was also assessed. Following IAV infection, immune cells from pregnant mice had significant increases in the ICPs, PDL1, PD1, and CTLA4. a-PDL1 treatment effectively suppressed these ICPs and increased the activation marker, CD86. a-PDL1 treatment also reduced lung inflammatory cell infiltration and viral titers, increased antiviral responses, and improved lung function. Overall, IAV infection in pregnancy activates key inhibitory ICPs, leading to worsened disease outcomes. a-PDL1 treatment during IAV infection in pregnancy is an effective method to reduce ICP expression and improve overall immune cell responses.NEW & NOTEWORTHY Influenza infection worsens disease outcomes during pregnancy; however, treatment with anti-PDL1 can restore immune function during pregnancy.
Collapse
Affiliation(s)
- Rebecca L Vanders
- Immune Health, Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Henry M Gomez
- Immune Health, Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Katie Daly
- Immune Health, Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter A Wark
- Immune Health, Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Immune Health, Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- Faculty of Science, School of Life Sciences, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
De Luca S, Gunatilaka A, Coward-Smith M, Gomez HM, Kim RY, Stenekes A, Chan SMH, Wang W, Tan D, Vlahos R, Stewart AG, Donovan C. Understanding Comorbidities of Respiratory Models as Novel Platforms for Drug Discovery. ACS Pharmacol Transl Sci 2024; 7:3385-3393. [PMID: 39539266 PMCID: PMC11555503 DOI: 10.1021/acsptsci.4c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Chronic respiratory diseases affect over 450 million people worldwide and result in 4 million deaths per year. The majority of lung diseases are treated with drugs delivered directly to the lungs. However, there is bidirectional crosstalk between the lung and other organs/tissues in health and disease. This crosstalk supports targeting of extrapulmonary sites in addition to the lung to improve the comorbidities associated with lung disease. However, new preclinical in vivo and in vitro assays that model the human pathophysiology are required. In this review, we showcase the latest knowledge of the bidirectional relationship between the respiratory system and organs affected by comorbidities such as obesity and atherosclerosis. We also discuss the impact of new cell culture systems, including complex 3D culture models that may be used as platforms to generate disease insights and for drug discovery. This review highlights work presented by Respiratory and Inflammation Special Interest Group researchers as part of the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists (ASCEPT) annual scientific meeting in 2023.
Collapse
Affiliation(s)
- Simone
N. De Luca
- Respiratory
Research Group, Centre for Respiratory Science and Health, School
of Health and Biomedical Sciences, RMIT
University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Avanka Gunatilaka
- Department
of Biochemistry and Pharmacology, The University
of Melbourne, Parkville, Victoria 3010, Australia
- ARC
Centre for Personalised Therapeutics Technologies, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Madison Coward-Smith
- Respiratory
Research Group, Centre for Respiratory Science and Health, School
of Health and Biomedical Sciences, RMIT
University, Bundoora, Melbourne, Victoria 3083, Australia
- School
of Life Sciences, University of Technology
Sydney, Sydney, New South Wales 2007, Australia
| | - Henry M. Gomez
- School
of Biomedical Sciences and Pharmacy, University of Newcastle and Immune
Health Program, Hunter Medical Research
Institute, Newcastle, New South Wales 2308, Australia
| | - Richard Y. Kim
- School
of Life Sciences, University of Technology
Sydney, Sydney, New South Wales 2007, Australia
- School
of Biomedical Sciences and Pharmacy, University of Newcastle and Immune
Health Program, Hunter Medical Research
Institute, Newcastle, New South Wales 2308, Australia
- Woolcock
Institute of Medical Research, Macquarie Park, New South Wales 2113, Australia
| | - Aimee Stenekes
- School
of Life Sciences, University of Technology
Sydney, Sydney, New South Wales 2007, Australia
| | - Stanley M. H. Chan
- Respiratory
Research Group, Centre for Respiratory Science and Health, School
of Health and Biomedical Sciences, RMIT
University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Wei Wang
- Respiratory
Research Group, Centre for Respiratory Science and Health, School
of Health and Biomedical Sciences, RMIT
University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Daniel Tan
- Department
of Biochemistry and Pharmacology, The University
of Melbourne, Parkville, Victoria 3010, Australia
- ARC
Centre for Personalised Therapeutics Technologies, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ross Vlahos
- Respiratory
Research Group, Centre for Respiratory Science and Health, School
of Health and Biomedical Sciences, RMIT
University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Alastair G. Stewart
- Department
of Biochemistry and Pharmacology, The University
of Melbourne, Parkville, Victoria 3010, Australia
- ARC
Centre for Personalised Therapeutics Technologies, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Chantal Donovan
- School
of Life Sciences, University of Technology
Sydney, Sydney, New South Wales 2007, Australia
- School
of Biomedical Sciences and Pharmacy, University of Newcastle and Immune
Health Program, Hunter Medical Research
Institute, Newcastle, New South Wales 2308, Australia
- Woolcock
Institute of Medical Research, Macquarie Park, New South Wales 2113, Australia
| |
Collapse
|
10
|
Zounemat Kermani N, Chung KF, Macis G, Santini G, Clemeno FAA, Versi A, Sun K, Abdel-Aziz MI, Andersson LI, Auffray C, Badi Y, Bakke P, Brightling C, Brinkman P, Caruso M, Chanez P, De Meulder B, Djukanovic R, Fabbri L, Fowler SJ, Horvath I, Howarth P, James AJ, Kolmert J, Kraft M, Li CX, Maitland-van der Zee AH, Malerba M, Papi A, Rabe K, Sanak M, Shaw DE, Singh D, Sparreman Mikus M, van Den Berge M, Wheelock AM, Wheelock CE, Yasinska V, Guo YK, Wagers S, Barnes PJ, Bush A, Sterk PJ, Dahlen SE, Adcock IM, Siddiqui S, Montuschi P. Radiomultiomics: quantitative CT clusters of severe asthma associated with multiomics. Eur Respir J 2024; 64:2400207. [PMID: 39401856 PMCID: PMC11579543 DOI: 10.1183/13993003.00207-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/21/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Lung quantitative computed tomography (qCT) severe asthma clusters have been reported, but their replication and underlying disease mechanisms are unknown. We identified and replicated qCT clusters of severe asthma in two independent asthma cohorts and determined their association with molecular pathways, using radiomultiomics, integrating qCT, multiomics and machine learning/artificial intelligence. METHODS We used consensus clustering on qCT measurements of airway and lung CT scans, performed in 105 severe asthmatic adults from the U-BIOPRED cohort. The same qCT measurements were used to replicate qCT clusters in a subsample of the ATLANTIS asthma cohort (n=97). We performed integrated enrichment analysis using blood, sputum, bronchial biopsies, bronchial brushings and nasal brushings transcriptomics and blood and sputum proteomics to characterise radiomultiomic-associated clusters (RACs). RESULTS qCT clusters and clinical features in U-BIOPRED were replicated in the matched ATLANTIS cohort. In the U-BIOPRED cohort, RAC1 (n=30) was predominantly female with elevated body mass index, mild airflow limitation, decreased CT lung volume and increased lung density and upregulation of the complement pathway. RAC2 (n=34) subjects had airway wall thickness and a mild degree of airflow limitation, with upregulation of proliferative pathways including neurotrophic receptor tyrosine kinase 2/tyrosine kinase receptor B, and downregulation of semaphorin pathways. RAC3 (n=41) showed increased lung attenuation area and air trapping, severe airflow limitation, hyperinflation, and upregulation of cytokine signalling and signalling by interleukin pathways, and matrix metallopeptidase 1, 2 and 9. CONCLUSIONS U-BIOPRED severe asthma qCT clusters were replicated in a matched independent asthmatic cohort and associated with specific molecular pathways. Radiomultiomics might represent a novel strategy to identify new molecular pathways in asthma pathobiology.
Collapse
Affiliation(s)
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, London, UK
| | - Giuseppe Macis
- Radiology, Faculty of Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Giuseppe Santini
- Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Franz A A Clemeno
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Ali Versi
- Data Science Institute, Imperial College London, London, UK
| | - Kai Sun
- Data Science Institute, Imperial College London, London, UK
| | - Mahmoud I Abdel-Aziz
- Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lars I Andersson
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Charles Auffray
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Université de Lyon, Lyon, France
| | - Yusef Badi
- Data Science Institute, Imperial College London, London, UK
| | - Per Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Chris Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Paul Brinkman
- Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Pascal Chanez
- AP-HM - Clinique des Bronches, Allergies et Sommeil, Aix Marseille Université, Marseille, France
| | - Bertrand De Meulder
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Université de Lyon, Lyon, France
| | - Ratko Djukanovic
- NIHR Southampton Respiratory Biomedical Research Unit and Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Leonardo Fabbri
- Respiratory Medicine, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Peter Howarth
- NIHR Southampton Respiratory Biomedical Research Unit and Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Anna J James
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Johan Kolmert
- Institute of Environmental Medicine, Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Monica Kraft
- Samuel Bronfman Department of Medicine, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Chuan-Xing Li
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | | | - Mario Malerba
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Alberto Papi
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Klaus Rabe
- LungenClinic Grosshansdorf and Department of Medicine, Christian Albrechts University, Airway Research Center North within the German Center for Lung Research (DZL), Kiel, Germany
| | - Marek Sanak
- Division of Clinical Genetics and Molecular Biology, Department of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Dominick E Shaw
- Respiratory Research Unit, University of Nottingham, Nottingham, UK
| | - Dave Singh
- Centre for Respiratory Medicine and Allergy, Manchester University NHS Foundation Hospital Trust, University of Manchester, Manchester, UK
| | | | - Maarten van Den Berge
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Asa M Wheelock
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Institute of Environmental Medicine, Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Valentyna Yasinska
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Yi-Ke Guo
- Data Science Institute, Imperial College London, London, UK
| | | | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Andrew Bush
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter J Sterk
- Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sven-Erik Dahlen
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine, Karolinska University Hospital, Stockholm, Sweden
- Institute of Environmental Medicine, Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, UK
- I.M. Adcock, S. Siddiqui and P. Montuschi contributed equally to this article as lead authors and supervised the work
| | - Salman Siddiqui
- National Heart and Lung Institute, Imperial College London, London, UK
- I.M. Adcock, S. Siddiqui and P. Montuschi contributed equally to this article as lead authors and supervised the work
| | - Paolo Montuschi
- National Heart and Lung Institute, Imperial College London, London, UK
- Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, Rome, Italy
- I.M. Adcock, S. Siddiqui and P. Montuschi contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
11
|
Gao SY, Deng K, Wang J, Jin FD, Huang YL, Chen ZH, Oliver BG, Xie M, Wan HJ, Qin L, Liu D, Luo FM, Chen-Yu Hsu A, Li WM, Wang G, Wood LG. Homeostatic Measure of Insulin Resistance Is Associated With Future Asthma Exacerbations: A 1-Year Prospective Cohort Study. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:2774-2784.e3. [PMID: 38944198 DOI: 10.1016/j.jaip.2024.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/28/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Recent evidence suggests that insulin resistance affects asthma outcomes. However, the effect of the homeostatic measure of insulin resistance (HOMA-IR) on airway inflammation and asthma exacerbations (AEs) is poorly understood. OBJECTIVE To analyze the relationship between HOMA-IR and clinical and inflammatory characteristics in patients with asthma, and the association between HOMA-IR and AEs in the following year. METHODS A prospective cohort study recruited participants with asthma, who were classified into the HOMA-IRhigh group and HOMA-IRlow group based on the cutoff value of 3.80 for HOMA-IR and were observed within 12 months. We evaluated the clinical and inflammatory features and conducted a 1-year follow-up to study the exacerbations. We used negative binomial regression models to analyze the association between HOMA-IR and AEs. RESULTS Compared with patients in the HOMA-IRlow group (n = 564), those in the HOMA-IRhigh group (n = 61) had higher levels of body mass index, a higher waist circumference and waist-hip ratio, higher triglycerides, lower cholesterol high-density lipoproteins, more neutrophils in the peripheral blood, and elevated IL-5 levels in the induced sputum. Furthermore, patients in the HOMA-IRhigh group had a significantly increased risk for moderate to severe AEs (adjusted incidence rate ratio [aIRR] = 2.26; 95% CI, 1.38-3.70), severe AEs (aIRR = 2.42; 95% CI, 1.26-4.67), hospitalization (aIRR = 2.54; 95% CI, 1.20-5.38), and emergency visits (aIRR = 3.04; 95% CI, 1.80-8.53). CONCLUSIONS The homeostatic measure of insulin resistance was associated with asthma-related clinical features and airway inflammation, and was an independent risk factor for future AEs. Therefore, insulin resistance may have important implications for managing asthma as a potential treatable trait.
Collapse
Affiliation(s)
- Si Yang Gao
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Center of Excellence in Severe Asthma and Treatable Traits, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, Sichuan, China
| | - Ke Deng
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Center of Excellence in Severe Asthma and Treatable Traits, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, Sichuan, China
| | - Ji Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Center of Excellence in Severe Asthma and Treatable Traits, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, Sichuan, China
| | - Fan Ding Jin
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Center of Excellence in Severe Asthma and Treatable Traits, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, Sichuan, China
| | - Yan Li Huang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Center of Excellence in Severe Asthma and Treatable Traits, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, Sichuan, China
| | - Zhi Hong Chen
- Department of Respiratory, Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, China
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Min Xie
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Jing Wan
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Center of Excellence in Severe Asthma and Treatable Traits, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, Sichuan, China
| | - Ling Qin
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Center of Excellence in Severe Asthma and Treatable Traits, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, Sichuan, China
| | - Feng Ming Luo
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Center of Excellence in Severe Asthma and Treatable Traits, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, Sichuan, China
| | - Alan Chen-Yu Hsu
- Signature Research Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Wei Min Li
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Center of Excellence in Severe Asthma and Treatable Traits, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Respiratory Microbiome Laboratory, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, Sichuan, China.
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Center of Excellence in Severe Asthma and Treatable Traits, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, Sichuan, China.
| | - Lisa G Wood
- Hunter Medical Research Institute and School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
12
|
Lin Q, Zheng Z, Ni H, Xu Y, Nie H. Cellular senescence-Related genes define the immune microenvironment and molecular characteristics in severe asthma patients. Gene 2024; 919:148502. [PMID: 38670389 DOI: 10.1016/j.gene.2024.148502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Recent studies have shown that cellular senescence is involved in the pathogenesis of severe asthma (SA). The objective of this study was to investigate the role of cellular senescence-related genes (CSGs) in the pathogenesis of SA. Here, 54 differentially expressed CSGs were identified in SA patients compared to healthy control individuals. Among the 54 differentially expressed CSGs, 3 CSGs (ETS2, ETS1 and AURKA) were screened using the LASSO regression analysis and logistic regression analysis to establish the CSG-based prediction model to predict severe asthma. Moreover, we found that the protein expression levels of ETS2, ETS1 and AURKA were increased in the severe asthma mouse model. Then, two distinct senescence subtypes of SA with distinct immune microenvironments and molecular biological characteristics were identified. Cluster 1 was characterized by increased infiltration of immature dendritic cells, regulatory T cells, and other cells. Cluster 2 was characterized by increased infiltration levels of eosinophils, neutrophils, and other cells. The molecular biological characteristics of Cluster 1 included aerobic respiration and oxidative phosphorylation, whereas the molecular biological characteristics of Cluster 2 included activation of the immune response and immune receptor activity. Then, we established an Random Forest model to predict the senescence subtypes of SA to guide treatment. Finally, potential drugs were searched for each senescence subgroup of SA patients via the Connectivity Map database. A peroxisome proliferator-activated receptor agonist may be a potential therapeutic drug for patients in Cluster 1, whereas a tachykinin antagonist may be a potential therapeutic drug for patients in Cluster 2. In summary, CSGs are likely involved in the pathogenesis of SA, which may lead to new therapeutic options for SA patients.
Collapse
Affiliation(s)
- Qibin Lin
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Zhishui Zheng
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Haiyang Ni
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yaqing Xu
- Department of Geriatric Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China.
| | - Hanxiang Nie
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China.
| |
Collapse
|
13
|
Liu T, Woodruff PG, Zhou X. Advances in non-type 2 severe asthma: from molecular insights to novel treatment strategies. Eur Respir J 2024; 64:2300826. [PMID: 38697650 PMCID: PMC11325267 DOI: 10.1183/13993003.00826-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Asthma is a prevalent pulmonary disease that affects more than 300 million people worldwide and imposes a substantial economic burden. While medication can effectively control symptoms in some patients, severe asthma attacks, driven by airway inflammation induced by environmental and infectious exposures, continue to be a major cause of asthma-related mortality. Heterogeneous phenotypes of asthma include type 2 (T2) and non-T2 asthma. Non-T2 asthma is often observed in patients with severe and/or steroid-resistant asthma. This review covers the molecular mechanisms, clinical phenotypes, causes and promising treatments of non-T2 severe asthma. Specifically, we discuss the signalling pathways for non-T2 asthma including the activation of inflammasomes, interferon responses and interleukin-17 pathways, and their contributions to the subtypes, progression and severity of non-T2 asthma. Understanding the molecular mechanisms and genetic determinants underlying non-T2 asthma could form the basis for precision medicine in severe asthma treatment.
Collapse
Affiliation(s)
- Tao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, China
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Prescott G Woodruff
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Gomez HM, Haw TJ, Ilic D, Robinson P, Donovan C, Croft AJ, Vanka KS, Small E, Carroll OR, Kim RY, Mayall JR, Beyene T, Palanisami T, Ngo DTM, Zosky GR, Holliday EG, Jensen ME, McDonald VM, Murphy VE, Gibson PG, Horvat JC. Landscape fire smoke airway exposure impairs respiratory and cardiac function and worsens experimental asthma. J Allergy Clin Immunol 2024; 154:209-221.e6. [PMID: 38513838 DOI: 10.1016/j.jaci.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Millions of people are exposed to landscape fire smoke (LFS) globally, and inhalation of LFS particulate matter (PM) is associated with poor respiratory and cardiovascular outcomes. However, how LFS affects respiratory and cardiovascular function is less well understood. OBJECTIVE We aimed to characterize the pathophysiologic effects of representative LFS airway exposure on respiratory and cardiac function and on asthma outcomes. METHODS LFS was generated using a customized combustion chamber. In 8-week-old female BALB/c mice, low (25 μg/m3, 24-hour equivalent) or moderate (100 μg/m3, 24-hour equivalent) concentrations of LFS PM (10 μm and below [PM10]) were administered daily for 3 (short-term) and 14 (long-term) days in the presence and absence of experimental asthma. Lung inflammation, gene expression, structural changes, and lung function were assessed. In 8-week-old male C57BL/6 mice, low concentrations of LFS PM10 were administered for 3 days. Cardiac function and gene expression were assessed. RESULTS Short- and long-term LFS PM10 airway exposure increased airway hyperresponsiveness and induced steroid insensitivity in experimental asthma, independent of significant changes in airway inflammation. Long-term LFS PM10 airway exposure also decreased gas diffusion. Short-term LFS PM10 airway exposure decreased cardiac function and expression of gene changes relating to oxidative stress and cardiovascular pathologies. CONCLUSIONS We characterized significant detrimental effects of physiologically relevant concentrations and durations of LFS PM10 airway exposure on lung and heart function. Our study provides a platform for assessment of mechanisms that underpin LFS PM10 airway exposure on respiratory and cardiovascular disease outcomes.
Collapse
Affiliation(s)
- Henry M Gomez
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, Australia
| | - Tatt J Haw
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, Newcastle, Australia; College of Health, Medicine, and Wellbeing, Centre of Excellence Newcastle Cardio-Oncology Research Group, University of Newcastle, Callaghan, Newcastle, Australia
| | - Dusan Ilic
- Newcastle Institute for Energy and Resources, University of Newcastle, Callaghan, Australia
| | - Peter Robinson
- Newcastle Institute for Energy and Resources, University of Newcastle, Callaghan, Australia
| | - Chantal Donovan
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, Australia; School of Life Sciences, University of Technology Sydney, Faculty of Science, Sydney, Australia
| | - Amanda J Croft
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, Newcastle, Australia; College of Health, Medicine, and Wellbeing, Centre of Excellence Newcastle Cardio-Oncology Research Group, University of Newcastle, Callaghan, Newcastle, Australia
| | - Kanth S Vanka
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, Australia; Newcastle Institute for Energy and Resources, University of Newcastle, Callaghan, Australia
| | - Ellen Small
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, Australia
| | - Olivia R Carroll
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, Australia
| | - Richard Y Kim
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, Australia; School of Life Sciences, University of Technology Sydney, Faculty of Science, Sydney, Australia
| | - Jemma R Mayall
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, Australia
| | - Tesfalidet Beyene
- School of Medicine and Public Health, University of Newcastle and Asthma and Breathing Program, Hunter Medical Research Institute, Newcastle, Australia
| | - Thava Palanisami
- Global Innovative Centre for Advanced Nanomaterials, University of Newcastle, Callaghan, Australia
| | - Doan T M Ngo
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, Newcastle, Australia; College of Health, Medicine, and Wellbeing, Centre of Excellence Newcastle Cardio-Oncology Research Group, University of Newcastle, Callaghan, Newcastle, Australia
| | - Graeme R Zosky
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia; College of Health and Medicine, Tasmanian School of Medicine, University of Tasmania, Hobart, Australia
| | - Elizabeth G Holliday
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
| | - Megan E Jensen
- School of Medicine and Public Health, University of Newcastle and Asthma and Breathing Program, Hunter Medical Research Institute, Newcastle, Australia
| | - Vanessa M McDonald
- School of Medicine and Public Health, University of Newcastle and Asthma and Breathing Program, Hunter Medical Research Institute, Newcastle, Australia
| | - Vanessa E Murphy
- School of Medicine and Public Health, University of Newcastle and Asthma and Breathing Program, Hunter Medical Research Institute, Newcastle, Australia
| | - Peter G Gibson
- School of Medicine and Public Health, University of Newcastle and Asthma and Breathing Program, Hunter Medical Research Institute, Newcastle, Australia
| | - Jay C Horvat
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, Australia.
| |
Collapse
|
15
|
Liang L, Chung SI, Guon TE, Park KH, Lee JH, Park JW. Statin administration or blocking PCSK9 alleviates airway hyperresponsiveness and lung fibrosis in high-fat diet-induced obese mice. Respir Res 2024; 25:213. [PMID: 38762465 PMCID: PMC11102611 DOI: 10.1186/s12931-024-02842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Obesity is associated with airway hyperresponsiveness and lung fibrosis, which may reduce the effectiveness of standard asthma treatment in individuals suffering from both conditions. Statins and proprotein convertase subtilisin/kexin-9 inhibitors not only reduce serum cholesterol, free fatty acids but also diminish renin-angiotensin system activity and exhibit anti-inflammatory effects. These mechanisms may play a role in mitigating lung pathologies associated with obesity. METHODS Male C57BL/6 mice were induced to develop obesity through high-fat diet for 16 weeks. Conditional TGF-β1 transgenic mice were fed a normal diet. These mice were given either atorvastatin or proprotein convertase subtilisin/kexin-9 inhibitor (alirocumab), and the impact on airway hyperresponsiveness and lung pathologies was assessed. RESULTS High-fat diet-induced obesity enhanced airway hyperresponsiveness, lung fibrosis, macrophages in bronchoalveolar lavage fluid, and pro-inflammatory mediators in the lung. These lipid-lowering agents attenuated airway hyperresponsiveness, macrophages in BALF, lung fibrosis, serum leptin, free fatty acids, TGF-β1, IL-1β, IL-6, and IL-17a in the lung. Furthermore, the increased RAS, NLRP3 inflammasome, and cholecystokinin in lung tissue of obese mice were reduced with statin or alirocumab. These agents also suppressed the pro-inflammatory immune responses and lung fibrosis in TGF-β1 over-expressed transgenic mice with normal diet. CONCLUSIONS Lipid-lowering treatment has the potential to alleviate obesity-induced airway hyperresponsiveness and lung fibrosis by inhibiting the NLRP3 inflammasome, RAS and cholecystokinin activity.
Collapse
Affiliation(s)
- Lin Liang
- Graduate School of Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Sook In Chung
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Tae-Eun Guon
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Hee Park
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Jae-Hyun Lee
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Jung-Won Park
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea.
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| |
Collapse
|
16
|
Pathak MP, Patowary P, Chattopadhyay P, Barbhuiyan PA, Islam J, Gogoi J, Wankhar W. Obesity-associated Airway Hyperresponsiveness: Mechanisms Underlying Inflammatory Markers and Possible Pharmacological Interventions. Endocr Metab Immune Disord Drug Targets 2024; 24:1053-1068. [PMID: 37957906 DOI: 10.2174/0118715303256440231028072049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/14/2023] [Accepted: 09/15/2023] [Indexed: 11/15/2023]
Abstract
Obesity is rapidly becoming a global health problem affecting about 13% of the world's population affecting women and children the most. Recent studies have stated that obese asthmatic subjects suffer from an increased risk of asthma, encounter severe symptoms, respond poorly to anti-asthmatic drugs, and ultimately their quality-of-life decreases. Although, the association between airway hyperresponsiveness (AHR) and obesity is a growing concern among the public due to lifestyle and environmental etiologies, however, the precise mechanism underlying this association is yet to establish. Apart from aiming at the conventional antiasthmatic targets, treatment should be directed towards ameliorating obesity pathogenesis too. Understanding the pathogenesis underlying the association between obesity and AHR is limited, however, a plethora of obesity pathologies have been reported viz., increased pro-inflammatory and decreased anti-inflammatory adipokines, depletion of ROS controller Nrf2/HO-1 axis, NLRP3 associated macrophage polarization, hypertrophy of WAT, and down-regulation of UCP1 in BAT following down-regulated AMPKα and melanocortin pathway that may be correlated with AHR. Increased waist circumference (WC) or central obesity was thought to be related to severe AHR, however, some recent reports suggest body mass index (BMI), not WC tends to exaggerate airway closure in AHR due to some unknown mechanisms. This review aims to co-relate the above-mentioned mechanisms that may explain the copious relation underlying obesity and AHR with the help of published reports. A proper understanding of these mechanisms discussed in this review will ensure an appropriate treatment plan for patients through advanced pharmacological interventions.
Collapse
Affiliation(s)
| | - Pompy Patowary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, India
| | | | | | - Johirul Islam
- Department of Pharmaceutical Sciences, School of Health Sciences, Assam Kaziranga University, Jorhat, India
| | - Jyotchna Gogoi
- Department of Biochemistry, Faculty of Science, Assam Down Town University, Guwahati, India
| | - Wankupar Wankhar
- Department of Dialysis, Faculty of Paramedical Science, Assam Down Town University, Guwahati, India
| |
Collapse
|
17
|
Horvat JC, Kim RY, Weaver N, Augood C, Brown AC, Donovan C, Dupre P, Gunawardhana L, Mayall JR, Hansbro NG, Robertson AAB, O'Neill LAJ, Cooper MA, Holliday EG, Hansbro PM, Gibson PG. Characterization and inhibition of inflammasome responses in severe and non-severe asthma. Respir Res 2023; 24:303. [PMID: 38044426 PMCID: PMC10694870 DOI: 10.1186/s12931-023-02603-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/12/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Increased airway NLRP3 inflammasome-mediated IL-1β responses may underpin severe neutrophilic asthma. However, whether increased inflammasome activation is unique to severe asthma, is a common feature of immune cells in all inflammatory types of severe asthma, and whether inflammasome activation can be therapeutically targeted in patients, remains unknown. OBJECTIVE To investigate the activation and inhibition of inflammasome-mediated IL-1β responses in immune cells from patients with asthma. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from patients with non-severe (n = 59) and severe (n = 36 stable, n = 17 exacerbating) asthma and healthy subjects (n = 39). PBMCs were stimulated with nigericin or lipopolysaccharide (LPS) alone, or in combination (LPS + nigericin), with or without the NLRP3 inhibitor MCC950, and the effects on IL-1β release were assessed. RESULTS PBMCs from patients with non-severe or severe asthma produced more IL-1β in response to nigericin than those from healthy subjects. PBMCs from patients with severe asthma released more IL-1β in response to LPS + nigericin than those from non-severe asthma. Inflammasome-induced IL-1β release from PBMCs from patients with severe asthma was not increased during exacerbation compared to when stable. Inflammasome-induced IL-1β release was not different between male and female, or obese and non-obese patients and correlated with eosinophil and neutrophil numbers in the airways. MCC950 effectively suppressed LPS-, nigericin-, and LPS + nigericin-induced IL-1β release from PBMCs from all groups. CONCLUSION An increased ability for inflammasome priming and/or activation is a common feature of systemic immune cells in both severe and non-severe asthma, highlighting inflammasome inhibition as a universal therapy for different subtypes of disease.
Collapse
Affiliation(s)
- Jay C Horvat
- University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.
| | - Richard Y Kim
- University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
- University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Natasha Weaver
- University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Christopher Augood
- University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
- Centenary Institute, Centre for Inflammation, and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Alexandra C Brown
- University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Chantal Donovan
- University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
- University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Pierrick Dupre
- University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
- University of Montpellier, Montpellier Cancer Research Institute (IRCM), Montpellier, France
| | | | - Jemma R Mayall
- University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Nicole G Hansbro
- Centenary Institute, Centre for Inflammation, and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Avril A B Robertson
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, Australia
| | - Luke A J O'Neill
- Trinity College Dublin, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Dublin, Ireland
| | | | - Elizabeth G Holliday
- University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Philip M Hansbro
- University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
- Centenary Institute, Centre for Inflammation, and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Peter G Gibson
- University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| |
Collapse
|
18
|
Donovan C, Barnes JL, Kim RY. Back to the Eosinophil: Resolvin Spatiotemporal Regulation. Am J Respir Cell Mol Biol 2023; 69:608-609. [PMID: 37703390 DOI: 10.1165/rcmb.2023-0261ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023] Open
Affiliation(s)
- Chantal Donovan
- School of Life Sciences University of Technology Sydney Ultimo, New South Wales, Australia
- Hunter Medical Research Institute The University of Newcastle Callaghan, New South Wales, Australia
| | - Jessica L Barnes
- Hunter Medical Research Institute The University of Newcastle Callaghan, New South Wales, Australia
| | - Richard Y Kim
- School of Life Sciences University of Technology Sydney Ultimo, New South Wales, Australia
- Hunter Medical Research Institute The University of Newcastle Callaghan, New South Wales, Australia
| |
Collapse
|
19
|
Wang C, Smith J, Lu D, Noble P, Wang K. Airway-associated adipose tissue accumulation is increased in a kisspeptin receptor knockout mouse model. Clin Sci (Lond) 2023; 137:1547-1562. [PMID: 37732890 PMCID: PMC10550770 DOI: 10.1042/cs20230792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 09/22/2023]
Abstract
Airway-associated adipose tissue increases with body mass index and is a local source of pro-inflammatory adipokines that may contribute to airway pathology in asthma co-existing with obesity. Genetic susceptibility to airway adiposity was considered in the present study through kisspeptin/kisspeptin receptor signalling, known to modulate systemic adiposity and potentially drive airway remodelling. Therefore, the aim of the study was to determine the effects of kisspeptin/kisspeptin receptor signalling in the lung, focusing on airway-associated adipose tissue deposition and impact on airway structure-function. Wild-type, heterozygous and kisspeptin receptor knockout mice were studied at 6 or 8 weeks of age. Lung mechanics were assessed before and after methacholine challenge and were subsequently fixed for airway morphometry. A separate group of mice underwent glucose tolerance testing and bronchoalveolar lavage. At 6 weeks of age, kisspeptin/kisspeptin receptor signalling did not affect body adiposity, airway inflammation, wall structure or function. Despite no differences in body adiposity, there was a greater accumulation of airway-associated adipose tissue in knockout mice. By 8 weeks of age, female knockout mice displayed a non-diabetic phenotype with increased body adiposity but not males. Airway-associated adipose tissue area was also increased in both knockout females and males at 8 weeks of age, but again no other respiratory abnormality was apparent. In summary, airway-associated adipose tissue is decoupled from body adiposity in prepubescent mice which supports a genetic susceptibility to fatty deposits localised to the airway wall. There was no evidence that airway-associated adipose tissue drives pathology or respiratory impairment in the absence of other environmental exposures.
Collapse
Affiliation(s)
- Carolyn J. Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Jeremy T. Smith
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - David Lu
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Peter B. Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Kimberley C.W. Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
20
|
Scott HA, Ng SH, McLoughlin RF, Valkenborghs SR, Nair P, Brown AC, Carroll OR, Horvat JC, Wood LG. Effect of obesity on airway and systemic inflammation in adults with asthma: a systematic review and meta-analysis. Thorax 2023; 78:957-965. [PMID: 36948588 DOI: 10.1136/thorax-2022-219268] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 02/25/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Obesity is associated with more severe asthma, however, the mechanisms responsible are poorly understood. Obesity is also associated with low-grade systemic inflammation; it is possible that this inflammation extends to the airways of adults with asthma, contributing to worse asthma outcomes. Accordingly, the aim of this review was to examine whether obesity is associated with increased airway and systemic inflammation and adipokines, in adults with asthma. METHODS Medline, Embase, CINAHL, Scopus and Current Contents were searched till 11 August 2021. Studies reporting measures of airway inflammation, systemic inflammation and/or adipokines in obese versus non-obese adults with asthma were assessed. We conducted random effects meta-analyses. We assessed heterogeneity using the I2 statistic and publication bias using funnel plots. RESULTS We included 40 studies in the meta-analysis. Sputum neutrophils were 5% higher in obese versus non-obese asthmatics (mean difference (MD)=5.0%, 95% CI: 1.2 to 8.9, n=2297, p=0.01, I2=42%). Blood neutrophil count was also higher in obesity. There was no difference in sputum %eosinophils; however, bronchial submucosal eosinophil count (standardised mean difference (SMD)=0.58, 95% CI=0.25 to 0.91, p<0.001, n=181, I2=0%) and sputum interleukin 5 (IL-5) (SMD=0.46, 95% CI=0.17 to 0.75, p<0.002, n=198, I2=0%) were higher in obesity. Conversely, fractional exhaled nitric oxide was 4.5 ppb lower in obesity (MD=-4.5 ppb, 95% CI=-7.1 ppb to -1.8 ppb, p<0.001, n=2601, I2=40%). Blood C reactive protein, IL-6 and leptin were also higher in obesity. CONCLUSIONS Obese asthmatics have a different pattern of inflammation to non-obese asthmatics. Mechanistic studies examining the pattern of inflammation in obese asthmatics are warranted. Studies should also investigate the clinical relevance of this altered inflammatory response. PROSPERO REGISTERATION NUMBER CRD42021254525.
Collapse
Affiliation(s)
- Hayley A Scott
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Shawn Hm Ng
- School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Rebecca F McLoughlin
- School of Nursing and Midwifery, The University of Newcastle, Callaghan, New South Wales, Australia
- National Health and Medical Research Council, Centre of Excellence in Treatable Traits, New Lambton Heights, New South Wales, Australia
- Asthma and Breathing Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Sarah R Valkenborghs
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Active Living Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Parameswaran Nair
- Division of Respirology, McMaster University and St Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Alexandra C Brown
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Olivia R Carroll
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Jay C Horvat
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Lisa G Wood
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
21
|
Wang L, Sun Z, Shan X, Peng C, Ding H, Feng S, Zhao C, Wang X, Wu J. MicroRNA-223 Inhibits Soybean Glycinin- and β-Conglycinin-Induced Apoptosis of IPEC-J2 Cells by Targeting NLRP-3 in the IEL/IPEC-J2 Co-culture System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13745-13756. [PMID: 37682935 DOI: 10.1021/acs.jafc.3c01581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
The apoptosis of intestinal porcine epithelial cells induced by soybean antigen protein allergy is one of the most important mechanisms responsible for enteritis. MicroRNAs (miRNAs) affect the cellular and physiological functions of all multicellular organisms. We hypothesize that microRNA-223 inhibits soybean glycinin- and β-conglycinin-induced apoptosis of intestinal porcine enterocytes (IPEC-J2) by targeting the NLR family pyrin domain containing 3 (NLRP-3). Using the intestinal interepithelial lymphocyte (IEL)/IPEC-J2 co-culture system as an in vitro model, we investigate the role of microRNA-223 in the regulation of soybean glycinin- and β-conglycinin-induced apoptosis. In co-cultured IEL/IPEC-J2 cells incubated with glycinin or β-conglycinin, microRNA-223 decreased NLRP-3, ASC, caspase-1, caspase-3, FAS, BCL-2, and APAF-1 expressions in IPEC-J2 cells; decreased cytokine and cyclooxygenase-2 levels; significantly increased cell activity; and inhibited apoptosis. These data supported a novel antiallergic mechanism to mitigate the sensitization of soybean antigenic protein, which involves the upregulation of microRNA-223-targeting NLRP-3.
Collapse
Affiliation(s)
- Lei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Zhifeng Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Xinggen Shan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Chenglu Peng
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongyan Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Chang Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| |
Collapse
|
22
|
To M, Arimoto Y, Honda N, Kurosawa Y, Haruki K, To Y. Clinical characteristics and cytokine profiles of adult obese asthma with type2 inflammation. Sci Rep 2023; 13:14799. [PMID: 37684314 PMCID: PMC10491644 DOI: 10.1038/s41598-023-41889-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Obesity-related non-eosinophilic asthma has been identified as a phenotype of asthma. However, mepolizumab and omalizumab improve asthma control in severe asthma with obesity, implying that type-2 cytokines may be involved in the deterioration of control in obese asthma. Despite this, the clinical details of obese asthma with positive type-2 inflammation markers have not yet been reported. The objective of this study was to investigate the clinical characteristics of patients with obese asthma with positive type-2 inflammation markers. Adult obese asthmatic patients were enrolled and were classified into two groups: obese asthma with positive type-2 inflammation markers (T2) and obese asthma with negative type-2 inflammation markers (NT2), then data were compared. In total, 434 patients were enrolled (85% of patients were at GINA therapy step 4-5). The T2 group had a higher proportion of patients with persistent asthma since childhood and with allergic rhinitis. A higher percentage of patients used high-dose inhaled corticosteroids (ICS) and experienced acute exacerbations (annual exacerbation ratio ≥ 1) in the T2 group. Multivariate logistic regression analysis showed that the T2 group was independently associated with younger age, comorbidity of allergic rhinitis, persistent asthma since childhood, use of high-dose ICS, and acute exacerbation rate ≥ 1. Adipocytokine levels were similar between the groups. Collectively, obese asthma with positive type-2 inflammation markers is characterised by a higher percentage of persistent asthma since childhood and more severe asthma.
Collapse
Affiliation(s)
- Masako To
- Department of Laboratory Medicine, Dokkyo Medical University, Saitama Medical Center, 2-1-50 Minami-Koshigaya, Koshigaya City, Saitama, 343-8555, Japan.
- Department of Allergy and Respiratory Medicine, The Fraternity Memorial Hospital, 2-1-11 Yokoami, Sumida, Tokyo, 130-8587, Japan.
| | - Yoshihito Arimoto
- Department of Laboratory Medicine, Dokkyo Medical University, Saitama Medical Center, 2-1-50 Minami-Koshigaya, Koshigaya City, Saitama, 343-8555, Japan
| | - Natsue Honda
- Department of Laboratory Medicine, Dokkyo Medical University, Saitama Medical Center, 2-1-50 Minami-Koshigaya, Koshigaya City, Saitama, 343-8555, Japan
| | - Yusuke Kurosawa
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-8520, Japan
| | - Kosuke Haruki
- Department of Laboratory Medicine, Dokkyo Medical University, Saitama Medical Center, 2-1-50 Minami-Koshigaya, Koshigaya City, Saitama, 343-8555, Japan
| | - Yasuo To
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-8520, Japan
| |
Collapse
|
23
|
Vanders RL, Gomez HM, Hsu AC, Daly K, Wark PAB, Horvat JC, Hansbro PM. Inflammatory and antiviral responses to influenza A virus infection are dysregulated in pregnant mice with allergic airway disease. Am J Physiol Lung Cell Mol Physiol 2023; 325:L385-L398. [PMID: 37463835 DOI: 10.1152/ajplung.00232.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
Influenza A virus (IAV) infections are increased during pregnancy especially with asthma as a comorbidity, leading to asthma exacerbations, secondary bacterial infections, intensive care unit admissions, and mortality. We aimed to define the processes involved in increased susceptibility and severity of IAV infections during pregnancy, especially with asthma. We sensitized mice to house dust mite (HDM), induced pregnancy, and challenged with HDM to induce allergic airway disease (AAD). At midpregnancy, we induced IAV infection. We assessed viral titers, airway inflammation, lung antiviral responses, mucus hypersecretion, and airway hyperresponsiveness (AHR). During early IAV infection, pregnant mice with AAD had increased mRNA expression of the inflammatory markers Il13 and IL17 and reduced mRNA expression of the neutrophil chemoattractant marker Kc. These mice had increased mucous hyperplasia and increased AHR. miR155, miR574, miR223, and miR1187 were also reduced during early infection, as was mRNA expression of the antiviral β-defensins, Bd1, Bd2, and Spd and IFNs, Ifnα, Ifnβ, and Ifnλ. During late infection, Il17 was still increased as was eosinophil infiltration in the lungs. mRNA expression of Kc was reduced, as was neutrophil infiltration and mRNA expression of the antiviral markers Ifnβ, Ifnλ, and Ifnγ and Ip10, Tlr3, Tlr9, Pkr, and Mx1. Mucous hyperplasia was still significantly increased as was AHR. Early phase IAV infection in pregnancy with asthma heightens underlying inflammatory asthmatic phenotype and reduces antiviral responses.NEW & NOTEWORTHY Influenza A virus (IAV) infection during pregnancy with asthma is a major health concern leading to increased morbidity for both mother and baby. Using murine models, we show that IAV infection in pregnancy with allergic airway disease is associated with impaired global antiviral and antimicrobial responses, increased lung inflammation, mucus hypersecretion, and airway hyperresponsiveness (AHR). Targeting specific β-defensins or microRNAs (miRNAs) may prove useful in future treatments for IAV infection during pregnancy.
Collapse
Affiliation(s)
- Rebecca L Vanders
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
- Vaccines, Infection, Viruses and Asthma Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Henry M Gomez
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
- Vaccines, Infection, Viruses and Asthma Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Alan C Hsu
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
- Vaccines, Infection, Viruses and Asthma Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Katie Daly
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
- Vaccines, Infection, Viruses and Asthma Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
- Vaccines, Infection, Viruses and Asthma Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
- Vaccines, Infection, Viruses and Asthma Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
- Vaccines, Infection, Viruses and Asthma Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Faculty of Science, School of Life Sciences, Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Liu L, Zhou L, Wang LL, Zheng PD, Zhang FQ, Mao ZY, Zhang HJ, Liu HG. Programmed Cell Death in Asthma: Apoptosis, Autophagy, Pyroptosis, Ferroptosis, and Necroptosis. J Inflamm Res 2023; 16:2727-2754. [PMID: 37415620 PMCID: PMC10321329 DOI: 10.2147/jir.s417801] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
Bronchial asthma is a complex heterogeneous airway disease, which has emerged as a global health issue. A comprehensive understanding of the different molecular mechanisms of bronchial asthma may be an efficient means to improve its clinical efficacy in the future. Increasing research evidence indicates that some types of programmed cell death (PCD), including apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis, contributed to asthma pathogenesis, and may become new targets for future asthma treatment. This review briefly discusses the molecular mechanism and signaling pathway of these forms of PCD focuses on summarizing their roles in the pathogenesis and treatment strategies of asthma and offers some efficient means to improve clinical efficacy of therapeutics for asthma in the near future.
Collapse
Affiliation(s)
- Lu Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling-Ling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Peng-Dou Zheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Feng-Qin Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhen-Yu Mao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Huo-Jun Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Hui-Guo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
25
|
Khalil BA, Sharif-Askari NS, Halwani R. Role of inflammasome in severe, steroid-resistant asthma. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100061. [PMID: 37304814 PMCID: PMC10250931 DOI: 10.1016/j.crimmu.2023.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 06/13/2023] Open
Abstract
Purpose of review Asthma is a common heterogeneous group of chronic inflammatory diseases with different pathological phenotypes classified based on the various clinical, physiological and immunobiological profiles of patients. Despite similar clinical symptoms, asthmatic patients may respond differently to treatment. Hence, asthma research is becoming more focused on deciphering the molecular and cellular pathways driving the different asthma endotypes. This review focuses on the role of inflammasome activation as one important mechanism reported in the pathogenesis of severe steroid resistant asthma (SSRA), a Th2-low asthma endotype. Although SSRA represents around 5-10% of asthmatic patients, it is responsible for the majority of asthma morbidity and more than 50% of asthma associated healthcare costs with clear unmet need. Therefore, deciphering the role of the inflammasome in SSRA pathogenesis, particularly in relation to neutrophil chemotaxis to the lungs, provides a novel target for therapy. Recent findings The literature highlighted several activators of inflammasomes that are elevated during SSRA and result in the release of proinflammatory mediators, mainly IL-1β and IL-18, through different signaling pathways. Consequently, the expression of NLRP3 and IL-1β is shown to be positively correlated with neutrophil recruitment and negatively correlated with airflow obstruction. Furthermore, exaggerated NLRP3 inflammasome/IL-1β activation is reported to be associated with glucocorticoid resistance. Summary In this review, we summarized the reported literature on the activators of the inflammasome during SSRA, the role of IL-1β and IL-18 in SSRA pathogenesis, and the pathways by which inflammasome activation contributes to steroid resistance. Finally, our review shed light on the different levels to target inflammasome involvement in an attempt to ameliorate the serious outcomes of SSRA.
Collapse
Affiliation(s)
- Bariaa A. Khalil
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Rabih Halwani
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Prince Abdullah Ben Khaled Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Saudi Arabia
| |
Collapse
|
26
|
Dimasuay KG, Berg B, Schaunaman N, Holguin F, Winnica D, Chu HW. High-fat diet and palmitic acid amplify airway type 2 inflammation. FRONTIERS IN ALLERGY 2023; 4:1193480. [PMID: 37287831 PMCID: PMC10243139 DOI: 10.3389/falgy.2023.1193480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/08/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Metabolic dysfunction such as elevated levels of saturated fatty acids (SFA) may play a role in obese asthma, but its contribution to airway inflammation remains unclear. We sought to determine the role of high-fat diet (HFD) and palmitic acid (PA), a major form of SFA, in regulating type 2 inflammation. Methods Airway samples from asthma patients with or without obesity, mouse models and human airway epithelial cell culture were utilized to test if SFA amplify type 2 inflammation. Results Asthma patients with obesity had higher levels of airway PA than asthma patients without obesity. HFD increased the levels of PA in mice, and subsequently enhanced IL-13-induced airway eosinophilic inflammation. PA treatment amplified airway eosinophilic inflammation in mice that were previously exposed to IL-13 or house dust mite. IL-13 alone or in combination with PA increased dipeptidyl peptidase 4 (DPP4) release (soluble DPP4) and/or activity in mouse airways and human airway epithelial cells. Inhibition of DPP4 activity by linagliptin in mice pre-exposed to IL-13 or both IL-13 and PA increased airway eosinophilic and neutrophilic inflammation. Discussion Our results demonstrated the exaggerating effect of obesity or PA on airway type 2 inflammation. Up-regulation of soluble DPP4 by IL-13 and/or PA may serve as a mechanism to prevent excessive type 2 inflammation. Soluble DPP4 may have the therapeutic potential in asthma patients with obesity who have an endotype with mixed airway eosinophilic and neutrophilic inflammation.
Collapse
Affiliation(s)
| | - Bruce Berg
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | | | - Fernando Holguin
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Daniel Winnica
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
27
|
Das A, Pathak MP, Pathak K, Saikia R, Gogoi U. Herbal medicine for the treatment of obesity-associated asthma: a comprehensive review. Front Pharmacol 2023; 14:1186060. [PMID: 37251328 PMCID: PMC10213975 DOI: 10.3389/fphar.2023.1186060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Obesity is fast growing as a global pandemic and is associated with numerous comorbidities like cardiovascular disease, hypertension, diabetes, gastroesophageal reflux disease, sleep disorders, nephropathy, neuropathy, as well as asthma. Studies stated that obese asthmatic subjects suffer from an increased risk of asthma, and encounter severe symptoms due to a number of pathophysiology. It is very vital to understand the copious relationship between obesity and asthma, however, a clear and pinpoint pathogenesis underlying the association between obesity and asthma is scarce. There is a plethora of obesity-asthma etiologies reported viz., increased circulating pro-inflammatory adipokines like leptin, resistin, and decreased anti-inflammatory adipokines like adiponectin, depletion of ROS controller Nrf2/HO-1 axis, nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) associated macrophage polarization, hypertrophy of WAT, activation of Notch signaling pathway, and dysregulated melanocortin pathway reported, however, there is a very limited number of reports that interrelates these pathophysiologies. Due to the underlying complex pathophysiologies exaggerated by obese conditions, obese asthmatics respond poorly to anti-asthmatic drugs. The poor response towards anti-asthmatic drugs may be due to the anti-asthmatics approach only that ignores the anti-obesity target. So, aiming only at the conventional anti-asthmatic targets in obese-asthmatics may prove to be futile until and unless treatment is directed towards ameliorating obesity pathogenesis for a holistic approach towards amelioration of obesity-associated asthma. Herbal medicines for obesity as well as obesity-associated comorbidities are fast becoming safer and more effective alternatives to conventional drugs due to their multitargeted approach with fewer adverse effects. Although, herbal medicines are widely used for obesity-associated comorbidities, however, a limited number of herbal medicines have been scientifically validated and reported against obesity-associated asthma. Notable among them are quercetin, curcumin, geraniol, resveratrol, β-Caryophyllene, celastrol, tomatidine to name a few. In view of this, there is a dire need for a comprehensive review that may summarize the role of bioactive phytoconstituents from different sources like plants, marine as well as essential oils in terms of their therapeutic mechanisms. So, this review aims to critically discuss the therapeutic role of herbal medicine in the form of bioactive phytoconstituents against obesity-associated asthma available in the scientific literature to date.
Collapse
Affiliation(s)
- Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| | - Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| |
Collapse
|
28
|
Beech A, Portacci A, Herrero-Cortina B, Mathioudakis AG, Gotera C, Uller L, Ricciardolo FLM, Pobeha P, Snelgrove RJ, Braunstahl GJ, Bossios A, Usmani O, Ananth S. ERS International Congress 2022: highlights from the Airway Diseases Assembly. ERJ Open Res 2023; 9:00034-2023. [PMID: 37228280 PMCID: PMC10204859 DOI: 10.1183/23120541.00034-2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/15/2023] [Indexed: 05/27/2023] Open
Abstract
The European Respiratory Society (ERS) celebrated the return of an in-person meeting in Barcelona, Spain, after 2 years of virtual congresses. The ERS Congress 2022 programme was replete with symposia, skills workshops and abstract presentations from all 14 assemblies, encompassing over 3000 abstracts presented in the form of thematic poster discussion and oral presentations. In this article, highlights from the ERS Congress 2022 (including from thematic poster sessions, oral presentations and symposia from keynote speakers), presented by Assembly 5 (Airway diseases, asthma, COPD and chronic cough), are reviewed by Early Career Members and experts in the field, with the aim of presenting key recent findings in the field.
Collapse
Affiliation(s)
- Augusta Beech
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Medicines Evaluation Unit, Manchester University NHS Foundation Trust, Manchester, UK
| | - Andrea Portacci
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University “Aldo Moro”, Bari, Italy
| | - Beatrice Herrero-Cortina
- Universidad San Jorge, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain
| | - Alexander G. Mathioudakis
- North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | | | | | - Fabio Luigi Massimo Ricciardolo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Institute of Translational Pharmacology, National Research Council (IFT-CNR), Palermo, Italy
| | - Pavol Pobeha
- Pavol Jozef Safarik University, Kosice, Slovakia
| | | | | | - Apostolos Bossios
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Omar Usmani
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sachin Ananth
- Guy's and St Thomas's NHS Foundation Trust, London, UK
| |
Collapse
|
29
|
Carroll OR, Pillar AL, Brown AC, Feng M, Chen H, Donovan C. Advances in respiratory physiology in mouse models of experimental asthma. Front Physiol 2023; 14:1099719. [PMID: 37008013 PMCID: PMC10060990 DOI: 10.3389/fphys.2023.1099719] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/07/2023] [Indexed: 03/18/2023] Open
Abstract
Recent advances in mouse models of experimental asthma coupled with vast improvements in systems that assess respiratory physiology have considerably increased the accuracy and human relevance of the outputs from these studies. In fact, these models have become important pre-clinical testing platforms with proven value and their capacity to be rapidly adapted to interrogate emerging clinical concepts, including the recent discovery of different asthma phenotypes and endotypes, has accelerated the discovery of disease-causing mechanisms and increased our understanding of asthma pathogenesis and the associated effects on lung physiology. In this review, we discuss key distinctions in respiratory physiology between asthma and severe asthma, including the magnitude of airway hyperresponsiveness and recently discovered disease drivers that underpin this phenomenon such as structural changes, airway remodeling, airway smooth muscle hypertrophy, altered airway smooth muscle calcium signaling, and inflammation. We also explore state-of-the-art mouse lung function measurement techniques that accurately recapitulate the human scenario as well as recent advances in precision cut lung slices and cell culture systems. Furthermore, we consider how these techniques have been applied to recently developed mouse models of asthma, severe asthma, and asthma-chronic obstructive pulmonary disease overlap, to examine the effects of clinically relevant exposures (including ovalbumin, house dust mite antigen in the absence or presence of cigarette smoke, cockroach allergen, pollen, and respiratory microbes) and to increase our understanding of lung physiology in these diseases and identify new therapeutic targets. Lastly, we focus on recent studies that examine the effects of diet on asthma outcomes, including high fat diet and asthma, low iron diet during pregnancy and predisposition to asthma development in offspring, and environmental exposures on asthma outcomes. We conclude our review with a discussion of new clinical concepts in asthma and severe asthma that warrant investigation and how we could utilize mouse models and advanced lung physiology measurement systems to identify factors and mechanisms with potential for therapeutic targeting.
Collapse
Affiliation(s)
- Olivia R. Carroll
- Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Amber L. Pillar
- Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Alexandra C. Brown
- Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Min Feng
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Hui Chen
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Chantal Donovan
- Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
- *Correspondence: Chantal Donovan,
| |
Collapse
|
30
|
Habibovic A, Hristova M, Morris CR, Lin MCJ, Cruz LC, Ather JL, Geiszt M, Anathy V, Janssen-Heininger YMW, Poynter ME, Dixon AE, van der Vliet A. Diet-induced obesity worsens allergen-induced type 2/type 17 inflammation in airways by enhancing DUOX1 activation. Am J Physiol Lung Cell Mol Physiol 2023; 324:L228-L242. [PMID: 36625485 PMCID: PMC9942905 DOI: 10.1152/ajplung.00331.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
More than 50% of people with asthma in the United States are obese, and obesity often worsens symptoms of allergic asthma and impairs response to treatment. Based on previously established roles of the epithelial NADPH oxidase DUOX1 in allergic airway inflammation, we addressed the potential involvement of DUOX1 in altered allergic inflammation in the context of obesity. Intranasal house dust mite (HDM) allergen challenge of subjects with allergic asthma induced rapid secretion of IL-33, then IL-13, into the nasal lumen, responses that were significantly enhanced in obese asthmatic subjects (BMI >30). Induction of diet-induced obesity (DIO) in mice by high-fat diet (HFD) feeding similarly enhanced acute airway responses to intranasal HDM challenge, particularly with respect to secretion of IL-33 and type 2/type 3 cytokines, and this was associated with enhanced epithelial DUOX1 expression and was avoided in DUOX1-deficient mice. DIO also enhanced DUOX1-dependent features of chronic HDM-induced allergic inflammation. Although DUOX1 did not affect overall weight gain by HFD feeding, it contributed to glucose intolerance, suggesting a role in glucose metabolism. However, glucose intolerance induced by short-term HFD feeding, in the absence of adiposity, was not sufficient to alter HDM-induced acute airway responses. DIO was associated with enhanced presence of the adipokine leptin in the airways, and leptin enhanced DUOX1-dependent IL-13 and mucin production in airway epithelial cells. In conclusion, augmented inflammatory airway responses to HDM in obesity are associated with increases in airway epithelial DUOX1, and by increased airway epithelial leptin signaling.
Collapse
Affiliation(s)
- Aida Habibovic
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Milena Hristova
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Carolyn R Morris
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Miao-Chong Joy Lin
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Litiele C Cruz
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Jennifer L Ather
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Miklós Geiszt
- Department of Physiology and "Lendület" Peroxidase Enzyme Research Group, Semmelweis University, Budapest, Hungary
| | - Vikas Anathy
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Yvonne M W Janssen-Heininger
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Matthew E Poynter
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Anne E Dixon
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Albert van der Vliet
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
31
|
Bryant N, Muehling LM. T-cell responses in asthma exacerbations. Ann Allergy Asthma Immunol 2022; 129:709-718. [PMID: 35918022 PMCID: PMC9987567 DOI: 10.1016/j.anai.2022.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Asthma is a chronic lung disease comprising multiple endotypes and characterized by periodic exacerbations. A diverse array of T cells has been found to contribute to all endotypes of asthma in pathogenic and regulatory roles. Here, we review the contributions of CD4+, CD8+, and unconventional T cells in allergic and nonallergic asthma. DATA SOURCES Review of published literature pertaining to conventional and unconventional T-cell types in asthma. STUDY SELECTIONS Recent peer-reviewed articles pertaining to T cells in asthma, with additional peer-reviewed studies for context. RESULTS Much research in asthma has focused on the roles of CD4+ TH cells. Roles for TH2 cells in promoting allergic asthma pathogenesis have been well-described, and the recent description of pathogenic TH2A cells provides additional insight into these responses. Other TH types, notably TH1 and TH17, have been linked to neutrophilic and steroid-resistant asthma phenotypes. Beyond CD4+ T cells, CD8+ Tc2 cells are also strongly associated with allergic asthma. An emerging area for study is unconventional T-cell types, including γδT, invariant natural killer T, and mucosal-associated invariant T cells. Although data in asthma remain limited for these cells, their ability to bridge innate and adaptive responses likely makes them key players in asthma. A number of asthma therapies target T-cell responses, and, although data are limited, they seem to modulate T-cell populations. CONCLUSION Given the diversity and heterogeneity of asthma and T-cell responses, there remain many rich avenues for research to better understand the pathogenesis of asthma. Despite the breadth of T cells in asthma, approved therapeutics remain limited to TH2 networks.
Collapse
Affiliation(s)
- Naomi Bryant
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Lyndsey M Muehling
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
32
|
Tooba R, Wu TD. Obesity and asthma: A focused review. Respir Med 2022; 204:107012. [PMID: 36279813 PMCID: PMC9671155 DOI: 10.1016/j.rmed.2022.107012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Rubabin Tooba
- Department of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Tianshi David Wu
- Department of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Innovations in Quality, Effectiveness, and Safety, Michael E. DeBakey VA Medical Center, Houston, TX, USA.
| |
Collapse
|
33
|
Sun J, Li Y. Pyroptosis and respiratory diseases: A review of current knowledge. Front Immunol 2022; 13:920464. [PMID: 36248872 PMCID: PMC9561627 DOI: 10.3389/fimmu.2022.920464] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Pyroptosis is a relatively newly discovered programmed cell death accompanied by an inflammatory response. In the classical view, pyroptosis is mediated by caspases-1,-4,-5,-11 and executed by GSDMD, however, recently it was demonstrated that caspase-3 and-8 also participate in the process of pyroptosis, by cleaving GSDMD/E and GSDMD respectively. Different from autophagy and apoptosis, many pores are formed on the cell membrane during pyroptosis, which makes the cell membrane lose its integrity, eventually leading to the release of cytokines interleukin(IL)-1β and IL-18. When the body is infected with pathogens or exposed to some stimulations, pyroptosis could play an immune defense role. It is found that pyroptosis exists widely in infectious and inflammatory respiratory diseases such as acute lung injury, bronchial dysplasia, chronic obstructive pulmonary disease, and asthma. Excessive pyroptosis may accompany airway inflammation, tissue injury, and airway damage, and induce an inflammatory reaction, leading to more serious damage and poor prognosis of respiratory diseases. This review summarizes the relationship between pyroptosis and related respiratory diseases.
Collapse
|
34
|
Morita H, Matsumoto K, Saito H. Review of biologics in allergy and immunology. J Allergy Clin Immunol 2022; 150:766-777. [PMID: 36058723 DOI: 10.1016/j.jaci.2022.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 10/14/2022]
Abstract
Biologics or molecularly targeted drugs are often highly effective for the treatment of allergic diseases and other immunologic disorders, and they are relatively safe for short-term use as compared with conventional approaches such as the systemic use of corticosteroids. A number of studies published in 2021 consistently demonstrated their effectiveness and also revealed unanticipated findings. Among them, clinical trials for asthma and chronic obstructive pulmonary disease using biologics targeting thymic stromal lymphopoietin, IL-33, and IL-33 receptor demonstrated that these type 2 alarmin cytokines are also involved in non-type 2, noneosinophilic inflammation. Randomized controlled trials reporting the efficacies of 2 small-molecule oral drugs targeting Janus kinase-1 had a substantial impact on the management of atopic dermatitis. These drugs demonstrated superiority over dupilumab, which has previously demonstrated efficacy and is in wide use in clinical practice. As a concern, biologics are generally costly, and it should be noted that racial/ethnic minority populations may be less likely to receive biologics in the real world. Here, we have reviewed recent clinical trials and related topics dealing with the effects of biologics on allergic and immunologic diseases; in addition, we discuss how our understanding of the pathophysiology of these disorders has progressed.
Collapse
Affiliation(s)
- Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Allergy Center, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
35
|
Kozik AJ, Holguin F, Segal LN, Chatila TA, Dixon AE, Gern JE, Lozupone C, Lukacs N, Lumeng C, Molyneaux PL, Reisdorph N, Vujkovic-Cvijin I, Togias A, Huang YJ. Microbiome, Metabolism, and Immunoregulation of Asthma: An American Thoracic Society and National Institute of Allergy and Infectious Diseases Workshop Report. Am J Respir Cell Mol Biol 2022; 67:155-163. [PMID: 35914321 PMCID: PMC9348558 DOI: 10.1165/rcmb.2022-0216st] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This report presents the proceedings from a workshop titled "Microbiome, Metabolism and Immunoregulation of Asthma" that was held virtually May 13 and 14, 2021. The workshop was jointly sponsored by the American Thoracic Society (Assembly on Allergy, Immunology, and Inflammation) and the National Institute of Allergy and Infectious Diseases. It convened an interdisciplinary group of experts with backgrounds in asthma immunology, microbiome science, metabolomics, computational biology, and translational pulmonary research. The main purpose was to identify key scientific gaps and needs to further advance research on microbial and metabolic mechanisms that may contribute to variable immune responses and disease heterogeneity in asthma. Discussions were structured around several topics, including 1) immune and microbial mechanisms of asthma pathogenesis in murine models, 2) the role of microbes in pediatric asthma exacerbations, 3) dysregulated metabolic pathways in asthma associated with obesity, 4) metabolism effects on macrophage function in adipose tissue and the lungs, 5) computational approaches to dissect microbiome-metabolite links, and 6) potential confounders of microbiome-disease associations in human studies. This report summarizes the major points of discussion, which included identification of specific knowledge gaps, challenges, and suggested directions for future research. These include questions surrounding mechanisms by which microbiota and metabolites shape host health versus an allergic or asthmatic state; direct and indirect influences of other biological factors, exposures, and comorbidities on these interactions; and ongoing technical and analytical gaps for clinical translation.
Collapse
|
36
|
Palma G, Sorice GP, Genchi VA, Giordano F, Caccioppoli C, D’Oria R, Marrano N, Biondi G, Giorgino F, Perrini S. Adipose Tissue Inflammation and Pulmonary Dysfunction in Obesity. Int J Mol Sci 2022; 23:ijms23137349. [PMID: 35806353 PMCID: PMC9267094 DOI: 10.3390/ijms23137349] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity is a chronic disease caused by an excess of adipose tissue that may impair health by altering the functionality of various organs, including the lungs. Excessive deposition of fat in the abdominal area can lead to abnormal positioning of the diaphragm and consequent reduction in lung volume, leading to a heightened demand for ventilation and increased exposure to respiratory diseases, such as chronic obstructive pulmonary disease, asthma, and obstructive sleep apnoea. In addition to mechanical ventilatory constraints, excess fat and ectopic deposition in visceral depots can lead to adipose tissue dysfunction, which promotes metabolic disorders. An altered adipokine-secretion profile from dysfunctional adipose tissue in morbid obesity fosters systemic, low-grade inflammation, impairing pulmonary immune response and promoting airway hyperresponsiveness. A potential target of these adipokines could be the NLRP3 inflammasome, a critical component of the innate immune system, the harmful pro-inflammatory effect of which affects both adipose and lung tissue in obesity. In this review, we will investigate the crosstalk between adipose tissue and the lung in obesity, highlighting the main inflammatory mediators and novel therapeutic targets in preventing pulmonary dysfunction.
Collapse
|
37
|
Gomez HM, Pillar AL, Brown AC, Kim RY, Ali MK, Essilfie AT, Vanders RL, Frazer DM, Anderson GJ, Hansbro PM, Collison AM, Jensen ME, Murphy VE, Johnstone DM, Reid D, Milward EA, Donovan C, Horvat JC. Investigating the Links between Lower Iron Status in Pregnancy and Respiratory Disease in Offspring Using Murine Models. Nutrients 2021; 13:nu13124461. [PMID: 34960012 PMCID: PMC8708709 DOI: 10.3390/nu13124461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Maternal iron deficiency occurs in 40-50% of all pregnancies and is associated with an increased risk of respiratory disease and asthma in children. We used murine models to examine the effects of lower iron status during pregnancy on lung function, inflammation and structure, as well as its contribution to increased severity of asthma in the offspring. A low iron diet during pregnancy impairs lung function, increases airway inflammation, and alters lung structure in the absence and presence of experimental asthma. A low iron diet during pregnancy further increases these major disease features in offspring with experimental asthma. Importantly, a low iron diet increases neutrophilic inflammation, which is indicative of more severe disease, in asthma. Together, our data demonstrate that lower dietary iron and systemic deficiency during pregnancy can lead to physiological, immunological and anatomical changes in the lungs and airways of offspring that predispose to greater susceptibility to respiratory disease. These findings suggest that correcting iron deficiency in pregnancy using iron supplements may play an important role in preventing or reducing the severity of respiratory disease in offspring. They also highlight the utility of experimental models for understanding how iron status in pregnancy affects disease outcomes in offspring and provide a means for testing the efficacy of different iron supplements for preventing disease.
Collapse
Affiliation(s)
- Henry M. Gomez
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, and Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia; (H.M.G.); (A.L.P.); (A.C.B.); (R.Y.K.); (M.K.A.); (R.L.V.); (P.M.H.); (E.A.M.); (C.D.)
| | - Amber L. Pillar
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, and Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia; (H.M.G.); (A.L.P.); (A.C.B.); (R.Y.K.); (M.K.A.); (R.L.V.); (P.M.H.); (E.A.M.); (C.D.)
| | - Alexandra C. Brown
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, and Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia; (H.M.G.); (A.L.P.); (A.C.B.); (R.Y.K.); (M.K.A.); (R.L.V.); (P.M.H.); (E.A.M.); (C.D.)
| | - Richard Y. Kim
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, and Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia; (H.M.G.); (A.L.P.); (A.C.B.); (R.Y.K.); (M.K.A.); (R.L.V.); (P.M.H.); (E.A.M.); (C.D.)
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Md Khadem Ali
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, and Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia; (H.M.G.); (A.L.P.); (A.C.B.); (R.Y.K.); (M.K.A.); (R.L.V.); (P.M.H.); (E.A.M.); (C.D.)
| | - Ama-Tawiah Essilfie
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (A.-T.E.); (D.M.F.); (G.J.A.); (D.R.)
| | - Rebecca L. Vanders
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, and Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia; (H.M.G.); (A.L.P.); (A.C.B.); (R.Y.K.); (M.K.A.); (R.L.V.); (P.M.H.); (E.A.M.); (C.D.)
| | - David M. Frazer
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (A.-T.E.); (D.M.F.); (G.J.A.); (D.R.)
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4067, Australia
| | - Gregory J. Anderson
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (A.-T.E.); (D.M.F.); (G.J.A.); (D.R.)
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, QLD 4067, Australia
| | - Philip M. Hansbro
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, and Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia; (H.M.G.); (A.L.P.); (A.C.B.); (R.Y.K.); (M.K.A.); (R.L.V.); (P.M.H.); (E.A.M.); (C.D.)
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Adam M. Collison
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, and Priority Research Centre for GrowUpWell, The University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia; (A.M.C.); (M.E.J.); (V.E.M.)
| | - Megan E. Jensen
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, and Priority Research Centre for GrowUpWell, The University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia; (A.M.C.); (M.E.J.); (V.E.M.)
| | - Vanessa E. Murphy
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, and Priority Research Centre for GrowUpWell, The University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia; (A.M.C.); (M.E.J.); (V.E.M.)
| | - Daniel M. Johnstone
- School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia;
| | - David Reid
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (A.-T.E.); (D.M.F.); (G.J.A.); (D.R.)
| | - Elizabeth A. Milward
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, and Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia; (H.M.G.); (A.L.P.); (A.C.B.); (R.Y.K.); (M.K.A.); (R.L.V.); (P.M.H.); (E.A.M.); (C.D.)
| | - Chantal Donovan
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, and Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia; (H.M.G.); (A.L.P.); (A.C.B.); (R.Y.K.); (M.K.A.); (R.L.V.); (P.M.H.); (E.A.M.); (C.D.)
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jay C. Horvat
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, and Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia; (H.M.G.); (A.L.P.); (A.C.B.); (R.Y.K.); (M.K.A.); (R.L.V.); (P.M.H.); (E.A.M.); (C.D.)
- Correspondence: ; Tel.: +612-4042-0220
| |
Collapse
|