1
|
Pattaroni C, Marsland BJ, Harris NL. Early-Life Host-Microbial Interactions and Asthma Development: A Lifelong Impact? Immunol Rev 2025; 330:e70019. [PMID: 40099971 PMCID: PMC11917194 DOI: 10.1111/imr.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/19/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
Childhood is a multifactorial disease, and recent research highlights the influence of early-life microbial communities in shaping disease risk. This review explores the roles of the gut and respiratory microbiota in asthma development, emphasizing the importance of early microbial exposure. The gut microbiota has been particularly well studied, with certain taxa like Faecalibacterium and Bifidobacterium linked to asthma protection, whereas short-chain fatty acids produced by gut microbes support immune tolerance through the gut-lung axis. In contrast, the respiratory microbiota, though low in biomass, shows consistent associations between early bacterial colonization by Streptococcus, Moraxella, and Haemophilus and increased asthma risk. The review also addresses the emerging roles of the skin microbiota and environmental fungi in asthma, though findings remain inconsistent. Timing is a critical factor, with early-life disruptions, such as antibiotic use, potentially leading to increased asthma risk. Despite significant advances, there are still unresolved questions about the long-term consequences of early microbial perturbations, particularly regarding whether microbial dysbiosis is a cause or consequence of asthma. This review integrates current findings, highlighting the need for deeper investigation into cross-organ interactions and early microbial exposures to understand childhood asthma pathophysiology.
Collapse
Affiliation(s)
- Céline Pattaroni
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVictoriaAustralia
| | - Benjamin J. Marsland
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVictoriaAustralia
| | - Nicola L. Harris
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
2
|
Wang Q, Ji J, Xiao S, Wang J, Yan X, Fang L. Explore Alteration of Lung and Gut Microbiota in a Murine Model of OVA-Induced Asthma Treated by CpG Oligodeoxynucleotides. J Inflamm Res 2025; 18:445-461. [PMID: 39816955 PMCID: PMC11734504 DOI: 10.2147/jir.s487916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/31/2024] [Indexed: 01/18/2025] Open
Abstract
Aim We sought to investigate the impact of CpG oligodeoxynucleotides (CpG-ODN) administration on the lung and gut microbiota in asthmatic mice, specifically focusing on changes in composition, diversity, and abundance, and to elucidate the microbial mechanisms underlying the therapeutic effects of CpG-ODN and identify potential beneficial bacteria indicative of its efficacy. Methods HE staining were used to analyze inflammation in lung, colon and small intestine tissues. High-throughput sequencing technology targeting 16S rRNA was employed to analyze the composition, diversity, and correlation of microbiome in the lung, colon and small intestine of control, model and CpG-ODN administration groups. Results (1) Histopathologically, both lung and intestinal tissue in asthmatic mice exhibited significant structural damage and inflammatory response, whereas the structure of both lung and intestinal tissue approached normal levels, accompanied by a notable improvement in the inflammatory response after CpG-ODN treatment. (2) In the specific microbiota composition analysis, bacterial dysbiosis observed in the asthmatic mice, accompanied by enrichment of Proteobacteria found to cause lung and intestinal epithelial damage and inflammatory reaction. After CpG-ODN administration, bacterial dysbiosis was improved, and a notable enrichment of beneficial bacteria, indicating a novel microecology. Meanwhile Oscillospira and Clostridium were identified as two biomarkers of the CpG-ODN treatment. (3) Heatmap analysis revealed significant correlations among lung, small intestine, and colon microbiota. Conclusion CpG-ODN treatment can ameliorate OVA-induced asthma in mice. One side, preserving the structural integrity of the lung and intestine, safeguarding the mucosal physical barrier, the other side, improving the dysbiosis of lung and gut microbiota in asthmatic mice. Beneficial bacteria and metabolites take up microecological advantages, regulate immune cells and participate in the mucosal immune response to protect the immune barrier. Meanwhile, Oscillospira and Clostridium as biomarkers for CpG-ODN treatment, has reference significance for exploring precise Fecal microbiota transplantation treatment for asthma.
Collapse
Affiliation(s)
- Qingqing Wang
- Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Anhui Geriatric Institute, Hefei, Anhui, People’s Republic of China
| | - Jingjing Ji
- Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Anhui Geriatric Institute, Hefei, Anhui, People’s Republic of China
| | - Shuaijun Xiao
- Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Anhui Geriatric Institute, Hefei, Anhui, People’s Republic of China
| | - Jiong Wang
- Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Anhui Geriatric Institute, Hefei, Anhui, People’s Republic of China
| | - Xuebo Yan
- Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Anhui Geriatric Institute, Hefei, Anhui, People’s Republic of China
| | - Lei Fang
- Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Anhui Geriatric Institute, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
3
|
Aparicio A, Sun Z, Gold DR, Lasky‐Su JA, Litonjua AA, Weiss ST, Lee‐Sarwar K, Liu Y. Genotype-microbiome-metabolome associations in early childhood and their link to BMI. MLIFE 2024; 3:573-577. [PMID: 39744095 PMCID: PMC11685832 DOI: 10.1002/mlf2.12153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/28/2024] [Indexed: 01/19/2025]
Abstract
Through the analysis of data from children aged 6 months to 8 years enrolled in the Vitamin D Antenatal Asthma Reduction Trial (VDAART), significant simultaneous associations were identified between variants in the fragile histidine triad (FHIT) gene, children's body mass index, microbiome features related to obesity, and key lipids and amino acids. These patterns represent evidence of the genotype influence in shaping the host microbiome in developing stages and new potential biomarkers for childhood obesity, insulin resistance, and type 2 diabetes.
Collapse
Affiliation(s)
- Andrea Aparicio
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolChanning Division of Network MedicineBostonMassachusettsUSA
| | - Zheng Sun
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolChanning Division of Network MedicineBostonMassachusettsUSA
| | - Diane R. Gold
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolChanning Division of Network MedicineBostonMassachusettsUSA
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Jessica A. Lasky‐Su
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolChanning Division of Network MedicineBostonMassachusettsUSA
| | - Augusto A. Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children's Hospital at StrongUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Scott T. Weiss
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolChanning Division of Network MedicineBostonMassachusettsUSA
| | - Kathleen Lee‐Sarwar
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolChanning Division of Network MedicineBostonMassachusettsUSA
- Division of Allergy and Clinical ImmunologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Vertex PharmaceuticalsBostonMassachusettsUSA
| | - Yang‐Yu Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolChanning Division of Network MedicineBostonMassachusettsUSA
- Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
| |
Collapse
|
4
|
Saito H, Tamari M, Motomura K, Ikutani M, Nakae S, Matsumoto K, Morita H. Omics in allergy and asthma. J Allergy Clin Immunol 2024; 154:1378-1390. [PMID: 39384073 DOI: 10.1016/j.jaci.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024]
Abstract
This review explores the transformative impact of omics technologies on allergy and asthma research in recent years, focusing on advancements in high-throughput technologies related to genomics and transcriptomics. In particular, the rapid spread of single-cell RNA sequencing has markedly advanced our understanding of the molecular pathology of allergic diseases. Furthermore, high-throughput genome sequencing has accelerated the discovery of monogenic disorders that were previously overlooked as ordinary intractable allergic diseases. We also introduce microbiomics, proteomics, lipidomics, and metabolomics, which are quickly growing areas of research interest, although many of their current findings remain inconclusive as solid evidence. By integrating these omics data, we will gain deeper insights into disease mechanisms, leading to the development of precision medicine approaches that promise to enhance treatment outcomes.
Collapse
Affiliation(s)
- Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Masato Tamari
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Motomura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masashi Ikutani
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Susumu Nakae
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Allergy Center, National Center for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
5
|
Li N, Tan G, Xie Z, Chen W, Yang Z, Wang Z, Liu S, He M. Distinct enterotypes and dysbiosis: unraveling gut microbiota in pulmonary and critical care medicine inpatients. Respir Res 2024; 25:304. [PMID: 39127664 PMCID: PMC11316369 DOI: 10.1186/s12931-024-02943-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND The gut-lung axis, pivotal for respiratory health, is inadequately explored in pulmonary and critical care medicine (PCCM) inpatients. METHODS Examining PCCM inpatients from three medical university-affiliated hospitals, we conducted 16S ribosomal RNA sequencing on stool samples (inpatients, n = 374; healthy controls, n = 105). We conducted statistical analyses to examine the gut microbiota composition in PCCM inpatients, comparing it to that of healthy controls. Additionally, we explored the associations between gut microbiota composition and various clinical factors, including age, white blood cell count, neutrophil count, platelet count, albumin level, hemoglobin level, length of hospital stay, and medical costs. RESULTS PCCM inpatients exhibited lower gut microbiota diversity than healthy controls. Principal Coordinates Analysis revealed marked overall microbiota structure differences. Four enterotypes, including the exclusive Enterococcaceae enterotype in inpatients, were identified. Although no distinctions were found at the phylum level, 15 bacterial families exhibited varying abundances. Specifically, the inpatient population from PCCM showed a significantly higher abundance of Enterococcaceae, Lactobacillaceae, Erysipelatoclostridiaceae, Clostridiaceae, and Tannerellaceae. Using random forest analyses, we calculated the areas under the receiver operating characteristic curves (AUCs) to be 0.75 (95% CIs 0.69-0.80) for distinguishing healthy individuals from inpatients. The four most abundant genera retained in the classifier were Blautia, Subdoligranulum, Enterococcus, and Klebsiella. CONCLUSIONS Evidence of gut microbiota dysbiosis in PCCM inpatients underscores the gut-lung axis's significance, promising further avenues in respiratory health research.
Collapse
Affiliation(s)
- Naijian Li
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
- Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guiyan Tan
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Zhiling Xie
- Department of Pulmonary and Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan, People's Republic of China
| | - Weixin Chen
- Department of Chinese and Western Medicine in Clinical Medicine, The Clinical School of Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhaowei Yang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhang Wang
- Biomedical Research Center, Institute of Ecological Sciences, School of Life Sciences, State Key Laboratory of Respiratory Disease, South China Normal University, Guangzhou, People's Republic of China
| | - Sha Liu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, People's Republic of China.
| | - Mengzhang He
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
6
|
Aslam R, Herrles L, Aoun R, Pioskowik A, Pietrzyk A. Link between gut microbiota dysbiosis and childhood asthma: Insights from a systematic review. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100289. [PMID: 39105129 PMCID: PMC11298874 DOI: 10.1016/j.jacig.2024.100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 08/07/2024]
Abstract
Asthma, a chronic inflammatory disorder of the airways, is a prevalent childhood chronic disease with a substantial global health burden. The complex etiology and pathogenesis of asthma involve genetic and environmental factors, posing challenges in diagnosis, severity prediction, and therapeutic strategies. Recent studies have highlighted the significant role of the gut microbiota and its interaction with the immune system in the development of asthma. Dysbiosis, an imbalance in microbial composition, has been associated with respiratory diseases through the gut-lung axis. This axis is an interaction between the gut and lungs, allowing microbial metabolites to influence the host immune system. This systematic review examines the association between gut microbiota composition, measured using 16S rRNA sequencing, during infancy and childhood, and the subsequent development of atopic wheeze and asthma. The results suggest that higher alpha diversity of bacteria such as Bifidobacterium, Faecalibacterium, and Roseburia may have protective effects against asthmatic outcomes. Conversely, lower relative abundances of bacteria like Bacteroides and certain fungi, including Malassezia, were associated with asthma. These findings highlight the potential of early screening and risk assessment of gut microbiota to identify individuals at risk of asthma. Furthermore, investigations targeting gut microbiota, such as dietary modifications and probiotic supplementation, may hold promise for asthma prevention and management. Future research should focus on identifying specific microbial signatures associated with asthma susceptibility and further investigate approaches like fecal microbiota transplantation. Understanding the role of gut microbiota in asthma pathogenesis can contribute to early detection and development of interventions to mitigate the risk of asthmatic pathogenesis in childhood.
Collapse
Affiliation(s)
- Rabbiya Aslam
- Scientific Group of Microbiology and Parasitology and the Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Laura Herrles
- Scientific Group of Microbiology and Parasitology and the Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Raquel Aoun
- Scientific Group of Microbiology and Parasitology and the Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Pioskowik
- Scientific Group of Microbiology and Parasitology and the Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Agata Pietrzyk
- Scientific Group of Microbiology and Parasitology and the Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
7
|
Uddin MS, Ortiz Guluarte J, Waldner M, Alexander TW. The respiratory and fecal microbiota of beef calves from birth to weaning. mSystems 2024; 9:e0023824. [PMID: 38899874 PMCID: PMC11264934 DOI: 10.1128/msystems.00238-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
The development and growth of animals coincide with the establishment and maturation of their microbiotas. To evaluate the respiratory and fecal microbiotas of beef calves from birth to weaning, a total of 30 pregnant cows, and their calves at birth, were enrolled in this study. Deep nasal swabs and feces were collected from calves longitudinally, starting on the day of birth and ending on the day of weaning. Nasopharyngeal, vaginal, and fecal samples were also collected from cows, and the microbiotas of all samples were analyzed. The fecal microbiota of calves was enriched with Lactobacillus during the first 8 weeks of life, before being displaced by genera associated with fiber digestion, and then increasing in diversity across time. In contrast, the diversity of calf respiratory microbiota generally decreased with age. At birth, the calf and cow nasal microbiotas were highly similar, indicating colonization from dam contact. This was supported by microbial source-tracking analysis. The structure of the calf nasal microbiota remained similar to that of the cows, until weaning, when it diverged. The changes were driven by a decrease in Lactobacillus and an increase in genera typically associated with bovine respiratory disease, including Mannheimia, Pasteurella, and Mycoplasma. These three genera colonized calves early in life, though Mannheimia was initially transferred from the cow reproductive tract. Path analysis was used to model the interrelationships of calf respiratory and fecal microbiotas. It was observed that respiratory Lactobacillus and fecal Oscillospiraceae UCG-005 negatively affected the abundance of Mannheimia or Pasteurella.IMPORTANCEIn beef cattle production, bovine respiratory disease (BRD) accounts for most of the feedlot morbidities and mortalities. Metaphylaxis is a common management tool to mitigate BRD, however its use has led to increased antimicrobial resistance. Novel methods to mitigate BRD are needed, including microbiota-based strategies. However, information on the respiratory bacteria of beef calves prior to weaning was limited. In this study, it was shown that the microbiota of cows influenced the initial composition of both respiratory and fecal microbiotas in calves. While colonization of the respiratory tract of calves by BRD-associated genera occurred early in life, their relative abundances increased at weaning, and were negatively correlated with respiratory and gut bacteria. Thus, microbiotas of both the respiratory and gastrointestinal tracts have important roles in antagonism of respiratory pathogens and are potential targets for enhancing calf respiratory health. Modulation may be most beneficial, if done prior to weaning, before opportunistic pathogens establish colonization.
Collapse
Affiliation(s)
- Muhammed Salah Uddin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jose Ortiz Guluarte
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Matthew Waldner
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Trevor W. Alexander
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| |
Collapse
|
8
|
Nopsopon T, Chen Y, Chen Q, Wheelock CE, Weiss ST, McGeachie M, Lasky-Su J, Akenroye A. Untargeted metabolomic analysis reveals different metabolites associated with response to mepolizumab and omalizumab in asthma. ERJ Open Res 2024; 10:00931-2023. [PMID: 39104961 PMCID: PMC11298997 DOI: 10.1183/23120541.00931-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/31/2024] [Indexed: 08/07/2024] Open
Abstract
Background There is limited evidence on biomarkers associated with response to the monoclonal antibodies currently approved for asthma treatment. We sought to identify circulatory metabolites associated with response to treatment with mepolizumab or omalizumab. Methods We conducted global metabolomic profiling of pre-treatment plasma samples from 100 patients with moderate-to-severe asthma who initiated mepolizumab (n=31) or omalizumab (n=69). The primary outcome was the change in exacerbations within 12 months of therapy. Negative binomial models were used to assess the association between each metabolite and exacerbations, adjusting for age, sex, body mass index, baseline exacerbations and inhaled corticosteroid use. Chemical similarity enrichment analysis (ChemRICH) was conducted to identify chemical subclasses associated with treatment response. Results The mean age of the mepolizumab group was 58.7 years with on average 2.9 exacerbations over the year prior to initiation of biologic therapy. The mean age in the omalizumab group was 48.8 years with 1.5 exacerbations in the preceding year. Patients with higher levels of two tocopherol metabolites were associated with more exacerbations on mepolizumab (δ-carboxyethyl hydroxychroman (CEHC) (p=2.65E-05, false discovery rate (FDR=0.01) and δ-CEHC glucuronide (p=2.47E-06, FDR=0.003)). Higher levels of six androgenic steroids, three carnitine metabolites and two bile acid metabolites were associated with decreased exacerbations in the omalizumab group. In enrichment analyses, xanthine metabolites (cluster FDR=0.0006) and tocopherol metabolites (cluster FDR=0.02) were associated with worse mepolizumab response, while androgenic steroids (cluster FDR=1.9E-18), pregnenolone steroids (cluster p=3.2E-07, FDR=1.4E-05) and secondary bile acid metabolites (cluster p=0.0003, FDR=0.006) were the top subclasses associated with better omalizumab response. Conclusion This study identifies distinct metabolites associated with response to mepolizumab and omalizumab, with androgenic steroids associated with response to both mepolizumab and omalizumab.
Collapse
Affiliation(s)
- Tanawin Nopsopon
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yulu Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Qingwen Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Craig E. Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Scott. T. Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael McGeachie
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- These authors contributed equally
| | - Ayobami Akenroye
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- These authors contributed equally
| |
Collapse
|
9
|
Zhang J, Zheng X, Luo W, Sun B. Cross-domain microbiomes: the interaction of gut, lung and environmental microbiota in asthma pathogenesis. Front Nutr 2024; 11:1346923. [PMID: 38978703 PMCID: PMC11229079 DOI: 10.3389/fnut.2024.1346923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Recent experimental and epidemiological studies underscore the vital interaction between the intestinal microbiota and the lungs, an interplay known as the "gut-lung axis". The significance of this axis has been further illuminated following the identification of intestinal microbial metabolites, such as short-chain fatty acids (SCFA), as key mediators in setting the tone of the immune system. Through the gut-lung axis, the gut microbiota and its metabolites, or allergens, are directly or indirectly involved in the immunomodulation of pulmonary diseases, thereby increasing susceptibility to allergic airway diseases such as asthma. Asthma is a complex outcome of the interplay between environmental factors and genetic predispositions. The concept of the gut-lung axis may offer new targets for the prevention and treatment of asthma. This review outlines the relationships between asthma and the respiratory microbiome, gut microbiome, and environmental microbiome. It also discusses the current advancements and applications of microbiomics, offering novel perspectives and strategies for the clinical management of chronic respiratory diseases like asthma.
Collapse
Affiliation(s)
- Jiale Zhang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| | - Xianhui Zheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| | - Wenting Luo
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| |
Collapse
|
10
|
Paciência I, Sharma N, Hugg TT, Rantala AK, Heibati B, Al-Delaimy WK, Jaakkola MS, Jaakkola JJ. The Role of Biodiversity in the Development of Asthma and Allergic Sensitization: A State-of-the-Science Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:66001. [PMID: 38935403 PMCID: PMC11218706 DOI: 10.1289/ehp13948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Changes in land use and climate change have been reported to reduce biodiversity of both the environment and human microbiota. These reductions in biodiversity may lead to inadequate and unbalanced stimulation of immunoregulatory circuits and, ultimately, to clinical diseases, such as asthma and allergies. OBJECTIVE We summarized available empirical evidence on the role of inner (gut, skin, and airways) and outer (air, soil, natural waters, plants, and animals) layers of biodiversity in the development of asthma, wheezing, and allergic sensitization. METHODS We conducted a systematic search in SciVerse Scopus, PubMed MEDLINE, and Web of Science up to 5 March 2024 to identify relevant human studies assessing the relationships between inner and outer layers of biodiversity and the risk of asthma, wheezing, or allergic sensitization. The protocol was registered in PROSPERO (CRD42022381725). RESULTS A total of 2,419 studies were screened and, after exclusions and a full-text review of 447 studies, 82 studies were included in the comprehensive, final review. Twenty-nine studies reported a protective effect of outer layer biodiversity in the development of asthma, wheezing, or allergic sensitization. There were also 16 studies suggesting an effect of outer layer biodiversity on increasing asthma, wheezing, or allergic sensitization. However, there was no clear evidence on the role of inner layer biodiversity in the development of asthma, wheezing, and allergic sensitization (13 studies reported a protective effect and 15 reported evidence of an increased risk). CONCLUSIONS Based on the reviewed literature, a future systematic review could focus more specifically on outer layer biodiversity and asthma. It is unlikely that association with inner layer biodiversity would have enough evidence for systematic review. Based on this comprehensive review, there is a need for population-based longitudinal studies to identify critical periods of exposure in the life course into adulthood and to better understand mechanisms linking environmental exposures and changes in microbiome composition, diversity, and/or function to development of asthma and allergic sensitization. https://doi.org/10.1289/EHP13948.
Collapse
Affiliation(s)
- Inês Paciência
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Needhi Sharma
- University of California, San Diego, San Diego, California, USA
| | - Timo T. Hugg
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Aino K. Rantala
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Behzad Heibati
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | - Maritta S. Jaakkola
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Jouni J.K. Jaakkola
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Finnish Meteorological Institute, Helsinki, Finland
| |
Collapse
|
11
|
He P, Yu L, Tian F, Chen W, Zhang H, Zhai Q. Effects of Probiotics on Preterm Infant Gut Microbiota Across Populations: A Systematic Review and Meta-Analysis. Adv Nutr 2024; 15:100233. [PMID: 38908894 PMCID: PMC11251410 DOI: 10.1016/j.advnut.2024.100233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 06/24/2024] Open
Abstract
Microbiota in early life is closely associated with the health of infants, especially premature ones. Probiotics are important drivers of gut microbiota development in preterm infants; however, there is no consensus regarding the characteristics of specific microbiota in preterm infants receiving probiotics. In this study, we performed a meta-analysis of 5 microbiome data sets (1816 stool samples from 706 preterm infants) to compare the gut microbiota of preterm infants exposed to probiotics with that of preterm infants not exposed to probiotics across populations. Despite study-specific variations, we found consistent differences in gut microbial composition and predicted functional pathways between the control and probiotic groups across different cohorts of preterm infants. The enrichment of Acinetobacter, Bifidobacterium, and Lactobacillus spp and the depletion of the potentially pathogenic bacteria Finegoldia, Veillonella, and Klebsiella spp. were the most consistent changes in the gut microbiota of preterm infants supplemented with probiotics. Probiotics drove microbiome transition into multiple preterm gut community types, and notably, preterm gut community type 3 had the highest α-diversity, with enrichment of Bifidobacterium and Bacteroides spp. At the functional level, the major predicted microbial pathways involved in peptidoglycan biosynthesis consistently increased in preterm infants supplemented with probiotics; in contrast, the crucial pathways associated with heme biosynthesis consistently decreased. Interestingly, Bifidobacterium sp. rather than Lactobacillus sp. gradually became dominant in gut microbiota of preterm infants using mixed probiotics, although both probiotic strains were administered at the same dosage. Taken together, our meta-analysis suggests that probiotics contribute to reshaping the microbial ecosystem of preterm infants at both the taxonomic and functional levels of the bacterial community. More standardized and relevant studies may contribute to better understanding the crosstalk among probiotics, the gut microbiota, and subsequent disease risk, which could help to give timely nutritional feeding guidance to preterm infants. This systematic review and meta-analysis was registered at PROSPERO (https://www.crd.york.ac.uk/PROSPERO/) as CRD42023447901.
Collapse
Affiliation(s)
- Pandi He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
12
|
Georas SN, Khurana S. Update on asthma biology. J Allergy Clin Immunol 2024; 153:1215-1228. [PMID: 38341182 DOI: 10.1016/j.jaci.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
This is an exciting time to be conducting asthma research. The recent development of targeted asthma biologics has validated the power of basic research to discover new molecules amenable to therapeutic intervention. Advances in high-throughput sequencing are providing a wealth of "omics" data about genetic and epigenetic underpinnings of asthma, as well as about new cellular interacting networks and potential endotypes in asthma. Airway epithelial cells have emerged not only as key sensors of the outside environment but also as central drivers of dysregulated mucosal immune responses in asthma. Emerging data suggest that the airway epithelium in asthma remembers prior encounters with environmental exposures, resulting in potentially long-lasting changes in structure and metabolism that render asthmatic individuals susceptible to subsequent exposures. Here we summarize recent insights into asthma biology, focusing on studies using human cells or tissue that were published in the past 2 years. The studies are organized thematically into 6 content areas to draw connections and spur future research (on genetics and epigenetics, prenatal and early-life origins, microbiome, immune and inflammatory pathways, asthma endotypes and biomarkers, and lung structural alterations). We highlight recent studies of airway epithelial dysfunction and response to viral infections and conclude with a framework for considering how bidirectional interactions between alterations in airway structure and mucosal immunity can lead to sustained lung dysfunction in asthma.
Collapse
Affiliation(s)
- Steve N Georas
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY.
| | - Sandhya Khurana
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
13
|
Xu C, Hao M, Zai X, Song J, Huang Y, Gui S, Chen J. A new perspective on gut-lung axis affected through resident microbiome and their implications on immune response in respiratory diseases. Arch Microbiol 2024; 206:107. [PMID: 38368569 DOI: 10.1007/s00203-024-03843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/19/2024]
Abstract
The highly diverse microbial ecosystem of the human body colonizes the gastrointestinal tract has a profound impact on the host's immune, metabolic, endocrine, and other physiological processes, which are all interconnected. Specifically, gut microbiota has been found to play a crucial role in facilitating the adaptation and initiation of immune regulatory response through the gastrointestinal tract affecting the other distal mucosal sites such as lungs. A tightly regulated lung-gut axis during respiratory ailments may influence the various molecular patterns that instructs priming the disease severity to dysregulate the normal function. This review provides a comprehensive summary of current research on gut microbiota dysbiosis in respiratory diseases including asthma, pneumonia, bronchopneumonia, COPD during infections and cancer. A complex-interaction among gut microbiome, associated metabolites, cytokines, and chemokines regulates the protective immune response activating the mucosal humoral and cellular response. This potential mechanism bridges the regulation patterns through the gut-lung axis. This paper aims to advance the understanding of the crosstalk of gut-lung microbiome during infection, could lead to strategize to modulate the gut microbiome as a treatment plan to improve bad prognosis in various respiratory diseases.
Collapse
Affiliation(s)
- Cong Xu
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Mengqi Hao
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Xiaohu Zai
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Jing Song
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Yuzhe Huang
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China
| | - Shuangying Gui
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China
| | - Juan Chen
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China.
| |
Collapse
|
14
|
Lejeune S, Kaushik A, Parsons ES, Chinthrajah S, Snyder M, Desai M, Manohar M, Prunicki M, Contrepois K, Gosset P, Deschildre A, Nadeau K. Untargeted metabolomic profiling in children identifies novel pathways in asthma and atopy. J Allergy Clin Immunol 2024; 153:418-434. [PMID: 38344970 DOI: 10.1016/j.jaci.2023.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND Asthma and other atopic disorders can present with varying clinical phenotypes marked by differential metabolomic manifestations and enriched biological pathways. OBJECTIVE We sought to identify these unique metabolomic profiles in atopy and asthma. METHODS We analyzed baseline nonfasted plasma samples from a large multisite pediatric population of 470 children aged <13 years from 3 different sites in the United States and France. Atopy positivity (At+) was defined as skin prick test result of ≥3 mm and/or specific IgE ≥ 0.35 IU/mL and/or total IgE ≥ 173 IU/mL. Asthma positivity (As+) was based on physician diagnosis. The cohort was divided into 4 groups of varying combinations of asthma and atopy, and 6 pairwise analyses were conducted to best assess the differential metabolomic profiles between groups. RESULTS Two hundred ten children were classified as At-As-, 42 as At+As-, 74 as At-As+, and 144 as At+As+. Untargeted global metabolomic profiles were generated through ultra-high-performance liquid chromatography-tandem mass spectroscopy. We applied 2 independent machine learning classifiers and short-listed 362 metabolites as discriminant features. Our analysis showed the most diverse metabolomic profile in the At+As+/At-As- comparison, followed by the At-As+/At-As- comparison, indicating that asthma is the most discriminant condition associated with metabolomic changes. At+As+ metabolomic profiles were characterized by higher levels of bile acids, sphingolipids, and phospholipids, and lower levels of polyamine, tryptophan, and gamma-glutamyl amino acids. CONCLUSION The At+As+ phenotype displays a distinct metabolomic profile suggesting underlying mechanisms such as modulation of host-pathogen and gut microbiota interactions, epigenetic changes in T-cell differentiation, and lower antioxidant properties of the airway epithelium.
Collapse
Affiliation(s)
- Stéphanie Lejeune
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; University of Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, CHU Lille, Lille, France; University of Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France.
| | - Abhinav Kaushik
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, Mass
| | - Ella S Parsons
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Sharon Chinthrajah
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, Calif
| | - Manisha Desai
- Quantitative Science Unit, Department of Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Monali Manohar
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Mary Prunicki
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, Mass
| | - Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, Calif
| | - Philippe Gosset
- University of Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Antoine Deschildre
- University of Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, CHU Lille, Lille, France; University of Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Kari Nadeau
- Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, Mass
| |
Collapse
|
15
|
Liu M, Wang Y, Du B. Update on the association between Helicobacter pylori infection and asthma in terms of microbiota and immunity. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2024; 20:4. [PMID: 38221621 PMCID: PMC10788013 DOI: 10.1186/s13223-024-00870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/01/2024] [Indexed: 01/16/2024]
Abstract
H. pylori is a gram-negative bacterium that is usually acquired in childhood and can persistently colonize the gastric mucosa of humans, affecting approximately half of the world's population. In recent years, the prevalence of H. pylori infection has steadily reduced while the risk of allergic diseases has steadily climbed. As a result, epidemiological research indicates a strong negative association between the two. Moreover, numerous experimental studies have demonstrated that eradicating H. pylori increases the risk of allergic diseases. Hence, it is hypothesized that H. pylori infection may act as a safeguard against allergic diseases. The hygiene hypothesis, alterations in gut microbiota, the development of tolerogenic dendritic cells, and helper T cells could all be involved in H. pylori's ability to protect against asthma. Furthermore, Studies on mice models have indicated that H. pylori and its extracts are crucial in the management of asthma. We reviewed the in-depth studies on the most recent developments in the relationship between H. pylori infection and allergic diseases, and we discussed potential mechanisms of the infection's protective effect on asthma in terms of microbiota and immunity. We also investigated the prospect of the application of H. pylori and its related components in asthma, so as to provide a new perspective for the prevention or treatment of allergic diseases.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yong Wang
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Du
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
16
|
Zhang Z, Li D, Xie F, Muhetaer G, Zhang H. The cause-and-effect relationship between gut microbiota abundance and carcinoid syndrome: a bidirectional Mendelian randomization study. Front Microbiol 2023; 14:1291699. [PMID: 38188562 PMCID: PMC10766758 DOI: 10.3389/fmicb.2023.1291699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Objective Carcinoid syndrome (CS) commonly results from neuroendocrine tumors. While active substances are recognized as the main causes of the typical symptoms such as diarrhea and skin flush, the cause-and-effect relationship between gut microbiota abundance and CS remains unclear. Methods The Single Nucleotide Polymorphisms (SNPs) related to gut microbiota abundance and CS were obtained from the GWAS summary data. The inverse variance weighted (IVW) method was used to assess the causal relationship between gut microbiota abundance and CS. Additionally, the MR-Egger, Weighted Median model, and Weighted model were employed as supplementary approaches. The heterogeneity function of the TwoSampleMR package was utilized to assess whether SNPs exhibit heterogeneity. The Egger intercept and Presso test were used to assess whether SNPs exhibit pleiotropy. The Leave-One-Out test was employed to evaluate the sensitivity of SNPs. The Steiger test was utilized to examine whether SNPs have a reverse causal relationship. A bidirectional mendelian randomization (MR) study was conducted to elucidate the inferred cause-and-effect relationship between gut microbiota abundance and CS. Results The IVW results indicated a causal relationship between 6 gut microbiota taxa and CS. Among the 6 gut microbiota taxa, the genus Anaerofilum (IVW OR: 0.3606, 95%CI: 0.1554-0.8367, p-value: 0.0175) exhibited a protective effect against CS. On the other hand, the family Coriobacteriaceae (IVW OR: 3.4572, 95%CI: 1.0571-11.3066, p-value: 0.0402), the genus Enterorhabdus (IVW OR: 4.2496, 95%CI: 1.3314-13.5640, p-value: 0.0146), the genus Ruminiclostridium6 (IVW OR: 4.0116, 95%CI: 1.2711-12.6604, p-value: 0.0178), the genus Veillonella (IVW OR: 3.7023, 95%CI: 1.0155-13.4980, p-value: 0.0473) and genus Holdemanella (IVW OR: 2.2400, 95%CI: 1.0376-4.8358, p-value: 0.0400) demonstrated a detrimental effect on CS. The CS was not found to have a reverse causal relationship with the above 6 gut microbiota taxa. Conclusion Six microbiota taxa were found to have a causal relationship with CS, and further randomized controlled trials are needed for verification.
Collapse
Affiliation(s)
- Zexin Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongting Li
- The Affiliated Guangzhou Hospital of TCM of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengxi Xie
- Maoming Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gulizeba Muhetaer
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haibo Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Key Laboratory of Clinical Research of Chinese Medicine, Guangzhou, China
- Guangdong Joint Laboratory of Guangdong, Hong Kong and Macao Chinese Medicine and Immune Diseases, Guangzhou, China
- State Key Laboratory of Wet Certificate of Chinese Medicine Jointly Built by the Province and the Ministry, Guangzhou, China
| |
Collapse
|
17
|
Ferraro VA, Zanconato S, Carraro S. Metabolomics Applied to Pediatric Asthma: What Have We Learnt in the Past 10 Years? CHILDREN (BASEL, SWITZERLAND) 2023; 10:1452. [PMID: 37761413 PMCID: PMC10529856 DOI: 10.3390/children10091452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
Background: Asthma is the most common chronic condition in children. It is a complex non-communicable disease resulting from the interaction of genetic and environmental factors and characterized by heterogeneous underlying molecular mechanisms. Metabolomics, as with the other omic sciences, thanks to the joint use of high-throughput technologies and sophisticated multivariate statistical methods, provides an unbiased approach to study the biochemical-metabolic processes underlying asthma. The aim of this narrative review is the analysis of the metabolomic studies in pediatric asthma published in the past 10 years, focusing on the prediction of asthma development, endotype characterization and pharmaco-metabolomics. Methods: A total of 43 relevant published studies were identified searching the MEDLINE/Pubmed database, using the following terms: "asthma" AND "metabolomics". The following filters were applied: language (English), age of study subjects (0-18 years), and publication date (last 10 years). Results and Conclusions: Several studies were identified within the three areas of interest described in the aim, and some of them likely have the potential to influence our clinical approach in the future. Nonetheless, further studies are needed to validate the findings and to assess the role of the proposed biomarkers as possible diagnostic or prognostic tools to be used in clinical practice.
Collapse
Affiliation(s)
- Valentina Agnese Ferraro
- Unit of Pediatric Allergy and Respiratory Medicine, Women’s and Children’s Health Department, University of Padova, 35122 Padova, Italy
| | | | | |
Collapse
|
18
|
Lupu A, Jechel E, Mihai CM, Mitrofan EC, Fotea S, Starcea IM, Ioniuc I, Mocanu A, Ghica DC, Popp A, Munteanu D, Sasaran MO, Salaru DL, Lupu VV. The Footprint of Microbiome in Pediatric Asthma-A Complex Puzzle for a Balanced Development. Nutrients 2023; 15:3278. [PMID: 37513696 PMCID: PMC10384859 DOI: 10.3390/nu15143278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023] Open
Abstract
Considered to be of greater complexity than the human genome itself, the microbiome, the structure of the body made up of trillions of bacteria, viruses, and fungi, has proven to play a crucial role in the context of the development of pathological processes in the body, starting from various infections, autoimmune diseases, atopies, and culminating in its involvement in the development of some forms of cancer, a diagnosis that is considered the most disabling for the patient from a psychological point of view. Therefore, being a cornerstone in the understanding and optimal treatment of a multitude of ailments, the body's microbiome has become an intensively studied subject in the scientific literature of the last decade. This review aims to bring the microbiome-asthma correlation up to date by classifying asthmatic patterns, emphasizing the development patterns of the microbiome starting from the perinatal period and the impact of pulmonary dysbiosis on asthmatic symptoms in children. Likewise, the effects of intestinal dysbiosis reflected at the level of homeostasis of the internal environment through the intestine-lung/vital organs axis, the circumstances in which it occurs, but also the main methods of studying bacterial variability used for diagnostic purposes and in research should not be omitted. In conclusion, we draw current and future therapeutic lines worthy of consideration both in obtaining and maintaining remission, as well as in delaying the development of primary acute episodes and preventing future relapses.
Collapse
Affiliation(s)
- Ancuta Lupu
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Jechel
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | | | - Silvia Fotea
- Clinical Medical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University of Galati, 800008 Galati, Romania
| | - Iuliana Magdalena Starcea
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ileana Ioniuc
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Adriana Mocanu
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dragos Catalin Ghica
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alina Popp
- Faculty of General Medicine, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Dragos Munteanu
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Maria Oana Sasaran
- Faculty of General Medicine, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Delia Lidia Salaru
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Vasile Valeriu Lupu
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
19
|
Losol P, Sokolowska M, Chang YS. Interactions between microbiome and underlying mechanisms in asthma. Respir Med 2023; 208:107118. [PMID: 36641058 DOI: 10.1016/j.rmed.2023.107118] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Microbiome primes host innate immunity in utero and play fundamental roles in the development, training, and function of the immune system throughout the life. Interplay between the microbiome and immune system maintains mucosal homeostasis, while alterations of microbial community dysregulate immune responses, leading to distinct phenotypic features of immune-mediated diseases including asthma. Microbial imbalance within the mucosal environments, including upper and lower airways, skin, and gut, has consistently been observed in asthma patients and linked to increased asthma exacerbations and severity. Microbiome research has increased to uncover hidden microbial members, function, and immunoregulatory effects of bacterial metabolites within the mucosa. This review provides an overview of environmental and genetic factors that modulate the composition and function of the microbiome, and the impacts of microbiome metabolites and skin microbiota on immune regulation in asthma.
Collapse
Affiliation(s)
- Purevsuren Losol
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Medical Research Center, Seoul National University, Seoul, South Korea; Department of Molecular Biology and Genetics, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), Herman-Burchard Strasse 9, CH7265, Davos, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Yoon-Seok Chang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Medical Research Center, Seoul National University, Seoul, South Korea.
| |
Collapse
|
20
|
Dasgupta S, Ghosh N, Bhattacharyya P, Roy Chowdhury S, Chaudhury K. Metabolomics of asthma, COPD, and asthma-COPD overlap: an overview. Crit Rev Clin Lab Sci 2023; 60:153-170. [PMID: 36420874 DOI: 10.1080/10408363.2022.2140329] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The two common progressive lung diseases, asthma and chronic obstructive pulmonary disease (COPD), are the leading causes of morbidity and mortality worldwide. Asthma-COPD overlap, referred to as ACO, is another complex pulmonary disease that manifests itself with features of both asthma and COPD. The disease has no clear diagnostic or therapeutic guidelines, thereby making both diagnosis and treatment challenging. Though a number of studies on ACO have been documented, gaps in knowledge regarding the pathophysiologic mechanism of this disorder exist. Addressing this issue is an urgent need for improved diagnostic and therapeutic management of the disease. Metabolomics, an increasingly popular technique, reveals the pathogenesis of complex diseases and holds promise in biomarker discovery. This comprehensive narrative review, comprising 99 original research articles in the last five years (2017-2022), summarizes the scientific advances in terms of metabolic alterations in patients with asthma, COPD, and ACO. The analytical tools, nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS), commonly used to study the expression of the metabolome, are discussed. Challenges frequently encountered during metabolite identification and quality assessment are highlighted. Bridging the gap between phenotype and metabotype is envisioned in the future.
Collapse
Affiliation(s)
- Sanjukta Dasgupta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Nilanjana Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | | | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
21
|
Jiang Q, Li T, Chen W, Huo Y, Mou X, Zhao W. Microbial regulation of offspring diseases mediated by maternal-associated microbial metabolites. Front Microbiol 2022; 13:955297. [PMID: 36406399 PMCID: PMC9672376 DOI: 10.3389/fmicb.2022.955297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
The microbiota plays a crucial role in individuals’ early and long-term health. Previous studies indicated that the microbial regulation of health may start before birth. As the in utero environment is (nearly) sterile, the regulation is probably be originated from maternal microbiota and mediated by their metabolites transferred across the placenta. After the birth, various metabolites are continuously delivered to offspring through human milk feeding. Meanwhile, some components, for example, human milk oligosaccharides, in human milk can only be fermented by microbes, which brings beneficial effects on offspring health. Hence, we speculated that human milk-derived metabolites may also play roles in microbial regulation. However, reports between maternal-associated microbial metabolites and offspring diseases are still lacking and sparsely distributed in several fields. Also, the definition of the maternal-associated microbial metabolite is still unclear. Thus, it would be beneficial to comb through the current knowledge of these metabolites related to diseases for assisting our goals of early prediction, early diagnosis, early prevention, or early treatment through actions only on mothers. Therefore, this review aims to present studies showing how researchers came to the path of investigating these metabolites and then to present studies linking them to the development of offspring asthma, type 1 diabetes mellitus, food allergy, neonatal necrotizing enterocolitis, or autism spectrum disorder. Potential English articles were collected from PubMed by searching terms of disease(s), maternal, and a list of microbial metabolites. Articles published within 5 years were preferred.
Collapse
Affiliation(s)
- Qingru Jiang
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Tian Li
- Department of Gynecology and Obstetrics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wei Chen
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yingfang Huo
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xiangyu Mou
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Xiangyu Mou,
| | - Wenjing Zhao
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Wenjing Zhao,
| |
Collapse
|
22
|
Liu C, Makrinioti H, Saglani S, Bowman M, Lin LL, Camargo CA, Hasegawa K, Zhu Z. Microbial dysbiosis and childhood asthma development: Integrated role of the airway and gut microbiome, environmental exposures, and host metabolic and immune response. Front Immunol 2022; 13:1028209. [PMID: 36248891 PMCID: PMC9561420 DOI: 10.3389/fimmu.2022.1028209] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/20/2022] [Indexed: 12/12/2022] Open
Abstract
Asthma is a chronic and heterogeneous respiratory disease with many risk factors that typically originate during early childhood. A complex interplay between environmental factors and genetic predisposition is considered to shape the lung and gut microbiome in early life. The growing literature has identified that changes in the relative abundance of microbes (microbial dysbiosis) and reduced microbial diversity, as triggers of the airway-gut axis crosstalk dysregulation, are associated with asthma development. There are several mechanisms underlying microbial dysbiosis to childhood asthma development pathways. For example, a bacterial infection in the airway of infants can lead to the activation and/or dysregulation of inflammatory pathways that contribute to bronchoconstriction and bronchial hyperresponsiveness. In addition, gut microbial dysbiosis in infancy can affect immune development and differentiation, resulting in a suboptimal balance between innate and adaptive immunity. This evolving dysregulation of secretion of pro-inflammatory mediators has been associated with persistent airway inflammation and subsequent asthma development. In this review, we examine current evidence around associations between the airway and gut microbial dysbiosis with childhood asthma development. More specifically, this review focuses on discussing the integrated roles of environmental exposures, host metabolic and immune responses, airway and gut microbial dysbiosis in driving childhood asthma development.
Collapse
Affiliation(s)
- Conglin Liu
- Immunology & Inflammation Research Therapeutic Area, Sanofi US, Cambridge, MA, United States
- *Correspondence: Conglin Liu, ; Zhaozhong Zhu,
| | | | - Sejal Saglani
- National Heart and Lung Institute, Imperial College, London, United Kingdom
- Centre for Paediatrics and Child Health, Imperial College, London, United Kingdom
| | - Michael Bowman
- Immunology & Inflammation Research Therapeutic Area, Sanofi US, Cambridge, MA, United States
| | - Lih-Ling Lin
- Immunology & Inflammation Research Therapeutic Area, Sanofi US, Cambridge, MA, United States
| | - Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- *Correspondence: Conglin Liu, ; Zhaozhong Zhu,
| |
Collapse
|