1
|
Brod SA. The genealogy, methodology, similarities and differences of immune reconstitution therapies for multiple sclerosis and neuromyelitis optica. Autoimmun Rev 2022; 21:103170. [PMID: 35963569 DOI: 10.1016/j.autrev.2022.103170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 11/09/2022]
Abstract
Immune reconstitution therapies (IRTs) are a type of short course procedure or pharmaceutical agent within the MS pharmacopeia. They emanate from oncology and induce transient incomplete lympho-ablation with or without myelo-ablation, resulting in potential prolonged immunomodulation. Thus, they provide significant prophylaxis from disease activity without retreatment. Modern IRT for autoimmunity encompasses a heterogeneous group of pulsed lympho- and non-myelo-ablative treatments designed to re-boot the adaptive immune system in a quasi-permanent manner - a re-induction of ontogeny. IRT is the extensive debulking of an auto-aggressive immune system to attempt to reach the Holy Grail of immune tolerance. This incomplete yet significant lympho-ablation induces lymphoproliferation, reduces pathogenic clonal cells, causes thymopoiesis and results in the induction of immune tolerance. Lympho-ablation with immune reconstitution can result in minimal residual autoimmunity. There is a resetting of the immune thermostat - i.e., the immunostat. IRTs have the potential to provide prolonged periods of disease inactivity without retreatment in part through the immunological results of their pulsatile lymphocyte depletion. It is vital to increase our understanding of how IRTs alter a patient's immune response to the antigenic target of the disease so that we can devise newer, more durable and safer forms of such agents. What common features do extant IRTs (i.e., stem cell transplant, alemtuzumab and oral cladribine) have to produce the durable therapeutic response without long term treatment in neuroimmunological diseases such as MS (multiple sclerosis) and NMOSD (neuromyelitis optica spectrum disorders)? Can we learn from these critical features to predict what other maneuvers or agents might effect similar clinical results with equal or greater efficacy and safety?
Collapse
Affiliation(s)
- Staley A Brod
- Division of MS/Neuro-immunology, Department of Neurology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA.
| |
Collapse
|
2
|
Gilkeson GS. Safety and Efficacy of Mesenchymal Stromal Cells and Other Cellular Therapeutics in Rheumatic Diseases in 2022: A review of what we know so far. Arthritis Rheumatol 2022; 74:752-765. [PMID: 35128813 DOI: 10.1002/art.42081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/13/2021] [Accepted: 02/01/2022] [Indexed: 11/06/2022]
Abstract
Although there are a number of new immunosuppressives and biologics approved for treating various autoimmune/inflammatory rheumatic diseases, there remain a substantial number of patients who have no clinical response or limited clinical response to these available treatments. Use of cellular therapies is a novel approach for the treatment of autoimmune/inflammatory rheumatic diseases with perhaps enhanced efficacy and less toxicity than current therapies. Autologous hematopoietic stem cell transplants were the first foray into cellular therapies with proven efficacy in scleroderma and multiple sclerosis. Newer yet unproven cellular therapies include allogenic mesenchymal stromal cells, shown effective in graft vs host disease and in healing of Crohn's fistulas. CAR-T cells are effective in various malignancies with possible usage in rheumatic diseases, as shown in preclinical studies in murine lupus and recently in human lupus. T regulatory cells are one of the master controllers of the immune response and are decreased in number and/or effectiveness in specific autoimmune diseases. Expansion of autologous T regulatory cells is an attractive approach to controlling autoimmunity. There are a number of other regulatory cells in the immune system including regulatory B cells, dendritic cells, macrophages, and other T cell types that are early in development. In this review, the current evidence for efficacy and mechanisms of actions of cellular therapies already in use or in clinical trials in human autoimmune diseases will be discussed including limitations of these therapies and potential side effects.
Collapse
Affiliation(s)
- Gary S Gilkeson
- Department of Medicine, Medical University of South Carolina, Charleston, SC.,Medical Research Service, Ralph H. Johnson VAMC, Charleston, SC
| |
Collapse
|
3
|
Lublóy Á. Medical crowdfunding in a healthcare system with universal coverage: an exploratory study. BMC Public Health 2020; 20:1672. [PMID: 33167927 PMCID: PMC7653851 DOI: 10.1186/s12889-020-09693-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Background In recent years, crowdfunding for medical expenses has gained popularity, especially in countries without universal health coverage. Nevertheless, universal coverage does not imply covering all medical costs for everyone. In countries with universal coverage unmet health care needs typically emerge due to financial reasons: the inability to pay the patient co-payments, and additional and experimental therapies not financed by the health insurance fund. This study aims at mapping unmet health care needs manifested in medical crowdfunding campaigns in a country with universal health coverage. Methods In this exploratory study we assess unmet health care needs in Germany by investigating 380 medical crowdfunding campaigns launched on Leetchi.com. We combine manual data extraction with text mining tools to identify the most common conditions, diseases and disorders which prompted individuals to launch medical crowdfunding campaigns in Germany. We also assess the type and size of health-related expenses that individuals aim to finance from donations. Results We find that several conditions frequently listed in crowdfunding campaigns overlap with the most disabling conditions: cancer, mental disorders, musculoskeletal disorders, and neurological disorders. Nevertheless, there is no strong association between the disease burden and the condition which prompted individuals to ask for donations. Although oral health, lipoedema, and genetic disorders and rare diseases are not listed among leading causes of disability worldwide, these conditions frequently prompted individuals to turn to crowdfunding. Unmet needs are the highest for various therapies not financed by the health insurance fund; additional, complementary, and animal-assisted therapies are high on the wish list. Numerous people sought funds to cover the cost of scientifically poorly supported or unsupported therapies. In line with the social drift hypothesis, disability and bad health status being associated with poor socioeconomic status, affected individuals frequently collected donations for their living expenses. Conclusions In universal healthcare systems, medical crowdfunding is a viable option to finance alternative, complementary, experimental and scientifically poorly supported therapies not financed by the health insurance fund. Further analysis of the most common diseases and disorders listed in crowdfunding campaigns might provide guidance for national health insurance funds in extending their list of funded medical interventions. The fact of numerous individuals launching crowdfunding campaigns with the same diseases and disorders signals high unmet needs for available but not yet financed treatment. One prominent example of such treatment is liposuction for patients suffering from lipoedema; these treatments were frequently listed in crowdfunding campaigns and might soon be available for patients at the expense of statutory health insurance in Germany.
Collapse
Affiliation(s)
- Ágnes Lublóy
- Department of Finance and Accounting, Stockholm School of Economics in Riga, Strēlnieku iela 4a, Rīga, LV-1010, Latvia. .,Department of Finance, Corvinus University of Budapest, Fővám tér 8, Budapest, 1093, Hungary.
| |
Collapse
|
4
|
Greco R, Labopin M, Badoglio M, Veys P, Furtado Silva JM, Abinun M, Gualandi F, Bornhauser M, Ciceri F, Saccardi R, Lankester A, Alexander T, Gennery AR, Bader P, Farge D, Snowden JA. Allogeneic HSCT for Autoimmune Diseases: A Retrospective Study From the EBMT ADWP, IEWP, and PDWP Working Parties. Front Immunol 2019; 10:1570. [PMID: 31333680 PMCID: PMC6622152 DOI: 10.3389/fimmu.2019.01570] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 06/24/2019] [Indexed: 12/29/2022] Open
Abstract
Background: This retrospective study assessed the use and long-term outcome of allogeneic hematopoietic stem cell transplantation (HSCT) in patients with severe autoimmune diseases (ADs), reported to the European Society for Blood and Marrow Transplantation (EBMT) registry. Methods: Between 1997 and 2014, 128 patients received allogeneic HSCT for various hematological (n = 49) and non-hematological (n = 79) refractory ADs. The median age was 12.7 years (0.2–62.2). Donors were syngeneic for seven, matched related for 46, unrelated for 51, haploidentical for 15, and cord blood for nine patients. Results: The incidence of grades II-IV acute graft-vs.-host disease (GvHD) was 20.8% at 100 days. Cumulative incidence of chronic GvHD was 27.8% at 5-years. Non-relapse mortality (NRM) was 12.7% at 100-days. Overall survival (OS) and Progression-Free Survival (PFS) were 70.2 and 59.4% at 5-years, respectively. By multivariate analysis, age <18 years, males, and more recent year of transplant were found to be significantly associated with improved PFS. Reduced conditioning intensity was associated with a lower NRM. On a subgroup of 64 patients with detailed information a complete clinical response was obtained in 67% of patients at 1-year. Conclusions: This large EBMT survey suggests the potential of allogeneic HSCT to induce long-term disease control in a large proportion of refractory ADs, with acceptable toxicities and NRM, especially in younger patients.
Collapse
Affiliation(s)
- Raffaella Greco
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Myriam Labopin
- EBMT Paris Study Office/CEREST-TC - Department of Haematology, Saint Antoine Hospital - INSERM UMR 938 - Université Pierre et Marie Curie, Paris, France
| | - Manuela Badoglio
- EBMT Paris Study Office/CEREST-TC - Department of Haematology, Saint Antoine Hospital - INSERM UMR 938 - Université Pierre et Marie Curie, Paris, France
| | - Paul Veys
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital, London, United Kingdom
| | - Juliana M Furtado Silva
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital, London, United Kingdom
| | - Mario Abinun
- Great North Childrens' Hospital, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Francesca Gualandi
- Divisione Ematologia e Trapianto di Midollo, IRCCS AOU San Martino-IST, Genova, Italy
| | - Martin Bornhauser
- Medizinische Klinik und Poliklinik I, Carl Gustav Carus University Hospital, Dresden, Germany
| | - Fabio Ciceri
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Riccardo Saccardi
- Department of Haematology, Careggi University Hospital, Florence, Italy
| | - Arjan Lankester
- IEWP-EBMT Chair: Department of Pediatrics, University Medical Centre, Leiden, Netherlands
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Charité-University Medicine Berlin, Berlin, Germany
| | - Andrew R Gennery
- Great North Childrens' Hospital, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Peter Bader
- PDWP-EBMT Chair; Division for SCT and Immunology, Department for Children and Adolescents, Frankfurt, Germany
| | - Dominique Farge
- Unité de Médecine Interne: Maladies Auto-immunes et Pathologie Vasculaire (UF 04), Hôpital St-Louis, AP-HP, Paris, France.,Centre de Référence des Maladies Auto-Immunes Systémiques Rares d'Ile-de-France, Filière FAI2R, Paris, France.,EA 3518, Université Denis Diderot, Paris, France.,Department of Internal Medicine, McGill University, Montreal, QC, Canada
| | - John A Snowden
- ADWP-EBMT Chair; Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| |
Collapse
|
5
|
Kleist C, Mohr E, Gaikwad S, Dittmar L, Kuerten S, Platten M, Mier W, Schmitt M, Opelz G, Terness P. Autoantigen-specific immunosuppression with tolerogenic peripheral blood cells prevents relapses in a mouse model of relapsing-remitting multiple sclerosis. J Transl Med 2016; 14:99. [PMID: 27131971 PMCID: PMC4852098 DOI: 10.1186/s12967-016-0860-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 04/12/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Dendritic cells (DCs) rendered suppressive by treatment with mitomycin C and loaded with the autoantigen myelin basic protein demonstrated earlier their ability to prevent experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis (MS). This provides an approach for prophylactic vaccination against autoimmune diseases. For clinical application such DCs are difficult to generate and autoantigens hold the risk of exacerbating the disease. METHODS We replaced DCs by peripheral mononuclear cells and myelin autoantigens by glatiramer acetate (Copaxone(®)), a drug approved for the treatment of MS. Spleen cells were loaded with Copaxone(®), incubated with mitomycin C (MICCop) and injected into mice after the first bout of relapsing-remitting EAE. Immunosuppression mediated by MICCop was investigated in vivo by daily assessment of clinical signs of paralysis and in in vitro restimulation assays of peripheral immune cells. Cytokine profiling was performed by enzyme-linked immunosorbent assay (ELISA). Migration of MICCop cells after injection was examined by biodistribution analysis of (111)Indium-labelled MICCop. The number and inhibitory activity of CD4(+)CD25(+)FoxP3(+) regulatory T cells were analysed by histology, flow cytometry and in vitro mixed lymphocyte cultures. In order to assess the specificity of MICCop-induced suppression, treated EAE mice were challenged with the control protein ovalbumin. Humoral and cellular immune responses were then determined by ELISA and in vitro antigen restimulation assay. RESULTS MICCop cells were able to inhibit the harmful autoreactive T-cell response and prevented mice from further relapses without affecting general immune responses. Administered MICCop migrated to various organs leading to an increased infiltration of the spleen and the central nervous system with CD4(+)CD25(+)FoxP3(+) cells displaying a suppressive cytokine profile and inhibiting T-cell responses. CONCLUSION We describe a clinically applicable cell therapeutic approach for controlling relapses in autoimmune encephalomyelitis by specifically silencing the deleterious autoimmune response.
Collapse
Affiliation(s)
- Christian Kleist
- Department of Transplantation Immunology, Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany. .,Department of Radiology, Division of Nuclear Medicine, University of Heidelberg, 69120, Heidelberg, Germany.
| | - Elisabeth Mohr
- Department of Transplantation Immunology, Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany.,Hexal AG, 83607, Holzkirchen, Germany
| | - Sadanand Gaikwad
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Quintiles GmbH, 63263, Neu-Isenburg, Germany
| | - Laura Dittmar
- Department of Transplantation Immunology, Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany.,Becton Dickinson GmbH, BD Life Sciences, 69120, Heidelberg, Germany
| | - Stefanie Kuerten
- Department of Anatomy I, University of Cologne, Joseph-Stelzmann-Str. 9, 50931, Cologne, Germany.,Department of Anatomy and Cell Biology, University of Wuerzburg, 97070, Würzburg, Germany
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Neurooncology, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Walter Mier
- Department of Radiology, Division of Nuclear Medicine, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Michael Schmitt
- Department of Internal Medicine V, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Gerhard Opelz
- Department of Transplantation Immunology, Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Peter Terness
- Department of Transplantation Immunology, Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Porada CD, Atala AJ, Almeida-Porada G. The hematopoietic system in the context of regenerative medicine. Methods 2015; 99:44-61. [PMID: 26319943 DOI: 10.1016/j.ymeth.2015.08.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/06/2015] [Accepted: 08/23/2015] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic stem cells (HSC) represent the prototype stem cell within the body. Since their discovery, HSC have been the focus of intensive research, and have proven invaluable clinically to restore hematopoiesis following inadvertent radiation exposure and following radio/chemotherapy to eliminate hematologic tumors. While they were originally discovered in the bone marrow, HSC can also be isolated from umbilical cord blood and can be "mobilized" peripheral blood, making them readily available in relatively large quantities. While their ability to repopulate the entire hematopoietic system would already guarantee HSC a valuable place in regenerative medicine, the finding that hematopoietic chimerism can induce immunological tolerance to solid organs and correct autoimmune diseases has dramatically broadened their clinical utility. The demonstration that these cells, through a variety of mechanisms, can also promote repair/regeneration of non-hematopoietic tissues as diverse as liver, heart, and brain has further increased their clinical value. The goal of this review is to provide the reader with a brief glimpse into the remarkable potential HSC possess, and to highlight their tremendous value as therapeutics in regenerative medicine.
Collapse
Affiliation(s)
- Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083, United States.
| | - Anthony J Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083, United States.
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083, United States.
| |
Collapse
|
7
|
Greco R, Bondanza A, Vago L, Moiola L, Rossi P, Furlan R, Martino G, Radaelli M, Martinelli V, Carbone MR, Lupo Stanghellini MT, Assanelli A, Bernardi M, Corti C, Peccatori J, Bonini C, Vezzulli P, Falini A, Ciceri F, Comi G. Allogeneic hematopoietic stem cell transplantation for neuromyelitis optica. Ann Neurol 2014; 75:447-53. [PMID: 24318127 DOI: 10.1002/ana.24079] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/31/2013] [Accepted: 11/29/2013] [Indexed: 12/27/2022]
Abstract
Neuromyelitis optica is a rare neurological autoimmune disorder characterized by a poor prognosis. Immunosuppression can halt disease progression, but some patients are refractory to multiple treatments, experiencing frequent relapses with accumulating disability. Here we report on durable clinical remissions after allogeneic hematopoietic stem cell transplantation in 2 patients suffering from severe forms of the disease. Immunological data evidenced disappearance of the pathogenic antibodies and regeneration of a naive immune system of donor origin. These findings correlated with evident clinical and radiological improvement in both patients, warranting extended clinical trials to investigate this promising therapeutic option.
Collapse
|
8
|
Karussis D, Vaknin-Dembinsky A. Hematopoietic stem cell transplantation in multiple sclerosis: a review of the clinical experience and a report of an international meeting. Expert Rev Clin Immunol 2014; 6:347-52. [DOI: 10.1586/eci.10.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Papanastasiou AD, Chatzantoni K, Mouzaki A. Current therapeutic leads for the treatment of autoimmune diseases: stem cell transplantation and inhibition of post-translational modifications of autoantigens. Expert Opin Drug Discov 2013; 3:1255-65. [PMID: 23489081 DOI: 10.1517/17460441.3.10.1255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The complexity of autoimmune diseases is reflected on their clinicopathological heterogeneity and the failure to find treatments that cure them after over a century of research. Conventional treatments help ameliorate disease activity but they treat the symptoms whereas the diseases remain incurable in the vast majority of patients. OBJECTIVE To confront diseases of such nature it is essential to discover therapeutics that will lead to the induction of tolerance or the specific deletion of autoreactive lymphocytes. Current basic and clinical research strategies focus on the better identification of self-antigens, the induction of T regulatory cells that can suppress autoreactive cell activities or, more radically, the 'reformatting' of the immune system through hematopoietic stem cell transplantation (HSCT). METHODS We analyzed literature on autoimmune disease therapeutics, focusing on new antigens that may arise from post-translational modifications of common proteins and, also, the area of HSCT. RESULTS/CONCLUSIONS With the recent discovery that citrullination of self-epitopes may be a major pathogenic mechanism for, at least, certain types of autoimmune diseases, it becomes apparent that potentially any self-antigen in the body can be a target of an autoimmune attack. In addition, although the available data on HSCT applied to patients suffering from severe refractory autoimmune diseases do not allow for the determination of the efficacy of the various methods employed to re-educate the immune system, they contribute to our understanding of disease pathogenesis and the improvement on the therapeutic approaches.
Collapse
Affiliation(s)
- Anastasios D Papanastasiou
- University of Patras, Medical School, Division of Hematology, Department of Internal Medicine, Patras, GR-261 10, Greece +30 2610 969123 ; +30 2610 969123 ;
| | | | | |
Collapse
|
10
|
Toh BH, Chan J, Kyaw T, Alderuccio F. Cutting edge issues in autoimmune gastritis. Clin Rev Allergy Immunol 2012; 42:269-78. [PMID: 21174235 DOI: 10.1007/s12016-010-8218-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autoimmune gastritis is the outcome of a pathological CD4 T cell-mediated autoimmune response directed against the gastric H/K-ATPase. Silent initially, the gastric lesion becomes manifest in humans by the development of megaloblastic pernicious anemia arising from vitamin B12 deficiency. Cutting edge issues in this disease relate to its epidemiology, immunogenetics, a role for Helicobacter pylori as an infective trigger through molecular mimicry, its immunopathogenesis, associated organ-specific autoimmune diseases, laboratory diagnosis, and approaches to curative therapy.
Collapse
Affiliation(s)
- Ban-Hock Toh
- Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University, Melbourne, VIC, Australia.
| | | | | | | |
Collapse
|
11
|
Marmont du Haut Champ AM. Hematopoietic stem cell transplantation for systemic lupus erythematosus. Clin Dev Immunol 2012; 2012:380391. [PMID: 22969816 PMCID: PMC3437314 DOI: 10.1155/2012/380391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/06/2012] [Accepted: 07/03/2012] [Indexed: 12/29/2022]
Abstract
Two streams of research are at the origin of the utilization of hematopoietic stem cell transplantation (HSCT) for severe autoimmune diseases (SADs). The allogeneic approach came from experimental studies on lupus mice, besides clinical results in coincidental diseases. The autologous procedure was encouraged by researches on experimental neurological and rheumatic disorders. At present the number of allogeneic HSCT performed for human SADs can be estimated to not over 100 patients, and the results are not greatly encouraging, considering the significant transplant-related mortality (TRM) and the occasional development of a new autoimmune disorder and/or relapses notwithstanding full donor chimerism. Autologous HSCT for refractory SLE has become a major target. Severe cases have been salvaged, TRM is low and diminishing, and prolonged clinical remissions are obtainable. Two types of immune resetting have been established, "re-education" and regulatory T cell (Tregs) normalization. Allogeneic HSCT for SLE seems best indicated for patients with disease complicated by an oncohematologic malignancy. Autologous HSCT is a powerful salvage therapy for otherwise intractable SLE. The duration of remission in uncertain, but a favorable response to previously inactive treatments is a generally constant feature. The comparison with new biological agents, or the combination of both, are to be ascertained.
Collapse
Affiliation(s)
- Alberto M Marmont du Haut Champ
- Division of Hematology and Stem Cell Transplantation, IRCCS Azienda Ospedaliera Universitaria San Martino-IST, Genoa, Italy.
| |
Collapse
|
12
|
Nasa Z, Chung JY, Chan J, Toh BH, Alderuccio F. Nonmyeloablative conditioning generates autoantigen-encoding bone marrow that prevents and cures an experimental autoimmune disease. Am J Transplant 2012; 12:2062-71. [PMID: 22694476 DOI: 10.1111/j.1600-6143.2012.04068.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Autoimmune diseases result from chronic targeted immune responses that lead to tissue pathology and disease. The potential of autologous hematopoietic stem cells transplantation as a treatment for autoimmunity is currently being trialled but disease relapse is an issue. We have previously shown in a mouse model of experimental autoimmune encephalomyelitis (EAE) that the transplantation of bone marrow (BM) transduced to encode the autoantigen myelin oligodendrocyte glycoprotein (MOG) can prevent disease induction. However these studies were performed using lethal irradiation to generate BM chimeras and a critical factor for translation to humans would be the ability to utilize low toxic preconditioning regimes. In this study, treosulfan was used as a nonmyeloablative agent to generate BM chimeras encoding MOG and assessed in models of EAE induction and reversal. We find that treosulfan conditioning can promote a low degree of chimerism that is sufficient to promote antigen specific tolerance and protect mice from EAE. When incorporated into a curative protocol for treating mice with established EAE, nonmyeloablative conditioning and low chimerism was equally efficient in maintaining disease resistance. These studies further underpin the potential and feasibility of utilizing a gene therapy approach to treat autoimmune disease.
Collapse
Affiliation(s)
- Z Nasa
- Department of Immunology, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | | | | | | | | |
Collapse
|
13
|
Burt RK, Shah SJ, Dill K, Grant T, Gheorghiade M, Schroeder J, Craig R, Hirano I, Marshall K, Ruderman E, Jovanovic B, Milanetti F, Jain S, Boyce K, Morgan A, Carr J, Barr W. Autologous non-myeloablative haemopoietic stem-cell transplantation compared with pulse cyclophosphamide once per month for systemic sclerosis (ASSIST): an open-label, randomised phase 2 trial. Lancet 2011; 378:498-506. [PMID: 21777972 DOI: 10.1016/s0140-6736(11)60982-3] [Citation(s) in RCA: 374] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Non-randomised studies of haemopoietic stem-cell transplantation (HSCT) in systemic sclerosis have shown improvements in lung function and skin flexibility but high treatment-related mortality. We aimed to assess safety and efficacy of autologous non-myeloablative HSCT in a phase 2 trial compared with the standard of care, cyclophosphamide. METHODS In our open-label, randomised, controlled phase 2 trial, we consecutively enrolled patients at Northwestern Memorial Hospital (Chicago, IL, USA) who were aged younger than 60 years with diffuse systemic sclerosis, modified Rodnan skin scores (mRSS) of more than 14, and internal organ involvement or restricted skin involvement (mRSS <14) but coexistent pulmonary involvement. We randomly allocated patients 1:1 by use of a computer-generated sequence with a mixed block design (blocks of ten and four) to receive HSCT, 200 mg/kg intravenous cyclophosphamide, and 6·5 mg/kg intravenous rabbit antithymocyte globulin or to receive 1·0 g/m(2) intravenous cyclophosphamide once per month for 6 months. The primary outcome for all enrolled patients was improvement at 12 months' follow-up, defined as a decrease in mRSS (>25% for those with initial mRSS >14) or an increase in forced vital capacity by more than 10%. Patients in the control group with disease progression (>25% increase in mRSS or decrease of >10% in forced vital capacity) despite treatment with cyclophosphamide could switch to HSCT 12 months after enrolment. This study is registered with ClinicalTrials.gov, number NCT00278525. FINDINGS Between Jan 18, 2006, and Nov 10, 2009 we enrolled 19 patients. All ten patients randomly allocated to receive HSCT improved at or before 12 months' follow-up, compared with none of nine allocated to cyclophosphamide (odds ratio 110, 95% CI 14·04-∞; p=0·00001). Eight of nine controls had disease progression (without interval improvement) compared with no patients treated by HSCT (p=0·0001), and seven patients switched to HSCT. Compared with baseline, data for 11 patients with follow-up to 2 years after HSCT suggested that improvements in mRSS (p<0·0001) and forced vital capacity (p<0·03) persisted. INTERPRETATION Non-myeloablative autologous HSCT improves skin and pulmonary function in patients with systemic sclerosis for up to 2 years and is preferable to the current standard of care, but longer follow-up is needed. FUNDING None.
Collapse
Affiliation(s)
- Richard K Burt
- Division of Immunotherapy, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Alderuccio F, Nasa Z, Chung J, Ko HJ, Chan J, Toh BH. Hematopoietic Stem Cell Gene Therapy as a Treatment for Autoimmune Diseases. Mol Pharm 2011; 8:1488-94. [DOI: 10.1021/mp2001523] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Frank Alderuccio
- Department of Immunology, Monash Central Clinical School, and ‡Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University, Victoria, Australia
| | - Zeyad Nasa
- Department of Immunology, Monash Central Clinical School, and ‡Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University, Victoria, Australia
| | - Jieyu Chung
- Department of Immunology, Monash Central Clinical School, and ‡Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University, Victoria, Australia
| | - Hyun-Ja Ko
- Department of Immunology, Monash Central Clinical School, and ‡Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University, Victoria, Australia
| | - James Chan
- Department of Immunology, Monash Central Clinical School, and ‡Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University, Victoria, Australia
| | - Ban-Hock Toh
- Department of Immunology, Monash Central Clinical School, and ‡Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University, Victoria, Australia
| |
Collapse
|
15
|
Successful modulation of type 2 diabetes in db/db mice with intra-bone marrow--bone marrow transplantation plus concurrent thymic transplantation. J Autoimmun 2011; 35:414-23. [PMID: 20884174 DOI: 10.1016/j.jaut.2010.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 09/02/2010] [Accepted: 09/03/2010] [Indexed: 12/29/2022]
Abstract
There is increasing evidence that both autoimmune and autoinflammatory mechanisms are involved in the development of not only type 1 diabetes mellitus (T1 DM), but also type 2 diabetes mellitus (T2 DM). Our laboratory has focused on this concept, and in earlier efforts replaced the bone marrow cells (BMCs) of leptin receptor-deficient (db/db) mice, an animal model of T2DM, with those of normal C57BL/6 (B6) mice by IBM-BMT. However, the outcome was poor due to incomplete recovery of T cell function. Therefore, we hypothesized that intra-bone marrow-bone marrow transplantation plus thymus transplantation (IBM-BMT + TT) could be used to treat T2 DM by normalizing the T cell imbalance. Hence we addressed this issue by using such dual transplantation and demonstrate herein that seven weeks later, recipient db/db mice manifested improved body weight, reduced levels of blood glucose, and a reduction of plasma IL-6 and IL-1β. More importantly, this treatment regimen showed normal CD4/CD8 ratios, and increased plasma adiponectin levels, insulin sensitivity, and the number of insulin-producing cells. Furthermore, the expression of pancreatic pAKT, pLKB1, pAMPK and HO-1 was increased in the mice treated with IBM-BMT + TT. Our data show that IBM-BMT + TT treatment normalizes T cell subsets, cytokine imbalance and insulin sensitivity in the db/db mouse, suggesting that IBM-BMT + TT is a viable therapeutic option in the treatment of T2 DM.
Collapse
|
16
|
Annaloro C, Onida F, Lambertenghi Deliliers G. Autologous hematopoietic stem cell transplantation in autoimmune diseases. Expert Rev Hematol 2011; 2:699-715. [PMID: 21082959 DOI: 10.1586/ehm.09.60] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The term 'autoimmune diseases' encompasses a spectrum of diseases whose clinical manifestations and, possibly, biological features vary widely. The results of conventional treatment are considered unsatisfactory in aggressive forms, with subsets of patients having short life expectancies. Relying on wide experimental evidence and more feeble clinical data, some research groups have used autologous hematopoietic stem cell transplantation (HSCT) in the most disabling autoimmune diseases with the aim of resetting the patient's immune system. Immunoablative conditioning regimens are preferred over their myeloablative counterparts, and some form of in vivo and/or ex vivo T-cell depletion is generally adopted. Despite 15 years' experience, published controlled clinical trials are still lacking, with the evidence so far available coming from pilot studies and registry surveys. In multiple sclerosis, clinical improvement, or at least lasting disease stabilization, can be achieved in the majority of the patients; nevertheless, the worst results are observed in patients with progressive disease, where no benefit can be expected from conventional therapy. Concerning rheumatologic diseases, wide experience has been acquired in systemic sclerosis, with long-term improvements in cutaneous disease being frequently reported, although visceral involvement remains unchanged at best. Autografting has proved to be barely effective in rheumatoid arthritis and quite toxic in juvenile idiopathic arthritis, whereas it leads to clinical remission and the reversal of visceral impairment in the majority of patients with systemic lupus erythematosus. A promising indication is Crohn's disease, in which long-term endoscopic remission is frequently observed. Growing experience with autologous HCST in autoimmune diseases has progressively reduced concerns about transplant-related mortality and secondary myelodysplasia/leukemia. Therefore, a sustained complete remission seems to be within the reach of autografting in some autoimmune diseases; in others, the indications, risks and benefits of autografting need to be better defined. Consequently, the search for new drugs should also be encouraged.
Collapse
Affiliation(s)
- Claudio Annaloro
- Bone Marrow Transplantation Center-Hematology I, Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, University of Milan, Via Francesco Sforza 35, Milan, Italy
| | | | | |
Collapse
|
17
|
|
18
|
Ko HJ, Chung JY, Nasa Z, Chan J, Siatskas C, Toh BH, Alderuccio F. Targeting MOG expression to dendritic cells delays onset of experimental autoimmune disease. Autoimmunity 2010; 44:177-87. [PMID: 20883147 DOI: 10.3109/08916934.2010.515274] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Haematopoietic stem cell (HSC) transfer coupled with gene therapy is a powerful approach to treating fatal diseases such as X-linked severe combined immunodeficiency. This ability to isolate and genetically manipulate HSCs also offers a strategy for inducing immune tolerance through ectopic expression of autoantigens. We have previously shown that retroviral transduction of bone marrow (BM) with vectors encoding the autoantigen, myelin oligodendrocyte glycoprotein (MOG), can prevent the induction of experimental autoimmune encephalomyelitis (EAE). However, ubiquitous cellular expression of autoantigen driven by retroviral promoters may not be the best approach for clinical translation and a targeted expression approach may be more acceptable. As BM-derived dendritic cells (DCs) play a major role in tolerance induction, we asked whether targeted expression of MOG, a target autoantigen in EAE, to DCs can promote tolerance induction and influence the development of EAE. Self-inactivating retroviral vectors incorporating the mouse CD11c promoter were generated and used to transduce mouse BM cells. Transplantation of gene-modified cells into irradiated recipients resulted in the generation of chimeric mice with transgene expression limited to DCs. Notably, chimeric mice transplanted with MOG-expressing BM cells manifest a significant delay in the development of EAE suggesting that targeted antigen expression to tolerogenic cell types may be a feasible approach to inducing antigen-specific tolerance.
Collapse
Affiliation(s)
- Hyun-Ja Ko
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
19
|
Askenasy EM, Askenasy N, Askenasy JJ. Does lymphopenia preclude restoration of immune homeostasis? The particular case of type 1 diabetes. Autoimmun Rev 2010; 9:687-90. [DOI: 10.1016/j.autrev.2010.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Accepted: 05/24/2010] [Indexed: 11/27/2022]
|
20
|
Immunosuppressive therapy exacerbates autoimmunity in NOD mice and diminishes the protective activity of regulatory T cells. J Autoimmun 2010; 35:145-52. [PMID: 20638242 DOI: 10.1016/j.jaut.2010.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 06/13/2010] [Indexed: 01/29/2023]
Abstract
Mounting evidence indicates that immunosuppressive therapy and autologous bone marrow transplantation are relatively inefficient approaches to treat autoimmune diabetes. In this study we assessed the impact of immunosuppression on inflammatory insulitis in NOD mice, and the effect of radiation on immunomodulation mediated by adoptive transfer of various cell subsets. Sublethal radiation of NOD females at the age of 14 weeks (onset of hyperglycemia) delayed the onset of hyperglycemia, however two thirds of the mice became diabetic. Adoptive transfer of splenocytes into irradiated NON and NOD mice precipitated disease onset despite increased contents of CD25(+)FoxP3(+) T cells in the pancreas and regional lymphatics. Similar phenotypic changes were observed when CD25(+) T cells were infused after radiation, which also delayed disease onset without affecting its incidence. Importantly, irradiation increased the susceptibility to diabetes in NOD and NON mice (71-84%) as compared to immunomodulation with splenocytes and CD25(+) T cells in naïve recipients (44-50%). Although irradiation had significant and durable influence on pancreatic infiltrates and the fractions of functional CD25(+)FoxP3(+) Treg cells were elevated by adoptive cell transfer, this approach conferred no protection from disease progression. Irradiation was ineffective both in debulking of pathogenic clones and in restoring immune homeostasis, and the consequent homeostatic expansion evolves as an unfavorable factor in attempts to restore self-tolerance and might even provoke uncontrolled proliferation of pathogenic clones. The obstacles imposed by immunosuppression on abrogation of autoimmune insulitis require replacement of non-specific immunosuppressive therapy by selective immunomodulation that does not cause lymphopenia.
Collapse
|
21
|
Lawitschka A, Peters C, Seidel MG, Havranek A, Heitger A, Fazekas T, Gueclue ED, Gadner H, Matthes-Martin S. Long-term remission in pediatric Wegener granulomatosis following allo-SCT after reduced-intensity conditioning. Bone Marrow Transplant 2010; 46:462-3. [PMID: 20531288 DOI: 10.1038/bmt.2010.126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Invernizzi P, Selmi C, Gershwin ME. Update on primary biliary cirrhosis. Dig Liver Dis 2010; 42:401-8. [PMID: 20359968 PMCID: PMC2871061 DOI: 10.1016/j.dld.2010.02.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 02/24/2010] [Indexed: 12/11/2022]
Abstract
Primary biliary cirrhosis is an autoimmune chronic liver disease characterized by progressive bile duct destruction eventually leading to cirrhosis, liver failure, and death. The autoimmune pathogenesis is supported by a plethora of experimental and clinical data, such as the presence of autoreactive T cells and serum autoantibodies. The aetiology remains unknown, although evidence suggests a role for both genetic susceptibility and environmental factors that remain to be determined. In fact, a number of chemicals and infectious agents have been proposed to induce the disease in predisposed individuals. The recent availability of several murine models will significantly help in understanding pathophysiology mechanisms. In this review, we critically summarize the most recent data on the aetiopathogenesis of primary biliary cirrhosis, discuss the latest theories and developments, and suggest directions for future research.
Collapse
Affiliation(s)
- Pietro Invernizzi
- Division of Internal Medicine and Hepatobiliary Immunopathology Unit, IRCCS Istituto Clinico Humanitas, Rozzano, Italy, Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA
| | - Carlo Selmi
- Division of Internal Medicine and Hepatobiliary Immunopathology Unit, IRCCS Istituto Clinico Humanitas, Rozzano, Italy, Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA, Department of Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA
| |
Collapse
|
23
|
Ma D, Zhu Y, Ji C, Hou M. Targeting the Notch signaling pathway in autoimmune diseases. Expert Opin Ther Targets 2010; 14:553-65. [DOI: 10.1517/14728221003752750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Marmont AM, Saccardi R. This issue reports the results of HSCT. Concluding remarks. Autoimmunity 2010; 41:686-90. [PMID: 18958749 DOI: 10.1080/08916930802200240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Abstract
Among the numerous consequences of globalization, the dissemination of scientific research allows real-time comparisons of clinical and basic experimental data between different geographical areas. As a result, the field of geoepidemiology is now vigorously supported by multiple lines of evidence. This special issue of Autoimmunity Reviews is dedicated to the 2010 International Congress on Autoimmunity and aims to provide a state-of-the-art representation of what is currently known in the field of geoepidemiology for autoimmune diseases. The obvious implications of these observations is a role for environmental factors. We will herein review selected publications from prominent scientific journals to provide the bases to understand some of the lines of evidence proposed in the subsequent papers of this comprehensive volume. The ultimate goal is thus to define whether geoepidemiology should be considered a new challenge for autoimmunologists.
Collapse
Affiliation(s)
- Carlo Selmi
- Department of Internal Medicine, IRCCS Istituto Clinico Humanitas, Rozzano, Italy.
| |
Collapse
|
26
|
Arnson Y, Amital H, Guiducci S, Matucci-Cerinic M, Valentini G, Barzilai O, Maya R, Shoenfeld Y. The role of infections in the immunopathogensis of systemic sclerosis--evidence from serological studies. Ann N Y Acad Sci 2009; 1173:627-32. [PMID: 19758208 DOI: 10.1111/j.1749-6632.2009.04808.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Infections are believed to often play a role in the immunopathogenesis of autoimmune disorders; such is the case in systemic sclerosis (SSc). In order to evaluate the potential role infections may have on the pathogenesis of SSc, we assessed serological reactivity against various infectious agents in patients with SSc and compared them with healthy controls. Serological samples obtained from 80 patients with SSc were compared with 296 compatible healthy controls. Both groups were of European origin. All samples were tested for the presence of antibodies directed against hepatitis B virus, hepatitis C virus, toxoplasmosis, rubella, CMV, EBV, and Treponema pallidum. We applied Bio-Rad commercial and experimental kits to assess most antigens and ELISA assays to complete the panel. Patients with SSc had elevated IgM and IgG against Toxoplasma gondii and against CMV. Higher titers were also detected against the hepatitis B virus core protein (recombinant HBc antigen) using MONOLISA anti-HBc Plus commercial kit (Bio-Rad). A significantly higher rate of IgM antibodies against the capsid antigen of the EBV was detected in SSc patients compared with healthy controls, as well. These data demonstrate that antibodies against CMV, HBV, and toxoplasmosis were detected more often in patients with SSc. This association implies that infectious agents may have a role in disease pathogenesis and expression.
Collapse
Affiliation(s)
- Yoav Arnson
- Department of Medicine D, Meir Medical Center, Kfar-Saba, Israel
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Yaniv I, Ash S, Farkas DL, Askenasy N, Stein J. Consideration of strategies for hematopoietic cell transplantation. J Autoimmun 2009; 33:255-9. [PMID: 19800763 DOI: 10.1016/j.jaut.2009.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bone marrow transplantation has been adoptively transferred from oncology to the treatment of autoimmune disorders. Along with extension of prevalent transplant-related concepts, the assumed mechanism that arrests autoimmunity involves elimination of pathogenic cells and resetting of immune homeostasis. Similar to graft versus tumor (GVT) reactivity, allogeneic transplants are considered to provide a better platform of immunomodulation to induce a graft versus autoimmunity reaction (GVA). It is yet unclear whether recurrence of autoimmunity in both autologous and allogeneic settings reflects relapse of the disease, transplant-associated immune dysfunction or insufficient immune modulation. Possible causes of disease recurrence include reactivation of residual host pathogenic cells and persistence of memory cells, genetic predisposition to autoimmunity and pro-inflammatory characteristics of the target tissues. Most important, there is little evidence that autoimmune disorders are indeed abrogated by current transplant procedures, despite reinstitution of both peripheral and thymic immune homeostasis. It is postulated that non-specific immunosuppressive therapy that precedes and accompanies current bone marrow transplant strategies is detrimental to the active immune process that restores self-tolerance. This proposition refocuses the need to develop strategies of immunomodulation without immunosuppression.
Collapse
Affiliation(s)
- Isaac Yaniv
- Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel
| | | | | | | | | |
Collapse
|
28
|
Uprichard J, Dazzi F, Apperley JF, Laffan MA. Haemopoietic stem cell transplantation induces tolerance to donor antigens but not to foreign FVIII peptides. Haemophilia 2009; 16:143-7. [PMID: 19735311 DOI: 10.1111/j.1365-2516.2009.02099.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A 22-year-old male with severe haemophilia A and high responding factor VIII (FVIII) inhibitor underwent sibling haematopoietic stem cell transplantation in an attempt to eradicate the inhibitor. A reduced intensity conditioning regimen was followed by bone marrow infusion and continuous FVIII administration during immune reconstitution. Although substantial levels of FVIII:C (>100 IU dL(-1)) were maintained initially, at day +23 inhibitor titres rose, indicating boosting of recipient memory repertoire, despite complete donor chimerism. On day +46, he developed Klebsiella pneumoniae septicaemia and died. This case shows that, despite very successful transplantation tolerance, the procedure failed to control long-term memory effector immune cells.
Collapse
Affiliation(s)
- J Uprichard
- Department of Haematology, Imperial College, Du Cane Road, London, UK.
| | | | | | | |
Collapse
|
29
|
|
30
|
Kaminitz A, Mizrahi K, Yaniv I, Farkas DL, Stein J, Askenasy N. Low levels of allogeneic but not syngeneic hematopoietic chimerism reverse autoimmune insulitis in prediabetic NOD mice. J Autoimmun 2009; 33:83-91. [DOI: 10.1016/j.jaut.2009.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 06/29/2009] [Accepted: 07/01/2009] [Indexed: 12/29/2022]
|
31
|
Alderuccio F, Chan J, Scott DW, Toh BH. Gene therapy and bone marrow stem-cell transfer to treat autoimmune disease. Trends Mol Med 2009; 15:344-51. [PMID: 19665432 DOI: 10.1016/j.molmed.2009.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/09/2009] [Accepted: 06/09/2009] [Indexed: 12/14/2022]
Abstract
Current treatment of human autoimmune disease by autologous bone marrow stem-cell transfer is hampered by frequent disease relapses. This is most probably owing to re-emergent self-reactive lymphocytes. Gene therapy combined with bone marrow stem cells has successfully introduced genes lacking in immunodeficiences. Because the bone marrow compartment has a key role in establishing immune tolerance, this combination strategy should offer a rational approach to prevent re-emergent self-reactive lymphocytes by establishing solid, life-long immune tolerance to causative self-antigen. Indeed, we have recently demonstrated the success of this combination approach to prevent and cure an experimental autoimmune disease. We suggest that this combination strategy has the potential for translation to treat human autoimmune diseases in which causative self-antigens are known.
Collapse
Affiliation(s)
- Frank Alderuccio
- Department of Immunology, Nursing and Health Sciences, Monash University, Victoria 3181, Australia.
| | | | | | | |
Collapse
|
32
|
|
33
|
|
34
|
Borchers AT, Shimoda S, Bowlus C, Keen CL, Gershwin ME. Lymphocyte recruitment and homing to the liver in primary biliary cirrhosis and primary sclerosing cholangitis. Semin Immunopathol 2009; 31:309-22. [PMID: 19533132 PMCID: PMC2758172 DOI: 10.1007/s00281-009-0167-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 05/27/2009] [Indexed: 02/07/2023]
Abstract
The mechanisms operating in lymphocyte recruitment and homing to liver are reviewed. A literature review was performed on primary biliary cirrhosis (PBC), progressive sclerosing cholangitis (PSC), and homing mechanisms; a total of 130 papers were selected for discussion. Available data suggest that in addition to a specific role for CCL25 in PSC, the CC chemokines CCL21 and CCL28 and the CXC chemokines CXCL9 and CXCL10 are involved in the recruitment of T lymphocytes into the portal tract in PBC and PSC. Once entering the liver, lymphocytes localize to bile duct and retain by the combinatorial or sequential action of CXCL12, CXCL16, CX3CL1, and CCL28 and possibly CXCL9 and CXCL10. The relative importance of these chemokines in the recruitment or the retention of lymphocytes around the bile ducts remains unclear. The available data remain limited but underscore the importance of recruitment and homing.
Collapse
Affiliation(s)
- Andrea T Borchers
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
35
|
Kushida T, Ueda Y, Umeda M, Oe K, Okamoto N, Iida H, Abraham NG, Gershwin ME, Ikehara S. Allogeneic intra-bone marrow transplantation prevents rheumatoid arthritis in SKG/Jcl mice. J Autoimmun 2009; 32:216-22. [PMID: 19349145 DOI: 10.1016/j.jaut.2009.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Accepted: 02/11/2009] [Indexed: 12/12/2022]
Abstract
The treatment of autoimmune diseases by allogeneic bone marrow transplantation remains a promising therapeutic avenue. However, more intensive studies on murine models are essential before application to a large number of human patients. In particular, the use of bone marrow transplantation to treat rheumatoid arthritis has been problematic. We have taken advantage of the SKG/Jcl mouse that develops a chronic T cell-mediated autoimmune disease that mimics rheumatoid arthritis which attempted to prevent the development of immunopathology in these mice by allogeneic bone marrow transplantation (BMT). In particular, we utilized our unique technology in which bone marrow cells (BMCs) of control C57BL/6J mice are directly injected into the bone marrow cavity in the tibia of SKG mice (intra-bone marrow [IBM]-BMT). As controls, SKG/Jcl mice were transplanted with whole BMCs from syngeneic SKG mice. Importantly, 12 months after IBM-BMT [B6-->SKG] demonstrated no evidence of arthritis, whereas the control [SKG-->SKG] mice demonstrated, the expected immunopathology of a rheumatoid arthritis-like condition. Further, hematolymphoid cells in [B6-->SKG] mice were reconstituted by donor-derived cells and the percentages of Treg (Foxp3+/CD4+) cells, the percentages of receptor activator of nuclear factor-kappaB ligand (RANKL)+ cells on the CD4+ T cells and the serum levels of tumor necrosis factor-alpha, interleukin-1 and interleukin-6 were normalized in the [B6-->SKG] mice. These data suggest that IBM-BMT is a viable method of immunological manipulation that suppresses the severe joint destruction and bone absorption in SKG/Jcl mice and lends further credence to the use of this methodology in humans with intractable rheumatoid arthritis.
Collapse
Affiliation(s)
- Taketoshi Kushida
- Department of Orthopedic Surgery, Kansai Medical University, Moriguchi City, Osaka 570-8506, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Chan J, Ban EJ, Chun KH, Wang S, Bäckström BT, Bernard CCA, Toh BH, Alderuccio F. Transplantation of bone marrow transduced to express self-antigen establishes deletional tolerance and permanently remits autoimmune disease. THE JOURNAL OF IMMUNOLOGY 2008; 181:7571-80. [PMID: 19017946 DOI: 10.4049/jimmunol.181.11.7571] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autoimmune diseases are incurable. We have hypothesized that these diseases can be cured by the transplantation of bone marrow (BM) stem cells that have been genetically engineered to express self-Ag. Here we have tested this hypothesis in experimental autoimmune encephalomyelitis (EAE) induced by the self-Ag myelin oligodendrocyte glycoprotein (MOG). We show that, in mice, transplantation of BM genetically modified to express MOG prevented the induction and progression of EAE, and combined with antecedent corticosteroid treatment, induced long-term remission of established disease. Mice remained resistant to EAE development upon subsequent rechallenge with MOG. Transfer of BM from these mice rendered recipients resistant to EAE. Splenocytes from these mice failed to proliferate or produce IL-17, IFN-gamma, and GM-CSF in response to MOG(35-55) peptide stimulation and they failed to produce MOG autoantibody. Mechanistically, we demonstrated in vivo reduction in development of CD4(+) MOG(35-55)-specific thymocytes, indicative of clonal deletion with no evidence for selection of Ag-specific regulatory T cells. These findings validate our hypothesis that transplantation of genetically modified BM expressing disease-causative self-Ag provides a curative approach by clonal deletion of disease-causative self-reactive T cells.
Collapse
Affiliation(s)
- James Chan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Abstract
Advances in our understanding of autoimmunity and tumour immunity have led to improvements in immunotherapy for these diseases. Ironically, effective tumour immunity requires the induction of the same responses that underlie autoimmunity, whereas autoimmunity is driven by dysregulation of the same mechanisms that are involved in host defence and immune surveillance. Therefore, as we manipulate the immune system to treat cancer or autoimmunity, we inevitably unbalance the vital mechanisms that regulate self tolerance and antimicrobial resistance. This Science and Society article aims to dissect the conundrum that is inherent to the concept of immunotherapy and highlights the need for new and more specific therapeutic approaches.
Collapse
Affiliation(s)
- Rachel R Caspi
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
40
|
Abstract
Intense immunosuppression followed by autologous haematopoietic stem-cell transplantation has been assessed over the past few years as a possible new therapeutic strategy in severe forms of multiple sclerosis. Pioneering studies began in 1995, and since then, more than 400 patients worldwide have been treated with this procedure. Small uncontrolled studies show that about 60-70% of treated cases do not progress in the follow-up period of at least 3 years. Transplant-related mortality, which was 5-6% in the first reported series, has reduced in the past 5 years to 1-2%. Relapses dramatically decrease and inflammatory MRI activity is almost completely suppressed. Autologous haematopoietic stem-cell transplantation is associated with qualitative immunological changes in the blood, suggesting that, beyond its immunosuppressive potential, it could also have some beneficial effect for the resetting of the immune system. Patients with severe, rapidly worsening multiple sclerosis who are unresponsive to approved therapies could be candidates for this treatment, but its clinical efficacy has still to be shown in large, prospective, controlled studies.
Collapse
Affiliation(s)
- Gianluigi Mancardi
- Department of Neuroscience, Ophthalmology, and Genetics, and Centre of Excellence for Biomedical Research, San Martino Hospital, University of Genoa, Genoa, Italy.
| | | |
Collapse
|
41
|
Giassi LJ, Pearson T, Shultz LD, Laning J, Biber K, Kraus M, Woda BA, Schmidt MR, Woodland RT, Rossini AA, Greiner DL. Expanded CD34+ human umbilical cord blood cells generate multiple lymphohematopoietic lineages in NOD-scid IL2rgamma(null) mice. Exp Biol Med (Maywood) 2008; 233:997-1012. [PMID: 18653783 PMCID: PMC2757278 DOI: 10.3181/0802-rm-70] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Umbilical cord blood (UCB) is increasingly being used for human hematopoietic stem cell (HSC) transplantation in children but often requires pooling multiple cords to obtain sufficient numbers for transplantation in adults. To overcome this limitation, we have used an ex vivo two-week culture system to expand the number of hematopoietic CD34(+) cells in cord blood. To assess the in vivo function of these expanded CD34(+) cells, cultured human UCB containing 1 x 10(6) CD34(+) cells were transplanted into conditioned NOD-scid IL2rgamma(null) mice. The expanded CD34(+) cells displayed short- and long-term repopulating cell activity. The cultured human cells differentiated into myeloid, B-lymphoid, and erythroid lineages, but not T lymphocytes. Administration of human recombinant TNFalpha to recipient mice immediately prior to transplantation promoted human thymocyte and T-cell development. These T cells proliferated vigorously in response to TCR cross-linking by anti-CD3 antibody. Engrafted TNFalpha-treated mice generated antibodies in response to T-dependent and T-independent immunization, which was enhanced when mice were co-treated with the B cell cytokine BLyS. Ex vivo expanded CD34(+) human UCB cells have the capacity to generate multiple hematopoietic lineages and a functional human immune system upon transplantation into TNFalpha-treated NOD-scid IL2rgamma(null) mice.
Collapse
Affiliation(s)
- Lisa J. Giassi
- Division of Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Todd Pearson
- Division of Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | | | | | | | - Morey Kraus
- Viacell, Inc., Cambridge, Massachusetts 02142
| | - Bruce A. Woda
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Madelyn R. Schmidt
- Department of Molecular Genetics and Microbiology University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Robert T. Woodland
- Department of Molecular Genetics and Microbiology University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Aldo A. Rossini
- Division of Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Dale L. Greiner
- Division of Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
42
|
Abraham NG, Li M, Vanella L, Peterson SJ, Ikehara S, Asprinio D. Bone marrow stem cell transplant into intra-bone cavity prevents type 2 diabetes: Role of heme oxygenase-adiponectin. J Autoimmun 2008; 30:128-35. [DOI: 10.1016/j.jaut.2007.12.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
43
|
Rezvani AR, Storb RF. Separation of graft-vs.-tumor effects from graft-vs.-host disease in allogeneic hematopoietic cell transplantation. J Autoimmun 2008; 30:172-9. [PMID: 18242060 PMCID: PMC2329571 DOI: 10.1016/j.jaut.2007.12.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is an increasingly widely used treatment modality in hematological malignancies. Alloreactivity mediated by donor T cells (and, in some settings, by donor natural killer cells) can produce durable immunologic control or eradication of residual malignancy after allogeneic HCT. However, graft-vs.-tumor (GVT) effects are variably effective and are often accompanied by deleterious alloreactivity against normal host tissue, manifesting as graft-vs.-host disease (GVHD). A major focus of current research in HCT is the separation of beneficial GVT effects from GVHD. Here we review a number of approaches currently under investigation to specifically augment GVT effects, including the identification of minor histocompatibility antigens (mHA), adoptive immunotherapy with tumor-specific or mHA-specific cytotoxic T lymphocytes, vaccination of the donor or recipient to stimulate tumor-specific immunity, and adoptive transfer of natural killer cells. In addition, we review strategies being investigated to specifically suppress GVHD while sparing GVT, including the manipulation and infusion of regulatory T cells, the use of novel pharmacologic and biologic agents, and the use of mesenchymal stem cells. Ultimately, advances in separation of GVT from GVHD will further enhance the potential of allogeneic HCT as a curative treatment for hematological malignancies.
Collapse
Affiliation(s)
- Andrew R Rezvani
- Transplantation Biology Program, Fred Hutchinson Cancer Research Center and University of Washington, 1100 Fairview Ave N, MS D1-100, Seattle, WA 98109, USA.
| | | |
Collapse
|
44
|
Hematopoietic stem cell transplantation for autoimmune diseases: What have we learned? J Autoimmun 2008; 30:116-20. [DOI: 10.1016/j.jaut.2007.12.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
45
|
Ozawa K, Sato K, Oh I, Ozaki K, Uchibori R, Obara Y, Kikuchi Y, Ito T, Okada T, Urabe M, Mizukami H, Kume A. Cell and gene therapy using mesenchymal stem cells (MSCs). J Autoimmun 2008; 30:121-7. [PMID: 18249090 DOI: 10.1016/j.jaut.2007.12.008] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mesenchymal stem cells (MSCs) are considered to be a promising platform for cell and gene therapy for a variety of diseases. First, in the field of hematopoietic stem cell transplantation, there are two applications of MSCs: 1) the improvement of stem cell engrafting and the acceleration of hematopoietic reconstitution based on the hematopoiesis-supporting ability; and 2) the treatment of severe graft-versus-host disease (GVHD) based on the immunomodulatory ability. Regarding the immunosuppressive ability, we found that nitric oxide (NO) is involved in the MSC-mediated suppression of T cell proliferation. Second, tumor-bearing nude mice were injected with luciferase-expressing MSCs. An in vivo imaging analysis showed the significant accumulation of the MSCs at the site of tumors. The findings suggest that MSCs can be utilized to target metastatic tumors and to deliver anti-cancer molecules locally. As the third application, MSCs may be utilized as a cellular vehicle for protein-supplement gene therapy. When long-term transgene expression is needed, a therapeutic gene should be introduced with a minimal risk of insertional mutagenesis. To this end, site-specific integration into the AAVS1 locus on the chromosome 19 (19q13.4) by using the integration machinery of adeno-associated virus (AAV) would be particularly valuable. There will be wide-ranging applications of MSCs to frontier medical treatments in the near future.
Collapse
Affiliation(s)
- Keiya Ozawa
- Division of Hematology, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sonoda Y. Immunophenotype and functional characteristics of human primitive CD34-negative hematopoietic stem cells: The significance of the intra-bone marrow injection. J Autoimmun 2008; 30:136-44. [DOI: 10.1016/j.jaut.2007.12.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Deane S, Meyers FJ, Gershwin ME. On reversing the persistence of memory: Hematopoietic stem cell transplant for autoimmune disease in the first ten years. J Autoimmun 2008; 30:180-96. [DOI: 10.1016/j.jaut.2007.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
48
|
Ratajczak MZ, Zuba-Surma EK, Wysoczynski M, Wan W, Ratajczak J, Wojakowski W, Kucia M. Hunt for pluripotent stem cell -- regenerative medicine search for almighty cell. J Autoimmun 2008; 30:151-162. [PMID: 18243661 PMCID: PMC2692479 DOI: 10.1016/j.jaut.2007.12.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Regenerative medicine and tissue engineering are searching for a novel stem cell based therapeutic strategy that will allow for efficient treatment or even potential replacement of damaged organs. The pluripotent stem cell (PSC), which gives rise to cells from all three germ lineages, seems to be the most ideal candidate for such therapies. PSC could be extracted from developing embryos. However, since this source of stem cells for potential therapeutic purposes remains controversial, stem cell researchers look for PSC that could be isolated from the adult tissues or generated from already differentiated cells. True PSC should possess both potential for multilineage differentiation in vitro and, more importantly, also be able to complement in vivo blastocyst development. This review will summarize current approaches and limitations to isolate PSC from adult tissues or, alternatively, to generate it by nuclear reprogramming from already differentiated somatic cells.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, 500 South Floyd Street, Louisville, KY 40202, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
A novel method of bone marrow transplantation (BMT) for intractable autoimmune diseases. J Autoimmun 2008; 30:108-15. [PMID: 18249091 DOI: 10.1016/j.jaut.2007.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have previously proposed that autoimmune diseases are hemopoietic stem cell (HSC) disorders. In this review article, we provide evidence that most age-associated diseases such as osteoporosis are mesenchymal stem cell (MSC) disorders and, based on this evidence, we propose a new concept of "stem cell disorders (SCDs)", including HSC and MSC disorders. To treat SCDs, we have recently developed a new strategy (intra-bone marrow-bone marrow transplantation: IBM-BMT) for replacing the abnormal stem cells of recipients with donor-derived normal stem cells (both HSCs and MSCs). We here show that this strategy not only can be used to treat SCDs but is also applicable to organ transplantation, since IBM-BMT can induce tolerance (full chimerism) without the need for immunosuppressants even when radiation doses as the conditioning regimen of BMT are reduced to less than 5.0 Gy x 2, which is equivalent to one shot of 8 Gy (a sublethal dose). We believe that this strategy heralds a revolution in the field of transplantation (BMT and organ transplantation) and regeneration therapy.
Collapse
|
50
|
In vivo bioimaging using photogenic rats: fate of injected bone marrow-derived mesenchymal stromal cells. J Autoimmun 2008; 30:163-71. [PMID: 18222064 DOI: 10.1016/j.jaut.2007.12.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mesenchymal stromal cells (MSCs) derived from bone marrow have the capacity for self-renewal and differentiation, and can give rise to cells of a muscle, bone, fat or cartilage lineage. Based on this potential and feasibility, MSCs are expected to be used in cell therapy for human diseases. Intriguingly, MSCs migrate to various in vivo locations, including injury and tumor sites. However, their cellular fate and distribution remain unclear. In this review, we first describe the potential of a photogenic transgenic rat that expresses fluorescent and/or luminescent proteins (e.g., green fluorescent protein and luciferase), and then focus on the characteristic migration of MSCs to injury and tumor sites. In addition, we will discuss an efficient delivery method for targeting the injured site. Synergized with modern advances in optical imaging, the photogenic rat system provides innovative preclinical tools and a new platform on which to further our understanding of matters concerning stem cell biology.
Collapse
|