1
|
Jakowec N, Finkel SE. Controlled burn: interconnections between energy-spilling pathways and metabolic signaling in bacteria. J Bacteriol 2025; 207:e0054224. [PMID: 40162839 PMCID: PMC12096831 DOI: 10.1128/jb.00542-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Bacterial energy-spilling pathways-such as overflow metabolism and futile cycles-have been considered inefficient forms of metabolism that result from poor regulatory control or function as mechanisms to cope with excess energy. However, mounting evidence places these seemingly wasteful reactions at the fulcrum between metabolic signaling and stress adaptation in bacteria. Specifically, energy-spilling pathways may mediate the metabolic reprogramming observed when cells encounter growth-limiting constraints (i.e., nutrient limitation). Recent insights spotlight microbial metabolism as an intricate signaling network that coordinates physiological programming with energy and nutrient conditions. Such intracellular metabolic cross stalk is pivotal to survival in competitive, fluctuating environments that bacteria frequently encounter in nature. In light of this paradigm of metabolic signaling, energy-spilling pathways are increasingly recognized as regulatory strategies that enable metabolic rewiring in response to stress. Overflow metabolism or futile cycles may generate secondary metabolites with signaling properties, alter the flux of metabolic pathways and the rate of nutrient acquisition, or stimulate regulatory nodes to trigger specific metabolic programs in response to environmental challenges. Furthermore, the observation of such expensive pathways under laboratory conditions purported to be "energy limiting" may in fact suggest energy sufficiency, compelling us to rethink how we model energy limitation and starvation for bacteria.
Collapse
Affiliation(s)
- Nicolaus Jakowec
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Steven E. Finkel
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
2
|
Elias M, Meert K, Vanderstraeten J, Lamote B, Briers Y. Designer Glycolysomes: Colocalisation of Glycolytic Enzymes on a Cellulosome-Based Synthetic Protein Scaffold. Microb Biotechnol 2025; 18:e70134. [PMID: 40162578 PMCID: PMC11955921 DOI: 10.1111/1751-7915.70134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
In systems biocatalysis, combining pathway enzymes in vitro allows for the conversion of basic substrates into more complex, valuable chemicals. However, in vitro enzyme cascades are not yet economically viable for large-scale bio-based chemical production. Enhancing pathway efficiency through enzyme colocalization on synthetic protein scaffolds is a proposed solution, though still debated. We constructed a synthetic protein scaffold that colocalises the first three glycolytic enzymes using cohesin-dockerin interactions. Initially, we converted wild-type enzymes to the docking enzyme mode and evaluated their activity. Next, we demonstrate how the colocalisation of the three docking enzymes on distinct scaffolds enhances the enzyme cascade's production. Starting from glucose, the multi-enzyme complexes produced fructose-1,6-bisphosphate, confirming the activity of each enzyme. PfkA, which converts fructose-6-phosphate and ATP to fructose-1,6-bisphosphate and ADP, was identified as the rate-limiting enzyme. We demonstrated that scaffolding proximity effects lead to higher product output than free docking enzymes, particularly at lower enzyme densities. Further research is needed to determine the relevance of enzyme colocalisation under industrial production settings. In addition, optimising an enzyme cascade demands a thorough understanding of reaction mechanisms and kinetics. The VersaTile method streamlines optimisation studies of modular proteins and complexes, enabling analysis of a broader design space by bypassing technical preparatory hurdles.
Collapse
Affiliation(s)
- Marte Elias
- Department of Biotechnology, Laboratory of Applied BiotechnologyGhent UniversityGhentBelgium
- Department of Biotechnology, Center for Synthetic BiologyGhent UniversityGhentBelgium
| | - Kenan Meert
- Department of Biotechnology, Laboratory of Applied BiotechnologyGhent UniversityGhentBelgium
- Department of Plants and Crops, Laboratory of Applied Mycology and PhenomicsGhent UniversityGhentBelgium
- Biotalys NVGhentBelgium
| | - Julie Vanderstraeten
- Department of Biotechnology, Laboratory of Applied BiotechnologyGhent UniversityGhentBelgium
| | - Babette Lamote
- Department of Biotechnology, Laboratory of Applied BiotechnologyGhent UniversityGhentBelgium
- Department of Biotechnology, Center for Synthetic BiologyGhent UniversityGhentBelgium
| | - Yves Briers
- Department of Biotechnology, Laboratory of Applied BiotechnologyGhent UniversityGhentBelgium
| |
Collapse
|
3
|
Shleeva MO, Demina GR, Kaprelyants AS. Biochemistry of Reactivation of Dormant Mycobacteria. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S193-S213. [PMID: 40164159 DOI: 10.1134/s0006297924603757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/15/2024] [Accepted: 08/23/2024] [Indexed: 04/02/2025]
Abstract
An important aspect of medical microbiology is identification of the causes and mechanisms of reactivation (resuscitation) of dormant non-sporulating bacteria. In particular, dormant Mycobacterium tuberculosis (Mtb) can cause latent tuberculosis (TB), which could be reactivated in the human organism to the active form of the disease. Analysis of experimental data suggested that reactivation of mycobacteria and reversion of the growth processes include several stages. The initial stage is associated with breakdown of the storage substances like trehalose upon the action of trehalase and with peptidoglycan hydrolysis. Demethylation of tetramethyl porphyrins accumulated in hydrophobic sites (membranes) of the dormant cell also occur in this stage. Metabolic reactivation, starting with cAMP synthesis and subsequent activation of metabolic reactions and biosynthetic processes take place at the stage two as has been shown in the omics studies. Mechanisms of cell reactivation by exogenous free fatty acids via activation of adenylate cyclase and cAMP production have been also suggested. Onset of the cell division is a key benchmark of the third and final stage. Hydrolysis of peptidoglycan as a result of enzymatic action of peptidoglycan hydrolases of the Rpf family is an important process in reactivation of the dormant mycobacteria. Two possible mechanisms for participation of Rpf proteins in reactivation of the dormant bacteria are discussed. On the one hand, muropeptides could be formed as products of peptidoglycan hydrolysis, which could interact with appropriate receptors in bacterial cells transducing activating signal via the PknB phosphotransferase. On the other hand, Rpf protein could presumably change structure of the cell wall, making it more permeable to nutrients and substrates. Both hypotheses were examined in this review. Upon reactivation, independent enzymatic reactions resume their functioning from the beginning of reactivation. Such activation of the entire metabolism occurs rather stochastically, which concludes in combining all biochemical processes in one. This review presents current knowledge regarding biochemical mechanisms of the dormant mycobacteria reactivation, which is important for both fundamental and medical microbiology.
Collapse
Affiliation(s)
- Margarita O Shleeva
- Federal Research Centre "Fundamentals of Biotechnology", A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Galina R Demina
- Federal Research Centre "Fundamentals of Biotechnology", A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Arseny S Kaprelyants
- Federal Research Centre "Fundamentals of Biotechnology", A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
4
|
Klemberg VS, Pavanelo DB, Houle S, Dhakal S, Pokharel P, Iahnig-Jacques S, Dozois CM, Horn F. The osmoregulated metabolism of trehalose contributes to production of type 1 fimbriae and bladder colonization by extraintestinal Escherichia coli strain BEN2908. Front Cell Infect Microbiol 2024; 14:1414188. [PMID: 38979511 PMCID: PMC11228248 DOI: 10.3389/fcimb.2024.1414188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
In Escherichia coli, the disaccharide trehalose can be metabolized as a carbon source or be accumulated as an osmoprotectant under osmotic stress. In hypertonic environments, E. coli accumulates trehalose in the cell by synthesis from glucose mediated by the cytosolic enzymes OtsA and OtsB. Trehalose in the periplasm can be hydrolyzed into glucose by the periplasmic trehalase TreA. We have previously shown that a treA mutant of extraintestinal E. coli strain BEN2908 displayed increased resistance to osmotic stress by 0.6 M urea, and reduced production of type 1 fimbriae, reduced invasion of avian fibroblasts, and decreased bladder colonization in a murine model of urinary tract infection. Since loss of TreA likely results in higher periplasmic trehalose concentrations, we wondered if deletion of otsA and otsB genes, which would lead to decreased internal trehalose concentrations, would reduce resistance to stress by 0.6 M urea and promote type 1 fimbriae production. The BEN2908ΔotsBA mutant was sensitive to osmotic stress by urea, but displayed an even more pronounced reduction in production of type 1 fimbriae, with the consequent reduction in adhesion/invasion of avian fibroblasts and reduced bladder colonization in the murine urinary tract. The BEN2908ΔtreAotsBA mutant also showed a reduction in production of type 1 fimbriae, but in contrast to the ΔotsBA mutant, resisted better than the wild type in the presence of urea. We hypothesize that, in BEN2908, resistance to stress by urea would depend on the levels of periplasmic trehalose, but type 1 fimbriae production would be influenced by the levels of cytosolic trehalose.
Collapse
Affiliation(s)
- Vivian Souza Klemberg
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | | | - Sébastien Houle
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Sabin Dhakal
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Pravil Pokharel
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Simone Iahnig-Jacques
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - Charles M. Dozois
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Fabiana Horn
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
| |
Collapse
|
5
|
Jakowec NA, Finegan M, Finkel SE. Disruption of trehalose periplasmic recycling dysregulates cAMP-CRP signaling in Escherichia coli during stationary phase. J Bacteriol 2023; 205:e0029223. [PMID: 37916804 PMCID: PMC10662143 DOI: 10.1128/jb.00292-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Survival during starvation hinges on the ability to manage intracellular energy reserves and to initiate appropriate metabolic responses to perturbations of such reserves. How Escherichia coli manage carbon storage systems under starvation stress, as well as transpose changes in intracellular metabolite levels into regulatory signals, is not well understood. Endogenous trehalose metabolism may be at the center of these processes, coupling carbon storage with carbon starvation responses. The coupled transport to the periplasm and subsequent hydrolysis of trehalose back to glucose for transport to the cytoplasm may function as a crucial metabolic signaling pathway. Although trehalose has been characterized as a stress protectant in E. coli, the disaccharide also functions as both an energy storage compound and a regulator of carbohydrate metabolism in fungi, plants, and other bacteria. Our research explores the metabolic regulatory properties of trehalose in E. coli and a potential mechanism by which the intracellular carbon pool is interconnected with regulatory circuits, enabling long-term survival.
Collapse
Affiliation(s)
- Nicolaus A. Jakowec
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Melissa Finegan
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Steven E. Finkel
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
6
|
Fabunmi B, Adegaye A, Ogunjo S. Identification and characterization of molecular entities differentially expressed in bacteria genome upon treatment with glyphosate shock. Heliyon 2023; 9:e13868. [PMID: 36950589 PMCID: PMC10025891 DOI: 10.1016/j.heliyon.2023.e13868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/15/2023] Open
Abstract
Antimetabolites developed from enzymes in the shikimate pathway are appealing targets. There are, however, certain unidentified molecular entities that show bacterial sensitivity to glyphosate shock. This study aims to identify the expression pattern of such entities following treatment with glyphosate shock and to characterize them structurally and functionally. Understanding such entities' catalytic structure and modulatory role guides the design and development of novel antibiotics. This study's functional profiling of 16S rRNA sequencing data and transcriptome analysis of glyphosate-exposedE. coli revealed that two genes were upregulated and twenty-eight were downregulated after glyphosate shock. We discovered the differential expression of some processes based on functional gene analysis, such as global and overview maps (4.2195 on average), carbohydrate metabolism (0.6858 on average), amino acid metabolism (0.5032 on average), and co-factor and vitamin metabolism (0.5032 on average) (0.2876 on average). After examining the two data sets, we discovered that some unidentified proteins were strongly expressed after glyphosate treatment. After examining the two datasets, we discovered a protein with no unique features expressed when treated with glyphosate. The Ecs2020 model looks to be the most stable in structural modeling investigations, while the catalytic residues sought in drug development are anticipated. Furthermore, biological processes and cellular component enrichment analysis revealed that the differentially expressed genes were strongly related to the trehalose manufacturing process and represented the cell membrane's outer membrane component. To estimate the functional gene content of soil sample metagenomics based on 16S rRNA, predictive functional analysis was done with R using the Tax4Fun2 package. On the other hand, transcriptome analysis was carried out using the R tool GEO2R. The results could be a good starting point for making new antibiotic medicines.
Collapse
Affiliation(s)
- B.T. Fabunmi
- Department of Biological Sciences, Achievers University Owo, Ondo State, Nigeria
- Corresponding author.
| | - A.C. Adegaye
- Department of Crop, Soil and Pest Management, Federal University of Technology, Akure, Nigeria
| | - S.T. Ogunjo
- Department of Physics, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
7
|
Xu C, Chen H, Wu Q, Wu Y, Daly P, Chen J, Yang H, Wei L, Zhuang Y. Trehalose-6-phosphate phosphatase inhibitor: N-(phenylthio) phthalimide, which can inhibit the DON biosynthesis of Fusarium graminearum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104917. [PMID: 34446193 DOI: 10.1016/j.pestbp.2021.104917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Fusarium head blight(FHB)caused by Fusarium graminearum species complex (FGSC) is one of the most important diseases around the world. Deoxynivalenol (DON) is a type of mycotoxin produced by FGSC when infecting cereal crops. It is a serious threat to the health of both humans and livestock. Trehalose-6-phosphate phosphatase (TPP), a conserved metabolic enzyme found in many plants and pathogens, catalyzes the formation of trehalose. N-(phenylthio) phthalimide (NPP) has been reported to inhibit the normal growth of nematodes by inhibiting the activity of TPP, but this inhibitor of nematodes has not previously been tested against F. graminearum. In this study, we found that TPP in F. graminearum (FgTPP) had similar secondary structures and conserved cysteine (Cys356) to nematodes by means of bioinformatics. At the same time, the sensitivity of F. graminearum strains to NPP was determined. NPP exhibited a better inhibitory effect on conidia germination than mycelial growth. In addition, the effects of NPP on DON biosynthesis and trehalose biosynthesis pathway in PH-1 were also determined. We found that NPP decreased DON production, trehalose content, glucose content and TPP enzyme activity but increased trehalose-6-phosphate content and trehalose-6-phosphate synthase (TPS) enzyme activity. Moreover, the expression of TRI1, TRI4, TRI5, TRI6, and TPP genes were downregulated, on the contrary, the TPS gene was upregulated. Finally, in order to further determine the control ability of NPP on DON production in the field, we conducted a series of field experiments, and found that NPP could effectively reduce the DON content in wheat grain and had a general control effect on FHB. In conclusion, the research in this study will provide important theoretical basis for controlling FHB caused by F. graminearum and reducing DON production in the field.
Collapse
Affiliation(s)
- Chao Xu
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China.
| | - Hongzhou Chen
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China
| | - Qinyan Wu
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China
| | - Yuqi Wu
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Paul Daly
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jian Chen
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Hongfu Yang
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yiqing Zhuang
- Testing Center, Jiangsu Academy of Agricultural Science, Nanjing 210014, China.
| |
Collapse
|
8
|
Sakaguchi M. Diverse and common features of trehalases and their contributions to microbial trehalose metabolism. Appl Microbiol Biotechnol 2020; 104:1837-1847. [PMID: 31925485 DOI: 10.1007/s00253-019-10339-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/13/2019] [Accepted: 12/27/2019] [Indexed: 12/20/2022]
Abstract
Trehalose is a stable disaccharide that consists of two glucose units linked primarily by an α,α-(1 → 1)-linkage, and it has been found in a wide variety of organisms. In these organisms, trehalose functions not only as a source of carbon energy but also as a protector against various stress conditions. In addition, this disaccharide is attractive for use in a wide range of applications due to its bioactivities. In trehalose metabolism, direct trehalose-hydrolyzing enzymes are known as trehalases, which have been reported for bacteria, archaea, and eukaryotes, and are classified into glycoside hydrolase 37 (GH37), GH65, and GH15 families according to the Carbohydrate-Active enZyme (CAZy) database. The catalytic domains (CDs) of these enzymes commonly share (α/α)6-barrel structures and have two amino acid residues, Asp and/or Glu, that function as catalytic residues in an inverting mechanism. In this review, I focus on diverse and common features of trehalases within different GH families and their contributions to microbial trehalose metabolism.
Collapse
Affiliation(s)
- Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University, 2,665-1 Nakano-cho, Hachioji, Tokyo, 192-0015, Japan.
| |
Collapse
|
9
|
Cross M, York M, Długosz E, Straub JH, Biberacher S, Herath HMPD, Logan SA, Kim JS, Gasser RB, Ryan JH, Hofmann A. A suicide inhibitor of nematode trehalose-6-phosphate phosphatases. Sci Rep 2019; 9:16165. [PMID: 31700060 PMCID: PMC6838324 DOI: 10.1038/s41598-019-52593-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/28/2019] [Indexed: 11/12/2022] Open
Abstract
Protein-based drug discovery strategies have the distinct advantage of providing insights into the molecular mechanisms of chemical effectors. Currently, there are no known trehalose-6-phosphate phosphatase (TPP) inhibitors that possess reasonable inhibition constants and chemical scaffolds amenable to convenient modification. In the present study, we subjected recombinant TPPs to a two-tiered screening approach to evaluate several diverse compound groups with respect to their potential as TPP inhibitors. From a total of 5452 compounds tested, N-(phenylthio)phthalimide was identified as an inhibitor of nematode TPPs with apparent Ki values of 1.0 μM and 0.56 μM against the enzymes from the zoonotic roundworms Ancylostoma ceylanicum and Toxocara canis, respectively. Using site-directed mutagenesis, we demonstrate that this compound acts as a suicide inhibitor that conjugates a strictly conserved cysteine residue in the vicinity of the active site of nematode TPPs. The anthelmintic properties of N-(phenylthio)phthalimide were assessed in whole nematode assays using larvae of the ascaroids T. canis and T. cati, as well as the barber's pole worm Haemonchus contortus. The compound was particularly effective against each of the ascaroids with an IC50 value of 9.3 μM in the survival assay of T. cati larvae, whereas no bioactivity was observed against H. contortus.
Collapse
Affiliation(s)
- Megan Cross
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, 4111, Australia
| | - Mark York
- CSIRO Biomedical Manufacturing Program, Clayton, Victoria, 3168, Australia
| | - Ewa Długosz
- Department of Preclinical Sciences, Warsaw University of Life Sciences, 02-787, Warsaw, Poland
| | - Jan Hendrik Straub
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, 4111, Australia
| | - Sonja Biberacher
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, 4111, Australia
| | - H M P Dilrukshi Herath
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Stephanie A Logan
- CSIRO Biomedical Manufacturing Program, Clayton, Victoria, 3168, Australia
| | - Jeong-Sun Kim
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - John H Ryan
- CSIRO Biomedical Manufacturing Program, Clayton, Victoria, 3168, Australia
| | - Andreas Hofmann
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, 4111, Australia.
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia.
- Queensland Tropical Health Alliance, Smithfield, Queensland, 4878, Australia.
| |
Collapse
|
10
|
Kapil S, Petit C, Drago VN, Ronning DR, Sucheck SJ. Synthesis and in Vitro Characterization of Trehalose-Based Inhibitors of Mycobacterial Trehalose 6-Phosphate Phosphatases. Chembiochem 2019; 20:260-269. [PMID: 30402996 PMCID: PMC6467533 DOI: 10.1002/cbic.201800551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Indexed: 12/17/2022]
Abstract
α,α'-Trehalose plays roles in the synthesis of several cell wall components involved in pathogenic mycobacteria virulence. Its absence in mammalian biochemistry makes trehalose-related biochemical processes potential targets for chemotherapy. The trehalose 6-phosphate synthase (TPS)/trehalose 6-phosphate phosphatase (TPP) pathway, also known as the OtsA/OtsB2 pathway, is the major pathway involved in the production of trehalose in Mycobacterium tuberculosis (Mtb). In addition, TPP is essential for Mtb survival. We describe the synthesis of α,α'-trehalose derivatives in the forms of the 6-phosphonic acid 4 (TMP), the 6-methylenephosphonic acid 5 (TEP), and the 6-N-phosphonamide 6 (TNP). These non-hydrolyzable substrate analogues of TPP were examined as inhibitors of Mtb, Mycobacterium lentiflavum (Mlt), and Mycobacterium triplex (Mtx) TPP. In all cases the compounds were most effective in inhibiting Mtx TPP, with TMP [IC50 =(288±32) μm] acting most strongly, followed by TNP [IC50 =(421±24) μm] and TEP [IC50 =(1959±261) μm]. The results also indicate significant differences in the analogue binding profile when comparing Mtb TPP, Mlt TPP, and Mtx TPP homologues.
Collapse
Affiliation(s)
- Sunayana Kapil
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States ;
| | - Cecile Petit
- Dr. C. Petit, EMBL Hamburg, c/oDESY, Building 25A, Notkestraß, e85, 22603 Hamburg, Germany
| | - Victoria N. Drago
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States ;
| | - Donald R. Ronning
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States ;
| | - Steven J. Sucheck
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States ;
| |
Collapse
|
11
|
Li J, Duan Y, Bian C, Pan X, Yao C, Wang J, Zhou M. Effects of validamycin in controlling Fusarium head blight caused by Fusarium graminearum: Inhibition of DON biosynthesis and induction of host resistance. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 153:152-160. [PMID: 30744889 DOI: 10.1016/j.pestbp.2018.11.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/05/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Validamycin, known to interfere with fungal energy metabolism by inhibiting trehalase, has been extensively used to control plant diseases caused by Rhizoctonia spp. However, the effect of validamycin on controlling Fusarium graminearum has not been previously reported. In this study, when applied to F. graminearum in vitro, validamycin inhibited the synthesis of deoxynivalenol (DON), which is a mycotoxin and virulence factor, by decreasing trehalase activity and the production of glucose and pyruvate, which are precursors of DON biosynthesis. Because FgNTH encodes the main trehalase in F. graminearum, these effects were nullified in the FgNTH deletion mutant ΔFgNTH but restored in the complemented strain ΔFgNTHC. In addition, validamycin also increased the expression of pathogenesis-related genes (PRs) PR1, PR2, and PR5 in wheat, inducing resistance responses of wheat against F. graminearum. Therefore, validamycin exhibits dual efficacies on controlling Fusarium head blight (FHB) caused by F. graminearum: inhibition of DON biosynthesis and induction of host resistance. In addition, field trials further confirmed that validamycin increased FHB control and reduced DON contamination in grain. Control of FHB and DON contamination by validamycin increased when the antibiotic was applied with the triazole fungicide metconazole. Overall, this study is a successful case from foundational research to applied research, providing useful information for wheat protection programs against toxigenic fungi responsible for FHB and the consequent mycotoxin accumulation in grains.
Collapse
Affiliation(s)
- Jing Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Chuanhong Bian
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiayan Pan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengjie Yao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| |
Collapse
|
12
|
Gonzalez E, Pitre FE, Pagé AP, Marleau J, Guidi Nissim W, St-Arnaud M, Labrecque M, Joly S, Yergeau E, Brereton NJB. Trees, fungi and bacteria: tripartite metatranscriptomics of a root microbiome responding to soil contamination. MICROBIOME 2018; 6:53. [PMID: 29562928 PMCID: PMC5863371 DOI: 10.1186/s40168-018-0432-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/02/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND One method for rejuvenating land polluted with anthropogenic contaminants is through phytoremediation, the reclamation of land through the cultivation of specific crops. The capacity for phytoremediation crops, such as Salix spp., to tolerate and even flourish in contaminated soils relies on a highly complex and predominantly cryptic interacting community of microbial life. METHODS Here, Illumina HiSeq 2500 sequencing and de novo transcriptome assembly were used to observe gene expression in washed Salix purpurea cv. 'Fish Creek' roots from trees pot grown in petroleum hydrocarbon-contaminated or non-contaminated soil. All 189,849 assembled contigs were annotated without a priori assumption as to sequence origin and differential expression was assessed. RESULTS The 839 contigs differentially expressed (DE) and annotated from S. purpurea revealed substantial increases in transcripts encoding abiotic stress response equipment, such as glutathione S-transferases, in roots of contaminated trees as well as the hallmarks of fungal interaction, such as SWEET2 (Sugars Will Eventually Be Exported Transporter). A total of 8252 DE transcripts were fungal in origin, with contamination conditions resulting in a community shift from Ascomycota to Basidiomycota genera. In response to contamination, 1745 Basidiomycota transcripts increased in abundance (the majority uniquely expressed in contaminated soil) including major monosaccharide transporter MST1, primary cell wall and lamella CAZy enzymes, and an ectomycorrhiza-upregulated exo-β-1,3-glucanase (GH5). Additionally, 639 DE polycistronic transcripts from an uncharacterised Enterobacteriaceae species were uniformly in higher abundance in contamination conditions and comprised a wide spectrum of genes cryptic under laboratory conditions but considered putatively involved in eukaryotic interaction, biofilm formation and dioxygenase hydrocarbon degradation. CONCLUSIONS Fungal gene expression, representing the majority of contigs assembled, suggests out-competition of white rot Ascomycota genera (dominated by Pyronema), a sometimes ectomycorrhizal (ECM) Ascomycota (Tuber) and ECM Basidiomycota (Hebeloma) by a poorly characterised putative ECM Basidiomycota due to contamination. Root and fungal expression involved transcripts encoding carbohydrate/amino acid (C/N) dialogue whereas bacterial gene expression included the apparatus necessary for biofilm interaction and direct reduction of contamination stress, a potential bacterial currency for a role in tripartite mutualism. Unmistakable within the metatranscriptome is the degree to which the landscape of rhizospheric biology, particularly the important but predominantly uncharacterised fungal genetics, is yet to be discovered.
Collapse
Affiliation(s)
- E Gonzalez
- Canadian Center for Computational Genomics, McGill University and Genome Quebec Innovation Center, Montréal, H3A 1A4, Canada
- Department of Human Genetics, McGill University, Montreal, H3A 1B1, Canada
| | - F E Pitre
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - A P Pagé
- Aquatic and Crop Resource Development (ACRD), National Research Council Canada, Montréal, QC, H4P 2R2, Canada
| | - J Marleau
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
| | - W Guidi Nissim
- Department of Agri-food and Environmental Science, University of Florence, Viale delle Idee, Sesto Fiorentino, FI, Italy
| | - M St-Arnaud
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - M Labrecque
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - S Joly
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - E Yergeau
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - N J B Brereton
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada.
| |
Collapse
|
13
|
Dong H, Wei D, Wei J, Han F, Yan T, Khan MS, Du B, Wei Q. Qualitative and quantitative spectrometric evaluation of soluble microbial products formation in aerobic granular sludge system treating nitrate wastewater. Bioprocess Biosyst Eng 2018. [PMID: 29523965 DOI: 10.1007/s00449-018-1918-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In present study, the characteristics of soluble microbial products (SMP) were evaluated in aerobic granular sludge system during denitrification process under different chemical oxygen demand/nitrogen (C/N) ratios. Batch experiment showed that the effluent nitrate (NO3--N) concentration were 15.24 ± 1.83 and 1.72 ± 1.53 mg/L at C/N ratio of 1 and 6, respectively. For the release of SMP, the protein (PN) and polysaccharide contents increased from 1.23 ± 0.38 and 7.46 ± 1.13 mg/L to 1.80 ± 0.76 and 10.53 ± 1.24 mg/L with increasing C/N ratios, respectively. Excitation-emission matrix identified four peaks in SMP, including aromatic PN-like, tryptophan PN-like, fulvic acid-like and humic acid-like substances. Fluorescence regional integration suggested that biodegradable PN-like substances occupied the percentage between 53.0 and 61.7% in SMP. Synchronous fluorescence spectra coupled with two-dimensional correlation spectroscopy indicated that the release of SMP fractions in the early stage (0-150 min) changed in the following sequences: PN-like fraction > fulvic acid-like fraction.
Collapse
Affiliation(s)
- Heng Dong
- School of Resources and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Dong Wei
- School of Resources and Environment, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Jinglin Wei
- School of Resources and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Fei Han
- School of Resources and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Tao Yan
- School of Resources and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Malik Saddam Khan
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Bin Du
- School of Resources and Environment, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| |
Collapse
|
14
|
Wu Y, Wang J, Shen X, Wang J, Chen Z, Sun X, Yuan Q, Yan Y. Investigating the strategies for microbial production of trehalose from lignocellulosic sugars. Biotechnol Bioeng 2018; 115:785-790. [DOI: 10.1002/bit.26505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/15/2017] [Accepted: 11/28/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Yifei Wu
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering; Beijing University of Chemical Technology; Beijing China
| | - Jian Wang
- College of Engineering; The University of Georgia; Athens Georgia
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering; Beijing University of Chemical Technology; Beijing China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering; Beijing University of Chemical Technology; Beijing China
| | - Zhenya Chen
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering; Beijing University of Chemical Technology; Beijing China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering; Beijing University of Chemical Technology; Beijing China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering; Beijing University of Chemical Technology; Beijing China
| | - Yajun Yan
- College of Engineering; The University of Georgia; Athens Georgia
| |
Collapse
|
15
|
Li Y, Wang Z, Feng Y, Yuan Q. Improving trehalose synthase activity by adding the C-terminal domain of trehalose synthase from Thermus thermophilus. BIORESOURCE TECHNOLOGY 2017; 245:1749-1756. [PMID: 28651873 DOI: 10.1016/j.biortech.2017.05.189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/27/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
The aim of this work was to study the activities of four other TreS enzymes from different sources linked with or without TtTreS-C. The results showed that a flexible linker peptide between TreS enzymes and TtTreS-C is essential for their activity enhancement. Moreover, the specific activities of the four enzymes were also improved by linking to the TtTreS-C fragment. Together, our study provides novel insights into the functions of the C-terminal domain of TtTreS, and would facilitate its future application in enzyme engineering.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing 100029, China
| | - Ziwei Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing 100029, China
| | - Yue Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing 100029, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing 100029, China.
| |
Collapse
|
16
|
Shleeva MO, Trutneva KA, Demina GR, Zinin AI, Sorokoumova GM, Laptinskaya PK, Shumkova ES, Kaprelyants AS. Free Trehalose Accumulation in Dormant Mycobacterium smegmatis Cells and Its Breakdown in Early Resuscitation Phase. Front Microbiol 2017; 8:524. [PMID: 28424668 PMCID: PMC5371599 DOI: 10.3389/fmicb.2017.00524] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/13/2017] [Indexed: 01/13/2023] Open
Abstract
Under gradual acidification of growth medium resulting in the formation of dormant Mycobacterium smegmatis, a significant accumulation of free trehalose in dormant cells was observed. According to 1H- and 13C-NMR spectroscopy up to 64% of total organic substances in the dormant cell extract was represented by trehalose whilst the trehalose content in an extract of active cells taken from early stationary phase was not more than 15%. Trehalose biosynthesis during transition to the dormant state is provided by activation of genes involved in the OtsA-OtsB and TreY-TreZ pathways (according to RT-PCR). Varying the concentration of free trehalose in dormant cells by expression of MSMEG_4535 coding for trehalase we found that cell viability depends on trehalose level: cells with a high amount of trehalose survive much better than cells with a low amount. Upon resuscitation of dormant M. smegmatis, a decrease of free trehalose and an increase in glucose concentration occurred in the early period of resuscitation (after 2 h). Evidently, breakdown of trehalose by trehalase takes place at this time as a transient increase in trehalase activity was observed between 1 and 3 h of resuscitation. Activation of trehalase was not due to de novo biosynthesis but because of self-activation of the enzyme from the inactive state in dormant cells. Because, even a low concentration of ATP (2 mM) prevents self-activation of trehalase in vitro and after activation the enzyme is still sensitive to ATP we suggest that the transient character of trehalase activation in cells is due to variation in intracellular ATP concentration found in the early resuscitation period. The negative influence of the trehalase inhibitor validamycin A on the resuscitation of dormant cells proves the importance of trehalase for resuscitation. These experiments demonstrate the significance of free trehalose accumulation for the maintenance of dormant mycobacterial viability and the involvement of trehalose breakdown in early events leading to cell reactivation similar to yeast and fungal spores.
Collapse
Affiliation(s)
- Margarita O Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of SciencesMoscow, Russia
| | - Kseniya A Trutneva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of SciencesMoscow, Russia
| | - Galina R Demina
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of SciencesMoscow, Russia
| | - Alexander I Zinin
- Zelinsky Institute of Organic Chemistry - Russian Academy of SciencesMoscow, Russia
| | | | - Polina K Laptinskaya
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of SciencesMoscow, Russia
| | - Ekaterina S Shumkova
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of SciencesMoscow, Russia
| | - Arseny S Kaprelyants
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of SciencesMoscow, Russia
| |
Collapse
|
17
|
Optimization and characterization of covalent immobilization of glucose oxidase for bioelectronic devices. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Abstract
The first synthesis of carbasugars, compounds in which the ring oxygen of a monosaccharide had been replaced by a methylene moiety, was described in 1966 by Professor G. E. McCasland’s group. Seven years later, the first true natural carbasugar (5a-carba-R-D-galactopyranose) was isolated from a fermentation broth of Streptomyces sp. MA-4145. In the following decades, the chemistry and biology of carbasugars have been extensively studied. Most of these compounds show interesting biological properties, especially enzymatic inhibitory activities, and, in consequence, an important number of analogues have also been prepared in the search for improved biological activities. The aim of this review is to give coverage on the progress made in two important aspects of these compounds: the elucidation of their biosynthesis and the consideration of their biological properties, including the extensively studied carbapyranoses as well as the much less studied carbafuranoses.
Collapse
|
19
|
Rapid construction of metabolite biosensors using domain-insertion profiling. Nat Commun 2016; 7:12266. [PMID: 27470466 PMCID: PMC4974565 DOI: 10.1038/ncomms12266] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/15/2016] [Indexed: 12/15/2022] Open
Abstract
Single-fluorescent protein biosensors (SFPBs) are an important class of probes that enable the single-cell quantification of analytes in vivo. Despite advantages over other detection technologies, their use has been limited by the inherent challenges of their construction. Specifically, the rational design of green fluorescent protein (GFP) insertion into a ligand-binding domain, generating the requisite allosteric coupling, remains a rate-limiting step. Here, we describe an unbiased approach, termed domain-insertion profiling with DNA sequencing (DIP-seq), that combines the rapid creation of diverse libraries of potential SFPBs and high-throughput activity assays to identify functional biosensors. As a proof of concept, we construct an SFPB for the important regulatory sugar trehalose. DIP-seq analysis of a trehalose-binding-protein reveals allosteric hotspots for GFP insertion and results in high-dynamic range biosensors that function robustly in vivo. Taken together, DIP-seq simultaneously accelerates metabolite biosensor construction and provides a novel tool for interrogating protein allostery. In the construction of single fluorescent protein biosensors, selection of the insertion point of a fluorescent protein into a ligand-binding domain is a rate-limiting step. Here, the authors develop an unbiased, high-throughput approach, called domain insertion profiling with DNA sequencing (DIP-seq), to generate a novel trehalose biosensor.
Collapse
|
20
|
Zhao P, Zhou Z, Zhang W, Lin M, Chen M, Wei G. Global transcriptional analysis of Escherichia coli expressing IrrE, a regulator from Deinococcus radiodurans, in response to NaCl shock. MOLECULAR BIOSYSTEMS 2015; 11:1165-71. [PMID: 25703007 DOI: 10.1039/c5mb00080g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Improving the microbial tolerance to stresses is very important for bioprocesses. Our previous study showed that IrrE, a global regulator from the extremely radioresistant bacterium Deinococcus radiodurans, dramatically enhanced the multi-stress tolerance of Escherichia coli when expressed exogenously. However, the function of IrrE is still unclear. In this study, we used whole-genome microarray assays to profile the global gene expression of the IrrE-expressing E. coli strain MGE and the control strain MGT with or without salt shock. The analysis showed that IrrE expression led to many differentially expressed genes in E. coli, which were responsible for the transport and metabolism of trehalose and glycerol, nucleotide biosynthesis, carbon source utilization, amino acid utilization, and acid resistance, including many RpoS-dependent genes, e.g., the trehalose biosynthesis genes otsAB, the acid-resistance genes gadABC and uspB, the osmotic and oxidative stress response genes katE (response to DNA damage stimulus and stress) and osmBC (response to stress), and gadWX (which controls the transcription of pH-inducible genes). The intracellular content of trehalose and glycerol increased significantly in the IrrE-expressing strain after NaCl treatment for 0 and 60 min as determined by HPLC. These results indicated the possibility that IrrE regulates the global regulator RpoS. Interestingly, we found that although IrrE did not affect the level of the rpoS transcript, it enhanced the accumulation of the RpoS protein by increasing the expression of the antiadaptors, AppY, IraM and IraD, which inhibit RpoS degradation, suggesting that the accumulation of RpoS due to IrrE regulation is an important way to improve tolerance to salt and other stresses in E. coli.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, China.
| | | | | | | | | | | |
Collapse
|
21
|
Li Y, Sun X, Feng Y, Yuan Q. Cloning, expression and activity optimization of trehalose synthase from Thermus thermophilus HB27. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.02.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Identification of GH15 Family Thermophilic Archaeal Trehalases That Function within a Narrow Acidic-pH Range. Appl Environ Microbiol 2015; 81:4920-31. [PMID: 25979886 DOI: 10.1128/aem.00956-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/09/2015] [Indexed: 11/20/2022] Open
Abstract
Two glucoamylase-like genes, TVN1315 and Ta0286, from the archaea Thermoplasma volcanium and T. acidophilum, respectively, were expressed in Escherichia coli. The gene products, TVN1315 and Ta0286, were identified as archaeal trehalases. These trehalases belong to the CAZy database family GH15, although they have putative (α/α)6 barrel catalytic domain structures similar to those of GH37 and GH65 family trehalases from other organisms. These newly identified trehalases function within a narrow range of acidic pH values (pH 3.2 to 4.0) and at high temperatures (50 to 60°C), and these enzymes display Km values for trehalose higher than those observed for typical trehalases. These enzymes were inhibited by validamycin A; however, the inhibition constants (Ki) were higher than those of other trehalases. Three TVN1315 mutants, corresponding to E408Q, E571Q, and E408Q/E571Q mutations, showed reduced activity, suggesting that these two glutamic acid residues are involved in trehalase catalysis in a manner similar to that of glucoamylase. To date, TVN1315 and Ta0286 are the first archaeal trehalases to be identified, and this is the first report of the heterologous expression of GH15 family trehalases. The identification of these trehalases could extend our understanding of the relationships between the structure and function of GH15 family enzymes as well as glycoside hydrolase family enzymes; additionally, these enzymes provide insight into archaeal trehalose metabolism.
Collapse
|
23
|
Weiner M, Tröndle J, Albermann C, Sprenger GA, Weuster-Botz D. Carbon storage in recombinantEscherichia coliduring growth on glycerol and lactic acid. Biotechnol Bioeng 2014; 111:2508-19. [DOI: 10.1002/bit.25306] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/20/2014] [Accepted: 05/27/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Michael Weiner
- Lehrstuhl für Bioverfahrenstechnik; Technische Universität München; Garching Germany
| | - Julia Tröndle
- Lehrstuhl für Bioverfahrenstechnik; Technische Universität München; Garching Germany
| | | | - Georg A. Sprenger
- Institut für Mikrobiologie; Universität Stuttgart; Stuttgart Germany
| | - Dirk Weuster-Botz
- Lehrstuhl für Bioverfahrenstechnik; Technische Universität München; Garching Germany
| |
Collapse
|
24
|
Nguyen ADQ, Kim YG, Kim SB, Kim CJ. Improved tolerance of recombinant Escherichia coli to the toxicity of crude glycerol by overexpressing trehalose biosynthetic genes (otsBA) for the production of β-carotene. BIORESOURCE TECHNOLOGY 2013; 143:531-537. [PMID: 23831895 DOI: 10.1016/j.biortech.2013.06.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 06/02/2023]
Abstract
This study aims to investigate whether overexpressing the trehalose biosynthetic gene, otsBA operon, in β-carotene-producing recombinant Escherichia coli protects cells from toxic impurities in crude glycerol. The concentrations of potassium and methanol in crude glycerol were too low to inhibit cell growth. Cell growth and production in control cell culture were inhibited significantly in the presence of a small amount of crude fatty acids. Peroxides were generated in the presence of crude fatty acids during autoclaving and, thus, the inhibitory effect of crude fatty acids was caused primarily by these peroxides. Engineered cells overexpressing otsBA tolerated crude fatty acids (≤42 wet-g/L), methanol (≤7.5 g/L), and t-BuOOH (≤60 μM) in separate experiments and tolerated up to 60 g/L crude glycerol. These results demonstrate that overexpressing otsBA endowed cells with the capacity to tolerate the toxicity of crude glycerol for direct use.
Collapse
Affiliation(s)
- Anh Do Quynh Nguyen
- Department of Chemical & Biological Engineering and ERI, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | |
Collapse
|
25
|
Wang ZJ, Ji S, Si YX, Yang JM, Qian GY, Lee J, Yin SJ. The effect of validamycin A on tyrosinase: Inhibition kinetics and computational simulation. Int J Biol Macromol 2013; 55:15-23. [DOI: 10.1016/j.ijbiomac.2012.12.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/23/2012] [Accepted: 12/25/2012] [Indexed: 10/27/2022]
|
26
|
Ruhal R, Kataria R, Choudhury B. Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation. Microb Biotechnol 2013; 6:493-502. [PMID: 23302511 PMCID: PMC3918152 DOI: 10.1111/1751-7915.12029] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/30/2012] [Accepted: 12/03/2012] [Indexed: 11/29/2022] Open
Abstract
Summary The current knowledge of trehalose biosynthesis under stress conditions is incomplete and needs further research. Since trehalose finds industrial and pharmaceutical applications, enhanced accumulation of trehalose in bacteria seems advantageous for commercial production. Moreover, physiological role of trehalose is a key to generate stress resistant bacteria by metabolic engineering. Although trehalose biosynthesis requires few metabolites and enzyme reactions, it appears to have a more complex metabolic regulation. Trehalose biosynthesis in bacteria is known through three pathways – OtsAB, TreYZ and TreS. The interconnections of in vivo synthesis of trehalose, glycogen or maltose were most interesting to investigate in recent years. Further, enzymes at different nodes (glucose-6-P, glucose-1-P and NDP-glucose) of metabolic pathways influence enhancement of trehalose accumulation. Most of the study of trehalose biosynthesis was explored in medically significant Mycobacterium, research model Escherichia coli, industrially applicable Corynebacterium and food and probiotic interest Propionibacterium freudenreichii. Therefore, the present review dealt with the trehalose metabolism in these bacteria. In addition, an effort was made to recognize how enzymes at different nodes of metabolic pathway can influence trehalose accumulation.
Collapse
Affiliation(s)
- Rohit Ruhal
- Department of Chemistry, Umeå University, Umeå, Sweden; Department of Biotechnology, IIT Roorkee, Roorkee, India.
| | | | | |
Collapse
|
27
|
Ruhal R, Choudhury B. Improved trehalose production from biodiesel waste using parent and osmotically sensitive mutant of Propionibacterium freudenreichii subsp. shermanii under aerobic conditions. J Ind Microbiol Biotechnol 2012; 39:1153-60. [PMID: 22526328 DOI: 10.1007/s10295-012-1124-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 03/24/2012] [Indexed: 11/25/2022]
Abstract
Trehalose is an important nutraceutical of wide commercial interest in the food processing industry. Recently, crude glycerol was reported to be suitable for the production of trehalose using a food microbe, Propionibacterium freudenreichii subsp. shermanii, under static flask conditions. Similarly, enhanced trehalose yield was reported in an osmotically sensitive mutant of the same strain under anaerobic conditions. In the present study, an effort was made to achieve higher production of trehalose, propionic acid, and lactic acid using the parent and an osmotically sensitive mutant of P. freudenreichii subsp. shermanii under aeration conditions. Under aeration conditions (200 rpm in shake flasks and 30 % air saturation in a batch reactor), biomass was increased and approximately 98 % of crude glycerol was consumed. In the parent strain, a trehalose titre of 361 mg/l was achieved, whereas in the mutant strain a trehalose titre of 1.3 g/l was produced in shake flask conditions (200 rpm). In the mutant strain, propionic and lactic acid yields of 0.53 and 0.21 g/g of substrate were also achieved with crude glycerol. Similarly, in controlled batch reactor culturing conditions a final trehalose titre of approximately 1.56 g/l was achieved with the mutant strain using crude glycerol as the substrate. Enhanced production of trehalose using P. freudenreichii subsp. shermanii from waste under aeration conditions is reported here. Higher production of trehalose was not due to a higher yield of trehalose but to a higher final biomass concentration.
Collapse
Affiliation(s)
- Rohit Ruhal
- Bioprocess Engineering Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttrakhand, India
| | | |
Collapse
|