1
|
Zhang X, Li G, Wei P, Du B, Liu S, Dai J. Synergistic Regulation at Physiological, Transcriptional, and Metabolic Levels in Dendrobium huoshanense Plants Under Combined Drought and High-Temperature Stress. Genes (Basel) 2025; 16:287. [PMID: 40149439 PMCID: PMC11942376 DOI: 10.3390/genes16030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Background: With global warming and climate change, the occurrence of abiotic stresses has become increasingly prevalent. Drought often occurs with high temperatures, especially in arid and semi-arid regions. However, the molecular mechanisms of plants responding to combined drought and high-temperature stress remains unclear. Results: Through integrative physiological, transcriptomic, and metabolomic analyses, we systematically investigated the adaptive mechanisms of Dendrobium huoshanense under combined drought and high-temperature stress. Our findings revealed that combined drought and high-temperature stress led to significant reductions in photosynthetic efficiency and increased oxidative damage in Dendrobium huoshanense, with high-temperature stress being the primary contributor to these adverse effects. The joint analysis shows that three core pathways-signal transduction, lipid metabolism, and secondary metabolite biosynthesis-were identified as critical for antioxidant defense and stress adaptation. Conclusions: These findings not only deepen our understanding of plant responses to combined drought and high-temperature stress but also provide new directions for future research on the cultivation and resistance improvement of Dendrobium huoshanense.
Collapse
Affiliation(s)
- Xingen Zhang
- Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu’an 237012, China;
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (G.L.); (P.W.); (B.D.); (S.L.)
| | - Guohui Li
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (G.L.); (P.W.); (B.D.); (S.L.)
| | - Peipei Wei
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (G.L.); (P.W.); (B.D.); (S.L.)
| | - Binbin Du
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (G.L.); (P.W.); (B.D.); (S.L.)
| | - Shifan Liu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (G.L.); (P.W.); (B.D.); (S.L.)
| | - Jun Dai
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (G.L.); (P.W.); (B.D.); (S.L.)
| |
Collapse
|
2
|
Aditi, Bhardwaj R, Yadav A, Swapnil P, Meena M. Characterization of microalgal β-carotene and astaxanthin: exploring their health-promoting properties under the effect of salinity and light intensity. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:18. [PMID: 39953577 PMCID: PMC11829443 DOI: 10.1186/s13068-025-02612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
Microalgae are promising sources of valuable carotenoids like β-carotene and astaxanthin with numerous health benefits. This review summarizes recent studies on producing these carotenoids in microalgae under different salinity and light-intensity conditions, which are key factors influencing their biosynthesis. The carotenoid biosynthesis pathways in microalgae, involving the methylerythritol phosphate pathway in chloroplasts, are described in detail. The effects of high salinity and light stress on stimulating astaxanthin accumulation in species like Haematococcus pluvialis and Chromochloris zofingiensis and their synergistic impact are discussed. Similarly, the review covers how high light and salinity induce β-carotene production in Dunaliella salina and other microalgae. The diverse health-promoting properties of astaxanthin and β-carotene, such as their antioxidant, antiinflammatory, and anticancer activities, are highlighted. Strategies to improve carotenoid yields in microalgae through environmental stresses, two-stage cultivation, genetic engineering, and metabolic engineering approaches are evaluated. Overall, this review highlights advancements in β-carotene and astaxanthin production reporting the different microalgal capability to produce carotenoids under different stress level like 31.5% increase in β-carotene accumulation in Dunaliella salina and astaxanthin productivity reaching 18.1 mg/L/day in Haematococcus lacustris. It also explores novel biotechnological strategies, including CRISPR-Cas9, for enhancing carotenoid yield.
Collapse
Affiliation(s)
- Aditi
- School of Basic Sciences, Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Rupesh Bhardwaj
- School of Basic Sciences, Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Ankush Yadav
- School of Basic Sciences, Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Prashant Swapnil
- School of Basic Sciences, Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| |
Collapse
|
3
|
Coleman B, Vereecke E, Van Laere K, Novoveska L, Robbens J. Genetic Engineering and Innovative Cultivation Strategies for Enhancing the Lutein Production in Microalgae. Mar Drugs 2024; 22:329. [PMID: 39195445 DOI: 10.3390/md22080329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
Carotenoids, with their diverse biological activities and potential pharmaceutical applications, have garnered significant attention as essential nutraceuticals. Microalgae, as natural producers of these bioactive compounds, offer a promising avenue for sustainable and cost-effective carotenoid production. Despite the ability to cultivate microalgae for its high-value carotenoids with health benefits, only astaxanthin and β-carotene are produced on a commercial scale by Haematococcus pluvialis and Dunaliella salina, respectively. This review explores recent advancements in genetic engineering and cultivation strategies to enhance the production of lutein by microalgae. Techniques such as random mutagenesis, genetic engineering, including CRISPR technology and multi-omics approaches, are discussed in detail for their impact on improving lutein production. Innovative cultivation strategies are compared, highlighting their advantages and challenges. The paper concludes by identifying future research directions, challenges, and proposing strategies for the continued advancement of cost-effective and genetically engineered microalgal carotenoids for pharmaceutical applications.
Collapse
Affiliation(s)
- Bert Coleman
- Aquatic Environment and Quality, Cell Blue Biotech and Food Integrity, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Jacobsenstraat 1, 8400 Ostend, Belgium
| | - Elke Vereecke
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Caritasstraat 39, 9090 Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium
- Center for Plant Systems Biology, Flemish Institute for Biotechnology (VIB), Technologiepark 71, 9052 Zwijnaarde, Belgium
| | - Katrijn Van Laere
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Caritasstraat 39, 9090 Melle, Belgium
| | | | - Johan Robbens
- Aquatic Environment and Quality, Cell Blue Biotech and Food Integrity, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Jacobsenstraat 1, 8400 Ostend, Belgium
| |
Collapse
|
4
|
Camarena-Bernard C, Pozzobon V. Evolving perspectives on lutein production from microalgae - A focus on productivity and heterotrophic culture. Biotechnol Adv 2024; 73:108375. [PMID: 38762164 DOI: 10.1016/j.biotechadv.2024.108375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
Increased consumer awareness for healthier and more sustainable products has driven the search for naturally sourced compounds as substitutes for chemically synthesized counterparts. Research on pigments of natural origin, such as carotenoids, particularly lutein, has been increasing for over three decades. Lutein is recognized for its antioxidant and photoprotective activity. Its ability to cross the blood-brain barrier allows it to act at the eye and brain level and has been linked to benefits for vision, cognitive function and other conditions. While marigold flower is positioned as the only crop from which lutein is extracted from and commercialized, microalgae are proposed as an alternative with several advantages over this terrestrial crop. The main barrier to scaling up lutein production from microalgae to the commercial level is the low productivity compared to the high costs. This review explores strategies to enhance lutein production in microalgae by emphasizing the overall productivity over lutein content alone. Evaluation of how culture parameters, such as light quality, nitrogen sufficiency, temperature and even stress factors, affect lutein content and biomass development in batch phototrophic cultures was performed. Overall, the total lutein production remains low under this metabolic regime due to the low biomass productivity of photosynthetic batch cultures. For this reason, we describe findings on microalgal cultures grown under different metabolic regimes and culture protocols (fed-batch, pulse-feed, semi-batch, semi-continuous, continuous). After a careful literature examination, two-step heterotrophic or mixotrophic cultivation strategies are suggested to surpass the lutein productivity achieved in single-step photosynthetic cultures. Furthermore, this review highlights the urgent need to develop technical feasibility studies at a pilot scale for these cultivation strategies, which will strengthen the necessary techno-economic analyses to drive their commercial production.
Collapse
Affiliation(s)
- Cristobal Camarena-Bernard
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres 51110 Pomacle, France; Instituto de Estudios Superiores de Occidente (ITESO), 45604 Tlaquepaque, Jalisco, Mexico.
| | - Victor Pozzobon
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres 51110 Pomacle, France
| |
Collapse
|
5
|
Montuori E, Lima S, Marchese A, Scargiali F, Lauritano C. Lutein Production and Extraction from Microalgae: Recent Insights and Bioactive Potential. Int J Mol Sci 2024; 25:2892. [PMID: 38474137 PMCID: PMC10931717 DOI: 10.3390/ijms25052892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Microalgae have been reported to be excellent producers of bioactive molecules. Lutein is a pigment reported to have various beneficial effects for humans, and especially for eye well-being. In the current review, we summarize various methods that have been developed to optimize its extraction and bioactivities reported for human health. Several protective effects have been reported for lutein, including antioxidant, anticancer, anti-inflammatory, and cardioprotective activity. This review also reports attempts to increase lutein production by microalgae by changing culturing parameters or by using pilot-scale systems. Genetic engineering lutein production is also discussed. Considering the increasing aging of the worldwide population will create an increased need for lutein, a viable economic and eco-sustainable method to produce lutein is needed to face this market demand.
Collapse
Affiliation(s)
- Eleonora Montuori
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy;
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| | - Serena Lima
- Department of Engineering, University of Palermo, Viale delle Scienze ed. 6, 90128 Palermo, Italy; (S.L.); (A.M.); (F.S.)
| | - Arima Marchese
- Department of Engineering, University of Palermo, Viale delle Scienze ed. 6, 90128 Palermo, Italy; (S.L.); (A.M.); (F.S.)
| | - Francesca Scargiali
- Department of Engineering, University of Palermo, Viale delle Scienze ed. 6, 90128 Palermo, Italy; (S.L.); (A.M.); (F.S.)
| | - Chiara Lauritano
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| |
Collapse
|
6
|
Kadri MS, Singhania RR, Anisha GS, Gohil N, Singh V, Patel AK, Patel AK. Microalgal lutein: Advancements in production, extraction, market potential, and applications. BIORESOURCE TECHNOLOGY 2023; 389:129808. [PMID: 37806362 DOI: 10.1016/j.biortech.2023.129808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Lutein, a bioactive xanthophyll, has recently attracted significant attention for numerous health benefits, e.g., protection of eye health, macular degeneration, and acute and chronic syndromes etc. Microalgae have emerged as the best platform for high-value lutein production with high productivity, lutein content, and scale-up potential. Algal lutein possesses numerous bioactivities, hence widely used in pharmaceuticals, nutraceuticals, aquaculture, cosmetics, etc. This review highlights advances in upstream lutein production enhancement and feasible downstream extraction and cell disruption techniques for a large-scale lutein biorefinery. Besides bioprocess-related advances, possible solutions for existing production challenges in microalgae-based lutein biorefinery, market potential, and emerging commercial scopes of lutein and its potential health applications are also discussed. The key enzymes involved in the lutein biosynthesizing Methyl-Erythritol-phosphate (MEP) pathway have been briefly described. This review provides a comprehensive updates on lutein research advancements covering scalable upstream and downstream production strategies and potential applications for researchers and industrialists.
Collapse
Affiliation(s)
- Mohammad Sibtain Kadri
- Department of Education and Human Potential Development, National Dong Hwa University, Hualien, 974301, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India
| | - Grace Sathyanesan Anisha
- Post-graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram, 695014, Kerala, India
| | - Nisarg Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India
| | - Alok Kumar Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India.
| |
Collapse
|
7
|
Kumar M, Paul T, Kumar PVA, Pugazhenthi G, Pakshirajan K. Both biogenic and chemically synthesized metal sulfide nanoparticles induce oxidative stress and enhance lipid accumulation in Rhodococcus opacus. Biometals 2023; 36:1047-1058. [PMID: 37165109 DOI: 10.1007/s10534-023-00504-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023]
Abstract
Metallic nanoparticles (NPs) find applications in many different industrial sectors. However, the fate of these NPs in the environment and their potential impact on organisms living in different ecosystems are not fully known. In this work, the individual effect of biogenic and chemically synthesized lead sulfide nanoparticles (PbSNPs) and cadmium sulfide nanoparticles (CdSNPs) on the activity of the oleaginous bacterium Rhodococcus opacus PD630 which belongs to an ecologically important genus Rhodococcus was investigated. A dose-dependent increase in PbSNPs and CdSNPs uptake by the bacterium was observed upto a maximum of 16.4 and 15.6 mg/g cell, corresponding to 98% and 95% uptake. In the case of chemically synthesized NPs, the specific PbSNPs and CdSNPs uptake were slightly less [15.5 and 14.8 mg/g cell], corresponding to 93.2% and 88.4% uptake. Both biogenic and chemically synthesized PbSNPs and CdSNPs did not affect the bacterial growth. On the other hand, the triacylglycerol (biodiesel) content in the bacterium increased from 30% to a maximum of 75% and 73% CDW due to oxidative stress induced by biogenic PbSNPs and CdSNPs. The results of induced oxidative stress by biogenic metal nanoparticle were similar to that induced by the chemically synthesized NPs.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Tanushree Paul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - P V Ajay Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - G Pugazhenthi
- Department of Chemical Engineering, Indian Institute Technology Guwahati, Guwahati, Assam, 781039, India
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
8
|
Ruiz-Domínguez MC, Robles M, Martín L, Beltrán Á, Gava R, Cuaresma M, Navarro F, Vílchez C. Ultrasound-Based Recovery of Anti-Inflammatory and Antimicrobial Extracts of the Acidophilic Microalga Coccomyxa onubensis. Mar Drugs 2023; 21:471. [PMID: 37755084 PMCID: PMC10532798 DOI: 10.3390/md21090471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
In the present study, the recovery of valuable molecules of proven anti-inflammatory and antimicrobial activity of the acidophilic microalga Coccomyxa onubensis (C. onubensis) were evaluated using green technologies based on ultrasound-assisted extraction (UAE). Using a factorial design (3 × 2) based on response surface methodology and Pareto charts, two types of ultrasonic equipment (bath and probe) were evaluated to recover valuable compounds, including the major terpenoid of C. onubensis, lutein, and the antimicrobial activity of the microalgal extracts obtained under optimal ultrasound conditions (desirability function) was evaluated versus conventional extraction. Significant differences in lutein recovery were observed between ultrasonic bath and ultrasonic probe and conventional extraction. Furthermore, the antimicrobial activity displayed by C. onubensis UAE-based extracts was greater than that obtained in solvent-based extracts, highlighting the effects of the extracts against pathogens such as Enterococcus hirae and Bacillus subtilis, followed by Staphylococcus aureus and Escherichia coli. In addition, gas chromatography-mass spectrometry was performed to detect valuable anti-inflammatory and antimicrobial biomolecules present in the optimal C. onubensis extracts, which revealed that phytol, sterol-like, terpenoid, and even fatty acid structures could also be responsible for the antibacterial activities of the extracts. Moreover, UAE displayed a positive effect on the recovery of valuable molecules, improving biocidal effects. Our study results facilitate the use of green technology as a good tool in algal bioprocess engineering, improving energy consumption and minimizing environmental impacts and process costs, as well as provide a valuable product for applications in the field of biotechnology.
Collapse
Affiliation(s)
- Mari Carmen Ruiz-Domínguez
- Laboratorio de Microencapsulación de Compuestos Bioactivos (LAMICBA), Departamento de Ciencias de los Alimentos y Nutrición, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile
| | - María Robles
- Algal Biotechnology, CIDERTA-RENSMA, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain; (M.R.); (L.M.); (M.C.); (C.V.)
| | - Lidia Martín
- Algal Biotechnology, CIDERTA-RENSMA, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain; (M.R.); (L.M.); (M.C.); (C.V.)
| | - Álvaro Beltrán
- Bioplagen S.L., Av. Castilleja de la Cuesta, 20-22, Bollullos de la Mitación, 41110 Seville, Spain; (Á.B.); (R.G.)
| | - Riccardo Gava
- Bioplagen S.L., Av. Castilleja de la Cuesta, 20-22, Bollullos de la Mitación, 41110 Seville, Spain; (Á.B.); (R.G.)
| | - María Cuaresma
- Algal Biotechnology, CIDERTA-RENSMA, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain; (M.R.); (L.M.); (M.C.); (C.V.)
| | - Francisco Navarro
- Cell Alterations by Exogenous Agents, RENSMA, Department of Integrated Sciences, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain;
| | - Carlos Vílchez
- Algal Biotechnology, CIDERTA-RENSMA, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain; (M.R.); (L.M.); (M.C.); (C.V.)
| |
Collapse
|
9
|
Fu Y, Wang Y, Yi L, Liu J, Yang S, Liu B, Chen F, Sun H. Lutein production from microalgae: A review. BIORESOURCE TECHNOLOGY 2023; 376:128875. [PMID: 36921637 DOI: 10.1016/j.biortech.2023.128875] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Lutein production from microalgae is a sustainable and economical strategy to offer the increasing global demands, but is still challenged with low lutein content at the high-cell density for commercial production. This review summarizes the suitable conditions for cell growth and lutein accumulation, and presents recent cultivation strategies to further improve lutein productivity. Light and nitrogen play critical roles in lutein biosynthesis that lead to the efficient multi-stage cultivation by increasing lutein content at the later stage. In addition, metabolic and genetic designs for carbon regulation and lutein biosynthesis are discussed at the molecule level. The in-situ lutein accumulation in fermenters by regulating carbon metabolism is considered as a cost-effective direction. Then, downstream processes are summarized for the efficient lutein recovery. Finally, challenges of current lutein production from microalgae are discussed. Meanwhile, potential solutions are proposed to improve lutein content and drive down costs of microalgal biomass.
Collapse
Affiliation(s)
- Yunlei Fu
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yinan Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Lanbo Yi
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Jin Liu
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Shufang Yang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Han Sun
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
10
|
Fe (III)-Mediated Antioxidant Response of the Acidotolerant Microalga Coccomyxa onubensis. Antioxidants (Basel) 2023; 12:antiox12030610. [PMID: 36978855 PMCID: PMC10045799 DOI: 10.3390/antiox12030610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Coccomyxa onubensis (C. onubensis) is an acidotolerant microalga isolated from Tinto River (Huelva), which contains high levels of metal cations in solution, mainly Fe (II) and (III), and Cu (II). Fe is more bioavailable at low pH, mainly because Fe (II) and Fe (III) are far more soluble, especially Fe (III). For this reason, this study aims to evaluate both physiological and biochemical responses of C. onubensis when subjected to Fe (III)-induced stress. Changes in growth, photosynthetic viability and antioxidant responses to the induced oxidative stress were determined. The results obtained suggest that the addition of moderate Fe (III) levels to C. onubensis cultures results in improved growth and photosynthetic viability. Increases in the intracellular levels of the enzyme superoxide dismutase (SOD) and flavonoids, used as antioxidant response biomarkers, a point at Fe (III)-mediated oxidative stress induction. The apparent decrease in the content of other phenolic molecules and polyunsaturated fatty acids might be understood as a sign of antioxidant molecules' involvement in reactive oxygen species (ROS) scavenging. In conclusion, a noticeable antioxidant capacity displayed by C. onubensis allows the use of moderate Fe (III) levels to trigger the accumulation of valuable antioxidant molecules, allowing the production of cell extracts with potential anti-inflammatory activity.
Collapse
|
11
|
Aratboni HA, Rafiei N, Allaf MM, Abedini S, Rasheed RN, Seif A, Wang S, Ramirez JRM. Nanotechnology: An outstanding tool for increasing and better exploitation of microalgae valuable compounds. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
12
|
Li J, Zhao X, Chang JS, Miao X. A Two-Stage Culture Strategy for Scenedesmus sp. FSP3 for CO 2 Fixation and the Simultaneous Production of Lutein under Light and Salt Stress. Molecules 2022. [PMID: 36364324 DOI: 10.3390/molecules2721749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
In this study, Scenedesmus sp. FSP3 was cultured using a two-stage culture strategy for CO2 fixation and lutein production. During the first stage, propylene carbonate was added to the medium, with 5% CO2 introduced to promote the rapid growth and CO2 fixation of the microalgae. During the second stage of cultivation, a NaCl concentration of 156 mmol L-1 and a light intensity of 160 μmol m-2 s-1 were used to stimulate the accumulation of lutein in the microalgal cells. By using this culture method, high lutein production and CO2 fixation were simultaneously achieved. The biomass productivity and carbon fixation rate of Scenedesmus sp. FSP3 reached 0.58 g L-1 d-1 and 1.09 g L-1 d-1, with a lutein content and yield as high as 6.45 mg g-1 and 2.30 mg L-1 d-1, respectively. The results reveal a commercially feasible way to integrate microalgal lutein production with CO2 fixation processes.
Collapse
Affiliation(s)
- Jiawei Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinqing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
- Department of Chemical Engineering, National Cheng-Kung University, Tainan 701, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan
| | - Xiaoling Miao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
13
|
Li J, Zhao X, Chang JS, Miao X. A Two-Stage Culture Strategy for Scenedesmus sp. FSP3 for CO 2 Fixation and the Simultaneous Production of Lutein under Light and Salt Stress. Molecules 2022; 27:7497. [PMID: 36364324 PMCID: PMC9655217 DOI: 10.3390/molecules27217497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 10/10/2023] Open
Abstract
In this study, Scenedesmus sp. FSP3 was cultured using a two-stage culture strategy for CO2 fixation and lutein production. During the first stage, propylene carbonate was added to the medium, with 5% CO2 introduced to promote the rapid growth and CO2 fixation of the microalgae. During the second stage of cultivation, a NaCl concentration of 156 mmol L-1 and a light intensity of 160 μmol m-2 s-1 were used to stimulate the accumulation of lutein in the microalgal cells. By using this culture method, high lutein production and CO2 fixation were simultaneously achieved. The biomass productivity and carbon fixation rate of Scenedesmus sp. FSP3 reached 0.58 g L-1 d-1 and 1.09 g L-1 d-1, with a lutein content and yield as high as 6.45 mg g-1 and 2.30 mg L-1 d-1, respectively. The results reveal a commercially feasible way to integrate microalgal lutein production with CO2 fixation processes.
Collapse
Affiliation(s)
- Jiawei Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinqing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
- Department of Chemical Engineering, National Cheng-Kung University, Tainan 701, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan
| | - Xiaoling Miao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Methodological Optimization of Supercritical Fluid Extraction of Valuable Bioactive Compounds from the Acidophilic Microalga Coccomyxa onubensis. Antioxidants (Basel) 2022; 11:antiox11071248. [PMID: 35883739 PMCID: PMC9312109 DOI: 10.3390/antiox11071248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Microalgae grow in diverse environments and possess a great biotechnological potential as they contain useful bioactive compounds. These bioactive compounds can be obtained by selective and energy-efficient extraction methods. Various industries are using the supercritical fluid extraction (SFE) method to extract these valuable bioactive compounds. Hence, for the first time, we evaluated the effects of SFE on the recovery of bioactive and antioxidant compounds using Coccomyxa onubensis, a eukaryotic acidophilic microalga of potential relevance which can be used in the field of nutraceutical and functional foods. It was isolated from the Tinto River (Pyritic Belt, Huelva, Spain), a mining region in Spain. Variables such as extraction yield, lutein purity (LP) and recovery (LR), total phenols, and antioxidant capacity (Trolox equivalents antioxidant capacity method) were studied using a Box–Behnken design based on a response surface methodology along with the overall extraction curve fitted to a spline linear model. The effects of temperature (30, 50, and 70 °C), pressure (25, 40, and 55 MPa), and the percentage of co-solvent (0, 25%, and 50% v/v ethanol) on SFE were analyzed, resulting in the co-solvent and temperature as the most significant factors followed by the pressure. Under 70 °C, 40 MPa, and 50% v/v ethanol, C. onubensis reached a maximum of 66.98% of LR. The extracts were richest in total phenols and showed the maximum antioxidant activity (36.08 mg GAEs/g extracts and 2.237 mmol TE/g extracts, respectively) under similar pressure and co-solvent percentage values and different temperatures (30 and 70 °C, respectively). The extracts obtained in this study may have potential applications in the food, nutraceutical, and cosmetic industries. SFE is a highly efficient method to valorize microorganisms living in extreme environments, which are so far unexplored using green extraction methods.
Collapse
|
15
|
Ren X, Liu Y, Fan C, Hong H, Wu W, Zhang W, Wang Y. Production, Processing, and Protection of Microalgal n-3 PUFA-Rich Oil. Foods 2022; 11:foods11091215. [PMID: 35563938 PMCID: PMC9101592 DOI: 10.3390/foods11091215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Microalgae have been increasingly considered as a sustainable “biofactory” with huge potentials to fill up the current and future shortages of food and nutrition. They have become an economically and technologically viable solution to produce a great diversity of high-value bioactive compounds, including n-3 polyunsaturated fatty acids (PUFA). The n-3 PUFA, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), possess an array of biological activities and positively affect a number of diseases, including cardiovascular and neurodegenerative disorders. As such, the global market of n-3 PUFA has been increasing at a fast pace in the past two decades. Nowadays, the supply of n-3 PUFA is facing serious challenges as a result of global warming and maximal/over marine fisheries catches. Although increasing rapidly in recent years, aquaculture as an alternative source of n-3 PUFA appears insufficient to meet the fast increase in consumption and market demand. Therefore, the cultivation of microalgae stands out as a potential solution to meet the shortages of the n-3 PUFA market and provides unique fatty acids for the special groups of the population. This review focuses on the biosynthesis pathways and recombinant engineering approaches that can be used to enhance the production of n-3 PUFA, the impact of environmental conditions in heterotrophic cultivation on n-3 PUFA production, and the technologies that have been applied in the food industry to extract and purify oil in microalgae and protect n-3 PUFA from oxidation.
Collapse
Affiliation(s)
- Xiang Ren
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
- Correspondence: (X.R.); (Y.W.); Tel.: +86-411-65864645 (X.R.); +1-902-566-7953 (Y.W.)
| | - Yanjun Liu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Chao Fan
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Hao Hong
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Wenzhong Wu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Wei Zhang
- DeOxiTech Consulting, 30 Cloverfield Court, Dartmouth, NS B2W 0B3, Canada;
| | - Yanwen Wang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
- Correspondence: (X.R.); (Y.W.); Tel.: +86-411-65864645 (X.R.); +1-902-566-7953 (Y.W.)
| |
Collapse
|
16
|
Ren Y, Sun H, Deng J, Huang J, Chen F. Carotenoid Production from Microalgae: Biosynthesis, Salinity Responses and Novel Biotechnologies. Mar Drugs 2021; 19:713. [PMID: 34940712 PMCID: PMC8708220 DOI: 10.3390/md19120713] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 01/23/2023] Open
Abstract
Microalgae are excellent biological factories for high-value products and contain biofunctional carotenoids. Carotenoids are a group of natural pigments with high value in social production and human health. They have been widely used in food additives, pharmaceutics and cosmetics. Astaxanthin, β-carotene and lutein are currently the three carotenoids with the largest market share. Meanwhile, other less studied pigments, such as fucoxanthin and zeaxanthin, also exist in microalgae and have great biofunctional potentials. Since carotenoid accumulation is related to environments and cultivation of microalgae in seawater is a difficult biotechnological problem, the contributions of salt stress on carotenoid accumulation in microalgae need to be revealed for large-scale production. This review comprehensively summarizes the carotenoid biosynthesis and salinity responses of microalgae. Applications of salt stress to induce carotenoid accumulation, potentials of the Internet of Things in microalgae cultivation and future aspects for seawater cultivation are also discussed. As the global market share of carotenoids is still ascending, large-scale, economical and intelligent biotechnologies for carotenoid production play vital roles in the future microalgal economy.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China;
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (H.S.); (J.D.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Han Sun
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (H.S.); (J.D.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Jinquan Deng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (H.S.); (J.D.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Junchao Huang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (H.S.); (J.D.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (H.S.); (J.D.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
17
|
Ljubic A, Thulesen ET, Jacobsen C, Jakobsen J. UVB exposure stimulates production of vitamin D3 in selected microalgae. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Barón-Sola Á, Toledo-Basantes M, Arana-Gandía M, Martínez F, Ortega-Villasante C, Dučić T, Yousef I, Hernández LE. Synchrotron Radiation-Fourier Transformed Infrared microspectroscopy (μSR-FTIR) reveals multiple metabolism alterations in microalgae induced by cadmium and mercury. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126502. [PMID: 34214848 DOI: 10.1016/j.jhazmat.2021.126502] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Toxic metals such as cadmium (Cd) and mercury (Hg) represent a threat to photosynthetic organisms of polluted aquatic ecosystems, and knowledge about mechanisms of toxicity is essential for appropriate assessment of environmental risks. We used Synchrotron Radiation-Fourier Transformed Infrared microspectroscopy (μSR-FTIR) to characterise major changes of biomolecules caused by Cd and Hg in the model green microalga Chlamydomonas reinhardtii. μSR-FTIR showed several metabolic alterations in different biochemical groups such as carbohydrates, proteins, and lipids in a time-dose dependent manner, with the strongest changes occurring at concentrations above 10 μM Cd and 15 μM Hg after short-term (24 h) treatments. This occurred in a context where metals triggered intracellular oxidative stress and chloroplast damage, along with autophagy induction by overexpressing AUTOPHAGY-RELATED PROTEIN 8 (ATG8). Thin layer chromatography analysis confirmed that toxic metals promoted remarkable changes in lipid profile, with higher degree of esterified fatty acid unsaturation as detected by gas chromatography coupled with mass spectrometry. Under Cd stress, there was specifically higher unsaturation of free fatty acids, while Hg led to stronger unsaturation in monogalactosyldiacylglycerol. μSR-FTIR spectroscopy proved as a valuable tool to identify biochemical alterations in microalgae, information that could be exploited to optimise approaches for metal decontamination.
Collapse
Affiliation(s)
- Ángel Barón-Sola
- Laboratory of Plant Physiology-Department of Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma Madrid, Darwin 2, ES28049 Madrid, Spain
| | - Margarita Toledo-Basantes
- Laboratory of Plant Physiology-Department of Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma Madrid, Darwin 2, ES28049 Madrid, Spain
| | - María Arana-Gandía
- Laboratory of Plant Physiology-Department of Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma Madrid, Darwin 2, ES28049 Madrid, Spain
| | - Flor Martínez
- Laboratory of Plant Physiology-Department of Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma Madrid, Darwin 2, ES28049 Madrid, Spain
| | - Cristina Ortega-Villasante
- Laboratory of Plant Physiology-Department of Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma Madrid, Darwin 2, ES28049 Madrid, Spain
| | - Tanja Dučić
- CELLS ALBA, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Ibraheem Yousef
- CELLS ALBA, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Luis E Hernández
- Laboratory of Plant Physiology-Department of Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma Madrid, Darwin 2, ES28049 Madrid, Spain.
| |
Collapse
|
19
|
He J, Liu C, Du M, Zhou X, Hu Z, Lei A, Wang J. Metabolic Responses of a Model Green Microalga Euglena gracilis to Different Environmental Stresses. Front Bioeng Biotechnol 2021; 9:662655. [PMID: 34354984 PMCID: PMC8329484 DOI: 10.3389/fbioe.2021.662655] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022] Open
Abstract
Euglena gracilis, a green microalga known as a potential candidate for jet fuel producers and new functional food resources, is highly tolerant to antibiotics, heavy metals, and other environmental stresses. Its cells contain many high-value products, including vitamins, amino acids, pigments, unsaturated fatty acids, and carbohydrate paramylon as metabolites, which change contents in response to various extracellular environments. However, mechanism insights into the cellular metabolic response of Euglena to different toxic chemicals and adverse environmental stresses were very limited. We extensively investigated the changes of cell biomass, pigments, lipids, and paramylon of E. gracilis under several environmental stresses, such as heavy metal CdCl2, antibiotics paromomycin, and nutrient deprivation. In addition, global metabolomics by Ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) was applied to study other metabolites and potential regulatory mechanisms behind the differential accumulation of major high-valued metabolites. This study collects a comprehensive update on the biology of E. gracilis for various metabolic responses to stress conditions, and it will be of great value for Euglena cultivation and high-value [154mm][10mm]Q7metabolite production.
Collapse
Affiliation(s)
- Jiayi He
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - ChenChen Liu
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Mengzhe Du
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Xiyi Zhou
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Anping Lei
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
20
|
Lafarga T, Sánchez‐Zurano A, Morillas‐España A, Acién‐Fernández FG. Extremophile microalgae as feedstock for high‐value carotenoids: A review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tomás Lafarga
- Department of Chemical Engineering University of Almería Almería 04120 Spain
| | - Ana Sánchez‐Zurano
- Department of Chemical Engineering University of Almería Almería 04120 Spain
| | | | | |
Collapse
|
21
|
A state-of-the-art review on the synthetic mechanisms, production technologies, and practical application of polyunsaturated fatty acids from microalgae. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102281] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Maltsev Y, Maltseva I, Maltseva S, Kociolek JP, Kulikovskiy M. A New Species of Freshwater Algae Nephrochlamys yushanlensis sp. nov. (Selenastraceae, Sphaeropleales) and Its Lipid Accumulation during Nitrogen and Phosphorus Starvation. JOURNAL OF PHYCOLOGY 2021; 57:606-618. [PMID: 33296071 DOI: 10.1111/jpy.13116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/17/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
The new species Nephrochlamys yushanlensis sp. nov. is described from a freshwater plankton sample. A comparison of morphology, 18S rDNA gene and ITS2 sequences, and fatty acid profiles showed that the novel strain represents a new lineage within the genus Nephrochlamys. For the first time with a member of the Selenastraceae, experiments with phosphate and nitrate deprivation were conducted to evaluate changes in biomass, lipid and triacylglycerol (TAGs) accumulation, and composition of fatty acids. Biomass dry weight under simultaneous nitrogen and phosphorus depletion was 1.73 g · L-1 , which is significantly lower than the 2.41 g · L-1 observed in the control. All conditions of nutrient restriction significantly increased the lipid content in comparison with the control. The largest increase in the total lipid content, reaching 58.64% DW per cell at the end of cultivation, occurred with nitrogen deficiency. Significant increases in TAGs content (to 23.69% and 21.74%, respectively) occurred in phosphorus- and nitrogen-depleted conditions in comparison to the control (16.90%). Oleic (49.8-64.1%), palmitic (21.1-22.7%), and linoleic (8.6-10.3%) acids were the dominant fatty acids when cultured on standard BBM medium, as well as with the shortage of nutrients. Phosphorus deprivation as well as absence of both nitrogen and phosphorus led to the appearance of FAMEs α-linolenic (1.5-4.1%) and stearidonic (1.0-1.8%) acids. In general, FAME profiles revealed that the relative percentage of saturated and monounsaturated fatty acids increased (88.9% of total fatty acids) in nitrogen-depletion conditions, suggesting this strain may be suitable for biodiesel production.
Collapse
Affiliation(s)
- Yevhen Maltsev
- К.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow, 127276, Russia
| | - Irina Maltseva
- Bohdan Khmelnytskyi Melitopol State Pedagogical University, 72312, Melitopol, Ukraine
| | - Svetlana Maltseva
- К.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow, 127276, Russia
| | - John Patrick Kociolek
- Museum of Natural History and Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
| | - Maxim Kulikovskiy
- К.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow, 127276, Russia
| |
Collapse
|
23
|
Wang S, He T, Xu F, Li X, Yuan L, Wang Q, Liu H. Analysis of physiological and metabolite response of Celosia argentea to copper stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:391-399. [PMID: 32722892 DOI: 10.1111/plb.13160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Copper-tolerant (Cu) plants with high ornamental value play an important role in the ecological restoration of the copper tail mining area. We first discovered Celosia argentea adaptability in a copper mine area in China; however, its resistance to Cu and the underlying mechanism are not clear. In this study, C. argentea was selected for pot culture experiments. Its heavy metal accumulation and translocation, physiological and metabolic products were analysed under different growth concentrations of Cu (0-2400 mg.kg-1 ) stress. Our results indicated that roots strongly accumulated Cu2+ . Oxidative stress defence mechanisms were activated in leaves under Cu treatment. Higher Cu concentrations triggered higher electrolyte leakage (EL), Malondialdehyde (MDA), superoxide dismutase (SOD) and peroxidase (POD) activity, and consequently a higher capacity to scavenge oxygen radicals and maintain cellular membrane integrity. In the citrate cycle, some amino acids and sugars related to biological pathways were altered in C. argentea exposed to Cu stress. Metabolomics data revealed that C. argentea used elevated sugar content as an antioxidant to regulate reactive oxygen species (ROS). Some organic acids and amino acids were up-regulated compared with the control, indicating that these may chelate Cu in cells to remove excess Cu2+ . The up-regulation of polyamines and some organic acids may mitigate oxidative stress. These results indicate that C. argentea could be used as a Cu-tolerant plant in Cu mine restoration. Its Cu tolerance mechanism also provides a basis for future plant improvement or breeding for use in mine restoration.
Collapse
Affiliation(s)
- S Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - T He
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - F Xu
- Collage of Life Sciences, Shangrao Normal University, Shangrao, China
| | - X Li
- The Institute of Advanced Studies in Coastal Ecology, Ludong University, Yantai, China
| | - L Yuan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, China
| | - Q Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - H Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, China
| |
Collapse
|
24
|
Desjardins SM, Laamanen CA, Basiliko N, Scott JA. Selection and re-acclimation of bioprospected acid-tolerant green microalgae suitable for growth at low pH. Extremophiles 2021; 25:129-141. [PMID: 33475805 DOI: 10.1007/s00792-021-01216-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/06/2021] [Indexed: 01/04/2023]
Abstract
For mass culture of photosynthetic green microalgae, industrial flue gases can represent a low-cost resource of CO2. However, flue gases are often avoided, because they often also contain high levels of SO2 and/or NO2, which cause significant acidification of media to below pH 3 due to production of sulfuric and nitric acid. This creates an unsuitable environment for the neutrophilic microalgae commonly used in large-scale commercial production. To address this issue, we have looked at selecting acid-tolerant microalgae via growth at pH 2.5 carried out with samples bioprospected from an active smelter site. Of the eight wild samples collected, one consisting mainly of Coccomyxa sp. grew at pH 2.5 and achieved a density of 640 mg L-1. Furthermore, three previously bioprospected green microalgae from acidic waters (pH 3-4.5) near abandoned mine sites were also re-acclimated down to their in-situ pH environment after approximately 4 years spent at neutral pH. Of those three, an axenic culture of Coccomyxa sp. was the most successful at re-acclimating and achieved the highest density of 293.1 mg L-1 and maximum daily productivity of 38.8 mg L-1 day-1 at pH 3. Re-acclimation of acid-tolerant species is, therefore, achievable when directly placed at their original pH, but gradual reduction in pH is recommended to give the cells time to acclimate.
Collapse
Affiliation(s)
- Sabrina Marie Desjardins
- Bharti School of Engineering, Laurentian University, Sudbury, ON, Canada.,Vale Living With Lakes Centre, Laurentian University, Sudbury, ON, Canada
| | | | - Nathan Basiliko
- Bharti School of Engineering, Laurentian University, Sudbury, ON, Canada.,Vale Living With Lakes Centre, Laurentian University, Sudbury, ON, Canada.,Department of Biology, Laurentian University, Sudbury, ON, Canada
| | - John Ashley Scott
- Bharti School of Engineering, Laurentian University, Sudbury, ON, Canada. .,Vale Living With Lakes Centre, Laurentian University, Sudbury, ON, Canada. .,Department of Biology, Laurentian University, Sudbury, ON, Canada.
| |
Collapse
|
25
|
Rearte T, Figueroa F, Gómez-Serrano C, Vélez C, Marsili S, Iorio ADF, González-López C, Cerón-García M, Abdala-Díaz R, Acién-Fernández F. Optimization of the production of lipids and carotenoids in the microalga Golenkinia aff. brevispicula. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Aburai N, Kunishima R, Iijima F, Fujii K. Effects of light-emitting diodes (LEDs) on lipid production of the aerial microalga Coccomyxa sp. KGU-D001 under liquid- and aerial-phase conditions. J Biotechnol 2020; 323:274-282. [PMID: 32916185 DOI: 10.1016/j.jbiotec.2020.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 10/23/2022]
Abstract
Algal biofuels are a promising alternative to fossil fuels, but their widespread use is hindered by problems with mass production. Light-emitting diodes (LEDs) with specific light wavelengths could be used as an energy source for algal growth and lipid synthesis. In this study, the effects of light source on the biomass and lipid production of the aerial microalga Coccomyxa sp. KGU-D001 were evaluated using LEDs. The integration of two-phase cultures, including growth and lipid production under the stress of nitrate depletion, was assessed for efficient lipid production under liquid- or aerial-phase conditions. Different wavelengths of light (blue, green, and red) were tested under liquid- and aerial-phase conditions. Under aerial-phase culture, the fatty acid contents in biofilm reached 320 mg g DWC-1 with the red LEDs. In view of these findings, we describe a one-step culture method for growth and lipid accumulation in algal biofilm under aerial-phase culture with red LED irradiation. When Coccomyxa biofilm was cultured on wet cotton wool with BBM in a petri dish under the red LED, it was able to grow and accumulate lipids under the aerial-phase condition. Based on the results of this study, a potential method for a continuous biodiesel production system is proposed.
Collapse
Affiliation(s)
- Nobuhiro Aburai
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji, Tokyo, 192-0015, Japan.
| | - Ryota Kunishima
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji, Tokyo, 192-0015, Japan
| | - Fusako Iijima
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji, Tokyo, 192-0015, Japan
| | - Katsuhiko Fujii
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji, Tokyo, 192-0015, Japan
| |
Collapse
|
27
|
Huang JJ, Huang W, Li J, Li P, Cheung PCK. Potential advancement of ultraviolet-free solar radiation technology in enriching the nutrient composition and biodiesel feedstock production in marine green microalga Platymonas subcordiformis. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Malavasi V, Soru S, Cao G. Extremophile Microalgae: the potential for biotechnological application. JOURNAL OF PHYCOLOGY 2020; 56:559-573. [PMID: 31917871 DOI: 10.1111/jpy.12965] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/26/2019] [Indexed: 05/18/2023]
Abstract
Microalgae are photosynthetic microorganisms that use sunlight as an energy source, and convert water, carbon dioxide, and inorganic salts into algal biomass. The isolation and selection of microalgae, which allow one to obtain large amounts of biomass and valuable compounds, is a prerequisite for their successful industrial production. This work provides an overview of extremophile algae, where their ability to grow under harsh conditions and the corresponding accumulation of metabolites are addressed. Emphasis is placed on the high-value products of some prominent algae. Moreover, the most recent applications of these microorganisms and their potential exploitation in the context of astrobiology are taken into account.
Collapse
Affiliation(s)
- Veronica Malavasi
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
| | - Santina Soru
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
| | - Giacomo Cao
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123, Cagliari, Italy
| |
Collapse
|
29
|
Resilience and self-regulation processes of microalgae under UV radiation stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2019.100322] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Gong G, Zhang X, Tan T. Simultaneously enhanced intracellular lipogenesis and β-carotene biosynthesis of Rhodotorula glutinis by light exposure with sodium acetate as the substrate. BIORESOURCE TECHNOLOGY 2020; 295:122274. [PMID: 31670113 DOI: 10.1016/j.biortech.2019.122274] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
In this study, light exposure was applied to simultaneously enhance lipogenesis and β-carotene biosynthesis of Rhodotorula glutinis with sodium acetate as the sole carbon source. The results showed that cell growth, intracellular lipogenesis and carotene biosynthesis were improved with an optimal exposure condition at 10 g/L and 20 g/L sodium acetate. Under high light exposure condition (8000 lx), cell growth and lipid production were inhibited while β-carotene accumulation was promoted. The fatty acid compositions moreover revealed that more polyunsaturated fatty acids and linoleic acid were generated under light exposure, which demonstrated its crucial role in the oxidative stress resistance in R. glutinis. The expression levels of some genes in acetate consumption, lipogenesis and β-carotene biosynthesis were found significantly upregulated under light exposure. The results proved that light exposure could be applied as an effective method to improve lipid and β-carotene production with sodium acetate as the substrate in R. glutinis.
Collapse
Affiliation(s)
- Guiping Gong
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xu Zhang
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Tianwei Tan
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
31
|
The growth and lutein accumulation in heterotrophic Chlorella protothecoides provoked by waste Monascus fermentation broth feeding. Appl Microbiol Biotechnol 2019; 103:8863-8874. [PMID: 31659421 DOI: 10.1007/s00253-019-10150-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/23/2019] [Accepted: 09/22/2019] [Indexed: 12/29/2022]
Abstract
Although the potential of heterotrophic microalgae served as a sustainable source for lutein, it was still crucial to formulate a suitable medium to offset the cost involved in algal biomass cultivation while improve inherent lutein productivity. The objective of this study was to investigate the feasibilities of waste Monascus fermentation broth medium (MFBM) toward heterotrophic Chlorella protothecoides-enriched lutein. The results indicated that C. protothecoides subjected to MFBM batch feeding achieved 7.1 g/L biomass and 7.27 mg/g lutein. The resulting lutein productivity (7.34 mg/L/day) represented 1.54-fold more than that of frequently used Basal medium. Concurrently, the effective metabolism and absorption of carbon, nitrogen, and phosphorus in MFBM by C. subellipsoidea cultivation make it easily complied with the permissible dischargeable limits for fermentation broth. When response to fed-batch culture mode, the biomass and lutein productivity peaked 20.4 g/L and 9.11 mg/L/day with concentrated MFBM feeding. Transcriptomics data hinted that MFBM feeding manipulated lutein biosynthesis key checkpoints (e.g., lycopene β-cyclase and lycopene ε-cyclase) while accelerated energy pathways (e.g., glycolysis and TCA cycle) to contribute such high lutein productivity in C. protothecoides. These encouraging findings not only provided indications in applying nutrient-rich fermentation broth for affordable microalgae cultivation but also presented possibilities in linking algal high value-added products like lutein with high-efficient biological nutrition removal from industrial fermentation processing.
Collapse
|
32
|
Maltsev Y, Maltseva I, Maltseva S, Kociolek JP, Kulikovskiy M. Fatty Acid Content and Profile of the Novel Strain of Coccomyxa elongata (Trebouxiophyceae, Chlorophyta) Cultivated at Reduced Nitrogen and Phosphorus Concentrations. JOURNAL OF PHYCOLOGY 2019; 55:1154-1165. [PMID: 31318981 DOI: 10.1111/jpy.12903] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
A novel freshwater strain of Coccomyxa elongata (MZ-Ch64) was isolated from the Zaporizhia region, Ukraine. The identification was based on the phylogenetic analysis of SSU rDNA gene and ITS1-5.8S rDNA-ITS2 region and predicted secondary structure of the ITS2. Phylogenetic analysis placed this strain in the Coccomyxa group, within the class Trebouxiophyceae. The novel strain MZ-Ch64 formed a strongly supported lineage closest with C. elongata. The MZ-Ch64 strain differed from the morphological description of the species by the size of vegetative cells and absence of small mucilaginous caps at one end of the cell. A number of experiments with different concentrations of phosphate and nitrate were conducted to evaluate changes in the resulting fatty acid profiles and biomass productivity. The fatty acid profile and total fatty acids varied significantly under different nutrient deficiencies. The dominant fatty acid during cultivation on standard BBM medium, as well as in phosphorus-depleted conditions, was oleic acid (to 48.0%-54.6% of total fatty acids). Absence of nitrogen alone, and absence of both nitrogen and phosphorus, led to an increase of palmitic acid (to 24.7%-25.6%), cis-7-hexadecenoic acid (to 14.8%) and α-linolenic acid (to 9.1%-10.1%) in comparison with the control sample. The greatest variation was found for oleic acid (31.9%-54.6%). Thus, this strain can be considered as a potential producer of oleic acid or cis-7-hexadecenoic and α-linolenic acids for biotechnological applications.
Collapse
Affiliation(s)
- Yevhen Maltsev
- К.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow, 127276, Russia
| | - Irina Maltseva
- Bohdan Khmelnytskyi Melitopol State Pedagogical University, 72312, Melitopol, Ukraine
| | - Svetlana Maltseva
- К.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow, 127276, Russia
| | - John Patrick Kociolek
- Museum of Natural History and Department of Ecology and Evolutionary Biology, University of Colorado, 80309, Boulder, Colorado, USA
| | - Maxim Kulikovskiy
- К.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow, 127276, Russia
| |
Collapse
|
33
|
Chen JH, Kato Y, Matsuda M, Chen CY, Nagarajan D, Hasunuma T, Kondo A, Dong CD, Lee DJ, Chang JS. A novel process for the mixotrophic production of lutein with Chlorella sorokiniana MB-1-M12 using aquaculture wastewater. BIORESOURCE TECHNOLOGY 2019; 290:121786. [PMID: 31306936 DOI: 10.1016/j.biortech.2019.121786] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
In this study, microalgal cultivation was applied as a feasible strategy for treating shrimp culture wastewater (SCW) from a shrimp farm in southern Tainan. Chlorella sorokiniana MB-1-M12 was first grown on BG-11 medium with 0.5% salinity, obtaining a biomass concentration and productivity of 4.35 g/L and 1.56 g/L/d, respectively. When 80% of BG-11 nutrients were added to 75% strength SCW, lutein content and productivity increased to 5.19 mg/g and 5.55 mg/L/d, respectively. A novel operation strategy involving periodic exchange of freshwater and SCW was designed for semi-continuous cultivation of MB-1-M12 strain for optimal biomass and lutein production. The average biomass concentration, productivity, lutein content, and productivity were 3.5 g/L, 1.3 g/L/d, 3.89 mg/g and 5.0 mg/L/d, respectively. Although microalgae have been considered as an alternative natural source of lutein, this work is among the earliest reports describing lutein production from microalgae cultivated with wastewater via a circular economy concept.
Collapse
Affiliation(s)
- Jih-Heng Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Yuichi Kato
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan
| | - Mami Matsuda
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan
| | - Chun-Yen Chen
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Circular Economy, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan.
| |
Collapse
|
34
|
Ram S, Paliwal C, Mishra S. Growth medium and nitrogen stress sparked biochemical and carotenogenic alterations in Scenedesmus sp. CCNM 1028. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Řezanka T, Nedbalová L, Barcytė D, Vítová M, Sigler K. Arsenolipids in the green alga Coccomyxa (Trebouxiophyceae, Chlorophyta). PHYTOCHEMISTRY 2019; 164:243-251. [PMID: 31128818 DOI: 10.1016/j.phytochem.2019.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Lipid-like compounds containing a dimethylarsinoyl group, i.e. Me2As(O)-, have been identified by liquid chromatography/inductively coupled plasma mass spectrometry (LC/ICP-MS) and non-aqueous reversed-phase high-performance liquid chromatography (positive and/or negative high-resolution tandem electrospray ionization mass spectrometry (NARP-HPLC/HR-ESI+(-)-MS/MS) from three strains of green algae of the genus Coccomyxa (Trebouxiophyceae, Chlorophyta). The algae were cultivated in a medium containing 10 g arsenic/L, i.e. 133.5 mmol/L of Na2HAsO4.7H2O. After extraction by methyl-tert-butyl ether (MTBE), total lipids were analyzed by ICP-MS or ESI-MS without any further separation or fractionation. A total of 39 molecular species of arsenic triacylglycerols (AsTAG), 15 arsenic phosphatidylcholines (AsPC), 8 arsenic phosphatidylethanolamines (AsPE), 6 arsenic phosphatidylinositols (AsPI), 2 arsenic phosphatidylglycerols (AsPG) and 5 unknown lipids (probably ceramides) were identified. The structures of all molecular species were confirmed by tandem MS. Dry matter of the individual strains contained different amounts of total arsenolipids, i.e. C. elongata CCALA 427 (0.32 mg/g), C. onubensis (1.48 mg/g), C. elongata S3 (2.13 mg/g). On the other hand, there were only slight differences between strains in the relative abundances of individual molecular species. Possible biosynthesis of long-chain lipids with the end group Me2As(O) has also been suggested.
Collapse
Affiliation(s)
- Tomáš Řezanka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Dovilė Barcytė
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Milada Vítová
- Laboratory of Cell Cycles of Algae, Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň, Czech Republic
| | - Karel Sigler
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
36
|
Janchot K, Rauytanapanit M, Honda M, Hibino T, Sirisattha S, Praneenararat T, Kageyama H, Waditee‐Sirisattha R. Effects of Potassium Chloride‐Induced Stress on the Carotenoids Canthaxanthin, Astaxanthin, and Lipid Accumulations in the Green Chlorococcal Microalga StrainTISTR9500. J Eukaryot Microbiol 2019; 66:778-787. [DOI: 10.1111/jeu.12726] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/13/2019] [Accepted: 02/28/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Kantima Janchot
- Department of Microbiology Faculty of Science Chulalongkorn University Pathumwan Bangkok 10330 Thailand
- The Chemical Approaches for Food Applications Research Group Faculty of Science Chulalongkorn University Pathumwan Bangkok 10330 Thailand
| | - Monrawat Rauytanapanit
- The Chemical Approaches for Food Applications Research Group Faculty of Science Chulalongkorn University Pathumwan Bangkok 10330 Thailand
- Department of Chemistry Faculty of Science Chulalongkorn University Pathumwan Bangkok 10330 Thailand
| | - Masaki Honda
- Department of Chemistry Faculty of Science and Technology Meijo University Nagoya 468‐8502 Japan
| | - Takashi Hibino
- Department of Chemistry Faculty of Science and Technology Meijo University Nagoya 468‐8502 Japan
- Graduate School of Environmental and Human Sciences Meijo University Nagoya 468‐8502 Japan
| | - Sophon Sirisattha
- Thailand Institute of Scientific and Technological Research (TISTR) Khlong Luang Pathum Thani 12120 Thailand
| | - Thanit Praneenararat
- The Chemical Approaches for Food Applications Research Group Faculty of Science Chulalongkorn University Pathumwan Bangkok 10330 Thailand
- Department of Chemistry Faculty of Science Chulalongkorn University Pathumwan Bangkok 10330 Thailand
| | - Hakuto Kageyama
- Department of Chemistry Faculty of Science and Technology Meijo University Nagoya 468‐8502 Japan
- Graduate School of Environmental and Human Sciences Meijo University Nagoya 468‐8502 Japan
| | - Rungaroon Waditee‐Sirisattha
- Department of Microbiology Faculty of Science Chulalongkorn University Pathumwan Bangkok 10330 Thailand
- The Chemical Approaches for Food Applications Research Group Faculty of Science Chulalongkorn University Pathumwan Bangkok 10330 Thailand
| |
Collapse
|
37
|
Xie Y, Lu K, Zhao X, Ma R, Chen J, Ho S. Manipulating Nutritional Conditions and Salinity‐Gradient Stress for Enhanced Lutein Production in Marine Microalga
Chlamydomonas
sp. Biotechnol J 2019; 14:e1800380. [DOI: 10.1002/biot.201800380] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/14/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Youping Xie
- College of Biological Science and Engineering, Fuzhou UniversityFuzhou 350108China
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou UniversityFuzhou 350108China
| | - Kongyong Lu
- College of Biological Science and Engineering, Fuzhou UniversityFuzhou 350108China
| | - Xurui Zhao
- College of Biological Science and Engineering, Fuzhou UniversityFuzhou 350108China
| | - Ruijuan Ma
- College of Biological Science and Engineering, Fuzhou UniversityFuzhou 350108China
| | - Jianfeng Chen
- College of Biological Science and Engineering, Fuzhou UniversityFuzhou 350108China
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou UniversityFuzhou 350108China
| | - Shih‐Hsin Ho
- College of Biological Science and Engineering, Fuzhou UniversityFuzhou 350108China
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of TechnologyHarbin 150090China
| |
Collapse
|
38
|
Zhao X, Ma R, Liu X, Ho SH, Xie Y, Chen J. Strategies related to light quality and temperature to improve lutein production of marine microalga Chlamydomonas sp. Bioprocess Biosyst Eng 2018; 42:435-443. [PMID: 30467772 DOI: 10.1007/s00449-018-2047-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
Abstract
The marine microalga Chlamydomonas sp. JSC4 was examined for its potential as a lutein producer. Environmental conditions, including light quality, temperature and light wavelength mixing ratio, were individually altered to enhance the cell growth rate and lutein production in strain JSC4. Results showed that optimal cell growth was obtained under white light and a temperature of 35 °C, while the optimal lutein content was obtained under blue light and a lower temperature of 20-25 °C. The best lutein production occurred when using a mixing ratio of 3:1 (white light: blue light). Strategies related to light quality and temperature (namely, temperature-gradient and two-stage strategies) were then used to further improve lutein production. Among them, the two-stage strategy proved to be effective markedly improving lutein content from 2.52 to 4.24 mg/g and resulting in the highest lutein productivity of 3.25 mg/L/day.
Collapse
Affiliation(s)
- Xurui Zhao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Ruijuan Ma
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Xiaoting Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Shih-Hsin Ho
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, China
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Youping Xie
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, China.
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou, 350116, China.
| | - Jianfeng Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, China.
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
39
|
Soru S, Malavasi V, Caboni P, Concas A, Cao G. Behavior of the extremophile green alga Coccomyxa melkonianii SCCA 048 in terms of lipids production and morphology at different pH values. Extremophiles 2018; 23:79-89. [PMID: 30341564 DOI: 10.1007/s00792-018-1062-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/28/2018] [Indexed: 11/30/2022]
Abstract
The extremophile green alga Coccomyxa melkonianii SCCA 048 was investigated to evaluate its ability to grow in culture media with different pH. Specifically, Coccomyxa melkonianii was sampled in the Rio Irvi river (Sardinia, Italy) which is severely polluted by heavy metals as a result of abandoned mining activities. In this study, the strain was cultivated in growth media where the pH was kept fixed at the values of 4.0, 6.8 and 8.0, respectively. During the investigation, a significant phenotypic plasticity of this strain was observed. The strain grew well in the pH range 4.0-8.0, while the optimal value for its growth was 6.8. Furthermore, maximum lipid contents of about 24 and 22 %wt were achieved at the end of cultivation when using pH 4.0 and 8.0, respectively. Finally, the analysis of fatty acid methyl esters (FAMEs) highlights the presence of suitable amounts of compounds which can be profitably exploited in the food, nutraceutical, and cosmetic industry. This aspect, coupled with the possibility of cultivating Coccomyxa melkonianii under extreme pH conditions in economic open ponds, makes this strain an interesting candidate for several biotechnological applications.
Collapse
Affiliation(s)
- Santina Soru
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
| | - Veronica Malavasi
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy.
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - Alessandro Concas
- Center for Advanced Studies, Research and Development in Sardinia (CRS4), Loc. Piscina Manna, Building 1, Pula, 09010, Cagliari, Italy
| | - Giacomo Cao
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123, Cagliari, Italy
| |
Collapse
|