1
|
Bencsik T, Balázs O, Vida RG, Zsidó BZ, Hetényi C, Valentová K, Poór M. Effects of catechins, resveratrol, silymarin components and some of their conjugates on xanthine oxidase-catalyzed xanthine and 6-mercaptopurine oxidation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2765-2776. [PMID: 39606799 PMCID: PMC11909324 DOI: 10.1002/jsfa.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Over the past two decades, the global incidence of gout has markedly increased, affecting people worldwide. Considering the side effects of xanthine oxidase (XO) inhibitor drugs (e.g. allopurinol and febuxostat) used in the treatment of hyperuricemia and gout, the potential application of phytochemicals has been widely studied. In addition, XO also takes part in the elimination of certain drugs, including 6-mercaptopurine. In the current explorative study, we aimed to examine the potential effects of tea catechins, resveratrol, silymarin flavonolignans and some of their conjugated metabolites on XO-catalyzed xanthine and 6-mercaptopurine oxidation, applying in vitro assays and modeling studies. RESULTS Catechins, resveratrol and resveratrol conjugates exerted no or only weak inhibitory effects on XO. Silybin A, silybin B and isosilybin A were weak, silychristin was a moderate, while 2,3-dehydrosilychristin was a potent inhibitor of the enzyme. Sulfate metabolites of silybin A, silybin B and isosilybin A were considerably stronger inhibitors compared to the parent flavonolignans, and the sulfation of 2,3-dehydrosilychristin slightly increased its inhibitory potency. Silychristin was the sole flavonolignan tested, where sulfate conjugation decreased its inhibitory effect. CONCLUSION 2,3-Dehydrosilychristin seems to be a promising candidate for examining its in vivo antihyperuricemic effects, because both the parent compound and its sulfate conjugate are highly potent inhibitors of XO. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Tímea Bencsik
- Department of Pharmacognosy, Faculty of PharmacyUniversity of PécsPécsHungary
| | - Orsolya Balázs
- Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of PharmacyUniversity of PécsPécsHungary
| | - Róbert G Vida
- Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of PharmacyUniversity of PécsPécsHungary
| | - Balázs Z Zsidó
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical SchoolUniversity of PécsPécsHungary
- National Laboratory for Drug Research and DevelopmentBudapestHungary
| | - Csaba Hetényi
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical SchoolUniversity of PécsPécsHungary
- National Laboratory for Drug Research and DevelopmentBudapestHungary
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Miklós Poór
- Department of Laboratory Medicine, Medical SchoolUniversity of PécsPécsHungary
- Molecular Medicine Research Group, János Szentágothai Research CentreUniversity of PécsPécsHungary
| |
Collapse
|
2
|
Chen Z, Gao W, Feng X, Zhou G, Zhang M, Zeng L, Hu X, Liu Z, Song H. A comparative study on the preparation and evaluation of solubilizing systems for silymarin. Drug Deliv Transl Res 2024; 14:1616-1634. [PMID: 37964172 DOI: 10.1007/s13346-023-01476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
Silymarin (SM) exhibits clinical efficacy in treating liver injuries, cirrhosis, and chronic hepatitis. However, its limited water solubility and low bioavailability hinder its therapeutic potential. The primary objective of this study was to compare the in vitro and in vivo characteristics of the four distinct SM solubilization systems, namely SM solid dispersion (SM-SD), SM phospholipid complex (SM-PC), SM sulfobutyl ether-β-cyclodextrin inclusion complex (SM-SBE-β-CDIC) and SM self-microemulsifying drug delivery system (SM-SMEDDS) to provide further insights into their potential for enhancing the solubility and bioavailability of SM. The formation of SM-SD, SM-PC, and SM-SBE-β-CDIC was thoroughly characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and powder X-ray diffractometry (PXRD) techniques to analyze the changes in their microscopic structure, molecular structure, and crystalline state. The particle size and polydispersity index (PDI) of SM-SMEDDS were 71.6 ± 1.57 nm, and 0.13 ± 0.03, respectively. The self-emulsifying time of SM-SMEDDS was 3.0 ± 0.3 min. SM-SMEDDS exhibited an improved in vitro dissolution rate and demonstrated the highest relative bioavailability compared to pure SM, SM-SD, SM-PC, SM-SBE-β-CDIC, and Legalon®. Consequently, SMEDDS shows promise as a drug delivery system for orally administered SM, offering enhanced solubility and bioavailability.
Collapse
Affiliation(s)
- Zhenzhen Chen
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Wenhao Gao
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Xianquan Feng
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Guizhi Zhou
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
- School of Pharmacy, Fujian University of Chinese Traditional Medicine, Fuzhou, 350108, China
| | - Minxin Zhang
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Lingjun Zeng
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Xiaomu Hu
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Zhihong Liu
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China.
| | - Hongtao Song
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China.
| |
Collapse
|
3
|
Wu B, Li C, Luo X, Kan H, Li Y, Zhang Y, Rao X, Zhao P, Liu Y. Identification of Key Hypolipidemic Components and Exploration of the Potential Mechanism of Total Flavonoids from Rosa sterilis Based on Network Pharmacology, Molecular Docking, and Zebrafish Experiment. Curr Issues Mol Biol 2024; 46:5131-5146. [PMID: 38920980 PMCID: PMC11201594 DOI: 10.3390/cimb46060308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Hyperlipidemia is a prevalent chronic metabolic disease that severely affects human health. Currently, commonly used clinical therapeutic drugs are prone to drug dependence and toxic side effects. Dietary intervention for treating chronic metabolic diseases has received widespread attention. Rosa sterilis is a characteristic fruit tree in China whose fruits are rich in flavonoids, which have been shown to have a therapeutic effect on hyperlipidemia; however, their exact molecular mechanism of action remains unclear. Therefore, this study aimed to investigate the therapeutic effects of R. sterilis total flavonoid extract (RS) on hyperlipidemia and its possible mechanisms. A hyperlipidemic zebrafish model was established using egg yolk powder and then treated with RS to observe changes in the integral optical density in the tail vessels. Network pharmacology and molecular docking were used to investigate the potential mechanism of action of RS for the treatment of hyperlipidemia. The results showed that RS exhibited favorable hypolipidemic effects on zebrafish in the concentration range of 3.0-30.0 μg/mL in a dose-dependent manner. Topological and molecular docking analyses identified HSP90AA1, PPARA, and MMP9 as key targets for hypolipidemic effects, which were exerted mainly through lipolytic regulation of adipocytes and lipids; pathway analysis revealed enrichment in atherosclerosis, chemical carcinogenic-receptor activation pathways in cancers, and proteoglycans in prostate cancer and other cancers. Mover, chinensinaphthol possessed higher content and better target binding ability, which suggested that chinensinaphthol might be an important component of RS with hypolipidemic active function. These findings provide a direction for further research on RS interventions for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Boxiao Wu
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China; (B.W.); (C.L.); (H.K.)
| | - Churan Li
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China; (B.W.); (C.L.); (H.K.)
| | - Xulu Luo
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (X.L.); (Y.L.)
| | - Huan Kan
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China; (B.W.); (C.L.); (H.K.)
| | - Yonghe Li
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (X.L.); (Y.L.)
| | - Yingjun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Xiaoping Rao
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 362021, China;
| | - Ping Zhao
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China; (B.W.); (C.L.); (H.K.)
| | - Yun Liu
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China; (B.W.); (C.L.); (H.K.)
| |
Collapse
|
4
|
Salem MB, Mohammed DM, Hammam OA, Elzallat M. Mitigation of intrahepatic cholestasis induced by 17α-ethinylestradiol via nanoformulation of Silybum marianum L. BMC Complement Med Ther 2024; 24:51. [PMID: 38263002 PMCID: PMC10804614 DOI: 10.1186/s12906-024-04351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/13/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Cholestasis is an important predisposing factor for hepatocyte damage, liver fibrosis, primary biliary cirrhosis, and even liver failure. Silybum marianum L. (SM) plant is used in teas or eaten in some countries due to its antioxidant and hepatoprotective properties. Because of its low and poor oral bioavailability, so we improve the therapeutic activity of Silybum marianum L. extract (SM) by studying the potential effects of nanoformulation of Silybum marianium L. extract (nano-SM) on 17α-ethinylestradiol (EE)-induced intrahepatic cholestasis. METHODS Thirty female Sprague-Dawley rats were divided into 5 groups (6 rats/group). Group I: Rats were received the treatment vehicle and served as normal group. Group II:Rats were injected daily with EE (10 mg/kg) for five successive days. Group III-V: Rats were injected daily with EE (10 mg/kg) and treated with either Ursodeoxycholic acid (UDCA) (40 mg/kg), SM (100 mg/kg) and nano-SM (100 mg/kg) orally once/day throughout the trialfor five successive days, respectively. RESULTS Nano-SM greatly dampened the increase in serum levels of total and direct bilirubin, alanine aminotransaminase, aspartate aminotransaminase, and alkaline phosphatase caused by EE. Furthermore, nano-SM increased the hepatic contents of reduced glutathione (GSH) and catalase (CAT) and also upregulated the relative hepatic gene expressions of Rho-kinase (ROCK-1), myosin light chain kinase (MLCK), and myosin phosphatase target subunit (MYPT1) compared to the EE-induced group. Administration of nano-SM reduced hepatic lipid peroxidation and downregulated the relative hepatic expressions of the nuclear factor-kappa B (NF-ҡB) and interleukin-1β (IL-1β). In addition, nano-SM improved the histopathological changes induced by EE. CONCLUSION Nano-SM possessed a superior effect over SM, which can be considered an effective protective modality against EE-induced cholestatic liver injury through its antioxidant, anti-inflammatory activities, and enhancing bile acid (BA) efflux.
Collapse
Affiliation(s)
- Maha B Salem
- Pharmacology Department, Theodor Bilharz Research Institute, P.O. box 30, Warrak El-Hadar, Giza, 12411, Imbaba, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, 12622, Egypt.
| | - Olfat A Hammam
- Pathology Department, Theodor Bilharz Research Institute, P.O. box 30, Warrak El-Hadar, Giza, 12411, Imbaba, Egypt
| | - Mohamed Elzallat
- Immunology Department, Theodor Bilharz Research Institute, P.O. box 30, Warrak El-Hadar, Giza, 12411, Imbaba, Egypt
| |
Collapse
|
5
|
Han H, Ma R, Xie A, Gao J, Wang Z, Zhao Y, Pang H, Zhang W. Development of an LC/MS/MS Method for Simultaneous Detection of 11 Polyphenols in Rat Plasma and Its Pharmacokinetic Application after Oral Administration of Coreopsis tinctoria Extract. Chem Biodivers 2023; 20:e202200574. [PMID: 36382445 DOI: 10.1002/cbdv.202200574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022]
Abstract
Eleven polyphenols, classified as flavonoid glycosides, flavonoid aglycones, and phenolic acids, are important bioactive components in the capitula of Coreopsis tinctoria (CCT). Nevertheless, their full pharmacokinetic profiles have not been demonstrated simultaneously. Therefore, a liquid chromatography - tandem mass spectrometry (LC/MS/MS) method was developed in the present work and used it to study the pharmacokinetics of these 11 compounds. We performed LC/MS/MS with a gradient mobile phase composed of water containing 0.1 % formic acid and acetonitrile containing 0.1 % formic acid on a Proshell 120 SB C18 column (2.1 mm×100 mm, 2.7 μm). We achieved a good chromatographic peak shape, resolution, and mass signal response, and multiple reaction monitoring facilitated the simultaneous detection of 11 analytes. In addition, we validated the selectivity, correlation coefficient, precision, extraction recovery, matrix effects, and stability of the LC/MS/MS method to be acceptable for 11 analytes in rat plasma. Subsequently, rats were orally administered with 50 % ethanol eluent of CCT (ECCT). Nine of 11 polyphenols were absorbed quickly (except for QCD and TCA), and their plasma levels peaked within 40 min. The exposure and Cmax values of flavonoid glycosides and phenolic acids were lower than those of flavonoid aglycones. This is the first report to demonstrate the pharmacokinetics of 11 polyphenols in ECCT, which may play an important role in future studies of the bioactive components of ECCT and their bioactive mechanisms.
Collapse
Affiliation(s)
- Haixia Han
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Xinjiang, 830052, China
| | - Rui Ma
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Xinjiang, 830052, China
| | - Aidi Xie
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Xinjiang, 830052, China
| | - Juanjuan Gao
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Xinjiang, 830052, China
| | - Zhen Wang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Xinjiang, 830052, China
| | - Yi Zhao
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Xinjiang, 830052, China
| | - Huanming Pang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Xinjiang, 830052, China
| | - Wei Zhang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| |
Collapse
|
6
|
Box-Behnken design optimized silibinin loaded glycerylmonooleate nanoliquid crystal for brain targeting. Chem Phys Lipids 2022; 244:105193. [DOI: 10.1016/j.chemphyslip.2022.105193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 01/08/2023]
|
7
|
Xu XY, Geng Y, Xu HX, Ren Y, Liu DY, Mao Y. Antrodia camphorata-Derived Antrodin C Inhibits Liver Fibrosis by Blocking TGF-Beta and PDGF Signaling Pathways. Front Mol Biosci 2022; 9:835508. [PMID: 35242813 PMCID: PMC8886226 DOI: 10.3389/fmolb.2022.835508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
Hepatic stellate cells (HSCs) play an essential role in the development of liver fibrosis. Antrodia camphorata (A. camphorata) is a medicinal fungus with hepatoprotective effect. This study investigated whether Antrodin C, an A. camphorata-fermented metabolite, could exert a protective role on liver fibrosis both in vitro and in vivo. The anti-fibrotic effect of Antrodin C was investigated in CFSC-8B cell (hepatic stellate cell) stimulated by transforming growth factor-β1 (TGF-β1) or platelet-derived growth factor-BB (PDGF-BB) in vitro and in CCl4 induced liver fibrosis in mice. Antrodin C (50 μM) inhibited TGF-β1 or PDGF-BB stimulated CFSC-8B cell activation, migration and extracellular matrix (ECM) accumulation (all p < 0.05). Antrodin C (3, 6 mg/kg/d) oral administration reduced the degree of liver fibrosis induced by CCl4 in mice. Antrodin C down-regulated the expression of α-smooth muscle actin (α-SMA) and collagen I in fibrotic livers. Furthermore, Antrodin C ameliorated alanine aminotransferase (ALT) and aspartate aminotransferase (AST) elevation in serum (all p < 0.05). Mechanistically, Antrodin C executes its anti-fibrotic activity through negatively modulate TGF-β1 downstream SMAD Family Member 2 (Smad2), AKT Serine/Threonine Kinase 1 (AKT), extracellular signal-regulated kinase (ERK), and P38 MAP Kinase (P38), as well as PDGF-BB downstream AKT and ERK signaling pathways. Antrodin C ameliorates the activation, migration, ECM production in HSCs and CCl4-induced liver fibrosis in mice, suggesting that Antrodin C could serve as a protective molecule against liver fibrosis.
Collapse
Affiliation(s)
- Xin-Yi Xu
- Institute of Cancer, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yan Geng
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, China
- *Correspondence: Yan Geng, ; Yong Mao,
| | - Hao-Xiang Xu
- Department of Urology, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | - Yilin Ren
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Deng-Yang Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yong Mao
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
- *Correspondence: Yan Geng, ; Yong Mao,
| |
Collapse
|
8
|
Tvrdý V, Pourová J, Jirkovský E, Křen V, Valentová K, Mladěnka P. Systematic review of pharmacokinetics and potential pharmacokinetic interactions of flavonolignans from silymarin. Med Res Rev 2021; 41:2195-2246. [PMID: 33587317 DOI: 10.1002/med.21791] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/06/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022]
Abstract
Silymarin is an extract from the seeds (fruits) of Silybum marianum that contains flavonolignans and flavonoids. Although it is frequently used as a hepatoprotective agent, its application remains somewhat debatable, in particular, due to the low oral bioavailability of flavonolignans. Moreover, there are claims of its potential interactions with concomitantly used drugs. This review aims at a systematic summary and critical assessment of known information on the pharmacokinetics of particular silymarin flavonolignans. There are two known major reasons for poor systemic oral bioavailability of flavonolignans: (1) rapid conjugation in intestinal cells or the liver and (2) efflux of parent flavonolignans or formed conjugates back to the lumen of the gastrointestinal tract by intestinal cells and rapid excretion by the liver into the bile. The metabolism of phase I appears to play a minor role, in contrast to extensive conjugation and indeed the unconjugated flavonolignans reach low plasma levels after common doses. Only about 1%-5% of the administered dose is eliminated by the kidneys. Many in vitro studies tested the inhibitory potential of silymarin and its components toward different enzymes and transporters involved in the absorption, metabolism, and excretion of xenobiotics. In most cases, effective concentrations are too high to be relevant under real biological conditions. Most human studies showed no silymarin-drug interactions explainable by these suggested interferences. More interactions were found in animal studies, likely due to the much higher doses administered.
Collapse
Affiliation(s)
- Václav Tvrdý
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Jana Pourová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Eduard Jirkovský
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
9
|
Song IS, Nam SJ, Jeon JH, Park SJ, Choi MK. Enhanced Bioavailability and Efficacy of Silymarin Solid Dispersion in Rats with Acetaminophen-Induced Hepatotoxicity. Pharmaceutics 2021; 13:pharmaceutics13050628. [PMID: 33925040 PMCID: PMC8146637 DOI: 10.3390/pharmaceutics13050628] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
We evaluated the bioavailability, liver distribution, and efficacy of silymarin-D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) solid dispersion (silymarin-SD) in rats with acetaminophen-induced hepatotoxicity (APAP) compared with silymarin alone. The solubility of silybin, the major and active component of silymarin, in the silymarin-SD group increased 23-fold compared with the silymarin group. The absorptive permeability of silybin increased by 4.6-fold and its efflux ratio decreased from 5.5 to 0.6 in the presence of TPGS. The results suggested that TPGS functioned as a solubilizing agent and permeation enhancer by inhibiting efflux pump. Thus, silybin concentrations in plasma and liver were increased in the silymarin-SD group and liver distribution increased 3.4-fold after repeated oral administration of silymarin-SD (20 mg/kg as silybin) for five consecutive days compared with that of silymarin alone (20 mg/kg as silybin). Based on higher liver silybin concentrations in the silymarin-SD group, the therapeutic effects of silymarin-SD in hepatotoxic rats were evaluated and compared with silymarin administration only. Elevated alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase levels were significantly decreased by silymarin-SD, silymarin, and TPGS treatments, but these decreases were much higher in silymarin-SD animals than in those treated with silymarin or TPGS. In conclusion, silymarin-SD (20 mg/kg as silybin, three times per day for 5 days) exhibited hepatoprotective properties toward hepatotoxic rats and these properties were superior to silymarin alone, which may be attributed to increased solubility, enhanced intestinal permeability, and increased liver distribution of the silymarin-SD formulation.
Collapse
Affiliation(s)
- Im-Sook Song
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.-J.N.); (J.-H.J.)
- Correspondence: (I.-S.S.); (M.-K.C.); Tel.: +82-53-950-8575 (I.-S.S.); +82-41-550-1438 (M.-K.C.); Fax: +82-53-950-8557 (I.-S.S.)
| | - So-Jeong Nam
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.-J.N.); (J.-H.J.)
| | - Ji-Hyeon Jeon
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.-J.N.); (J.-H.J.)
| | - Soo-Jin Park
- College of Korean Medicine, Daegu Haany University, Daegu 38610, Korea;
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea
- Correspondence: (I.-S.S.); (M.-K.C.); Tel.: +82-53-950-8575 (I.-S.S.); +82-41-550-1438 (M.-K.C.); Fax: +82-53-950-8557 (I.-S.S.)
| |
Collapse
|
10
|
Faisal Z, Mohos V, Fliszár-Nyúl E, Valentová K, Káňová K, Lemli B, Kunsági-Máté S, Poór M. Interaction of silymarin components and their sulfate metabolites with human serum albumin and cytochrome P450 (2C9, 2C19, 2D6, and 3A4) enzymes. Biomed Pharmacother 2021; 138:111459. [PMID: 33706132 DOI: 10.1016/j.biopha.2021.111459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Silymarin is a mixture of flavonolignans isolated from the fruit of milk thistle (Silybum marianum (L.) Gaertner). Milk thistle extract is the active ingredient of several medications and dietary supplements to treat liver injury/diseases. After the oral administration, flavonolignans are extensively biotransformed, resulting in the formation of sulfate and/or glucuronide metabolites. Previous studies demonstrated that silymarin components form stable complexes with serum albumin and can inhibit certain cytochrome P450 (CYP) enzymes. Nevertheless, in most of these investigations, silybin was tested; while no or only limited information is available regarding other silymarin components and metabolites. In this study, the interactions of five silymarin components (silybin A, silybin B, isosilybin A, silychristin, and 2,3-dehydrosilychristin) and their sulfate metabolites were examined with human serum albumin and CYP (2C9, 2C19, 2D6, and 3A4) enzymes. Our results demonstrate that each compound tested forms stable complexes with albumin, and certain silymarin components/metabolites can inhibit CYP enzymes. Most of the sulfate conjugates were less potent inhibitors of CYP enzymes, but 2,3-dehydrosilychristin-19-O-sulfate showed the strongest inhibitory effect on CYP3A4. Based on these observations, the simultaneous administration of high dose silymarin with medications should be carefully considered, because milk thistle flavonolignans and/or their sulfate metabolites may interfere with drug therapy.
Collapse
Affiliation(s)
- Zelma Faisal
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, Pécs H-7624, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary.
| | - Violetta Mohos
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, Pécs H-7624, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary.
| | - Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, Pécs H-7624, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary.
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Kristýna Káňová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Beáta Lemli
- János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary; Institute of Organic and Medicinal Chemistry, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary.
| | - Sándor Kunsági-Máté
- János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary; Institute of Organic and Medicinal Chemistry, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary.
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, Pécs H-7624, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary.
| |
Collapse
|
11
|
Muchiri RN, van Breemen RB. Single Laboratory Validation of UHPLC-MS/MS Assays for Six Milk Thistle Flavonolignans in Human Serum. J AOAC Int 2021; 104:232-238. [PMID: 33251548 PMCID: PMC7892635 DOI: 10.1093/jaoacint/qsaa110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 11/14/2022]
Abstract
BACKGROUND Extracts of milk thistle, Silybum marianum (L.) Gaertn., are used as dietary supplements for their hepatoprotective, anti-inflammatory, and anti-tumor activities. OBJECTIVE An assay based on UHPLC-MS/MS was developed and validated for the quantitative analysis of six major milk thistle flavonolignans extracted from human serum. METHODS Ethyl acetate containing 0.1% formic acid was used to extract flavonolignans from human serum. A 10-min UHPLC-MS/MS method using selected reaction ion monitoring was developed for measuring extracts for silybin A, silybin B, isosilybin A, isosilybin B, silychristin, and silydianin. RESULTS The quantitative method was validated with respect to selectivity, specificity, accuracy, linearity, precision, LOD, and LLOQ. Extraction efficiency for the quality control standards at LLOQ, low, medium, and high concentrations ranged between 81% and 109%, and the calibration curves were linear (R2 > 0.997) for all flavonolignans. The method precision was determined using coefficients of variation, which were <15%. The method accuracy was assessed using percent relative error which was <15%. CONCLUSIONS The UHPLC-MS/MS assay is fast, precise, sensitive, selective, accurate, and useful for the analysis of milk thistle flavonolignans in human serum. HIGHLIGHTS The UHPLC-MS/MS assay is suitable for rapid quantitative analysis of milk thistle flavonolignans in human serum.
Collapse
Affiliation(s)
- Ruth N Muchiri
- Linus Pauling Institute, Oregon State University, 2900 SW Campus Way, Corvallis, OR 97331, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Richard B van Breemen
- Linus Pauling Institute, Oregon State University, 2900 SW Campus Way, Corvallis, OR 97331, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
12
|
Mahran E, Keusgen M, Morlock GE. New planar assay for streamlined detection and quantification of β-glucuronidase inhibitors applied to botanical extracts. Anal Chim Acta X 2020; 4:100039. [PMID: 33117985 PMCID: PMC7587031 DOI: 10.1016/j.acax.2020.100039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 01/04/2023] Open
Abstract
The inhibition of the β-glucuronidase released from gut bacteria is associated with specific health-related benefits. Though a number of β-glucuronidase inhibition assays are currently in use, none of them can directly measure the relevant activity of each single constituent in a complex mixture, without prior separation and tedious isolation of the pure compounds. Thus, the hyphenation of the high performance thin layer chromatography (HPTLC) technique with a β-glucuronidase inhibition assay was investigated and successfully demonstrated for the first time. A colorimetric as well as fluorometric detection of the inhibitors was achieved using 5-bromo-4-chloro-3-indolyl-β-D-glucuronide as a substrate. Hence, β-glucuronidase inhibitors were detected as bright zones against an indigo blue or fluorescent background. The established method was optimized and validated employing the well-known inhibitor d-saccharic acid 1,4-lactone monohydrate. As proof of concept, the suitability of the new workflow was verified through analysis of two botanical extracts, Primula boveana and silymarin flavonolignans from Silybum marianum fruits. The found inhibitors were identified by spectroscopic methods; one of them, 3ʹ-O-(β-galactopyranosyl)-flavone, is here described as a newly isolated natural compound. The new hyphenation HPTLC-UV/Vis/FLD-β-glucuronidase inhibition assay-HRMS covers four orthogonal dimensions, i.e. separation, spectral detection, biochemical activity and structural characterization, in a highly targeted time- and material-saving workflow for analysis of complex or costly mixtures. Coupling of HPTLC to the β-glucuronidase inhibition assay is demonstrated. Colorimetric and fluorometric detection of the inhibition was given. A new β-glucuronidase inhibiting flavonoid in P. boveana was elucidated. HPTLC-HRMS analysis of other β-glucuronidase inhibitors is shown for silymarin. Analysis of rare plants (low extract amount) is possible with the new planar assay.
Collapse
Affiliation(s)
- Ehab Mahran
- Institute of Nutritional Science, Chair of Food Science, Interdisciplinary Research Center IFZ, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6-10, 35032, Marburg, Germany
- Pharmacognosy Department, Faculty of Pharmacy, Al-Azhar University, 11371, Cairo, Egypt
| | - Michael Keusgen
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6-10, 35032, Marburg, Germany
| | - Gertrud E. Morlock
- Institute of Nutritional Science, Chair of Food Science, Interdisciplinary Research Center IFZ, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
- Corresponding author.
| |
Collapse
|
13
|
Development of a liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for simultaneous determination of epigallocatechin-3-gallate, silibinin, and curcumin in plasma and different tissues after oral dosing of Protandim in rats and its application in pharmacokinetic and tissue distribution studies. J Pharm Biomed Anal 2019; 170:54-62. [DOI: 10.1016/j.jpba.2019.03.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 11/22/2022]
|
14
|
Formulation and biopharmaceutical evaluation of supersaturatable self-nanoemulsifying drug delivery systems containing silymarin. Int J Pharm 2019; 555:63-76. [DOI: 10.1016/j.ijpharm.2018.11.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/05/2018] [Accepted: 11/14/2018] [Indexed: 12/23/2022]
|
15
|
Atia NN, Ali MFB. 3-Amino-5-pyridin-3-yl-1,2,4-triazole, a novel fluorescence probe for trace analysis of silymarin in bulk material, pharmaceutical dosage forms and human plasma: Further insights on reaction mechanism using computational molecular modeling and NMR spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:188-195. [PMID: 29933154 DOI: 10.1016/j.saa.2018.06.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/09/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
A rapid, highly sensitive and roubst spectrofluorimetric method was developed for trace analysis of silymarin (SLM) in active pharmaceutical ingredient (API), pharmaceutical preparations and human plasma. The proposed method is based on reaction of SLM with a novel reagent; 3-amino-5-pyridin-3-yl-1,2,4-triazole (3-APT); in the presence of 0.04 M sodium hydroxide. The formed fluorescent product was formed within 5 min and was measured at 504 nm after excitation at 390 nm. All reaction parameters were optimized and the proposed method was validated according to ICH guidelines. The developed method was linearly correlated at the concentration range of 0.05-8 μg mL-1 with good correlation coefficient 0.9993, limit of detection 10.79 ng mL-1 and limit of quantitation 32.71 ng mL-1. The relative standard deviations %RSD values were 1.59-2.69% and 1.47-2.62% in case of intra- and inter-day precision, respectively. Computational molecular modeling and NMR spectroscopy were used to identify the reaction mechanism between SLM and 3-APT. The proposed method was employed for determination of SLM in API or bulk material, pharmaceutical capsules and sachets. Further, the method was sensitive enough to be applied for analysis of the free (unconjugated) SLM flavonolignans in human plasma samples.
Collapse
Affiliation(s)
- Noha N Atia
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Marwa F B Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
16
|
The Bioavailability and Pharmacokinetics of Silymarin SMEDDS Formulation Study in Healthy Thai Volunteers. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1507834. [PMID: 30108644 PMCID: PMC6077530 DOI: 10.1155/2018/1507834] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/09/2018] [Indexed: 02/06/2023]
Abstract
The present study aimed to determine the pharmacokinetic parameters and bioavailability of silymarin 140 mg SMEDDS formulation. An open-label, single-dose pharmacokinetic study was conducted. Twelve healthy volunteers were included in the study. After the volunteers had fasted overnight for 10 h, a single-dose generic silymarin 140 mg SMEDDS soft capsule was administered. Then 10 ml blood samples were taken at 0.0, 0.25, 0.50, 0.75, 1.0, 1.33, 1.67, 2.0, 2.5, 3.0, 4.0, 6.0, 8.0, 10.0, and 12.0 h. The plasma silybin concentrations were analyzed using validated LC-MS/MS. The pharmacokinetic parameters were analyzed and calculated. The pharmacokinetic parameters were calculated after silymarin had been administered as a single capsule. The mean (range) Cmax was 812.43 (259.47–1505.47) ng/ml at 0.80 (0.25–1.67) h (tmax). The mean (range) AUC0-t and AUC0-inf were 658.80 (268.29–1045.01) ng.h/ml and 676.98 (274.10–1050.96) ng.h/ml, respectively. The mean ke and t1/2 were 0.5386 h−1 and 1.91 h, respectively. The silymarin SMEDDS formulation soft capsule showed rapid absorption and high oral bioavailability.
Collapse
|
17
|
Sharma D, Sabela MI, Kanchi S, Bisetty K, Skelton AA, Honarparvar B. Green synthesis, characterization and electrochemical sensing of silymarin by ZnO nanoparticles: Experimental and DFT studies. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.11.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
18
|
Li WY, Yu G, Hogan RM, Mohandas R, Frye RF, Gumpricht E, Markowitz JS. Relative Bioavailability of Silybin A and Silybin B From 2 Multiconstituent Dietary Supplement Formulations Containing Milk Thistle Extract: A Single-dose Study. Clin Ther 2018; 40:103-113.e1. [PMID: 29273470 PMCID: PMC6037411 DOI: 10.1016/j.clinthera.2017.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/17/2017] [Accepted: 11/30/2017] [Indexed: 01/23/2023]
Abstract
PURPOSE The purpose of this study was to compare the bioavailability between 2 milk thistle-containing dietary supplements, Product B and IsaGenesis, in healthy volunteers. METHODS Bioavailability between Product B, originally formulated as a powdered capsule, and IsaGenesis, reformulated as a soft gel, were compared by measuring silybin A and silybin B as surrogate pharmacokinetic markers for differences in absorption and bioavailability. For this randomized, open-label, crossover pharmacokinetic study, 12 healthy volunteers consumed a single-dose serving of each supplement separated by at least a 7-day washout period. Serial blood samples were obtained at 0, 0.5, 1, 1.5, 2, 3, 4, 6, and 8 hours and analyzed via LC-MS/MS. FINDINGS Rapid absorption and elimination of silybin A and silybin B have been observed after oral administration of both Product B and IsaGenesis. However, the absorption rate and extent, as indicated by mean the Cmax and mean plasma AUC, were significantly higher for the IsaGenesis soft gel formulation. The dose-corrected mean Cmax was 365% and 450% greater for silybin A and B, respectively, relative to powdered Product B. The time to Tmax was reached, on average, at least 1 hour earlier with IsaGenesis relative to Product B for both silybin A and silybin B. IMPLICATIONS The IsaGenesis soft gel formulation provided substantially greater absorption and bioavailability of silybin A and silybin B relative to the powdered Product B supplement. ClinicalTrials.gov Identifier: NCT02529605.
Collapse
Affiliation(s)
- Wen-Yi Li
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida
| | - Guo Yu
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida; Drug Clinical Trial Institution, Subei People's Hospital, Yangzhou, Jiangsu, China
| | - Renee M Hogan
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
| | - Rajesh Mohandas
- Department of Medicine, Nephrology and Hypertension Section, Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida; Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
| | - Reginald F Frye
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida
| | | | - John S Markowitz
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida.
| |
Collapse
|
19
|
Chambers CS, Holečková V, Petrásková L, Biedermann D, Valentová K, Buchta M, Křen V. The silymarin composition… and why does it matter??? Food Res Int 2017; 100:339-353. [PMID: 28964357 DOI: 10.1016/j.foodres.2017.07.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/06/2017] [Accepted: 07/04/2017] [Indexed: 01/08/2023]
Abstract
The extract from milk thistle (Silybum marianum (L.) Gaertn. (Asteraceae)), known as silymarin, contains a variety of flavonolignans and displays antioxidant, anti-inflammatory, immunomodulatory and hepatoprotective properties. As silybin is the main component of silymarin, the literature mainly focuses on this compound, ignoring all other components. This leads to problems in reproducibility of scientific results, as the exact composition of silymarin is often unknown and can vary to a certain degree depending on the processing, chemo-variety of the plant used and climatic conditions during the plant growth. There are studies dealing with the analytical separation and quantification of silymarin components as well as studies focused on silymarin content in clinically used drugs, in various plant parts, seasons, geographic locations etc. However, no comparison of detail flavonolignan profiles in various silymarin preparations is available to date. Also, as a result of the focus on the flavonolignans; the oil fraction, which contains linoleic, oleic and palmitic acids, sterols, tocopherol (vitamin E) and phospholipids, has been neglected. Due to all these factors, the whole plant is used e.g. as animal feed, the leaves can be eaten in salads and seed oil, besides culinary uses, can be also utilized for biodiesel or polymer production. Various HPLC separation techniques for the determination of the content of the flavonolignans have been vastly summarized in the present review.
Collapse
Affiliation(s)
- Christopher Steven Chambers
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ14220 Prague, Czech Republic
| | - Veronika Holečková
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ14220 Prague, Czech Republic
| | - Lucie Petrásková
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ14220 Prague, Czech Republic
| | - David Biedermann
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ14220 Prague, Czech Republic
| | - Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ14220 Prague, Czech Republic
| | - Martin Buchta
- Stolařská 601/4, CZ74714 Ludgeřovice, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ14220 Prague, Czech Republic.
| |
Collapse
|
20
|
Sokolová R, Kocábová J, Marhol P, Fiedler J, Biedermann D, Vacek J, Křen V. Oxidation of Natural Bioactive Flavonolignan 2,3-Dehydrosilybin: An Electrochemical and Spectral Study. J Phys Chem B 2017; 121:6841-6846. [DOI: 10.1021/acs.jpcb.7b04651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Romana Sokolová
- J.
Heyrovský Institute of Physical Chemistry, v.v.i., Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Jana Kocábová
- J.
Heyrovský Institute of Physical Chemistry, v.v.i., Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Petr Marhol
- Institute
of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Jan Fiedler
- J.
Heyrovský Institute of Physical Chemistry, v.v.i., Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - David Biedermann
- Institute
of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Jan Vacek
- Faculty
of Medicine and Dentistry, Palacký University, Hněvotínská
3, 77515 Olomouc, Czech Republic
| | - Vladimír Křen
- Institute
of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
21
|
Fibigr J, Šatínský D, Solich P. A new approach to the rapid separation of isomeric compounds in a Silybum marianum extract using UHPLC core-shell column with F5 stationary phase. J Pharm Biomed Anal 2017; 134:203-213. [PMID: 27915198 DOI: 10.1016/j.jpba.2016.11.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/04/2016] [Accepted: 11/06/2016] [Indexed: 10/20/2022]
Abstract
In this paper, a new ultra-high performance liquid chromatography (UHPLC) method using a core-shell column with a pentafluorophenyl stationary phase for separation of seven active compounds of a Silybum marianum extract was developed and validated. Silymarin, an extract of Silybum marianum, is known for its abilities to protect the liver from toxic substances, hepatitis therapy, and anti-tumour activity. Silymarin is currently being widely used in commercial preparations and herbal teas. Separation of seven compounds contained in the Silybum marianum extract (taxifolin, silychristin, silydianin, silybin A, silybin B, isosilybin A, isosilybin B) and other substances occurring in real samples was performed on the Kinetex 1.7μ F5 100A (150×2.1mm), 1.7μm particle size core-shell column, with a mobile phase methanol/100mM phosphate buffer pH 2.0 according to the gradient program. A mobile phase 0.35mLmin-1 flow rate and 50°C temperature was used for the separation. The detection wavelength was set at 288nm. Under optimal chromatographic conditions, good linearity with a correlation coefficient of R2 >0.999 for all compounds was achieved. The available commercial samples of herbal teas and food supplements were extracted with methanol using an ultrasonic bath. After dilution with water and centrifugation, a 2μL sample of the filtered supernatant was directly injected into the UHPLC system. The use of a pentafluorophenyl stationary phase with methanol as the organic component of the mobile phase showed new ways to effectively separate isomeric compounds in herbal extracts, which could not be done with the conventional C18 stationary phase.
Collapse
Affiliation(s)
- Jakub Fibigr
- The Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové 500 05, Czechia
| | - Dalibor Šatínský
- The Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové 500 05, Czechia.
| | - Petr Solich
- The Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové 500 05, Czechia
| |
Collapse
|
22
|
Csupor D, Csorba A, Hohmann J. Recent advances in the analysis of flavonolignans of Silybum marianum. J Pharm Biomed Anal 2016; 130:301-317. [PMID: 27321822 DOI: 10.1016/j.jpba.2016.05.034] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 01/05/2023]
Abstract
Extracts of milk thistle (Silybum marianum, Asteraceae) have been recognized for centuries as remedies for liver and gallbladder disorders. The active constituents of milk thistle fruits are flavonolignans, collectively known as silymarin. Flavonolignans in S. marianum are structurally diverse, 23 constituents have been isolated from purple- and white-flowering variants. Flavonolignans have a broad spectrum of bioactivities and silymarin has been the subject of intensive research for its profound pharmacological activities. Silymarin is extracted from the seeds, commercialized in standardized form, and widely used in drugs and dietary supplements. The thorough analysis of silymarin, its constituents and silymarin-containing products has a key role in the quality control of milk thistle-based products. Due to the low concentration of analytes, especially pharmacological and pharmacokinetic studies require more and more selective and sensitive, advanced techniques. The objective of the present review is to summarize the recent advances in the chemical analysis of S. marianum extracts, including the chemical composition, isolation and identification of flavonolignans, sample preparation, and methods used for qualitative and quantitative analysis. Various analytical approaches have been surveyed, and their respective advantages and limits are discussed.
Collapse
Affiliation(s)
- Dezső Csupor
- Department of Pharmacognosy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary; Interdisciplinary Centre of Natural Compounds, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary
| | - Attila Csorba
- Department of Pharmacognosy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary; Interdisciplinary Centre of Natural Compounds, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary
| | - Judit Hohmann
- Department of Pharmacognosy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary; Interdisciplinary Centre of Natural Compounds, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary.
| |
Collapse
|
23
|
Pereira C, Barros L, José Alves M, Santos-Buelga C, Ferreira ICFR. Artichoke and milk thistle pills and syrups as sources of phenolic compounds with antimicrobial activity. Food Funct 2016; 7:3083-90. [PMID: 27273551 DOI: 10.1039/c6fo00512h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dietary supplements based on hepatoprotective plants have been increasingly used in the prevention of liver injuries. In the present work, the aim was to study the phenolic profile and possibly relate it to the in vitro antimicrobial activity of two different formulations (pills and syrups) of artichoke and milk thistle, the antioxidant and anti-hepatocellular carcinoma activities of which were previously reported by our research group. The phenolic profiles were obtained by HPLC-DAD-ESI/MS, and the antimicrobial activity evaluation was performed with the clinical isolates of multiresistant bacteria (Escherichia coli, extended spectrum β-lactamases (ESBL) producing Escherichia coli, Proteus mirabilis, methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa). Artichoke syrup revealed the presence of vanillic acid and luteolin-7-O-glucoside while the pills possessed higher concentrations of 4-O-caffeoylquinic, 5-O-caffeoylquinic and 1,3-O-dicaffeoylquinic acids, this latest being able to inhibit the growth of MRSA. Regarding milk thistle formulations, the syrup presented isorhamnetin-O-deoxyhexoside-O-dihexoside, isorhamnetin-O-deoxyhexoside-O-hexoside and isorhamnetin-3-O-rutinoside as the major phenolic constituents whereas the pills were richer in taxifolin, silymarin derivatives and hydroxylated silibinin; the syrup revealed antimicrobial activity against all the studied bacteria with the exception of Proteus mirabilis whereas the pills revealed activity against ESBL producing Escherichia coli. Overall, all of the studied formulations revealed to be a good source of phenolic compounds, among which milk thistle syrup presented the highest variety and concentration of flavonoids, which is possibly related to its strongest antimicrobial activity.
Collapse
Affiliation(s)
- Carla Pereira
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus de Santa Apolónia, apartado 1172, 5300-253 Bragança, Portugal.
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus de Santa Apolónia, apartado 1172, 5300-253 Bragança, Portugal. and Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Bragança, Campus de Santa Apolónia, 1134, 5301-857 Bragança, Portugal.
| | - Maria José Alves
- Escola Superior de Saúde, Instituto Politécnico de Bragança, Av. D. Afonso V, 5300-121 Bragança, Portugal
| | - Celestino Santos-Buelga
- GIP-USAL, Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus de Santa Apolónia, apartado 1172, 5300-253 Bragança, Portugal.
| |
Collapse
|
24
|
Cheilari A, Sturm S, Intelmann D, Seger C, Stuppner H. Head-to-Head Comparison of Ultra-High-Performance Liquid Chromatography with Diode Array Detection versus Quantitative Nuclear Magnetic Resonance for the Quantitative Analysis of the Silymarin Complex in Silybum marianum Fruit Extracts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1618-26. [PMID: 26806429 DOI: 10.1021/acs.jafc.5b05494] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Quantitative nuclear magnetic resonance (qNMR) spectroscopy is known as an excellent alternative to chromatography-based mixture analysis. NMR spectroscopy is a non-destructive method, needs only limited sample preparation, and can be readily automated. A head-to-head comparison of qNMR to an ultra-high-performance liquid chromatography with diode array detection (uHPLC-DAD)-based quantitative analysis of six flavonolignan congeners (silychristin, silydianin, silybin A, silybin B, isosilybin A, and isosilybin B) of the Silybum marianum silymarin complex is presented. Both assays showed similar performance characteristics (linear range, accuracy, precision, and limits of quantitation) with analysis times below 30 min/sample. The assays were applied to industrial S. marianum extracts (AC samples) and to extracts locally prepared from S. marianum fruits (PL samples). An assay comparison by Bland-Altman plots (relative method bias AC samples, -0.1%; 2SD range, ±5.1%; relative method bias PL samples, -0.3%; 2SD range, ±7.8%) and Passing-Bablok regression analysis (slope and intercept for AC and PL samples not significantly different from 1.00 and 0.00, respectively; Spearman's coefficient of rank correlation, >0.99) did show that qNMR and uHPLC-DAD can be used interchangeably to quantitate flavonolignans in the silymarin complex.
Collapse
Affiliation(s)
- Antigoni Cheilari
- Institute of Pharmacy, Department of Pharmacognosy, Centrum of Chemistry and Biomedicine (CCB), University of Innsbruck , Innrain 80/82, 6020 Innsbruck, Austria
| | - Sonja Sturm
- Institute of Pharmacy, Department of Pharmacognosy, Centrum of Chemistry and Biomedicine (CCB), University of Innsbruck , Innrain 80/82, 6020 Innsbruck, Austria
| | | | - Christoph Seger
- Institute of Pharmacy, Department of Pharmacognosy, Centrum of Chemistry and Biomedicine (CCB), University of Innsbruck , Innrain 80/82, 6020 Innsbruck, Austria
| | - Hermann Stuppner
- Institute of Pharmacy, Department of Pharmacognosy, Centrum of Chemistry and Biomedicine (CCB), University of Innsbruck , Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
25
|
Separation and characterization of phenolic compounds and triterpenoid saponins in licorice (Glycyrrhiza uralensis) using mobile phase-dependent reversed-phase×reversed-phase comprehensive two-dimensional liquid chromatography coupled with mass spectrometry. J Chromatogr A 2015; 1402:36-45. [DOI: 10.1016/j.chroma.2015.05.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/28/2015] [Accepted: 05/06/2015] [Indexed: 01/07/2023]
|
26
|
Jin MJ, Kim IS, Park JS, Dong MS, Na CS, Yoo HH. Pharmacokinetic Profile of Eight Phenolic Compounds and Their Conjugated Metabolites after Oral Administration of Rhus verniciflua Extracts in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5410-5416. [PMID: 25998231 DOI: 10.1021/acs.jafc.5b01724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Rhus verniciflua (Toxicodendron vernicifluum) is a medicinal tree popularly used in Asian countries such as China, Japan, and Korea as a food additive or herbal medicine because of its beneficial effects. R. verniciflua extract (RVE) contains diverse phenolic compounds, such as flavonoids, as its major biological active constituents. In this study, the pharmacokinetic profiles of eight phenolic compounds were investigated following oral administration of RVE to rats. The eight phenolic compounds were 2,4-dihydroxybenzoic acid, 3,4-dihydroxybenzoic acid, fisetin, fustin, butin, sulfuretin, taxifolin, and garbanzol. The plasma concentrations of the eight compounds were determined by using a liquid chromatography-triple-quadrupole mass spectrometer before and after treatment with β-glucuronidase. When 1.5 g/kg RVE was administered, the eight compounds were all detected in plasma, mainly as conjugated forms. These pharmacokinetic data would be useful for understanding the pharmacological effects of RVE.
Collapse
Affiliation(s)
- Ming Ji Jin
- †Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 426-791, Korea
| | - In Sook Kim
- †Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 426-791, Korea
| | - Jong Suk Park
- †Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 426-791, Korea
| | - Mi-Sook Dong
- §School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea
| | - Chun-Soo Na
- #Lifetree Biotech Company, Ltd., Suwon, Gyeonggi-do 441-350, Korea
| | - Hye Hyun Yoo
- †Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 426-791, Korea
| |
Collapse
|
27
|
Farghali H, Canová NK, Zakhari S. Hepatoprotective properties of extensively studied medicinal plant active constituents: possible common mechanisms. PHARMACEUTICAL BIOLOGY 2015; 53:781-791. [PMID: 25489628 DOI: 10.3109/13880209.2014.950387] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT We focused on certain plant active constituents considered to be the most promising/studied for liver disease and that were critically investigated from the basic science point of view and, to some extent, the clinical one. Due to insufficient pharmacological data, most of the herbal formulations containing these molecules cannot be recommended for the treatment of liver disease. OBJECTIVE To present the most promising compounds tested experimentally and/or clinically and describe in brief popular models in experimental testing of potential hepatoprotective compounds. METHODS A literature search using Web of Science (WOS), PubMed, and Google search was performed. RESULTS Focusing on a few herbal hepatoprotective active constituents is useful to health professionals working in the field of therapeutics to develop evidence-based hepatoprotective agents by conducting research on pure chemical structures or on molecular modifications using computational chemistry. This review demonstrates that multi-pathways in the liver pathobiology can be interrupted at one or more levels by natural hepatoprotective studied, such as interference with the oxidative stress at multiple levels to reduce reactive oxygen/nitrogen species, resulting in ameliorating hepatotoxicity. CONCLUSION Hepatoprotective constituents of herbal medications are poorly absorbed after oral administration; methods that can improve their bioavailability are being developed. It is recommended that controlled prospective double-blind multicenter studies on isolated active plant constituents, or on related newly designed molecules after structural modifications, should be performed. This effort will lead to expanding the existing, limited drugs for the vast majority of liver diseases.
Collapse
Affiliation(s)
- Hassan Farghali
- First Faculty of Medicine, Institute of Pharmacology, Charles University in Prague , Czech Republic and
| | | | | |
Collapse
|
28
|
Momeni A, Hajigholami A, Geshnizjani S, Kheiri S. Effect of silymarin in the prevention of Cisplatin nephrotoxicity, a clinical trial study. J Clin Diagn Res 2015; 9:OC11-3. [PMID: 26046020 DOI: 10.7860/jcdr/2015/12776.5789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/26/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND Reno-protective effect of Silymarin was studied in some studies mainly on rats. In some of these studies, Silymarin was shown to have positive effects on preventing or decreasing severity of Cisplatin nephrotoxicity. OBJECTIVE The aim of this study was to evaluate the protective effect of Silymarin on Cisplatin nephrotoxicity in adult patients with malignancy. MATERIALS AND METHODS In this clinical trial study, 60 patients with malignancy, candidate of Cisplatin treatment were randomly enrolled in two equal groups. In patients of case group, Silymarin tablet 140 mg/bid was administrated seven days before Cisplatin administration together with Cisplatin, and in control group, Cisplatin was prescribed. Blood Urea Nitrogen (BUN) and serum Creatinine (Cr) were checked at the same day and 3 and 7 days after administration of Cisplatin. RESULTS Mean age of the patients in case and control groups were 51.1±14.3 y and 51.1±13.7 y respectively (p=0.99). There was no significant difference based on BUN and serum Cr in the beginning of study and three days after administration of Cisplatin in two groups of patients; however, after two weeks, BUN and serum Cr were significantly lower in the case group compared to the control group. Also, in the case group, BUN and serum Cr decreased and in the control group, they increased after two weeks after Cisplatin administration. CONCLUSION This study showed that Silymarin can decrease Cisplatin nephrotoxicity, so because of safety profile and minor adverse effect of Silymarin, we can use it as prophylaxis against Cisplatin nephrotoxicity in various Cisplatin-contained chemotherapy regimens.
Collapse
Affiliation(s)
- Ali Momeni
- Nephrologist, Division of Nephrology, Department of Internal Medicine, Shahrekord University of Medical Sciences , Shahrekord, Iran
| | - Ali Hajigholami
- Haematologist, Division of Hematology, Department of Internal Medicine, Shahrekord University of Medical Sciences , Shahrekord, Iran
| | - Shohreh Geshnizjani
- Internist, Division of Nephrology, Department of Internal Medicine, Shahrekord University of Medical Sciences , Shahrekord, Iran
| | - Soleiman Kheiri
- Biostatistician, Clinical Biochemistry Research Center, Shahrekord University of Medical Sciences , Shahrekord, Iran
| |
Collapse
|
29
|
Marhol P, Bednář P, Kolářová P, Večeřa R, Ulrichová J, Tesařová E, Vavříková E, Kuzma M, Křen V. Pharmacokinetics of pure silybin diastereoisomers and identification of their metabolites in rat plasma. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.02.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
30
|
Pereira C, Barros L, Carvalho AM, Santos-Buelga C, Ferreira ICFR. Infusions of artichoke and milk thistle represent a good source of phenolic acids and flavonoids. Food Funct 2015; 6:56-62. [PMID: 25367590 DOI: 10.1039/c4fo00834k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cynara scolymus L. (artichoke) and Silybum marianum (L.) Gaertn (milk thistle) are two herbs well-known for their efficiency in the prevention/treatment of liver injuries, among other chronic diseases. Therefore, the aim of this work was to characterize specific bioactive components, phenolic compounds, in hydromethanolic extracts but also in infusions (the most commonly used preparations) obtained from the whole plant of milk thistle and artichoke. The phenolic profiles were accessed using HPLC-DAD-MS/ESI. Infusions of both species presented higher phenolic contents than the hydromethanolic extracts. Milk thistle presented a similar phenolic composition between the two preparations, revealing only differences in the quantities obtained. Nevertheless, artichoke revealed a slightly different profile considering infusion and hydromethanolic extracts. Apigenin-7-O-glucuronide was the major flavonoid found in milk thistle, while luteolin-7-O-glucuronide was the most abundant in artichoke. Therefore, infusions of both artichoke and milk thistle represent a good source of bioactive compounds, especially phenolic acids and flavonoids.
Collapse
Affiliation(s)
- Carla Pereira
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, Apartado 1172, 5301-855 Bragança, Portugal.
| | | | | | | | | |
Collapse
|
31
|
Chang LW, Hou ML, Tsai TH. Silymarin in liposomes and ethosomes: pharmacokinetics and tissue distribution in free-moving rats by high-performance liquid chromatography-tandem mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11657-65. [PMID: 25375210 DOI: 10.1021/jf504139g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aim of this study was to prepare silymarin formulations (silymarin entrapped in liposomes and ethosomes, formulations referred to as LSM and ESM, respectively) to improve oral bioavailability of silymarin and evaluate its tissue distribution by liquid chromatography with tandem mass spectrometry (LC-MS/MS) in free-moving rats. Silibinin is the major active constituent of silymarin, which is the main component to be analyzed. A rapid, sensitive, and repeatable LC-MS/MS method was developed and validated in terms of precision, accuracy, and extraction recovery. Furthermore, the established method was applied to study the pharmacokinetics and tissue distribution of silymarin in rats. The size, ζ potential, and drug release of the formulations were characterized. These results showed that the LSM and ESM encapsulated formulations of silymarin may provide more efficient tissue distribution and increased oral bioavailability, thus improving its therapeutic bioactive properties in the body.
Collapse
Affiliation(s)
- Li-Wen Chang
- Institute of Traditional Medicine, National Yang-Ming University , Taipei 112, Taiwan
| | | | | |
Collapse
|
32
|
Kawaguchi-Suzuki M, Frye RF, Zhu HJ, Brinda BJ, Chavin KD, Bernstein HJ, Markowitz JS. The effects of milk thistle (Silybum marianum) on human cytochrome P450 activity. Drug Metab Dispos 2014; 42:1611-6. [PMID: 25028567 PMCID: PMC4164972 DOI: 10.1124/dmd.114.057232] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 07/15/2014] [Indexed: 01/08/2023] Open
Abstract
Milk thistle (Silybum marianum) extracts are widely used as a complementary and alternative treatment of various hepatic conditions and a host of other diseases/disorders. The active constituents of milk thistle supplements are believed to be the flavonolignans contained within the extracts. In vitro studies have suggested that some milk thistle components may significantly inhibit specific cytochrome P450 (P450) enzymes. However, determining the potential for clinically significant drug interactions with milk thistle products has been complicated by inconsistencies between in vitro and in vivo study results. The aim of the present study was to determine the effect of a standardized milk thistle supplement on major P450 drug-metabolizing enzymes after a 14-day exposure period. CYP1A2, CYP2C9, CYP2D6, and CYP3A4/5 activities were measured by simultaneously administering the four probe drugs, caffeine, tolbutamide, dextromethorphan, and midazolam, to nine healthy volunteers before and after exposure to a standardized milk thistle extract given thrice daily for 14 days. The three most abundant falvonolignans found in plasma, following exposure to milk thistle extracts, were silybin A, silybin B, and isosilybin B. The concentrations of these three major constituents were individually measured in study subjects as potential perpetrators. The peak concentrations and areas under the time-concentration curves of the four probe drugs were determined with the milk thistle administration. Exposure to milk thistle extract produced no significant influence on CYP1A2, CYP2C9, CYP2D6, or CYP3A4/5 activities.
Collapse
Affiliation(s)
- Marina Kawaguchi-Suzuki
- Department of Pharmacotherapy and Translational Research (M.K.-S., R.F.F., B.J.B., J.S.M.) and Center for Pharmacogenomics (M.K.-S., R.F.F., J.S.M.), University of Florida, Gainesville, Florida; Department of Clinical, Social, and Administrative Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan (H.-J.Z.); and Department of Surgery, Division of Transplantation (K.D.C.), and Department of Psychiatry and Behavioral Sciences (H.J.B.), Medical University of South Carolina, Charleston, South Carolina
| | - Reginald F Frye
- Department of Pharmacotherapy and Translational Research (M.K.-S., R.F.F., B.J.B., J.S.M.) and Center for Pharmacogenomics (M.K.-S., R.F.F., J.S.M.), University of Florida, Gainesville, Florida; Department of Clinical, Social, and Administrative Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan (H.-J.Z.); and Department of Surgery, Division of Transplantation (K.D.C.), and Department of Psychiatry and Behavioral Sciences (H.J.B.), Medical University of South Carolina, Charleston, South Carolina
| | - Hao-Jie Zhu
- Department of Pharmacotherapy and Translational Research (M.K.-S., R.F.F., B.J.B., J.S.M.) and Center for Pharmacogenomics (M.K.-S., R.F.F., J.S.M.), University of Florida, Gainesville, Florida; Department of Clinical, Social, and Administrative Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan (H.-J.Z.); and Department of Surgery, Division of Transplantation (K.D.C.), and Department of Psychiatry and Behavioral Sciences (H.J.B.), Medical University of South Carolina, Charleston, South Carolina
| | - Bryan J Brinda
- Department of Pharmacotherapy and Translational Research (M.K.-S., R.F.F., B.J.B., J.S.M.) and Center for Pharmacogenomics (M.K.-S., R.F.F., J.S.M.), University of Florida, Gainesville, Florida; Department of Clinical, Social, and Administrative Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan (H.-J.Z.); and Department of Surgery, Division of Transplantation (K.D.C.), and Department of Psychiatry and Behavioral Sciences (H.J.B.), Medical University of South Carolina, Charleston, South Carolina
| | - Kenneth D Chavin
- Department of Pharmacotherapy and Translational Research (M.K.-S., R.F.F., B.J.B., J.S.M.) and Center for Pharmacogenomics (M.K.-S., R.F.F., J.S.M.), University of Florida, Gainesville, Florida; Department of Clinical, Social, and Administrative Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan (H.-J.Z.); and Department of Surgery, Division of Transplantation (K.D.C.), and Department of Psychiatry and Behavioral Sciences (H.J.B.), Medical University of South Carolina, Charleston, South Carolina
| | - Hilary J Bernstein
- Department of Pharmacotherapy and Translational Research (M.K.-S., R.F.F., B.J.B., J.S.M.) and Center for Pharmacogenomics (M.K.-S., R.F.F., J.S.M.), University of Florida, Gainesville, Florida; Department of Clinical, Social, and Administrative Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan (H.-J.Z.); and Department of Surgery, Division of Transplantation (K.D.C.), and Department of Psychiatry and Behavioral Sciences (H.J.B.), Medical University of South Carolina, Charleston, South Carolina
| | - John S Markowitz
- Department of Pharmacotherapy and Translational Research (M.K.-S., R.F.F., B.J.B., J.S.M.) and Center for Pharmacogenomics (M.K.-S., R.F.F., J.S.M.), University of Florida, Gainesville, Florida; Department of Clinical, Social, and Administrative Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan (H.-J.Z.); and Department of Surgery, Division of Transplantation (K.D.C.), and Department of Psychiatry and Behavioral Sciences (H.J.B.), Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
33
|
Zhao W, Yang G, Zhong F, Yang N, Zhao X, Qi Y, Fan G. Isolation and purification of diastereoisomeric flavonolignans from silymarin by binary-column recycling preparative high-performance liquid chromatography. J Sep Sci 2014; 37:2300-6. [PMID: 24923482 DOI: 10.1002/jssc.201400270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/09/2014] [Accepted: 05/29/2014] [Indexed: 11/10/2022]
Abstract
Silymarin extracted from Silybum marianum (L.) Gaertn consists of a large number of flavonolignans, of which diastereoisomeric flavonolignans including silybin A and silybin B, and isosilybin A and isosilybin B are the main bioactive components, whose preparation from the crude extracts is still a difficult task. In this work, binary-column recycling preparative high-performance liquid chromatography systems without sample loop trapping, where two columns were switched alternately via one or two six-port switching valves, were established and successfully applied to the isolation and purification of the four diastereoisomeric flavonolignans from silymarin. The proposed system showed significant advantages over conventional preparative high-performance liquid chromatography with a single column in increasing efficiency and reducing the cost. To obtain the same amounts of products, the proposed system spends only one tenth of the time that the conventional system spends, and needs only one eleventh of the solvent that the conventional system consumes. Using the proposed system, the four diastereoisomers were successfully isolated from silymarin with purities over 98%.
Collapse
Affiliation(s)
- Weiquan Zhao
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, P.R. China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, P.R. China; Shanghai Research Centre for Drug (Chinese Materia Medica) Metabolism, Shanghai, P.R. China
| | | | | | | | | | | | | |
Collapse
|
34
|
Sun Z, Zhao L, Zuo L, Qi C, Zhao P, Hou X. A UHPLC–MS/MS method for simultaneous determination of six flavonoids, gallic acid and 5,8-dihydroxy-1,4-naphthoquinone in rat plasma and its application to a pharmacokinetic study of Cortex Juglandis Mandshuricae extract. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 958:55-62. [DOI: 10.1016/j.jchromb.2014.03.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 11/28/2022]
|
35
|
Cufí S, Bonavia R, Vazquez-Martin A, Oliveras-Ferraros C, Corominas-Faja B, Cuyàs E, Martin-Castillo B, Barrajón-Catalán E, Visa J, Segura-Carretero A, Joven J, Bosch-Barrera J, Micol V, Menendez JA. Silibinin suppresses EMT-driven erlotinib resistance by reversing the high miR-21/low miR-200c signature in vivo. Sci Rep 2014; 3:2459. [PMID: 23963283 PMCID: PMC3748425 DOI: 10.1038/srep02459] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/17/2013] [Indexed: 02/07/2023] Open
Abstract
The flavolignan silibinin was studied for its ability to restore drug sensitivity to EGFR-mutant NSCLC xenografts with epithelial-to-mesenchymal transition (EMT)-driven resistance to erlotinib. As a single agent, silibinin significantly decreased the tumor volumes of erlotinib-refractory NSCLC xenografts by approximately 50%. Furthermore, the complete abrogation of tumor growth was observed with the co-treatment of erlotinib and silibinin. Silibinin fully reversed the EMT-related high miR-21/low miR-200c microRNA signature and repressed the mesenchymal markers SNAIL, ZEB, and N-cadherin observed in erlotinib-refractory tumors. Silibinin was sufficient to fully activate a reciprocal mesenchymal-to-epithelial transition (MET) in erlotinib-refractory cells and prevent the highly migratogenic phenotype of erlotinib-resistant NSCLC cells. Given that the various mechanisms of resistance to erlotinib result from EMT, regardless of the EGFR mutation status, a water-soluble, silibinin-rich milk thistle extract might be a suitable candidate therapy for upcoming clinical trials aimed at preventing or reversing NSCLC progression following erlotinib treatment.
Collapse
Affiliation(s)
- Sílvia Cufí
- Metabolism & Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sala F, Albares P, Colovic M, Persiani S, Rovati LC. Development and validation of two liquid chromatography-tandem mass spectrometry methods for the determination of silibinin and silibinin hemisuccinate in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 945-946:1-9. [PMID: 24317417 DOI: 10.1016/j.jchromb.2013.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/04/2013] [Accepted: 11/17/2013] [Indexed: 11/28/2022]
Abstract
To investigate the pharmacokinetics of silibinin and silibinin hemisuccinate in human plasma, two high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) methods were developed and validated. The methods require a small volume of sample (100μL), and the recovery of the analytes was complete with a good reproducibility (CV% 1.7-9.5), after a simple protein precipitation. Naringenin was used as internal standard. The chromatographic methods provided a good separation of diastereoisomers A and B of both silibinin and silibinin hemisuccinate onto a Chromolith Performance RP18e 100mm×3mm column, with a resolution of peaks from plasma matrix in less than 6min. The methods precision values expressed as CV% were always ≤6.2% and the accuracy was always well within the acceptable 15% range. Quantification was performed on a triple-quadrupole tandem mass spectrometer by Selected Reaction Monitoring (SRM) mode, in a negative ion mode, via electrospray ionization (ESI). The lower limit of quantitation was set at 5.0ng/mL (silibinin) and 25.0ng/mL (silibinin hemisuccinate), and the linearity was validated up to 1000.0 and 12,500.0ng/mL, for silibinin and silibinin hemisuccinate, respectively, with correlation coefficients (R(2)) of 0.991 or better. The methods were suitable for pharmacokinetic studies and were successfully applied to human plasma samples from subjects treated intravenously with Legalon(®) SIL at the dose of 20mg/kg, expressed as silibinin.
Collapse
|
37
|
Cufí S, Bonavia R, Vazquez-Martin A, Corominas-Faja B, Oliveras-Ferraros C, Cuyàs E, Martin-Castillo B, Barrajón-Catalán E, Visa J, Segura-Carretero A, Bosch-Barrera J, Joven J, Micol V, Menendez JA. Silibinin meglumine, a water-soluble form of milk thistle silymarin, is an orally active anti-cancer agent that impedes the epithelial-to-mesenchymal transition (EMT) in EGFR-mutant non-small-cell lung carcinoma cells. Food Chem Toxicol 2013; 60:360-8. [PMID: 23916468 DOI: 10.1016/j.fct.2013.07.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/02/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
Silibinin is the primary active constituent of a crude extract (silymarin) from milk thistle plant (Silybum marianum) seeds. We explored the ability of an oral milk thistle extract formulation that was enriched with a water-soluble form of silibinin complexed with the amino-sugar meglumine to inhibit the growth of non-small-cell lung carcinoma (NSCLC) mouse xenografts. As a single agent, oral silibinin meglumine notably decreased the overall volumes of NSCLC tumors as efficiently as did the EGFR tyrosine kinase inhibitor (TKI) gefitinib. Concurrent treatment with silibinin meglumine impeded the regrowth of gefitinib-unresponsive tumors, resulting in drastic tumor growth prevention. Because the epithelial-to-mesenchymal transition (EMT) is required by a multiplicity of mechanisms of resistance to EGFR TKIs, we evaluated the ability of silibinin meglumine to impede the EMT in vitro and in vivo. Silibinin-meglumine efficiently prevented the loss of markers associated with a polarized epithelial phenotype as well as the de novo synthesis of proteins associated with the mesenchymal morphology of transitioning cells. Our current findings with this non-toxic, orally active, and water-soluble silibinin formulation might facilitate the design of clinical trials to test the administration of silibinin meglumine-containing injections, granules, or beverages in combination with EGFR TKIs in patients with EGFR-mutated NSCLC.
Collapse
Affiliation(s)
- Sílvia Cufí
- Metabolism & Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Catalonia, Spain; Girona Biomedical Research Institute (IDIBGi), Girona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhu HJ, Brinda BJ, Chavin KD, Bernstein HJ, Patrick KS, Markowitz JS. An assessment of pharmacokinetics and antioxidant activity of free silymarin flavonolignans in healthy volunteers: a dose escalation study. Drug Metab Dispos 2013; 41:1679-85. [PMID: 23835761 PMCID: PMC3876803 DOI: 10.1124/dmd.113.052423] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/26/2013] [Indexed: 01/31/2023] Open
Abstract
Milk thistle (Silybum marianum) extracts, one of the most widely used dietary supplements, contain a mixture of six major flavonolignans (silybin A, silybin B, isosilybin A, isosilybin B, silychristin, and silydianin) and other components. However, the pharmacokinetics of the free individual flavonolignans have been only partially investigated in humans. Furthermore, antioxidant effects of the extract, which may underlie the basis of many therapeutic effects, have not been thoroughly assessed. The present study evaluated the pharmacokinetics of the six major flavonolignans in healthy volunteers receiving single doses of either one (175 mg), two (350 mg), or three (525 mg) milk thistle capsule(s) on three separate study visits. Additionally, the steady-state pharmacokinetic parameters were determined after the subjects were administered one capsule three times daily for 28 consecutive days. Our results demonstrated that all six flavonolignans were rapidly absorbed and eliminated. In order of abundance, the exposure to free flavonolignans was greatest for silybin A followed by silybin B, isosilybin B, isosilybin A, silychristin, and silydianin. The systemic exposure to these compounds appeared linear and dose proportional. The disposition of flavonolignans was stereoselective, as evidenced by the apparent clearance of silybin B, which was significantly greater than silybin A, whereas the apparent clearance of isosilybin B was significantly lower than isosilybin A. The concentrations of urinary 8-epi-prostaglandin F2α, a commonly used biomarker of oxidative status in humans, were considerably decreased in study subjects after a 28-day exposure to the extract (1.3 ± 0.9 versus 0.8 ± 0.9 ng/mg creatinine) but failed to reach statistical significance (P = 0.076).
Collapse
Affiliation(s)
- Hao-Jie Zhu
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | |
Collapse
|