1
|
Li J, Wei Y, Lai Q, Li X, Wang Y, Wang X, Chen Y, Liu H, Yang K, Yuan B. Efficacy of a resveratrol nanoformulation prepared using a facile solvent-free method. NANOSCALE 2025; 17:12937-12949. [PMID: 40336370 DOI: 10.1039/d5nr00691k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Resveratrol (RSV) is a natural polyphenolic compound known for its anti-oxidant, anti-inflammatory, anticancer, and cardioprotective properties. However, the limited water solubility and poor bioavailability of RSV significantly hinder its application in the food and pharmaceutical industries. To address these challenges, we developed a facile, scalable, and specifically, organic-solvent-free method to prepare highly stable and concentrated RSV nanoformulations. By utilizing an ethoxylated hydrogenated castor oil (EHCO) aqueous solution, we successfully dissolved RSV in water at concentrations of up to 30 mg mL-1. This RSV solution could be subsequently incorporated with hydrogenated lecithin S10 to formulate stable lipid nanoparticles, sized 140-180 nm. The entire process was performed under heating and stirring, eliminating the need for organic solvents and ensuring simplicity and high reproducibility. The resulting RSV-CO60@S10 nanoformulations exhibited relatively high encapsulation efficiency (with final RSV concentrations of up to 30 mg mL-1), long-term stability (exceeding 6 months), preserved antioxidant activity, and effective cellular internalization capabilities that could alleviate oxidative stress. Additionally, these nanoparticles exhibited promising therapeutic efficacy toward atopic dermatitis in mice. These findings offer valuable insights into the potential utilization of RSV across diverse applications.
Collapse
Affiliation(s)
- Jiahao Li
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Environment, South China Normal University, Guangzhou 510006, Guangdong, China
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China.
| | - Yushuang Wei
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China.
| | - Qin Lai
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China.
- Guangxi University of Chinese Medicine, Nanning 530000, Guangxi, China
- Department of Rheumatology and Immunology, the First affiliated Hospital of Shenzhen University, Shenzhen 518000, China
| | - Xiangyang Li
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China.
| | - Yu Wang
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China.
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China.
| | - Xun Wang
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China.
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China.
| | - Yinghua Chen
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan Key Laboratory of Dermatology and Immunological Diseases, Dongguan 523058, Guangdong, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Hong Liu
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Environment, South China Normal University, Guangzhou 510006, Guangdong, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China.
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China.
| |
Collapse
|
2
|
Bhattacharjee S, Rastogi V, Durgapal S, Verma A, Singh B, Chandra A. Nanotherapy targeting anti-aging skin cells: harnessing ursolic acid from Ocimum sanctum Linn for precision skin rejuvenation - a molecular perspective. Nat Prod Res 2025:1-16. [PMID: 40047211 DOI: 10.1080/14786419.2025.2474157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/04/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025]
Abstract
The necessity of this work lies in the innovative application of nanotherapy to target anti-ageing skin cells, utilising ursolic acid from Ocimum sanctum Linn for precise and effective skin rejuvenation at a molecular level. Ursolic acid (UA), a pentacyclic triterpenoid compound, found in abundance in the plant O. sanctum Linn, has long been recognised for its potential anti-inflammatory, antioxidant, and anti-ageing properties. Despite its promising benefits, the direct application of UA in skincare has been limited, primarily due to its low aqueous solubility and poor skin penetration. This study explores a groundbreaking molecular approach, employing nanotechnology to enhance the delivery of UA, targeting skin cells for effective anti-ageing treatment. Through a comprehensive investigation, UA was encapsulated into biocompatible nanocarriers, ensuring increased stability, improved dermal penetration, and sustained release of the compound at the targeted site. By harnessing the specificity and efficiency of nanodelivery systems, the study achieved significant improvement in the absorption of UA in the deeper layers of the skin. This targeted intervention at the cellular and molecular level paved the way for maximising the potential of UA as an anti-ageing agent. In conclusion, the nanotherapeutic delivery of UA from O. sanctum Linn offers a paradigm shift in skincare, bringing forth a promising molecular strategy to combat skin ageing. With further advancements, this approach has the potential to revolutionise anti-ageing treatments, integrating traditional botanical wisdom with cutting-edge nanotechnology.
Collapse
Affiliation(s)
| | | | | | - Anurag Verma
- TMCOP, Teerthanker Mahaveer University, Bagadpur, India
| | - Bhavana Singh
- School of Pharmacy, Sharda University, Greater Noida, India
| | - Amrish Chandra
- School of Pharmacy, Sharda University, Greater Noida, India
| |
Collapse
|
3
|
da Silva Antunes JC, Sobral P, Branco V, Martins M. Uncovering layer by layer the risk of nanoplastics to the environment and human health. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:63-121. [PMID: 39670667 DOI: 10.1080/10937404.2024.2424156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Nanoplastics (NPs), defined as plastic particles with dimensions less than 100 nm, have emerged as a persistent environmental contaminant with potential risk to both environment and human health. Nanoplastics might translocate across biological barriers and accumulate in vital organs, leading to inflammatory responses, oxidative stress, and genotoxicity, already reported in several organisms. Disruptions to cellular functions, hormonal balance, and immune responses were also linked to NPs exposure in in vitro assays. Further, NPs have been found to adsorb other pollutants, such as persistent organic pollutants (POPs), and leach additives potentially amplifying their advere impacts, increasing the threat to organisms greater than NPs alone. However, NPs toxic effects remain largely unexplored, requiring further research to elucidate potential risks to human health, especially their accumulation, degradation, migration, interactions with the biological systems and long-term consequences of chronic exposure to these compounds. This review provides an overview of the current state-of-art regarding NPs interactions with environmental pollutants and with biological mechanisms and toxicity within cells.
Collapse
Affiliation(s)
- Joana Cepeda da Silva Antunes
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Paula Sobral
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Martins
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| |
Collapse
|
4
|
Nguyen HX, Kipping T, Banga AK. Enhancement of Transdermal Drug Delivery: Integrating Microneedles with Biodegradable Microparticles. Mol Pharm 2025; 22:984-1009. [PMID: 39823349 DOI: 10.1021/acs.molpharmaceut.4c01202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
This investigation aimed to enhance transdermal methotrexate delivery through human skin by employing Dr. Pen microneedles and poly(d,l-lactide-co-glycolide) acid microparticles formulated from eight polymer grades (Expansorb DLG 95-4A, DLG 75-5A, DLG 50-2A, DLG 50-5A, DLG 50-8A, DLG 50-6P, DLG 50-7P, and DLL 10-15A). A comprehensive characterization of the microparticles was performed, encompassing various parameters such as size, charge, morphology, microencapsulation efficiency, yield, release kinetics, and chemical composition. The efficacy of microneedles in disrupting skin integrity was demonstrated by scanning electron microscopy, dye binding, histological examination, confocal laser microscopy, and pore size analysis. Microneedle-mediated skin microporation led to a substantial reduction in skin electrical resistance and a concomitant increase in transepidermal water loss. In vitro permeation experiments using human skin delivered microparticles into microporated skin and demonstrated a considerable difference in methotrexate delivery among the polymer groups. Microneedle treatment significantly amplified cumulative drug delivery, steady-state flux, diffusion coefficient, permeability coefficient, and drug concentration within skin layers while concurrently diminishing lag time (p < 0.05). Furthermore, a robust correlation was established between microparticle properties (cumulative release, release rate, encapsulation efficiency) and drug deposition in the skin. In conclusion, the synergistic combination of Dr. Pen microneedles and PLGA microparticles facilitated enhanced and regulated transdermal methotrexate delivery.
Collapse
Affiliation(s)
- Hiep X Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, Georgia 30341, United States
- Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam
| | - Thomas Kipping
- MilliporeSigma, a Business of Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Ajay K Banga
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, Georgia 30341, United States
| |
Collapse
|
5
|
Svenskaya YI, Verkhovskii RA, Zaytsev SM, Lademann J, Genina EA. Current issues in optical monitoring of drug delivery via hair follicles. Adv Drug Deliv Rev 2025; 217:115477. [PMID: 39615632 DOI: 10.1016/j.addr.2024.115477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/05/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Drug delivery via hair follicles has attracted much research attention due to its potential to serve for both local and systemic therapeutic purposes. Recent studies on topical application of various particulate formulations have demonstrated a great role of this delivery route for targeting numerous cell populations located in skin and transporting the encapsulated drug molecules to the bloodstream. Despite a great promise of follicle-targeting carriers, their clinical implementation is very rare, mostly because of their poorer characterization compared to conventional topical dosage forms, such as ointments and creams, which have a history spanning over a century. Gathering as complete information as possible on the intrafollicular penetration depth, storage, degradation/metabolization profiles of such carriers and the release kinetics of drugs they contain, as well as their impact on skin health would significantly contribute to understanding the pros and cons of each carrier type and facilitate the selection of the most suitable candidates for clinical trials. Optical imaging and spectroscopic techniques are extensively applied to study dermal penetration of drugs. Current paper provides the state-of-the-art overview of techniques, which are used in optical monitoring of follicular drug delivery, with a special focus on non-invasive in vivo methods. It discusses key features, advantages and limitations of their use, as well as provide expert perspectives on future directions in this field.
Collapse
Affiliation(s)
| | | | - Sergey M Zaytsev
- CRAN UMR 7039, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Juergen Lademann
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Elina A Genina
- Department of Optics and Biophotonics, Saratov State University, Saratov, Russia
| |
Collapse
|
6
|
Sriram A, Ithape H, Singh PK. Deep-insights: Nanoengineered gel-based localized drug delivery for arthritis management. Asian J Pharm Sci 2025; 20:101012. [PMID: 39995751 PMCID: PMC11848107 DOI: 10.1016/j.ajps.2024.101012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 05/15/2024] [Accepted: 07/03/2024] [Indexed: 02/26/2025] Open
Abstract
Arthritis is an inflammatory joint disorder that progressively impairs function and diminishes quality of life. Conventional therapies often prove ineffective, as oral administration lacks specificity, resulting in off-target side effects like hepatotoxicity and GIT-related issues. Intravenous administration causes systemic side effects. The characteristic joint-localized symptoms such as pain, stiffness, and inflammation make the localized drug delivery suitable for managing arthritis. Topical/transdermal/intra-articular routes have become viable options for drug delivery in treating arthritis. However, challenges with those localized drug delivery routes include skin barrier and cartilage impermeability. Additionally, conventional intra-articular drug delivery also leads to rapid clearance of drugs from the synovial joint tissue. To circumvent these limitations, researchers have developed nanocarriers that enhance drug permeability through skin and cartilage, influencing localized action. Gel-based nanoengineered therapy employs a gel matrix to incorporate the drug-encapsulated nanocarriers. This approach combines the benefits of gels and nanocarriers to enhance therapeutic effects and improve patient compliance. This review emphasizes deep insights into drug delivery using diverse gel-based novel nanocarriers, exploring their various applications embedded in hyaluronic acid (biopolymer)-based gels, carbopol-based gels, and others. Furthermore, this review discusses the influence of nanocarrier pharmacokinetics on the localization and therapeutic manipulation of macrophages mediated by nanocarriers. The ELVIS (extravasation through leaky vasculature and inflammatory cell-mediated sequestration) effect associated with arthritis is advantageous in drug delivery. Simply put, the ELVIS effect refers to the extravasation of nanocarriers through leaky vasculatures, which finally results in the accumulation of nanocarriers in the joint cavity.
Collapse
Affiliation(s)
| | | | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Telangana 500037, India
| |
Collapse
|
7
|
Xue Y, Wang T, Liu JP, Chen Q, Dai XL, Su M, Cheng YH, Chu CC, Ren YQ. Recent Trends in the Development and Application of Nano-Antioxidants for Skin-Related Disease. Antioxidants (Basel) 2024; 14:27. [PMID: 39857361 PMCID: PMC11762136 DOI: 10.3390/antiox14010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Skin is a vital barrier for the human body, protecting against external environmental influences and maintaining internal homeostasis. In addition, an imbalance of oxidative stress and antioxidant mechanisms can lead to skin-related diseases. Thus, for treating skin-related diseases, antioxidant therapy may be an important strategy to alleviate these symptoms. However, traditional drug therapies have limitations in treating these conditions, such as lack of lasting effect and insufficient skin permeability. Recently, nano-antioxidants, with their good permeability, sustained-release ability, multifunctionality, and other beneficial characteristics, have showed their advances in the exploration of skin-related diseases from research on safe therapies to clinical practice. Hereby, we review the latest research and advancements in nano-antioxidants for skin-related diseases. We categorize skin-related diseases into four main groups: skin inflammatory diseases, skin damage caused by ultraviolet rays, skin wound healing, and other skin-related conditions. Additionally, we summarize the prospects and potential future directions for nano-antioxidant drugs in treating skin-related diseases.
Collapse
Affiliation(s)
- Yi Xue
- Department of Dermatology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Tao Wang
- Department of Dermatology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
| | - Ji-Peng Liu
- Department of Dermatology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
| | - Qi Chen
- Department of Dermatology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
| | - Xiao-Long Dai
- Department of Dermatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Min Su
- Department of Pharmacy, Xiamen Medical College, Xiamen 361023, China;
| | - Yu-Hang Cheng
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Cheng-Chao Chu
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yun-Qing Ren
- Department of Dermatology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
| |
Collapse
|
8
|
Yu H, Li H, Cui C, Han Y, Xiao Y, Zhang B, Li G. Association between blood microplastic levels and severity of extracranial artery stenosis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136211. [PMID: 39442309 DOI: 10.1016/j.jhazmat.2024.136211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/03/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Microplastics (MPs) contamination raises concerns about their impact on human health, particularly cardiovascular diseases. This study investigated the blood MPs levels in patients with extracranial artery stenosis (ECAS) and their possible link to disease severity. 20 ECAS and 10 control patients were recruited. Blood samples, collected before the digital subtract angiography (DSA) procedure, were analyzed by pyrolysis-gas chromatography mass spectrometry (Py-GC/MS), laser direct infrared (LDIR) spectroscopy, and scanning electron microscopy (SEM). Demographic and clinical information was also examined. Strict quality controls were implemented to prevent contamination. MPs were detected by Py-GC/MS in all blood samples, with concentrations significantly higher in ECAS group compared to control (174.89 ± 24.95 vs 79.82 ± 31.73 μg/g, p < 0.001), and polyvinyl chloride (PVC) and polyamide 66 (PA66) were the most abundant among the detected polymers. Further analyses suggested that higher concentrations of MPs may be associated with more severe artery stenosis (p < 0.001). Compared with the normal group, ECAS group had a higher level of D-dimer (0.61 ± 0.6 μg/L vs 0.28 ± 0.09 μg/L, p < 0.05) and longer Thrombin Time (sec) (18.30 ± 3.43 μg/L vs 16.25 ± 1.74 μg/L, p < 0.05). Additionally, LDIR and SEM detected the shape and physical properties of the MPs. In this study, we revealed significant higher blood MPs levels in ECAS patients, with a notable correlation between MPs concentrations and arterial stenosis severity.
Collapse
Affiliation(s)
- Hongxiang Yu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hongxia Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Can Cui
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yingying Han
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yaping Xiao
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Bei Zhang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Gang Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
9
|
Lei Y, Jiang W, Peng C, Wu D, Wu J, Xu Y, Yan H, Xia X. Advances in polymeric nano-delivery systems targeting hair follicles for the treatment of acne. Drug Deliv 2024; 31:2372269. [PMID: 38956885 PMCID: PMC11225637 DOI: 10.1080/10717544.2024.2372269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
Acne is a common chronic inflammatory disorder of the sebaceous gland in the hair follicle. Commonly used external medications cause skin irritation, and the transdermal capacity is weak, making it difficult to penetrate the cuticle skin barrier. Hair follicles can aid in the breakdown of this barrier. As nanomaterials progress, polymer-based nanocarriers are routinely used for hair follicle drug delivery to treat acne and other skin issues. Based on the physiological and anatomical characteristics of hair follicles, this paper discusses factors affecting hair follicle delivery by polymer nanocarriers, summarizes the common combination technology to improve the targeting of hair follicles by carriers, and finally reviews the most recent research progress of different polymer nanodrug-delivery systems for the treatment of acne by targeting hair follicles.
Collapse
Affiliation(s)
- Yujing Lei
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Wanting Jiang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Cheng Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Donghai Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Jing Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yiling Xu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Hong Yan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
10
|
Kim M, Shin M, Zhao Y, Ghosh M, Son Y. Transformative Impact of Nanocarrier‐Mediated Drug Delivery: Overcoming Biological Barriers and Expanding Therapeutic Horizons. SMALL SCIENCE 2024; 4. [DOI: 10.1002/smsc.202400280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Advancing therapeutic progress is centered on developing drug delivery systems (DDS) that control therapeutic molecule release, ensuring precise targeting and optimal concentrations. Targeted DDS enhances treatment efficacy and minimizes off‐target effects, but struggles with drug degradation. Over the last three decades, nanopharmaceuticals have evolved from laboratory concepts into clinical products, highlighting the profound impact of nanotechnology in medicine. Despite advancements, the effective delivery of therapeutics remains challenging because of biological barriers. Nanocarriers offer a solution with a small size, high surface‐to‐volume ratios, and customizable properties. These systems address physiological and biological challenges, such as shear stress, protein adsorption, and quick clearance. They allow targeted delivery to specific tissues, improve treatment outcomes, and reduce adverse effects. Nanocarriers exhibit controlled release, decreased degradation, and enhanced efficacy. Their size facilitates cell membrane penetration and intracellular delivery. Surface modifications increase affinity for specific cell types, allowing precise treatment delivery. This study also elucidates the potential integration of artificial intelligence with nanoscience to innovate future nanocarrier systems.
Collapse
Affiliation(s)
- Minhye Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science Jeju National University Jeju‐si Jeju Special Self‐Governing Province 63243 Republic of Korea
| | - Myeongyeon Shin
- Department of Animal Biotechnology Faculty of Biotechnology College of Applied Life Sciences Jeju National University Jeju‐si Jeju Special Self‐Governing Province 63243 Republic of Korea
| | - Yaping Zhao
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology Faculty of Biotechnology College of Applied Life Sciences Jeju National University Jeju‐si Jeju Special Self‐Governing Province 63243 Republic of Korea
| | - Young‐Ok Son
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science Jeju National University Jeju‐si Jeju Special Self‐Governing Province 63243 Republic of Korea
- Department of Animal Biotechnology Faculty of Biotechnology College of Applied Life Sciences Jeju National University Jeju‐si Jeju Special Self‐Governing Province 63243 Republic of Korea
- Bio‐Health Materials Core‐Facility Center Jeju National University Jeju‐si 63243 Republic of Korea
- Practical Translational Research Center Jeju National University Jeju‐si 63243 Republic of Korea
| |
Collapse
|
11
|
Garai S, Bhattacharjee C, Sarkar S, Moulick D, Dey S, Jana S, Dhar A, Roy A, Mondal K, Mondal M, Mukherjee S, Ghosh S, Singh P, Ramteke P, Manna D, Hazra S, Malakar P, Banerjee H, Brahmachari K, Hossain A. Microplastics in the soil-water-food nexus: Inclusive insight into global research findings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173891. [PMID: 38885699 DOI: 10.1016/j.scitotenv.2024.173891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Nuisance imposed by biotic and abiotic stressors on diverse agroecosystems remains an area of focus for the scientific fraternity. However, emerging contaminants such as microplastics (MP) have imposed additional dimension (alone or in combinations with other stressors) in agroecosystems and keep escalating the challenges to achieve sustainability. MP are recognized as persistent anthropogenic contaminants, fetch global attention due to their unique chemical features that keeps themselves unresponsive to the decaying process. This review has been theorized to assess the current research trends (along with possible gap areas), widespread use of MP, enhancement of the harshness of heavy metals (HMs), complex interactions with physico-chemical constituents of arable soil, accumulation in the edible parts of field crops, dairy products, and other sources to penetrate the food web. So far, the available review articles are oriented to a certain aspect of MP and lack a totality when considered from in soil-water-food perspective. In short, a comprehensive perspective of the adverse effects of MP on human health has been assessed. Moreover, an agro-techno-socio-health prospective-oriented critical assessment of policies and remedial measures linked with MP has provided an extra edge over other similar articles in influential future courses of research.
Collapse
Affiliation(s)
- Sourav Garai
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Chandrima Bhattacharjee
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal -741235, India
| | - Saikat Dey
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Soujanya Jana
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Anannya Dhar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Anirban Roy
- Division of Genetics and Plant Breeding, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Krishnendu Mondal
- Dhaanyaganga Krishi Vigyan Kendra, Ramakrishna Mission Vivekananda Educational and Research Institute, Sargachhi, West Bengal, India
| | - Mousumi Mondal
- School of Agriculture and Allied Sciences, The Neotia University, Sarisha, West Bengal, India
| | - Siddhartha Mukherjee
- Division of Agriculture, Faculty Centre for Agriculture, Rural and Tribal Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Morabadi, Ranchi, Jharkhand, India
| | - Samrat Ghosh
- Emergent Ventures India, Gurugram, Haryana, India
| | - Puja Singh
- Department of Soil Science and Agricultural Chemistry, Natural Resource Management, Horticultural College, Birsa Agricultural University, Khuntpani, Chaibasa, Jharkhand, India
| | - Pratik Ramteke
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MS 444104, India
| | - Dipak Manna
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Shreyasee Hazra
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Pushkar Malakar
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Hirak Banerjee
- Regional Research Station (CSZ), Bidhan Chandra Krishi Viswavidyalaya, Kakdwip, West Bengal, India
| | - Koushik Brahmachari
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
| |
Collapse
|
12
|
Kukkola A, Chetwynd AJ, Krause S, Lynch I. Beyond microbeads: Examining the role of cosmetics in microplastic pollution and spotlighting unanswered questions. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135053. [PMID: 38976961 DOI: 10.1016/j.jhazmat.2024.135053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
The presence of microplastics in cosmetics and personal care products (C&PCPs) has been increasingly in the public eye since the early 2010s. Despite increasing research into the potential environmental and health effects of microplastics, most research to date on microplastics in C&PCPs has investigated "rinse-off" products, while the potential impacts of "leave-on" C&PCPs have been largely neglected, despite these products being purchased in greater volumes and often having two or more microplastic ingredients in their formulations(CosmeticsEurope, 2018b). This review aims to synthesize the current knowledge of microplastic in C&PCPs, assessing the potential environmental and human health impacts of C&PCPs and discussing the regulatory implications. The lack of studies on leave-on C&PCPs is significant, suggesting a severe knowledge gap regarding microplastic presence in, and emissions from, C&PCPs. There is a noticeable lack of studies on the (eco)toxicological consequences of microplastic exposure from C&PCPs. As a result, significant aspects of microplastic contamination may be overlooked in the microplastic legislations emerging globally (including from the European Commission), which intend to restrict microplastic use in C&PCPs but focus on rinse-off C&PCPs only. This review highlights the potential consequences of microplastics in leave-on C&PCPs for regulatory decision-making, particularly as alternatives to microplastics are considered during the phase-out periods and spotlights the need for sufficient monitoring and research on these alternatives, to avoid unforeseen consequences.
Collapse
Affiliation(s)
- Anna Kukkola
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | - Andrew J Chetwynd
- Centre for Proteome Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; LEHNA, Laboratoire d'ecologie des hydrosystemes naturels et anthropises, University of Lyon, 3-6 Rue Raphaël Dubois, Villeurbanne 69622, France; Institute of Global Innovation, University of Birmingham, Birmingham B15 2SA, United Kingdom
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Institute of Global Innovation, University of Birmingham, Birmingham B15 2SA, United Kingdom
| |
Collapse
|
13
|
Li S, Liu Y, Wu Y, Ren L, Lu Y, Yamaguchi S, Lu Q, Hu C, Li D, Jiang N. An Outlook on Platinum-Based Active Ingredients for Dermatologic and Skincare Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1303. [PMID: 39120408 PMCID: PMC11314049 DOI: 10.3390/nano14151303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Platinum-based materials exhibit a broad spectrum of biological activities, including antioxidant, anti-inflammatory, antimicrobial, and pro-collagen synthesis properties, making them particularly useful for various biomedical applications. This review summarizes the biological effects and therapeutic potential of platinum-based active ingredients in dermatological and skincare applications. We discuss their synthesis methods and their antioxidant, anti-inflammatory, antimicrobial, and collagen synthesis properties, which play essential roles in treating skin conditions including psoriasis and acne, as well as enhancing skin aesthetics in anti-aging products. Safety and sustainability concerns, including the need for green synthesis and comprehensive toxicological assessments to ensure safe topical applications, are also discussed. By providing an up-to-date overview of current research, we aim to highlight both the potential and the current challenges of platinum-based active ingredients in advancing dermatology and skincare solutions.
Collapse
Affiliation(s)
- Shining Li
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yizhou Liu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ying Wu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lu Ren
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 511434, China
| | - Yongjie Lu
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 511434, China
| | | | - Qipeng Lu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chuangang Hu
- State Key Laboratory of Organic–Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongcui Li
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 511434, China
| | - Naisheng Jiang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
14
|
Sintès M, Kovjenic P, Haine (Hablal) L, Serror K, Beladjine M, Parietti (Montcuquet) V, Delagrange M, Ducos B, Bouaziz JD, Boccara D, Mimoun M, Bensussan A, Bagot M, Huang N, Michel L. Coencapsulation of Immunosuppressive Drug with Anti-Inflammatory Molecule in Pickering Emulsions as an Innovative Therapeutic Approach for Inflammatory Dermatoses. JID INNOVATIONS 2024; 4:100273. [PMID: 39045393 PMCID: PMC11264173 DOI: 10.1016/j.xjidi.2024.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/11/2024] [Accepted: 02/13/2024] [Indexed: 07/25/2024] Open
Abstract
Psoriasis is an inflammatory skin disease characterized by epidermal and immune dysfunctions. Although efficient, current topical treatments display adverse effects, including skin atrophy and burning sensation, leading to poor patient adherence. To overcome these downsides, pickering emulsions were formulated in which the calcitriol-containing dispersed phase was stabilized with either cyclosporin A- or tacrolimus-loaded poly(lactic-co-glycolic) acid nanoparticles. This study aimed to investigate their biological effects on lymphocytes and epidermal cells and their effectiveness in an imiquimod-induced psoriasis-like mouse model. Results showed that both emulsions significantly inhibited nuclear factor of activated T cell translocation in T lymphocytes as well as their IL-2 production, cell activation, and proliferation. In keratinocytes, inhibition of nuclear factor of activated T cell translocation decreased the production of IL-8 and TNF-α. Topical application of emulsions over skin biopsies ex vivo showed accumulation of rhodamin B-coupled poly(lactic-co-glycolic) acid nanoparticles throughout the epidermis by immunofluorescence and significantly decreased the antigen-presenting capacity of Langerhans cells in relation to a reduced expression of activation markers CD40, CD86, and HLA-DR. Using an imiquimod-induced psoriasis model in vivo, pickering emulsions significantly alleviated psoriasiform lesions potentially attributed to the decreased cutaneous expression of T-cell markers, proinflammatory cytokines, chemokines, and specific epidermal cell genes. Altogether, pickering emulsion might be a very efficient formulation for treating inflammatory dermatoses.
Collapse
Affiliation(s)
- Maxime Sintès
- Inserm UMR_U976, University Paris Cité, Skin Research Center, Hôpital Saint-Louis, Paris, France
| | - Petra Kovjenic
- University Paris Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, France
| | - Liasmine Haine (Hablal)
- Inserm UMR_U976, University Paris Cité, Skin Research Center, Hôpital Saint-Louis, Paris, France
| | - Kevin Serror
- Department of Reconstructive and Plastic Surgery, Hôpital Saint-Louis, Paris, France
| | - Mohamed Beladjine
- University Paris Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, France
| | | | - Marine Delagrange
- High Throughput qPCR Core Facility, École Normale Supérieure, Université Paris Sciences & Lettres, Paris, France
| | - Bertrand Ducos
- High Throughput qPCR Core Facility, École Normale Supérieure, Université Paris Sciences & Lettres, Paris, France
| | - Jean-David Bouaziz
- Inserm UMR_U976, University Paris Cité, Skin Research Center, Hôpital Saint-Louis, Paris, France
- Department of Dermatology, Hôpital Saint-Louis, Paris, France
| | - David Boccara
- Department of Reconstructive and Plastic Surgery, Hôpital Saint-Louis, Paris, France
| | - Maurice Mimoun
- Department of Reconstructive and Plastic Surgery, Hôpital Saint-Louis, Paris, France
| | - Armand Bensussan
- Inserm UMR_U976, University Paris Cité, Skin Research Center, Hôpital Saint-Louis, Paris, France
| | - Martine Bagot
- Inserm UMR_U976, University Paris Cité, Skin Research Center, Hôpital Saint-Louis, Paris, France
- Department of Dermatology, Hôpital Saint-Louis, Paris, France
| | - Nicolas Huang
- University Paris Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, France
| | - Laurence Michel
- Inserm UMR_U976, University Paris Cité, Skin Research Center, Hôpital Saint-Louis, Paris, France
- Department of Dermatology, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
15
|
Winiarska E, Jutel M, Zemelka-Wiacek M. The potential impact of nano- and microplastics on human health: Understanding human health risks. ENVIRONMENTAL RESEARCH 2024; 251:118535. [PMID: 38460665 DOI: 10.1016/j.envres.2024.118535] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 03/11/2024]
Abstract
Plastics are used all over the world. Unfortunately, due to limited biodegradation, plastics cause a significant level of environmental pollution. The smallest recognized to date are termed nanoplastics (1 nm [nm] up to 1 μm [μm]) and microplastics (1 μm-5 mm). These nano- and microplastics can enter the human body through the respiratory system via inhalation, the digestive tract via consumption of contaminated food and water, or penetration through the skin via cosmetics and clothes contact. Bioaccumulation of plastics in the human body can potentially lead to a range of health issues, including respiratory disorders like lung cancer, asthma and hypersensitivity pneumonitis, neurological symptoms such as fatigue and dizziness, inflammatory bowel disease and even disturbances in gut microbiota. Most studies to date have confirmed that nano- and microplastics can induce apoptosis in cells and have genotoxic and cytotoxic effects. Understanding the cellular and molecular mechanisms of plastics' actions may help extrapolate the risks to humans. The article provides a comprehensive review of articles in databases regarding the impact of nano- and microplastics on human health. The review included retrospective studies and case reports of people exposed to nanoplastics and microplastics. This research highlights the need for further research to fully understand the extent of the impact of plastics on human health.
Collapse
Affiliation(s)
- Ewa Winiarska
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland; ALL-MED Medical Research Institute, Wroclaw, Poland
| | | |
Collapse
|
16
|
Babu MR, Vishwas S, Khursheed R, Harish V, Sravani AB, Khan F, Alotaibi B, Binshaya A, Disouza J, Kumbhar PS, Patravale V, Gupta G, Loebenberg R, Arshad MF, Patel A, Patel S, Dua K, Singh SK. Unravelling the role of microneedles in drug delivery: Principle, perspectives, and practices. Drug Deliv Transl Res 2024; 14:1393-1431. [PMID: 38036849 DOI: 10.1007/s13346-023-01475-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2023] [Indexed: 12/02/2023]
Abstract
In recent year, the research of transdermal drug delivery systems has got substantial attention towards the development of microneedles (MNs). This shift has occurred due to multifaceted advantages of MNs as they can be utilized to deliver the drug deeper to the skin with minimal invasion, offer successful delivery of drugs and biomolecules that are susceptible to degradation in gastrointestinal tract (GIT), act as biosensors, and help in monitoring the level of biomarkers in the body. These can be fabricated into different types based on their applications as well as material for fabrication. Some of their types include solid MNs, hollow MNs, coated MNs, hydrogel forming MNs, and dissolving MNs. These MNs deliver the therapeutics via microchannels deeper into the skin. The coated and hollow MNs have been found successful. However, they suffer from poor drug loading and blocking of pores. In contrast, dissolving MNs offer high drug loading. These MNs have also been utilized to deliver vaccines and biologicals. They have also been used in cosmetics. The current review covers the different types of MNs, materials used in their fabrication, properties of MNs, and various case studies related to their role in delivering therapeutics, monitoring level of biomarkers/hormones in body such as insulin. Various patents and clinical trials related to MNs are also covered. Covered are the major bottlenecks associated with their clinical translation and potential future perspectives.
Collapse
Affiliation(s)
- Molakpogu Ravindra Babu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Anne Boyina Sravani
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Farhan Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Bader Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Abdulkarim Binshaya
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala , Kolhapur, Maharashtra, 416113, India
| | - Popat S Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala , Kolhapur, Maharashtra, 416113, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, 400019, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura , 30201, Jaipur, India
| | - Raimar Loebenberg
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton , AB T6G2N8, Alberta, Canada
| | - Mohammed Faiz Arshad
- Department of Scientific Communications, Isthmus Research and Publishing House, New Delhi, 110044, India
| | - Archita Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At & Post: Changa, Tal.:- Petlad, Dist.:- Anand-388 421, Gujarat, India
| | - Samir Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At & Post: Changa, Tal.:- Petlad, Dist.:- Anand-388 421, Gujarat, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
17
|
Saveleva MS, Verkhovskii RA, Demina PA, Surkov YI, Anisimov RA, Prikhozhdenko ES, Pidenko PS, Serebryakova IA, Zaytsev SM, Tuchin VV, Svenskaya YI. Biodegradable calcium carbonate carriers for the topical delivery of clobetasol propionate. J Mater Chem B 2024; 12:4867-4881. [PMID: 38666451 DOI: 10.1039/d4tb00303a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Inflammatory dermatoses represent a global problem with increasing prevalence and recurrence among the world population. Topical glucocorticoids (GCs) are the most commonly used anti-inflammatory drugs in dermatology due to a wide range of their therapeutic actions, which, however, have numerous local and systemic side effects. Hence, there is a growing need to create new delivery systems for GCs, ensuring the drug localization in the pathological site, thus increasing the effectiveness of therapy and lowering the risk of side effects. Here, we propose a novel topical particulate formulation for the GC clobetasol propionate (CP), based on the use of porous calcium carbonate (CaCO3) carriers in the vaterite crystalline form. The designed carriers contain a substantially higher CP amount than conventional dosage forms used in clinics (4.5% w/w vs. 0.05% w/w) and displayed a good biocompatibility and effective cellular uptake when studied in fibroblasts in vitro. Hair follicles represent an important reservoir for the GC accumulation in skin and house the targets for its action. In this study, we demonstrated successful delivery of the CP-loaded carriers (CP-CaCO3) into the hair follicles of rats in vivo using optical coherent tomography (OCT). Importantly, the OCT monitoring revealed the gradual intrafollicular degradation of the carriers within 168 h with the most abundant follicle filling occurring within the first 48 h. Biodegradability makes the proposed system especially promising when searching for new CP formulations with improved safety and release profile. Our findings evidenced the great potential of the CaCO3 carriers in improving the dermal bioavailability of this poorly water-soluble GC.
Collapse
Affiliation(s)
- Mariia S Saveleva
- Science Medical Center, Saratov State University, 410012 Saratov, Russia.
| | | | - Polina A Demina
- Science Medical Center, Saratov State University, 410012 Saratov, Russia.
| | - Yury I Surkov
- Science Medical Center, Saratov State University, 410012 Saratov, Russia.
- Institute of Physics, Saratov State University, 410012 Saratov, Russia
| | - Roman A Anisimov
- Science Medical Center, Saratov State University, 410012 Saratov, Russia.
- Institute of Physics, Saratov State University, 410012 Saratov, Russia
| | - Ekaterina S Prikhozhdenko
- Science Medical Center, Saratov State University, 410012 Saratov, Russia.
- Institute of Physics, Saratov State University, 410012 Saratov, Russia
| | - Pavel S Pidenko
- Institute of Chemistry, Saratov State University, 410012 Saratov, Russia
| | | | - Sergey M Zaytsev
- Institute of Physics, Saratov State University, 410012 Saratov, Russia
| | - Valery V Tuchin
- Science Medical Center, Saratov State University, 410012 Saratov, Russia.
- Institute of Physics, Saratov State University, 410012 Saratov, Russia
| | - Yulia I Svenskaya
- Science Medical Center, Saratov State University, 410012 Saratov, Russia.
| |
Collapse
|
18
|
Martin L, Simpson K, Brzezinski M, Watt J, Xu W. Cellular response of keratinocytes to the entry and accumulation of nanoplastic particles. Part Fibre Toxicol 2024; 21:22. [PMID: 38685063 PMCID: PMC11057139 DOI: 10.1186/s12989-024-00583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/14/2024] [Indexed: 05/02/2024] Open
Abstract
Plastic accumulation in the environment is rapidly increasing, and nanoplastics (NP), byproducts of environmental weathering of bulk plastic waste, pose a significant public health risk. Particles may enter the human body through many possible routes such as ingestion, inhalation, and skin absorption. However, studies on NP penetration and accumulation in human skin are limited. Loss or reduction of the keratinized skin barrier may enhance the skin penetration of NPs. The present study investigated the entry of NPs into a human skin system modeling skin with compromised barrier functions and cellular responses to the intracellular accumulations of NPs. Two in vitro models were employed to simulate human skin lacking keratinized barriers. The first model was an ex vivo human skin culture with the keratinized dermal layer (stratum corneum) removed. The second model was a 3D keratinocyte/dermal fibroblast cell co-culture model with stratified keratinocytes on the top and a monolayer of skin fibroblast cells co-cultured at the bottom. The penetration and accumulation of the NPs in different cell types were observed using fluorescent microscopy, confocal microscopy, and cryogenic electron microscopy (cryo-EM). The cellular responses of keratinocytes and dermal fibroblast cells to stress induced by NPs stress were measured. The genetic regulatory pathway of keratinocytes to the intracellular NPs was identified using transcript analyses and KEGG pathway analysis. The cellular uptake of NPs by skin cells was confirmed by imaging analyses. Transepidermal transport and penetration of NPs through the skin epidermis were observed. According to the gene expression and pathway analyses, an IL-17 signaling pathway was identified as the trigger for cellular responses to internal NP accumulation in the keratinocytes. The transepidermal NPs were also found in co-cultured dermal fibroblast cells and resulted in a large-scale transition from fibroblast cells to myofibroblast cells with enhanced production of α-smooth muscle actin and pro-Collagen Ia. The upregulation of inflammatory factors and cell activation may result in skin inflammation and ultimately trigger immune responses.
Collapse
Affiliation(s)
- Leisha Martin
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, 6300 Ocean Dr, 78412, Corpus Christi, TX, USA
| | - Kayla Simpson
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, 6300 Ocean Dr, 78412, Corpus Christi, TX, USA
| | - Molly Brzezinski
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, 6300 Ocean Dr, 78412, Corpus Christi, TX, USA
| | - John Watt
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Albuquerque, NM, USA
| | - Wei Xu
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, 6300 Ocean Dr, 78412, Corpus Christi, TX, USA.
| |
Collapse
|
19
|
Fahimnia F, Nemattalab M, Hesari Z. Development and characterization of a topical gel, containing lavender (Lavandula angustifolia) oil loaded solid lipid nanoparticles. BMC Complement Med Ther 2024; 24:155. [PMID: 38589838 PMCID: PMC11000301 DOI: 10.1186/s12906-024-04440-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/15/2024] [Indexed: 04/10/2024] Open
Abstract
Gels loaded with nanocarriers offer interesting ways to create novel therapeutic approaches by fusing the benefits of gel and nanotechnology. Clinical studies indicate that lavender oil (Lav-O) has a positive impact on accelerating wound healing properly based on its antimicrobial and anti-inflammatory effects. Initially Lav-O loaded Solid Lipid Nanoparticles (Lav-SLN) were prepared incorporating cholesterol and lecithin natural lipids and prepared SLNs were characterized. Next, a 3% SLN containing topical gel (Lav-SLN-G) was formulated using Carbopol 940. Both Lav-SLN and Lav-SLN-G were assessed in terms antibacterial effects against S. aureus. Lav-SLNs revealed a particle size of 19.24 nm, zeta potential of -21.6 mv and EE% of 75.46%. Formulated topical gel presented an acceptable pH and texture properties. Minimum Inhibitory/Bactericidal Concentration (MIC/MBC) against S. aureus for LAv-O, Lav-SLN and Lav-SLN-G were 0.12 and 0.24 mgml- 1, 0.05 and 0.19 mgml- 1 and 0.045, 0.09 mgml- 1, respectively. Therefore, SLN can be considered as an antimicrobial potentiating nano-carrier for delivery of Lav-O as an antimicrobial and anti-inflammatory agent in topical gel.
Collapse
Affiliation(s)
- Faeze Fahimnia
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehran Nemattalab
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Hesari
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
20
|
Chen CY, Lin Z. Exploring the potential and challenges of developing physiologically-based toxicokinetic models to support human health risk assessment of microplastic and nanoplastic particles. ENVIRONMENT INTERNATIONAL 2024; 186:108617. [PMID: 38599027 DOI: 10.1016/j.envint.2024.108617] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/05/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
Microplastics (MPs) and nanoplastics (NPs) pollution has emerged as a significant and widespread environmental issue. Humans are inevitably exposed to MPs and NPs via ingestion, inhalation, and dermal contacts from various sources. However, mechanistic knowledge of their distribution, interaction, and potency in the body is still lacking. To address this knowledge gap, we have undertaken the task of elucidating the toxicokinetic (TK) behaviors of MPs and NPs, aiming to provide mechanistic information for constructing a conceptual physiologically based toxicokinetic (PBTK) model to support in silico modeling approaches. Our effort involved a thorough examination of the existing literature and data collation on the presence of MPs in the human body and in vitro/ex vivo/in vivo biodistribution across various cells and tissues. By comprehending the absorption, distribution, metabolism, and excretion mechanisms of MPs and NPs in relation to their physicochemical attributes, we established a foundational understanding of the link between external exposure and internal tissue dosimetry. We observed that particle size and surface chemistry have been thoroughly explored in previous experimental studies. However, certain attributes, such as polymer type, shape, and biofilm/biocorona, warrant attention and further examination. We discussed the fundamental disparities in TK properties of MPs/NPs from those of engineered nanoparticles. We proposed a preliminary PBTK framework with several possible modeling approaches and discussed existing challenges for further investigation. Overall, this article provides a comprehensive compilation of existing TK data of MPs/NPs, a critical overview of TK processes and mechanisms, and proposes potential PBTK modeling approaches, particularly regarding their applicability to the human system, and outlines future perspectives for developing PBTK models and their integration into human health risk assessment of MPs and NPs.
Collapse
Affiliation(s)
- Chi-Yun Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, United States; Center for Environmental and Human Toxicology, University of Florida, FL 32608, United States
| | - Zhoumeng Lin
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, United States; Center for Environmental and Human Toxicology, University of Florida, FL 32608, United States.
| |
Collapse
|
21
|
Silvestrini AVP, Morais MF, Debiasi BW, Praça FG, Bentley MVLB. Nanotechnology strategies to address challenges in topical and cellular delivery of siRNAs in skin disease therapy. Adv Drug Deliv Rev 2024; 207:115198. [PMID: 38341146 DOI: 10.1016/j.addr.2024.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Gene therapy is one of the most advanced therapies in current medicine. In particular, interference RNA-based therapy by small interfering RNA (siRNA) has gained attention in recent years as it is a highly versatile, selective and specific therapy. In dermatological conditions, topical delivery of siRNA offers numerous therapeutic advantages, mainly by inhibiting the expression of target transcripts directly in the skin. However, crossing the stratum corneum and overcoming intracellular barriers is an inherent challenge. Substantial efforts by scientists have moved towards the use of multimodal and multifunctional nanoparticles to overcome these barriers and achieve greater bioavailability in their site of action, the cytoplasm. In this review the most innovative strategies based on nanoparticle and physical methods are presented, as well as the design principles and the main factors that contribute to the performance of these systems. This review also highlights the synergistic contributions of medicine, nanotechnology, and molecular biology to advancing translational research into siRNA-based therapeutics for skin diseases.
Collapse
Affiliation(s)
- Ana Vitoria Pupo Silvestrini
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Milena Finazzi Morais
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Bryan Wender Debiasi
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Maria Vitória Lopes Badra Bentley
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
22
|
Heydari S, Barzegar-Jalali M, Heydari M, Radmehr A, Paiva-Santos AC, Kouhsoltani M, Hamishehkar H. The impact of particle size of nanostructured lipid carriers on follicular drug delivery: A comprehensive analysis of mouse and human hair follicle penetration. BIOIMPACTS : BI 2024; 14:30243. [PMID: 39493898 PMCID: PMC11530971 DOI: 10.34172/bi.2024.30243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/11/2024] [Accepted: 02/20/2024] [Indexed: 11/05/2024]
Abstract
Introduction Follicular delivery is one of the targeted drug delivery methods aiming to target the hair follicles. The accumulation and retention time of targeted drugs is enhanced when nanoparticles are used as drug carriers. Particle size is one of the important factors affecting the penetration and accumulation of particles in the hair follicles, and there is a controversy in different studies for the best particle size for follicular delivery. Mouse models are mostly used in clinical trials for dermal, transdermal, and follicular delivery studies. Also, it is essential to investigate the reliability of the results between human studies and mouse models. Methods Curcumin-loaded nanostructured lipid carriers (NLCs), as a fluorescent agent, with three different particle size ranges were prepared using the hot homogenization method and applied topically on the mouse and human study groups. Biopsies were taken from applied areas on different days after using the formulation. The histopathology studies were done on the skin biopsies of both groups using confocal laser scanning microscopy (CLSM). We compared the confocal laser scanning microscope pictures of different groups, in terms of penetration and retention time of nanoparticles in human and mouse hair follicles. Results The best particle size in both models was the 400 nm group but the penetration and accumulation of particles in human and mouse hair follicles were totally different even for the 400 nm group. In human studies, 400 nm particles showed good accumulation after seven days; this result can help to increase the formulation using intervals. Conclusion The best particle size for human and mouse follicular drug delivery is around 400 nm and although mouse models are not completely suitable for follicular delivery studies, they can be used in some conditions as experimental models.
Collapse
Affiliation(s)
- Saman Heydari
- Student Research Committee and Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Barzegar-Jalali
- Biotechnology Research Center and Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Heydari
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Radmehr
- Department of Dermatology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maryam Kouhsoltani
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Folle C, Marqués AM, Díaz-Garrido N, Carvajal-Vidal P, Sánchez López E, Suñer-Carbó J, Halbaut L, Mallandrich M, Espina M, Badia J, Baldoma L, García ML, Calpena AC. Gel-Dispersed Nanostructured Lipid Carriers Loading Thymol Designed for Dermal Pathologies. Int J Nanomedicine 2024; 19:1225-1248. [PMID: 38348173 PMCID: PMC10859765 DOI: 10.2147/ijn.s433686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/22/2023] [Indexed: 02/15/2024] Open
Abstract
Purpose Acne vulgaris is one of the most prevalent dermal disorders affecting skin health and appearance. To date, there is no effective cure for this pathology, and the majority of marketed formulations eliminate both healthy and pathological microbiota. Therefore, hereby we propose the encapsulation of an antimicrobial natural compound (thymol) loaded into lipid nanostructured systems to be topically used against acne. Methods To address this issue, nanostructured lipid carriers (NLC) capable of encapsulating thymol, a natural compound used for the treatment of acne vulgaris, were developed either using ultrasonication probe or high-pressure homogenization and optimized using 22-star factorial design by analyzing the effect of NLC composition on their physicochemical parameters. These NLC were optimized using a design of experiments approach and were characterized using different physicochemical techniques. Moreover, short-term stability and cell viability using HaCat cells were assessed. Antimicrobial efficacy of the developed NLC was assessed in vitro and ex vivo. Results NLC encapsulating thymol were developed and optimized and demonstrated a prolonged thymol release. The formulation was dispersed in gels and a screening of several gels was carried out by studying their rheological properties and their skin retention abilities. From them, carbomer demonstrated the capacity to be highly retained in skin tissues, specifically in the epidermis and dermis layers. Moreover, antimicrobial assays against healthy and pathological skin pathogens demonstrated the therapeutic efficacy of thymol-loaded NLC gelling systems since NLC are more efficient in slowly reducing C. acnes viability, but they possess lower antimicrobial activity against S. epidermidis, compared to free thymol. Conclusion Thymol was successfully loaded into NLC and dispersed in gelling systems, demonstrating that it is a suitable candidate for topical administration against acne vulgaris by eradicating pathogenic bacteria while preserving the healthy skin microbiome.
Collapse
Affiliation(s)
- Camila Folle
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Ana M Marqués
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Natalia Díaz-Garrido
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Research Institute Sant Joan De Déu (IR‑SJD), Barcelona, Spain
| | - Paulina Carvajal-Vidal
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Elena Sánchez López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Joaquim Suñer-Carbó
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Lyda Halbaut
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Mireia Mallandrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Josefa Badia
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Research Institute Sant Joan De Déu (IR‑SJD), Barcelona, Spain
| | - Laura Baldoma
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Research Institute Sant Joan De Déu (IR‑SJD), Barcelona, Spain
| | - Maria Luisa García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Dragicevic N, Predic-Atkinson J, Nikolic B, Pajovic SB, Ivkovic S, Adzic M. Nanocarriers in topical photodynamic therapy. Expert Opin Drug Deliv 2024; 21:279-307. [PMID: 38349540 DOI: 10.1080/17425247.2024.2318460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Photodynamic therapy (PDT) has gained significant attention due to its superiority over conventional treatments. In the context of skin cancers and nonmalignant skin diseases, topical application of photosensitizer formulations onto affected skin, followed by illumination, offers distinct advantages. Topical PDT simplifies therapy by providing easy access to the skin, increasing drug concentration within the target area, and confining residual photosensitivity to the treated skin. However, the effectiveness of topical PDT is often hindered by challenges such as limited skin penetration or photosensitizer instability. Additionally, the hypoxic tumor environment poses further limitations. Nanocarriers present a promising solution to address these challenges. AREAS COVERED The objective of this review is to comprehensively explore and highlight the role of various nanocarriers in advancing topical PDT for the treatment of skin diseases. The primary focus is to address the challenges associated with conventional topical PDT approaches and demonstrate how nanotechnology-based strategies can overcome these challenges, thereby improving the overall efficiency and efficacy of PDT. EXPERT OPINION Nanotechnology has revolutionized the field of PDT, offering innovative tools to combat the unfavorable features of photosensitizers and hurdles in PDT. Nanocarriers enhance skin penetration and stability of photosensitizers, provide controlled drug release, reduce needed dose, increase production of reactive oxygen species, while reducing side effects, thereby improving PDT effectiveness.
Collapse
Affiliation(s)
- Nina Dragicevic
- Department of Pharmacy, Singidunum University, Belgrade, Serbia
| | | | - Bojan Nikolic
- Faculty of Health and Business studies, Singidunum University, Valjevo, Serbia
| | - Snezana B Pajovic
- Institute of Nuclear sciences "Vinča", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sanja Ivkovic
- Institute of Nuclear sciences "Vinča", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miroslav Adzic
- Institute of Nuclear sciences "Vinča", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
25
|
Hathout RM, Ishak RAH, Shakshak DH. Do the chitosan nanoparticles really augment the drugs' transdermal fluxes: ending the debate using meta-analysis. Expert Opin Drug Deliv 2024; 21:325-335. [PMID: 38340063 DOI: 10.1080/17425247.2024.2317935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
INTRODUCTION Transdermal delivery has been extensively investigated as a successful alternative to the oral and parenteral routes of administration. The use of polymeric nanoparticles as drug delivery systems through this route has always been controversial. The use of meta-analyses is a useful quantitative means to decide upon the efficiency of this type of vehicles transporting drugs through the skin. AREAS COVERED In this meta-analysis study, polymeric nanoparticles were quantitatively compared to conventional formulations in order to investigate the feasibility of using these particles in transdermal delivery. Natural versus synthetic polymeric sub-groups were also contrasted to determine the most efficient class for transdermal drug enhancement. EXPERT OPINION Meta-analyses are gaining ground in the drug delivery field as they can exploit the mines of the literature and pick up by statistical evidence the superior formulations administered through several routes of administration. This is the first study that utilized the transdermal fluxes as the meta-analysis study effect and could prove the superiority of natural polymeric nanoparticles in transdermal delivery. In our opinion, there is paucity in research work regarding this type of nanocarriers, specifically on chitosan nanoparticles. More studies are warranted for full exploitation of its benefits.
Collapse
Affiliation(s)
- Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania A H Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Doaa H Shakshak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
26
|
Jadav M, Solanki R, Patel S, Pooja D, Kulhari H. Development of thiolated xanthan gum-stearylamine conjugate based mucoadhesive system for the delivery of biochanin-A to melanoma cells. Int J Biol Macromol 2024; 257:128693. [PMID: 38092110 DOI: 10.1016/j.ijbiomac.2023.128693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Recently, instead of creating new active compounds, scientists have been working to increase the bioavailability and residence time of existing drugs by modifying the characteristics of the delivery systems. In the present study, a novel mucoadhesive bioconjugate (SN-XG-SH) was synthesized by functionalizing a polysaccharide xanthan gum (XG) with cysteamine hydrochloride (CYS) and a lipid stearylamine (SN). FTIR, CHNS and 1H NMR studies confirmed the successful synthesis of SN-XG-SH. Mucoadhesion of the thiolated XG was enhanced and evaluated by different methods. Disulfide bond formation between thiolated XG and skin mucus enhances mucoadhesive behavior. The mucoadhesive bioconjugate was used to prepare nanoparticles for the delivery of hydrophobic biochanin-A (Bio-A) for the treatment of melanoma. The thiolated xanthan gum nanoparticles also demonstrated high drug entrapment efficiency, sustained drug release, and high storage stability. The drug loaded nanoparticles (Bio-A@TXNPs) significantly improved the cytotoxicity of Bio-A against human epidermoid cancer cells (A431 cells) by inducing apoptosis and changing mitochondrial membrane potential. In conclusion, thiolation of XG improves its mucoadhesive properties and prolongs the release of Bio-A. Thus, thiolated XG conjugate has a high potential for use as a bioadhesive agent in controlled and localised delivery of drugs in different skin diseases including melanoma.
Collapse
Affiliation(s)
- Mahima Jadav
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Deep Pooja
- School of Pharmacy, National Forensic Science University, Gandhinagar, Gujarat 382007, India.
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India.
| |
Collapse
|
27
|
Song D, Pan S, Jin W, Wu R, Zhao T, Jiang J, Zhu M. Minoxidil delivered via a stem cell membrane delivery controlled release system promotes hair growth in C57BL/6J mice. Front Bioeng Biotechnol 2024; 11:1331754. [PMID: 38260729 PMCID: PMC10800965 DOI: 10.3389/fbioe.2023.1331754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Objective: Umbilical cord-derived mesenchymal stem cell membrane-loaded minoxidil (MXD) nanoparticles (STCM-MXD-NPs) were prepared to investigate their effects on hair growth in C57BL/6J mice. Methods: STCM-MXD-NPs were obtained by freeze-thawing and differential centrifugation, and their effects on hair growth were evaluated using C57BL/6J mice. The mRNA and protein expression levels of vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF-1) were detected by real-time polymerase chain reaction and enzyme-linked immunosorbent assays, respectively. Protein expression levels of marker of proliferation Ki-67 (MKI67) and β-catenin (CTNNB) in skin tissue were detected by immunohistochemistry. Results: STCM-MXD-NPs improved MXD solubility. They released the drug slowly, increasing its transdermal properties, accumulation in the skin, and content in the hair bulb tissues with a better efficacy than that of ordinary MXD. Moreover, STCM-MXD-NPs significantly upregulated the mRNA and protein levels of VEGF and IGF-1 and promoted the protein expression of MKI67 and CTNNB in mouse skin tissues, promoting mouse hair growth. Conclusion: Stem cell membrane-loaded MXD nanoparticles with slow-release properties increased MXD accumulation in the skin by improving its transdermal properties, increasing VEGF, IGF-1, MKI67, and CTNNB expression levels and promoting hair growth in C57BL/6J mice.
Collapse
Affiliation(s)
- Dandan Song
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shouxi Pan
- Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Wenxia Jin
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou, China
| | - Ronghui Wu
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Tianqi Zhao
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mingji Zhu
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
Oaku Y, Shiroyama S, Otake H, Yajima Y, Abe A, Yamamoto N, Nagai N. Gum Arabic Enhances Hair Follicle-Targeting Drug Delivery of Minoxidil Nanocrystal Dispersions. Biol Pharm Bull 2024; 47:2083-2091. [PMID: 39675963 DOI: 10.1248/bpb.b24-00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
In this study, we attempted to enhance the delivery of minoxidil (MXD) nanocrystals into hair follicles for efficacious hair growth treatment. We applied a bead milling method and designed an MXD nanocrystal dispersion containing methylcellulose (MC) and gum arabic (GA), termed MG-MXD@NP, with a particle size of 110 nm. In vivo studies in C57BL/6 mice showed that MG-MXD@NP improved MXD delivery to the skin tissue, hair bulges, and hair bulbs, resulting in earlier and superior hair growth compared with a commercially available MXD lotion (Riup 5%, CA-MXD). These findings were consistent with the increased MXD contents observed in the hair bulge and hair bulb regions in the MG-MXD@NP-treated mice, and suggested a correlation between the efficiency of MXD delivery and efficacy of promotion of hair growth by products containing MXD. Furthermore, delivery of MXD using MG-MXD@NP was associated with elevated expression levels of CD34 and CD200, markers of hair follicle epithelial stem cells, which are crucial for promoting hair growth. Thus, it is possible that the upregulation of CD34 and CD200 in the MG-MXD@NP-treated mice reflects activation of the papilla cells and hair follicle stem cells known to be closely associated with hair growth enhancement. In conclusion, MG-MXD@NP, containing MXD nanocrystals in combination with MC and GA, exhibited a superior hair growth effect as compared with conventional MXD formulations. These findings suggest that this novel delivery method for MXD could represent a promising treatment approach for hair loss.
Collapse
Affiliation(s)
- Yoshihiro Oaku
- Frontier Research Center, Taisho Pharmaceutical Co., Ltd
| | | | | | - Yuya Yajima
- Self-Medication Research Center, Research Headquarters, Taisho Pharmaceutical Co., Ltd
| | - Akinari Abe
- Self-Medication Research Center, Research Headquarters, Taisho Pharmaceutical Co., Ltd
| | - Naoki Yamamoto
- Support Office for Bioresource Research, Center for Translational Research, Fujita Health University
| | | |
Collapse
|
29
|
Feng Y, Tu C, Li R, Wu D, Yang J, Xia Y, Peijnenburg WJ, Luo Y. A systematic review of the impacts of exposure to micro- and nano-plastics on human tissue accumulation and health. ECO-ENVIRONMENT & HEALTH 2023; 2:195-207. [PMID: 38435355 PMCID: PMC10902512 DOI: 10.1016/j.eehl.2023.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/22/2023] [Accepted: 08/10/2023] [Indexed: 03/05/2024]
Abstract
Micro- and nano-plastics (MNPs) pollution has become a pressing global environmental issue, with growing concerns regarding its impact on human health. However, evidence on the effects of MNPs on human health remains limited. This paper reviews the three routes of human exposure to MNPs, which include ingestion, inhalation, and dermal contact. It further discusses the potential routes of translocation of MNPs in human lungs, intestines, and skin, analyses the potential impact of MNPs on the homeostasis of human organ systems, and provides an outlook on future research priorities for MNPs in human health. There is growing evidence that MNPs are present in human tissues or fluids. Lab studies, including in vivo animal models and in vitro human-derived cell cultures, revealed that MNPs exposure could negatively affect human health. MNPs exposure could cause oxidative stress, cytotoxicity, disruption of internal barriers like the intestinal, the air-blood and the placental barrier, tissue damage, as well as immune homeostasis imbalance, endocrine disruption, and reproductive and developmental toxicity. Limitedly available epidemiological studies suggest that disorders like lung nodules, asthma, and blood thrombus might be caused or exacerbated by MNPs exposure. However, direct evidence for the effects of MNPs on human health is still scarce, and future research in this area is needed to provide quantitative support for assessing the risk of MNPs to human health.
Collapse
Affiliation(s)
- Yudong Feng
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Tu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruijie Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Wu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jie Yang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Willie J.G.M. Peijnenburg
- National Institute of Public Health and the Environment, Center for Safety of Substances and Products, Bilthoven, the Netherlands
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Lamparelli EP, Marino M, Szychlinska MA, Della Rocca N, Ciardulli MC, Scala P, D’Auria R, Testa A, Viggiano A, Cappello F, Meccariello R, Della Porta G, Santoro A. The Other Side of Plastics: Bioplastic-Based Nanoparticles for Drug Delivery Systems in the Brain. Pharmaceutics 2023; 15:2549. [PMID: 38004530 PMCID: PMC10674524 DOI: 10.3390/pharmaceutics15112549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Plastics have changed human lives, finding a broad range of applications from packaging to medical devices. However, plastics can degrade into microscopic forms known as micro- and nanoplastics, which have raised concerns about their accumulation in the environment but mainly about the potential risk to human health. Recently, biodegradable plastic materials have been introduced on the market. These polymers are biodegradable but also bioresorbable and, indeed, are fundamental tools for drug formulations, thanks to their transient ability to pass through biological barriers and concentrate in specific tissues. However, this "other side" of bioplastics raises concerns about their toxic potential, in the form of micro- and nanoparticles, due to easier and faster tissue accumulation, with unknown long-term biological effects. This review aims to provide an update on bioplastic-based particles by analyzing the advantages and drawbacks of their potential use as components of innovative formulations for brain diseases. However, a critical analysis of the literature indicates the need for further studies to assess the safety of bioplastic micro- and nanoparticles despite they appear as promising tools for several nanomedicine applications.
Collapse
Affiliation(s)
- Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.M.); (N.D.R.); (M.C.C.); (P.S.); (R.D.); (A.V.); (A.S.)
| | - Marianna Marino
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.M.); (N.D.R.); (M.C.C.); (P.S.); (R.D.); (A.V.); (A.S.)
| | - Marta Anna Szychlinska
- Faculty of Medicine and Surgery, Kore University of Enna, Cittadella Universitaria, 94100 Enna, Italy;
| | - Natalia Della Rocca
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.M.); (N.D.R.); (M.C.C.); (P.S.); (R.D.); (A.V.); (A.S.)
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.M.); (N.D.R.); (M.C.C.); (P.S.); (R.D.); (A.V.); (A.S.)
| | - Pasqualina Scala
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.M.); (N.D.R.); (M.C.C.); (P.S.); (R.D.); (A.V.); (A.S.)
| | - Raffaella D’Auria
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.M.); (N.D.R.); (M.C.C.); (P.S.); (R.D.); (A.V.); (A.S.)
| | - Antonino Testa
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.M.); (N.D.R.); (M.C.C.); (P.S.); (R.D.); (A.V.); (A.S.)
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Rosaria Meccariello
- Department of Movement and Wellbeing Sciences, Parthenope University of Naples, 80133 Naples, Italy;
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.M.); (N.D.R.); (M.C.C.); (P.S.); (R.D.); (A.V.); (A.S.)
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Antonietta Santoro
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.M.); (N.D.R.); (M.C.C.); (P.S.); (R.D.); (A.V.); (A.S.)
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| |
Collapse
|
31
|
Silva-Flores PG, Galindo-Rodríguez SA, Pérez-López LA, Álvarez-Román R. Development of Essential Oil-Loaded Polymeric Nanocapsules as Skin Delivery Systems: Biophysical Parameters and Dermatokinetics Ex Vivo Evaluation. Molecules 2023; 28:7142. [PMID: 37894621 PMCID: PMC10609357 DOI: 10.3390/molecules28207142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Essential oils (EOs) are natural antioxidant alternatives that reduce skin damage. However, EOs are highly volatile; therefore, their nanoencapsulation represents a feasible alternative to increase their stability and favor their residence time on the skin to guarantee their effect. In this study, EOs of Rosmarinus officinalis and Lavandula dentata were nanoencapsulated and evaluated as skin delivery systems with potential antioxidant activity. The EOs were characterized and incorporated into polymeric nanocapsules (NC-EOs) using nanoprecipitation. The antioxidant activity was evaluated using the ferric thiocyanate method. The ex vivo effects on pig skin were evaluated based on biophysical parameters using bioengineering techniques. An ex vivo dermatokinetic evaluation on pig skin was performed using modified Franz cells and the tape-stripping technique. The results showed that the EOs had good antioxidant activity (>65%), which was maintained after nanoencapsulation and purification. The nanoencapsulation of the EOs favored its deposition in the stratum corneum compared to free EOs; the highest deposition rate was obtained for 1,8-cineole, a major component of L. dentata, at 1 h contact time, compared to R. officinalis with a major deposition of the camphor component. In conclusion, NC-EOs can be used as an alternative antioxidant for skin care.
Collapse
Affiliation(s)
- Perla Giovanna Silva-Flores
- Departamento de Embriología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico;
| | - Sergio Arturo Galindo-Rodríguez
- Departamento de Química Analítica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico;
| | - Luis Alejandro Pérez-López
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico;
| | - Rocío Álvarez-Román
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico;
| |
Collapse
|
32
|
Tafish AM, El-Sherbiny M, Al‐Karmalawy AA, Soliman OAEA, Saleh NM. Carvacrol-Loaded Phytosomes for Enhanced Wound Healing: Molecular Docking, Formulation, DoE-Aided Optimization, and in vitro/in vivo Evaluation. Int J Nanomedicine 2023; 18:5749-5780. [PMID: 37849641 PMCID: PMC10578319 DOI: 10.2147/ijn.s421617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023] Open
Abstract
Background Despite recent advances in wound healing products, phytochemicals have been considered promising and attractive alternatives. Carvacrol (CAR), a natural phenolic compound, has been reported to be effective in wound healing. Purpose This work endeavored to develop novel CAR-loaded phytosomes for the enhancement of the wound healing process. Methods Molecular docking was performed to compare the affinities of the different types of phospholipids to CAR. Phytosomes were prepared by three methods (thin-film hydration, cosolvency, and salting out) using Lipoid S100 and Phospholipon 90H with three levels of saturation percent (0%, 50%, and 100%), and three levels of phospholipid molar percent (66.67%, 75%, and 80%). The optimization was performed using Design Expert where particle size, polydispersity index, and zeta potential were chosen as dependent variables. The optimized formula (F1) was further investigated regarding entrapment efficiency, TEM, 1H-NMR, FT-IR, DSC, X-RD, in vitro release, ex vivo permeation, and stability. Furthermore, it was incorporated into a hydrogel formulation, and an in vivo study was conducted to investigate the wound-healing properties of F1. Results F1 was chosen as the optimized formula prepared via the thin-film hydration method with a saturation percent and a phospholipid molar percent of zero and 66.67, respectively. TEM revealed the spherical shape of phytosomal vesicles with uniform size, while the results of 1H-NMR, FT-IR, DSC, and X-RD confirmed the formation of the phytosomal complex. F1 demonstrated a higher in vitro release and a slower permeation than free CAR. The wound area of F1-treated animals showed a marked reduction associated with a high degree of collagen fiber deposition and enhanced cellular proliferation. Conclusion F1 can be considered as a promising remedy for the enhancement of wound healing and hence it would be hoped to undergo further investigation.
Collapse
Affiliation(s)
- Ahmed Mowafy Tafish
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed A Al‐Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | | | - Noha Mohamed Saleh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
33
|
Geppner L, Karaca J, Wegner W, Rados M, Gutwald T, Werth P, Henjakovic M. Testing of Different Digestion Solutions on Tissue Samples and the Effects of Used Potassium Hydroxide Solution on Polystyrene Microspheres. TOXICS 2023; 11:790. [PMID: 37755800 PMCID: PMC10536618 DOI: 10.3390/toxics11090790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
Microplastic particles are ubiquitous in our environment, having entered the air, the water, the soil, and ultimately our food chain. Owing to their small size, these particles can potentially enter the bloodstream and accumulate in the organs. To detect microplastics using existing methods, they must first be isolated. The aim of this study was to develop a non-destructive method for efficiently and affordably isolating plastic particles. We investigated the digestion of kidney, lung, liver, and brain samples from pigs. Kidney samples were analyzed using light microscopy after incubation with proteinase K, pepsin/pancreatin, and 10% potassium hydroxide (KOH) solution. Various KOH:tissue ratios were employed for the digestion of lung, liver, and brain samples. Additionally, we examined the effect of 10% KOH solution on added polystyrene microplastics using scanning electron microscopy. Our findings revealed that a 10% KOH solution is the most suitable for dissolving diverse organ samples, while enzymatic methods require further refinement. Moreover, we demonstrated that commonly used 1 µm polystyrene particles remain unaffected by 10% KOH solution even after 76 h of incubation. Digestion by KOH offers a simple and cost-effective approach for processing organ samples and holds potential for isolating plastic particles from meat products.
Collapse
Affiliation(s)
- Liesa Geppner
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500 Krems, Austria
| | - Jakob Karaca
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500 Krems, Austria
| | - Wencke Wegner
- Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
| | - Moritz Rados
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500 Krems, Austria
| | - Tobias Gutwald
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500 Krems, Austria
| | - Philemon Werth
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500 Krems, Austria
| | - Maja Henjakovic
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500 Krems, Austria
| |
Collapse
|
34
|
Darvin ME. Optical Methods for Non-Invasive Determination of Skin Penetration: Current Trends, Advances, Possibilities, Prospects, and Translation into In Vivo Human Studies. Pharmaceutics 2023; 15:2272. [PMID: 37765241 PMCID: PMC10538180 DOI: 10.3390/pharmaceutics15092272] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Information on the penetration depth, pathways, metabolization, storage of vehicles, active pharmaceutical ingredients (APIs), and functional cosmetic ingredients (FCIs) of topically applied formulations or contaminants (substances) in skin is of great importance for understanding their interaction with skin targets, treatment efficacy, and risk assessment-a challenging task in dermatology, cosmetology, and pharmacy. Non-invasive methods for the qualitative and quantitative visualization of substances in skin in vivo are favored and limited to optical imaging and spectroscopic methods such as fluorescence/reflectance confocal laser scanning microscopy (CLSM); two-photon tomography (2PT) combined with autofluorescence (2PT-AF), fluorescence lifetime imaging (2PT-FLIM), second-harmonic generation (SHG), coherent anti-Stokes Raman scattering (CARS), and reflectance confocal microscopy (2PT-RCM); three-photon tomography (3PT); confocal Raman micro-spectroscopy (CRM); surface-enhanced Raman scattering (SERS) micro-spectroscopy; stimulated Raman scattering (SRS) microscopy; and optical coherence tomography (OCT). This review summarizes the state of the art in the use of the CLSM, 2PT, 3PT, CRM, SERS, SRS, and OCT optical methods to study skin penetration in vivo non-invasively (302 references). The advantages, limitations, possibilities, and prospects of the reviewed optical methods are comprehensively discussed. The ex vivo studies discussed are potentially translatable into in vivo measurements. The requirements for the optical properties of substances to determine their penetration into skin by certain methods are highlighted.
Collapse
|
35
|
Liu X, Yang J, Li Z. Transcriptomic analysis of oxidative stress mechanisms induced by acute nanoplastic exposure in Sepia esculenta larvae. Front Physiol 2023; 14:1250513. [PMID: 37614751 PMCID: PMC10442824 DOI: 10.3389/fphys.2023.1250513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
Nanoplastics (NPs), as a new type of pollutant with a size small than 1 μm, are ubiquitous and harmful to organisms. There has been an increasing amount of research concerning the effects of NPs on organisms over recent years, especially on aquatic animals. However, there is a limited study on the impact of NPs on mollusk cephalopods. In this research, Sepia esculenta, belonging to Cephalopoda, Coleoidea, Sepioidea, was selected to explore the effects caused by NPs exposure. The S. esculenta larvae were exposed to polystyrene NPs (PS-NPs) with diameter 50 nm (100 mg/L) for 4 h. The detection of oxidative stress biomarkers displayed an obvious increase in SOD (superoxide dismutase) activity and MDA (malondialdehyde) level. Then, RNA-Seq was performed to explore the oxidative stress response at mRNA level. The transcriptome analysis demonstrated that the expression of 2,570 genes was affected by PS-NPs. Besides, the signaling pathways of ribosome, ribosome biogenesis in eukaryotes, proteasome, and MAPK were enriched. This study not only provides novel references for understanding the mechanisms of oxidative stress response induced by NPs, but also reminds us to follow with interest the influence of acute exposure to NPs.
Collapse
Affiliation(s)
- Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
36
|
Cary C, Stapleton P. Determinants and mechanisms of inorganic nanoparticle translocation across mammalian biological barriers. Arch Toxicol 2023; 97:2111-2131. [PMID: 37303009 PMCID: PMC10540313 DOI: 10.1007/s00204-023-03528-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023]
Abstract
Biological barriers protect delicate internal tissues from exposures to and interactions with hazardous materials. Primary anatomical barriers prevent external agents from reaching systemic circulation and include the pulmonary, gastrointestinal, and dermal barriers. Secondary barriers include the blood-brain, blood-testis, and placental barriers. The tissues protected by secondary barriers are particularly sensitive to agents in systemic circulation. Neurons of the brain cannot regenerate and therefore must have limited interaction with cytotoxic agents. In the testis, the delicate process of spermatogenesis requires a specific milieu distinct from the blood. The placenta protects the developing fetus from compounds in the maternal circulation that would impair limb or organ development. Many biological barriers are semi-permeable, allowing only materials or chemicals, with a specific set of properties, that easily pass through or between cells. Nanoparticles (particles less than 100 nm) have recently drawn specific concern due to the possibility of biological barrier translocation and contact with distal tissues. Current evidence suggests that nanoparticles translocate across both primary and secondary barriers. It is known that the physicochemical properties of nanoparticles can affect biological interactions, and it has been shown that nanoparticles can breach primary and some secondary barriers. However, the mechanism by which nanoparticles cross biological barriers has yet to be determined. Therefore, the purpose of this review is to summarize how different nanoparticle physicochemical properties interact with biological barriers and barrier products to govern translocation.
Collapse
Affiliation(s)
- Chelsea Cary
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Phoebe Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
37
|
Try C, Abdel-Mottaleb MMA, Béduneau A, Moulari B, Pazart L, Vidal C, Brunotte G, Castelain F, Lamprecht A, Humbert P, Pellequer Y. Polymeric Nanoparticles' Accumulation in Atopic Dermatitis: Clinical Comparison between Healthy, Non-Lesional, and Lesional Skin. Pharmaceutics 2023; 15:1927. [PMID: 37514111 PMCID: PMC10385499 DOI: 10.3390/pharmaceutics15071927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
A major limitation in the current topical treatment strategies for inflammatory skin disorders is the inability to selectively target the inflamed site with minimal exposure of healthy skin. Atopic dermatitis is one of the most prevalent types of dermatitis. The use of polymeric nanoparticles for targeting inflamed skin has been recently proposed, and therefore the aim of this proof-of-concept clinical study was to investigate the skin penetration and deposition of polymeric biodegradable nanoparticles in the atopic dermatitis lesions and compare the data obtained to the deposition of the particles into the healthy skin or lesion-free skin of the atopic dermatitis patients. For that, fluorescent PLGA nanoparticles in sizes of approximately 100 nm were prepared and applied to the skin of healthy volunteers and the lesional and non-lesional skin of atopic dermatitis patients. Skin biopsies were examined using confocal laser scanning microscopy to track the skin deposition and depth of penetration of the particles. Immunohistochemistry was performed to investigate the alteration in tight-junction protein distribution in the different types of skin. Results have shown that nanoparticles were found to have higher deposition into the atopic dermatitis lesions with minimal accumulation in healthy or non-lesional skin. This has been primarily correlated with the impaired barrier properties of atopic dermatitis lesions with the reduced production of Claudin-1. It was concluded that polymeric nanoparticles offer a potential tool for selective drug delivery to inflamed skin with minimal exposure risk to healthy skin.
Collapse
Affiliation(s)
- Céline Try
- PEPITE EA4267, (Labex LipStic ANR-11-LABX0021) Université Franche-Comté, F-25000 Besançon, France
- CHU de Besançon, F-25000 Besançon, France
| | - Mona M A Abdel-Mottaleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Arnaud Béduneau
- PEPITE EA4267, (Labex LipStic ANR-11-LABX0021) Université Franche-Comté, F-25000 Besançon, France
| | - Brice Moulari
- PEPITE EA4267, (Labex LipStic ANR-11-LABX0021) Université Franche-Comté, F-25000 Besançon, France
| | - Lionel Pazart
- CHU de Besançon, F-25000 Besançon, France
- INSERM CIC 1431, CHU de Besançon, F-25000 Besançon, France
| | - Chrystelle Vidal
- CHU de Besançon, F-25000 Besançon, France
- INSERM CIC 1431, CHU de Besançon, F-25000 Besançon, France
| | - Gaëlle Brunotte
- CHU de Besançon, F-25000 Besançon, France
- INSERM CIC 1431, CHU de Besançon, F-25000 Besançon, France
| | - Florence Castelain
- CHU de Besançon, F-25000 Besançon, France
- Department of Dermatology, Allergology Unit, CHU de Besançon, F-25000 Besançon, France
| | - Alf Lamprecht
- PEPITE EA4267, (Labex LipStic ANR-11-LABX0021) Université Franche-Comté, F-25000 Besançon, France
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, 53121 Bonn, Germany
| | - Philippe Humbert
- RIGHT UMR1098 INSERM EFS BFC, Université Franche-Comté, F-25000 Besançon, France
| | - Yann Pellequer
- PEPITE EA4267, (Labex LipStic ANR-11-LABX0021) Université Franche-Comté, F-25000 Besançon, France
| |
Collapse
|
38
|
Lee Y, Cho S, Park K, Kim T, Kim J, Ryu DY, Hong J. Potential lifetime effects caused by cellular uptake of nanoplastics: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121668. [PMID: 37087090 DOI: 10.1016/j.envpol.2023.121668] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Plastics have been used for about 100 years, and daily-use products composed of plastics are now prevalent. As a result, humans are very easily exposed to the plastic particles generated from the daily-use plastics. However, studies on cellular uptake of nanoplastics in "human cells" have only recently begun to attract attention. In previous studies, definitions of nanoplastics and microplastics were vague, but recently, they have been considered to be different and are being studied separately. However, nanoplastics, unlike plastic particles of other sizes such as macro- and microplastics, can be absorbed by human cells, and thus can cause various risks such as cytotoxicity, inflammation, oxidative stress, and even diseases such as cancer82, 83. and diabetes (Fan et al., 2022; Wang et al., 2023). Thus, in this review, we defined microplastics and nanoplastics to be different and described the potential risks of nanoplastics to human caused by cellular uptake according to their diverse factors. In addition, during and following plastic product usage a substantial number of fragments of different sizes can be generated, including nanoplastics. Fragmentation of microplastics into nanoplastics may also occur during ingestion and inhalation, which can potentially cause long-term hazards to human health. However, there are still few in vivo studies conducted on the health effect of nanoplastics ingestion and inhalation.
Collapse
Affiliation(s)
- Yoojin Lee
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Seongeun Cho
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyungtae Park
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Taihyun Kim
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jiyu Kim
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Du-Yeol Ryu
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
39
|
Grote K, Brüstle F, Vlacil AK. Cellular and Systemic Effects of Micro- and Nanoplastics in Mammals-What We Know So Far. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3123. [PMID: 37109957 PMCID: PMC10145381 DOI: 10.3390/ma16083123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Microplastics (MP) and nanoplastics (NP) are accumulating more and more in our environment and have been frequently detected in water and soil, but also in a variety of mainly marine organisms. Polymers such as polyethylene, polypropylene, and polystyrene are those most commonly found. Once in the environment, MP/NP are carriers for many other substances, which often convey toxic effects. Even though intuitively it is thought that ingesting MP/NP cannot be healthy, little is known about their effects on mammalian cells and organisms so far. To better understand the potential hazards of MP/NP on humans and to offer an overview of the already associated pathological effects, we conducted a comprehensive literature review on cellular effects, as well as experimental animal studies on MP/NP in mammals.
Collapse
Affiliation(s)
- Karsten Grote
- Cardiology and Angiology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Fabian Brüstle
- Cardiology and Angiology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Ann-Kathrin Vlacil
- Stem Cell Unit, Department of Cardiovascular Research, Humanitas Research Hospital, 20089 Milan, Italy
| |
Collapse
|
40
|
Urli S, Corte Pause F, Crociati M, Baufeld A, Monaci M, Stradaioli G. Impact of Microplastics and Nanoplastics on Livestock Health: An Emerging Risk for Reproductive Efficiency. Animals (Basel) 2023; 13:ani13071132. [PMID: 37048387 PMCID: PMC10093235 DOI: 10.3390/ani13071132] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Pollution due to microplastics and nanoplastics is one of the major environmental issues of the last decade and represents a growing threat to human and animal health. In aquatic species, there is a large amount of information regarding the perturbation of marine organisms; instead, there are only a few studies focusing on the pathophysiological consequences of an acute and chronic exposure to micro- and nanoplastics in mammalian systems, especially on the reproductive system. There are several studies that have described the damage caused by plastic particles, including oxidative stress, apoptosis, inflammatory response, dysregulation of the endocrine system and accumulation in various organs. In addition to this, microplastics have recently been found to influence the evolution of microbial communities and increase the gene exchange, including antibiotic and metal resistance genes. Special attention must be paid to farm animals, because they produce food such as milk, eggs and meat, with the consequent risk of biological amplification along the food chain. The results of several studies indicate that there is an accumulation of microplastics and nanoplastics in human and animal tissues, with several negative effects, but all the effects in the body have not been ascertained, especially considering the long-term consequences. This review provides an overview of the possible adverse effects of the exposure of livestock to micro- and nanoplastics and assesses the potential risks for the disruption of reproductive physiological functions.
Collapse
Affiliation(s)
- Susy Urli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 33100 Udine, Italy
| | - Francesca Corte Pause
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 33100 Udine, Italy
| | - Martina Crociati
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
- Centre for Perinatal and Reproductive Medicine, University of Perugia, 06129 Perugia, Italy
| | - Anja Baufeld
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Maurizio Monaci
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
- Centre for Perinatal and Reproductive Medicine, University of Perugia, 06129 Perugia, Italy
| | - Giuseppe Stradaioli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 33100 Udine, Italy
| |
Collapse
|
41
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
42
|
Liu L, Zhao W, Ma Q, Gao Y, Wang W, Zhang X, Dong Y, Zhang T, Liang Y, Han S, Cao J, Wang X, Sun W, Ma H, Sun Y. Functional nano-systems for transdermal drug delivery and skin therapy. NANOSCALE ADVANCES 2023; 5:1527-1558. [PMID: 36926556 PMCID: PMC10012846 DOI: 10.1039/d2na00530a] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/27/2022] [Indexed: 06/18/2023]
Abstract
Transdermal drug delivery is one of the least intrusive and patient-friendly ways for therapeutic agent administration. Recently, functional nano-systems have been demonstrated as one of the most promising strategies to treat skin diseases by improving drug penetration across the skin barrier and achieving therapeutically effective drug concentrations in the target cutaneous tissues. Here, a brief review of functional nano-systems for promoting transdermal drug delivery is presented. The fundamentals of transdermal delivery, including skin biology and penetration routes, are introduced. The characteristics of functional nano-systems for facilitating transdermal drug delivery are elucidated. Moreover, the fabrication of various types of functional transdermal nano-systems is systematically presented. Multiple techniques for evaluating the transdermal capacities of nano-systems are illustrated. Finally, the advances in the applications of functional transdermal nano-systems for treating different skin diseases are summarized.
Collapse
Affiliation(s)
- Lijun Liu
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Wenbin Zhao
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Qingming Ma
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Yang Gao
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Weijiang Wang
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Xuan Zhang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Yunxia Dong
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Tingting Zhang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Yan Liang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Shangcong Han
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Jie Cao
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Xinyu Wang
- Institute of Thermal Science and Technology, Shandong University Jinan 250061 China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences Qingdao 266113 China
| | - Haifeng Ma
- Department of Geriatrics, Zibo Municipal Hospital Zibo 255400 China
| | - Yong Sun
- School of Pharmacy, Qingdao University Qingdao 266071 China
| |
Collapse
|
43
|
Fonseca M, Rehman M, Soares R, Fonte P. The Impact of Flavonoid-Loaded Nanoparticles in the UV Protection and Safety Profile of Topical Sunscreens. Biomolecules 2023; 13:biom13030493. [PMID: 36979428 PMCID: PMC10046639 DOI: 10.3390/biom13030493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/10/2023] Open
Abstract
Excessive UV radiation exposure is harmful to skin cells since sunburn is accompanied by oxidative burst, leading to a rapid increase in skin cancer. However, the insufficient UV photoprotection of approved sunscreens and the negative impact of their compositions on ecosystems and human health makes the utility of sunscreen a questionable recommendation. Therefore, discovering UV filters with significant antioxidant activity and improved topical performance and photostability is an urgent need. Recently, the use of nanosized natural molecules incorporated in sunscreens has been a scientific hot topic, as it has been suggested that they provide a synergistic effect with synthetic UV filters, improving overall SPF and antioxidant activity, higher retention on the epidermis, and less toxicity. The aim of this review was to verify the usefulness of sunscreens incorporating flavonoid-loaded nanoparticles. A literature review was performed, where original and review articles published in the last 6 years were analyzed. Formulations containing nanosized flavonoids with improved UVA photoprotection and safer toxicological profiles, associated or not with synthetic filters, are promising sunscreens and more clinical investigation must be performed to validate these findings.
Collapse
Affiliation(s)
- Magda Fonseca
- EPI Unit, Department of Epidemiological Research, Institute of Public Health of University of Porto (ISPUP), Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Mubashar Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Raquel Soares
- Department of Biomedicine, Faculty of Medicine, University of Porto, Al Prof Hernani Monteiro, 4200-319 Porto, Portugal
- I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Pedro Fonte
- Center for Marine Sciences (CCMAR), Gambelas Campus, University of Algarve, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, Gambelas Campus, University of Algarve, 8005-139 Faro, Portugal
- IBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
44
|
Terbinafine Nanohybrid: Proposing a Hydrogel Carrying Nanoparticles for Topical Release. Pharmaceutics 2023; 15:pharmaceutics15030841. [PMID: 36986702 PMCID: PMC10056099 DOI: 10.3390/pharmaceutics15030841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
A poloxamer 407 (P407)—Casein hydrogel was chosen to carry polycaprolactone nanoparticles carrying terbinafine (PCL-TBH-NP). In this study, terbinafine hydrochloride (TBH) was encapsulated into polycaprolactone (PCL) nanoparticles, which were further incorporated into a poloxamer-casein hydrogel in a different addition order to evaluate the effect of gel formation. Nanoparticles were prepared by the nanoprecipitation technique and characterized by evaluating their physicochemical characteristics and morphology. The nanoparticles had a mean diameter of 196.7 ± 0.7 nm, PDI of 0.07, negative ζ potential (−0.713 mV), high encapsulation efficiency (>98%), and did not show cytotoxic effects in primary human keratinocytes. PCL-NP modulated terbinafine was released in artificial sweat. Rheological properties were analyzed by temperature sweep tests at different addition orders of nanoparticles into hydrogel formation. The rheological behavior of nanohybrid hydrogels showed the influence of TBH-PCL nanoparticles addition in the mechanical properties of the hydrogel and a long-term release of the nanoparticles from it.
Collapse
|
45
|
Current Advances in Lipid Nanosystems Intended for Topical and Transdermal Drug Delivery Applications. Pharmaceutics 2023; 15:pharmaceutics15020656. [PMID: 36839978 PMCID: PMC9967415 DOI: 10.3390/pharmaceutics15020656] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Skin delivery is an exciting and challenging field. It is a promising approach for effective drug delivery due to its ease of administration, ease of handling, high flexibility, controlled release, prolonged therapeutic effect, adaptability, and many other advantages. The main associated challenge, however, is low skin permeability. The skin is a healthy barrier that serves as the body's primary defence mechanism against foreign particles. New advances in skin delivery (both topical and transdermal) depend on overcoming the challenges associated with drug molecule permeation and skin irritation. These limitations can be overcome by employing new approaches such as lipid nanosystems. Due to their advantages (such as easy scaling, low cost, and remarkable stability) these systems have attracted interest from the scientific community. However, for a successful formulation, several factors including particle size, surface charge, components, etc. have to be understood and controlled. This review provided a brief overview of the structure of the skin as well as the different pathways of nanoparticle penetration. In addition, the main factors influencing the penetration of nanoparticles have been highlighted. Applications of lipid nanosystems for dermal and transdermal delivery, as well as regulatory aspects, were critically discussed.
Collapse
|
46
|
Feng S, Guo Y, Liu F, Li Z, Chen K, Handa A, Zhang Y. The impacts of complexation and glycated conjugation on the performance of soy protein isolate-gum Arabic composites at the o/w interface for emulsion-based delivery systems. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
47
|
Cao J, Gao M, Wang J, Liu Y, Zhang X, Ping Y, Liu J, Chen G, Xu D, Huang X, Liu G. Construction of nano slow-release systems for antibacterial active substances and its applications: A comprehensive review. Front Nutr 2023; 10:1109204. [PMID: 36819707 PMCID: PMC9928761 DOI: 10.3389/fnut.2023.1109204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
At present, nano-carrier materials with antibacterial activity are of great significance. Due to the widespread resistance of many pathogenic microorganisms, it has seriously threatened human health. The natural antimicrobial substances extracted from fruits and vegetables can significantly improve their stability combined with nano-carrier materials. The resistance of pathogenic microorganisms will be substantially reduced, greatly enhancing the effect of active antimicrobial substances. Nanotechnology has excellent research prospects in the food industry, antibacterial preservation, food additives, food packaging, and other fields. This paper introduces nano-carrier materials and preparation techniques for loading and encapsulating active antibacterial substances in detail by constructing a nano-release system for active antibacterial substances. The antibacterial effect can be achieved by protecting them from adverse external conditions and destroying the membrane of pathogenic microorganisms. The mechanism of the slow release of the bacteriostatic active substance is also described. The mechanism of carrier loading and release is mainly through non-covalent forces between the bacteriostatic active substance and the carrier material, such as hydrogen bonding, π-π stacking, van der Waals forces, electrostatic interactions, etc., as well as the loading and adsorption of the bacteriostatic active substance by the chemical assembly. Finally, its wide application in food and medicine is introduced. It is hoped to provide a theoretical basis and technical support for the efficient utilization and product development of bacteriostatic active substances.
Collapse
Affiliation(s)
- Jiayong Cao
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou, China,State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Mingkun Gao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Jian Wang
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou, China,*Correspondence: Jian Wang, ✉
| | - Yuan Liu
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou, China
| | - Xuan Zhang
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou, China
| | - Yi Ping
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jia Liu
- Internal Trade Food Science Research Institute Co., Ltd, Beijing, China
| | - Ge Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Donghui Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China,Donghui Xu, ✉
| | - Xiaodong Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Guangyang Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China,Guangyang Liu, ✉
| |
Collapse
|
48
|
Nanoliposomal peptides derived from Spirulina platensis protein accelerate full-thickness wound healing. Int J Pharm 2022; 630:122457. [PMID: 36455754 DOI: 10.1016/j.ijpharm.2022.122457] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Spirulina platensis is a type of blue-green algae that contains large amounts of protein with therapeutic effects. The present study was performed to investigate the effects of encapsulated Spirulina protein hydrolysates (SPH) with nanoliposomes (NLPs) in reducing wound healing period. SPH-loaded NLPs showed the size and zeta potential of 158 nm and -48 mV, respectively; as well as a uniform non-aggregated morphology. In-vitro MTT toxicity studies on the Human Foreskin Fibroblast (HFFF-2) cell line exhibited that the hydrolyzed peptides had no toxic effect and increased cell growth. The scratch test confirmed the MTT results. For in-vivo study, 162 mice were divided into nine groups, including the mice groups treated with blank gel, blank NLPs, and those treated with 2.5, 5, and 10 % SPH and SPH-loaded NLPs. The histopathological assessment was done to investigate rate of fibroblast proliferation and epithelialization. Immunofluorescence staining for bFGF, CD31, COL1A was conducted. The results showed that the mice group treated with SPH-NLPs showed higher wound contraction, epithelization, fibroblast proliferation, and higher expressions for bFGF, CD31, COL1A compared with blanks and other groups. In conclusion, the derived and encapsulated peptides showed significant effects in accelerating wound healing via angiogenesis and collagen production.
Collapse
|
49
|
Chen X, Yan P, Zhang W, He X, Jiang R, Li Y, Sun J, Jiang J. Bioengineered polyester nanoparticles for the synergistic treatment of androgenic alopecia via the suppression of 5α-reductase and knockdown of androgen receptor. Front Bioeng Biotechnol 2022; 10:1033987. [DOI: 10.3389/fbioe.2022.1033987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Androgenic alopecia (AGA) is a common disease that negatively affects patients’ physical and mental health. AGA can be treated with drugs that improve the perifollicular microenvironment, such as 5α-reductase inhibitors (e.g., dutasteride [DUT]), androgen receptor blockers, and minoxidil. However, the efficacy of these treatments is limited. Therefore, this study aimed to show that nanoparticles are effective as stable carriers with high curative benefits and little adverse effects. The in vitro study showed that PLGA-DUT/siAR@DPCM NPs could deliver both DUT and siAR to dermal papilla cells. They could successfully suppress 5α-reductase and knock down androgen receptor, respectively, and thereby promote cell proliferation. In the in vivo study, PLGA-DUT/siAR@DPCM NPs showed a significant therapeutic effect in an AGA mouse model. They successfully penetrated the stratum corneum and showed a clear targeting effect on hair follicles and surrounding tissues. PLGA-DUT/siAR@DPCM NPs could enable the targeted delivery of DUT and siAR through percutaneous penetration, enhancing phagocytosis and decreasing adverse effects. Thus, they have great potential in the clinical treatment of AGA.
Collapse
|
50
|
Amran NH, Zaid SSM, Mokhtar MH, Manaf LA, Othman S. Exposure to Microplastics during Early Developmental Stage: Review of Current Evidence. TOXICS 2022; 10:597. [PMID: 36287877 PMCID: PMC9611505 DOI: 10.3390/toxics10100597] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
In the last few decades, microplastics (MPs) have been among the emerging environmental pollutants that have received serious attention from scientists and the general population due to their wide range of potentially harmful effects on living organisms. MPs may originate from primary sources (micro-sized plastics manufactured on purpose) and secondary sources (breakdown of large plastic items through physical, chemical, and biological processes). Consequently, serious concerns are escalating because MPs can be easily disseminated and contaminate environments, including terrestrial, air, groundwater, marine, and freshwater systems. Furthermore, an exposure to even low doses of MPs during the early developmental stage may induce long-term health effects, even later in life. Accordingly, this study aims to gather the current evidence regarding the effects of MPs exposure on vital body systems, including the digestive, reproductive, central nervous, immune, and circulatory systems, during the early developmental stage. In addition, this study provides essential information about the possible emergence of various diseases later in life (i.e., adulthood).
Collapse
Affiliation(s)
- Nur Hanisah Amran
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Siti Sarah Mohamad Zaid
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Selangor, Malaysia
| | - Latifah Abd Manaf
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Shatrah Othman
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Selangor, Malaysia
| |
Collapse
|