1
|
Pöttgen S, Mazurek-Budzyńska M, Wischke C. The role of porosity in polyester microparticles for drug delivery. Int J Pharm 2025; 672:125340. [PMID: 39954970 DOI: 10.1016/j.ijpharm.2025.125340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Polymer microparticles are a cornerstone in the field of injectable sustained delivery systems: They allow the entrapment of various types of hydrophobic or hydrophilic drugs including biopharmaceuticals. Microparticles can be prepared from the material of choice and tailored to specific target sizes. Importantly, they can retain the drug at the local administration site to achieve a sustained drug release for long-term therapeutic effects. This review focuses on the role of porosity of microparticles as a tremendously important property. Principles to prepare porous carriers via different techniques and additives are discussed, emphasizing that porosity is not a static property but can be dynamic, e.g., for particles from polylactide or poly(lactide-co-glycolide). Considering the contribution of porosity in the overall assessment of drug carrier systems, as well as their manipulation/alteration post-production such as by pore closing, will enlarge the understanding of polymer microparticles as an important class of modern pharmaceutical dosage forms.
Collapse
Affiliation(s)
- Simon Pöttgen
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Kurt-Mothes-Str. 3 06120 Halle, Germany
| | | | - Christian Wischke
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Kurt-Mothes-Str. 3 06120 Halle, Germany.
| |
Collapse
|
2
|
Xu Y, Jiang B, Liu F, Zhang H, Li D, Tang X, Yang X, Sheng Y, Wu X, Shi N. A Novel System for Fabricating Microspheres with Microelectromechanical System-Based Bioprinting Technology. BME FRONTIERS 2024; 5:0076. [PMID: 39568593 PMCID: PMC11576531 DOI: 10.34133/bmef.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
Objective and Impact Statement: The microspheres were widely utilized in the field of life sciences, and we have developed an innovative microelectromechanical system (MEMS)-based bioprinting technology (MBT) system for the preparation of the microspheres. The microspheres can be automatically and high-throughput produced with this cutting-edge system. Introduction and Methods: This paper mainly introduced a novel, efficient, and cost-effective approach for the microsphere fabrication with the MBT system. In this work, the whole microsphere production equipment was built and the optimal conditions (like concentration, drying temperature, frequency, and voltage) for generating uniform hydroxypropyl cellulose-cyclosporine A (HPC-CsA) and poly-l-lactic acid (PLLA) microspheres were explored. Results: Results demonstrated that the optimal uniformity of HPC-CsA microspheres was achieved at 2% (w/v) HPC-CsA mixture, 45 °C (drying temperature), 1,000 Hz (frequency), and 25 V (voltage amplitude). CsA microspheres [coefficient of variation (CV): ~9%] are successfully synthesized, and the drug encapsulation rate was 84.8%. The methodology was further used to produce PLLA microspheres with a diameter of ~2.55 μm, and the best CV value achieved 6.84%. Conclusion: This investigation fully highlighted the integration of MEMS and bioprinting as a promising tool for the microsphere fabrication, and this MBT system had huge potential applications in pharmaceutical formulations and medical aesthetics.
Collapse
Affiliation(s)
- Yifeng Xu
- School of Microelectronics, Shanghai University, Shanghai 200000, China
- Shanghai Industrial μ Technology Research Institute, Shanghai 200000, China
| | - Bao Jiang
- School of Microelectronics, Shanghai University, Shanghai 200000, China
- Shanghai Industrial μ Technology Research Institute, Shanghai 200000, China
| | - Fangfang Liu
- Shanghai Industrial μ Technology Research Institute, Shanghai 200000, China
| | - Hua Zhang
- Suzhou Silicon jet Microelectronics Co. Ltd., Suzhou, Jiangsu Province 215000, China
| | - Dan Li
- Shanghai Industrial μ Technology Research Institute, Shanghai 200000, China
| | - Xiaohui Tang
- Ruijin Hospital Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Xiuming Yang
- Shanghai Industrial μ Technology Research Institute, Shanghai 200000, China
| | - Yan Sheng
- Institute of Translational Medicine, Shanghai University, Shanghai 200000, China
| | - Xuanye Wu
- School of Microelectronics, Shanghai University, Shanghai 200000, China
- Shanghai Industrial μ Technology Research Institute, Shanghai 200000, China
| | - Nan Shi
- School of Microelectronics, Shanghai University, Shanghai 200000, China
- Shanghai Industrial μ Technology Research Institute, Shanghai 200000, China
- Institute of Translational Medicine, Shanghai University, Shanghai 200000, China
| |
Collapse
|
3
|
Kias F, Bodmeier R. Accelerated removal of solvent residuals from PLGA microparticles by alcohol vapor-assisted fluidized bed drying. Int J Pharm 2024; 665:124737. [PMID: 39307443 DOI: 10.1016/j.ijpharm.2024.124737] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
The removal of residual solvents from biodegradable poly(D,L-lactide-co-glycolide) (PLGA) microparticles by fluidized bed drying was investigated. Microparticles were prepared by the O/W solvent extraction/evaporation method and the influence of various process and formulation parameters on the secondary drying was studied. PLGA microparticles and films were characterized for residual organic solvent and water content, recrystallisation, surface morphology, drug loading and in-vitro release of the drugs dexamethasone and risperidone. While alcohol-free fluidized bed drying decreased the residual dichloromethane content only from about 7 % (w/w) to 6.4 % (w/w) (18 °C) or 3.2 % (w/w) (35 °C) within 24 h, 140 mg/L methanol vapor in purge gas facilitated almost complete removal of dichloromethane or ethyl acetate from microparticles (0-0.11 % (w/w) after 6 h). By controlling the alcohol concentration and temperature of the purge gas, the alcohol absorption and complete removal was controlled. Risperidone increased the methanol absorption enhancing the plasticization. A high initial residual water content was identified to promote aggregation and was eliminated by starting fluidized bed drying without alcohol. Alcohol vapor-assisted fluidized bed drying accelerated microparticle manufacturing without affecting the redispersibility, the drug loading and the in-vitro release of risperidone and dexamethasone.
Collapse
Affiliation(s)
- Florian Kias
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169 Berlin, Germany
| | - Roland Bodmeier
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169 Berlin, Germany.
| |
Collapse
|
4
|
Carter D, Better M, Abbasi S, Zulfiqar F, Shapiro R, Ensign LM. Nanomedicine for Maternal and Fetal Health. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303682. [PMID: 37817368 PMCID: PMC11004090 DOI: 10.1002/smll.202303682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/25/2023] [Indexed: 10/12/2023]
Abstract
Conception, pregnancy, and childbirth are complex processes that affect both mother and fetus. Thus, it is perhaps not surprising that in the United States alone, roughly 11% of women struggle with infertility and 16% of pregnancies involve some sort of complication. This presents a clear need to develop safe and effective treatment options, though the development of therapeutics for use in women's health and particularly in pregnancy is relatively limited. Physiological and biological changes during the menstrual cycle and pregnancy impact biodistribution, pharmacokinetics, and efficacy, further complicating the process of administration and delivery of therapeutics. In addition to the complex pharmacodynamics, there is also the challenge of overcoming physiological barriers that impact various routes of local and systemic administration, including the blood-follicle barrier and the placenta. Nanomedicine presents a unique opportunity to target and sustain drug delivery to the reproductive tract and other relevant organs in the mother and fetus, as well as improve the safety profile and minimize side effects. Nanomedicine-based approaches have the potential to improve the management and treatment of infertility, obstetric complications, and fetal conditions.
Collapse
Affiliation(s)
- Davell Carter
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Marina Better
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Saed Abbasi
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fareeha Zulfiqar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rachel Shapiro
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Laura M. Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Departments of Gynecology and Obstetrics, Biomedical Engineering, Oncology, and Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Zhang C, Bodmeier R. Porous PLGA microparticles prepared with nanosized/micronized sugar particles as porogens. Int J Pharm 2024; 660:124329. [PMID: 38857662 DOI: 10.1016/j.ijpharm.2024.124329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
The objective of this study was to explore the use of nanosized/micronized sugar particles as porogens for preparing porous poly(lactide-co-glycolide) (PLGA) microparticles by a solid-in-oil-in-water (S/O/W) solvent evaporation method. Porous PLGA microparticles containing dexamethasone were prepared with different nanosized/micronized sugars (sucrose, trehalose and lactose), types of PLGA, and osmogens (NaCl or sucrose) in the external water phase. The microparticles were characterized for morphology, thermal properties, particle size, surface area, encapsulation efficiency and drug release/swelling during release. The addition of nanosized/micronized sugar particles resulted in porous PLGA microparticles with high encapsulation efficiencies. The porosity of the microparticles was caused both by the influx of water into the polymer droplets and the encapsulation and subsequent dissolution of sugar particles during the manufacturing process. The porosity (pore size) of the microparticles and, as a result, the drug release pattern could be well controlled by the particle size and weight fraction of the sugar particles. Because of a larger inner surface area, nanosized sugar particles were more efficient porogen than micronized sugar particles to obtain porous PLGA microparticles with flexible release patterns.
Collapse
Affiliation(s)
- Chenghao Zhang
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169 Berlin, Germany
| | - Roland Bodmeier
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169 Berlin, Germany.
| |
Collapse
|
6
|
Peštálová A, Gajdziok J. Modern trends in the formulation of microparticles for lung delivery using porogens: methods, principles and examples. Pharm Dev Technol 2024; 29:504-516. [PMID: 38712608 DOI: 10.1080/10837450.2024.2350530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
Inhalation drug administration is increasingly used for local pharmacotherapy of lung disorders and as an alternative route for systemic drug delivery. Modern inhalation powder systems aim to target drug deposition in the required site of action. Large porous particles (LPP), characterized by an aerodynamic diameter over 5 μm, density below 0.4 g/cm3, and the ability to avoid protective lung mechanisms, come to the forefront of the research. They are mostly prepared by spray techniques such as spray drying or lyophilization using pore-forming substances (porogens). These substances could be gaseous, solid, or liquid, and their selection depends on their polarity, solubility, and mutual compatibility with the carrier material and the drug. According to the pores-forming mechanism, porogens can be divided into groups, such as osmogens, extractable porogens, and porogens developing gases during decomposition. This review characterizes modern trends in the formulation of solid microparticles for lung delivery; describes the mechanisms of action of the most often used porogens, discusses their applicability in various formulation methods, emphasizes spray techniques; and documents discussed topics by examples from experimental studies.
Collapse
Affiliation(s)
- Andrea Peštálová
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - Jan Gajdziok
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| |
Collapse
|
7
|
Xu Q, Xiao Z, Yang Q, Yu T, Deng X, Chen N, Huang Y, Wang L, Guo J, Wang J. Hydrogel-based cardiac repair and regeneration function in the treatment of myocardial infarction. Mater Today Bio 2024; 25:100978. [PMID: 38434571 PMCID: PMC10907859 DOI: 10.1016/j.mtbio.2024.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
A life-threatening illness that poses a serious threat to human health is myocardial infarction. It may result in a significant number of myocardial cells dying, dilated left ventricles, dysfunctional heart function, and ultimately cardiac failure. Based on the development of emerging biomaterials and the lack of clinical treatment methods and cardiac donors for myocardial infarction, hydrogels with good compatibility have been gradually applied to the treatment of myocardial infarction. Specifically, based on the three processes of pathophysiology of myocardial infarction, we summarized various types of hydrogels designed for myocardial tissue engineering in recent years, including natural hydrogels, intelligent hydrogels, growth factors, stem cells, and microRNA-loaded hydrogels. In addition, we also describe the heart patch and preparation techniques that promote the repair of MI heart function. Although most of these hydrogels are still in the preclinical research stage and lack of clinical trials, they have great potential for further application in the future. It is expected that this review will improve our knowledge of and offer fresh approaches to treating myocardial infarction.
Collapse
Affiliation(s)
- Qiaxin Xu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510630, China
| | - Qianzhi Yang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Tingting Yu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Xiujiao Deng
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Nenghua Chen
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Lihong Wang
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Endocrinology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jun Guo
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
8
|
Wang W, Zhang L, O’Dell R, Yin Z, Yu D, Chen H, Liu J, Wang H. Microsphere-Enabled Modular Formation of Miniaturized In Vitro Breast Cancer Models. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307365. [PMID: 37990372 PMCID: PMC11045325 DOI: 10.1002/smll.202307365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Indexed: 11/23/2023]
Abstract
In search of effective therapeutics for breast cancers, establishing physiologically relevant in vitro models is of great benefit to facilitate the clinical translation. Despite extensive progresses, it remains to develop the tumor models maximally recapturing the key pathophysiological attributes of their native counterparts. Therefore, the current study aimed to develop a microsphere-enabled modular approach toward the formation of in vitro breast tumor models with the capability of incorporating various selected cells while retaining spatial organization. Poly (lactic-co-glycolic acid) microspheres (150-200 mm) with tailorable pore size and surface topography are fabricated and used as carriers to respectively lade with breast tumor-associated cells. Culture of cell-laden microspheres assembled within a customized microfluidic chamber allowed to form 3D tumor models with spatially controlled cell distribution. The introduction of endothelial cell-laden microspheres into cancer-cell laden microspheres at different ratios would induce angiogenesis within the culture to yield vascularized tumor. Evaluation of anticancer drugs such as doxorubicin and Cediranib on the tumor models do demonstrate corresponding physiological responses. Clearly, with the ability to modulate microsphere morphology, cell composition and spatial distribution, microsphere-enabled 3D tumor tissue formation offers a high flexibility to satisfy the needs for pathophysiological study, anticancer drug screening or design of personalized treatment.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
| | - Li Zhang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
- Department of Respiratory Medicine, Zhongnan Hospital Wuhan University, Wuhan, Hubei 361005, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, Hubei 361005, China
- Wuhan Clinical Research Center of Minimally Invasive Treatment of Structural Heart Disease, Wuhan, Hubei 361005, China
| | - Robert O’Dell
- Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
| | - Zhuozhuo Yin
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
| | - Dou Yu
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Hexin Chen
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29205, USA
| | - JinPing Liu
- Department of Respiratory Medicine, Zhongnan Hospital Wuhan University, Wuhan, Hubei 361005, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, Hubei 361005, China
- Wuhan Clinical Research Center of Minimally Invasive Treatment of Structural Heart Disease, Wuhan, Hubei 361005, China
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
- Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
| |
Collapse
|
9
|
Yang Z, Yao Q, Gong L, Zhang F, Sun J, Sun Y, Gao W. A Superlong-Acting Growth Hormone-Polypeptide Fusion for Growth Hormone Deficiency Treatment. Adv Healthc Mater 2024; 13:e2302507. [PMID: 38030143 DOI: 10.1002/adhm.202302507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Recombinant human growth hormone (rhGH) is clinically used to treat growth hormone deficiency (GHD). However, daily administration of rhGH is required due to its poor stability and short blood circulation, which causes pains and burdens as well as inconvenience to patients. In this study, a method for genetically fusing rhGH to a thermosensitive polymer of elastin-like polypeptide (ELP) is reported, using which the rhGH-ELP thermosensitive fusion protein can be purified by the thermosensitivity of ELP instead of chromatography. The ELP fusion not only drastically improves the stability of rhGH, but also enables the in situ formation of a sustained-release depot of rhGH-ELP upon subcutaneous (SC) injection, which exhibits gentle release with a platform-to-trough fluctuation in blood and a very long circulatory half-life of 594.6 h. In contrast, rhGH exhibits a peak-to-trough fluctuation in blood with a very short circulatory half-life of 0.7 h. As a result, a single subcutaneous injection of rhGH-ELP can consecutively promote the linear growth of rats and the development of major tissues and organs over 3 weeks without obvious side effects, whereas rhGH is required to be injected daily to achieve similar therapeutic results.
Collapse
Affiliation(s)
- Zhaoying Yang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Biomedical Engineering Department, Peking University, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Qiongqiong Yao
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Biomedical Engineering Department, Peking University, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Like Gong
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Biomedical Engineering Department, Peking University, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Fan Zhang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Biomedical Engineering Department, Peking University, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Jiawei Sun
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Biomedical Engineering Department, Peking University, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Yuanzi Sun
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Biomedical Engineering Department, Peking University, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Weiping Gao
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Biomedical Engineering Department, Peking University, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| |
Collapse
|
10
|
Zhang Y, Luo Y, Zhao J, Zheng W, Zhan J, Zheng H, Luo F. Emerging delivery systems based on aqueous two-phase systems: A review. Acta Pharm Sin B 2024; 14:110-132. [PMID: 38239237 PMCID: PMC10792979 DOI: 10.1016/j.apsb.2023.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 01/22/2024] Open
Abstract
The aqueous two-phase system (ATPS) is an all-aqueous system fabricated from two immiscible aqueous phases. It is spontaneously assembled through physical liquid-liquid phase separation (LLPS) and can create suitable templates like the multicompartment of the intracellular environment. Delicate structures containing multiple compartments make it possible to endow materials with advanced functions. Due to the properties of ATPSs, ATPS-based drug delivery systems exhibit excellent biocompatibility, extraordinary loading efficiency, and intelligently controlled content release, which are particularly advantageous for delivering drugs in vivo . Therefore, we will systematically review and evaluate ATPSs as an ideal drug delivery system. Based on the basic mechanisms and influencing factors in forming ATPSs, the transformation of ATPSs into valuable biomaterials is described. Afterward, we concentrate on the most recent cutting-edge research on ATPS-based delivery systems. Finally, the potential for further collaborations between ATPS-based drug-carrying biomaterials and disease diagnosis and treatment is also explored.
Collapse
Affiliation(s)
- Yaowen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yankun Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingqi Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Zhan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Huaping Zheng
- Department of Dermatology, Rare Diseases Center, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Lefol L, Bawuah P, Zeitler J, Verin J, Danede F, Willart J, Siepmann F, Siepmann J. Drug release from PLGA microparticles can be slowed down by a surrounding hydrogel. Int J Pharm X 2023; 6:100220. [PMID: 38146325 PMCID: PMC10749250 DOI: 10.1016/j.ijpx.2023.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/27/2023] Open
Abstract
This study aimed to evaluate and better understand the potential impact that a layer of surrounding hydrogel (mimicking living tissue) can have on the drug release from PLGA microparticles. Ibuprofen-loaded microparticles were prepared with an emulsion solvent extraction/evaporation method. The drug loading was about 48%. The surface of the microparticles appeared initially smooth and non-porous. In contrast, the internal microstructure of the particles exhibited a continuous network of tiny pores. Ibuprofen release from single microparticles was measured into agarose gels and well-agitated phosphate buffer pH 7.4. Optical microscopy, scanning electron microscopy, differential scanning calorimetry, X-ray powder diffraction, and X-ray μCT imaging were used to characterize the microparticles before and after exposure to the release media. Importantly, ibuprofen release was much slower in the presence of a surrounding agarose gel, e.g., the complete release took two weeks vs. a few days in well agitated phosphate buffer. This can probably be attributed to the fact that the hydrogel sterically hinders substantial system swelling and, thus, slows down the related increase in drug mobility. In addition, in this particular case, the convective flow in agitated bulk fluid likely damages the thin PLGA layer at the microparticles' surface, giving the outer aqueous phase more rapid access to the inner continuous pore network: Upon contact with water, the drug dissolves and rapidly diffuses out through a continuous network of water-filled channels. Without direct surface access, most of the drug "has to wait" for the onset of substantial system swelling to be released.
Collapse
Affiliation(s)
- L.A. Lefol
- Univ. Lille, Inserm, CHU Lille, U1008, Lille F-59000, France
| | - P. Bawuah
- Univ. Cambridge, Department of Chemical Engineering and Biotechnology, Cambridge CB3 0AS, UK
| | - J.A. Zeitler
- Univ. Cambridge, Department of Chemical Engineering and Biotechnology, Cambridge CB3 0AS, UK
| | - J. Verin
- Univ. Lille, Inserm, CHU Lille, U1008, Lille F-59000, France
| | - F. Danede
- Univ. Lille, USTL UMET UMR CNRS 8207, Villeneuve d'Ascq F-59650, France
| | - J.F. Willart
- Univ. Lille, USTL UMET UMR CNRS 8207, Villeneuve d'Ascq F-59650, France
| | - F. Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, Lille F-59000, France
| | - J. Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, Lille F-59000, France
| |
Collapse
|
12
|
Schutzman R, Shi NQ, Olsen KF, Ackermann R, Tang J, Liu YY, Hong JKY, Wang Y, Qin B, Schwendeman A, Schwendeman SP. Mechanistic evaluation of the initial burst release of leuprolide from spray-dried PLGA microspheres. J Control Release 2023; 361:297-313. [PMID: 37343723 DOI: 10.1016/j.jconrel.2023.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
Spray-dried poly(lactic-co-glycolic acid) (PLGA) peptide-loaded microspheres have demonstrated similar long-term in vitro release kinetics compared to those produced by the solvent evaporation method and commercial products. However, the difficult-to-control initial burst release over the first 24 h after administration presents an obstacle to product development and establishing bioequivalence. Currently, detailed information about underlying mechanisms of the initial burst release from microspheres is limited. We investigated the mechanism and extent of initial burst release using 16 previously developed spray-dried microsphere formulations of the hormone drug, leuprolide acetate, with similar composition to the commercial 1-month Lupron Depot® (LD). The burst release kinetics was measured with a previously validated continuous monitoring system as well as traditional sample-and-separate methods. The changes in pore structure and polymer permeability were investigated by SEM imaging and the uptake of a bodipy-dextran probe. In vitro results were compared to pharmacokinetics in rats over the same interval. High-burst, spray-dried microspheres were differentiated in the well-mixed continuous monitoring system but reached an upper limit when measured by the sample-and-separate method. Pore-like occlusions observed by confocal microscopy in some formulations indicated that particle swelling may have contributed to probe diffusion through the polymer phase and showed the extensive internal pore structure of spray-dried particles. Continuous monitoring revealed a rapid primary (1°) phase followed by a constant-rate secondary (2°) release phase, which comprised ∼80% and 20% of the 24-hr release, respectively. The ratio of 1° phase duration (t1°) and the characteristic probe diffusion time (τ) was highly correlated to 1° phase release for spray dried particles. Of the four spray-dried formulations administered in vivo, three spray-dried microspheres with similar polymer density showed nearly ideal linear correlation between in vivo absorption and well-mixed in vitro release kinetics over the first 24 h. By contrast, the more structurally dense LD and a more-dense in-house formulation showed a slight lag phase in vivo relative to in vitro. Furthermore, in vitro dimensionless times (tburst/τ) were highly correlated with pharmacokinetic parameters for spray-dried microspheres but not for LD. While the correlation of increases in effective probe diffusion and 1° phase release strongly suggests diffusion through the polymer matrix as a major release mechanism both in vitro and in vivo, a fixed lower limit for this release fraction implies an alternative release mechanism. Overall, continuous monitoring release and probe diffusion appears to have potential in differentiating between leuprolide formulations and establishing relationships between in vitro release and in vivo absorption during the initial burst period.
Collapse
Affiliation(s)
- Richard Schutzman
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Nian-Qiu Shi
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA; School of Pharmacy, Jilin Medical University, Jilin 132013, Jilin Province, China
| | - Karl F Olsen
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Rose Ackermann
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Jie Tang
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Ya-Yuan Liu
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Justin K Y Hong
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Yan Wang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Bin Qin
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA.
| |
Collapse
|
13
|
Wang K, Zhu K, Zhu Z, Shao F, Qian R, Wang C, Dong H, Li Y, Gao Z, Zhao J. Triptolide with hepatotoxicity and nephrotoxicity used in local delivery treatment of myocardial infarction by thermosensitive hydrogel. J Nanobiotechnology 2023; 21:227. [PMID: 37461079 DOI: 10.1186/s12951-023-01980-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Myocardial infarction (MI) resulting from coronary artery occlusion is the leading global cause of cardiovascular disability and mortality. Anti-inflammatory treatment plays an important role in MI treatment. Triptolide (TPL), as a Chinese medicine monomer, has a variety of biological functions, including anti-inflammatory, anti-tumor, and immunoregulation. However, it has been proved that TPL is poorly water soluble, and has clear hepatotoxicity and nephrotoxicity, which seriously limits its clinical application. Herein, we designed a long-acting hydrogel platform (TPL@PLGA@F127) for MI treatment by intramyocardial injection. First, we found that the inflammatory response and immune regulation might be the main mechanisms of TPL against MI by network pharmacology. Subsequently, we prepared the hydrogel platform (TPL@PLGA@F127) and tested its effects and toxicity on normal organs in the early stage of MI (3 days after MI-operation). The results showed that TPL@PLGA@F127 could not only promote "repair" macrophages polarization (to M2 macrophage) by day 3 after MI, but also has a long-lasting anti-inflammatory effect in the later stage of MI (28 days after MI-operation). Additionally, we proved that TPL@PLGA@F127 could attenuate the toxicity of TPL by releasing it more slowly and stably. Finally, we observed the long-term effects of TPL@PLGA@F127 on MI and found that it could improve cardiac function, depress the myocardial fibrosis and protect the cardiomyocytes. In summary, this study indicated that TPL@PLGA@F127 could not only enhance the therapeutic effects of TPL on MI, but also attenuate the hepatotoxicity and nephrotoxicity, which established a strong foundation for the clinical application of TPL for MI.
Collapse
Affiliation(s)
- Kun Wang
- Department of Nuclear Medicine, Shanghai East Hospital, School of medicine, Tongji University, Shanghai, 200120, China
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Hubei Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ke Zhu
- Department of Nuclear Medicine, The First People's Hospital of Zigong, Zigong, 643099, Sichuan, China
| | - Ziyang Zhu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Hubei Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Fuqiang Shao
- Department of Nuclear Medicine, The First People's Hospital of Zigong, Zigong, 643099, Sichuan, China
| | - Ruijie Qian
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chenyang Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Hubei Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Haiqing Dong
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yongyong Li
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zairong Gao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Hubei Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, School of medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
14
|
Bosacka A, Zienkiewicz-Strzalka M, Derylo-Marczewska A, Chrzanowska A, Blachnio M, Podkoscielna B. Physicochemical, structural, and adsorption characteristics of DMSPS- co-DVB nanopolymers. Front Chem 2023; 11:1176718. [PMID: 37448854 PMCID: PMC10338118 DOI: 10.3389/fchem.2023.1176718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of this work is the synthesis and characterization of the series of S,S'-thiodi-4,1-phenylene bis(thio-methacrylate)-co-divinylbenzene (DMSPS-co-DVB) nanomaterials. The series of new nanopolymers including three mixed systems with different ratios of DMSPS and DVB components, DMSPS-co-DVB = 1:1, DMSPS-co-DVB = 1:2, and DMSPS-co-DVB = 1:3, was synthesized in the polymerization reaction. The research task is to investigate the influence of the reaction mixture composition on morphological, textural, and structural properties of final nanosystems including size, shape, and agglomeration effect. The advanced biphasic nanomaterials enriched with thiol groups were successfully synthesized as potential sorbents for binding organic substances, heavy metals, or biomolecules. To determine the impact of the DMSPS monomer on the final properties of DMSPS-co-DVB nanocomposites, several techniques were applied to reveal the nano-dimensional structure (SAXS), texture (low-temperature nitrogen sorption), general morphology (SEM), acid-base properties (potentiometric titration), and surface chemistry and phase bonding effectiveness (FTIR/ATR spectroscopy). Finally, kinetic studies of aniline sorption on polymeric materials were performed.
Collapse
Affiliation(s)
- Alicja Bosacka
- Department of Fundamental Technologies, Faculty of Production Engineering, University of Life Sciences, Lublin, Poland
- Department of Physical Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| | - Malgorzata Zienkiewicz-Strzalka
- Department of Physical Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| | - Anna Derylo-Marczewska
- Department of Physical Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| | - Agnieszka Chrzanowska
- Department of Physical Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| | - Magdalena Blachnio
- Department of Physical Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| | - Beata Podkoscielna
- Department of Polymer Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie Skłodowska University, Lublin, Poland
| |
Collapse
|
15
|
Mahr K, Anzengruber M, Hellerschmid A, Slezacek J, Hoi H, Subbiahdoss G, Gabor F, Lendvai ÁZ. Biocompatible polymeric microparticles serve as novel and reliable vehicles for exogenous hormone manipulations in passerines. Gen Comp Endocrinol 2023; 336:114234. [PMID: 36791824 DOI: 10.1016/j.ygcen.2023.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The administration of exogenous hormones emerged as an essential tool for field studies in endocrinology. However, working with wild animals remains challenging, because under field conditions not every available method meets the necessary requirements. Achieving a sustained elevation in hormone levels, while simultaneously minimising handling time and invasiveness of the procedure is a difficult task in field endocrinology. Facing this challenge, we have investigated the suitability of biocompatible polymeric microparticles, a novel method for drug-administration, as a tool to manipulate hormones in small songbirds. We chose the insulin-like growth factor-1 (IGF-1) as target hormone, because it receives great interest from the research community due to its important role in shaping life-history traits. Moreover, its short half-life and hydrophilic properties imply a major challenge in finding a suitable method to achieve a sustained, systemic long-term release. To study the release kinetics, we injected either IGF-1 loaded polylactic-co-glycolic acid (PLGA) microparticles or dispersion medium (control group) in the skin pocket of the interscapular region of captive bearded reedlings (Panurus biarmicus). We collected blood samples for 7 consecutive days plus an additional sampling period after two weeks and complemented these with an in vitro experiment. Our results show that in vitro, PLGA microparticles allowed a stable IGF-1 release for more than 15 days, following a burst release at the beginning of the measurement. In vivo, the initial burst was followed by a drop to still elevated levels in circulating IGF-1 until the effect vanished by 16 days post-treatment. This study is the first to describe the use of PLGA-microparticles as a novel tool for exogenous hormone administration in a small passerine. We suggest that this method is highly suitable to achieve the systemic long-term release of hydrophilic hormones with short half-life and reduces overall handling time, as it requires only one subcutaneous injection.
Collapse
Affiliation(s)
- Katharina Mahr
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria.
| | - Maria Anzengruber
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Austria
| | - Anna Hellerschmid
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Julia Slezacek
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Herbert Hoi
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Guruprakash Subbiahdoss
- Institute of Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Franz Gabor
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Austria
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
16
|
Langwald SV, Ehrmann A, Sabantina L. Measuring Physical Properties of Electrospun Nanofiber Mats for Different Biomedical Applications. MEMBRANES 2023; 13:488. [PMID: 37233549 PMCID: PMC10220787 DOI: 10.3390/membranes13050488] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
Electrospun nanofiber mats are nowadays often used for biotechnological and biomedical applications, such as wound healing or tissue engineering. While most studies concentrate on their chemical and biochemical properties, the physical properties are often measured without long explanations regarding the chosen methods. Here, we give an overview of typical measurements of topological features such as porosity, pore size, fiber diameter and orientation, hydrophobic/hydrophilic properties and water uptake, mechanical and electrical properties as well as water vapor and air permeability. Besides describing typically used methods with potential modifications, we suggest some low-cost methods as alternatives in cases where special equipment is not available.
Collapse
Affiliation(s)
- Sarah Vanessa Langwald
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany;
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany;
| | - Lilia Sabantina
- Faculty of Clothing Technology and Garment Engineering, School of Culture + Design, HTW Berlin—University of Applied Sciences, 12459 Berlin, Germany
| |
Collapse
|
17
|
Villarruel LA, Brie B, Municoy S, Becú-Villalobos D, Desimone MF, Catalano PN. Silica-collagen nanoformulations with extended human growth hormone release. Int J Pharm 2023; 634:122662. [PMID: 36736675 DOI: 10.1016/j.ijpharm.2023.122662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Growth hormone deficiency has been treated by the daily administration of recombinant human growth hormone (hGH) for decades. Patient compliance to this treatment is generally incomplete due to challenges including dose frequency and lack of perceived benefits. This stimulates the research on new formulations to reduce the number of periodic administrations. In this study silica nanoparticles and silica-collagen nanocomposites were evaluated for hGH loading and release. Bare nanoparticles showed higher hGH adsorption capacity than thiol- and isobutyl-bearing particles of similar diameters. Monitoring of bound protein conformation changes indicated hGH structure retention when adsorbed on bare silica nanoparticles and suggested no alterations on protein activity. Protein-loaded particles incorporated into collagen matrices (silica-collagen nanocomposites) showed a progressive protein release profile different from the observed for hGH-loaded silica nanoparticles and hGH-loaded collagen matrices. While both the collagen and the silica nanoparticle systems reached a 100 % release after 4 and 7 days respectively, silica-collagen nanocomposites showed a bi-phasic prolonged hGH release reaching approximately an 80 % after 15 days. These findings suggest that biocompatible silica-collagen nanocomposites could be used as vehicles for the prolonged delivery of hGH which could lead to a potential reduction in the number of periodic administrations.
Collapse
Affiliation(s)
- Luis A Villarruel
- Instituto de Nanociencia y Nanotecnología (CNEA - CONICET), Nodo Constituyentes, Av. Gral.Paz 1499 (B1650KNA), San Martín, Buenos Aires, Argentina; Departamento de Micro y Nanotecnología, Gerencia de Desarrollo Tecnológico y Proyectos Especiales, Gerencia de Área de Investigación y Aplicaciones No Nucleares, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires, Argentina
| | - Belén Brie
- Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490 (C1428ADN), Buenos Aires, Argentina
| | - Sofía Municoy
- Universidad de Buenos Aires (UBA), CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junin 954 (1113), Buenos Aires, Argentina
| | - Damasia Becú-Villalobos
- Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490 (C1428ADN), Buenos Aires, Argentina
| | - Martín F Desimone
- Universidad de Buenos Aires (UBA), CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junin 954 (1113), Buenos Aires, Argentina.
| | - Paolo N Catalano
- Instituto de Nanociencia y Nanotecnología (CNEA - CONICET), Nodo Constituyentes, Av. Gral.Paz 1499 (B1650KNA), San Martín, Buenos Aires, Argentina; Departamento de Micro y Nanotecnología, Gerencia de Desarrollo Tecnológico y Proyectos Especiales, Gerencia de Área de Investigación y Aplicaciones No Nucleares, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Junin 954 (1113), Buenos Aires, Argentina.
| |
Collapse
|
18
|
Bassand C, Benabed L, Freitag J, Verin J, Siepmann F, Siepmann J. How bulk fluid renewal can affect in vitro drug release from PLGA implants: Importance of the experimental set-up. Int J Pharm X 2022; 4:100131. [PMID: 36189458 PMCID: PMC9519472 DOI: 10.1016/j.ijpx.2022.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 09/16/2022] [Indexed: 11/08/2022] Open
Abstract
The aim of this study was to better understand the potential impact of partial vs. complete renewal of the bulk fluid during drug release measurements from poly (lactic-co-glycolic acid) (PLGA)-based implants. A “standard experimental set-up”, in which the implants were directly exposed to well agitated phosphate buffer pH 7.4 was used, as well as set-ups, in which the implants were embedded within agarose hydrogels (mimicking living tissue). The gels were exposed to well agitated phosphate buffer pH 7.4. Ibuprofen-loaded implants were prepared by hot melt extrusion. The systems were thoroughly characterized before and during drug release by optical and scanning electron microscopy, gravimetric analysis, pH and solubility measurements as well as gel permeation chromatography. The bulk fluid was either completely or partially replaced by fresh medium at each sampling time point. In all cases, sink conditions were provided in the agitated bulk fluids throughout the experiments. Interestingly, the agarose set-ups did not show any noteworthy impact of the bulk fluid sampling volume on the observed drug release patterns, whereas complete fluid renewal in the “standard set-up” led to accelerated drug release. This could be explained by the considerable fragility of the implants once substantial polymer swelling set on, transforming them into PLGA gels: Complete fluid renewal caused partial disintegration and damage of the highly swollen systems, decreasing the lengths of the diffusion pathways for the drug. The mechanical stress is very much reduced at low sampling volumes, or if the implants are embedded within agarose gels. Thus, great care must be taken when defining the conditions for in vitro drug release measurements from PLGA-based implants: Once substantial system swelling sets on, the devices become highly fragile.
Collapse
|
19
|
Bassett DC, Robinson TE, Hill RJ, Grover LM, Barralet JE. Self-assembled calcium pyrophosphate nanostructures for targeted molecular delivery. BIOMATERIALS ADVANCES 2022; 140:213086. [PMID: 35988368 DOI: 10.1016/j.bioadv.2022.213086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Nanostructured, inorganic microspheres have many industrial applications, including catalysis, electronics, and particularly drug delivery, with several advantages over their organic counterparts. However, many current production methods require high energy input, use of harmful chemicals, and extensive processing. Here, the self-assembly of calcium pyrophosphate into nanofibre microspheres is reported. This process takes place at ambient temperature, with no energy input, and only salt water as a by-product. The formation of these materials is examined, as is the formation of nanotubes when the system is agitated, from initial precipitate to crystallisation. A mechanism of formation is proposed, whereby the nanofibre intermediates are formed as the system moves from kinetically favoured spheres to thermodynamically stable plates, with a corresponding increase in aspect ratio. The functionality of the nanofibre microspheres as targeted enteric drug delivery vehicles is then demonstrated in vitro and in vivo, showing that the microspheres can pass through the stomach while protecting the activity of a model protein, then release their payload in intestinal conditions.
Collapse
Affiliation(s)
- David C Bassett
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, UK
| | - Thomas E Robinson
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, UK
| | - Reghan J Hill
- Department of Chemical Engineering, McGill University, Canada
| | - Liam M Grover
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, UK.
| | | |
Collapse
|
20
|
Bassand C, Freitag J, Benabed L, Verin J, Siepmann F, Siepmann J. PLGA implants for controlled drug release: Impact of the diameter. Eur J Pharm Biopharm 2022; 177:50-60. [PMID: 35659920 DOI: 10.1016/j.ejpb.2022.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
The aim of this study was to better understand the importance of the diameter of poly(lactic-co-glycolic acid) (PLGA)-based implants on system performance, in particular the control of drug release. Different types of ibuprofen-loaded implants were prepared by hot melt extrusion using a Leistritz Nano 16 twin-screw extruder. Drug release was measured in well agitated phosphate buffer pH7.4 bulk fluid and in agarose gels in Eppendorf tubes or transwell plates. Dynamic changes in the implants' dry & wet mass, volume, polymer molecular weight as well as inner & outer morphology were monitored using gravimetric analysis, optical macroscopy, gel permeation chromatography and scanning electron microscopy. The physical states of the drug and polymer were determined by DSC. Also pH changes in the release medium were investigated. Irrespective of the type of experimental set-up, the resulting absolute and relative drug release rates decreased with increasing implant diameter (0.7 to 2.8 mm). Bi-phasic drug release was observed in all cases from the monolithic solutions (ibuprofen was dissolved in the polymer): A zero order release phase was followed by a final, rapid drug release phase (accounting for 80-90% of the total drug dose). The decrease in the relative drug release rate with increasing system diameter can be explained by the increase in the diffusion pathway lengths to be overcome. Interestingly, also the onset of the final rapid drug release phase was delayed with increasing implant diameter. This can probably be attributed to the higher mechanical stability of thicker devices, offering more resistance to substantial entire system swelling.
Collapse
Affiliation(s)
- C Bassand
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J Freitag
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - L Benabed
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J Verin
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - F Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France.
| |
Collapse
|
21
|
Bassand C, Benabed L, Verin J, Danede F, Lefol L, Willart J, Siepmann F, Siepmann J. Hot melt extruded PLGA implants loaded with ibuprofen: How heat exposure alters the physical drug state. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103432] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Journey to the Market: The Evolution of Biodegradable Drug Delivery Systems. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020935] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biodegradable polymers have been used as carriers in drug delivery systems for more than four decades. Early work used crude natural materials for particle fabrication, whereas more recent work has utilized synthetic polymers. Applications include the macroscale, the microscale, and the nanoscale. Since pioneering work in the 1960’s, an array of products that use biodegradable polymers to encapsulate the desired drug payload have been approved for human use by international regulatory agencies. The commercial success of these products has led to further research in the field aimed at bringing forward new formulation types for improved delivery of various small molecule and biologic drugs. Here, we review recent advances in the development of these materials and we provide insight on their drug delivery application. We also address payload encapsulation and drug release mechanisms from biodegradable formulations and their application in approved therapeutic products.
Collapse
|
23
|
Zhai J, Ou Z, Zhong L, Wang YE, Cao LP, Guan S. Exenatide-loaded inside-porous poly(lactic-co-glycolic acid) microspheres as a long-acting drug delivery system with improved release characteristics. Drug Deliv 2021; 27:1667-1675. [PMID: 33241694 PMCID: PMC7875555 DOI: 10.1080/10717544.2020.1850919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The glucagon-like peptide-1 receptor agonist exenatide (EXT) is an effective treatment for type 2 diabetes. However, this peptide has a short biological half-life and the delayed release characteristic of current formulations limit its clinical application. Herein, we prepared EXT-loaded inside-porous poly(d,l-lactic-co-glycolic acid (PLGA) microspheres with outside layers (EXT-PMS) using a W1/O/W2 emulsion method with a microfluidic technique and its fabrication and formulation conditions were systematically investigated. In vitro dissolution experiments showed that the PLGA concentration, proportion of drug and oil phase, and the number and size of pores strongly affected the release behaviors of EXT-PMS. In vitro, the optimized EXT-PMS with large internal pores exhibited rapid and stable release without a lag phase. In a rat model, subcutaneous administration of the product yielded plasma concentrations of EXT that was sustained for 30 days with low burst and no delayed-release effect. The preparation of inside-porous microspheres is lighting up the development of long-acting drug delivery systems for other drugs with favorable release characteristics.
Collapse
Affiliation(s)
- Junqiu Zhai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhanlun Ou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liuting Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu-E Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Ping Cao
- Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Shenzhen, China
| | - Shixia Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
24
|
Smart gating porous particles as new carriers for drug delivery. Adv Drug Deliv Rev 2021; 174:425-446. [PMID: 33930490 DOI: 10.1016/j.addr.2021.04.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
The design of smart drug delivery carriers has recently attracted great attention in the biomedical field. Smart carriers can specifically respond to physical and chemical changes in their environment, such as temperature, photoirradiation, ultrasound, magnetic field, pH, redox species, and biomolecules. This review summarizes recent advances in the integration of porous particles and stimuli-responsive gatekeepers for effective drug delivery. Their unique structural properties play an important role in facilitating the diffusion of drug molecules and cell attachment. Various techniques for fabricating porous materials, with their major advantages and limitations, are summarized. Smart gatekeepers provide advanced functions such as "open-close" switching by functionalized stimuli-responsive polymers on a particle's pores. These controlled delivery systems enable drugs to be targeted at specific rates, time programs, and sites of the human body. The gate structures, gating mechanisms, and controlled release mechanisms of each trigger are detailed. Current ongoing research and future trends in targeted drug delivery, tissue engineering, and regenerative medicine applications are highlighted.
Collapse
|
25
|
Novel stand-alone PVA mixed matrix membranes conjugated with graphene oxide for highly improved reverse osmosis performance. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Surface modification strategies for high-dose dry powder inhalers. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00529-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Zhang H, Jin Y, Chi C, Han G, Jiang W, Wang Z, Cheng H, Zhang C, Wang G, Sun C, Chen Y, Xi Y, Liu M, Gao X, Lin X, Lv L, Zhou J, Ding Y. Sponge particulates for biomedical applications: Biofunctionalization, multi-drug shielding, and theranostic applications. Biomaterials 2021; 273:120824. [PMID: 33894401 DOI: 10.1016/j.biomaterials.2021.120824] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/04/2021] [Accepted: 04/11/2021] [Indexed: 12/29/2022]
Abstract
Sponge particulates have attracted enormous attention in biomedical applications for superior properties, including large porosity, elastic deformation, capillary action, and three-dimensional (3D) reaction environment. Especially, the tiny porous structures make sponge particulates a promising platform for drug delivery, tissue engineering, anti-infection, and wound healing by providing abundant reservoirs of broad surface and internal network for cargo shielding and shuttling. To control the sponge-like morphology and improve the diversity of drug loading, some optimized preparation techniques of sponge particulates have been developed, contributing to the simplified preparation process and improved production reproducibility. Bio-functionalized strategies, including target modification, cell membrane camouflage, and hydrogel of sponge particulates have been applied to modulate the properties, improve the performance, and extend the applications. In this review, we highlight the unique physical properties and functions, current manufacturing techniques, and an overview of spongy particulates in biomedical applications, especially in inhibition of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity. Moreover, the current challenges and prospects of sponge particulates are discussed rationally, providing an insight into developing vibrant fields of sponge particulates-based biomedicine.
Collapse
Affiliation(s)
- Huaqing Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Jin
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Cheng Chi
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Guochen Han
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Wenxin Jiang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Zhen Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Hao Cheng
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Chenshuang Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Gang Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Chenhua Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Yun Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Yilong Xi
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Mengting Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Xie Gao
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Xiujun Lin
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Lingyu Lv
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Jianping Zhou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China.
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China.
| |
Collapse
|
28
|
Kang J, Cai Y, Wu Z, Wang S, Yuan WE. Self-Encapsulation of Biomacromolecule Drugs in Porous Microscaffolds with Aqueous Two-Phase Systems. Pharmaceutics 2021; 13:pharmaceutics13030426. [PMID: 33809930 PMCID: PMC8004099 DOI: 10.3390/pharmaceutics13030426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
At present, the most commonly used methods of microencapsulation of protein drugs such as spray drying, multiple emulsification, and phase separation, can easily cause the problem of protein instability, which leads to low bioavailability and uncontrolled release of protein drugs. Herein, a novel method to encapsulate protein drugs into porous microscaffolds effectively and stably was described. Ammonium hydrogen carbonate (NH4HCO3) was employed to prepare porous microscaffolds. α-Amylase was encapsulated into the porous microscaffolds without denaturing conditions by an aqueous two-phase system (PEG/Sulfate). The pores were closed by heating above the glass transition temperature to achieve a sustained release of microscaffolds. The pore-closed microscaffolds were characterized and released in vitro. The integrity and activity of protein drugs were investigated to verify that this method was friendly to protein drugs. Results showed that the pores were successfully closed and a high loading amount of 9.67 ± 6.28% (w/w) was achieved. The pore-closed microscaffolds released more than two weeks without initial burst, and a high relative activity (92% compared with native one) of protein demonstrated the feasibility of this method for protein drug encapsulation and delivery.
Collapse
|
29
|
The Role of Epigenetic Functionalization of Implants and Biomaterials in Osseointegration and Bone Regeneration-A Review. Molecules 2020; 25:molecules25245879. [PMID: 33322654 PMCID: PMC7763898 DOI: 10.3390/molecules25245879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
The contribution of epigenetic mechanisms as a potential treatment model has been observed in cancer and autoimmune/inflammatory diseases. This review aims to put forward the epigenetic mechanisms as a promising strategy in implant surface functionalization and modification of biomaterials, to promote better osseointegration and bone regeneration, and could be applicable for alveolar bone regeneration and osseointegration in the future. Materials and Methods: Electronic and manual searches of the literature in PubMed, MEDLINE, and EMBASE were conducted, using a specific search strategy limited to publications in the last 5 years to identify preclinical studies in order to address the following focused questions: (i) Which, if any, are the epigenetic mechanisms used to functionalize implant surfaces to achieve better osseointegration? (ii) Which, if any, are the epigenetic mechanisms used to functionalize biomaterials to achieve better tissue regeneration? Findings from several studies have emphasized the role of miRNAs in functionalizing implants surfaces and biomaterials to promote osseointegration and bone regeneration, respectively. However, there are scarce data on the role of DNA methylation and histone modifications for these specific applications, despite being commonly applied in cancer research. Studies over the past few years have demonstrated that biomaterials are immunomodulatory rather than inert materials. In this context, epigenetics can act as next generation of advanced treatment tools for future regenerative techniques. Yet, there is a need to evaluate the efficacy/cost effectiveness of these techniques in comparison to current standards of care.
Collapse
|
30
|
Lagreca E, Onesto V, Di Natale C, La Manna S, Netti PA, Vecchione R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog Biomater 2020; 9:153-174. [PMID: 33058072 PMCID: PMC7718366 DOI: 10.1007/s40204-020-00139-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Polymeric microparticles (MPs) are recognized as very popular carriers to increase the bioavailability and bio-distribution of both lipophilic and hydrophilic drugs. Among different kinds of polymers, poly-(lactic-co-glycolic acid) (PLGA) is one of the most accepted materials for this purpose, because of its biodegradability (due to the presence of ester linkages that are degraded by hydrolysis in aqueous environments) and safety (PLGA is a Food and Drug Administration (FDA)-approved compound). Moreover, its biodegradability depends on the number of glycolide units present in the structure, indeed, lower glycol content results in an increased degradation time and conversely a higher monomer unit number results in a decreased time. Due to this feature, it is possible to design and fabricate MPs with a programmable and time-controlled drug release. Many approaches and procedures can be used to prepare MPs. The chosen fabrication methodology influences size, stability, entrapment efficiency, and MPs release kinetics. For example, lipophilic drugs as chemotherapeutic agents (doxorubicin), anti-inflammatory non-steroidal (indomethacin), and nutraceuticals (curcumin) were successfully encapsulated in MPs prepared by single emulsion technique, while water-soluble compounds, such as aptamer, peptides and proteins, involved the use of double emulsion systems to provide a hydrophilic compartment and prevent molecular degradation. The purpose of this review is to provide an overview about the preparation and characterization of drug-loaded PLGA MPs obtained by single, double emulsion and microfluidic techniques, and their current applications in the pharmaceutical industry.Graphic abstract.
Collapse
Affiliation(s)
- Elena Lagreca
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Valentina Onesto
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Concetta Di Natale
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy.
| | - Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy.
| |
Collapse
|
31
|
Zhou Y, Niu B, Wu B, Luo S, Fu J, Zhao Y, Quan G, Pan X, Wu C. A homogenous nanoporous pulmonary drug delivery system based on metal-organic frameworks with fine aerosolization performance and good compatibility. Acta Pharm Sin B 2020; 10:2404-2416. [PMID: 33354510 PMCID: PMC7745127 DOI: 10.1016/j.apsb.2020.07.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/24/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
Pulmonary drug delivery has attracted increasing attention in biomedicine, and porous particles can effectively enhance the aerosolization performance and bioavailability of drugs. However, the existing methods for preparing porous particles using porogens have several drawbacks, such as the inhomogeneous and uncontrollable pores, drug leakage, and high risk of fragmentation. In this study, a series of cyclodextrin-based metal-organic framework (CD-MOF) particles containing homogenous nanopores were delicately engineered without porogens. Compared with commercial inhalation carrier, CD-MOF showed excellent aerosolization performance because of the homogenous nanoporous structure. The great biocompatibility of CD-MOF in pulmonary delivery was also confirmed by a series of experiments, including cytotoxicity assay, hemolysis ratio test, lung function evaluation, in vivo lung injury markers measurement, and histological analysis. The results of ex vivo fluorescence imaging showed the high deposition rate of CD-MOF in lungs. Therefore, all results demonstrated that CD-MOF was a promising carrier for pulmonary drug delivery. This study may throw light on the nanoporous particles for effective pulmonary administration.
Collapse
Key Words
- ANOVA, analysis of variance
- BALF, bronchoalveolar lavage fluid
- BET, Brunauer–Emmett–Teller
- CCK-8, cell counting kit-8
- CD-MOF, cyclodextrin-based metal-organic framework
- CD-MOF-K, ketoprofen-loaded cyclodextrin-based metal-organic framework
- CD-MOF-R, rhodamine B-loaded cyclodextrin-based metal-organic framework
- CF, commercial formulation
- CTAB, cetyl trimethyl ammonium bromide
- Cdyn, dynamic lung compliance
- DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
- FBS, fetal bovine serum
- FDA, U.S. Food and Drug Administration
- FPF, fine particle fraction
- GSD, geometric standard deviation
- HE, Hematoxylin-Eosin
- HPLC, high performance liquid chromatography
- Inhalable dry powder
- LDH, lactate dehydrogenase
- LPS, lipopolysaccharide
- MFI, mean fluorescence intensity
- MMAD, mean mass aerodynamic diameter
- MOF, metal-organic framework
- Metal-organic framework
- NGI, next generation pharmaceutical impactor
- Nanoporous particle
- PBS, phosphate buffered solution
- PVP, poly(vinyl pyrrolidone)
- PXRD, powder X-ray diffraction
- Pulmonary drug delivery
- Rl, lung resistance
- SD rat, Sprague–Dawley rat
- SEM, scanning electron microscopy
- SLF, simulated lung fluid
- γ-CD, γ-cyclodextrin
Collapse
|
32
|
He T, Jokerst JV. Structured micro/nano materials synthesized via electrospray: a review. Biomater Sci 2020; 8:5555-5573. [PMID: 32985632 DOI: 10.1039/d0bm01313g] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The development of synthetic methods for micro/nano materials with precisely controlled structures, morphologies, and local compositions is of great importance for the advancement of modern nanotechnology. The electrospray method is a "platform" approach for the preparation of a broad range of micro-/nanostructures; electrospray is simple and scalable. This review summarizes recent research on the micro-/nanostructures prepared via the electrospray route. These include spherical structures (e.g. simple, porous, Janus, and core-shell particles), non-spherical structures (e.g. red blood cell-like and spindle-like particles, multi-compartment microrods, 2D holey nanosheets, and nanopyramids), and assembled structures. The experimental details, underlying physical/chemical principles, and key benefits of these structures are comprehensively discussed. The effects and importance of nozzle design, properties of feeding solutions (e.g. concentration of solute, polymer additives, solvent/nonsolvent combinations), working environment (e.g. temperature and humidity), and types of collection media are highlighted.
Collapse
Affiliation(s)
- Tengyu He
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
33
|
Diana JN, Tao Y, Du Q, Wang M, Kumar CU, Wu F, Jin T. PLGA Microspheres of hGH of Preserved Native State Prepared Using a Self-Regulated Process. Pharmaceutics 2020; 12:pharmaceutics12070683. [PMID: 32698347 PMCID: PMC7408169 DOI: 10.3390/pharmaceutics12070683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 11/18/2022] Open
Abstract
The challenges of formulating recombinant human growth hormone (rhGH) into sustained-release polymeric microspheres include two mutual causal factors, protein denaturing by the formulation process and severe initial burst release related with relative high dose. The stabilizers to protect the proteins must not evoke osmotic pressure inside the microspheres, and the contact of the protein with the interface between water and organic solution of the polymer must be minimized. To meet these criteria, rhGH was pre-formulated into polysaccharide particles via an aqueous–aqueous emulsion in the present study, followed by encapsulating the particles into microspheres through a self-regulated process to minimize the contact of the protein with the water–oil interface. Polysaccharides as the protein stabilizer did not evoke osmotic pressure as small sugar stabilizers, the cause of severe initial burst release. Reduced initial burst enabled reduced protein loading to 9% (from 22% of the once commercialized Nutropin depot), which in turn reduced the dosage form index from 80 to 8.7 and eased the initial burst. A series of physical chemical characterizations as well as biologic and pharmacokinetic assays confirmed that the present method is practically feasible for preparing microspheres of proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tuo Jin
- Correspondence: ; Tel.: +86-21-342-04-695
| |
Collapse
|
34
|
Uman S, Dhand A, Burdick JA. Recent advances in shear‐thinning and self‐healing hydrogels for biomedical applications. J Appl Polym Sci 2020. [DOI: 10.1002/app.48668] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Selen Uman
- Department of BioengineeringUniversity of Pennsylvania Philadelphia Pennsylvania 19104
| | - Abhishek Dhand
- Department of Chemical and Biomolecular EngineeringUniversity of Pennsylvania Philadelphia Pennsylvania 19104
| | - Jason A. Burdick
- Department of BioengineeringUniversity of Pennsylvania Philadelphia Pennsylvania 19104
| |
Collapse
|
35
|
Miller BS, Velazquez E, Yuen KCJ. Long-Acting Growth Hormone Preparations - Current Status and Future Considerations. J Clin Endocrinol Metab 2020; 105:5611083. [PMID: 31676901 PMCID: PMC7755139 DOI: 10.1210/clinem/dgz149] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022]
Abstract
CONTEXT Long-acting GH (LAGH) preparations are currently being developed in an attempt to improve adherence. The profile of GH action following administration of LAGH raises practical questions about clinical monitoring and long-term safety and efficacy of these new therapeutic agents. METHODS Recent literature and meeting proceedings regarding LAGH preparations are reviewed. RESULTS Multiple LAGH preparations are currently at various stages of development, allowing for decreased GH injection frequency from daily to weekly, biweekly, or monthly. Following administration of LAGH, the serum peak and trough GH and IGF-I levels vary depending upon the mechanism used to prolong GH action. Randomized, controlled clinical trials of some LAGH preparations have reported non-inferiority compared with daily recombinant human GH (rhGH) for improved growth velocity and body composition in children and adults with GH deficiency (GHD), respectively. No significant LAGH-related adverse events have been reported during short-term therapy. CONCLUSION Multiple LAGH preparations are proceeding through clinical development with some showing promising evidence of short-term clinical efficacy and safety in children and adults with GHD. The relationship of transient elevations of GH and IGF-I following administration of LAGH to efficacy and safety remain to be elucidated. For LAGH to replace daily rhGH in the treatment of individuals with GHD, a number of practical questions need to be addressed including methods of dose adjustment, timing of monitoring of IGF-I, safety, efficacy, and cost-effectiveness. Long-term surveillance of efficacy and safety of LAGH preparations will be needed to answer these clinically relevant questions.
Collapse
Affiliation(s)
- Bradley S Miller
- Division of Endocrinology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
- Correspondence and Reprint Requests: Bradley S. Miller, MD, PhD, 8952D, MB671 East Bldg, Division of Endocrinology, Department of Pediatrics, University of Minnesota, 2450 Riverside Avenue, Minneapolis, MN 55454. E-mail:
| | - Eric Velazquez
- Division of Endocrinology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Kevin C J Yuen
- Departments of Neuroendocrinology and Neurosurgery, Barrow Pituitary Center, Barrow Neurological Institute, University of Arizona College of Medicine, Phoenix, Arizona
| |
Collapse
|
36
|
Kim D, Han TH, Hong SC, Park SJ, Lee YH, Kim H, Park M, Lee J. PLGA Microspheres with Alginate-Coated Large Pores for the Formulation of an Injectable Depot of Donepezil Hydrochloride. Pharmaceutics 2020; 12:E311. [PMID: 32244736 PMCID: PMC7238133 DOI: 10.3390/pharmaceutics12040311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 11/25/2022] Open
Abstract
As the main symptom of Alzheimer's disease-related dementia is memory loss, patient compliance for donepezil hydrochloride (donepezil), administered as once-daily oral formulations, is poor. Thus, we aimed to design poly(lactic-co-glycolic acid) (PLGA) microspheres (MS) with alginate-coated large pores as an injectable depot of donepezil exhibiting sustained release over 2-3 weeks. The PLGA MS with large pores could provide large space for loading drugs with high loading capacity, and thereby sufficient amounts of drugs were considered to be delivered with minimal use of PLGA MS being injected. However, initial burst release of donepezil from the porous PLGA MS was observed. To reduce this initial burst release, the surface pores were closed with calcium alginate coating using a spray-ionotropic gelation method. The final pore-closed PLGA MS showed in vitro sustained release for approximately 3 weeks, and the initial burst release was remarkably decreased by the calcium alginate coating. In the prediction of plasma drug concentration profiles using convolution method, the mean residence time of the pore-closed PLGA MS was 2.7-fold longer than that of the porous PLGA MS. Therefore, our results reveal that our pore-closed PLGA MS formulation is a promising candidate for the treatment of dementia with high patient compliance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jaehwi Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (D.K.); (T.H.H.); (S.-C.H.); (S.J.P.); (Y.H.L.); (H.K.); (M.P.)
| |
Collapse
|
37
|
Li Y, Kohane DS. Microparticles. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Efficient and prolonged antibacterial activity from porous PLGA microparticles and their application in food preservation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110496. [PMID: 31923956 DOI: 10.1016/j.msec.2019.110496] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/14/2019] [Accepted: 11/26/2019] [Indexed: 12/28/2022]
Abstract
Simple addition of a minute quantity of non-toxic mustard oil in water/oil/water (W/O/W) double emulsion led to a porous morphology at the surface as well as in the interior of the biodegradable PLGA (Poly(l-lactide-co-glycolide)) microparticles. An attempt was made to understand the mechanism of pore formation by analyzing optical micrographs and SEM images in addition to solution viscosity of organic phase and interfacial tension values between organic and aqueous phases. The origin of surface porosity was thought to come from the inclusion of inner water droplet, stabilized by heteroaggregation of mustard oil and PLGA chains along with PVA (polyvinyl alcohol), to the solidifying polymer skin. The surface pores did not arise in absence of mustard oil. The encapsulation and release of antibacterial active (benzoic acid) from porous PLGA particles was studied in PBS buffer (pH 7) at 37 °C for 60 days. The release profiles were well-controlled in nature, and found to be influenced by surface porosity of the particles that can be manipulated by varying the amount of mustard oil. The release mechanism can well be explained with the help of power law model. Strikingly, in liquid medium, porous particles were found completely suppressing the growth of Escherichia coli and Staphylococcus aureus for a prolonged period of 60 days. The strong antimicrobial activity (100% inhibition of bacterial growth) in porous particles can be linked to the enhanced surface area due to the formation of micro/nano pores which accelerate the hydrolytic degradation of PLGA to release lactic acid/glycolic acid (antibacterial) in addition to encapsulated antibacterial (benzoic acid). In a food model system, the shelf life of the water melon juice was also found to be enhanced by suppressing the growth of the natural microbes in comparison to control.
Collapse
|
39
|
Liu J, Xu Y, Liu Z, Ren H, Meng Z, Liu K, Liu Z, Yong J, Wang Y, Li X. A modified hydrophobic ion-pairing complex strategy for long-term peptide delivery with high drug encapsulation and reduced burst release from PLGA microspheres. Eur J Pharm Biopharm 2019; 144:217-229. [DOI: 10.1016/j.ejpb.2019.09.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/26/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022]
|
40
|
Cheng F, Su T, Pu Y, Gao W, He B. Polymer Structure‐Guided Self‐Assisted Preparation of Poly(ester‐thioether)‐Based Hollow Porous Microspheres and Hierarchically Interconnected Microcages for Drug Release. Macromol Biosci 2019; 19:e1900171. [DOI: 10.1002/mabi.201900171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/27/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Furong Cheng
- National Engineering Research Center for BiomaterialsSichuan University Wangjiang Road 29 Chengdu 610064 China
| | - Ting Su
- Center for Translational MedicineThe First Affiliated HospitalSun Yat‐sen University Guangzhou 510080 China
| | - Yuji Pu
- National Engineering Research Center for BiomaterialsSichuan University Wangjiang Road 29 Chengdu 610064 China
| | - Wenxia Gao
- College of Chemistry & Materials EngineeringWenzhou University Wenzhou 325027 China
| | - Bin He
- National Engineering Research Center for BiomaterialsSichuan University Wangjiang Road 29 Chengdu 610064 China
| |
Collapse
|
41
|
Baek J, Lee E, Lotz MK, D'Lima DD. Bioactive proteins delivery through core-shell nanofibers for meniscal tissue regeneration. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 23:102090. [PMID: 31493556 DOI: 10.1016/j.nano.2019.102090] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/07/2019] [Accepted: 08/27/2019] [Indexed: 12/29/2022]
Abstract
Mimicking the ultrastructural morphology of the meniscus with nanofiber scaffolds, coupled with controlled growth-factor delivery to the appropriate cells, can help engineer tissue with the potential to grow, mature, and regenerate after in vivo implantation. We electrospun nanofibers encapsulating platelet-derived growth factor (PDGF-BB), which is a potent mitogen and chemoattractant in a core of serum albumin contained within a shell of polylactic acid. We controlled the local PDGF-BB release by adding water-soluble polyethylene glycol to the polylactic acid shell to serve as a porogen. The novel core-shell nanofibers generated 3D scaffolds with an interconnected macroporous structure, with appropriate mechanical properties and with high cell compatibility. Incorporating PDGF-BB increased cell viability, proliferation, and infiltration, and upregulated key genes involved in meniscal extracellular matrix synthesis in human meniscal and synovial cells. Our results support proof of concept that these core-shell nanofibers can create a cell-favorable nanoenvironment and can serve as a system for sustained release of bioactive factors.
Collapse
Affiliation(s)
- Jihye Baek
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA; Department of Molecular Medicine, Scripps Research, La Jolla, CA.
| | - Emily Lee
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA; Department of Molecular Medicine, Scripps Research, La Jolla, CA.
| | - Martin K Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, CA.
| | - Darryl D D'Lima
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA; Department of Molecular Medicine, Scripps Research, La Jolla, CA.
| |
Collapse
|
42
|
Wasim M, Sabir A, Shafiq M, Khan RU. Fractionation of direct dyes using modified vapor grown carbon nanofibers and zirconia in cellulose acetate blend membranes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 677:194-204. [PMID: 31055100 DOI: 10.1016/j.scitotenv.2019.04.351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
In the textile industry, membrane technology has been widely employed for the exclusion of direct dyes. In this research paper, firstly vapor grown carbon nanofibers (VGCNFs) were functionalized with carboxylates group via piranha oxidation, and then series of CA/PEO-PPO-PEO triblock copolymers were prepared by blending with varying weight percentages of modified VGCNFs and Zirconia (ZrO2). The structural morphologies of membranes were visualized by scanning electron microscope (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM), which exhibits the dispersity of dual fillers in polymer matrix thus improving the microstructure of resultant membranes. The experimental data indicates that the modified VGCNF and ZrO2 nanoparticles were shown increase hydrophilic character. The direct dyes rejection were successfully after filler addition, which were 96% (for Direct Red), 99% (for Direct Blue) and 93% (for Direct Orange). The membranes showed a better antifouling property even after several washing cycles along with improved biofouling property, both of these properties showed a better membrane life. As an outcome, this research could have been a great potential to be used to treat dyes in textile industry.
Collapse
Affiliation(s)
- Maria Wasim
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore 54590, Pakistan.
| | - Aneela Sabir
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Shafiq
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore 54590, Pakistan
| | - Rafi Ullah Khan
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
43
|
A facile way for development of three-dimensional localized drug delivery system for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110032. [PMID: 31546347 DOI: 10.1016/j.msec.2019.110032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/17/2019] [Accepted: 07/29/2019] [Indexed: 12/18/2022]
Abstract
Removing malignant bone tumors results in critical size bone defects. These voids in bones should be filled by a proper scaffold that not only can support cell ingrowth and bone regeneration but also it has to show a desirable ability in long-term releasing anticancer drugs in order to prevent the growth of remaining cancer cells. Applying this scaffold can significantly improve the outcome of bone tumors treatment. In this study, a novel way is proposed for immobilization of doxorubicin (DOX)-loaded polycaproloactone (PCL) microparticles on the hardystonite (HT) scaffold surfaces. High interconnected porous HT scaffolds with immobilized DOX-encapsulated PCL microparticles can be successfully fabricated by modified water/oil/water method. In the present work, we verify a slow release of DOX over 30 days from PCL microparticles inside HT scaffold. Our developed HT scaffolds with the long-term release of DOX are more effective in reduction of Saos-2 cancer cells viability and induce higher degrees of apoptosis compared to DOX dip coated HT scaffolds. Encapsulating DOX into PCL microparticles significantly improves the anti-tumor activity of DOX by regulating the expression of apoptosis-related genes. Our results suggest that by immobilization of polymeric vehicles on the ceramic scaffold for controlled drug release, we can achieve high efficiency in apoptosis of cancer cells.
Collapse
|
44
|
Qi P, Bu R, Zhang H, Yin J, Chen J, Zhang A, Gou J, Yin T, Zhang Y, He H, Wang P, Tang X, Wang Y. Goserelin Acetate Loaded Poloxamer Hydrogel in PLGA Microspheres: Core–Shell Di-Depot Intramuscular Sustained Release Delivery System. Mol Pharm 2019; 16:3502-3513. [PMID: 31251642 DOI: 10.1021/acs.molpharmaceut.9b00344] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Puxiu Wang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | | | | |
Collapse
|
45
|
Plisko T, Penkova A, Burts K, Bildyukevich A, Dmitrenko M, Melnikova G, Atta R, Mazur A, Zolotarev A, Missyul A. Effect of Pluronic F127 on porous and dense membrane structure formation via non-solvent induced and evaporation induced phase separation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Gou S, Del Rio-Sancho S, Singhal M, Laubach HJ, Kalia YN. Er:YAG fractional laser ablation for cutaneous co-delivery of pentoxifylline and d-α-tocopherol succinate: A new approach for topical treatment of radiation-induced skin fibrosis. Eur J Pharm Sci 2019; 135:22-31. [PMID: 31078643 DOI: 10.1016/j.ejps.2019.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 11/30/2022]
Abstract
Radiation induced fibrosis is a common side-effect after radiotherapy. Pentoxifylline is reported to reverse radiation injuries when used in conjunction with D-α-tocopherol. However, pentoxifylline has a short half-life, limited oral bioavailability, and induces several systemic adverse effects. The objective of this study was to investigate the feasibility of using Er:YAG fractional laser ablation to enable simultaneous cutaneous delivery of pentoxifylline and D- α -tocopherol succinate from poly(lactide-co-glycolide) microparticles prepared using the freeze-fracture technique. In vitro release experiments demonstrated the different release profiles of the two molecules, which were influenced by their very different lipophilicities and aqueous solubilities. Experiments were then performed to investigate the effect of laser fluence on pore depth and so determine the pore volume available to host the topically applied microparticles. Application of the pentoxifylline and D-α-tocopherol succinate containing microparticles, prepared with RESOMER® RG 502H, to laser porated skin for 48 h, resulted in simultaneous delivery of pentoxifylline (69.63 ± 6.41 μg/cm2; delivery efficiency 46.4%) and D-α-tocopherol succinate (33.25 ± 8.91 μg/cm2; delivery efficiency 22.2%). After deposition into the micropores, the poly(lactide-co-glycolide) microparticles containing pentoxifylline and D-α-tocopherol succinate could serve as an intraepidermal depot to enable sustained drug delivery after micropore closure and thereby reduce the need for repeated microporation.
Collapse
Affiliation(s)
- Si Gou
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, 1211 Geneva, Switzerland
| | - Sergio Del Rio-Sancho
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, 1211 Geneva, Switzerland
| | - Mayank Singhal
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, 1211 Geneva, Switzerland
| | - Hans-Joachim Laubach
- Division of Dermatology, Geneva University Hospital, 1205 Geneva, Switzerland; Centre Laser MD, 8 Rue de Londres, 67000 Strasbourg, France
| | - Yogeshvar N Kalia
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, 1211 Geneva, Switzerland.
| |
Collapse
|
47
|
Xu X, Gu Z, Chen X, Shi C, Liu C, Liu M, Wang L, Sun M, Zhang K, Liu Q, Shen Y, Lin C, Yang B, Sun H. An injectable and thermosensitive hydrogel: Promoting periodontal regeneration by controlled-release of aspirin and erythropoietin. Acta Biomater 2019; 86:235-246. [PMID: 30611793 DOI: 10.1016/j.actbio.2019.01.001] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/18/2022]
Abstract
Periodontitis is an inflammatory disease induced by complex interactions between host immune system and plaque microorganism. Alveolar bone resorption caused by periodontitis is considered to be one of the main reasons for tooth loss in adults. To terminate the alveolar bone resorption, simultaneous anti-inflammation and periodontium regeneration is required, which has not appeared in the existing methods. In this study, chitosan (CS), β-sodium glycerophosphate (β-GP), and gelatin were used to prepare an injectable and thermosensitive hydrogel, which could continuously release aspirin and erythropoietin (EPO) to exert pharmacological effects of anti-inflammation and tissue regeneration, respectively. The releasing profile showed that aspirin and EPO could be continuously released from the hydrogels, which exhibited no toxicity both in vitro and in vivo, for at least 21 days. Immunohistochemistry staining and micro-CT analyses indicated that administration of CS/β-GP/gelatin hydrogels loaded with aspirin/EPO could terminate the inflammation and recover the height of the alveolar bone, which is further confirmed by histological observations. Our results suggested that CS/β-GP/gelatin hydrogels are easily prepared as drug-loading vectors with excellent biocompatibility, and the CS/β-GP/gelatin hydrogels loaded with aspirin/EPO are quite effective in anti-inflammation and periodontium regeneration, which provides a great potential candidate for periodontitis treatment in the dental clinic. Statement of Significance To terminate the alveolar bone resorption caused by periodontitis, simultaneous anti-inflammation and periodontium regeneration is required, which has not appeared in the existing methods. Here, (1) the chitosan (CS)/β-sodium glycerophosphate/gelatin hydrogels loaded with aspirin/erythropoietin (EPO) can form at body temperature in 5 min with excellent biocompatibility in vitro and in vivo; (2) The faster release of aspirin than EPO in the early stage is beneficial for anti-inflammation and provides a microenvironment for ensuring the regeneration function of EPO in the following step. In vivo experiments revealed that the hydrogels are effective in the control of inflammation and regeneration of the periodontium. These results indicate that our synthesized hydrogels have a great potential in the future clinical application.
Collapse
|
48
|
Biodegradable and Porous Poly(lactic-co-glycolic acid) Microbeads for In vitro Evaluation of Negatively Charged Fluorescent Bacteria. Macromol Res 2019. [DOI: 10.1007/s13233-019-7104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Matsumoto K, Kimura SI, Noguchi S, Itai S, Kondo H, Iwao Y. Mechanism of Drug Release From Temperature-Sensitive Formulations Composed of Low-Melting-Point Microcrystalline Wax. J Pharm Sci 2019; 108:2086-2093. [PMID: 30677420 DOI: 10.1016/j.xphs.2019.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 11/15/2022]
Abstract
It was reported that wax matrix (WM) particles composed of low-melting-point microcrystalline wax showed unique release behaviors; the particles released only a small amount of the entrapped drug (non-diffusion-controlled release) at 37°C, whereas it showed comparatively fast drug release in a diffusion-controlled manner at 25°C. However, the mechanism of the drug release is still unclear. The objective of this study was to determine the mechanism of drug release from the WM particles using X-ray computed tomography. In the WM particles collected during dissolution tests at 25°C, the void space derived from drug release increased with increasing time, and there was no change in the structure, indicating that the WM particles released drug while maintaining the particle shape at 25°C. In the WM particles collected during dissolution tests at 37°C, the void space was confirmed at initial time point; however, at subsequent time points, the void space was disappeared, and the roughness of the surface was evident. This structural change may have blocked the conveyance pathway of the outer medium, which would inhibit the drug release. The difference between the drug-release mechanisms of the WM particles at the 2 temperatures will be valuable for developing cooling-triggered, temperature-sensitive formulations.
Collapse
Affiliation(s)
- Kohei Matsumoto
- Department of Pharmaceutical Engineering and Drug Delivery Science, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Shin-Ichiro Kimura
- Department of Pharmaceutical Engineering and Drug Delivery Science, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Shuji Noguchi
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Shigeru Itai
- Department of Pharmaceutical Engineering and Drug Delivery Science, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Hiromu Kondo
- Department of Pharmaceutical Engineering and Drug Delivery Science, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yasunori Iwao
- Department of Pharmaceutical Engineering and Drug Delivery Science, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
50
|
Son HY, Koo BI, Lee JB, Kim KR, Kim W, Jang J, Yoon MS, Cho JW, Nam YS. Tannin-Titanium Oxide Multilayer as a Photochemically Suppressed Ultraviolet Filter. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27344-27354. [PMID: 30039969 DOI: 10.1021/acsami.8b09200] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
UV filters can initiate redox reactions of oxygen and water when exposed to sunlight, generating reactive oxygen species (ROS) that deteriorate the products containing them and cause biological damages. This photochemical reactivity originates from the high chemical potential of UV filters, which also determines the optical properties desirable for sunscreen applications. We hypothesize that this dilemma can be alleviated if the photochemical pathway of UV filters is altered to coupling with redox active molecules. Here, we employ tannic acid (TA) as a key molecule for controlling the photochemical properties of titanium dioxide nanoparticles (TiO2 NPs). TA provides an unusual way for layer-by-layer assembly of TiO2 NPs by the formation of a ligand-to-metal charge transfer complex that alters the nature of UV absorption of TiO2 NPs. The galloyl moieties of TA efficiently scavenge ROS due to the stabilization of ROS by intramolecular hydrogen bonding while facilitating UV screening through direct charge injection from TA to the conduction band of TiO2. The TiO2-TA multilayers assembled in open porous polymer microspheres substantially increased sun protection while dramatically reducing ROS under UV exposure. The assembled structure exhibits excellent in vivo anti-UV skin protection against epidermal hyperplasia, inflammation, and keratinocyte apoptosis without long-term toxicity.
Collapse
Affiliation(s)
| | | | - Jun Bae Lee
- Innovation Lab , Cosmax Research & Innovation Center , 662 Sampyong-dong , Bundang-gu, Seongnam 13486 , Gyeonggi-do , Republic of Korea
| | | | - Woojin Kim
- Pathology Research Center, Department of Jeonbuk Inhalation Research , Korea Institute of Toxicology , 30 Baekhak-1-gil , Jeongup 56212 , Jeonbuk , Republic of Korea
| | - Jihui Jang
- Innovation Lab , Cosmax Research & Innovation Center , 662 Sampyong-dong , Bundang-gu, Seongnam 13486 , Gyeonggi-do , Republic of Korea
| | - Moung Seok Yoon
- Innovation Lab , Cosmax Research & Innovation Center , 662 Sampyong-dong , Bundang-gu, Seongnam 13486 , Gyeonggi-do , Republic of Korea
| | - Jae-Woo Cho
- Pathology Research Center, Department of Jeonbuk Inhalation Research , Korea Institute of Toxicology , 30 Baekhak-1-gil , Jeongup 56212 , Jeonbuk , Republic of Korea
| | | |
Collapse
|