1
|
Balde A, Kim SK, Nazeer RA. A review on microneedle patch as a delivery system for proteins/peptides and their applications in transdermal inflammation suppression. Int J Biol Macromol 2025; 307:141963. [PMID: 40086558 DOI: 10.1016/j.ijbiomac.2025.141963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Transdermal delivery is one of the most recent modes of administration studied due to several shortfalls observed for intra-venous, and oral drug administrations. Among, microneedle-based transdermal delivery is the popular choice due to non-invasive procedure and minimal toxicological effects. Microneedle devices consist of micron scaled needle patch entrapped with the target specific drug molecules. Due to body's immune response and occasional pathogen attack, various inflammatory diseases are developed such as psoriasis, dermatitis, rashes, rheumatoid arthritis, gouty arthritis, and fibrosis. These inflammatory conditions can be treated by microneedle assisted transdermal delivery. Moreover, for localized suppression of pain and inflammation, various therapeutic peptides and proteins have been investigated. Although, these therapeutic agents can show reduced activity and undergo enzymatic degradation when administered orally or intra-venously. Hence, a microneedle-based delivery system can be used as an effective way to localize these peptides/proteins and reduce the inflammation. Herein, this review includes various microneedle fabrication methods for enhancing drug delivery for suppression of inflammation. Moreover, recent development in microneedle devices of peptide and protein delivery applications are discoursed. At last, future scope and challenges endured for preparing an efficient microneedle patch for peptide and protein delivery are also elaborated.
Collapse
Affiliation(s)
- Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 11558, Gyeonggi-do, South Korea
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India.
| |
Collapse
|
2
|
Ma Y, Dong C, Kim JK, Zhu W, Wei L, Wang Y, Kang SM, Wang BZ. Impact of influenza immune imprinting on immune responses to subsequent vaccinations in mice. Vaccine 2025; 46:126670. [PMID: 39731808 PMCID: PMC11894583 DOI: 10.1016/j.vaccine.2024.126670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024]
Abstract
The immune memory imprinted during an individual's initial influenza exposure (influenza imprinting) has long-lasting effects on the host's response to subsequent influenza infections and vaccinations. Here, we investigate how different influenza virus imprinting impacts the immune responses to subunit, inactivated virus, and protein-based nanoparticle vaccines in Balb/c mice. Our results indicated a phylogenetic distance-dependent effect of influenza imprinting on subunit hemagglutinin (HA) or formalin-inactivated (FI) virus vaccine immunizations. Aichi (H3N2, group 2) HA (HA3) or FI-Aichi vaccination in mice imprinted with closely related Phili (H3N2) triggered significant Aichi-specific HAI antibody and balanced HA3-specific Th1/Th2 antibody immune responses, resulting in robust protection against Aichi. In contrast, HA3 vaccination in PR8 (H1N1, group 1) imprinted mice (PR8-2HA3) induced Th2-leaning responses comparable to those observed in mice without prior influenza immune imprinting (PBS-2HA3). However, subsequent heterosubtypic infections and vaccinations eliminated such effects on antibody subtype profiles. Nonetheless, initial virus exposure established a long-lasting capacity to produce HAI antibody responses against the imprinting strains. Moreover, Phili imprinting followed by HA3/NP nanocluster vaccination protected mice from Aichi infections and induced enhanced cross-reactive immunity. Our study highlights the significance of considering an individual's influenza exposure history when designing and evaluating the effectiveness of influenza vaccines.
Collapse
Affiliation(s)
- Yao Ma
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Joo Kyung Kim
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Wandi Zhu
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Lai Wei
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Ye Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| |
Collapse
|
3
|
Zhu W, Dong C, Wei L, Kim JK, Wang BZ. Inverted HA-EV immunization elicits stalk-specific influenza immunity and cross-protection in mice. Mol Ther 2025; 33:485-498. [PMID: 39741410 PMCID: PMC11852689 DOI: 10.1016/j.ymthe.2024.12.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/02/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Enhancing protective immunity in the respiratory tract is crucial to combat influenza infection and transmission. Developing mucosal universal influenza vaccines requires effective delivery platforms to overcome the respiratory mucosal barrier and stimulate appropriate innate immune reactions, thereby bridging adaptive immune responses with minimal necessary inflammation. Meanwhile, the vaccine platforms must be biocompatible. This study employed cell-derived extracellular vesicles (EVs) as a mucosal universal influenza vaccine platform. By conjugating influenza hemagglutinin (HA) onto EV surfaces through HA-receptor interaction, we achieved an upside-down (inverted) influenza HA configuration that exposed the conserved HA stalk region while partially hiding the globular head domain. Intranasal immunization with the resulting EVs induced robust HA stalk- and virus-specific serum antibody and mucosal immune responses in mice, protecting against heterologous virus infection. Notably, EVs derived from the lung epithelial cell line A549 induced superior cross-reactive antibodies and enhanced protection upon intranasal immunization. EVs conjugating multivalent HA elicited broadly cross-reactive antibody and cellular responses against different influenza strains. Our results demonstrated that EVs conjugating multiple inverted HAs represented an effective strategy for developing a mucosal universal influenza vaccine.
Collapse
Affiliation(s)
- Wandi Zhu
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Lai Wei
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Joo Kyung Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
4
|
Wang Z, Tong S, Niu J, Cao C, Gao A, Jiao Y, Fu Y, Li D, Pan X, Cui D, Sheng N, Yan L, Cui S, Lin S, Liu Y. Microneedles: multifunctional devices for drug delivery, body fluid extraction, and bio-sensing. NANOSCALE 2025; 17:740-773. [PMID: 39606819 DOI: 10.1039/d4nr03538k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Microneedles represent a miniaturized mechanical structure with versatile applications, including transdermal drug delivery, vaccination, body-fluid extraction, and bio-sensing. Over the past two decades, microneedle-based devices have garnered considerable attention in the biomedicine field, exhibiting the potential for mitigating patient discomfort, enhancing treatment adherence, avoiding first-pass effects, and facilitating precise therapeutic interventions. As an application-oriented technology, the innovation of microneedles is generally carried out in response to a specific demand. Currently, three most common applications of microneedles are drug delivery, fluid extraction, and bio-sensing. This review focuses on the progress in the materials, fabrication techniques, and design of microneedles in recent years. On this basis, the progress and innovation of microneedles in the current research stage are introduced in terms of their three main applications.
Collapse
Affiliation(s)
- Zhitao Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Siyu Tong
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jiaqi Niu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Cheng Cao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ang Gao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yingao Jiao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yanfei Fu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Dongxia Li
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xinni Pan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200240, P. R. China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Nengquan Sheng
- Department of General Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Li Yan
- Department of Geriatric Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Shengsheng Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yanlei Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
5
|
Bao Q, Zhang X, Hao Z, Li Q, Wu F, Wang K, Li Y, Li W, Gao H. Advances in Polysaccharide-Based Microneedle Systems for the Treatment of Ocular Diseases. NANO-MICRO LETTERS 2024; 16:268. [PMID: 39136800 PMCID: PMC11322514 DOI: 10.1007/s40820-024-01477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/06/2024] [Indexed: 08/16/2024]
Abstract
The eye, a complex organ isolated from the systemic circulation, presents significant drug delivery challenges owing to its protective mechanisms, such as the blood-retinal barrier and corneal impermeability. Conventional drug administration methods often fail to sustain therapeutic levels and may compromise patient safety and compliance. Polysaccharide-based microneedles (PSMNs) have emerged as a transformative solution for ophthalmic drug delivery. However, a comprehensive review of PSMNs in ophthalmology has not been published to date. In this review, we critically examine the synergy between polysaccharide chemistry and microneedle technology for enhancing ocular drug delivery. We provide a thorough analysis of PSMNs, summarizing the design principles, fabrication processes, and challenges addressed during fabrication, including improving patient comfort and compliance. We also describe recent advances and the performance of various PSMNs in both research and clinical scenarios. Finally, we review the current regulatory frameworks and market barriers that are relevant to the clinical and commercial advancement of PSMNs and provide a final perspective on this research area.
Collapse
Affiliation(s)
- Qingdong Bao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Xiaoting Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Zhankun Hao
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Qinghua Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Fan Wu
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Kaiyuan Wang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Yang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
| | - Wenlong Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China.
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China.
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China.
| | - Hua Gao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China.
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China.
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China.
| |
Collapse
|
6
|
Zhu W, Park J, Pho T, Wei L, Dong C, Kim J, Ma Y, Champion JA, Wang BZ. ISCOMs/MPLA-Adjuvanted SDAD Protein Nanoparticles Induce Improved Mucosal Immune Responses and Cross-Protection in Mice. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301801. [PMID: 37162451 PMCID: PMC10524461 DOI: 10.1002/smll.202301801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Indexed: 05/11/2023]
Abstract
The epidemics caused by the influenza virus are a serious threat to public health and the economy. Adding appropriate adjuvants to improve immunogenicity and finding effective mucosal vaccines to combat respiratory infection at the portal of virus entry are important strategies to boost protection. In this study, a novel type of core/shell protein nanoparticle consisting of influenza nucleoprotein (NP) as the core and NA1-M2e or NA2-M2e fusion proteins as the coating antigens by SDAD hetero-bifunctional crosslinking is exploited. Immune-stimulating complexes (ISCOMs)/monophosphoryl lipid A (MPLA) adjuvants further boost the NP/NA-M2e SDAD protein nanoparticle-induced immune responses when administered intramuscularly. The ISCOMs/MPLA-adjuvanted protein nanoparticles are delivered through the intranasal route to validate the application as mucosal vaccines. ISCOMs/MPLA-adjuvanted nanoparticles induce significantly strengthened antigen-specific antibody responses, cytokine-secreting splenocytes in the systemic compartment, and higher levels of antigen-specific IgA and IgG in the local mucosa. Meanwhile, significantly expanded lung resident memory (RM) T and B cells (TRM /BRM ) and alveolar macrophages population are observed in ISCOMs/MPLA-adjuvanted nanoparticle-immunized mice with a 100% survival rate after homogeneous and heterogeneous H3N2 viral challenges. Taken together, ISCOMs/MPLA-adjuvanted protein nanoparticles could improve strong systemic and mucosal immune responses conferring protection in different immunization routes.
Collapse
Affiliation(s)
- Wandi Zhu
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Jaeyoung Park
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Thomas Pho
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Bioengineering Program, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lai Wei
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Joo Kim
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Yao Ma
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Julie A. Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Bioengineering Program, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
7
|
Wang Y, Dong C, Ma Y, Zhu W, Gill HS, Denning TL, Kang SM, Wang BZ. Monophosphoryl lipid A-adjuvanted nucleoprotein-neuraminidase nanoparticles improve immune protection against divergent influenza viruses. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102614. [PMID: 36265560 PMCID: PMC9756393 DOI: 10.1016/j.nano.2022.102614] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Universal influenza vaccines are urgently needed to prevent recurrent influenza epidemics and inevitable pandemics. We generated double-layered protein nanoparticles incorporating two conserved influenza antigens-nucleoprotein and neuraminidase-through a two-step desolvation-crosslinking method. These protein nanoparticles displayed immunostimulatory properties to antigen-presenting cells by promoting inflammatory cytokine (IL-6 and TNF-α) secretion from JAWS II dendric cells. The nanoparticle immunization induced significant antigen-specific humoral and cellular responses, including antigen-binding and neutralizing antibodies, antibody- and cytokine (IFN-γ and IL-4)-secreting cells, and NP147-155 tetramer-specific cytotoxic T lymphocyte (CTL) responses. Co-administration of monophosphoryl lipid A (MPLA, a toll-like receptor 4 agonist) with the protein nanoparticles further improved immune responses and conferred heterologous and heterosubtypic influenza protection. The MPLA-adjuvanted nanoparticles reduced lung inflammation post-infection. The results demonstrated that the combination of MPLA and conserved protein nanoparticles could be developed into an improved universal influenza vaccine strategy.
Collapse
Affiliation(s)
- Ye Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Yao Ma
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Wandi Zhu
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Harvinder Singh Gill
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Timothy L Denning
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| |
Collapse
|
8
|
Choo JJY, McMillan CLD, Young PR, Muller DA. Microarray patches: scratching the surface of vaccine delivery. Expert Rev Vaccines 2023; 22:937-955. [PMID: 37846657 DOI: 10.1080/14760584.2023.2270598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Microneedles are emerging as a promising technology for vaccine delivery, with numerous advantages over traditional needle and syringe methods. Preclinical studies have demonstrated the effectiveness of MAPs in inducing robust immune responses over traditional needle and syringe methods, with extensive studies using vaccines targeted against different pathogens in various animal models. Critically, the clinical trials have demonstrated safety, immunogenicity, and patient acceptance for MAP-based vaccines against influenza, measles, rubella, and SARS-CoV-2. AREAS COVERED This review provides a comprehensive overview of the different types of microarray patches (MAPs) and analyses of their applications in preclinical and clinical vaccine delivery settings. This review also covers additional considerations for microneedle-based vaccination, including adjuvants that are compatible with MAPs, patient safety and factors for global vaccination campaigns. EXPERT OPINION MAP vaccine delivery can potentially be a game-changer for vaccine distribution and coverage in both high-income and low- and middle-income countries. For MAPs to reach this full potential, many critical hurdles must be overcome, such as large-scale production, regulatory compliance, and adoption by global health authorities. However, given the considerable strides made in recent years by MAP developers, it may be possible to see the first MAP-based vaccines in use within the next 5 years.
Collapse
Affiliation(s)
- Jovin J Y Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher L D McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - David A Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Skin Vaccination with Ebola Virus Glycoprotein Using a Polyphosphazene-Based Microneedle Patch Protects Mice against Lethal Challenge. J Funct Biomater 2022; 14:jfb14010016. [PMID: 36662063 PMCID: PMC9860647 DOI: 10.3390/jfb14010016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Ebolavirus (EBOV) infection in humans is a severe and often fatal disease, which demands effective interventional strategies for its prevention and treatment. The available vaccines, which are authorized under exceptional circumstances, use viral vector platforms and have serious disadvantages, such as difficulties in adapting to new virus variants, reliance on cold chain supply networks, and administration by hypodermic injection. Microneedle (MN) patches, which are made of an array of micron-scale, solid needles that painlessly penetrate into the upper layers of the skin and dissolve to deliver vaccines intradermally, simplify vaccination and can thereby increase vaccine access, especially in resource-constrained or emergency settings. The present study describes a novel MN technology, which combines EBOV glycoprotein (GP) antigen with a polyphosphazene-based immunoadjuvant and vaccine delivery system (poly[di(carboxylatophenoxy)phosphazene], PCPP). The protein-stabilizing effect of PCPP in the microfabrication process enabled preparation of a dissolvable EBOV GP MN patch vaccine with superior antigenicity compared to a non-polyphosphazene polymer-based analog. Intradermal immunization of mice with polyphosphazene-based MN patches induced strong, long-lasting antibody responses against EBOV GP, which was comparable to intramuscular injection. Moreover, mice vaccinated with the MN patches were completely protected against a lethal challenge using mouse-adapted EBOV and had no histologic lesions associated with ebolavirus disease.
Collapse
|
10
|
Euliano EM, Sklavounos AA, Wheeler AR, McHugh KJ. Translating diagnostics and drug delivery technologies to low-resource settings. Sci Transl Med 2022; 14:eabm1732. [PMID: 36223447 PMCID: PMC9716722 DOI: 10.1126/scitranslmed.abm1732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diagnostics and drug delivery technologies engineered for low-resource settings aim to meet their technical design specifications using strategies that are compatible with limited equipment, infrastructure, and operator training. Despite many preclinical successes, very few of these devices have been translated to the clinic. Here, we identify factors that contribute to the clinical success of diagnostics and drug delivery systems for low-resource settings, including the need to engage key stakeholders at an early stage, and provide recommendations for the clinical translation of future medical technologies.
Collapse
Affiliation(s)
- Erin M. Euliano
- Department of Bioengineering, Rice University; Houston, Texas 77005, USA
| | - Alexandros A. Sklavounos
- Department of Chemistry, University of Toronto; Toronto, Ontario M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto; Toronto, Ontario M5S 3E1, Canada
| | - Aaron R. Wheeler
- Department of Chemistry, University of Toronto; Toronto, Ontario M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto; Toronto, Ontario M5S 3E1, Canada
- Institute of Biomedical Engineering, University of Toronto; Toronto, Ontario M5S 3G9, Canada
| | - Kevin J. McHugh
- Department of Bioengineering, Rice University; Houston, Texas 77005, USA
| |
Collapse
|
11
|
Hassan J, Haigh C, Ahmed T, Uddin MJ, Das DB. Potential of Microneedle Systems for COVID-19 Vaccination: Current Trends and Challenges. Pharmaceutics 2022; 14:1066. [PMID: 35631652 PMCID: PMC9144974 DOI: 10.3390/pharmaceutics14051066] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
To prevent the coronavirus disease 2019 (COVID-19) pandemic and aid restoration to prepandemic normality, global mass vaccination is urgently needed. Inducing herd immunity through mass vaccination has proven to be a highly effective strategy for preventing the spread of many infectious diseases, which protects the most vulnerable population groups that are unable to develop immunity, such as people with immunodeficiencies or weakened immune systems due to underlying medical or debilitating conditions. In achieving global outreach, the maintenance of the vaccine potency, transportation, and needle waste generation become major issues. Moreover, needle phobia and vaccine hesitancy act as hurdles to successful mass vaccination. The use of dissolvable microneedles for COVID-19 vaccination could act as a major paradigm shift in attaining the desired goal to vaccinate billions in the shortest time possible. In addressing these points, we discuss the potential of the use of dissolvable microneedles for COVID-19 vaccination based on the current literature.
Collapse
Affiliation(s)
- Jasmin Hassan
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (T.A.)
| | - Charlotte Haigh
- Department of Chemical Engineering, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK;
| | - Tanvir Ahmed
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (T.A.)
| | - Md Jasim Uddin
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (T.A.)
- Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK;
| |
Collapse
|
12
|
Dong C, Wang BZ. Engineered Nanoparticulate Vaccines to Combat Recurring and Pandemic Influenza Threats. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100122. [PMID: 35754779 PMCID: PMC9231845 DOI: 10.1002/anbr.202100122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Reoccurring seasonal flu epidemics and occasional pandemics are among the most severe threats to public health. Current seasonal influenza vaccines provide limited protection against drifted circulating strains and no protection against influenza pandemics. Next-generation influenza vaccines, designated as universal influenza vaccines, should be safe, affordable, and elicit long-lasting cross-protective influenza immunity. Nanotechnology plays a critical role in the development of such novel vaccines. Engineered nanoparticles can incorporate multiple advantageous properties into the same nanoparticulate platforms to improve vaccine potency and breadth. These immunological properties include virus-like biomimicry, high antigen-load, controlled antigen release, targeted delivery, and induction of innate signaling pathways. Many nanoparticle influenza vaccines have shown promising results in generating potent and broadly protective immune responses. This review will summarize the necessity and characteristics of next-generation influenza vaccines and the immunological correlates of broad influenza immunity and focus on how cutting-edge nanoparticle technology contributes to such vaccine development. The review will give new insights into the rational design of nanoparticle universal vaccines to combat influenza epidemics and pandemics.
Collapse
Affiliation(s)
- Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia 30303, USA
| |
Collapse
|
13
|
Trends in Drug- and Vaccine-based Dissolvable Microneedle Materials and Methods of Fabrication. Eur J Pharm Biopharm 2022; 173:54-72. [DOI: 10.1016/j.ejpb.2022.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/24/2022] [Accepted: 02/19/2022] [Indexed: 12/18/2022]
|
14
|
Raza F, Zafar H, Khan MW, Ullah A, Khan AU, Baseer A, Fareed R, Sohail M. Recent advances in the targeted delivery of paclitaxel nanomedicine for cancer therapy. MATERIALS ADVANCES 2022; 3:2268-2290. [DOI: 10.1039/d1ma00961c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cancer cases have reached an all-time high in the current era.
Collapse
Affiliation(s)
- Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | | | - Aftab Ullah
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, P. R. China
| | | | - Abdul Baseer
- Department of Pharmacy, Abasyn University, Peshawar, Pakistan
| | - Rameesha Fareed
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, Pakistan
| | - Muhammad Sohail
- School of Pharmacy, Yantai University, Shandong, 264005, China
| |
Collapse
|
15
|
Bok M, Zhao ZJ, Hwang SH, Jeong Y, Ko J, Ahn J, Lee JH, Jeon S, Jeong JH. Biocompatible All-in-One Adhesive Needle-Free Cup Patch for Enhancing Transdermal Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58220-58228. [PMID: 34793117 DOI: 10.1021/acsami.1c18750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Patch-type drug delivery has garnered increased attention as an attractive alternative to the existing drug delivery techniques. Thus far, needle phobia and efficient drug delivery remain huge challenges. To address the issue of needle phobia and enhance drug delivery, we developed a needle-free and self-adhesive microcup patch that can be loaded with an ultrathin salmon DNA (SDNA) drug carrier film. This physically integrated system can facilitate efficient skin penetration of drugs loaded into the microcup patch. The system consists of three main components, namely, a cup that acts as a drug reservoir, an adhesive system that attaches the patch to the skin, and physical stimulants that can be used to increase the efficiency of drug delivery. In addition, an ultrathin SDNA/drug film allows the retention of the drug in the cup and its efficient release by dissolution in the presence of moisture. This latter feature has been validated using gelatin as a skin mimic. The cup design itself has been validated by comparing its deformation and displacement with those of a cylindrical structure. Integration of the self-adhesive microcup patch with both ultrasonic waves and an electric current allows the model drug to penetrate the stratum corneum of the skin barrier and the whole epidermis, thereby enhancing transdermal drug delivery and reducing skin irritation. This system can be used as a wearable biomedical device for efficient transdermal and needle-free drug delivery.
Collapse
Affiliation(s)
- Moonjeong Bok
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Zhi-Jun Zhao
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Soon Hyoung Hwang
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Yongrok Jeong
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Jiwoo Ko
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Junseong Ahn
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Ju Ho Lee
- Department of Applied Physics, Dankook University, Yongin 16890, South Korea
| | - Sohee Jeon
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Jun-Ho Jeong
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| |
Collapse
|
16
|
Cordeiro AS, Patil-Sen Y, Shivkumar M, Patel R, Khedr A, Elsawy MA. Nanovaccine Delivery Approaches and Advanced Delivery Systems for the Prevention of Viral Infections: From Development to Clinical Application. Pharmaceutics 2021; 13:2091. [PMID: 34959372 PMCID: PMC8707864 DOI: 10.3390/pharmaceutics13122091] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Viral infections causing pandemics and chronic diseases are the main culprits implicated in devastating global clinical and socioeconomic impacts, as clearly manifested during the current COVID-19 pandemic. Immunoprophylaxis via mass immunisation with vaccines has been shown to be an efficient strategy to control such viral infections, with the successful and recently accelerated development of different types of vaccines, thanks to the advanced biotechnological techniques involved in the upstream and downstream processing of these products. However, there is still much work to be done for the improvement of efficacy and safety when it comes to the choice of delivery systems, formulations, dosage form and route of administration, which are not only crucial for immunisation effectiveness, but also for vaccine stability, dose frequency, patient convenience and logistics for mass immunisation. In this review, we discuss the main vaccine delivery systems and associated challenges, as well as the recent success in developing nanomaterials-based and advanced delivery systems to tackle these challenges. Manufacturing and regulatory requirements for the development of these systems for successful clinical and marketing authorisation were also considered. Here, we comprehensively review nanovaccines from development to clinical application, which will be relevant to vaccine developers, regulators, and clinicians.
Collapse
Affiliation(s)
- Ana Sara Cordeiro
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| | - Yogita Patil-Sen
- Wrightington, Wigan and Leigh Teaching Hospitals NHS Foundation Trust, National Health Service, Wigan WN6 0SZ, UK;
| | - Maitreyi Shivkumar
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| | - Ronak Patel
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Abdulwahhab Khedr
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed A. Elsawy
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| |
Collapse
|
17
|
Li S, Xia D, Prausnitz MR. Efficient Drug Delivery into Skin Using a Biphasic Dissolvable Microneedle Patch with Water-Insoluble Backing. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2103359. [PMID: 34744551 PMCID: PMC8570388 DOI: 10.1002/adfm.202103359] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 06/13/2023]
Abstract
Dissolvable microneedle patches (MNPs) enable simplified delivery of therapeutics via the skin. However, most dissolvable MNPs do not deliver their full drug loading to the skin because only some of the drug is localized in the microneedles (MNs), and the rest remains adhered to the patch backing after removal from the skin. In this work, biphasic dissolvable MNPs are developed by mounting water-soluble MNs on a water-insoluble backing layer. These MNPs enable the drug to be contained in the MNs without migrating into the patch backing due to the inability of the drugs to partition into the hydrophobic backing materials during MNP fabrication. In addition, the insoluble backing is poorly wetted upon MN dissolution in the skin, which significantly reduces drug residue on the MNP backing surface after application. These effects enable a drug delivery efficiency of >90% from the MNPs into the skin 5 min after application. This study shows that the biphasic dissolvable MNPs can facilitate efficient drug delivery to the skin, which can improve the accuracy of drug dosing and reduce drug wastage.
Collapse
Affiliation(s)
- Song Li
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Dengning Xia
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
18
|
Stinson JA, Boopathy AV, Cieslewicz BM, Zhang Y, Hartman NW, Miller DP, Dirckx M, Hurst BL, Tarbet EB, Kluge JA, Kosuda KM. Enhancing influenza vaccine immunogenicity and efficacy through infection mimicry using silk microneedles. Vaccine 2021; 39:5410-5421. [PMID: 34391593 DOI: 10.1016/j.vaccine.2021.07.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/04/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Traditional bolus vaccine administration leads to rapid clearance of vaccine from lymphoid tissue. However, there is increasing evidence suggesting that the kinetics of antigen delivery can impact immune responses to vaccines, particularly when tailored to mimic natural infections. Here, we present the specific enhancements sustained release immunization confers to seasonal influenza vaccine, including the magnitude, durability, and breadth of humoral responses. To achieve sustained vaccine delivery kinetics, we have developed a microneedle array patch (MIMIX), with silk fibroin-formulated vaccine tips designed to embed in the dermis after a short application to the skin and release antigen over 1-2 weeks, mimicking the time course of a natural influenza infection. In a preclinical murine model, a single influenza vaccine administration via MIMIX led to faster seroconversion, response-equivalence to prime-boost bolus immunization, higher HAI titers against drifted influenza strains, and improved protective efficacy upon lethal influenza challenge when compared with intramuscular injection. These results highlight infection mimicry, achieved through sustained release silk microneedles, as a powerful approach to improve existing seasonal influenza vaccines, while also suggesting the broader potential of this platform technology to enable more efficacious next-generation vaccines and vaccine combinations.
Collapse
Affiliation(s)
- Jordan A Stinson
- Vaxess Technologies, Inc., 790 Memorial Drive, Suite 200, Cambridge, MA 02139, USA
| | - Archana V Boopathy
- Vaxess Technologies, Inc., 790 Memorial Drive, Suite 200, Cambridge, MA 02139, USA
| | - Brian M Cieslewicz
- Vaxess Technologies, Inc., 790 Memorial Drive, Suite 200, Cambridge, MA 02139, USA
| | - Yichen Zhang
- Vaxess Technologies, Inc., 790 Memorial Drive, Suite 200, Cambridge, MA 02139, USA
| | - Nickolas W Hartman
- Vaxess Technologies, Inc., 790 Memorial Drive, Suite 200, Cambridge, MA 02139, USA
| | - David P Miller
- Vaxess Technologies, Inc., 790 Memorial Drive, Suite 200, Cambridge, MA 02139, USA
| | - Matthew Dirckx
- Vaxess Technologies, Inc., 790 Memorial Drive, Suite 200, Cambridge, MA 02139, USA
| | - Brett L Hurst
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, 5600 Old Main Hill, Logan, UT 84322, USA
| | - E Bart Tarbet
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, 5600 Old Main Hill, Logan, UT 84322, USA
| | - Jonathan A Kluge
- Vaxess Technologies, Inc., 790 Memorial Drive, Suite 200, Cambridge, MA 02139, USA
| | - Kathryn M Kosuda
- Vaxess Technologies, Inc., 790 Memorial Drive, Suite 200, Cambridge, MA 02139, USA.
| |
Collapse
|
19
|
Liu T, Chen M, Fu J, Sun Y, Lu C, Quan G, Pan X, Wu C. Recent advances in microneedles-mediated transdermal delivery of protein and peptide drugs. Acta Pharm Sin B 2021; 11:2326-2343. [PMID: 34522590 PMCID: PMC8424228 DOI: 10.1016/j.apsb.2021.03.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/12/2020] [Accepted: 12/08/2020] [Indexed: 01/14/2023] Open
Abstract
Proteins and peptides have become a significant therapeutic modality for various diseases because of their high potency and specificity. However, the inherent properties of these drugs, such as large molecular weight, poor stability, and conformational flexibility, make them difficult to be formulated and delivered. Injection is the primary route for clinical administration of protein and peptide drugs, which usually leads to poor patient's compliance. As a portable, minimally invasive device, microneedles (MNs) can overcome the skin barrier and generate reversible microchannels for effective macromolecule permeation. In this review, we highlighted the recent advances in MNs-mediated transdermal delivery of protein and peptide drugs. Emphasis was given to the latest development in representative MNs design and fabrication. We also summarize the current application status of MNs-mediated transdermal protein and peptide delivery, especially in the field of infectious disease, diabetes, cancer, and other disease therapy. Finally, the current status of clinical translation and a perspective on future development are also provided.
Collapse
Affiliation(s)
- Ting Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Minglong Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jintao Fu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ying Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
20
|
Tan MP, Tan WS, Mohamed Alitheen NB, Yap WB. M2e-Based Influenza Vaccines with Nucleoprotein: A Review. Vaccines (Basel) 2021; 9:739. [PMID: 34358155 PMCID: PMC8310010 DOI: 10.3390/vaccines9070739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/29/2022] Open
Abstract
Discovery of conserved antigens for universal influenza vaccines warrants solutions to a number of concerns pertinent to the currently licensed influenza vaccines, such as annual reformulation and mismatching with the circulating subtypes. The latter causes low vaccine efficacies, and hence leads to severe disease complications and high hospitalization rates among susceptible and immunocompromised individuals. A universal influenza vaccine ensures cross-protection against all influenza subtypes due to the presence of conserved epitopes that are found in the majority of, if not all, influenza types and subtypes, e.g., influenza matrix protein 2 ectodomain (M2e) and nucleoprotein (NP). Despite its relatively low immunogenicity, influenza M2e has been proven to induce humoral responses in human recipients. Influenza NP, on the other hand, promotes remarkable anti-influenza T-cell responses. Additionally, NP subunits are able to assemble into particles which can be further exploited as an adjuvant carrier for M2e peptide. Practically, the T-cell immunodominance of NP can be transferred to M2e when it is fused and expressed as a chimeric protein in heterologous hosts such as Escherichia coli without compromising the antigenicity. Given the ability of NP-M2e fusion protein in inducing cross-protective anti-influenza cell-mediated and humoral immunity, its potential as a universal influenza vaccine is therefore worth further exploration.
Collapse
Affiliation(s)
- Mei Peng Tan
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.P.T.); (N.B.M.A.)
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Noorjahan Banu Mohamed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.P.T.); (N.B.M.A.)
| | - Wei Boon Yap
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
- Biomedical Science Program, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
21
|
Wang Y, Li S, Dong C, Ma Y, Song Y, Zhu W, Kim J, Deng L, Denning TL, Kang SM, Prausnitz MR, Wang BZ. Skin vaccination with dissolvable microneedle patches incorporating influenza neuraminidase and flagellin protein nanoparticles induces broad immune protection against multiple influenza viruses. ACS APPLIED BIO MATERIALS 2021; 4:4953-4961. [PMID: 34179728 PMCID: PMC8232372 DOI: 10.1021/acsabm.1c00240] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We generated self-adjuvanted protein nanoparticles of conserved influenza antigens and immunized mice via skin vaccination with dissolvable microneedle patches (MNPs) to increase the strength and breadth of immune responses. We produced M2e nanoparticles via ethanol desolvation, and double-layered NA1/M2e (shell/core), NA1-FliC/M2e, NA2/M2e, and NA2-FliC/M2e protein nanoparticles by chemically crosslinking influenza NA and flagellin (FliC) onto the surfaces of the M2e nanoparticles. The resulting nanoparticles retained FliC TLR5 innate signaling activity and significantly increased antigen-uptake and dendritic cell maturation in vitro. We incorporated the nanoparticles into MNPs for skin vaccination in mice. The nanoparticle MNPs significantly increased M2e and NA-specific antibody levels, the numbers of germinal center B cells, and IL-4 positive splenocytes. Double-layered nanoparticle MNP skin vaccination protected mice against homologous and heterosubtypic influenza viruses. Our results demonstrated that MNP skin vaccination of NA-FliC/M2e nanoparticles could be developed into a standalone or synergistic component of a universal influenza vaccine strategy.
Collapse
Affiliation(s)
- Ye Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Song Li
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Yao Ma
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Yufeng Song
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Wandi Zhu
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Joo Kim
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Lei Deng
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Timothy L. Denning
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Mark R. Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| |
Collapse
|
22
|
O’Shea J, Prausnitz MR, Rouphael N. Dissolvable Microneedle Patches to Enable Increased Access to Vaccines against SARS-CoV-2 and Future Pandemic Outbreaks. Vaccines (Basel) 2021; 9:320. [PMID: 33915696 PMCID: PMC8066809 DOI: 10.3390/vaccines9040320] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 01/02/2023] Open
Abstract
Vaccines are an essential component of pandemic preparedness but can be limited due to challenges in production and logistical implementation. While vaccine candidates were rapidly developed against severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), immunization campaigns remain an obstacle to achieving herd immunity. Dissolvable microneedle patches are advantageous for many possible reasons: improved immunogenicity; dose-sparing effects; expected low manufacturing cost; elimination of sharps; reduction of vaccine wastage; no need for reconstitution; simplified supply chain, with reduction of cold chain supply through increased thermostability; ease of use, reducing the need for healthcare providers; and greater acceptability compared to traditional hypodermic injections. When applied to coronavirus disease 2019 (COVID-19) and future pandemic outbreaks, microneedle patches have great potential to improve vaccination globally and save many lives.
Collapse
Affiliation(s)
- Jesse O’Shea
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, 500 Irvin Court, Suite 200, Decatur, Atlanta, GA 30030, USA;
| | - Mark R. Prausnitz
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, 500 Irvin Court, Suite 200, Decatur, Atlanta, GA 30030, USA;
| |
Collapse
|
23
|
Korkmaz E, Balmert SC, Sumpter TL, Carey CD, Erdos G, Falo LD. Microarray patches enable the development of skin-targeted vaccines against COVID-19. Adv Drug Deliv Rev 2021; 171:164-186. [PMID: 33539853 PMCID: PMC8060128 DOI: 10.1016/j.addr.2021.01.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic is a serious threat to global health and the global economy. The ongoing race to develop a safe and efficacious vaccine to prevent infection by SARS-CoV-2, the causative agent for COVID-19, highlights the importance of vaccination to combat infectious pathogens. The highly accessible cutaneous microenvironment is an ideal target for vaccination since the skin harbors a high density of antigen-presenting cells and immune accessory cells with broad innate immune functions. Microarray patches (MAPs) are an attractive intracutaneous biocargo delivery system that enables safe, reproducible, and controlled administration of vaccine components (antigens, with or without adjuvants) to defined skin microenvironments. This review describes the structure of the SARS-CoV-2 virus and relevant antigenic targets for vaccination, summarizes key concepts of skin immunobiology in the context of prophylactic immunization, and presents an overview of MAP-mediated cutaneous vaccine delivery. Concluding remarks on MAP-based skin immunization are provided to contribute to the rational development of safe and effective MAP-delivered vaccines against emerging infectious diseases, including COVID-19.
Collapse
Affiliation(s)
- Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Stephen C Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tina L Sumpter
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
24
|
Dugam S, Tade R, Dhole R, Nangare S. Emerging era of microneedle array for pharmaceutical and biomedical applications: recent advances and toxicological perspectives. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-020-00176-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Background
Microneedles (MNs) are the utmost unique, efficient, and minimally invasive inventions in the pharmaceutical field. Over the past decades, many scientists around the globe have reported MNs cautious because of their superb future in distinct areas. Concerning the wise use of MNs herein, we deal in depth with the present applications of MNs in drug delivery.
Main text
The present review comprises various fabrication materials and methods used for MN synthesis. The article also noted the distinctive advantages of these MNs, which holds huge potential for pharmaceutical and biomedical applications. The role of MNs in serving as a platform to treat various ailments has been explained accompanied by unusual approaches. The review also inculcates the pharmacokinetics of MNs, which includes permeation, absorption, and bioavailability enhancement. Besides this, the in vitro/in vivo toxicity, biosafety, and marketed product of MNs have been reviewed. We have also discussed the clinical trials and patents on the pharmaceutical applications of MNs in brief.
Conclusion
To sum up, this article gives insight into the MNs and provides a recent advancement in MNs, which pave the pathway for future pharmaceutical and biomedical applications.
Graphical abstract
Pharmaceutical and biomedical applications of MNs
Collapse
|
25
|
Zhu W, Dong C, Wei L, Wang BZ. Promising Adjuvants and Platforms for Influenza Vaccine Development. Pharmaceutics 2021; 13:pharmaceutics13010068. [PMID: 33430259 PMCID: PMC7825707 DOI: 10.3390/pharmaceutics13010068] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 01/16/2023] Open
Abstract
Influenza is one of the major threats to public health. Current influenza vaccines cannot provide effective protection against drifted or shifted influenza strains. Researchers have considered two important strategies to develop novel influenza vaccines with improved immunogenicity and broader protective efficacy. One is applying fewer variable viral antigens, such as the haemagglutinin stalk domain. The other is including adjuvants in vaccine formulations. Adjuvants are promising and helpful boosters to promote more rapid and stronger immune responses with a dose-sparing effect. However, few adjuvants are currently licensed for human influenza vaccines, although many potential candidates are in different trials. While many advantages have been observed using adjuvants in influenza vaccine formulations, an improved understanding of the mechanisms underlying viral infection and vaccination-induced immune responses will help to develop new adjuvant candidates. In this review, we summarize the works related to adjuvants in influenza vaccine research that have been used in our studies and other laboratories. The review will provide perspectives for the utilization of adjuvants in developing next-generation and universal influenza vaccines.
Collapse
|
26
|
Protein and Peptide Nanocluster Vaccines. Curr Top Microbiol Immunol 2020. [PMID: 33165870 DOI: 10.1007/82_2020_228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Recombinant protein- and peptide-based vaccines can deliver large amounts of specific antigens for tailored immune responses. One class of these are protein and peptide nanoclusters (PNCs), which are made entirely from the crosslinked antigen. PNCs leverage the inherent immunogenicity of nanoparticulate antigens while minimizing the use of excipients normally used to create them. In this chapter, we discuss PNC fabrication methods, immunostimulatory properties of nanoclusters observed in vitro and in vivo, and protective benefits of PNC vaccines against influenza and cancer mouse models. We conclude with an outlook on future studies of PNCs and PNC design strategies, as well as their use in future vaccine formulations.
Collapse
|
27
|
Tang S, Zhu W, Wang BZ. Influenza Vaccines toward Universality through Nanoplatforms and Given by Microneedle Patches. Viruses 2020; 12:E1212. [PMID: 33114336 PMCID: PMC7690886 DOI: 10.3390/v12111212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022] Open
Abstract
Influenza is one of the top threats to public health. The best strategy to prevent influenza is vaccination. Because of the antigenic changes in the major surface antigens of influenza viruses, current seasonal influenza vaccines need to be updated every year to match the circulating strains and are suboptimal for protection. Furthermore, seasonal vaccines do not protect against potential influenza pandemics. A universal influenza vaccine will eliminate the threat of both influenza epidemics and pandemics. Due to the massive challenge in realizing influenza vaccine universality, a single vaccine strategy cannot meet the need. A comprehensive approach that integrates advances in immunogen designs, vaccine and adjuvant nanoplatforms, and vaccine delivery and controlled release has the potential to achieve an effective universal influenza vaccine. This review will summarize the advances in the research and development of an affordable universal influenza vaccine.
Collapse
Affiliation(s)
| | | | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA; (S.T.); (W.Z.)
| |
Collapse
|
28
|
Wei J, Li Z, Yang Y, Ma X, An W, Ma G, Su Z, Zhang S. A biomimetic VLP influenza vaccine with interior NP/exterior M2e antigens constructed through a temperature shift-based encapsulation strategy. Vaccine 2020; 38:5987-5996. [DOI: 10.1016/j.vaccine.2020.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/27/2020] [Accepted: 07/10/2020] [Indexed: 01/02/2023]
|
29
|
Badizadegan K, Goodson JL, Rota PA, Thompson KM. The potential role of using vaccine patches to induce immunity: platform and pathways to innovation and commercialization. Expert Rev Vaccines 2020; 19:175-194. [PMID: 32182145 PMCID: PMC7814398 DOI: 10.1080/14760584.2020.1732215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/12/2020] [Indexed: 01/14/2023]
Abstract
Introduction: In the last two decades, the evidence related to using vaccine patches with multiple short projections (≤1 mm) to deliver vaccines through the skin increased significantly and demonstrated their potential as an innovative delivery platform.Areas covered: We review the vaccine patch literature published in English as of 1 March 2019, as well as available information from key stakeholders related to vaccine patches as a platform. We identify key research topics related to basic and translational science on skin physical properties and immunobiology, patch development, and vaccine manufacturing.Expert opinion: Currently, vaccine patch developers continue to address some basic science and other platform issues in the context of developing a potential vaccine patch presentation for an existing or new vaccine. Additional clinical data and manufacturing experience could shift the balance toward incentivizing existing vaccine manufactures to further explore the use of vaccine patches to deliver their products. Incentives for innovation of vaccine patches differ for developed and developing countries, which will necessitate different strategies (e.g. public-private partnerships, push, or pull mechanisms) to support the basic and applied research needed to ensure a strong evidence base and to overcome translational barriers for vaccine patches as a delivery platform.
Collapse
Affiliation(s)
| | - James L Goodson
- Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Paul A Rota
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
30
|
Zhang X, Wang Y, Chi J, Zhao Y. Smart Microneedles for Therapy and Diagnosis. RESEARCH (WASHINGTON, D.C.) 2020; 2020:7462915. [PMID: 33623910 PMCID: PMC7877383 DOI: 10.34133/2020/7462915] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/26/2020] [Indexed: 01/26/2023]
Abstract
Microneedles represent a cutting-edge and idea-inspiring technology in biomedical engineering, which have attracted increasing attention of scientific researchers and medical staffs. Over the past decades, numerous great achievements have been made. The fabrication process of microneedles has been simplified and becomes more precise, easy-to-operate, and reusable. Besides, microneedles with various features have been developed and the microneedle materials have greatly expanded. In recent years, efforts have been focused on generating smart microneedles by endowing them with intriguing functions such as adhesion ability, responsiveness, and controllable drug release. Such improvements enable the microneedles to take an important step in practical applications including household drug delivery devices, wearable biosensors, biomedical assays, cell culture, and microfluidic chip analysis. In this review, the fabrication strategies, distinctive properties, and typical applications of the smart microneedles are discussed. Recent accomplishments, remaining challenges, and future prospects are also presented.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yuetong Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Junjie Chi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
31
|
Benson HAE, Grice JE, Mohammed Y, Namjoshi S, Roberts MS. Topical and Transdermal Drug Delivery: From Simple Potions to Smart Technologies. Curr Drug Deliv 2019; 16:444-460. [PMID: 30714524 PMCID: PMC6637104 DOI: 10.2174/1567201816666190201143457] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/16/2019] [Accepted: 01/25/2019] [Indexed: 01/02/2023]
Abstract
This overview on skin delivery considers the evolution of the principles of percutaneous ab-sorption and skin products from ancient times to today. Over the ages, it has been recognised that products may be applied to the skin for either local or systemic effects. As our understanding of the anatomy and physiology of the skin has improved, this has facilitated the development of technologies to effectively and quantitatively deliver solutes across this barrier to specific target sites in the skin and beyond. We focus on these technologies and their role in skin delivery today and in the future.
Collapse
Affiliation(s)
- Heather A E Benson
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University of Technology, Perth, Australia
| | - Jeffrey E Grice
- Diamantina Institute, The University of Queensland, Translational Research Institute, QLD, 4102, Australia
| | - Yousuf Mohammed
- Diamantina Institute, The University of Queensland, Translational Research Institute, QLD, 4102, Australia
| | - Sarika Namjoshi
- Diamantina Institute, The University of Queensland, Translational Research Institute, QLD, 4102, Australia
| | - Michael S Roberts
- Diamantina Institute, The University of Queensland, Translational Research Institute, QLD, 4102, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
32
|
Rodgers AM, Cordeiro AS, Donnelly RF. Technology update: dissolvable microneedle patches for vaccine delivery. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2019; 12:379-398. [PMID: 31572025 PMCID: PMC6756839 DOI: 10.2147/mder.s198220] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/08/2019] [Indexed: 12/17/2022] Open
Abstract
Despite vaccination representing one of the greatest advances of modern preventative medicine, there remain significant challenges in vaccine distribution, delivery and compliance. Dissolvable microarray patches or dissolving microneedles (DMN) have been proposed as an innovative vaccine delivery platform that could potentially revolutionize vaccine delivery and circumvent many of the challenges faced with current vaccine strategies. DMN, due to their ease of use, lack of elicitation of pain response, self-disabling nature and ease of transport and distribution, offer an attractive delivery option for vaccines. Additionally, as DMN inherently targets the uppermost skin layers, they facilitate improved vaccine efficacy, due to direct targeting of skin antigen-presenting cells. A plethora of publications have demonstrated the efficacy of DMN vaccination for a range of vaccines, with influenza receiving particular attention. However, before the viable adoption of DMN for vaccination purposes in a clinical setting, a number of fundamental questions must be addressed. Accordingly, this review begins by introducing some of the key barriers faced by current vaccination approaches and how DMN can overcome these challenges. We introduce some of the recent advances in the field of DMN technology, highlighting the potential impact DMN could have, particularly in countries of the developing world. We conclude by reflecting on some of the key questions that remain unanswered and which warrant further investigation before DMNs can be utilized in clinical settings.
Collapse
Affiliation(s)
- Aoife M Rodgers
- School of Pharmacy, Queen’s University Belfast, Belfast, BT9 7BL, UK
| | - Ana Sara Cordeiro
- School of Pharmacy, Queen’s University Belfast, Belfast, BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen’s University Belfast, Belfast, BT9 7BL, UK
| |
Collapse
|
33
|
Kim MC, Kim KH, Lee JW, Lee YN, Choi HJ, Jung YJ, Kim YJ, Compans RW, Prausnitz MR, Kang SM. Co-Delivery of M2e Virus-Like Particles with Influenza Split Vaccine to the Skin Using Microneedles Enhances the Efficacy of Cross Protection. Pharmaceutics 2019; 11:pharmaceutics11040188. [PMID: 31003421 PMCID: PMC6523215 DOI: 10.3390/pharmaceutics11040188] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 01/21/2023] Open
Abstract
It is a high priority to develop a simple and effective delivery method for a cross-protective influenza vaccine. We investigated skin immunization by microneedle (MN) patch with human influenza split vaccine and virus-like particles containing heterologous M2 extracellular (M2e) domains (M2e5x virus-like particles (VLP)) as a cross-protective influenza vaccine candidate. Co-delivery of influenza split vaccine and M2e5x VLP to the skin by MN patch was found to confer effective protection against heterosubtypic influenza virus by preventing weight loss and reducing lung viral loads. Compared to intramuscular immunization, MN-based delivery of combined split vaccine and M2e5x VLPs shaped cellular immune responses toward T helper type 1 responses increasing IgG2a isotype antibodies as well as IFN-γ producing cells in mucosal and systemic sites. This study provides evidence that potential immunological and logistic benefits of M2e5x VLP with human influenza split vaccine delivered by MN patch can be used to develop an easy-to-administer cross-protective influenza vaccine.
Collapse
Affiliation(s)
- Min-Chul Kim
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
- Komipharm Co., Ltd., Siheung, Gyeonggi-do 15094, Korea.
| | - Ki-Hye Kim
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| | - Jeong Woo Lee
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Yu-Na Lee
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
- Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo 39660, Korea.
| | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2M9, Canada.
| | - Yu-Jin Jung
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| | - Yu-Jin Kim
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| | - Richard W Compans
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Sang-Moo Kang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
34
|
Gonçalves E, Bonduelle O, Soria A, Loulergue P, Rousseau A, Cachanado M, Bonnabau H, Thiebaut R, Tchitchek N, Behillil S, van der Werf S, Vogt A, Simon T, Launay O, Combadière B. Innate gene signature distinguishes humoral versus cytotoxic responses to influenza vaccination. J Clin Invest 2019; 129:1960-1971. [PMID: 30843873 DOI: 10.1172/jci125372] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Systems vaccinology allows cutting-edge analysis of innate biomarkers of vaccine efficacy. We have been exploring novel strategies to shape the adaptive immune response, by targeting innate immune cells through novel immunization routes. METHODS This randomized phase I/II clinical study (n=60 healthy subjects aged 18-45 years old) used transcriptomic analysis to discover early biomarkers of immune response quality after transcutaneous (t.c.), intradermal (i.d.), and intramuscular (i.m.) administration of a trivalent influenza vaccine (TIV season 2012-2013) (1:1:1 ratio). Safety and immunogenicity (hemagglutinin inhibition (HI), microneutralization (MN) antibodies and CD4, CD8 effector T cells) were measured at baseline Day (D)0 and at D21. Blood transcriptome was analyzed at D0 and D1. RESULTS TIV-specific CD8+GranzymeB+(GRZ) T cells appeared in more individuals immunized by the t.c. and i.d. routes, while immunization by the i.d. and i.m. routes prompted high levels of HI antibody titers and MN against A/H1N1 and A/H3N2 influenza viral strains. The early innate gene signature anticipated immunological outcome by discriminating two clusters of individuals with either distinct humoral or CD8 cytotoxic responses. Several pathways explained this dichotomy confirmed by nine genes and serum level of CXCL10 were correlated with either TIV-specific cytotoxic CD8+GRZ+ T-cell or antibody responses. A logistic regression analysis demonstrated that these nine genes and serum levels of CXCL10 (D1/D0) best foreseen TIV-specific CD8+GRZ+ T-cell and antibody responses at D21. CONCLUSION This study provides new insight into the impact of immunization routes and innate signature in the quality of adaptive immune responses.
Collapse
Affiliation(s)
- Eléna Gonçalves
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France
| | - Olivia Bonduelle
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France
| | - Angèle Soria
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France.,Service de Dermatologie et Allergologie, Hôpital Tenon, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Pierre Loulergue
- Université Paris Descartes, Sorbonne Paris Cité, Centre d'Investigation Clinique Cochin Pasteur, INSERM CIC 1417, French Clinical Research Infrastructure Network, Innovative Clinical Research Network in Vaccinology, AP-HP, Hôpital Cochin, Paris, France
| | - Alexandra Rousseau
- Department of Clinical Pharmacology and Clinical Research Platform of East of Paris, Assistance Publique-Hôpitaux de Paris, Paris, France. Sorbonne Université, Paris, France
| | - Marine Cachanado
- Department of Clinical Pharmacology and Clinical Research Platform of East of Paris, Assistance Publique-Hôpitaux de Paris, Paris, France. Sorbonne Université, Paris, France
| | - Henri Bonnabau
- INSERM U1219, INRIA SISTM, Université de Bordeaux, Bordeaux France
| | | | - Nicolas Tchitchek
- CEA - Université Paris Sud 11 - INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, Institut de Biologie François Jacob, 92265 Fontenay-aux-Roses, France
| | - Sylvie Behillil
- Institut Pasteur, CNR des Virus des Infections Respiratoires, Département de Virologie and Centre National de Recherche Scientifique UMR CNRS 3569, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Unité de Génétique Moléculaire des Virus à ARN, Paris, France
| | - Sylvie van der Werf
- Institut Pasteur, CNR des Virus des Infections Respiratoires, Département de Virologie and Centre National de Recherche Scientifique UMR CNRS 3569, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Unité de Génétique Moléculaire des Virus à ARN, Paris, France
| | - Annika Vogt
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France.,Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tabassome Simon
- Department of Clinical Pharmacology and Clinical Research Platform of East of Paris, Assistance Publique-Hôpitaux de Paris, Paris, France. Sorbonne Université, Paris, France
| | - Odile Launay
- Université Paris Descartes, Sorbonne Paris Cité, Centre d'Investigation Clinique Cochin Pasteur, INSERM CIC 1417, French Clinical Research Infrastructure Network, Innovative Clinical Research Network in Vaccinology, AP-HP, Hôpital Cochin, Paris, France
| | - Behazine Combadière
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France
| |
Collapse
|
35
|
Wang Y, Deng L, Kang SM, Wang BZ. Universal influenza vaccines: from viruses to nanoparticles. Expert Rev Vaccines 2018; 17:967-976. [PMID: 30365905 DOI: 10.1080/14760584.2018.1541408] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The current seasonal influenza vaccine confers only limited protection due to waning antibodies or the antigenic shift and drift of major influenza surface antigens. A universal influenza vaccine which induces broad cross-protection against divergent influenza viruses with a comparable or better efficacy to seasonal influenza vaccines against matched strains will negate the need for an annual update of vaccine strains and protect against possible influenza pandemics. AREAS COVERED In this review, we summarize the recent progress in nanoparticle-based universal influenza vaccine development. We compared the most potent nanoparticle categories, focusing on how they encapsulate conserved influenza epitopes, stimulate the innate and adaptive immune systems, exhibit antigen depot effect, extend the period for antigen-processing and presentation, and exert an intrinsic adjuvant effect on inducing robust immune responses. EXPERT COMMENTARY The development of an effective universal influenza vaccine is an urgent task. Traditional influenza vaccine approaches are not sufficient for preventing recurrent epidemics or occasional pandemics. Nanoparticles are compatible with different immunogens and immune stimulators and can overcome the intrinsically low immunogenicity of conserved influenza virus antigens. We foresee that an affordable universal influenza vaccine will be available within ten years by integrating nanoparticles with other targeted delivery and controlled release technology.
Collapse
Affiliation(s)
- Ye Wang
- a Center for Inflammation, Immunity & Infection , Georgia State University Institute for Biomedical Sciences , Atlanta , GA , USA
| | - Lei Deng
- a Center for Inflammation, Immunity & Infection , Georgia State University Institute for Biomedical Sciences , Atlanta , GA , USA
| | - Sang-Moo Kang
- a Center for Inflammation, Immunity & Infection , Georgia State University Institute for Biomedical Sciences , Atlanta , GA , USA
| | - Bao-Zhong Wang
- a Center for Inflammation, Immunity & Infection , Georgia State University Institute for Biomedical Sciences , Atlanta , GA , USA
| |
Collapse
|
36
|
Yang J, Chen Z, Ye R, Li J, Lin Y, Gao J, Ren L, Liu B, Jiang L. Touch-actuated microneedle array patch for closed-loop transdermal drug delivery. Drug Deliv 2018; 25:1728-1739. [PMID: 30182757 PMCID: PMC6127806 DOI: 10.1080/10717544.2018.1507060] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/19/2018] [Accepted: 07/29/2018] [Indexed: 11/05/2022] Open
Abstract
To date, only approximately 20 drugs synthesized with small molecules have been approved by the FDA for use in traditional transdermal patches (TTP) owing to the extremely low permeation rate of the skin barrier for macromolecular drugs. A novel touch-actuated microneedle array patch (TMAP) was developed for transdermal delivery of liquid macromolecular drugs. TMAP is a combination of a typical TTP and a solid microneedle array (MA). High doses of liquid drug formulations, especially heat-sensitive compounds can be easily filled and stored in the drug reservoir of TMAPs. TMAP can easily penetrate the skin and automatically retract from it to create microchannels through the stratum corneum (SC) layer using touch-actuated 'press and release' actions for passive permeation of liquid drugs. Comparison of subcutaneous injection, TTP, solid MA, and dissolvable MA, indicated that insulin-loaded TMAP exhibited the best hypoglycemic effect on type 1 diabetic rats. A 'closed-loop' permeation control was also provided for on-demand insulin delivery based on feedback of blood glucose levels (BGLs). Twenty IU-insulin-loaded TMAP maintained the type 1 diabetic rats in a normoglycemic state for approximately 11.63 h, the longest therapeutic duration among all previously reported results on microneedle-based transdermal patches. TMAP possesses excellent transdermal drug delivery capabilities.
Collapse
Affiliation(s)
- Jingbo Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, PR China
| | - Zhipeng Chen
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, PR China
| | - Rui Ye
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, PR China
| | - Jiyu Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, PR China
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, PR China
| | - Yinyan Lin
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, PR China
| | - Jie Gao
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, PR China
| | - Lei Ren
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, PR China
| | - Bin Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, PR China
| | - Lelun Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, PR China
| |
Collapse
|
37
|
Heterosubtypic influenza protection elicited by double-layered polypeptide nanoparticles in mice. Proc Natl Acad Sci U S A 2018; 115:E7758-E7767. [PMID: 30065113 DOI: 10.1073/pnas.1805713115] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Influenza is a persistent threat to public health. Here we report that double-layered peptide nanoparticles induced robust specific immunity and protected mice against heterosubtypic influenza A virus challenges. We fabricated the nanoparticles by desolvating a composite peptide of tandem copies of nucleoprotein epitopes into nanoparticles as cores and cross-linking another composite peptide of four tandem copies of influenza matrix protein 2 ectodomain epitopes to the core surfaces as a coating. Delivering the nanoparticles via dissolvable microneedle patch-based skin vaccination further enhanced the induced immunity. These peptide-only, layered nanoparticles demonstrated a strong antigen depot effect and migrated into spleens and draining (inguinal) lymph nodes for an extended period compared with soluble antigens. This increased antigen-presentation time correlated with the stronger immune responses in the nanoparticle-immunized group. The protection conferred by nanoparticle immunization was transferable by passive immune serum transfusion and depended partially on a functional IgG receptor FcγRIV. Using a conditional cell depletion, we found that CD8+ T cells were involved in the protection. The immunological potency and stability of the layered peptide nanoparticles indicate applications for other peptide-based vaccines and peptide drug delivery.
Collapse
|
38
|
Zhu W, Li S, Wang C, Yu G, Prausnitz MR, Wang BZ. Enhanced Immune Responses Conferring Cross-Protection by Skin Vaccination With a Tri-Component Influenza Vaccine Using a Microneedle Patch. Front Immunol 2018; 9:1705. [PMID: 30105019 PMCID: PMC6077188 DOI: 10.3389/fimmu.2018.01705] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/10/2018] [Indexed: 01/10/2023] Open
Abstract
Skin vaccination using biodegradable microneedle patch (MNP) technology in vaccine delivery is a promising strategy showing significant advantages over conventional flu shots. In this study, we developed an MNP encapsulating a 4M2e-tFliC fusion protein and two types of whole inactivated influenza virus vaccines (H1N1 and H3N2) as a universal vaccine candidate. We demonstrated that mice receiving this tri-component influenza vaccine via MNP acquired improved IgG1 antibody responses with more balanced IgG1/IgG2a antibody responses and enhanced cellular immune responses, including increased populations of IL-4 and IFN-γ producing cells and higher frequencies of antigen-specific plasma cells compared with intramuscular injection. In addition, stronger germinal center reactions, increased numbers of Langerin-positive migratory dendritic cells, and increased cytokine secretion were observed in the skin-draining lymph nodes after immunization with the tri-component influenza MNP vaccine. The MNP-immunized group also possessed enhanced protection against a heterologous reassortant A/Shanghai/2013 H7N9 (rSH) influenza virus infection. Furthermore, the sera collected from 4M2e-tFliC MNP-immunized mice were demonstrated to have antiviral efficacy against reassortant A/Vietnam/1203/2004 H5N1 (rVet) and A/Shanghai/2013 H7N9 (rSH) virus challenges. The immunological advantages of skin vaccination with this tri-component MNP vaccine could offer a promising approach to develop an easily applicable and broadly protective universal influenza vaccine.
Collapse
Affiliation(s)
- Wandi Zhu
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, United States
| | - Song Li
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Chao Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, United States
| | - Guoying Yu
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, United States
| |
Collapse
|
39
|
Lee LYY, Izzard L, Hurt AC. A Review of DNA Vaccines Against Influenza. Front Immunol 2018; 9:1568. [PMID: 30038621 PMCID: PMC6046547 DOI: 10.3389/fimmu.2018.01568] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/25/2018] [Indexed: 01/07/2023] Open
Abstract
The challenges of effective vaccination against influenza are gaining more mainstream attention, as recent influenza seasons have reported low efficacy in annual vaccination programs worldwide. Combined with the potential emergence of novel influenza viruses resulting in a pandemic, the need for effective alternatives to egg-produced conventional vaccines has been made increasingly clear. DNA vaccines against influenza have been in development since the 1990s, but the initial excitement over success in murine model trials has been tempered by comparatively poor performance in larger animal models. In the intervening years, much progress has been made to refine the DNA vaccine platform-the rational design of antigens and expression vectors, the development of novel vaccine adjuvants, and the employment of innovative gene delivery methods. This review discusses how these advances have been applied in recent efforts to develop an effective influenza DNA vaccine.
Collapse
|
40
|
Double-layered protein nanoparticles induce broad protection against divergent influenza A viruses. Nat Commun 2018; 9:359. [PMID: 29367723 PMCID: PMC5783933 DOI: 10.1038/s41467-017-02725-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/20/2017] [Indexed: 01/22/2023] Open
Abstract
Current influenza vaccines provide limited protection against circulating influenza A viruses. A universal influenza vaccine will eliminate the intrinsic limitations of the seasonal flu vaccines. Here we report methodology to generate double-layered protein nanoparticles as a universal influenza vaccine. Layered nanoparticles are fabricated by desolvating tetrameric M2e into protein nanoparticle cores and coating these cores by crosslinking headless HAs. Representative headless HAs of two HA phylogenetic groups are constructed and purified. Vaccinations with the resulting protein nanoparticles in mice induces robust long-lasting immunity, fully protecting the mice against challenges by divergent influenza A viruses of the same group or both groups. The results demonstrate the importance of incorporating both structure-stabilized HA stalk domains and M2e into a universal influenza vaccine to improve its protective potency and breadth. These potent disassemblable protein nanoparticles indicate a wide application in protein drug delivery and controlled release. Relatively well conserved domains of influenza A virus (IAV) proteins are potential candidates for the development of a universal IAV vaccine. Here, Deng et al. combine two such conserved antigens (M2e and HA stalk) in a double-layered protein nanoparticle and show that it protects against divergent IAVs in mice.
Collapse
|
41
|
Zhu W, Wang C, Wang BZ. From Variation of Influenza Viral Proteins to Vaccine Development. Int J Mol Sci 2017; 18:ijms18071554. [PMID: 28718801 PMCID: PMC5536042 DOI: 10.3390/ijms18071554] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 11/19/2022] Open
Abstract
Recurrent influenza epidemics and occasional pandemics are one of the most important global public health concerns and are major causes of human morbidity and mortality. Influenza viruses can evolve through antigen drift and shift to overcome the barriers of human immunity, leading to host adaption and transmission. Mechanisms underlying this viral evolution are gradually being elucidated. Vaccination is an effective method for the prevention of influenza virus infection. However, the emergence of novel viruses, including the 2009 pandemic influenza A (H1N1), the avian influenza A virus (H7N9), and the highly pathogenic avian influenza A virus (HPAI H5N1), that have infected human populations frequently in recent years reveals the tremendous challenges to the current influenza vaccine strategy. A better vaccine that provides protection against a wide spectrum of various influenza viruses and long-lasting immunity is urgently required. Here, we review the evolutionary changes of several important influenza proteins and the influence of these changes on viral antigenicity, host adaption, and viral pathogenicity. Furthermore, we discuss the development of a potent universal influenza vaccine based on this knowledge.
Collapse
Affiliation(s)
- Wandi Zhu
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA.
| | - Chao Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA.
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA.
| |
Collapse
|