1
|
Baral KC, Choi KY. Barriers and Strategies for Oral Peptide and Protein Therapeutics Delivery: Update on Clinical Advances. Pharmaceutics 2025; 17:397. [PMID: 40284395 PMCID: PMC12030352 DOI: 10.3390/pharmaceutics17040397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 04/29/2025] Open
Abstract
Peptide and protein (PP) therapeutics are highly specific and potent biomolecules that treat chronic and complex diseases. However, their oral delivery is significantly hindered by enzymatic degradation, instability, and poor permeability through the gastrointestinal (GI) epithelium, resulting in low bioavailability. Various strategies have emerged as transformative solutions to address existing challenges, offering enhanced protection, stabilization, and absorption of PPs. These strategies primarily focus on two major challenges: protecting the PP against harsh conditions and enhancing permeation across the intestinal membrane. Innovative approaches such as pH modulation and incorporation of enzyme inhibitors are usually used to mitigate proteolytic degradation of PP during transit across the GI tract. In a similar vein, absorption enhancers and prodrug strategies facilitate epithelial transport, while targeted delivery systems focus on specific areas of the GI tract to enhance absorption. Likewise, mucus-penetrating and mucoadhesive strategies have enhanced retention and interaction with epithelial cells, effectively overcoming barriers like the mucus layer and tight epithelial junctions. Furthermore, structural modifications such as lipidation, peptide cyclization, and polyethylene glycosylation are promising alternatives to render stability, prolong circulation time, and membrane permeability. In particular, functional biomaterials, active targeting, and lymphatic transport strategies have provided new platforms for oral PP delivery. Advancing in materials science, nanotechnology, and the disruption of medical devices holds new frontiers to overcome barriers. Despite substantial advancements, the limited success in clinical translation underscores the urgency of innovative strategies. This review presents oral PPs as a promising platform, highlighting the key barriers and strategies to transform their therapeutic landscapes.
Collapse
Affiliation(s)
- Kshitis Chandra Baral
- Department of Marine Bio-Food Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Ki Young Choi
- Department of Marine Bio-Food Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
- NVience Inc., Seoul 04323, Republic of Korea
| |
Collapse
|
2
|
Liang J, Bai M, Bi Y, Jian X, Wang S, Jiang S, Zhao Y, Ma W, Yin S, Zhang W. Heyndrickxia coagulans spore-based nanoparticle generator for improved oral insulin delivery and hypoglycemic therapy. J Control Release 2025; 378:103-115. [PMID: 39657890 DOI: 10.1016/j.jconrel.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/15/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
Due to the two major physiological barriers restricted by mucus penetration and epithelia transport, oral insulin therapy using nano-delivery system remains challenging. Heyndrickxia coagulans spores can survive the harsh conditions of gastrointestinal tract (GIT), and penetrate in the mucus through germination to probiotics with their amphipathic proteinaceous coat shedding in the gut epithelium, which makes it possible to be functionalized with hydrophilic peptide/protein and form nanoparticles (NPs) in vivo. Inspired by the natural physiological properties of spores, novel deoxycholic acid-modified Heyndrickxia coagulans spores loaded with insulin (DA-Spore/Ins) as the generators of autonomous bio-based nanoparticles were designed to solve these absorption barriers to enhance oral insulin delivery. The DA-Spore/Ins delivery system achieved preferable drug protection and rapid mucus penetration through its germination in the intestinal microenvironment. Meanwhile, DA-Spore/Ins NPs could be spontaneously formed by the self-assembly of the disintegrated DA-covalently amphipathic protein coat and the hydrophilic protein/peptides drug. This can efficiently transport through the epithelial cells through the bile acid pathway. In vivo studies indicated that DA-Spore/Ins delivery system achieved an oral relative bioavailability of 15.1 % and superior hypoglycemic effect in type I diabetic rats characterized by good biocompatibility. These studies suggested that the intrinsic biological characteristics of Heyndrickxia coagulans spore-based nanogenerators rendered their promising application in oral insulin or other protein drug therapy.
Collapse
Affiliation(s)
- Jinying Liang
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory for Epigenetic Molecular Pharmacology, Xinxiang 453003, China.
| | - Mengxin Bai
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; People's Hospital of Kaifeng, Kaifeng 475002, China
| | - Yarong Bi
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiangjie Jian
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Siyan Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Shang Jiang
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Ying Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory for Epigenetic Molecular Pharmacology, Xinxiang 453003, China
| | - Weiwei Ma
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Shaoping Yin
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenli Zhang
- Development of pharmaceutics, China Pharmaceutical University, Nangjing 210009, China.
| |
Collapse
|
3
|
Zhu Y, Zhang R, Gao W, Li F, Yang M, Feng J, Ji Y, Si J, Wang X, Dong Y. An environment-responsive platform based on acid-resistant metal organic framework for efficient oral insulin delivery. J Control Release 2025; 377:540-552. [PMID: 39592023 DOI: 10.1016/j.jconrel.2024.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Oral insulin delivery is considered a revolutionary alternative to daily subcutaneous injections in terms of compliance and convenience. However, significant challenges remain in terms of inactivation in gastrointestinal environment and limited permeation across the intestinal epithelium. Herein, we used acid-resistant metal-organic framework (PCN-222) to load insulin and modified the exterior with sodium dodecyl sulfate (SDS) to achieve efficient oral insulin delivery. The PCN-222 nanocarrier with ordered mesoporous cage structure and suitable pore size achieved a high insulin loading of 75 %. The SDS on the surface of nanocarrier reduces its hydrophilicity while reversibly altering cell morphology and increasing epithelial cell permeability, thereby promoting intestinal epithelial absorption. The constructed particle (I@P@S) was encapsulated in sodium alginate (SA) microspheres to protect it from gastric acid degradation and releases it upon entry into the intestinal tract. Through an uptake pathway dominated by clathrin-mediated endocytosis, the released I@P@S realized efficient intestinal permeability and controlled insulin release under physiological conditions due to the phosphate sensitivity of PCN-222, leading to an in vivo bioavailability of 12.9 %. This work provides a valuable reference for the design of oral insulin delivery systems.
Collapse
Affiliation(s)
- Yingnan Zhu
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Ruikang Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Wenwen Gao
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Fei Li
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Mei Yang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Feng
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Yalan Ji
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Jiahang Si
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Xiangrong Wang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Yuze Dong
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Song T, Yuan L, Wang J, Li W, Sun Y. Advances in the transport of oral nanoparticles in gastrointestinal tract. Colloids Surf B Biointerfaces 2025; 245:114321. [PMID: 39423764 DOI: 10.1016/j.colsurfb.2024.114321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Biological barriers in the gastrointestinal tract (GIT) prevent oral absorption of insoluble drugs. Recently, significant progress has been made in the development of various nanoparticles (NPs) designed to enhance the efficacy of oral drugs. However, the mechanism underlying the intracellular transport of NPs remains unclear, and there are still limitations to improving the oral bioavailability of drugs. This article reviews the challenges faced in the absorption of oral NPs, proposes strategies to overcome these barriers, and discusses the future prospects.
Collapse
Affiliation(s)
- Tingting Song
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Lu Yuan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Jie Wang
- Department of Pharmacy, Qingdao Traditional Chinese Medicine Hospital, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao 266033, China
| | - Wenjing Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
5
|
Wang X, Cao Z, Su J, Ge X, Zhou Z. Oral barriers to food-derived active peptides and nano-delivery strategies. J Food Sci 2025; 90:e17672. [PMID: 39828408 DOI: 10.1111/1750-3841.17672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/04/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025]
Abstract
Food-derived bioactive peptides are a class of peptides from natural protein. It may have biological effects on the human body and play a significant role in protecting human physiological health and regulating physiological metabolism, such as lowering blood pressure, lowering cholesterol, antioxidant, antibacterial, regulating immune activity, and so on. However, most of the natural food-derived functional peptides need to overcome a variety of barriers in the body to enter the blood circulation system and target to specific tissues to generate physiological activity. During this process, the bioavailability of the functional peptides will be reduced. The nano-delivery system can offer the feasibility to overcome these obstacles and improve the stability and bioavailability of food-derived active peptides by nanoencapsulation. This work summarizes the application of food-derived bioactive peptides and the obstacles during the delivery pathway in vivo. Moreover, the different nano-delivery systems used for bioactive peptides and their application were summarized, which could provide ideas for oral delivery of food-derived bioactive peptides.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, P. R. China
| | - Zhaoxin Cao
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, P. R. China
| | - Jingyi Su
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, P. R. China
| | - Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, P. R. China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Zhiyong Zhou
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, P. R. China
| |
Collapse
|
6
|
Zhang W, Zhang Q, Yang Y, Chen Y, Wei J, Lu F, Li D. Multi-functional Chitosan Polymeric Micelles for improving the oral bioavailability of Paclitaxel based on synergistic effect. Drug Deliv Transl Res 2025; 15:312-324. [PMID: 38643258 DOI: 10.1007/s13346-024-01597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2024] [Indexed: 04/22/2024]
Abstract
A novel multi-functional micelle delivery system was developed for enhancing the oral absorption of paclitaxel (PTX). The delivery carriers were constructed by modifying chitosan-stearic acid (CS-SA) micelles with L-carnitine (LC) and co-encapsulating quercetin (Que), and the PTX-loaded micelles were prepared by film-sonication dispersing technique. The as-prepared micelles showed homogeneous spherical shapes with a small particle size of 148.3 ± 1.7 nm, high drug loading of 7.05% and low critical micelle concentration (CMC) of 16.89 µg/ml. Compared to the in-house PTX formulation similar to the commercial injection Taxol™, the target PTX-loaded micelles had obvious sustained-release effects and exhibited an oral relative bioavailability of 168.08%. The cellular uptake studies of Caco-2 cells confirmed the micellar modification of LC and the co-loading of Que played important roles in promoting the absorption of drug loaded in micelles. The CYP3A4 enzyme test demonstrated the micelles had an inhibitory effect on the metabolic enzyme due to the presence of Que. These findings confirmed the potential of the multi-functional chitosan polymeric micelles based on synergistic effect as an effective oral delivery system.
Collapse
Affiliation(s)
- Wei Zhang
- Guangxi Institute of Botany, Chinese Academy of Sciences, No. 85 Yanshan Town, Yanshan District, Guilin, 541006, People's Republic of China
- Department of Pharmacy, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, People's Republic of China
- Department of Pharmacy, Guilin Medical University, No. 1 Zhiyuan Road, Guilin, 541199, People's Republic of China
| | - Qian Zhang
- Department of Pharmacy, Guilin Medical University, No. 1 Zhiyuan Road, Guilin, 541199, People's Republic of China
- Department of Chemical Engineering and Pharmacy, Zaozhuang Vocational College, No. 2169 Central Chilien Road, Zaozhuang, 277800, People's Republic of China
| | - Yuhan Yang
- Department of Pharmacy, Guilin Medical University, No. 1 Zhiyuan Road, Guilin, 541199, People's Republic of China
- Academy of Pharmaceutical Science, China Pharmaceutical University, No. 369 Longmian Avenue, Nanjing, 211112, People's Republic of China
| | - Yangyi Chen
- Department of Pharmacy, Guilin Medical University, No. 1 Zhiyuan Road, Guilin, 541199, People's Republic of China
| | - Jinbin Wei
- Department of Pharmacy, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, People's Republic of China.
| | - Fenglai Lu
- Guangxi Institute of Botany, Chinese Academy of Sciences, No. 85 Yanshan Town, Yanshan District, Guilin, 541006, People's Republic of China.
| | - Dianpeng Li
- Guangxi Institute of Botany, Chinese Academy of Sciences, No. 85 Yanshan Town, Yanshan District, Guilin, 541006, People's Republic of China.
- Engineering Research Center of Innovative Traditional Chinese, Zhuang and Yao Materia Medica, Ministry of Education, Guangxi University of Chinese Medicine, No. 13 Wuhe Avenue, Nanning, 530200, People's Republic of China.
| |
Collapse
|
7
|
Raghunath I, Koland M, Sarathchandran C, Saoji S, Rarokar N. Design and optimization of chitosan-coated solid lipid nanoparticles containing insulin for improved intestinal permeability using piperine. Int J Biol Macromol 2024; 280:135849. [PMID: 39313060 DOI: 10.1016/j.ijbiomac.2024.135849] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
The objective of this research was to optimize the composition and performance of chitosan-coated solid lipid nanoparticles carrying insulin (Ch-In-SLNs) and to assess the potential of piperine in enhancing the intestinal permeability of insulin from these SLNs in vitro. The SLNs were formulated from glyceryl behenate (GB), soya lecithin, and poloxamer® 407, and then coated with a combination of chitosan and piperine to facilitate insulin penetration across the gastrointestinal (GI) mucosa. A Box-Behnken Design (BBD) was utilized to optimize the Ch-In-SLNs formulations, with PDI, particle size, zeta potential, and association efficiency (AE) serving as the response variables. The resulting Ch-In-SLNs exhibited excellent monodispersity (PDI = 0.4), optimal particle size (654.43 nm), positive zeta potential (+36.87 mV), and low AE values. The Ch-In-SLNs demonstrated sustained release of insulin for 12 h in simulated gastric fluid (SGF) and intestinal fluid (SIF), with increased release in the latter. After incubation in SGF and SIF for 12 h, the insulin SLNs retained 54 and 41 % of their initial insulin load, respectively, indicating effective protection from gastric enzymes. Permeation studies using goat intestine and Caco-2 cell lines indicated improved insulin permeation in the presence of piperine. Additionally, cell uptake studies confirmed the role of piperine in enhancing insulin permeation.
Collapse
Affiliation(s)
- Indu Raghunath
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore, Karnataka 575018, India
| | - Marina Koland
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore, Karnataka 575018, India.
| | - C Sarathchandran
- College of Pharmaceutical Sciences, Pariyaram Medical College, Kerala 670 503, India
| | - Suprit Saoji
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440033, India.
| | - Nilesh Rarokar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440033, India; NanoBioSome Research Laboratory, Pardi, Bhandara Road, Nagpur, Maharashtra 440035, India.
| |
Collapse
|
8
|
Kulkarni VR, Bashyal S, Nair VV, Duggal I, Maniruzzaman M. Single-Step Extrusion Process for Formulation Development of Self-Emulsifying Granules for Oral Delivery of a BCS Class IV Drug. Mol Pharm 2024. [PMID: 39377300 DOI: 10.1021/acs.molpharmaceut.4c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
This study aimed to develop and optimize formulations containinga BCS Class IV drug by improving its solubility and permeability. Herein development of self-emulsifying solid lipid matrices was investigated as carrier systems for a BCS Class IV model drug. Self-emulsifying drug delivery systems (SEDDS) have been extensively investigated for formulating drugs with poor water solubility. However, manufacturing SEDDS is challenging. These systems usually have low drug-loading capacities, and the incorporated drugs tend to recrystallize during storage, which severely impacts the storage stability in vitro and performance in vivo. Moreover, they require greater amounts (>80%) of lipid carriers, cosolvents, surfactants, and other excipients to keep them from recrystallizing. This in turn is again challenging for high-dose drugs as it affects the size of the final drug product (tablets and capsules). Also, the final liquid nature of the formulation affects the handling and processability of the formulation, which poses challenges during the manufacturing and packaging steps. In this work, we have studied the feasibility of a single-step extrusion process to formulate and optimize solid self-emulsifying granules with a relatively higher drug loading of Ritonavir (RTV), a BCS Class IV drug. Further, we have compared the performance of using these granules as the feedstock for direct powder extrusion-based 3D printing as opposed to the use of physical blends. The stability and solubility-permeability advantage of these granules was also evaluated where SEDDS showed about 27 and 20 fold increase in apparent solublity and permeability compared to bulk drug, respectively. Combining the capabilities of HME to form drug-loaded homogeneous granules as a continuous process along with application of direct printing extruiosn (DPE) 3D printing improves the drug delivery prospects for such candidates.
Collapse
Affiliation(s)
- Vineet R Kulkarni
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Santosh Bashyal
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Varsha V Nair
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ishaan Duggal
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
9
|
Asl ZR, Rezaee K, Ansari M, Zare F, Roknabadi MHA. A review of biopolymer-based hydrogels and IoT integration for enhanced diabetes diagnosis, management, and treatment. Int J Biol Macromol 2024; 280:135988. [PMID: 39322132 DOI: 10.1016/j.ijbiomac.2024.135988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/10/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
The prevalence of diabetes has been increasing globally, necessitating innovative approaches beyond conventional blood sugar monitoring and insulin control. Diabetes is associated with complex health complications, including cardiovascular diseases. Continuous Glucose Monitoring (CGM) devices, though automated, have limitations such as irreversibility and interference with bodily fluids. Hydrogel technologies provide non-invasive alternatives to traditional methods, addressing the limitations of current approaches. This review explores hydrogels as macromolecular biopolymeric materials capable of absorbing and retaining a substantial amount of water within their structure. Due to their high-water absorption properties, these macromolecules are utilized as coating materials for wound care and diabetes management. The study emphasizes the need for early diagnosis and monitoring, especially during the COVID-19 pandemic, where heightened attention to diabetic patients is crucial. Additionally, the article examines the role of the Internet of Things (IoT) and machine learning-based systems in enhancing diabetes management effectiveness. By leveraging these technologies, there is potential to revolutionize diabetes care, providing more personalized and proactive solutions. This review explores cutting-edge hydrogel-based systems as a promising avenue for diabetes diagnosis, management, and treatment, highlighting key biopolymers and technological integrations.
Collapse
Affiliation(s)
- Zahra Rahmani Asl
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Khosro Rezaee
- Department of Biomedical Engineering, Meybod University, Meybod, Iran.
| | - Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Fatemeh Zare
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
10
|
McCartney F, Caisse P, Dumont C, Brayden DJ. Labrafac TM MC60 is an efficacious intestinal permeation enhancer for macromolecules: Comparisons with Labrasol® ALF in ex vivo and in vivo rat studies. Int J Pharm 2024; 661:124353. [PMID: 38909926 DOI: 10.1016/j.ijpharm.2024.124353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
Labrafac™ MC60 (glycerol monocaprylocaprate) is a lipid-based excipient used in oral formulations as a solubiliser. Due to the high proportions of established permeability enhancers, caprylate (C8) and caprate (C10), in Labrafac™ MC60, we hypothesised that it might behave as an intestinal permeation enhancer. We therefore evaluated this using two paracellular markers (ex vivo) and insulin (in vivo) as model molecules. Ex vivo studies were conducted in isolated muscle-stripped rat colonic mucosae mounted in Ussing chambers. Apical addition of Labrafac™ MC60 (8, 12, and 16 mg/ml) enhanced the apparent permeability coefficients (Papp) of [14C] mannitol and FITC-dextran 4 kDa (FD4) across colonic mucosae. Similar effects were observed in isolated jejunal mucosae, but at higher concentrations (40 mg/ml). The enhancing capacity of Labrafac™ MC60 was transient due to reversibility of reductions in transepithelial electrical resistance (TEER) upon wash-out and effects on fluxes were molecular weight-dependent (MW) as suggested by fluxes of a set of high MW FITC-dextrans. The permeability enhancing effects of Labrafac™ MC60 ex vivo were maintained in the presence of simulated intestinal fluids, FaSSIF and FaSSCoF, in both jejunal and colonic mucosae, respectively. Following intra-intestinal regional instillations to rats, the relative bioavailability of 50 IU/kg insulin ad-mixed with Labrafac™ MC60 was 5 % in jejunum (40 mg/ml) and 6 % in colon (8 mg/ml). When Labrafac™ MC60 was combined with PEG-60 hydrogenated castor oil (1 % v/v), this further increased the bioavailability of insulin to 8 % in jejunum. Absorption enhancement was also maintained in the presence of FaSSIF in jejunal instillations. Histology after 120 min exposure to Labrafac™ MC60 in vivo for both jejunum and colon was similar to untreated control. Labrafac™ MC60 therefore acts as a non-damaging intestinal permeation enhancer for macromolecules and can be considered as another excipient in screening programmes to develop orally administered macromolecules.
Collapse
Affiliation(s)
- Fiona McCartney
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | - Camille Dumont
- Gattefossé SAS, 36, Chemin de Genas, Saint-Priest, France
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
11
|
He X, Lai Y, Mo C, Zhang Y, Ai P, Xu S, Qian Y, Xiao Q, Yang X. Association between Fecal Bile Acids and Levodopa Response in Patients with Parkinson's Disease. Microorganisms 2024; 12:1432. [PMID: 39065200 PMCID: PMC11278915 DOI: 10.3390/microorganisms12071432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Levodopa is the mainstay of treatments for Parkinson's disease (PD), but large heterogeneity exists in patient response. Increasing evidence implicates bile acids (BAs) involved in the pathogenesis of PD. Furthermore, BAs have also participated in drug bioavailability. However, the impact of BAs on levodopa response (LR) has not been investigated. This study evaluated the association between fecal BAs and LR. Levodopa challenge test (LCT) was conducted in 92 PD patients to assess LR. A total of 36 fecal BAs and plasma levodopa concentrations were detected using LC-MS/MS. The difference of BAs between subgroups with bottom and top 30% LR were analyzed and fecal samples from the two groups were collected for metagenomic shotgun analysis. No fecal BAs were significantly correlated with LR, except for chenodeoxycholic acid-3-β-D-glucuronide (CDCA-3-β-glucuronide, R = -0.228, p-value = 0.039). We found no significant difference in BAs between subgroups with bottom and top 30% LR. What is more, no significant changes in bacterial species composition related to bile acids metabolism or in the proportional representation of genes encoding known bile acids enzymes were observed between the groups. Overall, our data do not support an association between fecal BAs and levodopa response in PD patients. More precise macro-metabolomic approaches are needed to reveal the potential association between gut microbial interactions and the treatment effect of levodopa.
Collapse
Affiliation(s)
- Xiaoqin He
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.H.); (C.M.); (P.A.); (Y.Q.)
| | - Yiqiu Lai
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.H.); (C.M.); (P.A.); (Y.Q.)
| | - Chengjun Mo
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.H.); (C.M.); (P.A.); (Y.Q.)
| | - Yi Zhang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.H.); (C.M.); (P.A.); (Y.Q.)
| | - Penghui Ai
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.H.); (C.M.); (P.A.); (Y.Q.)
| | - Shaoqing Xu
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Yiwei Qian
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.H.); (C.M.); (P.A.); (Y.Q.)
| | - Qin Xiao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.H.); (C.M.); (P.A.); (Y.Q.)
| | - Xiaodong Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.H.); (C.M.); (P.A.); (Y.Q.)
| |
Collapse
|
12
|
Han Y, Spicer J, Huang Y, Bunt C, Liu M, Wen J. Advancements in oral insulin: A century of research and the emergence of targeted nanoparticle strategies. EUR J LIPID SCI TECH 2024; 126. [DOI: 10.1002/ejlt.202300271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Indexed: 01/03/2025]
Abstract
AbstractWith the growing prevalence of diabetes, there is an urgent demand for a user‐friendly treatment option that minimizes side effects related to the use of subcutaneous injections. Scientists have dedicated over a century to developing an oral dosage form of insulin that can be administrated orally. The oral route of administration is the most desirable route for regularly dosed drugs in terms of safety and patient compliance. However, oral delivery of insulin remains a formidable challenge due to its intrinsically limited ability to cross the intestinal epithelium membrane and susceptibility to enzymatic degradation. This article reviews oral insulin research over the past decade, with a particular focus on surface modifications of nanoparticles (NPs). Various strategies involving controlling surface charges, utilizing protective proteins, and targeting specific receptors with ligands have been explored. Notably, surface modifications of the NPs for targeting specific intestinal receptors have shown promise in enhancing insulin oral absorption and bioavailability. Advanced technologies such as oral microneedles and gene therapy have also been developed, but their safety requires further assessment. Despite encouraging preclinical results across numerous strategies, the current clinical evidence is less optimistic. In summary, the present findings highlight the substantial journey that still lies ahead before achieving successful oral delivery of insulin.Practical Applications: This review provides a summary of recent progress in oral insulin delivery, particularly highlighting surface‐modified functional nanoparticles serving as an effective drug delivery system, which offers valuable information to the researchers. Due to the limited effectiveness of oral protein drugs caused by biological barriers, innovative technologies and drug delivery systems have been developed to overcome these obstacles and achieve therapeutic goals. This review concluded that surface modifications to nanoparticles can improve insulin stability and permeability, thereby enhancing oral bioavailability. It could assist researchers in developing more effective and patient‐friendly oral drug delivery systems.
Collapse
Affiliation(s)
- Yue Han
- School of Pharmacy Faculty of Medical and Health Sciences The University of Auckland Auckland New Zealand
| | - Julie Spicer
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland Auckland New Zealand
| | - Yuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery, West China School of Pharmacy, Sichuan University Chengdu China
| | - Craig Bunt
- The Department of Food Science University of Otago Dunedin New Zealand
| | - Mengyang Liu
- School of Pharmacy Faculty of Medical and Health Sciences The University of Auckland Auckland New Zealand
| | - Jingyuan Wen
- School of Pharmacy Faculty of Medical and Health Sciences The University of Auckland Auckland New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland Auckland New Zealand
| |
Collapse
|
13
|
Haddadzadegan S, To D, Matteo Jörgensen A, Wibel R, Laffleur F, Bernkop-Schnürch A. Comparative Analysis of PEG-Free and PEG-Based Self-Emulsifying Drug Delivery Systems for Enhanced Oral Bioavailability of Therapeutic (Poly) Peptides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307618. [PMID: 38308358 DOI: 10.1002/smll.202307618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/13/2024] [Indexed: 02/04/2024]
Abstract
This study aims to compare the potential of Polyethylene glycol (PEG-free and PEG-based self-emulsifying drug delivery systems (SEDDS) for the oral administration of insulin glargine (IG). Hydrophobic ion pairs (HIPs) of IG are formed using various counterions. HIPs are assessed for log P octanol/water and dissociation behavior. They are incorporated into SEDDS based on polyglycerol (PG) and zwitterionic surfactant (ZW) using response surface methodology and compared to conventional PEG-SEDDS in size, stability, and log D SEDDS/release medium. Oral IG bioavailability in PG/ZW-SEDDS and PEG-SEDDS is evaluated in rats. Among the various counterions studied, IG-BIS (bis(isotridecyl)sulfosuccinate) HIPs demonstrated the highest log P and an improved dissociation profile. PG/ZW-SEDDS and PEG-SEDDS have similar ≈40 nm sizes and are stable over 24 h. Both formulations have log D > 4 in water and >2 in 50 mM phosphate buffer pH 6.8. PG/ZW-SEDDS yielded an oral bioavailability of 2.13 ± 0.66% for IG, while the employment of PEG-SEDDS resulted in an oral bioavailability of 1.15 ± 0.35%. This study highlights the prospective utilization of PEG-free SEDDS involving the concurrent application of PG and ZW surfactants, an alternative to conventional PEG surfactants, for improved oral therapeutic (poly) peptide delivery.
Collapse
Affiliation(s)
- Soheil Haddadzadegan
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Dennis To
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Richard Wibel
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Xing Y, Lian X, Zhang Y, Zhang Y, Guo X. Polymeric liposomes targeting dual transporters for highly efficient oral delivery of paclitaxel. Carbohydr Polym 2024; 334:121989. [PMID: 38553209 DOI: 10.1016/j.carbpol.2024.121989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/09/2024] [Accepted: 02/24/2024] [Indexed: 04/02/2024]
Abstract
A novel delivery system comprising N-succinic anhydride (N-SAA) and D-fructose co-conjugated chitosan (NSCF)-modified polymeric liposomes (NSCF-PLip) were designed to enhance oral delivery of paclitaxel (PTX) by targeting monocarboxylate transporters (MCT) and glucose transporters (GLUT). The synthesized NSCF was characterised by FT-IR and 1H NMR spectra. The prepared 30.78 % (degree of substitution of N-SAA) NSCF-PTX-PLip were approximately 150 nm in size, with a regular spherical shape, the zeta potential of -25.4 ± 5.13 mv, drug loading of 2.35 % ± 0.05 %, and pH-sensitive and slow-release characteristics. Compared with PTX-Lip, 30.78 % NSCF-PTX-PLip significantly enhanced Caco-2 cellular uptake via co-mediation of MCT and GLUT, showing relatively specific binding of propionic acid and MCT. Notably, the NSCF modification of PTX-Lip had no appreciable influence on their original cellular uptake pathway. The fructose modification of 30.78 % NSC-PTX-PLip significantly increased the concentration after tmax, indicating their continuous and efficient absorption. Compared with PTX-Lip, the 30.78 % NSCF-PTX-PLip resulted in a 2.09-fold extension of MRT, and a 6.06-fold increase of oral bioavailability. It significantly increased tumour drug distribution and tumour growth inhibition rate. These findings confirm that 30.78 % NSCF-PLip offer a potential oral delivery platform for PTX and targeting the dual transporters of MCT and GLUT is an effective strategy for enhancing the intestinal absorption of drugs.
Collapse
Affiliation(s)
- YaBing Xing
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - XinJie Lian
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - YuRu Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - YuLu Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - XinHong Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou 450001, China.
| |
Collapse
|
15
|
Ma Y, Xing Y, Han F, Xu J, Qian H, Chen W, Huang D. Dually crosslinked degradable polyionic micelles for sustained glucose-responsive insulin release. Biomater Sci 2024; 12:3202-3211. [PMID: 38747944 DOI: 10.1039/d4bm00314d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Glucose -sensitive delivery systems hold great promise as a therapeutic approach for high-incidence diabetes owing to their ability to release insulin whenever elevated glycemia is detected. However, they are unstable in a hyperglycemic environment, which leads to short-term sustained insulin release. Herein, we designed dually crosslinked insulin polyionic micelles (DCM@insulin) based on triblock polymers of o-glycol and phenylboronic acid-functionalized poly(ethylene glycol)-poly(dimethylamino carbonate)-poly(dimethylamino-trimethylene carbonate) (mPEG-P(AC-co-MPD)-PDMAC and mPEG-P(AC-co-MAPBA)-PDMATC, respectively) for sustained glucose-responsive insulin release. DCM@insulin with a phenylboronic acid ester structure (first crosslinking structure) enhanced glycemic responsiveness by regulating insulin release in a hyperglycemic environment. Additionally, the UV-crosslinking structure (second crosslinking structure) formed by the residual double bonds in AC units endowed DCM@insulin with the ability to effectively protect the loaded insulin against protease degradation and avoid burst release under multiple insulin release. The in vivo findings demonstrated that DCM@insulin effectively maintained glycemic levels (BGLs) within the normal range for 6 h in comparison to single-crosslinked micelles (SCM@insulin). Therefore, the glucose-responsive and dually crosslinked polyionic micelle system exhibits potential as a viable option for the treatment of diabetes.
Collapse
Affiliation(s)
- Yuhong Ma
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Yu Xing
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Fuwei Han
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Jiahao Xu
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| |
Collapse
|
16
|
Tang Y, Liu B, Zhang Y, Liu Y, Huang Y, Fan W. Interactions between nanoparticles and lymphatic systems: Mechanisms and applications in drug delivery. Adv Drug Deliv Rev 2024; 209:115304. [PMID: 38599495 DOI: 10.1016/j.addr.2024.115304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/08/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
The lymphatic system has garnered significant attention in drug delivery research due to the advantages it offers, such as enhancing systemic exposure and enabling lymph node targeting for nanomedicines via the lymphatic delivery route. The journey of drug carriers involves transport from the administration site to the lymphatic vessels, traversing the lymph before entering the bloodstream or targeting specific lymph nodes. However, the anatomical and physiological barriers of the lymphatic system play a pivotal role in influencing the behavior and efficiency of carriers. To expedite research and subsequent clinical translation, this review begins by introducing the composition and classification of the lymphatic system. Subsequently, we explore the routes and mechanisms through which nanoparticles enter lymphatic vessels and lymph nodes. The review further delves into the interactions between nanomedicine and body fluids at the administration site or within lymphatic vessels. Finally, we provide a comprehensive overview of recent advancements in lymphatic delivery systems, addressing the challenges and opportunities inherent in current systems for delivering macromolecules and vaccines.
Collapse
Affiliation(s)
- Yisi Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; NHC Key Laboratory of Comparative Medicine, National Center of Technology Innovation for Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Bao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuting Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China.
| | - Wufa Fan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
17
|
Zaklan D, Nešić D, Mitrović D, Lazarević S, Đanić M, Mikov M, Pavlović N. Influence of Bile Acids on Clindamycin Hydrochloride Skin Permeability: In Vitro and In Silico Preliminary Study. Eur J Drug Metab Pharmacokinet 2024; 49:219-228. [PMID: 38332426 DOI: 10.1007/s13318-024-00878-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND AND OBJECTIVE Topical clindamycin formulations are widely used in clinical practice, but poor bioavailability and restricted skin penetration considerably limit their therapeutic efficacy. Penetration enhancement represents a promising and rational strategy to overcome the drawbacks of conventional topical pharmaceutical formulations. We aim to assess the influence of cholic acid (CA) and deoxycholic acid (DCA) on the permeability of clindamycin hydrochloride by performing the in vitro skin parallel artificial membrane permeability assay (skin-PAMPA) at two relevant pH values (5.5 and 6.5) and the interactions of tested substances with skin ATP-binding cassette (ABC) transporters in silico. METHODS After the incubation period, the clindamycin hydrochloride concentrations in both compartments were determined spectrophotometrically, and the apparent permeability coefficients (Papp) were calculated. Vienna LiverTox web service was used to predict the interactions of clindamycin and bile acids with potential drug transporters located in human skin. RESULTS Both CA and DCA at the highest studied concentration of 100 μM in the tested solutions increased the skin-PAMPA membrane permeability of clindamycin hydrochloride. This effect was more pronounced for CA and at a higher studied pH value of 6.5, which is characteristic of most dermatological indications treated with topical clindamycin preparations. Clindamycin transport may also be mediated by ABC transporters located in skin and facilitated in the presence of bile acids. CONCLUSIONS The results of this study provide a solid foundation for further research directed at the improvement of topical formulations using bile acids as penetration-enhancing excipients, as well as the therapeutic efficacy of clindamycin hydrochloride.
Collapse
Affiliation(s)
- Dragana Zaklan
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia.
| | - Dušan Nešić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
| | - Darko Mitrović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
| | - Slavica Lazarević
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
| | - Maja Đanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
| |
Collapse
|
18
|
Ma Y, Wang W, He M, Liu Y, Li C, Zhong Y, Bu Q, Huang D, Qian H, Chen W. PVA-based bulk microneedles capable of high insulin loading and pH-triggered degradation for multi-responsive and sustained hypoglycemic therapy. Biomater Sci 2024; 12:507-517. [PMID: 38088652 DOI: 10.1039/d3bm01760e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
"Closed-loop" insulin-loaded microneedle patche shows great promise for improving therapeutic outcomes and life quality for diabetes patients. However, it is typically hampered by limited insulin loading capacity, random degradation, and intricate preparation procedures for the independence of the "closed-loop" bulk microneedles. In this study, we combined the solubility of microneedles and "closed-loop" systems and designed poly(vinyl alcohol)-based bulk microneedles (MNs@GI) through in situ photopolymerization for multi-responsive and sustained hypoglycemic therapy, which significantly simplified the preparation process and improved insulin loading. GOx/insulin co-encapsulated MNs@GI with a phenylboronic ester structure improved glycemic responsiveness to control the insulin release under high glucose conditions and reduced inflammation risk in the normal skin. MNs@GI could further degrade to increase insulin release due to the crosslinked acetal-linkage hydrolysis in the presence of gluconic acid, which was caused by GOx-mediated glucose-oxidation in a hyperglycemic environment. The in vivo results showed that MNs@GI effectively regulated glycemic levels within the normal range for approximately 10 h compared to that of only insulin-loaded microneedles (MNs@INS). Consequently, the highly insulin-loaded, multi-responsive, and pH-triggered MN system has tremendous potential for diabetes treatment.
Collapse
Affiliation(s)
- Yuhong Ma
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Wei Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Mujiao He
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Yunzhu Liu
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Caihua Li
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Quanmin Bu
- Department of Public Security and Management, Jiangsu Police Institute, Nanjing 210031, Jiangsu, China.
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| |
Collapse
|
19
|
Zöller K, Karlegger A, Truszkowska M, Stengel D, Bernkop-Schnürch A. Fluorescent hydrophobic ion pairs: A powerful tool to investigate cellular uptake of hydrophobic drug complexes via lipid-based nanocarriers. J Colloid Interface Sci 2024; 654:174-188. [PMID: 37839235 DOI: 10.1016/j.jcis.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
HYPOTHESIS Hydrophobic ion pairs (HIPs) between two fluorescent components and incorporation into nanoemulsions (NE) allows tracking in cellular uptake studies. EXPERIMENTS HIPs were formed between propidium iodide and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (NBD-PE), azure A chloride and NBD-PE or coumarin 343 and 4-(4-dihexadecylaminostyryl)-N-methylpyridinium iodide) (DiA). Fluorescence spectra of the resulting complexes were recorded. HIPs were loaded into zwitterionic NE and their size, stability in different media, haemolytic properties and cytotoxicity were evaluated. Furthermore, cellular uptake at 37 °C and 4 °C was investigated via flow cytometry and confocal microscopy. FINDINGS HIP-formation increased lipophilicity of the hydrophilic model drugs. NE exhibited a size between 80 and 150 nm and were not toxic in concentrations up to 0.1 % but showed high haemolytic properties. Cellular uptake of propidium, azure A and coumarin 343 were 8-fold, 115-fold and 1.3-fold improved by the formation of HIPs and up to 59-fold, 120-fold and 50-fold by incorporating these HIPs in NE, respectively. Lower uptake was observed at 4 °C. In case of propidium/ NBD-PE and azure A/ NBD-PE HIPs, propidium and azure A were delivered into the cytosol, whereas NBD-PE was unable to enter cells. In case of coumarin 343/ DiA HIPs, both components accumulated in the cell membrane. Therefore, HIPs between two fluorescent compounds are a powerful tool to investigate cellular uptake of hydrophobic complexes via nanocarriers by visualization of their cellular distribution.
Collapse
Affiliation(s)
- Katrin Zöller
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Anna Karlegger
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Martyna Truszkowska
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Daniel Stengel
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
20
|
Islam MM, Raikwar S. Enhancement of Oral Bioavailability of Protein and Peptide by Polysaccharide-based Nanoparticles. Protein Pept Lett 2024; 31:209-228. [PMID: 38509673 DOI: 10.2174/0109298665292469240228064739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/22/2024]
Abstract
Oral drug delivery is a prevalent and cost-effective method due to its advantages, such as increased drug absorption surface area and improved patient compliance. However, delivering proteins and peptides orally remains a challenge due to their vulnerability to degradation by digestive enzymes, stomach acids, and limited intestinal membrane permeability, resulting in poor bioavailability. The use of nanotechnology has emerged as a promising solution to enhance the bioavailability of these vital therapeutic agents. Polymeric NPs, made from natural or synthetic polymers, are commonly used. Natural polysaccharides, such as alginate, chitosan, dextran, starch, pectin, etc., have gained preference due to their biodegradability, biocompatibility, and versatility in encapsulating various drug types. Their hydrophobic-hydrophilic properties can be tailored to suit different drug molecules.
Collapse
Affiliation(s)
- Md Moidul Islam
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga-142001, Punjab, India
| | - Sarjana Raikwar
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga-142001, Punjab, India
| |
Collapse
|
21
|
Nallamothu B, Kuche K, Ghadi R, Chaudhari D, Jain S. Enhancing oral bioavailability of insulin through bilosomes: Implication of charge and chain length on apical sodium-dependent bile acid transporter (ASBT) uptake. Int J Biol Macromol 2023; 252:126565. [PMID: 37640185 DOI: 10.1016/j.ijbiomac.2023.126565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
This study investigates the impact of charge and chain length of bile salts in the bilosomes on the oral bioavailability of insulin (IN) by examining their uptake via the apical sodium-dependent bile acid transporter (ASBT). Deoxycholic acid bile salt was conjugated with different amino acids to create conjugates with varying charge and chain length, which were then embedded in liposomes. The resulting bilosomes had a particle size <400 nm, a PDI of 0.121 ± 0.03, and an entrapment efficiency of ∼70 %, while maintaining the chemical and conformational integrity of the loaded IN. Bilosomes also provided superior protection in biological fluids without compromising their biophysical attributes. Quantitative studies using the Caco-2 cell line demonstrated that anionic bilosomes were taken up more efficiently through ASBT than cationic bilosomes with 4- and 1.3-fold increase, respectively. Ex-vivo permeability studies corroborated these findings. In-vivo efficacy studies revealed a 1.6-fold increase in the AUC of IN with bilosomes compared to subcutaneous IN. The developed bilosomes were able to reduce blood glucose levels by ∼65 % at 6 h, with a cumulative hypoglycemic value of 35 % and a BAR of ∼30 %. These results suggest that ASBT can be a suitable target for improving the oral bioavailability of bilosomes containing IN.
Collapse
Affiliation(s)
- Bhargavi Nallamothu
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab, India
| | - Rohan Ghadi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab, India
| | - Dasharath Chaudhari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab, India.
| |
Collapse
|
22
|
Kweon S, Lee JH, Yang SB, Park SJ, Subedi L, Shim JH, Cho SS, Choi JU, Byun Y, Park J, Park JW. Design of chimeric GLP-1A using oligomeric bile acids to utilize transporter-mediated endocytosis for oral delivery. Biomater Res 2023; 27:83. [PMID: 37660070 PMCID: PMC10474648 DOI: 10.1186/s40824-023-00421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/19/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Despite the effectiveness of glucagon-like peptide-1 agonist (GLP-1A) in the treatment of diabetes, its large molecular weight and high hydrophilicity result in poor cellular permeability, thus limiting its oral bioavailability. To address this, we developed a chimeric GLP-1A that targets transporter-mediated endocytosis to enhance cellular permeability to GLP-1A by utilizing the transporters available in the intestine, particularly the apical sodium-dependent bile acid transporter (ASBT). METHODS In silico molecular docking and molecular dynamics simulations were used to investigate the binding interactions of mono-, bis-, and tetra-deoxycholic acid (DOCA) (monoDOCA, bisDOCA, and tetraDOCA) with ASBT. After synthesizing the chimeric GLP-1A-conjugated oligomeric DOCAs (mD-G1A, bD-G1A, and tD-G1A) using a maleimide reaction, in vitro cellular permeability and insulinotropic effects were assessed. Furthermore, in vivo oral absorption in rats and hypoglycemic effect on diabetic db/db mice model were evaluated. RESULTS In silico results showed that tetraDOCA had the lowest interaction energy, indicating high binding affinity to ASBT. Insulinotropic effects of GLP-1A-conjugated oligomeric DOCAs were not different from those of GLP-1A-Cys or exenatide. Moreover, bD-G1A and tD-G1A exhibited improved in vitro Caco-2 cellular permeability and showed higher in vivo bioavailability (7.58% and 8.63%) after oral administration. Regarding hypoglycemic effects on db/db mice, tD-G1A (50 μg/kg) lowered the glucose level more than bD-G1A (50 μg/kg) compared with the control (35.5% vs. 26.4%). CONCLUSION GLP-1A was conjugated with oligomeric DOCAs, and the resulting chimeric compound showed the potential not only for glucagon-like peptide-1 receptor agonist activity but also for oral delivery. These findings suggest that oligomeric DOCAs can be used as effective carriers for oral delivery of GLP-1A, offering a promising solution for enhancing its oral bioavailability and improving diabetes treatment.
Collapse
Affiliation(s)
- Seho Kweon
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
- Biomedicine Cutting Edge Formulation Technology Center, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Jun-Hyuck Lee
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju, 27478, Republic of Korea
| | - Seong-Bin Yang
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju, 27478, Republic of Korea
| | - Seong Jin Park
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Laxman Subedi
- Biomedicine Cutting Edge Formulation Technology Center, Mokpo National University, Jeonnam, 58554, Republic of Korea
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Jung-Hyun Shim
- Biomedicine Cutting Edge Formulation Technology Center, Mokpo National University, Jeonnam, 58554, Republic of Korea
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Seung-Sik Cho
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Jeong Uk Choi
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Youngro Byun
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jooho Park
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju, 27478, Republic of Korea.
| | - Jin Woo Park
- Biomedicine Cutting Edge Formulation Technology Center, Mokpo National University, Jeonnam, 58554, Republic of Korea.
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea.
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea.
| |
Collapse
|
23
|
Mudassir J, Raza A, Khan MA, Hameed H, Shazly GA, Irfan A, Rana SJ, Abbas K, Arshad MS, Muhammad S, Bin Jardan YA. Design and Evaluation of Hydrophobic Ion Paired Insulin Loaded Self Micro-Emulsifying Drug Delivery System for Oral Delivery. Pharmaceutics 2023; 15:1973. [PMID: 37514159 PMCID: PMC10383801 DOI: 10.3390/pharmaceutics15071973] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Despite several novel and innovative approaches, clinical translation of oral insulin delivery into commercially viable treatment is still challenging due to its poor absorption and rapid degradation in GIT. Thus, an insulin-SDS hydrophobic ion pair loaded self-microemulsifying drug delivery system (SMEDDS) was formulated to exploit the hypoglycemic effects of orally delivered insulin. Insulin was initially hydrophobically ion paired with sodium dodecyl sulphate (SDS) to enhance its lipophilicity. The successful complexation of Insulin-SDS was confirmed by FTIR and surface morphology was evaluated using SEM. Stability of insulin after its release from HIP complex was evaluated using SDS PAGE. Subsequently, Ins-SDS loaded SMEDDS was optimized using two factorial designs. In vitro stability of insulin entrapped in optimized SMEDDS against proteolytic degradation was also assessed. Further, antidiabetic activity of optimized Ins-SDS loaded SMEDDS was evaluated in diabetic rats. Insulin complexed with SDS at 6:1 (SDS/insulin) molar ratio with almost five-fold increased lipophilicity. The SMEDDS was optimized at 10% Labraphil M2125 CS, 70% Cremophore EL, and 20% Transcutol HP with better proteolytic stability and oral antidiabetic activity. An Ins-SDS loaded SMEDDS was successfully optimized. Compared with insulin and Ins-SDS complex, the optimized SMEDDS displayed considerable resistance to GI enzymes. Thus, the SMEDDS showed potential for effective delivery of macromolecular drugs with improved oral bioavailability.
Collapse
Affiliation(s)
- Jahanzeb Mudassir
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Afsheen Raza
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore 54000, Pakistan
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore 54000, Pakistan
| | - Gamal A Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sadia Jafar Rana
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Khizar Abbas
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | - Sajjad Muhammad
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstrasse-5, 40225 Düsseldorf, Germany
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
24
|
Claus V, Spleis H, Federer C, Zöller K, Wibel R, Laffleur F, Dumont C, Caisse P, Bernkop-Schnürch A. Self-emulsifying drug delivery systems (SEDDS): In vivo-proof of concept for oral delivery of insulin glargine. Int J Pharm 2023; 639:122964. [PMID: 37100259 DOI: 10.1016/j.ijpharm.2023.122964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023]
Abstract
In spite of recent progress made in the field of peptide and protein delivery, oral administration of insulin and similar drugs remains a challenge. In this study, lipophilicity of insulin glargine (IG) was successfully increased via hydrophobic ion pairing (HIP) with sodium octadecyl sulfate to enable incorporation into self-emulsifying drug delivery systems (SEDDS). Two SEDDS formulations (F1: 20% Labrasol®ALF, 30% polysorbate 80, 10% Croduret 50, 20% oleyl alcohol, 20% Maisine® CC; F2: 30% Labrasol®ALF, 20% polysorbate 80, 30% Kolliphor® HS 15, 20% Plurol® oleique CC 497) were developed and loaded with the IG-HIP complex. Further experiments confirmed increased lipophilicity of the complex, achieving Log DSEDDS/release medium values of 2.5 (F1) and 2.4 (F2) and ensuring sufficient amounts of IG within the droplets after dilution. Toxicological assays indicated minor toxicity and no toxicity inherent to the incorporated IG-HIP complex. SEDDS formulations F1 and F2 were administered to rats via oral gavage and resulted in a bioavailability of 0.55% and 0.44%, corresponding to a 7.7-fold and 6.2-fold increased bioavailability, respectively. Thus, incorporation of complexed insulin glargine into SEDDS formulations provides a promising approach to facilitate its oral absorption.
Collapse
Affiliation(s)
- Victor Claus
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Helen Spleis
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Christoph Federer
- Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Katrin Zöller
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Richard Wibel
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Camille Dumont
- Gattefossé SAS, 36 Chemin de Genas, 69804 Saint-Priest Cedex, France
| | - Philippe Caisse
- Gattefossé SAS, 36 Chemin de Genas, 69804 Saint-Priest Cedex, France
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria.
| |
Collapse
|
25
|
Jörgensen AM, Wibel R, Bernkop-Schnürch A. Biodegradable Cationic and Ionizable Cationic Lipids: A Roadmap for Safer Pharmaceutical Excipients. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206968. [PMID: 36610004 DOI: 10.1002/smll.202206968] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Cationic and ionizable cationic lipids are broadly applied as auxiliary agents, but their use is associated with adverse effects. If these excipients are rapidly degraded to endogenously occurring metabolites such as amino acids and fatty acids, their toxic potential can be minimized. So far, synthesized and evaluated biodegradable cationic and ionizable cationic lipids already showed promising results in terms of functionality and safety. Within this review, an overview about the different types of such biodegradable lipids, the available building blocks, their synthesis and cleavage by endogenous enzymes is provided. Moreover, the relationship between the structure of the lipids and their toxicity is described. Their application in drug delivery systems is critically discussed and placed in context with the lead compounds used in mRNA vaccines. Moreover, their use as preservatives is reviewed, guidance for their design is provided, and an outlook on future developments is given.
Collapse
Affiliation(s)
- Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| | - Richard Wibel
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| |
Collapse
|
26
|
Insulin-loaded liposomes packaged in alginate hydrogels promote the oral bioavailability of insulin. J Control Release 2023; 353:51-62. [PMID: 36410613 DOI: 10.1016/j.jconrel.2022.11.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Compared to subcutaneous injections, oral administration of insulin would be a preferred route of drug administration for diabetic patients. For oral delivery, both liposomes and alginate hydrogels face many challenges, including early burst release of the encapsulated drug and poor intestinal drug absorption. Also, adhesion to the intestinal mucosa remains weak, which all result in a low bioavailability of the payload. This study reports on an alginate hydrogel loaded with liposomes for oral insulin administration. Liposomes (Lip) loaded with arginine-insulin complexes (AINS) were incorporated into a hydrogel prepared from cysteine modified alginate (Cys-Alg) to form liposome-in-alginate hydrogels (AINS-Lip-Gel). An ex vivo study proves that intestinal permeation of AINS and AINS-Lip is approximately 2.0 and 6.0-fold, respectively, higher than that of free insulin. The hydrogel retarded early release of insulin (∼30%) from the liposomes and enhanced the intestinal mucosal retention. In vivo experiments revealed that the AINS-Lip-Gel released insulin in a controlled manner and possessed strong hypoglycemic effects. We conclude that liposome-in-alginate hydrogels loaded with AINS represent an attractive strategy for the oral delivery of insulin.
Collapse
|
27
|
Goo YT, Lee S, Choi JY, Kim MS, Sin GH, Hong SH, Kim CH, Song SH, Choi YW. Enhanced oral absorption of insulin: hydrophobic ion pairing and a self-microemulsifying drug delivery system using a D-optimal mixture design. Drug Deliv 2022; 29:2831-2845. [PMID: 36050870 PMCID: PMC9448375 DOI: 10.1080/10717544.2022.2118399] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The lipophilicity of a peptide drug can be considerably increased by hydrophobic ion pairing with amphiphilic counterions for successful incorporation into lipid-based formulations. Herein, to enhance the oral absorption of insulin (INS), a self-microemulsifying drug delivery system (SMEDDS) formulation was developed. Prior to optimization, INS was complexed with sodium n-octadecyl sulfate (SOS) to increase the loading into the SMEDDS. The INS–SOS complex was characterized via scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and its dissociation behavior. The SMEDDS was optimized using a D-optimal mixture design with three independent variables including Capmul MCM (X1, 9.31%), Labrasol (X2, 49.77%), and Tetraglycol (X3, 40.92%) and three response variables including droplet size (Y1, 115.2 nm), INS stability (Y2, 46.75%), and INS leakage (Y3, 17.67%). The desirability function was 0.766, indicating excellent agreement between the predicted and experimental values. The stability of INS-SOS against gastrointestinal enzymes was noticeably improved in the SMEDDS, and the majority of INS remained in oil droplets during release. Following oral administration in diabetic rats, the optimized SMEDDS resulted in pharmacological availabilities of 3.23% (50 IU/kg) and 2.13% (100 IU/kg). Thus, the optimized SMEDDS is a good candidate for the practical development of oral delivery of peptide drugs such as INS.
Collapse
Affiliation(s)
- Yoon Tae Goo
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Ji Yeh Choi
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - Min Song Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Gi Hyeong Sin
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Sun Ho Hong
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Chang Hyun Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Seh Hyon Song
- College of Pharmacy, Kyungsung University, Busan, Republic of Korea
| | - Young Wook Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Oral Cell-Targeted Delivery Systems Constructed of Edible Materials: Advantages and Challenges. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227991. [PMID: 36432092 PMCID: PMC9697699 DOI: 10.3390/molecules27227991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Cell-targeted delivery is an advanced strategy which can effectively solve health problems. However, the presence of synthetic materials in delivery systems may trigger side effects. Therefore, it is necessary to develop cell-targeted delivery systems with excellent biosafety. Edible materials not only exhibit biosafety, but also can be used to construct cell-targeted delivery systems such as ligands, carriers, and nutraceuticals. Moreover, oral administration is the appropriate route for cell-targeted delivery systems constructed of edible materials (CDSEMs), which is the same as the pattern of food intake, resulting in good patient compliance. In this review, relevant studies of oral CDSEMs are collected to summarize the construction method, action mechanism, and health impact. The gastrointestinal stability of delivery systems can be improved by anti-digestible materials. The design of the surface structure, shape, and size of carrier is beneficial to overcoming the mucosal barrier. Additionally, some edible materials show dual functions of a ligand and carrier, which is conductive to simplifying the design of CDSEMs. This review can provide a better understanding and prospect for oral CDSEMs and promote their application in the health field.
Collapse
|
29
|
Nemati M, Fathi-Azarbayjani A, Al-Salami H, Roshani Asl E, Rasmi Y. Bile acid-based advanced drug delivery systems, bilosomes and micelles as novel carriers for therapeutics. Cell Biochem Funct 2022; 40:623-635. [PMID: 35830577 DOI: 10.1002/cbf.3732] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus affects almost half a billion patients worldwide and results from either destruction of β-cells responsible for insulin secretion or increased tissue resistance to insulin stimulation and the reduction of glycemic control. Novel drug delivery systems can improve treatment efficacy in diabetic patients. The low aqueous solubility of most oral antidiabetic drugs decreases drug bioavailability; therefore, there is a demand for the use of novel methods to overcome this issue. The application of bile acids mixed micelles and bilosomes can provide an enhancement in drug efficacy. Bile acids are amphiphilic steroidal molecules that contain a saturated tetracyclic hydrocarbon cyclopentanoperhydrophenanthrene ring, and consist of three 6-membered rings and a 5-membered ring, a short aliphatic side chain, and a tough steroid nucleus. This review offers a comprehensive and informative data focusing on the great potential of bile acid, their salts, and their derivatives for the development of new antidiabetic drug delivery system.
Collapse
Affiliation(s)
- Mohadeseh Nemati
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Anahita Fathi-Azarbayjani
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Elmira Roshani Asl
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
30
|
Bashyal S, Thapa C, Lee S. Recent progresses in exosome-based systems for targeted drug delivery to the brain. J Control Release 2022; 348:723-744. [PMID: 35718214 DOI: 10.1016/j.jconrel.2022.06.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/08/2022] [Indexed: 12/18/2022]
Abstract
Despite the multiple ongoing and novel initiatives for developing brain-targeted drug delivery systems, insurmountable obstacles remain. A perfect drug delivery device that can bypass the brain-blood barrier and boost therapeutic efficacy is urgently needed for clinical applications. Exosomes hold unrivaled benefits as a drug delivery vehicle for treating brain diseases due to their endogenous and innate attributes. Unique properties, such as the ability to penetrate physical barriers, biocompatibility, innate targeting features, ability to leverage natural intracellular trafficking pathways, favored tumor homing, and stability, make exosomes suitable for brain-targeted drug delivery. Herein, we provide an overview of recent exosome-based drug delivery nanoplatforms and discuss how these inherent vesicles can be used to deliver therapeutic agents to the brain to cure neurodegenerative diseases, brain tumors, and other brain disorders. Moreover, we review the current roadblocks associated with exosomes and other brain-targeted drug delivery systems and discuss future directions for achieving successful therapy outcomes.
Collapse
Affiliation(s)
- Santosh Bashyal
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chhitij Thapa
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea.
| |
Collapse
|
31
|
Wibel R, Knoll P, Le-Vinh B, Kali G, Bernkop-Schnürch A. Synthesis and evaluation of sulfosuccinate-based surfactants as counterions for hydrophobic ion pairing. Acta Biomater 2022; 144:54-66. [PMID: 35292415 DOI: 10.1016/j.actbio.2022.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022]
Abstract
Hydrophobic ion pairing is a promising strategy to raise the lipophilic character of therapeutic peptides and proteins. In past studies, docusate, an all-purpose surfactant with a dialkyl sulfosuccinate structure, showed highest potential as hydrophobic counterion. Being originally not purposed for hydrophobic ion pairing, it is likely still far away from the perfect counterion. Thus, within this study, docusate analogues with various linear and branched alkyl residues were synthesized to derive systematic insights into which hydrophobic tail is most advantageous for hydrophobic ion pairing, as well as to identify lead counterions that form complexes with superior hydrophobicity. The successful synthesis of the target compounds was confirmed by FT-IR, 1H-NMR, and 13C-NMR. In a screening with the model protein hemoglobin, monostearyl sulfosuccinate, dioleyl sulfosuccinate, and bis(isotridecyl) sulfosuccinate were identified as lead counterions. Their potential was further evaluated with the peptides and proteins vancomycin, insulin, and horseradish peroxidase. Dioleyl sulfosuccinate and bis(isotridecyl) sulfosuccinate significantly increased the hydrophobicity of the tested peptides and proteins determined as logP or lipophilicity determined as solubility in 1-octanol, respectively, in comparison to the gold standard docusate. Dioleyl sulfosuccinate provided an up to 8.3-fold higher partition coefficient and up to 26.5-fold higher solubility in 1-octanol than docusate, whereas bis(isotridecyl) sulfosuccinate resulted in an up to 6.7-fold improvement in the partition coefficient and up to 44.0-fold higher solubility in 1-octanol. The conjugation of highly lipophilic alkyl tails to the polar sulfosuccinate head group allows the design of promising counterions for hydrophobic ion pairing. STATEMENT OF SIGNIFICANCE: Hydrophobic ion pairing enables efficient incorporation of hydrophilic molecules into lipid-based formulations by forming complexes with hydrophobic counterions. Docusate, a sulfosuccinate with two branched alkyl tails, has shown highest potential as anionic hydrophobic counterion. As it was originally not purposed for hydrophobic ion pairing, its structure is likely still far away from the perfect counterion. To improve its properties, analogues of docusate with various alkyl tails were synthesized in the present study. The investigation of different alkyl residues allowed to derive systematic insights into which tail structures are most favorable for hydrophobic ion pairing. Moreover, the lead counterions dioleyl sulfosuccinate and bis(isotridecyl) sulfosuccinate bearing highly lipophilic alkyl tails provided a significant improvement in the hydrophobicity of the resulting complexes.
Collapse
|
32
|
Application of Fucoidan in Caco-2 Model Establishment. Pharmaceuticals (Basel) 2022; 15:ph15040418. [PMID: 35455415 PMCID: PMC9024647 DOI: 10.3390/ph15040418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/17/2022] Open
Abstract
The Caco-2 model is a common cell model for material intestinal absorption in vitro, which usually takes 21 days to establish. Although some studies have shown that adding puromycin (PM) can shorten the model establishment period to 7 days, this still requires a long modeling time. Therefore, exploring a shorter modeling method can reduce the experimental costs and promote the development and application of the model. Fucoidan is an acidic polysaccharide with various biological activities. Our study showed that the transepithelial electrical resistance (TEER) value could reach 600 Ω·cm2 on the fourth day after the addition of fucoidan and puromycin, which met the applicable standards of the model (>500 Ω). Moreover, the alkaline phosphatase (AKP) activity, fluorescein sodium transmittance, and cell morphology of this model all met the requirements of model establishment. Fucoidan did not affect the absorption of macromolecular proteins and drugs. The results indicate that fucoidan can be applied to establish the Caco-2 model and can shorten the model establishment period to 5 days.
Collapse
|
33
|
Tran H, ElSayed MEH. Progress and limitations of oral peptide delivery as a potentially transformative therapy. Expert Opin Drug Deliv 2022; 19:163-178. [PMID: 35255753 DOI: 10.1080/17425247.2022.2051476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The oral delivery of peptides offers advantages over the injectable route of administration due to patient convenience. However, oral delivery remains challenging due to physiological barriers. Numerous formulation technologies have been developed to overcome these challenges, and understanding the advantages and limitations of each technology is important for the development of new delivery systems to enable oral delivery of peptides designed for parenteral administration. AREAS COVERED This review summarizes key learnings from the use of permeation enhancers (PEs) for oral peptide delivery associated with solid dosage form optimization to maximize the PE effect. Furthermore, we will highlight the most recent emerging delivery strategies to improve oral peptide bioavailability such as nanoparticles, self-emulsifying drug delivery systems, gut shuttles, and ingestible devices. In addition, advantages and limitations of these technologies will be compared with the permeation enhancer technology. EXPERT OPINION Despite the success of permeation enhancer technology in the FDA approved oral peptide products for gastric and intestinal delivery, oral peptide delivery is still facing the immense challenge of low-to-single digit oral bioavailability and the impact of food and water intake on oral absorption. Optimization of drug product attributes such as dissolution kinetics is critical to overcome spreading and dilution effects in vivo to improve permeation enhancer efficacy. The next frontiers to substantially increase oral bioavailability and transform injectable peptides to oral deliverables may be ingestible devices and gut shuttles. In addition, ingestible devices may have potential to overcome the impact of food on oral bioavailability. However, clinical studies are necessary to inform the safety and efficacy of these emerging technologies.
Collapse
|
34
|
Oral delivery of therapeutic peptides and proteins: Technology landscape of lipid-based nanocarriers. Adv Drug Deliv Rev 2022; 182:114097. [PMID: 34999121 DOI: 10.1016/j.addr.2021.114097] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/04/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
The oral administration of therapeutic peptides and proteins is favoured from a patient and commercial point of view. In order to reach the systemic circulation after oral administration, these drugs have to overcome numerous barriers including the enzymatic, sulfhydryl, mucus and epithelial barrier. The development of oral formulations for therapeutic peptides and proteins is therefore necessary. Among the most promising formulation approaches are lipid-based nanocarriers such as oil-in-water nanoemulsions, self-emulsifying drug delivery systems (SEDDS), solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), liposomes and micelles. As the lipophilic character of therapeutic peptides and proteins can be tremendously increased such as by the formation of hydrophobic ion pairs (HIP) with hydrophobic counter ions, they can be incorporated in the lipophilic phase of these carriers. Since gastrointestinal (GI) peptidases as well as sulfhydryl compounds such as glutathione and dietary proteins are too hydrophilic to enter the lipophilic phase of these carriers, the incorporated therapeutic peptide or protein is protected towards enzymatic degradation as well as unintended thiol/disulfide exchange reactions. Stability of lipid-based nanocarriers towards lipases can be provided by the use to excipients that are not or just poorly degraded by these enzymes. Nanocarriers with a size <200 nm and a mucoinert surface such as PEG or zwitterionic surfaces exhibit high mucus permeating properties. Having reached the underlying absorption membrane, lipid-based nanocarriers enable paracellular and lymphatic drug uptake, induce endocytosis and transcytosis or simply fuse with the cell membrane releasing their payload into the systemic circulation. Numerous in vivo studies provide evidence for the potential of these delivery systems. Within this review we provide an overview about the different barriers for oral peptide and protein delivery, highlight the progress made on lipid-based nanocarriers in order to overcome them and discuss strengths and weaknesses of these delivery systems in comparison to other technologies.
Collapse
|
35
|
Ebada HMK, Nasra MMA, Nassra RA, Abdallah OY. Chondroitin sulfate-functionalized lipid nanoreservoirs: a novel cartilage-targeting approach for intra-articular delivery of cassic acid for osteoarthritis treatment. Drug Deliv 2022; 29:652-663. [PMID: 35188017 PMCID: PMC8865121 DOI: 10.1080/10717544.2022.2041130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Novel intra-articular nanoreservoirs were implemented employing different cartilage targeting approaches to improve cartilage bioavailability of a chondroprotective drug, cassic acid (CA), for effective amelioration of cartilage deterioration off-targeting CA gastrointestinal disorders. Herein, we compared active cartilage-targeting approach via chondroitin sulfate (CHS) functionalization versus passive targeting using positively charged nanoparticles to target negatively charged cartilage matrix. Firstly, CA integrated nanoreservoirs (CA-NRs) were fabricated based on ionic conjugation between CA and cationic hydrophobic surface modifier octadecylamine (ODA) and were further functionalized with CHS to develop CHS-CA-NRs. Confocal laser microscope was used to visualize the accumulation of nanoparticles into the cartilage tissue. Both targeting approaches promoted CA local cartilage availability and prolonged its residence time. Compared to passive targeted CA-NRs, active targeted CHS-CA-NRs showed higher fluorescence signals in proximity to and inside chondrocytes which lasted for up to 21 days. In MIA-osteoarthritic rats, CHS-CA-NRs showed superior antiosteoarthritic activity, exhibiting highest cartilage repair compared to CA-NRs. Additionally, CHS-CA-NRs significantly inhibited OA inflammatory cytokine, degradation enzyme and oxidative stress and improved cartilage matrix biosynthesis. Conclusively, CHS-CA-NRs improved OA repair showing a superior efficacy for articular cartilage targeting with CHS which could be a potential advance for OA therapy.
Collapse
Affiliation(s)
- Heba M K Ebada
- Central Lab, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Maha M A Nasra
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Rasha A Nassra
- Department of Medical Biochemistery, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
36
|
Noh G, Keum T, Bashyal S, Seo JE, Shrawani L, Kim JH, Lee S. Recent progress in hydrophobic ion-pairing and lipid-based drug delivery systems for enhanced oral delivery of biopharmaceuticals. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00549-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|