1
|
Liu J, Sun J, Hu J, Xue H, Lei L, Pan X. Biomaterial-based drug delivery strategies for oral mucosa. Colloids Surf B Biointerfaces 2025; 251:114604. [PMID: 40081256 DOI: 10.1016/j.colsurfb.2025.114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/20/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
Drug therapy is a key field in modern medicine, and the optimization of its delivery method is crucial. Traditional methods are inherently limited by first-pass effects, high-risk adverse reactions, and patient compliance challenges, which significantly restrict the effectiveness and application potential of drugs. Oral mucosal drug delivery has become a minimally invasive and effective drug delivery strategy. The unique anatomical structure of the oral mucosa facilitates the rapid absorption of drugs into the systemic circulation, thus producing rapid therapeutic effects. However, a complex oral microenvironment and mucosal barrier impede drug absorption. Biomaterials have become an important driving force for the innovative development of oral medicine, owing to their unique and excellent properties. They are widely used for preventing, diagnosing, treating, and rehabilitating oral diseases. This review explores recent advancements in biomaterial-enabled oral mucosal drug delivery systems, analyzing key physiological factors and absorption barriers that impact therapeutic outcomes. Focusing on innovative material engineering strategies highlights significant progress in extending drug residence time and improving delivery precision within the oral cavity. Furthermore, the study identifies critical challenges in translating these advancements from research to clinical practice, emphasizing the need for solutions to bridge this gap.
Collapse
Affiliation(s)
- Junhui Liu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China; The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Jiao Sun
- Changsha Stomatological Hospital, Changsha 410000, China
| | - Jun Hu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Huaqian Xue
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China; The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Xiaoyi Pan
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
2
|
Pan M, Cao W, Zhai J, Zheng C, Xu Y, Zhang P. mRNA-based vaccines and therapies - a revolutionary approach for conquering fast-spreading infections and other clinical applications: a review. Int J Biol Macromol 2025; 309:143134. [PMID: 40233916 DOI: 10.1016/j.ijbiomac.2025.143134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
Since the beginning of the COVID-19 pandemic, the development of messenger RNA (mRNA) vaccines has made significant progress in the pharmaceutical industry. The two COVID-19 mRNA vaccines from Moderna and Pfizer/BioNTech have been approved for marketing and have made significant contributions to preventing the spread of SARS-CoV-2. In addition, mRNA therapy has brought hope to some diseases that do not have specific treatment methods or are difficult to treat, such as the Zika virus and influenza virus infections, as well as the prevention and treatment of tumors. With the rapid development of in vitro transcription (IVT) technology, delivery systems, and adjuvants, mRNA therapy has also been applied to hereditary diseases such as Fabry's disease. This article reviews the recent development of mRNA vaccines for structural modification, treatment and prevention of different diseases; delivery carriers and adjuvants; and routes of administration to promote the clinical application of mRNA therapies.
Collapse
Affiliation(s)
- Mingyue Pan
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Weiling Cao
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Yingying Xu
- Department of Pharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
| | - Peng Zhang
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China.
| |
Collapse
|
3
|
Liga S, Paul C. Flavonoid-Based Nanogels: A Comprehensive Overview. Gels 2025; 11:267. [PMID: 40277705 DOI: 10.3390/gels11040267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
The growing field of nanotechnology has recently given much attention to nanogels, which are versatile formulas and have promising biomedical applications. Nanogels or nanohydrogels have undergone significant development in various fields of biomedical and industrial research to meet increasing demands, such as in pharmaceuticals, cosmetics, food, and genetic engineering. Nanogels that contain flavonoids, which are secondary metabolites found in plants, are starting to become distinctive and reveal their unique characteristics. The objective of the article is to provide a comprehensive overview of recent research articles on flavonoid-based nanogels, emphasizing the general aspects regarding nanogel formulation and structural characterization, as well as the advancements made in the biomedical field. In conclusion, this article outlines up-to-date developments in the synthesis, formulation, structural characterization, and therapeutic applications of flavonoid-based nanogels, emphasizing their important role in the field of nanotechnology.
Collapse
Affiliation(s)
- Sergio Liga
- Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Chemical Engineering, Biotechnologies and Environmental Protection, Politehnica University Timisoara, Vasile Pârvan No. 6, 300223 Timisoara, Romania
| | - Cristina Paul
- Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Chemical Engineering, Biotechnologies and Environmental Protection, Politehnica University Timisoara, Vasile Pârvan No. 6, 300223 Timisoara, Romania
| |
Collapse
|
4
|
Kumari D, Karmakar V, Sisinthy SP, Pandey M, Jain N, Gorain B. Nanoemulsion and nanoemulgel-based carriers as advanced delivery tools for the treatment of oral diseases. Drug Deliv Transl Res 2025; 15:1139-1155. [PMID: 39500820 DOI: 10.1007/s13346-024-01735-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 01/03/2025]
Abstract
Oral diseases rank among the most widespread ailments worldwide posing significant global health and economic challenges affecting around 3.5 billion people, impacting the quality of life for affected individuals. Dental caries, periodontal disease, bacterial and fungal infections, tooth loss and oral malignancies are among the most prevalent global clinical disorders contributing to oral health burden. Traditional treatments for oral diseases often face challenges such as poor drug bioavailability, breakdown of medication in saliva, inconsistent antibiotic levels at the site of periodontal infection as well as higher side effects. However, the emergence of nanoemulgel (NEG) as an innovative drug delivery system offers promising solutions where NEG combines the advantages of both nanoemulsions (NEs) and hydrogels providing improved drug solubility, stability, and targeted delivery. Due to their minuscule size and ability to control drug release, NEGs hold promise for improving treatment of oral diseases, where versatility of these delivery systems makes them suitable for various applications, including topical delivery in dentistry. This review concisely outlines the anatomy of the oral environment and investigates the therapeutic potential of NE-based gels in oral disorder treatment. It thoroughly examines the challenges of drug delivery in the oral cavity and proposes strategies to improve therapeutic efficacy, drawing attention to previous research reports for comparison. Through comprehensive analysis, the review highlights the promising role of NEGs as a novel therapeutic approach for oral health management via research advancements and their clinical translation. Additionally, it provides valuable insights into future research directions and development opportunities in this area.
Collapse
Affiliation(s)
- Deepali Kumari
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | | | - Manisha Pandey
- Department of Pharmacy, Central University of Haryana, Mahendargarh, Haryana, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
5
|
Brako F, Boateng J. Transmucosal drug delivery: prospects, challenges, advances, and future directions. Expert Opin Drug Deliv 2025; 22:525-553. [PMID: 39976299 DOI: 10.1080/17425247.2025.2470224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/18/2025] [Indexed: 02/21/2025]
Abstract
INTRODUCTION Traditional administration routes have limitations including first-pass metabolism and gastrointestinal degradation for sensitive drugs (oral) and pain associated with parenteral injections, which also require trained personnel and refrigeration, making them expensive. This has increased interest in alternative routes, with mucosal surfaces being of high priority. AREAS COVERED Mucosal routes include ocular, oral (buccal/sublingual), nasal and vaginal mucosae which avoid the limitations of the oral and parenteral routes. Though mucosal routes show great potential, they are still hindered by several barriers, especially for systemic absorption, resulting in the development of more advanced novel drug delivery systems to overcome these limitations and achieve therapeutic actions both locally and systemically, similar to or exceeding the oral route. This paper systematically reviews and compares the different mucosal routes, challenges, and recent advances in advanced novel drug delivery system design for emerging clinical challenges including the advent of large biological macromolecules (proteins, peptides, and RNA) for treatment and prevention of diseases. The review also focuses on current challenges and future perspectives. EXPERT OPINION Among the various transmucosal routes discussed, nose-to-brain drug delivery has the greatest translational potential to go beyond the current state of the art and achieve significant clinical impact for neurological diseases.
Collapse
Affiliation(s)
- Francis Brako
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham, Maritime, UK
| | - Joshua Boateng
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham, Maritime, UK
| |
Collapse
|
6
|
Shao H, Liu M, Jiang H, Zhang Y. Polysaccharide-based drug delivery targeted approach for colon cancer treatment: A comprehensive review. Int J Biol Macromol 2025; 302:139177. [PMID: 39798740 DOI: 10.1016/j.ijbiomac.2024.139177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 01/15/2025]
Abstract
Colon cancer is a leading cause of cancer-related morbidity and mortality worldwide, necessitating advancements in therapeutic strategies to improve outcomes. Current treatment modalities, including surgery, chemotherapy, and radiation, are limited by systemic toxicity, low drug utilization rates, and off-target effects. Colon-targeted drug delivery systems (CDDS) offer a promising alternative by leveraging the colon's unique physiology, such as near-neutral pH and extended transit time, to achieve localized and controlled drug release. Polysaccharide-based CDDS, utilizing natural polymers like chitosan, cyclodextrin, pectin, guar gum, alginate, hyaluronic acid, dextran, chondroitin sulfate, and inulin, have emerged as innovative approaches for improving the specificity and efficacy of colon cancer treatments. These biocompatible and biodegradable polymers enable site-specific drug delivery, enhance tumor apoptosis, reduce systemic side effects, and improve patient compliance. This review evaluates recent advancements in polysaccharide-based CDDS, detailing their drug release mechanisms, therapeutic potential, and challenges in overcoming gastrointestinal transit and pH variability. Studies highlight the successful formulation of nanoparticles, microspheres, and other delivery systems, demonstrating targeted drug delivery, improved bioavailability, and enhanced cytotoxicity against colon cancer cells in-vitro and in-vivo. The review underscores the need for continued research on polysaccharide-based CDDS for colon cancer treatment, offering a path toward more effective, patient-centered oncological care.
Collapse
Affiliation(s)
- Hua Shao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Minghua Liu
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Hongfang Jiang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China.
| | - Ying Zhang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
7
|
Steiger MB, Steinauer A, Gao D, Cerrejon DK, Krupke H, Heussi M, Merkl P, Klipp A, Burger M, Martin-Olmos C, Leroux JC. Enzymatic absorption promoters for non-invasive peptide delivery. J Control Release 2025; 382:113675. [PMID: 40164434 DOI: 10.1016/j.jconrel.2025.113675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Peptide drugs offer considerable potential for treating a diverse range of diseases. Yet, their clinical application is generally restricted to injectable therapies. The main challenge hindering their broader use through globally accessible, patient-friendly, and non-invasive delivery routes such as oral or buccal, lies in their poor ability to cross biological barriers effectively. Here, we demonstrate that enzymes can be harnessed to transiently reduce these barriers and improve absorption. As a proof of concept, we employ a mucin-specific protease (mucinase) and a phospholipase to increase mucus diffusivity and epithelial cell membrane permeability, respectively. In a canine model, we show that enteric capsules containing both enzymes, and the peptide drug desmopressin achieved a relative bioavailability of 155 % compared to the drug alone. Additionally, a buccal patch loaded with phospholipase and semaglutide displayed a 5-fold higher bioavailability and lower variability (71.5 % reduction in the coefficient of variation) compared to the commercially available oral tablet. These results suggest that enzymatic modulation of biological barriers holds promise as a strategy to improve non-invasive delivery of peptides and potentially other macromolecular drugs.
Collapse
Affiliation(s)
- Marilena Bohley Steiger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland; Laboratory of Biomolecular Engineering and Nanomedicine, EPFL, 1015 Lausanne, Switzerland
| | - Daniel Gao
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - David Klein Cerrejon
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Hanna Krupke
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Miguel Heussi
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Padryk Merkl
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Alexander Klipp
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Michael Burger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Cristina Martin-Olmos
- Center for Advanced Surface Analysis, Institute of Earth Sciences, UNIL, 1015 Lausanne, Switzerland; School of Architecture, Civil and Environmental Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
8
|
Haddadzadegan S, Saleh A, Veider F, Knoll P, Laffleur F, Kali G, Bernkop-Schnürch A. Cyclodextrin-mediated enhancement of gastrointestinal drug delivery: unveiling mucoadhesive and mucopenetrating synergy. Drug Deliv Transl Res 2025:10.1007/s13346-025-01832-w. [PMID: 40113660 DOI: 10.1007/s13346-025-01832-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2025] [Indexed: 03/22/2025]
Abstract
This study evaluates the in vivo mucoadhesive properties of thiolated cyclodextrins (CDs) with varying S-protection using polyethylene glycol (PEG) of different chain lengths. Free thiol groups of thiolated β-CDs (CD-SH) were S-protected with 1 kDa and 2 kDa PEG bearing a terminal thiol group, leading to third-generation of thiolated CDs (CD-SS-PEG). The structure of these thiolated CDs was confirmed and characterized by FT-IR, 1 H NMR, and colorimetric assays. Thiolated and S-protected CDs were evaluated regarding viscosity, cellular uptake and, in vitro and in vivo mucoadhesion. The viscosity of CD-SH, CD-SS-PEG 1 kDa, and CD-SS-PEG 2 kDa mixtures with mucus increased 9-, 7-, and 5.5-fold, respectively, compared to unmodified CD within 3 h. Cellular uptake on Caco-2 cells was 1.75 times higher for highly thiolated CDs than for unmodified CD. In vitro residence time on porcine intestine was prolonged 7-, 8.4-, and 7.9-fold for CD-SH, CD-SS-PEG 1 kDa, and CD-SS-PEG 2 kDa, respectively. In vivo results indicated CD-SS-PEG 1 kDa had the highest potential. Our comprehensive in vitro, ex vivo, and in vivo ffindings demonstrate that CD-SS-PEG 1 kDa is a highly promising candidate for mucoadhesive drug delivery systems.
Collapse
Affiliation(s)
- Soheil Haddadzadegan
- ThioMatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, Innsbruck, 6020, Austria
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Ahmad Saleh
- Department of Pharmacy, Universitas Mandala Waluya, Kendari, Southeast Sulawesi, 93231, Republic of Indonesia
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Florina Veider
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Patrick Knoll
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Flavia Laffleur
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Gergely Kali
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria.
| |
Collapse
|
9
|
Zou Y, Zhang J, Chen L, Xu Q, Yao S, Chen H. Targeting Neuroinflammation in Central Nervous System Diseases by Oral Delivery of Lipid Nanoparticles. Pharmaceutics 2025; 17:388. [PMID: 40143051 PMCID: PMC11944764 DOI: 10.3390/pharmaceutics17030388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Neuroinflammation within the central nervous system (CNS) is a primary characteristic of CNS diseases, such as Parkinson's disease, Alzheimer's disease (AD), amyotrophic lateral sclerosis, and mental disorders. The excessive activation of immune cells results in the massive release of pro-inflammatory cytokines, which subsequently induce neuronal death and accelerate the progression of neurodegeneration. Therefore, mitigating excessive neuroinflammation has emerged as a promising strategy for the treatment of CNS diseases. Despite advancements in drug discovery and the development of novel therapeutics, the effective delivery of these agents to the CNS remains a serious challenge due to the restrictive nature of the blood-brain barrier (BBB). This underscores the need to develop a novel drug delivery system. Recent studies have identified oral lipid nanoparticles (LNPs) as a promising approach to efficiently deliver drugs across the BBB and treat neurological diseases. This review aims to comprehensively summarize the recent advancements in the development of LNPs designed for the controlled delivery and therapeutic modulation of CNS diseases through oral administration. Furthermore, this review addresses the mechanisms by which these LNPs overcome biological barriers and evaluate their clinical implications and therapeutic efficacy in the context of oral drug delivery systems. Specifically, it focuses on LNP formulations that facilitate oral administration, exploring their potential to enhance bioavailability, improve targeting precision, and alleviate or manage the symptoms associated with a range of CNS diseases.
Collapse
Affiliation(s)
- Yuan Zou
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.Z.); (S.Y.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jing Zhang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430074, China; (J.Z.); (Q.X.)
| | - Longmin Chen
- Department of Rheumatology and Immunology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Qianqian Xu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430074, China; (J.Z.); (Q.X.)
| | - Sheng Yao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.Z.); (S.Y.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.Z.); (S.Y.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
10
|
Dangana RS, Okon MB, Orire IE, Sanusi IO, Terkimbi SD, Aja PM, Abubakar IB, Anyim G. Systematic review of peptide nanoparticles for improved diabetes outcomes: insights and opportunities. DISCOVER NANO 2025; 20:41. [PMID: 39961878 PMCID: PMC11832960 DOI: 10.1186/s11671-025-04215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025]
Abstract
This present study carried out a systematic review and meta-analysis of peptide nanoparticles in diabetes management for improved patient outcomes from 2014 to 2024. Different electronic databases, including PubMed, Scopus, Web of Science, ResearchGate, Google Scholar, and the Cochrane Library, were searched for relevant literature using Medical Subject Headings (MeSH) and boolean operators. A total of 317 articles were obtained and include PUBMED (39), Scopus (215), ResearchGate (30), Google Scholar (25), and Cochrane Library (8). From these, 186 duplicate entries were eliminated, while 76 articles were dismissed for some reasons. After scanning the titles, abstracts, and contents of the remaining 55 articles for relevance, 22 articles were eliminated. After a full-text screening using inclusion/exclusion criteria, an additional 11 articles were discarded, while 4 were excluded during the data extraction phase. In the end, seven (7) publications were considered relevant based on the eligibility criteria, representing 2.22%. Results showed that sequential exclusion of the studies did not have a significant impact on the effects of peptide nanoparticles on glucose control, insulin delivery, bioavailability, efficacy, safety, and patient outcomes in diabetes management. Also, peptide nanoparticles had positive improvement on glycemic control, insulin levels, glycated hemoglobin (HbA1C) levels, and overall patient outcomes. The study concludes that peptide nanoparticles harbour the potential to improve diabetes management through enhanced glucose control, insulin delivery, and patient outcomes. However, there is a significant gap in knowledge. Further research is required to understand the long-term safety and efficacy of many of the enlisted nanoparticles. Additionally, future studies should explore a wider range of peptides and proteins for encapsulation, develop delivery systems for larger and conformationally diverse molecules, and improve the oral bioavailability of encapsulated therapeutics. Long-term clinical trials are needed to validate this approach in humans and elucidate the underlying mechanisms for optimal treatment design. If these knowledge gaps are addressed, peptide nanoparticles will unavoidably become a powerful tool for effective management of diabetes along with traditional methods.
Collapse
Affiliation(s)
- Reuben Samson Dangana
- Department of Biochemistry, Kampala International University, Western Campus, Ishaka, Bushenyi, Uganda.
| | - Michael Ben Okon
- Department of Biochemistry, Kampala International University, Western Campus, Ishaka, Bushenyi, Uganda
| | - Ikuomola Emmanuel Orire
- Department of Physiology, Kampala International University, Western Campus, Ishaka, Bushenyi, Uganda
| | - Idris Olatunji Sanusi
- Department of Pharmaceutical Chemistry and Analysis, Kampala International University, Western-Campus, Ishaka, Bushenyi, Uganda
| | - Swase Dominic Terkimbi
- Department of Biochemistry, Kampala International University, Western Campus, Ishaka, Bushenyi, Uganda
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Kampala International University, Western Campus, Ishaka, Bushenyi, Uganda
| | | | - Godwin Anyim
- Department of Biochemistry, Adeleke University, Ede, Osun State, Nigeria
| |
Collapse
|
11
|
Fu Y, Liu W, Jiang L, Yuan H, Tong X, He H, Shi Y, Ma M, Chen S, Wang X. Core-shell hydrogel with synergistic super absorption and long-term acid resistance stability: a novel gastric retention drug delivery carrier. J Mater Chem B 2025; 13:2457-2468. [PMID: 39829205 DOI: 10.1039/d4tb02175d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Traditional natural polysaccharide-based hydrogels, when used as drug carriers, often struggle to maintain long-term stability in the extremely harsh gastric environment. This results in unstable drug release and significant challenges in bioavailability. To address this issue, this study utilized inexpensive and safe natural polysaccharides-chitosan (CS) and high methoxyl pectin (HM)-as raw materials. Dynamic chemical bonds and anion-cation electrostatic interactions were employed to successfully prepare a super absorbent gel bead substrate (CS-HM), which serves as the "core" structure. Subsequently, another low-density hydrophilic polysaccharide, sodium carboxymethyl cellulose (CMCNa), was used to coat and crosslink the outer layer of the core, increasing the number of ionic groups. This enhancement raises the osmotic pressure inside the gel network, improving its absorption capacity. At the same time, the core-shell structure provides an energy dissipation mechanism, allowing the material to remain more stable in a strong acid environment. Due to its super absorption, high modulus, and continuous floating release properties, CS-HM@CMCNa-as a new type of acid-resistant super absorbent core-shell material-possesses the key characteristics required for gastric retention sustained-release systems. It is expected to become an ideal drug carrier for the treatment of clinical chronic diseases.
Collapse
Affiliation(s)
- Yu Fu
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P. R. China.
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Wenjing Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P. R. China.
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lihang Jiang
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P. R. China.
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Huili Yuan
- Hangzhou Biotech Biomedical Technology Co., Ltd, Hangzhou, P. R. China
| | - Xiaoqian Tong
- Hangzhou Biotech Biomedical Technology Co., Ltd, Hangzhou, P. R. China
| | - Huiwen He
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P. R. China.
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yanqin Shi
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P. R. China.
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Meng Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P. R. China.
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Si Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P. R. China.
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Hangzhou Biotech Biomedical Technology Co., Ltd, Hangzhou, P. R. China
| | - Xu Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P. R. China.
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
12
|
Almuqbil RM, Aldhubiab B. Bioadhesive Nanoparticles in Topical Drug Delivery: Advances, Applications, and Potential for Skin Disorder Treatments. Pharmaceutics 2025; 17:229. [PMID: 40006596 PMCID: PMC11860006 DOI: 10.3390/pharmaceutics17020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Skin disorders are the fourth most common cause of all diseases, which affect nearly one-third of the world's population. Topical drug delivery can be effective in treating a range of skin disorders, including microbial infections, skin cancer, dermatitis, burn injury, wounds, and psoriasis. Bioadhesive nanoparticles (BNPs) can serve as an efficient topical drug delivery system as they can serve dual purposes as bioadhesives and nanocarriers, which can mediate targeted drug delivery, prolong retention time, and deepen drug penetration through skin layers. There is an increasing demand for BNP-based applications in medicine because of their various advantages, including biodegradability, flexibility, biocompatibility, and enhanced adhesive strength. A number of BNPs have already been developed and evaluated as potential topical drug delivery systems. In addition, a range of studies have already been carried out to evaluate the potential of BNPs in the treatment of various skin disorders, including atopic dermatitis, irritant contact dermatitis, skin cancer, psoriasis, microbial infections, wounds, and severe burn injuries. This review article is timely and unique, because it provides an extensive and unique summary of the recent advances of BNPs in the treatment of wide-ranging skin disorders. Moreover, this review also provides a useful discussion on the bioadhesion mechanism and various biopolymers that can be used to prepare BNPs.
Collapse
Affiliation(s)
- Rashed M. Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | | |
Collapse
|
13
|
Zhao X, Yan P, Zhang H, Zhou W, Ding J. A novel levodopa-carbidopa three-layer gastroretentive tablet for improving levodopa pharmacokinetics. Eur J Pharm Biopharm 2025; 207:114633. [PMID: 39814106 DOI: 10.1016/j.ejpb.2025.114633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
The narrow absorption window of levodopa and the significant impact of peripheral decarboxylase are the most limiting factors in maintaining prolonged and smooth plasma concentration in patients with Parkinson's disease (PD). Therefore, this study aims to design a novel gastroretentive carbidopa-levodopa three-layer tablet, which consists of an expansion layer, an immediate-release layer, and a sustained-release layer. The expansion layer rapidly expanded with sufficient structural strength and stayed in the beagle's stomach for more than 10 h, delineating excellent gastric retention effects. The immediate-release layer quickly released the drug and the sustained-release layer maintained a stable drug concentration. Importantly, pharmacokinetic data obtained under fed conditions demonstrated that the duration of efficacy of the three-layer tablets was significantly superior to that of the commercially available product Sinemet® CR, with effective levodopa blood levels remaining for up to 12 h. This is expected to offer more convenient clinical medication options for patients with PD.
Collapse
Affiliation(s)
- Xiangcheng Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410006, China
| | - Peng Yan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410006, China
| | - Hailong Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410006, China; Changsha Jingyi Pharmaceutical Technology Co., LTD., Changsha, Hunan 410006, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410006, China.
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410006, China.
| |
Collapse
|
14
|
Steyn JD, Haasbroek-Pheiffer A, Pheiffer W, Weyers M, van Niekerk SE, Hamman JH, van Staden D. Evaluation of Drug Permeation Enhancement by Using In Vitro and Ex Vivo Models. Pharmaceuticals (Basel) 2025; 18:195. [PMID: 40006008 PMCID: PMC11859300 DOI: 10.3390/ph18020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Drugs administered by means of extravascular routes of drug administration must be absorbed into the systemic circulation, which involves the movement of the drug molecules across biological barriers such as epithelial cells that cover mucosal surfaces or the stratum corneum that covers the skin. Some drugs exhibit poor permeation across biological membranes or may experience excessive degradation during first-pass metabolism, which tends to limit their bioavailability. Various strategies have been used to improve drug bioavailability. Absorption enhancement strategies include the co-administration of chemical permeation enhancers, enzymes, and/or efflux transporter inhibitors, chemical changes, and specialized dosage form designs. Models with physiological relevance are needed to evaluate the efficacy of drug absorption enhancement techniques. Various in vitro cell culture models and ex vivo tissue models have been explored to evaluate and quantify the effectiveness of drug permeation enhancement strategies. This review deliberates on the use of in vitro and ex vivo models for the evaluation of drug permeation enhancement strategies for selected extravascular drug administration routes including the nasal, oromucosal, pulmonary, oral, rectal, and transdermal routes of drug administration.
Collapse
Affiliation(s)
- Johan D. Steyn
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.D.S.); (A.H.-P.); (M.W.); (S.E.v.N.); (J.H.H.)
| | - Anja Haasbroek-Pheiffer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.D.S.); (A.H.-P.); (M.W.); (S.E.v.N.); (J.H.H.)
| | - Wihan Pheiffer
- Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom 2531, South Africa;
| | - Morné Weyers
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.D.S.); (A.H.-P.); (M.W.); (S.E.v.N.); (J.H.H.)
| | - Suzanne E. van Niekerk
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.D.S.); (A.H.-P.); (M.W.); (S.E.v.N.); (J.H.H.)
| | - Josias H. Hamman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.D.S.); (A.H.-P.); (M.W.); (S.E.v.N.); (J.H.H.)
| | - Daniélle van Staden
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.D.S.); (A.H.-P.); (M.W.); (S.E.v.N.); (J.H.H.)
| |
Collapse
|
15
|
Song T, Yuan L, Wang J, Li W, Sun Y. Advances in the transport of oral nanoparticles in gastrointestinal tract. Colloids Surf B Biointerfaces 2025; 245:114321. [PMID: 39423764 DOI: 10.1016/j.colsurfb.2024.114321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Biological barriers in the gastrointestinal tract (GIT) prevent oral absorption of insoluble drugs. Recently, significant progress has been made in the development of various nanoparticles (NPs) designed to enhance the efficacy of oral drugs. However, the mechanism underlying the intracellular transport of NPs remains unclear, and there are still limitations to improving the oral bioavailability of drugs. This article reviews the challenges faced in the absorption of oral NPs, proposes strategies to overcome these barriers, and discusses the future prospects.
Collapse
Affiliation(s)
- Tingting Song
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Lu Yuan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Jie Wang
- Department of Pharmacy, Qingdao Traditional Chinese Medicine Hospital, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao 266033, China
| | - Wenjing Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
16
|
Yue L, Ye P, Zhang Y, Guo R, Xu W, Huang S, Xiu Y, Huang Y, Wang B. An enhanced bioactive chitosan-modified microemulsion for mucosal healing of ulcerative colitis. Int J Biol Macromol 2025; 284:137847. [PMID: 39581424 DOI: 10.1016/j.ijbiomac.2024.137847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/10/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
The intestinal mucus layer plays a crucial role in the systemic absorption of drugs. While penetration through this layer traditionally constitutes a pivotal phase in drug absorption, the approach for treating ulcerative colitis (UC) shifts towards facilitating the direct delivery of drugs to the colon. In this study, we engineered a chitosan-modified microemulsion encapsulated nobiletin (NOB-CS-ME) characterized by small particle dimensions and positive charge specifically, designed to enable targeted delivery. In vitro experiments demonstrated that this NOB-CS-ME effectively became less into the intestinal mucus layer, thus achieving successful escape of the intestinal mucus barrier absorption. After circumventing this barrier, NOB-CS-ME exhibited heightened cellular uptake by colonic epithelial cells, displaying an approximately 1.3-fold increase compared to the unmodified microemulsion. Collectively, these observations imply enhanced drug bioavailability, potentially resulting in more efficacious mucosal healing, providing a promising avenue for natural small-molecule drug delivery in UC treatment.
Collapse
Affiliation(s)
- Lixia Yue
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ping Ye
- Shanghai Institute for Minimally Invasive Therapy, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yi Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Ru Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weihua Xu
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Shaogang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 501405, China
| | - Yanfeng Xiu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China.
| |
Collapse
|
17
|
Salamone FL, Molonia MS, Muscarà C, Saija A, Cimino F, Speciale A. In Vitro Protective Effects of a Standardized Extract of Opuntia ficus-indica (L.) Mill. Cladodes and Olea europaea L. Leaves Against Indomethacin-Induced Intestinal Epithelial Cell Injury. Antioxidants (Basel) 2024; 13:1507. [PMID: 39765835 PMCID: PMC11673993 DOI: 10.3390/antiox13121507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) can induce serious adverse effects in gastrointestinal (GI) mucosa, increasing intestinal permeability and leading to mitochondrial dysfunction, oxidative stress, apoptosis and inflammation. As proton pump inhibitors are effective in protecting against NSAID-induced gastropathy but not NSAID-induced enteropathy, current research is focused on natural products as protective substances for therapy and prevention of intestinal injury. Herein, through the use of an in vitro model based on intestinal epithelial cell (Caco-2) damage caused by indomethacin (INDO), we examined the protective activity of a commercially available standardized extract (OFI+OE) from Opuntia ficus-indica (L.) Mill. cladodes and Olea europaea L. leaves. Pre-treatment with OFI+OE prevented INDO-induced intestinal epithelial barrier damage, as demonstrated by TEER measurement, fluorescein permeability, and tight junction protein expression. The extract showed positive effects against INDO-induced oxidative stress and correlated activation of apoptosis, decreasing pro-apoptotic markers BAX and Caspase-3 and increasing anti-apoptotic factor Bcl-2. Moreover, the extract inhibited the NF-κB pathway and pro-inflammatory cascade. In conclusion, these data support the use of OFI+OE extract as a natural strategy for therapy and prevention of intestinal mucosal damage, demonstrating its beneficial effects against INDO-induced intestinal damage, through modulation of oxidative, apoptotic, and inflammatory pathways.
Collapse
|
18
|
Hazt B, Read DJ, Harlen OG, Poon WCK, O'Connell A, Sarkar A. Mucoadhesion across scales: Towards the design of protein-based adhesives. Adv Colloid Interface Sci 2024; 334:103322. [PMID: 39489118 DOI: 10.1016/j.cis.2024.103322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Mucoadhesion is a special case of bioadhesion in which a material adheres to soft mucosal tissues. This review elucidates our current understanding of mucoadhesion across length, time, and energy scales by focusing on relevant structural features of mucus. We highlight the importance of both covalent and non-covalent interactions that can be tailored to maximize mucoadhesive interactions, particularly concerning proteinaceous mucoadhesives, which have been explored only to a limited extent so far in the literature. In particular, we highlight the importance of thiol groups, hydrophobic moieties, and charged species inherent to proteins as key levers to fine tune mucoadhesive performance. Some aspects of protein surface modification by grafting specific functional groups or coupling with polysaccharides to influence mucoadhesive performance are examined. Insights from this review offer a physicochemical roadmap to inform the development of biocompatible, protein-based mucoadhesive systems that can fulfil dual roles for both adhesion and delivery of actives, enabling the fabrication of advanced biomedical, nutritional and allied soft material technologies.
Collapse
Affiliation(s)
- Bianca Hazt
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, LS2 9JT, UK
| | - Daniel J Read
- School of Mathematics, University of Leeds, LS2 9JT, UK
| | | | - Wilson C K Poon
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Adam O'Connell
- Polymer Science Platform, Reckitt Benckiser Healthcare (UK) Ltd, Dansom Lane S, Hull, HU8 7DS, UK
| | - Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
19
|
Berkenfeld K, Carneiro S, Corzo C, Laffleur F, Salar-Behzadi S, Winkeljann B, Esfahani G. Formulation strategies, preparation methods, and devices for pulmonary delivery of biologics. Eur J Pharm Biopharm 2024; 204:114530. [PMID: 39393712 DOI: 10.1016/j.ejpb.2024.114530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Biological products, including vaccines, blood components, and recombinant therapeutic proteins, are derived from natural sources such as humans, animals, or microorganisms and are typically produced using advanced biotechnological methods. The success of biologics, particularly monoclonal antibodies, can be attributed to their favorable safety profiles and target specificity. However, their large molecular size presents significant challenges in drug delivery, particularly in overcoming biological barriers. Pulmonary delivery has emerged as a promising route for administering biologics, offering non-invasive delivery with rapid absorption, high systemic bioavailability, and avoidance of first-pass metabolism. This review first details the anatomy and physiological barriers of the respiratory tract and the associated challenges of pulmonary drug delivery (PDD). It further discusses innovations in PDD, the impact of particle size on drug deposition, and the use of secondary particles, such as nanoparticles, to enhance bioavailability and targeting. The review also explains various devices used for PDD, including dry powder inhalers (DPIs) and nebulizers, highlighting their advantages and limitations in delivering biologics. The role of excipients in improving the stability and performance of inhalation products is also addressed. Since dry powders are considered the suitable format for delivering biomolecules, particular emphasis is placed on the excipients used in DPI development. The final section of the article reviews and compares various dry powder manufacturing methods, clarifying their clinical relevance and potential for future applications in the field of inhalable drug formulation.
Collapse
Affiliation(s)
- Kai Berkenfeld
- Laboratory of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Street 3, 53121 Bonn, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Simone Carneiro
- Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Haus B, 81377 München, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München 80799, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Carolina Corzo
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Sharareh Salar-Behzadi
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, Graz, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Benjamin Winkeljann
- Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Haus B, 81377 München, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München 80799, Germany; RNhale GmbH, München 81371, Germany; Comprehensive Pneumology Center Munich (CPC-M), Helmholtz Munich, German Center for Lung Research (DZL), 81377 Munich, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Golbarg Esfahani
- Department of Pharmaceutical Technology, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, Halle 06120, Saale, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS).
| |
Collapse
|
20
|
Zhao S, Wang L, Huang X, Xiao Y, Li M, Huang X, Chen X, Li S, Xie J, Liu P, Wang YD, Chen WD. Design, Synthesis, and Biological Evaluation of Covalently Mucoadhesive Derivatives as Nonsystemic Intestine-Targeted TGR5 Agonists. J Med Chem 2024; 67:17701-17712. [PMID: 39321318 DOI: 10.1021/acs.jmedchem.4c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Takeda G-protein-coupled receptor 5 (TGR5) is considered a promising therapeutic target for treating type 2 diabetes mellitus (T2DM), obesity, and other metabolism-related diseases. Although many TGR5 agonists have been identified, they might cause some side effects in the gallbladder and the heart. To reduce these side effects and improve glucose-lowering capability, we first designed and synthesized a series of 4-phenoxynicotinamide intestine-targeted TGR5 agonist derivatives containing maleimides in the side chains with different linker lengths. All of the target compounds demonstrated significant TGR5 agonistic activity, among which compound 22b displayed the best TGR5 agonistic activity. Additionally, compound 22b displayed low Caco-2 cell permeability and strong mucoadhesion to mucin and the rat intestine. In C57BL/6J, diet-induced obese, and db/db mice, compound 22b demonstrated a robust and prolonged hypoglycemic effect along with an acceptable safety profile.
Collapse
Affiliation(s)
- Shizhen Zhao
- The First Affiliated Hospital of Henan University, Kaifeng 475000, China
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China
| | - Le Wang
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China
| | - Xiaotong Huang
- The First Affiliated Hospital of Henan University, Kaifeng 475000, China
| | - Yali Xiao
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China
| | - Mengqi Li
- The First Affiliated Hospital of Henan University, Kaifeng 475000, China
| | - Xueyuan Huang
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China
| | - Xueyu Chen
- The First Affiliated Hospital of Henan University, Kaifeng 475000, China
| | - Shengjie Li
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China
| | - Jing Xie
- The First Affiliated Hospital of Henan University, Kaifeng 475000, China
| | - Peng Liu
- Hebi Key Laboratory of Cardiovascular Diseases, Hebi Key Laboratory of Energy Metabolism, People's Hospital of Hebi, Henan University, Kaifeng 475000, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
| |
Collapse
|
21
|
Maslii Y, Herbina N, Dene L, Ivanauskas L, Bernatoniene J. Development and Evaluation of Oromucosal Spray Formulation Containing Plant-Derived Compounds for the Treatment of Infectious and Inflammatory Diseases of the Oral Cavity. Polymers (Basel) 2024; 16:2649. [PMID: 39339113 PMCID: PMC11435575 DOI: 10.3390/polym16182649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
According to data in the literature, natural products and essential oils are often used in dental practice. To develop a new oromucosal spray for the treatment of infectious and inflammatory diseases of the oral cavity, clove CO2 extract and essential oils of lavender and grapefruit were used as active pharmaceutical ingredients. Clove extract was obtained by the method of subcritical extraction from various raw materials, the choice of which was based on the yield of the CO2 extract and the study of its phytochemical and microbiological properties. Based on the results of microscopic and diffraction analyses, the rational time of ultrasonic exposure for the emulsion of active pharmaceutical ingredients was established. Mucoadhesive polymers were used as stabilizers of the two-phase system and prolongators. This article discusses the impact of the type and concentration of mucoadhesive polymers on the stability of the emulsion system; the viscous, textural, adhesive, and film characteristics of oromucosal spray; and the parameters determining sprayability.
Collapse
Affiliation(s)
- Yuliia Maslii
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (Y.M.); (N.H.)
- Department of Industrial Technology of Drugs, National University of Pharmacy, 61002 Kharkiv, Ukraine
| | - Nataliia Herbina
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (Y.M.); (N.H.)
- Department of Industrial Technology of Drugs, National University of Pharmacy, 61002 Kharkiv, Ukraine
| | - Lina Dene
- Laboratory of Biochemistry and Technology, Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, LT-54333 Babtai, Lithuania;
- PetalNord MB, Kruosto g. 31, LT-47214 Kaunas, Lithuania
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (Y.M.); (N.H.)
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
22
|
Sabatelle RC, Geller A, Li S, Van Heest A, Sachdeva UM, Bressler E, Korunes-Miller J, Tfayli B, Tal-Mason A, Kharroubi H, Colson YL, Grinstaff MW. Synthesis of Amphiphilic Amino Poly-Amido-Saccharide and Poly(lactic) Acid Block Copolymers and Fabrication of Paclitaxel-Loaded Mucoadhesive Nanoparticles. Bioconjug Chem 2024; 35:1429-1440. [PMID: 39159059 PMCID: PMC11948293 DOI: 10.1021/acs.bioconjchem.4c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Drug delivery to the esophagus through systemic administration remains challenging, as minimal drug reaches the desired target. Local delivery offers the potential for improved efficacy while minimizing off-target toxicities but necessitates bioadhesive properties for mucosal delivery. Herein, we describe the synthesis of two new mucoadhesive amphiphilic copolymers prepared by sequential ring-opening copolymerization or postpolymerization click conjugation. Both strategies yield block copolymers containing a hydrophilic amine-functionalized poly-amido-saccharide and either a hydrophobic alkyl derivatized poly-amido-saccharide or poly(lactic acid), respectively. The latter resulting copolymers readily self-assemble into spherical, ≈200 nm diameter, positively charged mucoadhesive nanoparticles. The NPs entrap ultrahigh levels of paclitaxel via encapsulation of free paclitaxel and paclitaxel conjugated to a biodegradable, biocompatible poly(1,2-glycerol carbonate). Paclitaxel-loaded NPs rapidly enter cells, release paclitaxel, are cytotoxic to esophageal OE33 and OE19 tumor cells in vitro, and, importantly, demonstrate improved mucoadhesion compared to conventional poly(ethylene glycol)-poly(lactic acid) nanoparticles to ex vivo esophageal tissue.
Collapse
Affiliation(s)
- Robert C. Sabatelle
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA 02215, USA
| | - Abraham Geller
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Siyuan Li
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA 02215, USA
| | - Audrey Van Heest
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA 02215, USA
| | - Uma M. Sachdeva
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eric Bressler
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA 02215, USA
| | - Jenny Korunes-Miller
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA 02215, USA
| | - Bassel Tfayli
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aya Tal-Mason
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hussein Kharroubi
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yolonda L. Colson
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mark W. Grinstaff
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA 02215, USA
| |
Collapse
|
23
|
Khan O, Bhawale R, Vasave R, Mehra NK. Ionic liquid-based formulation approaches for enhanced transmucosal drug delivery. Drug Discov Today 2024; 29:104109. [PMID: 39032809 DOI: 10.1016/j.drudis.2024.104109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
The utilization of ionic liquids (ILs) in pharmaceutical drug delivery applications has seen significant expansion in recent years, owing to their distinctive characteristics and inherent adjustability. These innovative compounds can be used to tackle challenges associated with traditional dosage forms, such as polymorphism, inadequate solubility, permeability, and efficacy in topical drug delivery systems. Here, we provide a brief classification of ILs, and their effectiveness in augmenting transmucosal drug delivery approaches by improving the solubility and permeability of active pharmaceutical ingredients (APIs) by temporary mucus modulation aiding the paracellular transport of APIs, prolonging drug retention, and, thus, aiding controlled drug release across various mucosal surfaces. We also highlight potential advances in, and future perspectives of, IL-based formulations in mucosal drug delivery.
Collapse
Affiliation(s)
- Omar Khan
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rohit Bhawale
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Ravindra Vasave
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
24
|
Sapra A, Hm H, Amin SM, Syahrani, Kelsi FA, Nur S, Permana AD. Development of mucoadhesive microspheres for intranasal delivery of fluconazole as an alternative treatment of cryptococcal meningitis infection in patients with acquired immunodeficiency. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:813-821. [PMID: 38604290 DOI: 10.1016/j.pharma.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION Cryptococcal meningitis is a deadly disease with few treatment options. Its incidence is still high and closely linked to the HIV/AIDS epidemic. This study aimed to develop a mucoadhesive microsphere delivery system for fluconazole for the intranasal route. METHOD Microspheres of mucoadhesive fluconazole formulation variables such as different amounts of drug concentration and polymer concentration were prepared by a simple emulsion-crosslinking method. The prepared microspheres' surface was characterised by SEM (Scanning electron microscopy) and evaluated for particle size, entrapment efficiency, production yield, infrared spectroscopic study, in-vitro muco-adhesion, and in-vitro drug release. RESULTS The results showed that formula 1 is the optimal mucoadhesive microsphere preparation, with a particle size of 56.375m, a spherical surface shape, an entrapment efficiency of 99.96%, and a greater mucoadhesive capability during 6-hour evaluation. Furthermore, wash-off examination revealed that the mucoadhesive ability of this delivery system has a long duration and may release the active material at the right time. CONCLUSION The result of the researches suggesting that the formulation of mucoadhesive microspheres of fluconazole could be used to treat cryptococcal meningitis infection in HIV/AIDS patients.
Collapse
Affiliation(s)
- Amriani Sapra
- Department of Pharmaceutical Technology, Almarisah Madani University, 90242 Makassar, Indonesia.
| | - Hendrawan Hm
- Department of Pharmaceutical Technology, Almarisah Madani University, 90242 Makassar, Indonesia
| | - Sayyid M Amin
- Department of Pharmaceutical Technology, Almarisah Madani University, 90242 Makassar, Indonesia
| | - Syahrani
- Department of Pharmaceutical Technology, Almarisah Madani University, 90242 Makassar, Indonesia
| | - Filia Ananda Kelsi
- Department of Pharmaceutical Technology, Almarisah Madani University, 90242 Makassar, Indonesia
| | - Syamsu Nur
- Department of Pharmaceutical Chemistry, Almarisah Madani University, 90242 Makassar, Indonesia
| | - Andi Dian Permana
- Department of Pharmaceutical Technology, Hasanuddin University, 90242 Makassar, Indonesia
| |
Collapse
|
25
|
Anam A, Abbas G, Shah S, Saadullah M, Shahwar D, Mahmood K, Hanif M, Ahmad N, Basheer E, Obaidullah AJ, Alotaibi HF, Alqarni M, Ameer N. Quantitative analysis of loxoprofen sodium loaded microspheres comprising pectin and its thiolated conjugates: In-vivo evaluation of their sustained release behavior. Heliyon 2024; 10:e36297. [PMID: 39247278 PMCID: PMC11378961 DOI: 10.1016/j.heliyon.2024.e36297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Continuous use of oral NSAIDs can damage mucosal membrane, which results in decreased bioavailability and non-compliance with the therapy. But the use of sustained release drug delivery systems might offer a solution. Objective was to synthesize mucoadhesive SR microspheres by using different combinations of pectin (PEC) and its thiolated derivative (T-PEC3100) for improved loxoprofen (LS) permeation. Thiolated pectin (T-PEC) was synthesized by the esterification method using thioglycolic acid. Thiolation was confirmed by thiol group quantification and charring point determination. Further characterization was done by Fourier Transform Infrared spectroscopy (FTIR), and Scanning electron microscopy (SEM). Ex-vivo mucoadhesion study was performed to confirm the improved characteristics. Microspheres (MS) were prepared using different ratios of PEC/T-PEC by solvent evaporation method and their particle size and surface morphology were evaluated. Mucus permeation study was carried out using the trans-well plate method. Sustained release behavior of prepared microspheres was investigated through the edema inhibition method in albino rats. T-PEC3100 was considered the optimum formulation for further evaluation and contained maximum thiol group content. FTIR spectra showed a characteristic peak of -SH and charring point was also changed considerably confirming the successful thiolation of PEC. SEM results showed spherical microspheres in the size range of 2-10 μm. Thiol-rich formulation of MS exhibited more than 80 % release after 12 h and maximum absorbable dose (MAD) was calculated as 400 μg % inhibition of edema in MS treated group was slowly attained initially but the reduction in inflammation was detected even after 24 h as compared to control group. Promising results from In-vivo edema inhibition study suggest the possible use of these thiolated MS in formulating sustained release formulation for arthritis.
Collapse
Affiliation(s)
- Aisha Anam
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University Multan, Pakistan
| | - Ghulam Abbas
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Shahid Shah
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Malik Saadullah
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Dure Shahwar
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University Multan, Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University Multan, Pakistan
| | - Nabeel Ahmad
- School of Chemical and Materials Engineering, National University of Science and Technology, Islamabad, Pakistan
| | - Ejaz Basheer
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdul Rahman University, Riyadh, 11671, Saudi Arabia
| | - Mohammed Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Nabeela Ameer
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University Multan, Pakistan
| |
Collapse
|
26
|
Biswas M, Nurunnabi M, Khatun Z. Understanding Mucosal Physiology and Rationale of Formulation Design for Improved Mucosal Immunity. ACS APPLIED BIO MATERIALS 2024; 7:5037-5056. [PMID: 38787767 DOI: 10.1021/acsabm.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The oral and nasal cavities serve as critical gateways for infectious pathogens, with microorganisms primarily gaining entry through these routes. Our first line of defense against these invaders is the mucosal membrane, a protective barrier that shields the body's internal systems from infection while also contributing to vital functions like air and nutrient intake. One of the key features of this mucosal barrier is its ability to protect the physiological system from pathogens. Additionally, mucosal tolerance plays a crucial role in maintaining homeostasis by regulating the pH and water balance within the body. Recognizing the importance of the mucosal barrier, researchers have developed various mucosal formulations to enhance the immune response. Mucosal vaccines, for example, deliver antigens directly to mucosal tissues, triggering local immune stimulation and ultimately inducing systemic immunity. Studies have shown that lipid-based formulations such as liposomes and virosomes can effectively elicit both local and systemic immune responses. Furthermore, mucoadhesive polymeric particles, with their prolonged delivery to target sites, have demonstrated an enhanced immune response. This Review delves into the critical role of material selection and delivery approaches in optimizing mucosal immunity.
Collapse
Affiliation(s)
- Mila Biswas
- Department of Electrical and Computer Engineering, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Zehedina Khatun
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| |
Collapse
|
27
|
Tang B, Xie X, Lu J, Huang W, Yang J, Tian J, Lei L. Designing biomaterials for the treatment of autoimmune diseases. APPLIED MATERIALS TODAY 2024; 39:102278. [DOI: 10.1016/j.apmt.2024.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
28
|
Vaezi Z, Baradaran Ghavami S, Farmani M, Mahdavian R, Asadzadeh Aghdaei H, Naderi-Manesh H. Oral Formulation of 5-Aminosalicylic Acid-Hemoglobin Bio-Adhesive Nanoparticles Enhance Therapeutic Efficiency in Ulcerative Colitis Mice: A Preclinical Evaluation. J Pharm Sci 2024; 113:2331-2341. [PMID: 38582281 DOI: 10.1016/j.xphs.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/31/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
The oral formulation design for colon-specific drug delivery brings some therapeutic benefits in the ulcerative colitis treatment. We recently reported the specific delivery of hemoglobin nanoparticles-conjugating 5-aminosalicylic acid (5-ASA-HbNPs) to the inflamed site. In the current study, the therapeutic effect of the 5-ASA-HbNPs formulation was confirmed in vivo. This evaluation of 5-ASA-HbNPs not only shows longer colonic retention time due to adhesive properties, also provides full support for it as compared with free 5-ASA. It was considered as a suitable bio-adhesive nanoparticle with mucoadhesive property to pass through the mucus layer and accumulate into the mucosa. In UC model mice, a two-fold decrease in the disease activity indexes and colon weight/length ratios was significantly observed in the group treated with 5-ASA-HbNPs. This group received one percent of the standard dosage of 5-ASA (50 μg/kg), while, a similar result was observed for a significant amount of free 5-ASA (5 mg/kg). Furthermore, microscopic images of histological sections of the extracted colons demonstrated that the 5-ASA-HbNPs and 5-ASA groups displayed instances of inflammatory damage within the colon. However, in comparison to the colitis group, the extent of this damage was relatively moderate, suggesting 5-ASA-HbNPs improved therapeutic efficacy with the lower dosage form.
Collapse
Affiliation(s)
- Zahra Vaezi
- Department of Bioactive compounds, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, Postal codes: 14115-154, Tehran, Iran.
| | - Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O.BOX: 1985717411, Tehran, Iran
| | - Maryam Farmani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O.BOX: 1985717411, Tehran, Iran
| | - Reza Mahdavian
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Postal codes: 14115-154, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O.BOX: 1985717411, Tehran, Iran.
| | - Hossein Naderi-Manesh
- Department of Bioactive compounds, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, Postal codes: 14115-154, Tehran, Iran; Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Postal codes: 14115-154, Tehran, Iran.
| |
Collapse
|
29
|
Eker F, Duman H, Akdaşçi E, Bolat E, Sarıtaş S, Karav S, Witkowska AM. A Comprehensive Review of Nanoparticles: From Classification to Application and Toxicity. Molecules 2024; 29:3482. [PMID: 39124888 PMCID: PMC11314082 DOI: 10.3390/molecules29153482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Nanoparticles are structures that possess unique properties with high surface area-to-volume ratio. Their small size, up to 100 nm, and potential for surface modifications have enabled their use in a wide range of applications. Various factors influence the properties and applications of NPs, including the synthesis method and physical attributes such as size and shape. Additionally, the materials used in the synthesis of NPs are primary determinants of their application. Based on the chosen material, NPs are generally classified into three categories: organic, inorganic, and carbon-based. These categories include a variety of materials, such as proteins, polymers, metal ions, lipids and derivatives, magnetic minerals, and so on. Each material possesses unique attributes that influence the activity and application of the NPs. Consequently, certain NPs are typically used in particular areas because they possess higher efficiency along with tenable toxicity. Therefore, the classification and the base material in the NP synthesis hold significant importance in both NP research and application. In this paper, we discuss these classifications, exemplify most of the major materials, and categorize them according to their preferred area of application. This review provides an overall review of the materials, including their application, and toxicity.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
30
|
Kruk K, Winnicka K. Hard Gelatin Capsules with Alginate-Hypromellose Microparticles as a Multicompartment Drug Delivery System for Sustained Posaconazole Release. Int J Mol Sci 2024; 25:7116. [PMID: 39000223 PMCID: PMC11241651 DOI: 10.3390/ijms25137116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Microparticles as a multicompartment drug delivery system are beneficial for poorly soluble drugs. Mucoadhesive polymers applied in microparticle technology prolong the contact of the drug with the mucosa surface enhancing drug bioavailability and extending drug activity. Sodium alginate (ALG) and hydroxypropyl methylcellulose (hypromellose, HPMC) are polymers of a natural or semi-synthetic origin, respectively. They are characterized by mucoadhesive properties and are applied in microparticle technology. Spray drying is a technology employed in microparticle preparation, consisting of the atomization of liquid in a stream of gas. In this study, the pharmaceutical properties of spray-dried ALG/HPMC microparticles with posaconazole were compared with the properties of physical mixtures of powders with equal qualitative and quantitative compositions. Posaconazole (POS) as a relatively novel antifungal was utilized as a model poorly water-soluble drug, and hard gelatin capsules were applied as a reservoir for designed formulations. A release study in 0.1 M HCl showed significantly prolonged POS release from microparticles compared to a mixture of powders. Such a relationship was not followed in simulated vaginal fluid (SVF). Microparticles were also characterized by stronger mucoadhesive properties, an increased swelling ratio, and prolonged residence time compared to physical mixtures of powders. The obtained results indicated that the pharmaceutical properties of hard gelatin capsules filled with microparticles were significantly different from hard gelatin capsules with mixtures of powders.
Collapse
Affiliation(s)
- Katarzyna Kruk
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland
| |
Collapse
|
31
|
Paul S, Bhuyan S, Balasoupramanien DD, Palaniappan A. Muco-Adhesive and Muco-Penetrative Formulations for the Oral Delivery of Insulin. ACS OMEGA 2024; 9:24121-24141. [PMID: 38882129 PMCID: PMC11170654 DOI: 10.1021/acsomega.3c10305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 06/18/2024]
Abstract
Insulin, a pivotal anabolic hormone, regulates glucose homeostasis by facilitating the conversion of blood glucose to energy or storage. Dysfunction in insulin activity, often associated with pancreatic β cells impairment, leads to hyperglycemia, a hallmark of diabetes. Type 1 diabetes (T1D) results from autoimmune destruction of β cells, while type 2 diabetes (T2D) stems from genetic, environmental, and lifestyle factors causing β cell dysfunction and insulin resistance. Currently, insulin therapy is used for most of the cases of T1D, while it is used only in a few persistent cases of T2D, often supplemented with dietary and lifestyle changes. The key challenge in oral insulin delivery lies in overcoming gastrointestinal (GI) barriers, including enzymatic degradation, low permeability, food interactions, low bioavailability, and long-term safety concerns. The muco-adhesive (MA) and muco-penetrative (MP) formulations aim to enhance oral insulin delivery by addressing these challenges. The mucus layer, a hydrogel matrix covering epithelial cells in the GI tract, poses significant barriers to oral insulin absorption. Its structure, composition, and turnover rate influence interactions with insulin and other drug carriers. Some of the few factors that influence mucoadhesion and mucopenetration are particle size, surface charge distribution, and surface modifications. This review discusses the challenges associated with oral insulin delivery, explores the properties of mucus, and evaluates the strategies for achieving excellent MA and MP formulations, focusing on nanotechnology-based approaches. The development of effective oral insulin formulations holds the potential to revolutionize diabetes management, providing patients with a more convenient and patient-friendly alternative to traditional insulin administration methods.
Collapse
Affiliation(s)
- Srijita Paul
- School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
- Advanced Academic Programs, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore Maryland21218, United States
| | - Snigdha Bhuyan
- School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
- Department of Biomedical Engineering, National University of Singapore, Singapore 119077
| | | | - Arunkumar Palaniappan
- Human Organ Manufacturing Engineering (HOME) Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| |
Collapse
|
32
|
Ahmad K, Zhang Y, Chen P, Yang X, Hou H. Chitosan interaction with stomach mucin layer to enhances gastric retention and mucoadhesive properties. Carbohydr Polym 2024; 333:121926. [PMID: 38494203 DOI: 10.1016/j.carbpol.2024.121926] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 03/19/2024]
Abstract
The interaction between mucoadhesive materials and mucin layers is of significant interest in the development of drug delivery systems and biomedical applications for effective targeting and prolonged stay in the gastrointestinal tract. In this article, the current advancement and mucoadhesive properties of chitosan concerning the stomach mucin layer and its interactions have been briefly addressed. Chitosan a biocompatible polysaccharide exhibited promising mucoadhesive properties attributed to its cationic nature and ability to establish bonds with mucin glycoproteins. The mucoadhesion mechanism is ascribed to the electrostatic interactions between the positively charged amino (NH2) groups of chitosan and the sialic acid residues in mucin glycoprotein which carry a negative charge. The article provides a succinct overview of prior uses, current trends, and recent advancements in chitosan-based gastric-targeted delivery systems. We look forward to further innovations and emerging research related to chitosan-based methods of delivery that may increase the chitosan suitability for use in novel therapeutic approaches.
Collapse
Affiliation(s)
- Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Yanying Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Peng Chen
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Xia Yang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong Province 266237, PR China; Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan Province 572024, PR China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, Shandong Province 266000, PR China.
| |
Collapse
|
33
|
Han R, He H, Lu Y, Lu H, Shen S, Wu W. Oral targeted drug delivery to post-gastrointestinal sites. J Control Release 2024; 370:256-276. [PMID: 38679163 DOI: 10.1016/j.jconrel.2024.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/21/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
As an essential branch of targeted drug delivery, oral targeted delivery is attracting growing attention in recent years. In addition to site-specific delivery for the treatment of locoregional diseases in the gastrointestinal tract (GIT), oral targeted delivery to remote sites beyond the GIT emerges as a cutting-edge research topic. This review aims to provide an overview of the fundamental concepts and most recent advances in this field. Owing to the physiological barriers existing in the GIT, carrier systems should be transported across the enteric epithelia to target remote sites. Recently, pioneer investigations have validated the transport of intact micro- or nanocarriers across gastrointestinal barriers and subsequently to various distal organs and tissues. The microfold (M) cell pathway is the leading mechanism underlying the oral absorption of particulates, but the contribution of the transcellular and paracellular pathways should not be neglected either. In addition to well-acknowledged physicochemical and biological factors, the formation of a protein corona may also influence the biological fate of carrier systems. Although in an early stage of conceptualization, oral targeted delivery to remote diseases has demonstrated promising potential for the treatment of inflammation, tumors, and diseases inflicting the lymphatic and mononuclear phagocytosis systems.
Collapse
Affiliation(s)
- Rongze Han
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Haisheng He
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Huiping Lu
- Pharmacy Department and Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Shun Shen
- Pharmacy Department and Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Pharmacy Department and Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| |
Collapse
|
34
|
Dubashynskaya NV, Petrova VA, Skorik YA. Biopolymer Drug Delivery Systems for Oromucosal Application: Recent Trends in Pharmaceutical R&D. Int J Mol Sci 2024; 25:5359. [PMID: 38791397 PMCID: PMC11120705 DOI: 10.3390/ijms25105359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Oromucosal drug delivery, both local and transmucosal (buccal), is an effective alternative to traditional oral and parenteral dosage forms because it increases drug bioavailability and reduces systemic drug toxicity. The oral mucosa has a good blood supply, which ensures that drug molecules enter the systemic circulation directly, avoiding drug metabolism during the first passage through the liver. At the same time, the mucosa has a number of barriers, including mucus, epithelium, enzymes, and immunocompetent cells, that are designed to prevent the entry of foreign substances into the body, which also complicates the absorption of drugs. The development of oromucosal drug delivery systems based on mucoadhesive biopolymers and their derivatives (especially thiolated and catecholated derivatives) is a promising strategy for the pharmaceutical development of safe and effective dosage forms. Solid, semi-solid and liquid pharmaceutical formulations based on biopolymers have several advantageous properties, such as prolonged residence time on the mucosa due to high mucoadhesion, unidirectional and modified drug release capabilities, and enhanced drug permeability. Biopolymers are non-toxic, biocompatible, biodegradable and may possess intrinsic bioactivity. A rational approach to the design of oromucosal delivery systems requires an understanding of both the anatomy/physiology of the oral mucosa and the physicochemical and biopharmaceutical properties of the drug molecule/biopolymer, as presented in this review. This review summarizes the advances in the pharmaceutical development of mucoadhesive oromucosal dosage forms (e.g., patches, buccal tablets, and hydrogel systems), including nanotechnology-based biopolymer nanoparticle delivery systems (e.g., solid lipid particles, liposomes, biopolymer polyelectrolyte particles, hybrid nanoparticles, etc.).
Collapse
Affiliation(s)
| | | | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia
| |
Collapse
|
35
|
Ahmad K, Meng Y, Fan C, Din ASU, Jia Q, Ashraf A, Zhang Y, Hou H. Collagen/gelatin and polysaccharide complexes enhance gastric retention and mucoadhesive properties. Int J Biol Macromol 2024; 266:131034. [PMID: 38518948 DOI: 10.1016/j.ijbiomac.2024.131034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/09/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
This article has focused on collagen-gelatin, the gelation process, as well as blend interaction between collagen/gelatin with various polysaccharides to boost mucoadhesion and gastric retention. The interaction between mucoadhesive materials and mucin layers is of significant interest in the development of drug delivery systems and biomedical applications for effective targeting and prolonged time in the gastrointestinal tract. This paper reviews the current advancement and mucoadhesive properties of collagen/gelatin and different polysaccharide complexes concerning the mucin layer and interactions are briefly highlighted. Collagen/gelatin and polysaccharide blends biocompatible and biodegradable, the complex biomolecules have shown encouraging mucoadhesive properties due to their cationic nature and ability to form hydrogen bonds with mucin glycoproteins. The mucoadhesion mechanism was attributed to the electrostatic interactions between the positively charged amino (NH2) groups of blend biopolymers and the negatively charged sialic acid residues present in mucin glycoprotein. At the end of this article, the encouraging prospect of collagen/polysaccharide complex and mucin glycoprotein is highlighted.
Collapse
Affiliation(s)
- Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Yuqian Meng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Chaozhong Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Aiman Salah Ud Din
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Qiannan Jia
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Azqa Ashraf
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Yanying Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong Province 266237, PR China; Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan Province 572024, PR China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, Shandong Province 266000, PR China.
| |
Collapse
|
36
|
Liu H, Guo S, Wei S, Liu J, Tian B. Pharmacokinetics and pharmacodynamics of cyclodextrin-based oral drug delivery formulations for disease therapy. Carbohydr Polym 2024; 329:121763. [PMID: 38286540 DOI: 10.1016/j.carbpol.2023.121763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024]
Abstract
Oral drug administration has become the most common and preferred mode of disease treatment due to its good medication adherence and convenience. For orally administered drugs, the safety, efficacy, and targeting ability requirements have grown as disease treatment research advances. It is difficult to obtain prominent efficacy of traditional drugs simply via oral administration. Numerous studies have demonstrated that cyclodextrins (CDs) can improve the clinical applications of certain orally administered drugs by enhancing their water solubility and masking undesirable odors. Additionally, deeper studies have discovered that CDs can influence disease treatment by altering the drug pharmacokinetics (PK) or pharmacodynamics (PD). This review highlights recent research progress on the PK and PD effects of CD-based oral drug delivery in disease therapy. Firstly, the review describes the characteristics of current drug delivery modes in oral administration. Besides, we minutely summarized the different CD-containing drugs, focusing on the impact of CD-based alterations in PK or PD of orally administered drugs in treating diseases. Finally, we deeply discussed current challenges and future opportunities with regard to PK and PD of CD-based oral drug delivery formulations.
Collapse
Affiliation(s)
- Hui Liu
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Songlin Guo
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Shijie Wei
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| | - Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
37
|
Garbati P, Picco C, Magrassi R, Signorello P, Cacopardo L, Dalla Serra M, Faticato MG, De Luca M, Balestra F, Scavo MP, Viti F. Targeting the Gut: A Systematic Review of Specific Drug Nanocarriers. Pharmaceutics 2024; 16:431. [PMID: 38543324 PMCID: PMC10974668 DOI: 10.3390/pharmaceutics16030431] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 01/05/2025] Open
Abstract
The intestine is essential for the modulation of nutrient absorption and the removal of waste. Gut pathologies, such as cancer, inflammatory bowel diseases (IBD), irritable bowel syndrome (IBS), and celiac disease, which extensively impact gut functions, are thus critical for human health. Targeted drug delivery is essential to tackle these diseases, improve therapy efficacy, and minimize side effects. Recent strategies have taken advantage of both active and passive nanocarriers, which are designed to protect the drug until it reaches the correct delivery site and to modulate drug release via the use of different physical-chemical strategies. In this systematic review, we present a literature overview of the different nanocarriers used for drug delivery in a set of chronic intestinal pathologies, highlighting the rationale behind the controlled release of intestinal therapies. The overall aim is to provide the reader with useful information on the current approaches for gut targeting in novel therapeutic strategies.
Collapse
Affiliation(s)
- Patrizia Garbati
- Institute of Biophysics, National Research Council, Via De Marini 16, 16149 Genova, Italy; (P.G.); (C.P.); (R.M.); (M.D.S.)
| | - Cristiana Picco
- Institute of Biophysics, National Research Council, Via De Marini 16, 16149 Genova, Italy; (P.G.); (C.P.); (R.M.); (M.D.S.)
| | - Raffaella Magrassi
- Institute of Biophysics, National Research Council, Via De Marini 16, 16149 Genova, Italy; (P.G.); (C.P.); (R.M.); (M.D.S.)
| | - Paolo Signorello
- Department of Information Engineering, University of Pisa, Via Girolamo Caruso 16, 56122 Pisa, Italy; (P.S.); (L.C.)
- Research Center ‘E. Piaggio’, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
- Centro 3R: Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 56122 Pisa, Italy
| | - Ludovica Cacopardo
- Department of Information Engineering, University of Pisa, Via Girolamo Caruso 16, 56122 Pisa, Italy; (P.S.); (L.C.)
- Research Center ‘E. Piaggio’, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
- Centro 3R: Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 56122 Pisa, Italy
| | - Mauro Dalla Serra
- Institute of Biophysics, National Research Council, Via De Marini 16, 16149 Genova, Italy; (P.G.); (C.P.); (R.M.); (M.D.S.)
| | - Maria Grazia Faticato
- Pediatric Surgery, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy;
| | - Maria De Luca
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Bari, Italy; (M.D.L.); (F.B.); (M.P.S.)
| | - Francesco Balestra
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Bari, Italy; (M.D.L.); (F.B.); (M.P.S.)
| | - Maria Principia Scavo
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Bari, Italy; (M.D.L.); (F.B.); (M.P.S.)
| | - Federica Viti
- Institute of Biophysics, National Research Council, Via De Marini 16, 16149 Genova, Italy; (P.G.); (C.P.); (R.M.); (M.D.S.)
| |
Collapse
|
38
|
Cho E, Mun SJ, Kim HK, Ham YS, Gil WJ, Yang CS. Colon-targeted S100A8/A9-specific peptide systems ameliorate colitis and colitis-associated colorectal cancer in mouse models. Acta Pharmacol Sin 2024; 45:581-593. [PMID: 38040838 PMCID: PMC10834475 DOI: 10.1038/s41401-023-01188-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/29/2023] [Indexed: 12/03/2023]
Abstract
The link between chronic inflammation and cancer development is well acknowledged. Inflammatory bowel disease including ulcerative colitis and Crohn's disease frequently promotes colon cancer development. Thus, control of intestinal inflammation is a therapeutic strategy to prevent and manage colitis-associated colorectal cancer (CRC). Recently, gut mucosal damage-associated molecular patterns S100A8 and S100A9, acting via interactions with their pattern recognition receptors (PRRs), especially TLR4 and RAGE, have emerged as key players in the pathogenesis of colonic inflammation. We found elevated serum levels of S100A8 and S100A9 in both colitis and colitis-associated CRC mouse models along with significant increases in their binding with PRR, TLR4, and RAGE. In this study we developed a dual PRR-inhibiting peptide system (rCT-S100A8/A9) that consisted of TLR4- and RAGE-inhibiting motifs derived from S100A8 and S100A9, and conjugated with a CT peptide (TWYKIAFQRNRK) for colon-specific delivery. In human monocyte THP-1 and mouse BMDMs, S100A8/A9-derived peptide comprising TLR4- and RAGE-interacting motif (0.01, 0.1, 1 μM) dose-dependently inhibited the binding of S100 to TLR4 or RAGE, and effectively inhibited NLRP3 inflammasome activation. We demonstrated that rCT-S100A8/A9 had appropriate drug-like properties including in vitro stabilities and PK properties as well as pharmacological activities. In mouse models of DSS-induced acute and chronic colitis, injection of rCT-S100A8/A9 (50 μg·kg-1·d-1, i.p. for certain consecutive days) significantly increased the survival rates and alleviated the pathological injuries of the colon. In AOM/DSS-induced colitis-associated colorectal cancer (CAC) mouse model, injection of rCT-S100A8/A9 (50 μg·kg-1·d-1, i.p.) increased the body weight, decreased tumor burden in the distal colon, and significantly alleviated histological colonic damage. In mice bearing oxaliplatin-resistant CRC xenografts, injection of rCT-S100A8/A9 (20 μg/kg, i.p., every 3 days for 24-30 days) significantly inhibited the tumor growth with reduced EMT-associated markers in tumor tissues. Our results demonstrate that targeting the S100-PRR axis improves colonic inflammation and thus highlight this axis as a potential therapeutic target for colitis and CRC.
Collapse
Affiliation(s)
- Euni Cho
- Department of Bionano Engineering, Hanyang University, Seoul, 04673, Republic of Korea
- Center for Bionano Intelligence Education and Research, Ansan, 15588, Republic of Korea
| | - Seok-Jun Mun
- Department of Bionano Engineering, Hanyang University, Seoul, 04673, Republic of Korea
- Center for Bionano Intelligence Education and Research, Ansan, 15588, Republic of Korea
| | - Hyo Keun Kim
- Center for Bionano Intelligence Education and Research, Ansan, 15588, Republic of Korea
- Department of Molecular and Life Science, Hanyang University, Ansan, 15588, Republic of Korea
| | - Yu Seong Ham
- Center for Bionano Intelligence Education and Research, Ansan, 15588, Republic of Korea
- Department of Molecular and Life Science, Hanyang University, Ansan, 15588, Republic of Korea
| | - Woo Jin Gil
- Center for Bionano Intelligence Education and Research, Ansan, 15588, Republic of Korea
- Department of Molecular and Life Science, Hanyang University, Ansan, 15588, Republic of Korea
| | - Chul-Su Yang
- Center for Bionano Intelligence Education and Research, Ansan, 15588, Republic of Korea.
- Department of Molecular and Life Science, Hanyang University, Ansan, 15588, Republic of Korea.
- Department of Medicinal and Life Science, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
39
|
Cao Z, Pang Y, Pu J, Liu J. Bacteria-based drug delivery for treating non-oncological diseases. J Control Release 2024; 366:668-683. [PMID: 38219912 DOI: 10.1016/j.jconrel.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Bacteria inhabit all over the human body, especially the skin, gastrointestinal tract, respiratory tract, urogenital tract, as well as specific lesion sites, such as wound and tumor. By leveraging their distinctive attributes including rapid proliferation, inherent abilities to colonize various biointerfaces in vivo and produce diverse biomolecules, and the flexibility to be functionalized via genetic engineering or surface modification, bacteria have been widely developed as living therapeutic agents, showing promising potential to make a great impact on the exploration of advanced drug delivery systems. In this review, we present an overview of bacteria-based drug delivery and its applications in treating non-oncological diseases. We systematically summarize the physiological positions where living bacterial therapeutic agents can be delivered to, including the skin, gastrointestinal tract, respiratory tract, and female genital tract. We discuss the success of using bacteria-based drug delivery systems in the treatment of diseases that occur in specific locations, such as skin wound healing/infection, inflammatory bowel disease, respiratory diseases, and vaginitis. We also discuss the advantages as well as the limitations of these living therapeutics and bacteria-based drug delivery, highlighting the key points that need to be considered for further translation. This review article may provide unique insights for designing next-generation bacteria-based therapeutics and developing advanced drug delivery systems.
Collapse
Affiliation(s)
- Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yan Pang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
40
|
Kumar R, Afrin H, Bhatt HN, Beaven E, Gangavarap A, Esquivel SV, Zahid MI, Nurunnabi M. Mucoadhesive Carrier-Mediated Oral Co-delivery of Bcl2 Inhibitors Improves Gastric Cancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:305-317. [PMID: 38157479 DOI: 10.1021/acsami.3c15226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Gastric cancer treatment is challenging due to the lack of early-stage diagnostic technology and targeted delivery systems. Currently, the available treatments for gastric cancer are surgery, chemotherapy, immunotherapy, and radiation. These strategies are either invasive or require systemic delivery, exerting toxicities within healthy tissues. By creation of a targeted delivery system to the stomach, gastric cancer can be treated in the early stages. Such an approach reduces the negative effects on the rest of the body by minimizing systemic absorbance and random localization. With this in mind, we developed a mucoadhesive vehicle composed of β-Glucan And Docosahexaenoic Acid (GADA) for controlled drug/gene delivery. In the current study, we investigated the therapeutic effect of codelivery Bcl2 inhibitors navitoclax (NAVI) and siRNA (Bcl2) via oral using GADA. The therapeutic efficacy of the GADA-mediated oral NAVI/siRNA was investigated in a gastric cancer mouse model. Higher Bcl2 inhibition efficacy was observed in Western blotting and TUNEL assay in mice treated with GADA/NAVI/siRNA compared to free NAVI, siRNA, and NAVI/siRNA. Histology (H&E) and immunohistochemistry (Ki67, TUNEL, and BCl2) analyses confirmed a significant reduction of the tumor region. Interaction between GADA and mucus resulted in retention for over 6 h and thereby sustained local payload release. The developed oral carrier GADA is an emerging vehicle that has promising potential in oral delivery of both small and large molecules, and their mucoadhesive property results in improved therapeutic efficacy with minimal side effects compared to conventional treatment. This study opens a new window for the effective delivery of oral medicine for the treatment of gastric cancer and other gastrointestinal diseases.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Humayra Afrin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, Texas 79965,United States
| | - Himanshu N Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Elfa Beaven
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Anushareddy Gangavarap
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Stephanie V Esquivel
- Department of Aerospace & Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Md Ikhtiar Zahid
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, Texas 79965,United States
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
41
|
Jangid H, Kumar D, Kumar G, Kumar R, Mamidi N. An Emerging Foodborne Pathogen Spotlight: A Bibliometric Analysis and Scholarly Review of Escherichia coli O157 Research. Antibiotics (Basel) 2024; 13:60. [PMID: 38247619 PMCID: PMC10812834 DOI: 10.3390/antibiotics13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Foodborne infections pose a substantial global threat, causing an estimated 600 million illnesses and resulting in approximately 420,000 deaths annually. Among the diverse array of pathogens implicated in these infections, Escherichia coli (E. coli), specifically the O157 strain (E. coli O157), emerges as a prominent pathogen associated with severe outbreaks. This study employs a comprehensive bibliometric analysis and scholarly review focused on E. coli O157 research. The bibliometric analysis highlights the significant role played by the United States in the E. coli O157 research domain. Further exploration underscores the noteworthy contributions of the researcher Doyle MP, whose body of work, consisting of 84 documents and an impressive H-Index of 49, reflects their substantial impact in the field. Recent research trends indicate a discernible shift towards innovative detection methods, exemplified by the adoption of CRISPR-CAS and Loop-Mediated Isothermal Amplification. Moreover, high-throughput whole-genome sequencing techniques are gaining prominence for the expeditious analysis of pathogenic E. coli strains. Scientists are increasingly exploring antimicrobial agents, including phage therapy, to address the challenges posed by antibiotic-resistant E. coli strains, thereby addressing critical concerns related to multi-drug resistance. This comprehensive analysis provides vital insights into the dynamic landscape of E. coli O157 research. It serves as a valuable resource for researchers, policymakers, and healthcare professionals dedicated to mitigating E. coli O157 outbreaks and advancing global public health strategies.
Collapse
Affiliation(s)
- Himanshu Jangid
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Deepak Kumar
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Gaurav Kumar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Raj Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Narsimha Mamidi
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
42
|
Wang L, Fu R, Meng Y, Liang J, Xue W, Hu H, Meng J, Zhang M. pH Sensitive Quercetin Nanoparticles Ameliorate DSS-Induced Colitis in Mice by Colon-Specific Delivery. Mol Nutr Food Res 2024; 68:e2300051. [PMID: 38010348 DOI: 10.1002/mnfr.202300051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/04/2023] [Indexed: 11/29/2023]
Abstract
SCOPE Ulcerative colitis (UC) is a classic inflammatory bowel disease (IBD) that represents a serious threat to human health. As a natural flavonoid with multiple biological activities, quercetin (QCT) suffers from low bioavailability through limitations in chemical stability. Here, the study investigates the regulatory effects of quercetin nanoparticles (QCT NPs) on dextran sulfate sodium (DSS) induced colitis mice. METHODS AND RESULTS Chitosan is modified to obtain N-succinyl chitosan (NSC) with superior water solubility. Nanoparticles composed of sodium alginate (SA) and NSC can encapsulate QCT after cross-linking, forming QCT NPs. In vitro drug release assays demonstrate the pH sensitivity of QCT NPs. Compared with free quercetin, QCT NPs have better therapeutic efficacy in modulating gut microbiota and its metabolites short chain fatty acid (SCFAs) to relieve DSS-induced colitis in mice, thereby alleviating colon inflammatory infiltration, increasing goblet cells density and mucus protein, ameliorating TNF-α, IL-1β, IL-6, IL-10, and Myeloperoxidase (MPO) levels, and recovering intestinal barrier integrity. CONCLUSION pH sensitive QCT nanoparticles can reduce inflammatory reaction, improve gut microbiota, and repair intestinal barrier by targeting colon, thus improving DSS induced colitis in mice, providing reference for the treatment of colitis.
Collapse
Affiliation(s)
- Lechen Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Rongrong Fu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ying Meng
- Department of Rehabilitation Medicine, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, 250031, China
| | - Jingjie Liang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wenqing Xue
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Haitao Hu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jing Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
- Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
- Tianjin Agricultural University, Tianjin, 300384, China
| |
Collapse
|
43
|
Yao L, Liu Q, Lei Z, Sun T. Development and challenges of antimicrobial peptide delivery strategies in bacterial therapy: A review. Int J Biol Macromol 2023; 253:126819. [PMID: 37709236 DOI: 10.1016/j.ijbiomac.2023.126819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
The escalating global prevalence of antimicrobial resistance poses a critical threat, prompting concerns about its impact on public health. This predicament is exacerbated by the acute shortage of novel antimicrobial agents, a scarcity attributed to the rapid surge in bacterial resistance. This review delves into the realm of antimicrobial peptides, a diverse class of compounds ubiquitously present in plants and animals across various natural organisms. Renowned for their intrinsic antibacterial activity, these peptides provide a promising avenue to tackle the intricate challenge of bacterial resistance. However, the clinical utility of peptide-based drugs is hindered by limited bioavailability and susceptibility to rapid degradation, constraining efforts to enhance the efficacy of bacterial infection treatments. The emergence of nanocarriers marks a transformative approach poised to revolutionize peptide delivery strategies. This review elucidates a promising framework involving nanocarriers within the realm of antimicrobial peptides. This paradigm enables meticulous and controlled peptide release at infection sites by detecting dynamic shifts in microenvironmental factors, including pH, ROS, GSH, and reactive enzymes. Furthermore, a glimpse into the future reveals the potential of targeted delivery mechanisms, harnessing inflammatory responses and intricate signaling pathways, including adenosine triphosphate, macrophage receptors, and pathogenic nucleic acid entities. This approach holds promise in fortifying immunity, thereby amplifying the potency of peptide-based treatments. In summary, this review spotlights peptide nanosystems as prospective solutions for combating bacterial infections. By bridging antimicrobial peptides with advanced nanomedicine, a new therapeutic era emerges, poised to confront the formidable challenge of antimicrobial resistance head-on.
Collapse
Affiliation(s)
- Longfukang Yao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Qianying Liu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
44
|
Chen C, Beloqui A, Xu Y. Oral nanomedicine biointeractions in the gastrointestinal tract in health and disease. Adv Drug Deliv Rev 2023; 203:115117. [PMID: 37898337 DOI: 10.1016/j.addr.2023.115117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Oral administration is the preferred route of administration based on the convenience for and compliance of the patient. Oral nanomedicines have been developed to overcome the limitations of free drugs and overcome gastrointestinal (GI) barriers, which are heterogeneous across healthy and diseased populations. This review aims to provide a comprehensive overview and comparison of the oral nanomedicine biointeractions in the gastrointestinal tract (GIT) in health and disease (GI and extra-GI diseases) and highlight emerging strategies that exploit these differences for oral nanomedicine-based treatment. We introduce the key GI barriers related to oral delivery and summarize their pathological changes in various diseases. We discuss nanomedicine biointeractions in the GIT in health by describing the general biointeractions based on the type of oral nanomedicine and advanced biointeractions facilitated by advanced strategies applied in this field. We then discuss nanomedicine biointeractions in different diseases and explore how pathological characteristics have been harnessed to advance the development of oral nanomedicine.
Collapse
Affiliation(s)
- Cheng Chen
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium; WEL Research Institute, avenue Pasteur, 6, 1300 Wavre, Belgium.
| | - Yining Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
45
|
Song H, Dong H, Dong W, Luo Y. Atomic-Level Insights into Hollow Silica-Based Materials for Drug Delivery: Effects of Wettability and Porosity. ACS Biomater Sci Eng 2023; 9:6156-6164. [PMID: 37831542 DOI: 10.1021/acsbiomaterials.3c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Experimental evidence has demonstrated that the drug carrier capacity can be significantly enhanced through the use of hollow silica particles. Nevertheless, the effects of varying functional drug carrier surfaces and porous structures remain ambiguous. This study employs molecular dynamics simulations to examine the effects of varying the surface wettability, pore size, and flow velocity on the transfer process. The different levels of wettability of the silica surface with the coarse-grained water model is illustrated by adjusted interaction parameters. The effect of wettability is investigated. With weak interactions, the flow molecules form a nanodroplet to transfer through the porous structure. A strong interaction will lead to molecules flowing as a liquid film to transfer through the structure. Interestingly, the "contradiction effect" is observed when the flow molecules fail to penetrate the porous structure with weak interactions, during which surface tension dominates their flow behavior. Moreover, different porous structures are considered. The flow behaviors are divided into three processes: (1) fast flowing, (2) transient point, and (3) penetration flowing. Furthermore, the concept of surface molecules is defined to quantitatively measure the effect of porosity. A recommended contact angle is proposed. The results will pave the way for more carrier structures in medical engineering.
Collapse
Affiliation(s)
- Haoxin Song
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Haiyan Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Weihua Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yu Luo
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
46
|
Jangid H, Kumar D, Kumar G, Kumar R, Mamidi N. Bibliometric Examination of Global Scientific Research about Carbapenem-Resistant Acinetobacter Baumannii (CRAB). Antibiotics (Basel) 2023; 12:1593. [PMID: 37998795 PMCID: PMC10668794 DOI: 10.3390/antibiotics12111593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
This review paper presents a comprehensive bibliometric analysis of the global scientific research pertaining to carbapenem-resistant Acinetobacter baumannii (CRAB) from the years 1996 to 2023. The review employs a systematic approach to evaluate the trends, patterns, and collaborative networks within the CRAB research landscape, shedding light on its substantial global health implications. An analysis of the Scopus database reveals that the earliest publication within the CRAB research domain dates back to 1996. By conducting a meticulous examination of publication output, citation trends, author affiliations, and keyword distributions, this paper provides valuable insights into the evolution of research themes and the emergence of new areas of interest concerning CRAB. The findings of this bibliometric analysis prominently feature the most influential author within this field, namely, Higgins PG, who has contributed a remarkable 39 documents to CRAB research. It is noteworthy that China leads in terms of the quantity of published research articles in this domain, whereas the United States occupies the foremost position about citations within the CRAB research sphere. Furthermore, a more profound exploration of the data yields a heightened understanding of the current status of CRAB research, emphasizing potential avenues for future investigations and underscoring the imperative need for collaborative initiatives to address the challenges posed by this antibiotic-resistant pathogen.
Collapse
Affiliation(s)
- Himanshu Jangid
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Deepak Kumar
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara 144411, India;
| | - Gaurav Kumar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Raj Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68105, USA;
| | - Narsimha Mamidi
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
47
|
Kulchar RJ, Singh R, Ding S, Alexander E, Leong KW, Daniell H. Delivery of biologics: Topical administration. Biomaterials 2023; 302:122312. [PMID: 37690380 PMCID: PMC10840840 DOI: 10.1016/j.biomaterials.2023.122312] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Biologics are unaffordable to a large majority of the global population because of prohibitively expensive fermentation systems, purification and the requirement for cold chain for storage and transportation. Limitations of current production and delivery systems of biologics were evident during the recent pandemic when <2.5% of vaccines produced were available to low-income countries and ∼19 million doses were discarded in Africa due to lack of cold-chain infrastructure. Among FDA-approved biologics since 2015, >90% are delivered using invasive methods. While oral or topical drugs are highly preferred by patients because of their affordability and convenience, only two oral drugs have been approved by FDA since 2015. A newly launched oral biologic costs only ∼3% of the average cost of injectable biologics because of the simplified regulatory approval process by elimination of prohibitively expensive fermentation, purification, cold storage/transportation. In addition, the cost of developing a new biologic injectable product (∼$2.5 billion) has been dramatically reduced through oral or topical delivery. Topical delivery has the unique advantage of targeted delivery of high concentration protein drugs, without getting diluted in circulating blood. However, only very few topical drugs have been approved by the FDA. Therefore, this review highlights recent advances in oral or topical delivery of proteins at early or advanced stages of human clinical trials using chewing gums, patches or sprays, or nucleic acid drugs directly, or in combination with, nanoparticles and offers future directions.
Collapse
Affiliation(s)
- Rachel J. Kulchar
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Rahul Singh
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Suwan Ding
- Department of Biomedical Engineering, Columbia University, New York City NY 10032, USA
| | - Elena Alexander
- Department of Biomedical Engineering, Columbia University, New York City NY 10032, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York City NY 10032, USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia PA 19104, USA
| |
Collapse
|
48
|
Pires PC, Paiva-Santos AC, Veiga F. Liposome-Derived Nanosystems for the Treatment of Behavioral and Neurodegenerative Diseases: The Promise of Niosomes, Transfersomes, and Ethosomes for Increased Brain Drug Bioavailability. Pharmaceuticals (Basel) 2023; 16:1424. [PMID: 37895895 PMCID: PMC10610493 DOI: 10.3390/ph16101424] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Psychiatric and neurodegenerative disorders are amongst the most prevalent and debilitating diseases, but current treatments either have low success rates, greatly due to the low permeability of the blood-brain barrier, and/or are connected to severe side effects. Hence, new strategies are extremely important, and here is where liposome-derived nanosystems come in. Niosomes, transfersomes, and ethosomes are nanometric vesicular structures that allow drug encapsulation, protecting them from degradation, and increasing their solubility, permeability, brain targeting, and bioavailability. This review highlighted the great potential of these nanosystems for the treatment of Alzheimer's disease, Parkinson's disease, schizophrenia, bipolar disorder, anxiety, and depression. Studies regarding the encapsulation of synthetic and natural-derived molecules in these systems, for intravenous, oral, transdermal, or intranasal administration, have led to an increased brain bioavailability when compared to conventional pharmaceutical forms. Moreover, the developed formulations proved to have neuroprotective, anti-inflammatory, and antioxidant effects, including brain neurotransmitter level restoration and brain oxidative status improvement, and improved locomotor activity or enhancement of recognition and working memories in animal models. Hence, albeit being relatively new technologies, niosomes, transfersomes, and ethosomes have already proven to increase the brain bioavailability of psychoactive drugs, leading to increased effectiveness and decreased side effects, showing promise as future therapeutics.
Collapse
Affiliation(s)
- Patrícia C. Pires
- Faculty of Pharmacy, Faculty of Pharmacy of the University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Cláudia Paiva-Santos
- Faculty of Pharmacy, Faculty of Pharmacy of the University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Faculty of Pharmacy, Faculty of Pharmacy of the University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
49
|
Mehta CH, Paliwal S, Muttigi MS, Seetharam RN, Prasad ASB, Nayak Y, Acharya S, Nayak UY. Polyphenol-based targeted therapy for oral submucous fibrosis. Inflammopharmacology 2023; 31:2349-2368. [PMID: 37106237 PMCID: PMC10518296 DOI: 10.1007/s10787-023-01212-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/26/2023] [Indexed: 04/29/2023]
Abstract
Oral submucous fibrosis (OSF) is a chronic, progressive, and precancerous condition mainly caused by chewing areca nut. Currently, OSF therapy includes intralesional injection of corticosteroids with limited therapeutic success in disease management. Therefore, a combined approach of in silico, in vitro and in vivo drug development can be helpful. Polyphenols are relatively safer than other synthetic counterparts. We used selected polyphenols to shortlist the most suitable compound by in silico tools. Based on the in silico results, epigallocatechin-3-gallate (EGCG), quercetin (QUR), resveratrol, and curcumin had higher affinity and stability with the selected protein targets, transforming growth factor beta-1 (TGF-β1), and lysyl oxidase (LOX). The efficacy of selected polyphenols was studied in primary buccal mucosal fibroblasts followed by in vivo areca nut extract induced rat OSF model. In in vitro studies, the induced fibroblast cells were treated with EGCG and QUR. EGCG was safer at higher concentrations and more efficient in reducing TGF-β1, collagen type-1A2 and type-3A1 mRNA expression than QUR. In vivo studies confirmed that the EGCG hydrogel was efficient in improving the disease conditions compared to the standard treatment betamethasone injection with significant reduction in TGF-β1 and collagen concentrations with increase in mouth opening. EGCG can be considered as a potential, safer and efficient phytomolecule for OSF therapy and its mucoadhesive topical formulation help in the improvement of patient compliance without any side effects. Highlights Potential polyphenols were shortlisted to treat oral submucous fibrosis (OSF) using in silico tools Epigallocatechin 3-gallate (EGCG) significantly reduced TGF-β1 and collagen both in vitro and in vivo EGCG hydrogel enhanced antioxidant defense, modulated inflammation by reducing TGF-β1 and improved mouth opening in OSF rat model.
Collapse
Affiliation(s)
- Chetan Hasmukh Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shivangi Paliwal
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Manjunatha S Muttigi
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Alevoor Srinivas Bharath Prasad
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shruthi Acharya
- Department of Oral Medicine and Radiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
50
|
Ma M, Zeng H, Yang P, Xu J, Zhang X, He W. Drug Delivery and Therapy Strategies for Osteoporosis Intervention. Molecules 2023; 28:6652. [PMID: 37764428 PMCID: PMC10534890 DOI: 10.3390/molecules28186652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
With the advent of the aging society, osteoporosis (OP) risk increases yearly. Currently, the clinical usage of anti-OP drugs is challenged by recurrent side effects and poor patient compliance, regardless of oral, intravenous, or subcutaneous administration. Properly using a drug delivery system or formulation strategy can achieve targeted drug delivery to the bone, diminish side effects, improve bioavailability, and prolong the in vivo residence time, thus effectively curing osteoporosis. This review expounds on the pathogenesis of OP and the clinical medicaments used for OP intervention, proposes the design approach for anti-OP drug delivery, emphatically discusses emerging novel anti-OP drug delivery systems, and enumerates anti-OP preparations under clinical investigation. Our findings may contribute to engineering anti-OP drug delivery and OP-targeting therapy.
Collapse
Affiliation(s)
- Mingyang Ma
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (M.M.); (H.Z.)
| | - Huiling Zeng
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (M.M.); (H.Z.)
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 211198, China;
| | - Jiabing Xu
- Taizhou Institute for Drug Control, Taizhou 225316, China;
| | - Xingwang Zhang
- Department of Pharmaceutics, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|