1
|
Yang C, Liao X, Zhou K, Yao Y, He X, Zhong W, Zheng D, Yang Y, Li M, Zhou M, Zhou Y, Li L, Bai Y, Shi K, Qian Z. Multifunctional nanoparticles and collagenase dual loaded thermosensitive hydrogel system for enhanced tumor-penetration, reversed immune suppression and photodynamic-immunotherapy. Bioact Mater 2025; 48:1-17. [PMID: 40028237 PMCID: PMC11870144 DOI: 10.1016/j.bioactmat.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Breast cancer is the most prevalent and lethal malignancy among females, with a critical need for safer and less invasive treatments. Photodynamic therapy (PDT) can effectively eliminate tumor cells with minimal side effects. Furthermore, the combination of PDT and immunotherapy using nanoparticles has shown promise in treating both primary and distant metastatic tumor cells. Therefore, this study proposes applying the PDT-immunotherapy combination to breast cancer treatment. However, the low immunogenicity characteristic of "cold" tumors in part of breast cancer significantly diminishes therapeutic efficacy. To address this challenge, here, a nano-gel system (designated as HCSC-gel) is constructed, which co-delivers a mitochondria-targeted photosensitizer and a STING agonist, capable of robustly activating "cold" tumor immunity. This system is further enhanced by collagenase (CN) to improve therapeutic outcomes. Upon injection into the primary tumor site, HCSC-gel rapidly forms a gel matrix, releasing CN to degrade the tumor extracellular matrix and facilitate the penetration of photosensitizers, STING agonists, and oxygen into the tumor tissue. Under laser irradiation, PDT and STING-mediated immune responses are activated, reversing the low immunogenicity of breast cancer and effectively treating both primary and metastatic lesions. This HCSC-gel nano hydrogel delivery platform is anticipated to provide novel insights for the clinical management of breast cancer and other low immunogenic "cold" tumors, offering significant benefits to patients.
Collapse
Affiliation(s)
- Chengli Yang
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Xukun Liao
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Kai Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, China
| | - Yongchao Yao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, China
| | - Xinlong He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, China
| | - Wen Zhong
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Dan Zheng
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Yan Yang
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Ming Li
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Meng Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Yadi Zhou
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Lin Li
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Yang Bai
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Kun Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, China
| |
Collapse
|
2
|
Tiwari PK, Chaudhary AA, Gupta S, Chouhan M, Singh HN, Rustagi S, Khan SUD, Kumar S. Extracellular vesicles in triple-negative breast cancer: current updates, challenges and future prospects. Front Mol Biosci 2025; 12:1561464. [PMID: 40297849 PMCID: PMC12034555 DOI: 10.3389/fmolb.2025.1561464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/25/2025] [Indexed: 04/30/2025] Open
Abstract
Breast cancer (BC) remains a complex and widespread problem, affecting millions of women worldwide, Among the various subtypes of BC, triple-negative breast cancer (TNBC) is particularly challenging, representing approximately 20% of all BC cases, and the survival rate of TNBC patients is generally worse than other subtypes of BC. TNBC is a heterogeneous disease characterized by lack of expression of three receptors: estrogen (ER), progesterone (PR), and human epidermal growth factor receptor 2 (HER2), resulting conventional hormonal therapies are ineffective for its management. Despite various therapeutic approaches have been explored, but no definitive solution has been found yet for TNBC. Current treatments options are chemotherapy, immunotherapy, radiotherapy and surgery, although, these therapies have some limitations, such as the development of resistance to anti-cancer drugs, and off-target toxicity, which remain primary obstacles and significant challenges for TNBC. Several findings have shown that EVs exhibit significant therapeutic promise in many diseases, and a similar important role has been observed in various types of tumor. Studies suggest that EVs may offer a potential solution for the management of TNBC. This review highlights the multifaceted roles of EVs in TNBC, emphasizing their involvement in disease progression, diagnosis and therapeutic approach, as well as their potential as biomarkers and drug delivery.
Collapse
Affiliation(s)
- Prashant Kumar Tiwari
- Biological and Bio-Computational Lab, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Mandeep Chouhan
- Biological and Bio-Computational Lab, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Himanshu Narayan Singh
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life science, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
3
|
Yu J, Hu JR, Tian Y, Lei YM, Hu HM, Lei BS, Zhang G, Sun Y, Ye HR. Nanosensitizer-assisted sonodynamic therapy for breast cancer. J Nanobiotechnology 2025; 23:281. [PMID: 40197318 PMCID: PMC11978163 DOI: 10.1186/s12951-025-03311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/09/2025] [Indexed: 04/10/2025] Open
Abstract
Breast cancer is the most commonly diagnosed cancer worldwide. Despite advancements in therapeutic modalities, its prognosis remains poor owing to complex clinical, pathological, and molecular characteristics. Sonodynamic therapy (SDT) is a promising approach for tumor elimination, using sonosensitizers that preferentially accumulate in tumor tissues and are activated by low-intensity ultrasound to produce reactive oxygen species. However, the clinical translation of SDT faces challenges, including the limited efficiency of sonosensitizers and resistance posed by the tumor microenvironment. The emergence of nanomedicine offers innovative strategies to address these obstacles. This review discusses strategies for enhancing the efficacy of SDT using sonosensitizers, including rational structural modifications, improved tumor-targeted enrichment, tumor microenvironment remodeling, and imaging-guided therapy. Additionally, SDT-based multimodal therapies, such as sono-chemotherapy, sono-immunotherapy, and sono-photodynamic therapy, and their potential applications in breast cancer treatment are summarized. The underlying mechanisms of SDT in breast cancer are briefly outlined. Finally, this review highlights current challenges and prospects for the clinical translation of SDT, providing insights into future advancements that may improve therapeutic outcomes for breast cancer.
Collapse
Affiliation(s)
- Jing Yu
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, 430080, China
| | - Jun-Rui Hu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi Tian
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, 430080, China
| | - Yu-Meng Lei
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, 430080, China
| | - Hai-Man Hu
- Department of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Bing-Song Lei
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, 430080, China.
| | - Ge Zhang
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, 430080, China.
| | - Yao Sun
- National Key Laboratory of Green Pesticides, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| | - Hua-Rong Ye
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, 430080, China.
| |
Collapse
|
4
|
Nguyen VN, Nguyen Cao TG, Jeong H, Truong Hoang Q, Pham BTT, Bang J, Koh CW, Kang JH, Lee JH, Wu X, Rhee WJ, Ko YT, Swamy KMK, Park S, Park J, Shim MS, Yoon J. Tumor-Targeted Exosome-Based Heavy Atom-Free Nanosensitizers With Long-Lived Excited States for Safe and Effective Sono-Photodynamic Therapy of Solid Tumors. Adv Healthc Mater 2025:e2500927. [PMID: 40165690 DOI: 10.1002/adhm.202500927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Theranostic nanosensitizers with combined near-infrared (NIR) fluorescence imaging and sono-photodynamic effects have great potential for use in the personalized treatment of deep-seated tumors. However, developing effective nanosensitizers for NIR fluorescence image-guided sono-photodynamic therapy remains a considerable challenge, including the low generation efficacy of reactive oxygen species (ROS), poor photostability, and the absence of cancer specificity. Herein, a novel heavy atom-free nanosensitizer is developed, which exhibits intense NIR fluorescence, high ROS generation efficiency, and improved aqueous stability. By conjugating a bulky and electron-rich group, 4-(1,2,2-triphenylvinyl)-1,1'-biphenyl (TPE), to the IR820 backbone, the resulting IR820 bearing TPE (IR820-TPE) effectively generates ROS via type I and II photochemical mechanisms under 808 nm laser irradiation. Moreover, TPE conjugation considerably increases the sono-photodynamic performance of IR820. To improve the intracellular delivery and tumor-targeting ability of IR820-TPE, biotin-conjugated exosome (B-Exo) is used as a natural nanocarrier. In vitro studies demonstrate the outstanding therapeutic performance of IR820-TPE-loaded B-Exo (IR820-TPE@B-Exo) in synergistic sono-photodynamic cancer therapy. In vivo studies reveal that IR820-TPE@B-Exo shows enhanced tumor accumulation, strong fluorescence signals, and effective sono-photodynamic therapeutic activity with high biosafety. This work demonstrates that IR820-TPE@B-Exo is a promising sono-phototheranostic agent for safe and targeted cancer therapy and NIR fluorescence imaging.
Collapse
Affiliation(s)
- Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
- Department of Chemistry, School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Ha Noi, 100000, Vietnam
| | - Thuy Giang Nguyen Cao
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Hyunsun Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Quan Truong Hoang
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Binh T T Pham
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jieun Bang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Chang Woo Koh
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Hee Kang
- College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea
| | - Jeong Hyun Lee
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Xiaofeng Wu
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Research Center for Bio Materials & Process Development, Incheon National University, Incheon, 22012, Republic of Korea
| | - Young Tag Ko
- College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea
| | - K M K Swamy
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sungnam Park
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - JaeHong Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
5
|
Zhang Q, Ma RF, Chen SW, Cao K, Wang Y, Xu ZR. Biomineralized and metallized small extracellular vesicles encapsulated in hydrogels for mitochondrial-targeted synergistic tumor therapy. Acta Biomater 2025; 194:428-441. [PMID: 39870149 DOI: 10.1016/j.actbio.2025.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Targeted organelle therapy is a promising therapeutic method for significantly regulating the tumor microenvironment, yet it often lacks effective strategies for leveraging synergistic enhancement effect. Engineered small extracellular vesicles (sEVs) are expected to address this challenge due to their notable advantages in drug delivery, extended circulation time, and intercellular information transmission. Herein, we prepare sEVs with pH and photothermal dual-responsiveness, which are encapsulated with hydrogels for a quadruple-efficient synergistic therapy. M1-phenotype macrophages-derived sEVs, which carry cytokines that inhibit tumor progression, were separately encapsulated with calcium phosphates (CaPs) and Au@Pt nanoparticles (Au@Pt NPs), endowing them with pH and photothermal dual-responsiveness. Subsequently, they were assembled into sEV-Au@Pt NPs/CaPs nanohybrids, and functionalized with mitochondria-targeting peptides. Within tumor cells, mitochondrial targeting enhances Ca2+ accumulation, resulting in mitochondrial homeostasis imbalance. The release of Pt2+ causes nuclear damage and exacerbates mitochondrial dysfunction. Furthermore, under laser irradiation, the sEV-Au@Pt NPs absorb light, generating hyperthermia that promotes the release of Ca2+ and Pt2+ from the hydrogel and cytokines from the sEVs, thereby achieving a quadruple-efficient synergistic therapy. The hydrogel effectively prolongs the retention time of nanohybrids, aiding in the prevention of tumor recurrence. These nanohybrids exhibit favorable mitochondrial targeting ability, with a Pearson's co-localization coefficient of 0.877. In experimental trials, tumor growth was significantly inhibited after only five treatments, with the tumor volume reduced to 0.16-fold that of the control group. This strategy presents a potential tailored platform for engineered sEVs in mitochondrial-targeted therapy and holds great promise for advancing organelle-targeted therapeutic strategies. STATEMENT OF SIGNIFICANCE: Engineering small extracellular vesicles (sEVs) can significantly enhance the synergistic effects of organelle-targeted therapy, thereby improving therapeutic efficacy and reducing side effects. However, their full development is still pending. In this study, we present a promising strategy that involves engineering sEVs with pH and photothermal dual-responsiveness through biomineralization and metallization, enabling quadruple synergistic tumor therapy. Our study demonstrates the remarkable synergistic effects of mitochondrial homeostasis imbalance caused by Ca2+ bursts and nuclear damage due to Pt2+ release. After five treatments, the tumor volume in the experimental group was reduced to 0.16-fold that of the control group. This strategy holds great promise for the design of engineered sEVs as organelle-targeted therapeutic systems.
Collapse
Affiliation(s)
- Qi Zhang
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Ruo-Fei Ma
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Si-Wen Chen
- Center for Molecular Science and Engineering, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Ke Cao
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Yue Wang
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Zhang-Run Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China.
| |
Collapse
|
6
|
Neshastehriz A, Hormozi-Moghaddam Z, Kichi ZA, Taheri SM, Amini SM, Aghaei A. Overcoming breast cancer cell treatment resistance by optimizing sonodynamic therapy and radiation sensitizers on lncRNA PVT1 and miR-1204 expression. Photodiagnosis Photodyn Ther 2025; 51:104433. [PMID: 39645013 DOI: 10.1016/j.pdpdt.2024.104433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Acoustic cavitation is a foundational mechanism in ultrasound therapy, primarily through inertial cavitation resulting from microbubble collapse. Sonodynamic therapy, with inertial acoustic cavitation threshold and low-dose radiation in the presence of sensitizers, may provide significant effects for cancer treatment, potentially overcoming resistance encountered with single therapies. METHODS MCF7 breast cancer cells were subjected to sonodynamic therapy either alone or combined with ionizing radiation, gold nanoparticles coated with apigenin, and methylene blue. Several parameters were evaluated, including reactive oxygen species (ROS) generation and colonization. Additionally, the investigation included assessing the long non-coding RNA (lncRNA) PTV1 with miRNA1204 and related genes using Real-Time PCR. RESULTS Sonodynamic therapy at a mechanical index of 0.31 as acoustic cavitation threshold increased intracellular ROS. Combining sonodynamic therapy and 2 Gy X-ray radiation with methylene blue and gold nanoparticles coated with apigenin significantly decreased plating efficiency (4.44±1.69), and survival fraction (2.75±1.98) compared with control (Ctrl.) (98.77±4.49) and (97.59± 2.94), respectively. This was associated with a marked increase in ROS with a mean fluorescence intensity of 20,576.2 ± 4.6 (>4.5 times). The combined treatment also increased p53 expression and decreased the expression of PVT1, miR-1204, and related genes. CONCLUSION Sonodynamic therapy in inertial acoustic cavitation threshold, combined with ionizing radiation in the presence of biocompatible nanoparticles, could enhance the therapeutic effects on the miR-1204, derived from lncRNA PVT1, that functions as an oncogenic microRNA in breast cancer. This approach has the potential to overcome treatment resistance encountered with single therapies.
Collapse
Affiliation(s)
- Ali Neshastehriz
- Radiation Biology Research center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Radiation Sciences, Allied Medicine Faculty, Iran University of Medical Sciences, Tehran, Iran.
| | - Zeinab Hormozi-Moghaddam
- Radiation Biology Research center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Radiation Sciences, Allied Medicine Faculty, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Abedi Kichi
- Department of Genetics, Faculty of biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Seyedeh Mona Taheri
- Department of Radiation Sciences, Allied Medicine Faculty, Iran University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohammad Amini
- Radiation Biology Research center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Amir Aghaei
- Department of Radiation Sciences, Allied Medicine Faculty, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Wei F, Lin Y, Pan R, Peng Y, Chen E, Kang J, Zhu J, Wang J, Wu B, Shen W, Lin J, Gao H, Tian X. Virus-Inspired Biodegradable Tetrasulfide-Bridged Mesoporous Organosilica with GSH Depletion for Fluorescence Imaging-Guided Sonodynamic Chemotherapy of Glioblastoma Multiforme. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70407-70418. [PMID: 39670856 DOI: 10.1021/acsami.4c19480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Glioblastoma multiforme (GBM), a highly prevalent and lethal form of malignant tumor, is typically treated with Temozolomide (TMZ), a chemotherapeutic agent. Nevertheless, the effectiveness of TMZ is hampered by inadequate cell entry, systemic adverse effects, and monotherapy constraints. Previous clinical studies have demonstrated that combination therapy can significantly enhance the therapeutic efficacy. Herein, we developed ultrasmall virus-inspired biodegradable tetrasulfide-bridged mesoporous organosilica coloaded with TMZ and indocyanine green (ICG) (designated as vMSTI) for fluorescence imaging-guided sonodynamic chemotherapy and glutathione (GSH) depletion, aiming to enhance the therapeutic efficiency of GBM. Once accumulated within the tumors, the vMSTI nanosystem efficiently entered tumor cells via "spike surface"-assisted endocytosis. Subsequently, intracellular overproduction of GSH within tumor cells triggered the degradation of vMSTI, resulting in the release of both TMZ and ICG, while simultaneously depleting intracellular GSH levels. Upon ultrasound (US) irradiation, the released ICG generated abundant reactive oxygen species (ROS) for sonodynamic therapy, which could be further potentiated by GSH depletion. Furthermore, released TMZ effectively elicited DNA damage to enable chemotherapy. Consequently, the vMSTI effectively triggered apoptosis, suppressing GBM growth under the guidance of fluorescence imaging. Our nanosystems offered a promising strategy for imaging-guided combination therapy for GBM.
Collapse
Affiliation(s)
- Feng Wei
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, Xiamen University, School of Medicine, Xiamen, Fujian 361004, China
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Yanling Lin
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Rujun Pan
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University, Fujian 350001, China
| | - Yilong Peng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
- Department of Neurosurgery, Jiangmen Central Hospital, Jiangmen, Guangdong 529030, China
| | - E Chen
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, Xiamen University, School of Medicine, Xiamen, Fujian 361004, China
| | - Junlong Kang
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, Xiamen University, School of Medicine, Xiamen, Fujian 361004, China
| | - Jiang Zhu
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, Xiamen University, School of Medicine, Xiamen, Fujian 361004, China
| | - Jiayin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Baofang Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Wenwen Shen
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, Xiamen University, School of Medicine, Xiamen, Fujian 361004, China
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Jinyan Lin
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Hongzhi Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Xinhua Tian
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, Xiamen University, School of Medicine, Xiamen, Fujian 361004, China
| |
Collapse
|
8
|
Zhao S, Di Y, Fan H, Xu C, Li H, Wang Y, Wang W, Li C, Wang J. Targeted delivery of extracellular vesicles: the mechanisms, techniques and therapeutic applications. MOLECULAR BIOMEDICINE 2024; 5:60. [PMID: 39567444 PMCID: PMC11579273 DOI: 10.1186/s43556-024-00230-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
Extracellular vesicles (EVs) are cell-derived vesicles with a phospholipid bilayer measuring 50-150 nm in diameter with demonstrated therapeutic potentials. Limitations such as the natural biodistribution (mainly concentrated in the liver and spleen) and short plasma half-life of EVs present significant challenges to their clinical translation. In recent years, growing research indicated that engineered EVs with enhanced targeting to lesion sites have markedly promoted therapeutic efficacy. However, there is a dearth of systematic knowledge on the recent advances in engineering EVs for targeted delivery. Herein, we provide an overview of the targeting mechanisms, engineering techniques, and clinical translations of natural and engineered EVs in therapeutic applications. Enrichment of EVs at lesion sites may be achieved through the recognition of tissue markers, pathological changes, and the circumvention of mononuclear phagocyte system (MPS). Alternatively, external stimuli, including magnetic fields and ultrasound, may also be employed. EV engineering techniques that fulfill targeting functions includes genetic engineering, membrane fusion, chemical modification and physical modification. A comparative statistical analysis was conducted to elucidate the discrepancies between the diverse techniques on size, morphology, stability, targeting and therapeutic efficacy in vitro and in vivo. Additionally, a summary of the registered clinical trials utilizing EVs from 2010 to 2023 has been provided, with a full discussion on the perspectives. This review provides a comprehensive overview of the mechanisms and techniques associated with targeted delivery of EVs in therapeutic applications to advocate further explorations of engineered EVs and accelerate their clinical applications.
Collapse
Affiliation(s)
- Shuang Zhao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yunfeng Di
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huilan Fan
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chengyan Xu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Haijing Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yong Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
- Key Laboratory of Traditional Chinese Medicine Syndrome and Formula, Ministry of Education, Beijing, 100029, China
| | - Wei Wang
- Key Laboratory of Traditional Chinese Medicine Syndrome and Formula, Ministry of Education, Beijing, 100029, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chun Li
- Key Laboratory of Traditional Chinese Medicine Syndrome and Formula, Ministry of Education, Beijing, 100029, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingyu Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
9
|
Chen J, Duan Z, Zhan Q, Li Q, Qu J, Liu R. Nucleus-Targeted Sonosensitizer Activates the cGAS-STING Pathway for Tumor Sonodynamic Immunotherapy. ACS APPLIED BIO MATERIALS 2024; 7:7183-7193. [PMID: 39505828 DOI: 10.1021/acsabm.4c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
A nucleus is crucial for both sonodynamic therapy (SDT) and antitumor immunity. However, how to burst ROS generation in situ, accurately damage a nucleus, and meanwhile activate a cGAS-STING pathway-induced innate immune response are still a great challenge. Here, we present TBzT-CPi, a small molecule with a D-A-π-A1 structure that simultaneously amplifies nucleus-targeted SDT and cGAS-STING pathway-dependent immune stimulation. TBzT-CPi could accumulate in the nucleus upon ultrasound irradiation and generate ROS in situ, which damages DNA and simultaneously triggers immunogenic cell death (ICD). Stirringly, nucleus-targeting SDT not only efficiently induces apoptosis in tumor cells but also modifies the immunosuppressive tumor microenvironment by activating cytotoxic T lymphocytes, maturing dendritic cells, and secreting cytokines. These findings pave the way for developing nucleus-targeting sonosensitizers for sonodynamic immunotherapy of cancer.
Collapse
Affiliation(s)
- Jian Chen
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Zeyu Duan
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Qiyu Zhan
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Qiyan Li
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Jinqing Qu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Ruiyuan Liu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China
| |
Collapse
|
10
|
Zhang M, Sun D, Huang H, Yang D, Song X, Feng W, Jing X, Chen Y. Nanosonosensitizer Optimization for Enhanced Sonodynamic Disease Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409663. [PMID: 39308222 DOI: 10.1002/adma.202409663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/16/2024] [Indexed: 11/16/2024]
Abstract
Low-intensity ultrasound-mediated sonodynamic therapy (SDT), which, by design, integrates sonosensitizers and molecular oxygen to generate therapeutic substances (e.g., toxic hydroxyl radicals, superoxide anions, or singlet oxygen) at disease sites, has shown enormous potential for the effective treatment of a variety of diseases. Nanoscale sonosensitizers play a crucial role in the SDT process because their structural, compositional, physicochemical, and biological characteristics are key determinants of therapeutic efficacy. In particular, advances in materials science and nanotechnology have invigorated a series of optimization strategies for augmenting the therapeutic efficacy of nanosonosensitizers. This comprehensive review systematically summarizes, discusses, and highlights state-of-the-art studies on the current achievements of nanosonosensitizer optimization in enhanced sonodynamic disease treatment, with an emphasis on the general design principles of nanosonosensitizers and their optimization strategies, mainly including organic and inorganic nanosonosensitizers. Additionally, recent advancements in optimized nanosonosensitizers for therapeutic applications aimed at treating various diseases, such as cancer, bacterial infections, atherosclerosis, and autoimmune diseases, are clarified in detail. Furthermore, the biological effects of the improved nanosonosensitizers for versatile SDT applications are thoroughly discussed. The review concludes by highlighting the current challenges and future opportunities in this rapidly evolving research field to expedite its practical clinical translation and application.
Collapse
Affiliation(s)
- Min Zhang
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Dandan Sun
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Hui Huang
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Dayan Yang
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Xinran Song
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xiangxiang Jing
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Yu Chen
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, 325088, P. R. China
- Shanghai Institute of Materdicine, Shanghai, 200051, P. R. China
| |
Collapse
|
11
|
Luo H, Lai Y, Tang W, Wang G, Shen J, Liu H. Mitochondrial transplantation: a promising strategy for treating degenerative joint diseases. J Transl Med 2024; 22:941. [PMID: 39407249 PMCID: PMC11475785 DOI: 10.1186/s12967-024-05752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
The prevalence of age-related degenerative joint diseases, particularly intervertebral disc degeneration and osteoarthritis, is increasing, thereby posing significant challenges for the elderly population. Mitochondrial dysfunction is a critical factor in the etiology and progression of these disorders. Therapeutic interventions that incorporate mitochondrial transplantation exhibit considerable promise by increasing mitochondrial numbers and improving their functionality. Existing evidence suggests that exogenous mitochondrial therapy improves clinical outcomes for patients with degenerative joint diseases. This review elucidates the mitochondrial abnormalities associated with degenerative joint diseases and examines the mechanisms of mitochondrial intercellular transfer and artificial mitochondrial transplantation. Furthermore, therapeutic strategies for mitochondrial transplantation in degenerative joint diseases are synthesized, and the concept of engineered mitochondrial transplantation is proposed.
Collapse
Affiliation(s)
- Hong Luo
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yue Lai
- Department of Orthopedics, Affiliated Hospital of Guangdong medical University, zhanjiang, 524000, China
| | - Weili Tang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Guoyou Wang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Jianlin Shen
- Central Laboratory, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China.
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China.
| | - Huan Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
12
|
Al-Ani SA, Lee QY, Maheswaran D, Sin YM, Loh JS, Foo JB, Hamzah S, Ng JF, Tan LKS. Potential of Exosomes as Multifunctional Nanocarriers for Targeted Drug Delivery. Mol Biotechnol 2024:10.1007/s12033-024-01268-6. [PMID: 39269575 DOI: 10.1007/s12033-024-01268-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024]
Abstract
Exosomes are small vesicles that form when multivesicular bodies fuse with the plasma membrane and are released into body fluids. They play a vital role in facilitating communication between cells by transferring different biomolecules, including DNA, RNA, proteins, and lipids, over both short and long distances. They also function as vital mediators in both states of health and disease, exerting an impact on several physiological processes. Exosomes have been modified to overcome the limitations of natural exosomes to enhance their potential as carriers for drug delivery systems, and these modifications aim to improve the drug delivery efficiency, enhance tissue and organ targeting, and prolong the circulating half-life of exosomes. This review discussed recent advancements in exosome nanotechnology, as well as the progression and use of exosomes for drug delivery. The potential commercialisation and challenges associated with the use of exosome-based drug delivery systems were also discussed, aiming to motivate the development of exosome-based theranostic nanoplatforms and nanotechnology for improved healthcare treatments.
Collapse
Affiliation(s)
- Safa Ali Al-Ani
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Qiao Ying Lee
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Danesha Maheswaran
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Yuh Miin Sin
- Faculty of Medicine, AIMST University, Jalan Bedong, 08100, Semeling, Kedah Darulaman, Malaysia
| | - Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
- Digital Health and Medical Advancements Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor campus, 42300 Puncak Alam, Selangor, Malaysia
| | - Sharina Hamzah
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
- Digital Health and Medical Advancements Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Jeck Fei Ng
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
- Digital Health and Medical Advancements Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.
- Digital Health and Medical Advancements Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
13
|
Zhang B, Man J, Guo L, Ru X, Zhang C, Liu W, Li L, Ma S, Guo L, Wang H, Wang B, Diao H, Che R, Yan L. Layer-by-Layer Nanoparticles for Calcium Overload in situ Enhanced Reactive Oxygen Oncotherapy. Int J Nanomedicine 2024; 19:7307-7321. [PMID: 39050879 PMCID: PMC11268784 DOI: 10.2147/ijn.s464981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Background Challenges such as poor drug selectivity, non-target reactivity, and the development of drug resistance continue to pose significant obstacles in the clinical application of cancer therapeutic drugs. To overcome the limitations of drug resistance in chemotherapy, a viable treatment strategy involves designing multifunctional nano-platforms that exploit the unique physicochemical properties of tumor microenvironment (TME). Methods Herein, layer-by-layer nanoparticles with polyporous CuS as delivery vehicles, loaded with a sonosensitizer (tetra-(4-aminophenyl) porphyrin, TAPP) and sequentially functionalized with pH-responsive CaCO3, targeting group hyaluronic acid (HA) were designed and synthesized for synergistic treatment involving chemodynamic therapy (CDT), sonodynamic therapy (SDT), photothermal therapy (PTT), and calcium overload. Upon cleavage in an acidic environment, CaCO3 nanoparticles released TAPP and Ca2+, with TAPP generating 1O2 under ultrasound trigger. Exposed CuS produced highly cytotoxic ·OH in response to H2O2 and also exhibited a strong PTT effect. Results CuS@TAPP-CaCO3/HA (CTCH) delivered an enhanced ability to release more Ca2+ under acidic conditions with a pH value of 6.5, which in situ causes damage to HeLa mitochondria. In vitro and in vivo experiments both demonstrated that mitochondrial dysfunction greatly amplified the damage caused by reactive oxygen species (ROS) to tumor, which strongly confirms the synergistic effect between calcium overload and reactive oxygen therapy. Conclusion Collectively, the development of CTCH presents a novel therapeutic strategy for tumor treatment by effectively responding to the acidic TME, thus holding significant clinical implications.
Collapse
Affiliation(s)
- Boye Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong, 030606, People’s Republic of China
| | - Jianliang Man
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- College of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Lingyun Guo
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Xiaoxia Ru
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong, 030606, People’s Republic of China
| | - Wen Liu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong, 030606, People’s Republic of China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Lihong Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong, 030606, People’s Republic of China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Sufang Ma
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong, 030606, People’s Republic of China
| | - Lixia Guo
- Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong, 030606, People’s Republic of China
- College of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Haojiang Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong, 030606, People’s Republic of China
| | - Bin Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong, 030606, People’s Republic of China
| | - Haipeng Diao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Academy for Engineering &Technology, Fudan University, Shanghai, 200438, People’s Republic of China
- Zhejiang Laboratory, Hangzhou, 311100, People’s Republic of China
| | - Lili Yan
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong, 030606, People’s Republic of China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| |
Collapse
|
14
|
Ren X, Yang Y, Kong X, Liu Z. Integrin α vβ 3-targeted self-assembled polypeptide nanomicelles for efficacious sonodynamic therapy against breast cancer. NANOSCALE 2024; 16:9953-9965. [PMID: 38693876 DOI: 10.1039/d4nr00794h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Sonodynamic therapy (SDT) is an advanced non-invasive cancer treatment strategy with moderate tissue penetration, less invasiveness and a reliable curative effect. However, due to the low stability, potential bio-toxicity and lack of tumor targeting capability of most sonosensitizers, the vast clinical application of SDT has been challenging and limited. Therefore, it is desirable to develop a novel approach to implement sonosensitizers to SDT for cancer treatments. In this study, an amphiphilic polypeptide was designed to effectively encapsulate rose bengal (RB) as a model sonosensitizer to form peptido-nanomicelles (REPNs). The as-fabricated REPNs demonstrated satisfactory tumor targeting and fluorescence performances, which made them superb imaging tracers in vivo. In the meantime, they generated considerable amounts of reactive oxygen species (ROS) to promote tumor cell apoptosis under ultrasound irradiation and showed excellent anti-tumor performance without obvious side effects. These engineered nanomicelles in combination with medical ultrasound may be used to achieve integrin αvβ3-targeted sonodynamic therapy against breast cancer, and it is also a promising non-invasive cancer treatment strategy for clinical translations.
Collapse
Affiliation(s)
- Xueli Ren
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, 300072, Tianjin, China.
| | - Yanxi Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, 300072, Tianjin, China.
| | - Xinru Kong
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, 300072, Tianjin, China.
| | - Zhe Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, 300072, Tianjin, China.
| |
Collapse
|
15
|
Messaoudi H, Yaşa Atmaca G, Türkkol A, Bilgin MD, Erdoğmuş A. Monitoring of singlet oxygen generation of a novel Schiff-base substituted silicon phthalocyanines by sono-photochemical studies and in vitro activities on prostate cancer cell. J Biol Inorg Chem 2024; 29:303-314. [PMID: 38727821 PMCID: PMC11111517 DOI: 10.1007/s00775-024-02055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/13/2024] [Indexed: 05/24/2024]
Abstract
This study demonstrates the potential of sono-photodynamic therapy as an effective approach for enhancing singlet oxygen generation using the synthesized Schiff-base diaxially substituted silicon phthalocyanines. In photochemical studies, the singlet oxygen quantum yields (Φ∆) were determined as 0.43 for Si1a, 0.94 for Q-Si1a, 0.58 for S-Si1a, and 0.49 for B-Sia1. In sono-photochemical studies, the Φ∆ values were reached to 0.67 for Si1a, 1.06 for Q-Si1a, 0.65 for S-Si1a, and 0.67 for B-Sia1. In addition, this study demonstrates the therapeutic efficacy of phthalocyanines synthesized as sensitizers on the PC3 prostate cancer cell line through in vitro experiments. The application of these treatment modalities exhibited notable outcomes, leading to a substantial decrease in cell viability within the PC3 prostate cancer cell line. These findings highlight the potential of utilizing these synthesized phthalocyanines as promising therapeutic agents for prostate cancer treatment.
Collapse
Affiliation(s)
- Hiba Messaoudi
- Department of Chemistry, Yildiz Technical University, 34210, Esenler, Istanbul, Turkey
| | - Göknur Yaşa Atmaca
- Department of Chemistry, Yildiz Technical University, 34210, Esenler, Istanbul, Turkey.
| | - Ayşegül Türkkol
- Faculty of Medicine, Department of Biophysics, Aydın Adnan Menderes University, 09010, Aydın, Turkey
| | - Mehmet Dinçer Bilgin
- Faculty of Medicine, Department of Biophysics, Aydın Adnan Menderes University, 09010, Aydın, Turkey
| | - Ali Erdoğmuş
- Department of Chemistry, Yildiz Technical University, 34210, Esenler, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, 34220, Istanbul, Turkey.
| |
Collapse
|
16
|
Kim HI, Park J, Zhu Y, Wang X, Han Y, Zhang D. Recent advances in extracellular vesicles for therapeutic cargo delivery. Exp Mol Med 2024; 56:836-849. [PMID: 38556545 PMCID: PMC11059217 DOI: 10.1038/s12276-024-01201-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 04/02/2024] Open
Abstract
Exosomes, which are nanosized vesicles secreted by cells, are attracting increasing interest in the field of biomedical research due to their unique properties, including biocompatibility, cargo loading capacity, and deep tissue penetration. They serve as natural signaling agents in intercellular communication, and their inherent ability to carry proteins, lipids, and nucleic acids endows them with remarkable therapeutic potential. Thus, exosomes can be exploited for diverse therapeutic applications, including chemotherapy, gene therapy, and photothermal therapy. Moreover, their capacity for homotypic targeting and self-recognition provides opportunities for personalized medicine. Despite their advantages as novel therapeutic agents, there are several challenges in optimizing cargo loading efficiency and structural stability and in defining exosome origins. Future research should include the development of large-scale, quality-controllable production methods, the refinement of drug loading strategies, and extensive in vivo studies and clinical trials. Despite the unresolved difficulties, the use of exosomes as efficient, stable, and safe therapeutic delivery systems is an interesting area in biomedical research. Therefore, this review describes exosomes and summarizes cutting-edge studies published in high-impact journals that have introduced novel or enhanced therapeutic effects using exosomes as a drug delivery system in the past 2 years. We provide an informative overview of the current state of exosome research, highlighting the unique properties and therapeutic applications of exosomes. We also emphasize challenges and future directions, underscoring the importance of addressing key issues in the field. With this review, we encourage researchers to further develop exosome-based drugs for clinical application, as such drugs may be among the most promising next-generation therapeutics.
Collapse
Affiliation(s)
- Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yin Zhu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - Yohan Han
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA.
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea.
- Sarcopenia Total Solution Center, Wonkwang University, Iksan, 54538, Republic of Korea.
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA.
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
17
|
Dotou M, L'honoré A, Moumné R, El Amri C. Amide Alkaloids as Privileged Sources of Senomodulators for Therapeutic Purposes in Age-Related Diseases. JOURNAL OF NATURAL PRODUCTS 2024; 87:617-628. [PMID: 38436272 DOI: 10.1021/acs.jnatprod.3c01195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Nature is an important source of bioactive compounds and has continuously made a large contribution to the discovery of new drug leads. Particularly, plant-derived compounds have long been identified as highly interesting in the field of aging research and senescence. Many plants contain bioactive compounds that have the potential to influence cellular processes and provide health benefits. Among them, Piper alkaloids have emerged as interesting candidates in the context of age-related diseases and particularly senescence. These compounds have been shown to display a variety of features, including antioxidant, anti-inflammatory, neuroprotective, and other bioactive properties that may help counteracting the effects of cellular aging processes. In the review, we will put the emphasis on piperlongumine and other related derivatives, which belong to the Piper alkaloids, and whose senomodulating potential has emerged during the last several years. We will also provide a survey on their potential in therapeutic perspectives of age-related diseases.
Collapse
Affiliation(s)
- Mazzarine Dotou
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256 CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252 Paris, France
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005 Paris, France
| | - Aurore L'honoré
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256 CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252 Paris, France
| | - Roba Moumné
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005 Paris, France
| | - Chahrazade El Amri
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256 CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252 Paris, France
| |
Collapse
|
18
|
Chang M, Zhang L, Wang Z, Chen L, Dong Y, Yang J, Chen Y. Nanomedicine/materdicine-enabled sonocatalytic therapy. Adv Drug Deliv Rev 2024; 205:115160. [PMID: 38110153 DOI: 10.1016/j.addr.2023.115160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023]
Abstract
The advent of numerous treatment modalities with desirable therapeutic efficacy has been made possible by the fast development of nanomedicine and materdicine, among which the ultrasound (US)-triggered sonocatalytic process as minimal or non-invasive method has been frequently employed for diagnostic and therapeutic purposes. In comparison to phototherapeutic approaches with inherent penetration depth limitations, sonocatalytic therapy shatters the depth limit of photoactivation and offers numerous remarkable prospects and advantages, including mitigated side effects and appropriate tissue-penetration depth. Nevertheless, the optimization of sonosensitizers and therapies remains a significant issue in terms of precision, intelligence and efficiency. In light of the fact that nanomedicine and materdicine can effectively enhance the theranostic efficiency, we herein aim to furnish a cutting-edge review on the latest progress and development of nanomedicine/materdicine-enabled sonocatalytic therapy. The design methodologies and biological features of nanomedicine/materdicine-based sonosensitizers are initially introduced to reveal the underlying relationship between composition/structure, sonocatalytic function and biological effect, in accompany with a thorough discussion of nanomedicine/materdicine-enabled synergistic therapy. Ultimately, the facing challenges and future perspectives of this intriguing sonocatalytic therapy are highlighted and outlined to promote technological advancements and clinical translation in efficient disease treatment.
Collapse
Affiliation(s)
- Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, PR China
| | - Lu Zhang
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Hebei University, Baoding 071000, PR China
| | - Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yang Dong
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China.
| | - Jishun Yang
- Naval Medical Center of PLA, Medical Security Center, Shanghai 200052, PR China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
19
|
Luo S, Shang Y, Qin Z, Zhou B, Lu C, Qu Y, Zhao J, Liang R, Zheng L, Luo S. A novel cartilage-targeting MOF-HMME-RGD sonosensitizer combined with sonodynamic therapy to enhance chondrogenesis and cartilage regeneration. Front Bioeng Biotechnol 2024; 12:1339530. [PMID: 38361795 PMCID: PMC10868594 DOI: 10.3389/fbioe.2024.1339530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Articular cartilage regeneration is still a difficult task due to the cartilage's weak capacity for self-healing and the effectiveness of the available therapies. The engineering of cartilage tissue has seen widespread use of stem cell-based therapies. However, efficient orientation of line-specific bone marrow mesenchymal stem cells (BMSCs) to chondrogenesis and maintenance of chondrogenic differentiation challenged stem cell-based therapy. Herein, we developed a Fe-based metal-organic framework (MOF) loaded with hematoporphyrin monomethyl ether (HMME) and cartilage-targeting arginine-aspartate-glycine (RGD) peptide to form MOF-HMME-RGD sonosensitizer to regulate BMSCs chondrogenic differentiation for cartilage regeneration via the modulation of reactive oxygen species (ROS). By using sonodynamic therapy (SDT), the MOF-HMME-RGD demonstrated favorable biocompatibility, could generate a modest amount of ROS, and enhanced BMSCs chondrogenic differentiation through increased accumulation of glycosaminoglycan, an ECM component specific to cartilage, and upregulated expression of key chondrogenic genes (ACAN, SOX9, and Col2a1). Further, transplanted BMSCs loading MOF-HMME-RGD combined with SDT enhanced cartilage regeneration for cartilage defect repair after 8 weeks into treatment. This synergistic strategy based on MOF nanoparticles provides an instructive approach to developing alternative sonosensitizers for cartilage regeneration combined with SDT.
Collapse
Affiliation(s)
- Shanchao Luo
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Orthopedics, The Ninth Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Yifeng Shang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zainen Qin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Bo Zhou
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chun Lu
- School of Materials and Environment, Guangxi Minzu University, Nanning, Guangxi, China
| | - Yangyang Qu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ruiming Liang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shixing Luo
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Orthopedics, The Ninth Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
20
|
Wang X, Xu X, Yang Z, Xu X, Han S, Zhang H. Improvement of the effectiveness of sonodynamic therapy: by optimizing components and combination with other treatments. Biomater Sci 2023; 11:7489-7511. [PMID: 37873617 DOI: 10.1039/d3bm00738c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Sonodynamic therapy (SDT) is an emerging treatment method. In comparison with photodynamic therapy (PDT), SDT exhibits deep penetration, high cell membrane permeability, and free exposure to light capacity. Unfortunately, owing to inappropriate ultrasound parameter selection, poor targeting of sonosensitizers, and the complex tumor environment, SDT is frequently ineffective. In this review, we describe the approaches for selecting ultrasound parameters and how to develop sonosensitizers to increase targeting and improve adverse tumor microenvironments. Furthermore, the potential of combining SDT with other treatment methods, such as chemotherapy, chemodynamic therapy, photodynamic therapy, photothermal therapy, and immunotherapy, is discussed to further increase the treatment efficiency of SDT.
Collapse
Affiliation(s)
- Xiangting Wang
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| | - Xiaohong Xu
- Department of Ultrasound, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhe Yang
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| | - Xuanshou Xu
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| | - Shisong Han
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| | - Heng Zhang
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| |
Collapse
|
21
|
Xu PY, Kumar Kankala R, Wang SB, Chen AZ. Sonodynamic therapy-based nanoplatforms for combating bacterial infections. ULTRASONICS SONOCHEMISTRY 2023; 100:106617. [PMID: 37769588 PMCID: PMC10542942 DOI: 10.1016/j.ultsonch.2023.106617] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
The rapid spread and uncontrollable evolution of antibiotic-resistant bacteria have already become urgent global to treat bacterial infections. Sonodynamic therapy (SDT), a noninvasive and effective therapeutic strategy, has broadened the way toward dealing with antibiotic-resistant bacteria and biofilms, which base on ultrasound (US) with sonosensitizer. Sonosensitizer, based on small organic molecules or inorganic nanoparticles, is essential to the SDT process. Thus, it is meaningful to design a sonosensitizer-loaded nanoplatform and synthesize the nanoplatform with an efficient SDT effect. In this review, we initially summarize the probable SDT-based antibacterial mechanisms and systematically discuss the current advancement in different SDT-based nanoplatform (including nanoplatform for organic small-molecule sonosensitizer delivery and nanoplatform as sonosensitizer) for bacterial infection therapy. In addition, the biomedical applications of SDT-involved multifunctional nanoplatforms are also discussed. We believe the innovative SDT-based nanoplatforms would become a highly efficient next-generation noninvasive therapeutic tool for combating bacterial infection.
Collapse
Affiliation(s)
- Pei-Yao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China.
| |
Collapse
|
22
|
Ziegler JN, Tian C. Engineered Extracellular Vesicles: Emerging Therapeutic Strategies for Translational Applications. Int J Mol Sci 2023; 24:15206. [PMID: 37894887 PMCID: PMC10607082 DOI: 10.3390/ijms242015206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Extracellular vesicles (EVs) are small, membrane-bound vesicles used by cells to deliver biological cargo such as proteins, mRNA, and other biomolecules from one cell to another, thus inducing a specific response in the target cell and are a powerful method of cell to cell and organ to organ communication, especially during the pathogenesis of human disease. Thus, EVs may be utilized as prognostic and diagnostic biomarkers, but they also hold therapeutic potential just as mesenchymal stem cells have been used in therapeutics. However, unmodified EVs exhibit poor targeting efficacy, leading to the necessity of engineered EVS. To highlight the advantages and therapeutic promises of engineered EVs, in this review, we summarized the research progress on engineered EVs in the past ten years, especially in the past five years, and highlighted their potential applications in therapeutic development for human diseases. Compared to the existing stem cell-derived EV-based therapeutic strategies, engineered EVs show greater promise in clinical applications: First, engineered EVs mediate good targeting efficacy by exhibiting a targeting peptide that allows them to specifically target a specific organ or even cell type, thus avoiding accumulation in undesired locations and increasing the potency of the treatment. Second, engineered EVs can be artificially pre-loaded with any necessary biomolecular cargo or even therapeutic drugs to treat a variety of human diseases such as cancers, neurological diseases, and cardiovascular ailments. Further research is necessary to improve logistical challenges in large-scale engineered EV manufacturing, but current developments in engineered EVs prove promising to greatly improve therapeutic treatment for traditionally difficult to treat diseases.
Collapse
Affiliation(s)
| | - Changhai Tian
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| |
Collapse
|
23
|
Nguyen Cao TG, Truong Hoang Q, Kang JH, Kang SJ, Ravichandran V, Rhee WJ, Lee M, Ko YT, Shim MS. Bioreducible exosomes encapsulating glycolysis inhibitors potentiate mitochondria-targeted sonodynamic cancer therapy via cancer-targeted drug release and cellular energy depletion. Biomaterials 2023; 301:122242. [PMID: 37473534 DOI: 10.1016/j.biomaterials.2023.122242] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
Nanocarrier-assisted sonodynamic therapy (SDT) has shown great potential for the effective and targeted treatment of deep-seated tumors by overcoming the critical limitations of sonosensitizers. However, in vivo SDT using nanocarriers is still constrained by their intrinsic toxicity and nonspecific cargo release. In this study, we developed bioreducible exosomes for the safe and tumor-specific delivery of mitochondria-targeting sonosensitizers [triphenylphosphonium-conjugated chlorin e6 (T-Ce6)] and glycolysis inhibitors (FX11). Redox-cleavable diselenide linker-bearing lipids were embedded into exosomes to trigger drug release in response to overexpressed glutathione in the tumor microenvironment. Bioreducible exosomes facilitate the cytoplasmic release of their payload in the reducing environment of tumor cells. They significantly enhance drug release and sonodynamic effects when irradiated with ultrasound (US). The mitochondria-targeted accumulation of T-Ce6 efficiently damaged the mitochondria of the cells under US irradiation, accelerating apoptotic cell death. FX11 substantially inhibited cellular energy metabolism, potentiating the antitumor efficacy of mitochondria-targeted SDT. Bioreducible exosomes effectively suppressed tumor growth in mice without significant systemic toxicity, via a combination of mitochondria-targeted SDT and energy metabolism-targeted therapy. This study offers new insights into the use of dual stimuli-responsive exosomes encapsulating sonosensitizers for safe and targeted sonodynamic cancer therapy.
Collapse
Affiliation(s)
- Thuy Giang Nguyen Cao
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Quan Truong Hoang
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Ji Hee Kang
- College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea
| | - Su Jin Kang
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Vasanthan Ravichandran
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea; Research Center for Bio Materials & Process Development, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
| | - Minjong Lee
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, 07804, Republic of Korea; Department of Internal Medicine, Ewha Womans University Medical Center, Seoul, 07804, Republic of Korea.
| | - Young Tag Ko
- College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea.
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
24
|
Nguyen Cao TG, Kang JH, Kang SJ, Truong Hoang Q, Kang HC, Rhee WJ, Zhang YS, Ko YT, Shim MS. Brain endothelial cell-derived extracellular vesicles with a mitochondria-targeting photosensitizer effectively treat glioblastoma by hijacking the blood‒brain barrier. Acta Pharm Sin B 2023; 13:3834-3848. [PMID: 37719366 PMCID: PMC10502277 DOI: 10.1016/j.apsb.2023.03.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive malignant brain tumor and has a high mortality rate. Photodynamic therapy (PDT) has emerged as a promising approach for the treatment of malignant brain tumors. However, the use of PDT for the treatment of GBM has been limited by its low blood‒brain barrier (BBB) permeability and lack of cancer-targeting ability. Herein, brain endothelial cell-derived extracellular vesicles (bEVs) were used as a biocompatible nanoplatform to transport photosensitizers into brain tumors across the BBB. To enhance PDT efficacy, the photosensitizer chlorin e6 (Ce6) was linked to mitochondria-targeting triphenylphosphonium (TPP) and entrapped into bEVs. TPP-conjugated Ce6 (TPP-Ce6) selectively accumulated in the mitochondria, which rendered brain tumor cells more susceptible to reactive oxygen species-induced apoptosis under light irradiation. Moreover, the encapsulation of TPP-Ce6 into bEVs markedly improved the aqueous stability and cellular internalization of TPP-Ce6, leading to significantly enhanced PDT efficacy in U87MG GBM cells. An in vivo biodistribution study using orthotopic GBM-xenografted mice showed that bEVs containing TPP-Ce6 [bEV(TPP-Ce6)] substantially accumulated in brain tumors after BBB penetration via transferrin receptor-mediated transcytosis. As such, bEV(TPP-Ce6)-mediated PDT considerably inhibited the growth of GBM without causing adverse systemic toxicity, suggesting that mitochondria are an effective target for photodynamic GBM therapy.
Collapse
Affiliation(s)
- Thuy Giang Nguyen Cao
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Ji Hee Kang
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Su Jin Kang
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Quan Truong Hoang
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, the Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Research Center for Bio Materials & Process Development, Incheon National University, Incheon 22012, Republic of Korea
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Young Tag Ko
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
25
|
Lee ES, Ko H, Kim CH, Kim HC, Choi SK, Jeong SW, Lee SG, Lee SJ, Na HK, Park JH, Shin JM. Disease-microenvironment modulation by bare- or engineered-exosome for rheumatoid arthritis treatment. Biomater Res 2023; 27:81. [PMID: 37635253 PMCID: PMC10464174 DOI: 10.1186/s40824-023-00418-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/13/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Exosomes are extracellular vesicles secreted by eukaryotic cells and have been extensively studied for their surface markers and internal cargo with unique functions. A deeper understanding of exosomes has allowed their application in various research areas, particularly in diagnostics and therapy. MAIN BODY Exosomes have great potential as biomarkers and delivery vehicles for encapsulating therapeutic cargo. However, the limitations of bare exosomes, such as rapid phagocytic clearance and non-specific biodistribution after injection, pose significant challenges to their application as drug delivery systems. This review focuses on exosome-based drug delivery for treating rheumatoid arthritis, emphasizing pre/post-engineering approaches to overcome these challenges. CONCLUSION This review will serve as an essential resource for future studies to develop novel exosome-based therapeutic approaches for rheumatoid arthritis. Overall, the review highlights the potential of exosomes as a promising therapeutic approach for rheumatoid arthritis treatment.
Collapse
Affiliation(s)
- Eun Sook Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Hyewon Ko
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Chan Ho Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyun-Chul Kim
- Division of Biotechnology, Convergence Research Institute, DGIST, 333 Techno Jungang-Daero, Daegu, 42988, Republic of Korea
| | - Seong-Kyoon Choi
- Division of Biotechnology, Convergence Research Institute, DGIST, 333 Techno Jungang-Daero, Daegu, 42988, Republic of Korea
| | - Sang Won Jeong
- Division of Biotechnology, Convergence Research Institute, DGIST, 333 Techno Jungang-Daero, Daegu, 42988, Republic of Korea
| | - Se-Guen Lee
- Division of Biotechnology, Convergence Research Institute, DGIST, 333 Techno Jungang-Daero, Daegu, 42988, Republic of Korea
| | - Sung-Jun Lee
- Division of Biotechnology, Convergence Research Institute, DGIST, 333 Techno Jungang-Daero, Daegu, 42988, Republic of Korea
| | - Hee-Kyung Na
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jung Min Shin
- Division of Biotechnology, Convergence Research Institute, DGIST, 333 Techno Jungang-Daero, Daegu, 42988, Republic of Korea.
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea.
| |
Collapse
|
26
|
Hwang E, Yun M, Jung HS. Mitochondria-targeted organic sonodynamic therapy agents: concept, benefits, and future directions. Front Chem 2023; 11:1212193. [PMID: 37361020 PMCID: PMC10286864 DOI: 10.3389/fchem.2023.1212193] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Sonodynamic therapy (SDT) is an emerging and potentially less invasive therapeutic approach for cancer that employs ultrasound (US)-sensitive agents combined with US irradiation to generate cytotoxic reactive oxygen species (ROS) in deep tumor regions. Among various cellular organelles, the mitochondria are particularly susceptible to ROS, making them an attractive target for SDT. Organic-based SDT agents with mitochondria-targeting affinity have gained considerable interest as potential alternatives to conventional SDT agents, offering significant advantages in the field of SDT. However, to date, a comprehensive review focusing on mitochondria-targeted SDT agents has not yet been published. In this review, we provide an overview of the general concept, importance, benefits, and limitations of mitochondria-targeted organic SDT agents in comparison to conventional SDT methods. Finally, we discuss the current challenges and future directions for the design and development of efficient SDT agents. By addressing these issues, we aim to stimulate further research and advancements in the field of mitochondria-targeted SDT, ultimately facilitating the translation of these agents into clinical applications.
Collapse
Affiliation(s)
- Eunbin Hwang
- Department of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Republic of Korea
| | - Minjae Yun
- Department of Biomedical & Chemical Sciences, Hyupsung University, Hwasung, Republic of Korea
| | - Hyo Sung Jung
- Department of Biomedical & Chemical Sciences, Hyupsung University, Hwasung, Republic of Korea
| |
Collapse
|