1
|
Acharya A, Byrareddy SN. Immunological insights into the re-emergence of human metapneumovirus. Curr Opin Immunol 2025; 94:102562. [PMID: 40359650 DOI: 10.1016/j.coi.2025.102562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/19/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025]
Abstract
Human metapneumovirus (hMPV) is a seasonal respiratory virus that typically causes mild, flu-like symptoms. In some cases, it can lead to severe respiratory complications, such as pneumonia, bronchitis, and bronchiolitis, often requiring hospitalization. Recently, a surge in hMPV cases has been reported in China and other countries, raising concerns about a potential pandemic scenario reminiscent of COVID-19. This review explores the genomic structure, replication cycle, genetic diversity, and evolutionary trajectory of hMPV. It also discusses host immune responses and the available animal models to study pathogenesis and to screen for potential vaccines and antivirals. Additionally, we examine the shifting seasonal trends in hMPV circulation, evaluate the low pandemic risk posed by existing hMPV clades, and underscore the need for continued vaccine and antiviral development. Finally, we advocate for strengthened global surveillance, especially in low- and middle-income countries, as a critical strategy to mitigate the risks posed by emerging hMPV clades.
Collapse
Affiliation(s)
- Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
2
|
Mohammadi K, Faramarzi S, Yaribash S, Valizadeh Z, Rajabi E, Ghavam M, Samiee R, Karim B, Salehi M, Seifi A, Shafaati M. Human metapneumovirus (hMPV) in 2025: emerging trends and insights from community and hospital-based respiratory panel analyses-a comprehensive review. Virol J 2025; 22:150. [PMID: 40394641 PMCID: PMC12090560 DOI: 10.1186/s12985-025-02782-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025] Open
Abstract
Human metapneumovirus (hMPV) is a significant respiratory pathogen, primarily impacting young, elderly, and immunocompromised populations. While the clinical presentations are similar to those of other respiratory viruses such as respiratory syncytial virus (RSV), influenza, and SARS-CoV-2, they can still lead to serious complications. The virus primarily transmits via respiratory droplets, with outbreaks peaking during winter and spring. In resource-limited settings, administration of multiplex PCR assays is essential for precise diagnosis, yet it presents significant challenges. Recent studies indicate a 6.24% infection rate in hospitalized patients presenting with acute respiratory infections (ARIs). Enhanced surveillance and prevention are essential given the morbidity and mortality rates of hMPV, which are comparable to those of influenza and RSV. Effective management requires enhanced diagnostic tools, improved public health strategies, and continuous research into antiviral therapies and vaccines. This study highlighted the growing importance of hMPV as a respiratory pathogen, focusing on its seasonal patterns, clinical manifestations in at-risk populations, transmission dynamics, and diagnostic challenges compared to other respiratory viruses.
Collapse
Affiliation(s)
- Keyhan Mohammadi
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Infectious Diseases Department, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Samireh Faramarzi
- Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Shakila Yaribash
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Valizadeh
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Erta Rajabi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ghavam
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Samiee
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bardia Karim
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammadreza Salehi
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Infectious Diseases Department, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Seifi
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Infectious Diseases Department, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Center for Communicable Disease Control, IPC/AMR Office, Ministry of Health and Medical Education, Tehran, Iran
| | - Maryam Shafaati
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Infectious Diseases Department, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
- Center for Communicable Disease Control, IPC/AMR Office, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
3
|
Krüger N, Laufer SA, Pillaiyar T. An overview of progress in human metapneumovirus (hMPV) research: Structure, function, and therapeutic opportunities. Drug Discov Today 2025; 30:104364. [PMID: 40286981 DOI: 10.1016/j.drudis.2025.104364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/09/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
The human metapneumovirus (hMPV), a member of the Pneumoviridae family, is a significant respiratory pathogen that causes severe infections in infants, children, the elderly, adults with chronic illnesses, and individuals with immunocompromised conditions. Globally, hMPV is recognized as the second leading cause of bronchiolitis and pneumonia among children under five. The absence of targeted antiviral treatments or vaccines for hMPV significantly strains the global health-care system. This review summarizes recent advances and scientific findings on hMPV by reviewing the current literature on its life cycle, structure, function, prevention, and treatment options.
Collapse
Affiliation(s)
- Nadine Krüger
- Platform Infection Models, German Primate Center, Leibniz Institute for Primate Research Göttingen 37077 Göttingen, Germany
| | - Stefan A Laufer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University of Tübingen 72076 Tübingen, Germany; Cluster of Excellence 'Image Guided and Functionally Instructed Tumor Therapies' (iFIT), Eberhard Karls University of Tübingen, Tübingen 72076, Germany; Tübingen Center for Academic Drug Discovery, Eberhard Karls University of Tübingen 72076 Tübingen, Germany
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University of Tübingen 72076 Tübingen, Germany; Tübingen Center for Academic Drug Discovery, Eberhard Karls University of Tübingen 72076 Tübingen, Germany.
| |
Collapse
|
4
|
Dong Y, Xie Z, Xu L. Receptors and host factors: key players in human metapneumovirus infection. Front Cell Infect Microbiol 2025; 15:1557880. [PMID: 40235933 PMCID: PMC11996802 DOI: 10.3389/fcimb.2025.1557880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/13/2025] [Indexed: 04/17/2025] Open
Abstract
Human metapneumovirus (hMPV) is a significant global pathogen that causes acute respiratory tract infections, especially in infants, young children, the elderly, and immunocompromised individuals. Despite its increasing prevalence, there are currently no vaccines or effective treatments available for hMPV. The pathogenesis of hMPV infection is a complex process involving a multitude of host factors and viral receptors. These interactions determine the virus ability to enter host cells, replicate, and evade the immune response. This review is the first to provide a comprehensive overview of the current understanding of host-virus interactions in hMPV pathogenesis. By elucidating these mechanisms, we can identify potential targets for antiviral drugs and improve the management of hMPV infections.
Collapse
Affiliation(s)
- Yingdong Dong
- Beijing Key Laboratory of Core Technologies for the Prevention and Treatment of Emerging Infectious Diseases in Children, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Research Center for Respiratory Infectious Diseases, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengde Xie
- Beijing Key Laboratory of Core Technologies for the Prevention and Treatment of Emerging Infectious Diseases in Children, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Research Center for Respiratory Infectious Diseases, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Lili Xu
- Beijing Key Laboratory of Core Technologies for the Prevention and Treatment of Emerging Infectious Diseases in Children, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Research Center for Respiratory Infectious Diseases, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Chongyu T, Guanglin L, Fang S, Zhuoya D, Hao Y, Cong L, Xinyu L, Wei H, Lingyun T, Yan N, Penghui Y. A chimeric influenza virus vaccine expressing fusion protein epitopes induces protection from human metapneumovirus challenge in mice. Front Microbiol 2023; 13:1012873. [PMID: 38155756 PMCID: PMC10753001 DOI: 10.3389/fmicb.2022.1012873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/19/2022] [Indexed: 12/30/2023] Open
Abstract
Human metapneumovirus (HMPV) is a common virus associated with acute respiratory distress syndrome in pediatric patients. There are no HMPV vaccines or therapeutics that have been approved for prevention or treatment. In this study, we constructed a novel recombinant influenza virus carrying partial HMPV fusion protein (HMPV-F), termed rFLU-HMPV/F-NS, utilizing reverse genetics, which contained (HMPV-F) in the background of NS segments of influenza virus A/PuertoRico/8/34(PR8). The morphological characteristics of rFLU-HMPV/F-NS were consistent with the wild-type flu virus. Additionally, immunofluorescence results showed that fusion proteins in the chimeric rFLU-HMPV/F-NS could work well, and the virus could be stably passaged in SPF chicken embryos. Furthermore, intranasal immunization with rFLU-HMPV/F-NS in BALB/c mice induced robust humoral, mucosal and Th1-type dominant cellular immune responses in vivo. More importantly, we discovered that rFLU-HMPV/F-NS afforded significant protective efficacy against the wild-type HMPV and influenza virus challenge, with significantly attenuated pathological changes and reduced viral titers in the lung tissues of immunized mice. Collectively, these findings demonstrated that chimeric recombinant rFLU-HMPV/F-NS as a promising HMPV candidate vaccine has potentials for the development of HMPV vaccine.
Collapse
Affiliation(s)
- Tian Chongyu
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Lei Guanglin
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Sun Fang
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Deng Zhuoya
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang Hao
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Cong
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Xinyu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - He Wei
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Tan Lingyun
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Niu Yan
- Inner Mongolia Medical University, Hohhot, China
| | - Yang Penghui
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Inner Mongolia Medical University, Hohhot, China
- First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Li J, Zhao Y, Dai Y, Zhao J. Identification of γ-Fagarine as a novel antiviral agent against respiratory virus (hMPV) infection. Virus Res 2023; 336:199223. [PMID: 37734492 PMCID: PMC10522984 DOI: 10.1016/j.virusres.2023.199223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Human metapneumovirus (hMPV) causes significant upper and lower respiratory disease in all age groups worldwide. However, there is no licensed drugs or vaccine available against hMPV. γ-Fagarine, an alkaloid isolated from the root of zanthoxylum, has been reported to be effective in the treatment of cancer, inflammatory diseases and antivirals. However, little is known about the inhibitory effect of γ-Fagarine against respiratory virus infection and the mechanism. In this study, we aim to investigate the effect of γ-Fagarine on hMPV infection and explore its underlying molecular mechanisms. Vero-E6 and 16HBE cells were used as cell models. Virus replication and microcosm character were explored in Vero-E6 cells. Then, the antiviral activities were investigated by quantitative real-time PCR (RT-qPCR), western blotting (WB), and indirect immunofluorescence assays (IFAs) in Vero-E6 and 16HBE. Potential mechanisms of γ-Fagarine related to HSPG and lysosome pH were assessed in 16HBE cells. Lastly, a virus-infected mouse model was established and antiviral assay in vivo was conducted. γ-Fagarine showed no toxicity toward Vero-E6 cells and 16HBE cells but demonstrated anti-hMPV activity. Virus titers of γ-Fagarine group were reduced to 33% and 45% of the hMPV groups, respectively. Besides, mechanistic studies revealed that γ-Fagarine could inhibit hMPV by dual mechanisms of direct restraining virus binding with HSPG and influencing lysosome pH. Furthermore, oral delivery of γ-Fagarine to hMPV-infected mice at a dosage of 25 mg/kg reduced the hMPV load in lung tissues. After γ-Fagarine treatment, pathological damage caused by viral infection was also ameliorated. These findings suggest that γ-Fagarine has antiviral effects in vitro and in vivo, which are associated with its ability to restrain virus binding with HSPG and influence lysosome pH, thus indicating that γ-Fagarine has the potential to serve as a candidate to fight against hMPV infection and other respiratory viruses such as influenza viruses and SARS-CoV-2.
Collapse
Affiliation(s)
- Jinhua Li
- Department of Pharmacognosy, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yao Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Ying Dai
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan 610041, China
| | - Junning Zhao
- Department of Pharmacognosy, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; National Key Laboratory of Drug Regulatory Science, National Medical Products Administration (NMPA), Beijing 100038, China.
| |
Collapse
|
7
|
Drug Repurposing for Therapeutic Discovery against Human Metapneumovirus Infection. Antimicrob Agents Chemother 2022; 66:e0100822. [PMID: 36094205 PMCID: PMC9578393 DOI: 10.1128/aac.01008-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human metapneumovirus (HMPV) is recognized as an important cause of pneumonia in infants, in the elderly, and in immunocompromised individuals worldwide. The absence of an antiviral treatment or vaccine strategy against HMPV infection creates a high burden on the global health care system. Drug repurposing has become increasingly attractive for the treatment of emerging and endemic diseases as it requires less research and development costs than traditional drug discovery. In this study, we developed an in vitro medium-throughput screening assay that allows for the identification of novel anti-HMPV drugs candidates. Out of ~2,400 compounds, we identified 11 candidates with a dose-dependent inhibitory activity against HMPV infection. Additionally, we further described the mode of action of five anti-HMPV candidates with low in vitro cytotoxicity. Two entry inhibitors, Evans Blue and aurintricarboxylic acid, and three post-entry inhibitors, mycophenolic acid, mycophenolate mofetil, and 2,3,4-trihydroxybenzaldehyde, were identified. Among them, the mycophenolic acid series displayed the highest levels of inhibition, due to the blockade of intracellular guanosine synthesis. Importantly, MPA has significant potential for drug repurposing as inhibitory levels are achieved below the approved human oral dose. Our drug-repurposing strategy proved to be useful for the rapid discovery of novel hit candidates to treat HMPV infection and provide promising novel templates for drug design.
Collapse
|
8
|
Velayutham TS, Ivanciuc T, Garofalo RP, Casola A. Role of human metapneumovirus glycoprotein G in modulation of immune responses. Front Immunol 2022; 13:962925. [PMID: 35958551 PMCID: PMC9357950 DOI: 10.3389/fimmu.2022.962925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Human metapneumovirus (hMPV) is an important pathogen responsible for acute respiratory tract infections in children, the elderly, and immunocompromised patients, with no effective treatment or vaccine currently available. Knowledge of virus- and host-specific mechanisms contributing to the pathogenesis of hMPV infection is still limited. Studies have shown that hMPV surface glycoprotein G is an important virulence factor, by inhibiting innate immune signaling in airway epithelial cells and immune cells. In this study, we investigated the role of G protein in modulating innate and adaptive immune responses in mice infected with a recombinant virus with deletion of G protein (rhMPV-ΔG). Results show that rhMPV-ΔG was strongly attenuated, as it did not induce significant clinical disease, airway obstruction and airway hyperresponsiveness (AHR), compared to infection with a control strain (rhMPV-WT). By analysis of cells in bronchoalveolar fluid and lung tissue, as well as cytokine production, we found that G protein mediates aspects of both innate and adaptive immune responses, including neutrophils, dendritic cells, natural killer cells and B cells. Lung T cells recruited in response to rhMPV-ΔG had a significantly higher activated phenotype compared to those present after rhMPV-WT infection. Despite highly attenuation characterized by low levels of replication in the lung, rhMPV-ΔG was able to induce neutralizing antibodies and to protect mice from a secondary hMPV challenge. However, challenged mice that had received rhMPV-ΔG as primary infection showed some signs of lung disease at the earliest time points, which were less evident in mice that had received the rhMPV-WT strain as primary infection. These results demonstrate some of the mechanisms by which G protein could contribute to airway disease and modulate immune response to hMPV infection.
Collapse
Affiliation(s)
| | - Teodora Ivanciuc
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Roberto P. Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
- *Correspondence: Antonella Casola, ; Roberto P. Garofalo,
| | - Antonella Casola
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
- *Correspondence: Antonella Casola, ; Roberto P. Garofalo,
| |
Collapse
|
9
|
Profiling of hMPV F-specific antibodies isolated from human memory B cells. Nat Commun 2022; 13:2546. [PMID: 35538099 PMCID: PMC9091222 DOI: 10.1038/s41467-022-30205-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/25/2022] [Indexed: 11/09/2022] Open
Abstract
Human metapneumovirus (hMPV) belongs to the Pneumoviridae family and is closely related to respiratory syncytial virus (RSV). The surface fusion (F) glycoprotein mediates viral fusion and is the primary target of neutralizing antibodies against hMPV. Here we report 113 hMPV-F specific monoclonal antibodies (mAbs) isolated from memory B cells of human donors. We characterize the antibodies' germline usage, epitopes, neutralization potencies, and binding specificities. We find that unlike RSV-F specific mAbs, antibody responses to hMPV F are less dominant against the apex of the antigen, and the majority of the potent neutralizing mAbs recognize epitopes on the side of hMPV F. Furthermore, neutralizing epitopes that differ from previously defined antigenic sites on RSV F are identified, and multiple binding modes of site V and II mAbs are discovered. Interestingly, mAbs that bind preferentially to the unprocessed prefusion F show poor neutralization potency. These results elucidate the immune recognition of hMPV infection and provide novel insights for future hMPV antibody and vaccine development.
Collapse
|
10
|
Chupin C, Pizzorno A, Traversier A, Brun P, Ogonczyk-Makowska D, Padey B, Milesi C, Dulière V, Laurent E, Julien T, Galloux M, Lina B, Eléouët JF, Moreau K, Hamelin ME, Terrier O, Boivin G, Dubois J, Rosa-Calatrava M. Avian Cell Line DuckCelt ®-T17 Is an Efficient Production System for Live-Attenuated Human Metapneumovirus Vaccine Candidate Metavac ®. Vaccines (Basel) 2021; 9:vaccines9101190. [PMID: 34696298 PMCID: PMC8540687 DOI: 10.3390/vaccines9101190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022] Open
Abstract
The development of a live-attenuated vaccine (LAV) for the prevention of human metapneumovirus (HMPV) infection is often hampered by the lack of highly efficient and scalable cell-based production systems that support eventual global vaccine production. Avian cell lines cultivated in suspension compete with traditional cell platforms used for viral vaccine manufacture. We investigated whether the DuckCelt®-T17 avian cell line (Vaxxel), previously described as an efficient production system for several influenza strains, could also be used to produce a new HMPV LAV candidate (Metavac®, SH gene-deleted A1/C-85473 HMPV). To that end, we characterized the operational parameters of MOI, cell density, and trypsin addition to achieve the optimal production of Metavac®, and demonstrated that the DuckCelt®-T17 cell line is permissive and well-adapted to the production of the wild-type A1/C-85473 HMPV and the Metavac® vaccine candidate. Moreover, our results confirmed that the LAV candidate produced in DuckCelt®-T17 cells conserves its advantageous replication properties in LLC-MK2 and 3D-reconstituted human airway epithelium models, and its capacity to induce efficient neutralizing antibodies in a BALB/c mouse model. Our results suggest that the DuckCelt®-T17 avian cell line is a very promising platform for the scalable in-suspension serum-free production of the HMPV-based LAV candidate Metavac®.
Collapse
Affiliation(s)
- Caroline Chupin
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (C.C.); (A.P.); (A.T.); (P.B.); (B.P.); (C.M.); (V.D.); (E.L.); (T.J.); (B.L.); (O.T.)
- Vaxxel, 43 Boulevard du Onze Novembre 1918, 69100 Villeurbanne, France
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
| | - Andrés Pizzorno
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (C.C.); (A.P.); (A.T.); (P.B.); (B.P.); (C.M.); (V.D.); (E.L.); (T.J.); (B.L.); (O.T.)
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
| | - Aurélien Traversier
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (C.C.); (A.P.); (A.T.); (P.B.); (B.P.); (C.M.); (V.D.); (E.L.); (T.J.); (B.L.); (O.T.)
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
| | - Pauline Brun
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (C.C.); (A.P.); (A.T.); (P.B.); (B.P.); (C.M.); (V.D.); (E.L.); (T.J.); (B.L.); (O.T.)
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
| | - Daniela Ogonczyk-Makowska
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 4G2, Canada
| | - Blandine Padey
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (C.C.); (A.P.); (A.T.); (P.B.); (B.P.); (C.M.); (V.D.); (E.L.); (T.J.); (B.L.); (O.T.)
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
| | - Cédrine Milesi
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (C.C.); (A.P.); (A.T.); (P.B.); (B.P.); (C.M.); (V.D.); (E.L.); (T.J.); (B.L.); (O.T.)
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
| | - Victoria Dulière
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (C.C.); (A.P.); (A.T.); (P.B.); (B.P.); (C.M.); (V.D.); (E.L.); (T.J.); (B.L.); (O.T.)
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
| | - Emilie Laurent
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (C.C.); (A.P.); (A.T.); (P.B.); (B.P.); (C.M.); (V.D.); (E.L.); (T.J.); (B.L.); (O.T.)
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
| | - Thomas Julien
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (C.C.); (A.P.); (A.T.); (P.B.); (B.P.); (C.M.); (V.D.); (E.L.); (T.J.); (B.L.); (O.T.)
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
| | - Marie Galloux
- Unité de Virologie et Immunologie Moléculaires, UVSQ, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (M.G.); (J.-F.E.)
| | - Bruno Lina
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (C.C.); (A.P.); (A.T.); (P.B.); (B.P.); (C.M.); (V.D.); (E.L.); (T.J.); (B.L.); (O.T.)
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires, UVSQ, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (M.G.); (J.-F.E.)
| | - Karen Moreau
- CIRI, Centre International de Recherche en Infectiologie, Team STAPHPATH, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France;
| | - Marie-Eve Hamelin
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 4G2, Canada
| | - Olivier Terrier
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (C.C.); (A.P.); (A.T.); (P.B.); (B.P.); (C.M.); (V.D.); (E.L.); (T.J.); (B.L.); (O.T.)
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
| | - Guy Boivin
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 4G2, Canada
| | - Julia Dubois
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (C.C.); (A.P.); (A.T.); (P.B.); (B.P.); (C.M.); (V.D.); (E.L.); (T.J.); (B.L.); (O.T.)
- Vaxxel, 43 Boulevard du Onze Novembre 1918, 69100 Villeurbanne, France
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
- Correspondence: (J.D.); (M.R.-C.)
| | - Manuel Rosa-Calatrava
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (C.C.); (A.P.); (A.T.); (P.B.); (B.P.); (C.M.); (V.D.); (E.L.); (T.J.); (B.L.); (O.T.)
- International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, Québec, QC G1V 4G2, Canada, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (D.O.-M.); (M.-E.H.); (G.B.)
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- Correspondence: (J.D.); (M.R.-C.)
| |
Collapse
|
11
|
Qian W, Huang J, Wang T, He X, Xu G, Li Y. Visual detection of human metapneumovirus using CRISPR-Cas12a diagnostics. Virus Res 2021; 305:198568. [PMID: 34555442 DOI: 10.1016/j.virusres.2021.198568] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Human metapneumovirus (HmPV) is a common and serious virus that causes respiratory tract infection. This study aimed to develop a detection technique by combining reverse transcription recombinase polymerase amplification (RT-RPA) with CRISPR-Cas12a (RT-RPA-Cas12a) for clinical diagnosis of HmPV. Herein, four primer pairs targeting partial nucleoprotein (N) gene of HmPV were designed and evaluated. Then, the products amplified by RT-RPA were detected using CRISPR-Cas12a combined with fluorescence or lateral flow (LF). RT-RPA-Cas12a-based fluorescence or LF assay can be completed within 35 min or 45 min, and the detection limit was up to 6.97 × 102 copies/mL. And there was no cross reaction with human bocavirus, respiratory syncytial virus, adenovirus and parainfluenza virus. By combining with LF, the detection results were evaluated by naked eyes. Furthermore, 28 clinical samples were applied to examine the performance of RT-RPA-Cas12a system. The detection coincidence rates of RT-RPA-Cas12a-fluorescence and RT-RPA-Cas12a-LF with quantitative RT-PCR were 96.4% and 92.9%, respectively. Together, the new method for detecting HmPV with high sensitivity and specificity based on RT-RPA-Cas12a-fluorescence or LF shows promising potential for clinical diagnosis of HmPV without professional skills or ancillary equipment.
Collapse
Affiliation(s)
- Weidong Qian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
| | - Jie Huang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Ting Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Xiaoxian He
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Guozhang Xu
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, PR China
| | - Yongdong Li
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, PR China.
| |
Collapse
|
12
|
Yu PL, Cao SJ, Wu R, Zhao Q, Yan QG. Regulatory effect of m 6 A modification on different viruses. J Med Virol 2021; 93:6100-6115. [PMID: 34329499 DOI: 10.1002/jmv.27246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 02/05/2023]
Abstract
N6 -methyladenosine (m6 A) modification is the most common and reversible posttranscriptional modification of RNA in eukaryotes, which is mainly regulated by methyltransferase, demethylase, and specific binding protein. The replication of the virus and host immune response to the virus are affected by m6 A modification. In different kinds of viruses, m6 A modification has two completely opposite regulatory functions. This paper reviews the regulatory effects of m6 A modification on different viruses and provides a reference for studying the regulatory effects of RNA epitranscriptomic modification.
Collapse
Affiliation(s)
- Pei-Lun Yu
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - San-Jie Cao
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Rui Wu
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Qi-Gui Yan
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| |
Collapse
|
13
|
Korsun NS, Angelova SG, Trifonova IT, Voleva SE, Grigorova IG, Tzotcheva IS, Mileva SD, Perenovska PI. The Prevalence and Genetic Characterization of Human Metapneumovirus in Bulgaria, 2016-2019. Intervirology 2021; 64:194-202. [PMID: 34304230 DOI: 10.1159/000516821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/21/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION We investigated the prevalence of human metapneumovirus (hMPV) among patients with acute respiratory infections in Bulgaria, and performed genetic characterization of the F gene of these strains. METHODS Nasopharyngeal swabs collected from patients of a range of ages were tested by using real-time PCR for 12 respiratory viruses. The F gene was sequenced, and phylogenetic and amino acid analyses of the F gene/protein were performed. RESULTS A total of 1,842 patients were examined during a 3-year period; 1,229 patients (66.7%) were positive for at least one respiratory virus. hMPV was identified in 83 (4.5%) patient samples. Eleven (13%) of hMPV-positive patients were coinfected with another respiratory virus. The hMPV incidence rate in the 2016/2017, 2017/2018, and 2018/2019 winter seasons was 5.4, 5.4, and 3.1%, respectively. hMPV was mainly detected in specimens collected between January and May (89.2% of cases). The incidence of hMPV infection was highest (5.1%) among the youngest age-group (0-4 years), where hMPV was a causative agent in 8.1 and 4.8% of bronchiolitis and pneumonia cases, respectively. Among the patients aged ≥5 years, hMPV was detected in 2.2 and 3.2% of cases of pneumonia and central nervous system infections, respectively. Phylogenetic analysis of the F gene showed that the sequenced hMPV strains belonged to the A2b, B1, and B2 genotypes. Numerous amino acid substitutions were identified compared with the NL00/1 prototype strain. CONCLUSION This study revealed the significant role of hMPV as a causative agent of serious respiratory illnesses in early childhood, and also demonstrated year-to-year changes in hMPV prevalence and genetic diversity in circulating strains.
Collapse
Affiliation(s)
- Neli S Korsun
- Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Svetla G Angelova
- Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Ivelina T Trifonova
- Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Silvia E Voleva
- Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Iliana G Grigorova
- Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Iren S Tzotcheva
- Pediatric Clinic, University Hospital Alexandrovska, Medical University, Sofia, Bulgaria
| | - Sirma D Mileva
- Pediatric Clinic, University Hospital Alexandrovska, Medical University, Sofia, Bulgaria
| | - Penka I Perenovska
- Pediatric Clinic, University Hospital Alexandrovska, Medical University, Sofia, Bulgaria
| |
Collapse
|
14
|
Perchetti GA, Wilcox N, Chu HY, Katz J, Khatry SK, LeClerq SC, Tielsch JM, Jerome KR, Englund JA, Kuypers J. Human Metapneumovirus Infection and Genotyping of Infants in Rural Nepal. J Pediatric Infect Dis Soc 2021; 10:408-416. [PMID: 33137178 DOI: 10.1093/jpids/piaa118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Acute respiratory tract infections are a serious clinical burden in infants; human metapneumovirus (HMPV) is an important etiological agent. We investigated genotypic variation and molecular epidemiological patterns among infants infected with HMPV in Sarlahi, Nepal, to better characterize infection in a rural, low-resource setting. METHODS Between May 2011 and April 2014, mid-nasal swabs were collected from 3528 infants who developed respiratory symptoms during a longitudinal maternal influenza vaccine study. Sequencing glycoprotein genes permitted genotyping and analyses among subtypes. RESULTS HMPV was detected by reverse-transcriptase polymerase chain reaction (RT-PCR) in 187 (5%) infants, with seasonality observed during fall and winter months. Phylogenetic investigation of complete and partial coding sequences for the F and G genes, respectively, revealed that 3 genotypes were circulating: A2, B1, and B2. HMPV-B was most frequently detected with a single type predominating each season. Both HMPV genotypes exhibited comparable median viral loads. Clinically significant differences between genotypes were limited to increased cough duration and general respiratory symptoms for type B. CONCLUSIONS In rural Nepal, multiple HMPV genotypes circulate simultaneously with an alternating predominance of a single genotype and definitive seasonality. No difference in viral load was detected by genotype and symptom severity was not correlated with RT-PCR cycle threshold or genotype.
Collapse
Affiliation(s)
- Garrett A Perchetti
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, USA
| | - Naomi Wilcox
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Helen Y Chu
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Joanne Katz
- Department of International Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Subarna K Khatry
- Department of International Health, Johns Hopkins University, Baltimore, Maryland, USA.,Nepal Nutrition Intervention Project Sarlahi, Kathmandu, Nepal
| | - Steven C LeClerq
- Department of International Health, Johns Hopkins University, Baltimore, Maryland, USA.,Nepal Nutrition Intervention Project Sarlahi, Kathmandu, Nepal
| | - James M Tielsch
- Department of Global Health, George Washington University, Washington, DC, USA
| | - Keith R Jerome
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Janet A Englund
- Department of Pediatrics, University of Washington, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Jane Kuypers
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
15
|
RSV and HMPV Infections in 3D Tissue Cultures: Mechanisms Involved in Virus-Host and Virus-Virus Interactions. Viruses 2021; 13:v13010139. [PMID: 33478119 PMCID: PMC7835908 DOI: 10.3390/v13010139] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
Respiratory viral infections constitute a global public health concern. Among prevalent respiratory viruses, two pneumoviruses can be life-threatening in high-risk populations. In young children, they constitute the first cause of hospitalization due to severe lower respiratory tract diseases. A better understanding of their pathogenesis is still needed as there are no approved efficient anti-viral nor vaccine against pneumoviruses. We studied Respiratory Syncytial virus (RSV) and human Metapneumovirus (HMPV) in single and dual infections in three-dimensional cultures, a highly relevant model to study viral respiratory infections of the airway epithelium. Our investigation showed that HMPV is less pathogenic than RSV in this model. Compared to RSV, HMPV replicated less efficiently, induced a lower immune response, did not block cilia beating, and was more sensitive to IFNs. In dual infections, RSV-infected epithelia were less permissive to HMPV. By neutralizing IFNs in co-infection assays, we partially prevented HMPV inhibition by RSV and significantly increased the number of co-infected cells in the tissue. This suggests that interference in dual infection would be at least partly mediated by the host immune response. In summary, this work provides new insight regarding virus-host and virus-virus interactions of pneumoviruses in the airway epithelium. This could be helpful for the proper handling of at-risk patients.
Collapse
|
16
|
Covián C, Ríos M, Berríos-Rojas RV, Bueno SM, Kalergis AM. Induction of Trained Immunity by Recombinant Vaccines. Front Immunol 2021; 11:611946. [PMID: 33584692 PMCID: PMC7873984 DOI: 10.3389/fimmu.2020.611946] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/24/2020] [Indexed: 01/24/2023] Open
Abstract
Vaccines represent an important strategy to protect humans against a wide variety of pathogens and have even led to eradicating some diseases. Although every vaccine is developed to induce specific protection for a particular pathogen, some vaccine formulations can also promote trained immunity, which is a non-specific memory-like feature developed by the innate immune system. It is thought that trained immunity can protect against a wide variety of pathogens other than those contained in the vaccine formulation. The non-specific memory of the trained immunity-based vaccines (TIbV) seems beneficial for the immunized individual, as it may represent a powerful strategy that contributes to the control of pathogen outbreaks, reducing morbidity and mortality. A wide variety of respiratory viruses, including respiratory syncytial virus (hRSV) and metapneumovirus (hMPV), cause serious illness in children under 5 years old and the elderly. To address this public health problem, we have developed recombinant BCG vaccines that have shown to be safe and immunogenic against hRSV or hMPV. Besides the induction of specific adaptive immunity against the viral antigens, these vaccines could generate trained immunity against other respiratory pathogens. Here, we discuss some of the features of trained immunity induced by BCG and put forward the notion that recombinant BCGs expressing hRSV or hMPV antigens have the capacity to simultaneously induce specific adaptive immunity and non-specific trained immunity. These recombinant BCG vaccines could be considered as TIbV capable of inducing simultaneously the development of specific protection against hRSV or hMPV, as well as non-specific trained-immunity-based protection against other pathogenic viruses.
Collapse
Affiliation(s)
- Camila Covián
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariana Ríos
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roslye V. Berríos-Rojas
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
17
|
Rodriguez PE, Frutos MC, Adamo MP, Cuffini C, Cámara JA, Paglini MG, Moreno L, Cámara A. Human Metapneumovirus: Epidemiology and genotype diversity in children and adult patients with respiratory infection in Córdoba, Argentina. PLoS One 2020; 15:e0244093. [PMID: 33370354 PMCID: PMC7769284 DOI: 10.1371/journal.pone.0244093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/02/2020] [Indexed: 11/19/2022] Open
Abstract
Human Metapneumovirus (hMPV) is responsible for acute respiratory infections in humans, with clinical and epidemiological relevance in pediatric, elderly, and immunocompromised populations. These features are largely unknown in Córdoba, Argentina and in adults in general. Hence, our goal was to broadly characterize hMPV infection in patients of all ages hospitalized with acute respiratory infections in Córdoba, Argentina, including epidemiology, clinical features and genetic diversity. Nasopharyngeal secretions were obtained from 795 patients during 2011-2013, 621 patients were 0-25 years old and 174 were 26-85 years old. HMPV was assayed by RT-PCR and other respiratory viruses by indirect immunofluorescence. Local strains were identified by sequence analysis. Human Metapneumovirus was detected in 20.3% (161/795) patients, 13.1% as single infections and 7.2% in co-infections, more frequently with Respiratory Syncytial Virus. HMPV circulated during late winter and spring in all age patients, but mainly in children under 4 years old in 71.4% (115/161) and adults between 26 and 59 years old in 12.4% (20/161). The most prevalent diagnosis was mild acute respiratory infection in 59.6% (96/161) and bronchiolitis in 9.3% (15/161). Local strains were clustered within A2 subtype; they presented 73-100% identities among them, showing a high degree of homology compared to isolations from neighboring countries. We demonstrate that hMPV circulated among all age patients with respiratory infection during 2011-2013 in Córdoba, contributing to the understanding of this virus, its diagnosis and patient handling in local health-care centers.
Collapse
Affiliation(s)
- Pamela Elizabeth Rodriguez
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba Capital, Córdoba, Argentina
- * E-mail:
| | - María Celia Frutos
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba Capital, Córdoba, Argentina
| | - María Pilar Adamo
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba Capital, Córdoba, Argentina
| | - Cecilia Cuffini
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba Capital, Córdoba, Argentina
| | - Jorge Augusto Cámara
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba Capital, Córdoba, Argentina
| | - María Gabriela Paglini
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba Capital, Córdoba, Argentina
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra, INIMEC- CONICET, Universidad Nacional de Córdoba, Córdoba Capital, Córdoba, Argentina
| | - Laura Moreno
- Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Hospital de Niños “Santísima Trinidad de Córdoba”, Córdoba Capital, Córdoba, Argentina
| | - Alicia Cámara
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba Capital, Córdoba, Argentina
| |
Collapse
|
18
|
Andrade CA, Pacheco GA, Gálvez NMS, Soto JA, Bueno SM, Kalergis AM. Innate Immune Components that Regulate the Pathogenesis and Resolution of hRSV and hMPV Infections. Viruses 2020; 12:E637. [PMID: 32545470 PMCID: PMC7354512 DOI: 10.3390/v12060637] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
The human respiratory syncytial virus (hRSV) and human Metapneumovirus (hMPV) are two of the leading etiological agents of acute lower respiratory tract infections, which constitute the main cause of mortality in infants. However, there are currently approved vaccines for neither hRSV nor hMPV. Moreover, despite the similarity between the pathology caused by both viruses, the immune response elicited by the host is different in each case. In this review, we discuss how dendritic cells, alveolar macrophages, neutrophils, eosinophils, natural killer cells, innate lymphoid cells, and the complement system regulate both pathogenesis and the resolution of hRSV and hMPV infections. The roles that these cells play during infections by either of these viruses will help us to better understand the illnesses they cause. We also discuss several controversial findings, relative to some of these innate immune components. To better understand the inflammation in the lungs, the role of the respiratory epithelium in the recruitment of innate immune cells is briefly discussed. Finally, we review the main prophylactic strategies and current vaccine candidates against both hRSV and hMPV.
Collapse
Affiliation(s)
- Catalina A. Andrade
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Gaspar A. Pacheco
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Nicolas M. S. Gálvez
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Jorge A. Soto
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Susan M. Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Alexis M. Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| |
Collapse
|
19
|
Cao D, Liang B. Cryo-Electron Microscopy Structures of the Pneumoviridae Polymerases. Viral Immunol 2020; 34:18-26. [PMID: 32429800 DOI: 10.1089/vim.2020.0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The resolution revolution of cryo-electron microscopy (cryo-EM) has made a significant impact on the structural analysis of the Pneumoviridae multifunctional RNA polymerases. In recent months, several high-resolution structures of apo RNA polymerases of Pneumoviridae, which includes the human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV), have been determined by single-particle cryo-EM. These structures illustrated high similarities and minor differences between the Pneumoviridae polymerases and revealed the potential mechanisms of the Pneumoviridae RNA synthesis.
Collapse
Affiliation(s)
- Dongdong Cao
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Human Type I Interferon Antiviral Effects in Respiratory and Reemerging Viral Infections. J Immunol Res 2020; 2020:1372494. [PMID: 32455136 PMCID: PMC7231083 DOI: 10.1155/2020/1372494] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/17/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Type I interferons (IFN-I) are a group of related proteins that help regulate the activity of the immune system and play a key role in host defense against viral infections. Upon infection, the IFN-I are rapidly secreted and induce a wide range of effects that not only act upon innate immune cells but also modulate the adaptive immune system. While IFN-I and many IFN stimulated genes are well-known for their protective antiviral role, recent studies have associated them with potential pathogenic functions. In this review, we summarize the current knowledge regarding the complex effects of human IFN-I responses in respiratory as well as reemerging flavivirus infections of public health significance and the molecular mechanisms by which viral proteins antagonize the establishment of an antiviral host defense. Antiviral effects and immune modulation of IFN-stimulated genes is discussed in resisting and controlling pathogens. Understanding the mechanisms of these processes will be crucial in determining how viral replication can be effectively controlled and in developing safe and effective vaccines and novel therapeutic strategies.
Collapse
|
21
|
Schwartz DA, Dhaliwal A. INFECTIONS IN PREGNANCY WITH COVID-19 AND OTHER RESPIRATORY RNA VIRUS DISEASES ARE RARELY, IF EVER, TRANSMITTED TO THE FETUS: EXPERIENCES WITH CORONAVIRUSES, HPIV, hMPV RSV, AND INFLUENZA. Arch Pathol Lab Med 2020; 144:920-928. [PMID: 32338533 DOI: 10.5858/arpa.2020-0211-sa] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SARS-CoV-2, the agent of COVID-19, is similar to two other coronaviruses, SARS-CoV and MERS-CoV, in causing life-threatening maternal respiratory infections and systemic complications. Because of global concern for potential intrauterine transmission of SARS-CoV-2 from pregnant women to their infants, this report analyzes the effects on pregnancy of infections caused by SARS-CoV-2 and other respiratory RNA viruses, and examines the frequency of maternal-fetal transmission with SARS-CoV-2, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), influenza, respiratory syncytial virus (RSV), parainfluenza (HPIV) and metapneumovirus (hMPV). There have been no confirmed cases of intrauterine transmission reported with COVID-19 or any other coronavirus infections. Influenza virus, despite causing approximately one billion annual infections globally, has only a few cases of confirmed or suspected intrauterine fetal infections reported. RSV is in an unusual cause of illness among pregnant women, and with the exception of one premature infant with congenital pneumonia, no other cases of maternal-fetal infection are described. Parainfluenza virus and human metapneumovirus can produce symptomatic maternal infections but do not cause intrauterine fetal infection. In summary, it appears that the absence thus far of maternal-fetal transmission of the SARS-CoV-2 virus during the COVID-19 pandemic is similar to other coronaviruses, and is also consistent with the extreme rarity of suggested or confirmed cases of intrauterine transmission of other respiratory RNA viruses. This observation has important consequences for pregnant women as it appears that if intrauterine transmission of SARSCoV-2 does eventually occur, it will be a rare event. Potential mechanisms of fetal protection from maternal viral infections are also discussed.
Collapse
Affiliation(s)
- David A Schwartz
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA (Dr. Schwartz); Amareen Dhaliwal, BS, Boston University School of Medicine, Boston, MA, USA (Ms. Dhaliwal)
| | - Amareen Dhaliwal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA (Dr. Schwartz); Amareen Dhaliwal, BS, Boston University School of Medicine, Boston, MA, USA (Ms. Dhaliwal)
| |
Collapse
|
22
|
Dubois J, Pizzorno A, Cavanagh MH, Padey B, Nicolas de Lamballerie C, Uyar O, Venable MC, Carbonneau J, Traversier A, Julien T, Lavigne S, Couture C, Lina B, Hamelin MÈ, Terrier O, Rosa-Calatrava M, Boivin G. Strain-Dependent Impact of G and SH Deletions Provide New Insights for Live-Attenuated HMPV Vaccine Development. Vaccines (Basel) 2019; 7:vaccines7040164. [PMID: 31671656 PMCID: PMC6963613 DOI: 10.3390/vaccines7040164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 01/15/2023] Open
Abstract
Human metapneumovirus (HMPV) is a major pediatric respiratory pathogen with currently no specific treatment or licensed vaccine. Different strategies to prevent this infection have been evaluated, including live-attenuated vaccines (LAV) based on SH and/or G protein deletions. This approach showed promising outcomes but has not been evaluated further using different viral strains. In that regard, we previously showed that different HMPV strains harbor distinct in vitro fusogenic and in vivo pathogenic phenotypes, possibly influencing the selection of vaccine strains. In this study, we investigated the putative contribution of the low conserved SH or G accessory proteins in such strain-dependent phenotypes and generated recombinant wild type (WT) and SH- or G-deleted viruses derived from two different patient-derived HMPV strains, A1/C-85473 and B2/CAN98-75. The ΔSH and ΔG deletions led to different strain-specific phenotypes in both LLC-MK2 cell and reconstituted human airway epithelium models. More interestingly, the ΔG-85473 and especially ΔSH-C-85473 recombinant viruses conferred significant protection against HMPV challenge and induced immunogenicity against a heterologous strain. In conclusion, our results show that the viral genetic backbone should be considered in the design of live-attenuated HMPV vaccines, and that a SH-deleted virus based on the A1/C-85473 HMPV strain could be a promising LAV candidate as it is both attenuated and protective in mice while being efficiently produced in a cell-based system.
Collapse
Affiliation(s)
- Julia Dubois
- Laboratoire de Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France.
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, QC G1V 4G2, Canada.
| | - Andrés Pizzorno
- Laboratoire de Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France.
| | - Marie-Hélène Cavanagh
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, QC G1V 4G2, Canada.
| | - Blandine Padey
- Laboratoire de Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France.
| | - Claire Nicolas de Lamballerie
- Laboratoire de Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France.
| | - Olus Uyar
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, QC G1V 4G2, Canada.
| | - Marie-Christine Venable
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, QC G1V 4G2, Canada.
| | - Julie Carbonneau
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, QC G1V 4G2, Canada.
| | - Aurélien Traversier
- Laboratoire de Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France.
| | - Thomas Julien
- Laboratoire de Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France.
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France.
| | - Sophie Lavigne
- Quebec Heart and Lung Institute, Laval University, Quebec City, QC G1V 4G5, Canada.
| | - Christian Couture
- Quebec Heart and Lung Institute, Laval University, Quebec City, QC G1V 4G5, Canada.
| | - Bruno Lina
- Laboratoire de Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France.
- Laboratoire de Virologie, Centre National de Référence des virus Influenza, Institut des Agents Infectieux, Groupement Hospitalier Nord, Hospices Civils de Lyon, 69004 Lyon, France.
| | - Marie-Ève Hamelin
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, QC G1V 4G2, Canada.
| | - Olivier Terrier
- Laboratoire de Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France.
| | - Manuel Rosa-Calatrava
- Laboratoire de Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France.
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France.
| | - Guy Boivin
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, QC G1V 4G2, Canada.
| |
Collapse
|
23
|
Karimata Y, Kinjo T, Parrott G, Uehara A, Nabeya D, Haranaga S, Higa F, Tateyama M, Miyagawa K, Kishaba T, Otani K, Okamoto M, Nishimura H, Fujita J. Clinical Features of Human Metapneumovirus Pneumonia in Non-Immunocompromised Patients: An Investigation of Three Long-Term Care Facility Outbreaks. J Infect Dis 2019; 218:868-875. [PMID: 29733351 PMCID: PMC7107412 DOI: 10.1093/infdis/jiy261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/01/2018] [Indexed: 11/25/2022] Open
Abstract
Background Several studies have reported outbreaks due to human metapneumovirus (hMPV) in long-term care facilities (LTCF) for the elderly. However, most of these reports are epidemiological studies and do not investigate the clinical features of hMPV pneumonia. Methods Three independent outbreaks of hMPV occurred at separate LTCF for intellectually challenged and elderly residents. A retrospective evaluation of hMPV pneumonia and its clinical and radiological features was conducted using available medical records and data. Results In 105 hMPV infections, 49% of patients developed pneumonia. The median age of pneumonia cases was significantly higher than non-pneumonia cases (P < .001). Clinical manifestations of hMPV pneumonia included high fever, wheezing in 43%, and respiratory failure in 31% of patients. An elevated number of white blood cells as well as increased levels of C-reactive protein, creatine phosphokinase, and both aspartate and alanine transaminases was also observed among pneumonia cases. Evaluation of chest imaging revealed proximal bronchial wall thickenings radiating outward from the hilum in most patients. Conclusions The aforementioned characteristics should be considered as representative of hMPV pneumonia. Patients presenting with these features should have laboratory testing performed for prompt diagnosis.
Collapse
Affiliation(s)
- Yosuke Karimata
- Department of Infectious Diseases, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Takeshi Kinjo
- Department of Infectious Diseases, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Gretchen Parrott
- Department of Infectious Diseases, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Ayako Uehara
- Department of Infectious Diseases, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Daijiro Nabeya
- Department of Infectious Diseases, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Shusaku Haranaga
- Department of Infectious Diseases, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Futoshi Higa
- Department of Infectious Diseases, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Masao Tateyama
- Department of Infectious Diseases, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Keiko Miyagawa
- Personnel Health Management Center, Department of General Affairs, Okinawa Prefectural Government, Japan
| | - Tomoo Kishaba
- Department of Respiratory Medicine, Okinawa Chubu Hospital, Japan
| | - Kanako Otani
- Virus Research Center, Sendai Medical Center, National Hospital Organization, Miyagi, Japan.,Department of Virology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Michiko Okamoto
- Department of Virology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Sendai Medical Center, National Hospital Organization, Miyagi, Japan
| | - Jiro Fujita
- Department of Infectious Diseases, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
24
|
Beugeling M, De Zee J, Woerdenbag HJ, Frijlink HW, Wilschut JC, Hinrichs WLJ. Respiratory syncytial virus subunit vaccines based on the viral envelope glycoproteins intended for pregnant women and the elderly. Expert Rev Vaccines 2019; 18:935-950. [PMID: 31446807 DOI: 10.1080/14760584.2019.1657013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Respiratory syncytial virus (RSV) causes high morbidity and mortality rates among infants, young children, and the elderly worldwide. Unfortunately, a safe and effective vaccine is still unavailable. In 1966, a formalin-inactivated RSV vaccine failed and resulted in the death of two young children. This failure shifted research toward the development of subunit-based vaccines for pregnant women (to passively vaccinate infants) and the elderly. Among these subunit-based vaccines, the viral envelope glycoproteins show great potential as antigens. Areas covered: In this review, progress in the development of safe and effective subunit RSV vaccines based on the viral envelope glycoproteins and intended for pregnant women and the elderly, are reviewed and discussed. Studies published in the period 2012-2018 were included. Expert opinion: Researchers are close to bringing safe and effective subunit-based RSV vaccines to the market using the viral envelope glycoproteins as antigens. However, it remains a major challenge to elicit protective immunity, with a formulation that has sufficient (storage) stability. These issues may be overcome by using the RSV fusion protein in its pre-fusion conformation, and by formulating this protein as a dry powder. It may further be convenient to administer this powder via the pulmonary route.
Collapse
Affiliation(s)
- Max Beugeling
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Groningen , The Netherlands
| | - Jildou De Zee
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Groningen , The Netherlands
| | - Herman J Woerdenbag
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Groningen , The Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Groningen , The Netherlands
| | - Jan C Wilschut
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
25
|
Seynaeve D, Augusseau-Rivière B, Couturier P, Morel-Baccard C, Landelle C, Bosson JL, Gavazzi G, Mallaret MR. Outbreak of Human Metapneumovirus in a Nursing Home: A Clinical Perspective. J Am Med Dir Assoc 2019; 21:104-109.e1. [PMID: 31101588 PMCID: PMC7105973 DOI: 10.1016/j.jamda.2019.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/26/2023]
Abstract
Objectives To describe a human metapneumovirus (hMPV) outbreak occurring in a nursing home for older adults and to identify the risk factors associated with the clinical infection. Design A retrospective, case-controlled study. Setting and participants A French nursing home for older adults between December 27, 2014 and January 20, 2015. Probable cases were residents presenting at least 1 respiratory symptom or 1 constitutional symptom. Confirmed cases identified in the same way as probable cases but with a positive RT-PCR test for hMPV. Controls were residents with no symptoms of respiratory infection. Measures Identification of hMPV was realized on nasal swab samples by RT-PCR. Results Seventy-eight older people were resident at the time of the outbreak. Three of the 4 tested were positive for hMPV by RT-PCR and negative for 13 other viruses or bacteria. All probable infected residents presented cough; other symptoms were scarcer. An inflammatory response was present, with median C-reactive protein at 50 mg/L. The median duration of the illness was 7 days. The rate of infection among residents was high (51%), with 5 hospitalizations (12.5%) and 1 death (2.5%). In multivariate analysis, vaccination against influenza virus appeared to emerge as associated with a probable hMPV infection, but this might be an artifact, as the proportion of unvaccinated residents was low (15%). A clear infected population profile was hard to define, although limited autonomy and low ADL score may play a role. Basic hygiene precautions were reinforced, but droplet precautions seemed difficult to apply rigorously to this population. Conclusions/Implications Clinical and biological presentations were nonspecific. The rate of infection was high, highlighting the need for the rapid introduction of strict precautions to contain the infection.
Collapse
Affiliation(s)
- Damien Seynaeve
- Service d'Hygiène Hospitalière et de Gestion des Risques, CHU Grenoble Alpes, Grenoble Cedex, France.
| | | | - Pascal Couturier
- Clinique Universitaire de Médecine Gériatrique, CHU Grenoble Alpes, Grenoble Cedex, France
| | | | - Caroline Landelle
- Service d'Hygiène Hospitalière et de Gestion des Risques, CHU Grenoble Alpes, Grenoble Cedex, France; Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble Cedex, France
| | - Jean-Luc Bosson
- Pôle de Santé Publique, CHU Grenoble Alpes, Grenoble Cedex, France; Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble Cedex, France
| | - Gaëtan Gavazzi
- Clinique Universitaire de Médecine Gériatrique, CHU Grenoble Alpes, Grenoble Cedex, France; Université Grenoble Alpes, GREPI EA 7408, Grenoble Cedex, France
| | - Marie-Reine Mallaret
- Service d'Hygiène Hospitalière et de Gestion des Risques, CHU Grenoble Alpes, Grenoble Cedex, France; Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble Cedex, France
| |
Collapse
|
26
|
A 3-Year Retrospective Study of the Epidemiology of Acute Respiratory Viral Infections in Pediatric Patients With Cancer Undergoing Chemotherapy. J Pediatr Hematol Oncol 2019; 41:e242-e246. [PMID: 30688827 DOI: 10.1097/mph.0000000000001418] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Acute viral respiratory infections are common causes of febrile episodes in children. There are still limited data about distribution of acute viral respiratory infections in children with cancer. OBJECTIVE The first aim of this study was to evaluate the viral etiology and seasonality of acute viral respiratory infection in pediatric patients with cancer in a 3-year study. Our second aim was to evaluate the impact of viral infections on delaying the patients' chemotherapy or radiotherapy. MATERIALS AND METHODS This cross-sectional study was conducted from January 2014 to July 2017. Nasopharyngeal aspirates were analyzed in patients younger than 21 years with acute respiratory infections. Patients were treated in the Pediatric Hematology and Oncology Department of Dr. Behçet Uz Children's Hospital with real-time multiplex polymerase chain reaction. Data were analyzed to determine the frequency and seasonality of infections. The χ or the Fisher exact tests were used. RESULTS A total of 219 samples of nasopharyngeal aspirates and blood were analyzed. The mean patient age was 76.8±59.3 months, with 46.3% female and 53.7% male children in a total of 108 patients. Of this total, 55% (60/108 cases) had multiple acute respiratory infections. Acute lymphoblastic leukemia (48.1%) was the most prevalent disease. The 3 most prevalent viruses were human rhinovirus (HRV) (33.1%), parainfluenza (PI) (18.7%), and coronavirus (CoV) (14.8%). In terms of the seasonal distribution of viruses, PI was most common in winter 2014, HRV in spring 2014, HRV in fall 2014, PI in winter 2015 and summer 2015, CoV in spring 2015, HRV in fall 2015, both influenza and HRV in winter 2016, both human metapneumovirus and bocavirus in spring 2016, HRV in summer 2016, both HRV and PI in fall 2016, both respiratory syncytial virus and influenza in winter 2017, HRV in spring 2017, and both HRV and adenovirus in summer 2017. The mean duration of neutropenia for patients with viral respiratory infection was 17.1±13.8 (range: 2 to 90) days. The mean duration of symptoms of viral respiratory infection was 6.8±4.2 (range: 2 to 31) days. A delay in chemotherapy treatment owing to viral respiratory infection was detected in 73 (33.3%) patients. The mean duration of delay in chemotherapy treatment was 9.6±5.4 (range: 3 to 31) days. CONCLUSIONS In conclusion, we report our 3-year experience about the frequency and seasonality of respiratory viruses in children with cancer.
Collapse
|
27
|
Human metapneumovirus activates NOD-like receptor protein 3 inflammasome via its small hydrophobic protein which plays a detrimental role during infection in mice. PLoS Pathog 2019; 15:e1007689. [PMID: 30964929 PMCID: PMC6474638 DOI: 10.1371/journal.ppat.1007689] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 04/19/2019] [Accepted: 03/08/2019] [Indexed: 12/30/2022] Open
Abstract
NOD-like receptor protein 3 (NLRP3) inflammasome activation triggers caspase-1 activation-induced maturation of interleukin (IL)-1β and IL-18 and therefore is important for the development of the host defense against various RNA viral diseases. However, the implication of this protein complex in human metapneumovirus (HMPV) disease has not been fully studied. Herein, we report that NLRP3 inflammasome plays a detrimental role during HMPV infection because NLRP3 inflammasome inhibition protected mice from mortality and reduced weight loss and inflammation without impacting viral replication. We also demonstrate that NLRP3 inflammasome exerts its deleterious effect via IL-1β production since we observed reduced mortality, weight loss and inflammation in IL-1β-deficient (IL-1β-/-) mice, as compared to wild-type animals during HMPV infection. Moreover, the effect on these evaluated parameters was not different in IL-1β-/- and wild-type mice treated with an NLRP3 inflammasome inhibitor. The production of IL-1β was also abrogated in bone marrow derived macrophages deficient for NLRP3. Finally, we show that small hydrophobic protein-deleted recombinant HMPV (HMPV ΔSH) failed to activate caspase-1, which is responsible for IL-1β cleavage and maturation. Furthermore, HMPV ΔSH-infected mice had less weight loss, showed no mortality and reduced inflammation, as compared to wild-type HMPV-infected mice. Thus, NLRP3 inflammasome activation seems to be triggered by HMPV SH protein in HMPV disease. In summary, once activated by the HMPV SH protein, NLRP3 inflammasome promotes the maturation of IL-1β, which exacerbates HMPV-induced inflammation. Therefore, the blockade of IL-1β production by using NLRP3 inflammasome inhibitors might be a novel potential strategy for the therapy and prevention of HMPV infection. Human metapneumovirus (HMPV), a negative-stranded, enveloped RNA virus, is recognized as one of the leading causes of acute respiratory disease in children since its discovery in 2001. Nevertheless, there is currently no licensed vaccine for the prevention of HMPV infection and treatment modalities are limited to the use of ribavirin, a weak antiviral agent or immunoglobulins. NOD-like receptor protein 3 (NLRP3) inflammasome has been shown to be involved in the pathogenesis of several RNA viral diseases but its role during HMPV infection has not been fully studied. Here, we report for the first time that NLRP3 inflammasome is activated by the small hydrophobic protein of HMPV, leading to the release of IL-1β, which has the potential to exacerbate inflammation. However, NLRP3 inflammasome has no direct influence on viral replication. Thus, IL-1β-mediated inflammatory process plays an important role during HMPV infection and, therefore, anti-IL-1β strategies such as the use of NLRP3 inhibitors may be a novel potential approach for the prevention and therapy of HMPV disease.
Collapse
|
28
|
Bernal LJ, Velandia-Romero M, Guevara C, Castellanos JE. Human Metapneumovirus: Laboratory Methods for Isolation, Propagation, and Plaque Titration. Intervirology 2019; 61:301-306. [PMID: 30917376 DOI: 10.1159/000497309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/24/2019] [Indexed: 11/19/2022] Open
Abstract
The human metapneumovirus (hMPV) is an important viral agent associated with severe infections of the upper and lower airways, especially in young children and immunosuppressed subjects. Nevertheless, in vitro studies of hMPV are very difficult due to the little knowledge we have on its laboratory manipulation. OBJECTIVE The aim of this study was to isolate and propagate hMPV from patients, and to establish a method to quantify the virus by plaque assay. METHOD As part of a Latin American respiratory virus surveillance study, 12 nasal secretion samples - hMPV-positive by direct fluorescence - were inoculated on LLC-MK2 cells to isolate the virus. The supernatants were re-inoculated and the cytopathic effect and syncytium formation were evaluated daily; the infection was confirmed by immunofluorescence and RT-PCR. A protocol to titrate the harvested virus was established inoculating serial dilutions on LLC-MK2 cells, and agarose was then added as an overlay. After different time periods, the monolayers were fixed and stained with Naphthol blue/black or crystal violet and finally the viral titer was obtained. RESULTS Eight out of 12 hMPV-positive respiratory samples were positive for the isolation and confirmed by RT-PCR and immunofluorescence, but the cytopathic effect and syncytium formation were observed only in 5 cultures. One out of 8 viral isolates was used for propagation and plaque assay standardization. We found that incubation for 7 days in the semisolid overlay yielded plaques with appropriate size and shape to be counted, although crystal violet staining showed slightly larger plaques than those seen with Naphthol blue/black staining. CONCLUSIONS The isolation and propagation from patient-derived hMPV and the standardization of a practical, reliable, and inexpensive method of detection and quantification of hMPV were carried out, without the additional use of antibodies that had not been reported previously. These results offer some important insights for future studies of cellular and molecular biology of hMPV.
Collapse
Affiliation(s)
- Lilia J Bernal
- Facultad de Odontología, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | - Jaime E Castellanos
- Facultad de Odontología, Universidad Nacional de Colombia, Bogotá, Colombia, .,Grupo de Virología, Universidad El Bosque, Bogotá, Colombia,
| |
Collapse
|
29
|
Kinder JT, Klimyte EM, Chang A, Williams JV, Dutch RE. Human metapneumovirus fusion protein triggering: Increasing complexities by analysis of new HMPV fusion proteins. Virology 2019; 531:248-254. [PMID: 30946995 DOI: 10.1016/j.virol.2019.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 11/25/2022]
Abstract
The human metapneumovirus (HMPV) fusion protein (F) mediates fusion of the viral envelope and cellular membranes to establish infection. HMPV F from some, but not all, viral strains promotes fusion only after exposure to low pH. Previous studies have identified several key residues involved in low pH triggering, including H435 and a proposed requirement for glycine at position 294. We analyzed the different levels of fusion activity, protein expression and cleavage of three HMPV F proteins not previously examined. Interestingly, low pH-triggered fusion in the absence of G294 was identified in one F protein, while a novel histidine residue (H434) was identified that enhanced low pH promoted fusion in another. The third F protein failed to promote cell-to-cell fusion, suggesting other requirements for F protein triggering. Our results demonstrate HMPV F triggering is more complex than previously described and suggest a more intricate mechanism for fusion protein function and activation.
Collapse
Affiliation(s)
- J Tyler Kinder
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Edita M Klimyte
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Andres Chang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - John V Williams
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
30
|
Soto JA, Gálvez NMS, Benavente FM, Pizarro-Ortega MS, Lay MK, Riedel C, Bueno SM, Gonzalez PA, Kalergis AM. Human Metapneumovirus: Mechanisms and Molecular Targets Used by the Virus to Avoid the Immune System. Front Immunol 2018; 9:2466. [PMID: 30405642 PMCID: PMC6207598 DOI: 10.3389/fimmu.2018.02466] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/05/2018] [Indexed: 12/27/2022] Open
Abstract
Human metapneumovirus (hMPV) is a respiratory virus, first reported the year 2001. Since then, it has been described as one of the main etiological agents that causes acute lower respiratory tract infections (ALRTIs), which is characterized by symptoms such as bronchiolitis, wheezing and coughing. Susceptible population to hMPV-infection includes newborn, children, elderly and immunocompromised individuals. This viral agent is a negative-sense, single-stranded RNA enveloped virus, that belongs to the Pneumoviridae family and Metapneumovirus genus. Early reports—previous to 2001—state several cases of respiratory illness without clear identification of the responsible pathogen, which could be related to hMPV. Despite the similarities of hMPV with several other viruses, such as the human respiratory syncytial virus or influenza virus, mechanisms used by hMPV to avoid the host immune system are still unclear. In fact, evidence indicates that hMPV induces a poor innate immune response, thereby affecting the adaptive immunity. Among these mechanisms, is the promotion of an anergic state in T cells, instead of an effective polarization or activation, which could be induced by low levels of cytokine secretion. Further, the evidences support the notion that hMPV interferes with several pattern recognition receptors (PRRs) and cell signaling pathways triggered by interferon-associated genes. However, these mechanisms reported in hMPV are not like the ones reported for hRSV, as the latter has two non-structural proteins that are able to inhibit these pathways. Several reports suggest that viral glycoproteins, such as G and SH, could play immune-modulator roles during infection. In this work, we discuss the state of the art regarding the mechanisms that underlie the poor immunity elicited by hMPV. Importantly, these mechanisms will be compared with those elicited by other common respiratory viruses.
Collapse
Affiliation(s)
- Jorge A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M S Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe M Benavente
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magdalena S Pizarro-Ortega
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Margarita K Lay
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Claudia Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A Gonzalez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
31
|
Egron C, Roszyk L, Rochette E, Jabaudon M, Sapin V, Mulliez A, Labbé A, Coste K. Serum soluble receptor for advanced glycation end-products during acute bronchiolitis in infant: Prospective study in 93 cases. Pediatr Pulmonol 2018; 53:1429-1435. [PMID: 30113140 PMCID: PMC7167909 DOI: 10.1002/ppul.24141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/25/2018] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Acute bronchiolitis is a major cause of acute respiratory distress in infants. The soluble receptor for advanced glycation end-products (sRAGE) is a biomarker of pulmonary damage processes, with a diagnostic and a prognostic value in acute respiratory distress syndrome (ARDS). The RAGE pathway is also implicated in the pathogenesis of other respiratory diseases like asthma, but the value of sRAGE levels in acute bronchiolitis remains under-investigated. MATERIAL AND METHODS A prospective, observational, and analytical study was conducted at Clermont-Ferrand University Hospital. The main objective was to evaluate the correlation between serum sRAGE and clinical severity of bronchiolitis in hospitalized infants aged <1 year. We analyzed correlations between serum sRAGE and Wainwright score, short-term morbidity attributable to bronchiolitis, causal viruses and risk for recurrent wheezing at 1 year. RESULTS The study included 93 infants. sRAGE levels were significantly lower in acute bronchiolitis patients (mean 1101 pg/mL) than in controls (2203 pg/mL, P < 0.001) but did not correlate with clinical severity. No correlation was found between serum sRAGE and severity score, respiratory viruses, and recurrent wheezing at 1 year. Serum sRAGE levels were negatively correlated with age (r = -0.45, P < 0.001). CONCLUSION Serum sRAGE levels are decreased in acute bronchiolitis but not correlated with disease severity. sRAGE levels should be age-adjusted in infants. Serum sRAGE levels measured in the setting of acute bronchiolitis were not predictive of recurrent wheezing.
Collapse
Affiliation(s)
- Carole Egron
- Department of Pediatrics, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Laurence Roszyk
- Department of Medical Biochemistry and Molecular Biology, CHU Clermont-Ferrand and GReD, Université Clermont Auvergne, CNRS UMR 6293, INSERM U1103, Clermont-Ferrand, France
| | - Emmanuelle Rochette
- Department of Clinical Research for Children (CRECHE) at CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Matthieu Jabaudon
- Department of Perioperative Medicine, CHU Clermont-Ferrand and GReD, Université Clermont Auvergne, CNRS UMR 6293, INSERM U1103, Clermont-Ferrand, France
| | - Vincent Sapin
- Department of Medical Biochemistry and Molecular Biology, CHU Clermont-Ferrand and GReD, Université Clermont Auvergne, CNRS UMR 6293, INSERM U1103, Clermont-Ferrand, France
| | - Aurélien Mulliez
- Department of Clinical Research and Innovation at CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - André Labbé
- Department of Pediatrics, CHU Clermont-Ferrand, Clermont-Ferrand and Université Clermont Auvergne, Clermont-Ferrand, France
| | - Karen Coste
- Department of Pediatrics, CHU Clermont-Ferrand and GReD, Université Clermont Auvergne, CNRS UMR 6293, INSERM U1103, Clermont-Ferrand, France
| |
Collapse
|
32
|
Kurskaya O, Ryabichenko T, Leonova N, Shi W, Bi H, Sharshov K, Kazachkova E, Sobolev I, Prokopyeva E, Kartseva T, Alekseev A, Shestopalov A. Viral etiology of acute respiratory infections in hospitalized children in Novosibirsk City, Russia (2013 - 2017). PLoS One 2018; 13:e0200117. [PMID: 30226876 PMCID: PMC6143185 DOI: 10.1371/journal.pone.0200117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022] Open
Abstract
Background Acute respiratory infections (ARIs) cause a considerable morbidity and mortality worldwide especially in children. However, there are few studies of the etiological structure of ARIs in Russia. In this work, we analyzed the etiology of ARIs in children (0–15 years old) admitted to Novosibirsk Children’s Municipal Clinical Hospital in 2013–2017. Methods We tested nasal and throat swabs of 1560 children with upper or lower respiratory infection for main respiratory viruses (influenza viruses A and B, parainfluenza virus types 1–4, respiratory syncytial virus, metapneumovirus, four human coronaviruses, rhinovirus, adenovirus and bocavirus) using a RT-PCR Kit. Results We detected 1128 (72.3%) samples were positive for at least one virus. The most frequently detected pathogens were respiratory syncytial virus (358/1560, 23.0%), influenza virus (344/1560, 22.1%), and rhinovirus (235/1560, 15.1%). Viral co-infections were found in 163 out of the 1128 (14.5%) positive samples. We detected significant decrease of the respiratory syncytial virus-infection incidence in children with increasing age, while the reverse relationship was observed for influenza viruses. Conclusions We evaluated the distribution of respiratory viruses in children with ARIs and showed the prevalence of respiratory syncytial virus and influenza virus in the etiological structure of infections. This study is important for the improvement and optimization of diagnostic tactics, control and prevention of the respiratory viral infections.
Collapse
Affiliation(s)
- Olga Kurskaya
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
- * E-mail:
| | - Tatyana Ryabichenko
- Department of Propaedeutic of Childhood Diseases, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Natalya Leonova
- Department of Children’s Diseases, Novosibirsk Children’s Municipal Clinical Hospital №6, Novosibirsk, Russia
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical College, Taian, Shandong, China
| | - Hongtao Bi
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, CAS, Xining, China
| | - Kirill Sharshov
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Eugenia Kazachkova
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Ivan Sobolev
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Elena Prokopyeva
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Tatiana Kartseva
- Department of Propaedeutic of Childhood Diseases, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Alexander Alekseev
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Alexander Shestopalov
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| |
Collapse
|
33
|
Lê BV, Jandrot-Perrus M, Couture C, Checkmahomed L, Venable MC, Hamelin MÈ, Boivin G. Evaluation of anticoagulant agents for the treatment of human metapneumovirus infection in mice. J Gen Virol 2018; 99:1367-1380. [PMID: 30102144 DOI: 10.1099/jgv.0.001135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Thrombin has been demonstrated to be involved in several viral diseases including human metapneumovirus (hMPV) infections. We previously showed that immediate administration of thrombin inhibitor argatroban post-infection protected mice against hMPV disease. This current work aims at determining whether warfarin and heparin, two other anticoagulants inhibiting thrombin formation and activities, may also be used for treatment against hMPV in vivo. We found that immediate injections of argatroban, warfarin or heparin after virus challenge protected mice against hMPV infection, as evidenced by decreased or no mortality, less weight loss, reduced viral load and attenuated inflammation. However, delayed treatments starting 1 day post-infection with argatroban or warfarin almost did not impact the survival whereas delayed treatment with heparin induced an increased mortality during infection. Moreover, these treatments also did not reduce weight loss, viral replication and inflammation. In agreement with these results, thrombin generation was decreased upon immediate anticoagulant treatments but was unaltered upon delayed treatments. Thus, thrombin generation occurs at the onset of hMPV infection and thrombin inhibition may be only useful for the treatment of this disease when initiated in the early stage. In this case, heparin is not recommended because of its reduced efficacy on mortality in infected mice whereas argatroban and warfarin appear as safe and effective drugs for the treatment of hMPV disease. The antiviral and anti-inflammatory effects of argatroban occur via thrombin-dependent pathways whereas the mechanisms by which warfarin exerts its beneficial effects against hMPV infection were not elucidated and need to be further studied.
Collapse
Affiliation(s)
- Ba Vuong Lê
- 1Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| | | | - Christian Couture
- 3Quebec Heart and Lung Institute, Laval University, Quebec City, Quebec, Canada
| | - Liva Checkmahomed
- 1Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| | | | - Marie-Ève Hamelin
- 1Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Guy Boivin
- 1Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
34
|
Lenahan JL, Englund JA, Katz J, Kuypers J, Wald A, Magaret A, Tielsch JM, Khatry SK, LeClerq SC, Shrestha L, Steinhoff MC, Chu HY. Human Metapneumovirus and Other Respiratory Viral Infections during Pregnancy and Birth, Nepal. Emerg Infect Dis 2018; 23. [PMID: 28726613 PMCID: PMC5547777 DOI: 10.3201/eid2308.161358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human metapneumovirus (HMPV) is a respiratory virus that can cause severe lower respiratory tract disease and even death, primarily in young children. The incidence and characteristics of HMPV have not been well described in pregnant women. As part of a trial of maternal influenza immunization in rural southern Nepal, we conducted prospective, longitudinal, home-based active surveillance for febrile respiratory illness during pregnancy through 6 months postpartum. During 2011-2014, HMPV was detected in 55 of 3,693 women (16.4 cases/1,000 person-years). Twenty-five women were infected with HMPV during pregnancy, compared with 98 pregnant women who contracted rhinovirus and 7 who contracted respiratory syncytial virus. Women with HMPV during pregnancy had an increased risk of giving birth to infants who were small for gestational age. An intervention to reduce HMPV febrile respiratory illness in pregnant women may have the potential to decrease risk of adverse birth outcomes in developing countries.
Collapse
|
35
|
Danziger O, Pupko T, Bacharach E, Ehrlich M. Interleukin-6 and Interferon-α Signaling via JAK1-STAT Differentially Regulate Oncolytic versus Cytoprotective Antiviral States. Front Immunol 2018; 9:94. [PMID: 29441069 PMCID: PMC5797546 DOI: 10.3389/fimmu.2018.00094] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/12/2018] [Indexed: 12/17/2022] Open
Abstract
Malignancy-induced alterations to cytokine signaling in tumor cells differentially regulate their interactions with the immune system and oncolytic viruses. The abundance of inflammatory cytokines in the tumor microenvironment suggests that such signaling plays key roles in tumor development and therapy efficacy. The JAK-STAT axis transduces signals of interleukin-6 (IL-6) and interferons (IFNs), mediates antiviral responses, and is frequently altered in prostate cancer (PCa) cells. However, how activation of JAK-STAT signaling with different cytokines regulates interactions between oncolytic viruses and PCa cells is not known. Here, we employ LNCaP PCa cells, expressing (or not) JAK1, activated (or not) with IFNs (α or γ) or IL-6, and infected with RNA viruses of different oncolytic potential (EHDV-TAU, hMPV-GFP, or HIV-GFP) to address this matter. We show that in JAK1-expressing cells, IL-6 sensitized PCa cells to viral cell death in the presence or absence of productive infection, with dependence on virus employed. Contrastingly, IFNα induced a cytoprotective antiviral state. Biochemical and genetic (knockout) analyses revealed dependency of antiviral state or cytoprotection on STAT1 or STAT2 activation, respectively. In IL-6-treated cells, STAT3 expression was required for anti-proliferative signaling. Quantitative proteomics (SILAC) revealed a core repertoire of antiviral IFN-stimulated genes, induced by IL-6 or IFNs. Oncolysis in the absence of productive infection, induced by IL-6, correlated with reduction in regulators of cell cycle and metabolism. These results call for matching the viral features of the oncolytic agent, the malignancy-induced genetic-epigenetic alterations to JAK/STAT signaling and the cytokine composition of the tumor microenvironment for efficient oncolytic virotherapy.
Collapse
Affiliation(s)
- Oded Danziger
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eran Bacharach
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
36
|
Diaz-Dinamarca DA, Ibañez FJ, Soto DA, Soto JA, Cespedes PF, Muena NA, Garate DS, Kalergis AM, Vasquez AE. Immunization with a Mixture of Nucleoprotein from Human Metapneumovirus and AbISCO-100 Adjuvant Reduces Viral Infection in Mice Model. Viral Immunol 2018; 31:306-314. [PMID: 29373084 DOI: 10.1089/vim.2017.0159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The human metapneumovirus (hMPV) is the second leading cause globally of acute infection of the respiratory tract in children, infecting the upper and lower airways. The hMPV may induce an inappropriate Th2-type immune response, which causes severe pulmonary inflammation, leading to the obstruction of airways. Despite its severe epidemiological relevance, no vaccines are currently available for the prevention of hMPV-induced illness. In this investigation, we demonstrated that immunization of mice with the recombinant hMPV nucleoprotein (hMPV-N) mixed with the AbISCO-100 adjuvant reduced viral replication in lungs following challenge with the virus. We found that immunized mice had reduced weight loss, decreased granulocytes in the lung, an increased level of specific nucleoprotein antibodies of IgG1 and IgG2a-isotypes, and a local profile of Th1/Th17-type cytokines. Our results suggest that immunization with the hMPV-N and the AbISCO-100 adjuvant induces a reduction of viral infection and could be considered for the development of an hMPV vaccine.
Collapse
Affiliation(s)
- Diego A Diaz-Dinamarca
- 1 Sección de Biotecnología, Departamento de Salud Ambiental, Instituto de Salud Pública de Chile , Santiago, Chile .,2 Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy , Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco J Ibañez
- 1 Sección de Biotecnología, Departamento de Salud Ambiental, Instituto de Salud Pública de Chile , Santiago, Chile .,2 Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy , Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel A Soto
- 1 Sección de Biotecnología, Departamento de Salud Ambiental, Instituto de Salud Pública de Chile , Santiago, Chile
| | - Jorge A Soto
- 1 Sección de Biotecnología, Departamento de Salud Ambiental, Instituto de Salud Pública de Chile , Santiago, Chile .,2 Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy , Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo F Cespedes
- 2 Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy , Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás A Muena
- 1 Sección de Biotecnología, Departamento de Salud Ambiental, Instituto de Salud Pública de Chile , Santiago, Chile
| | - Diego S Garate
- 1 Sección de Biotecnología, Departamento de Salud Ambiental, Instituto de Salud Pública de Chile , Santiago, Chile
| | - Alexis M Kalergis
- 2 Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy , Pontificia Universidad Católica de Chile, Santiago, Chile .,3 Facultad de Medicina, Departamento de Endocrinología, Pontificia Universidad Católica de Chile , Santiago, Chile
| | - Abel E Vasquez
- 1 Sección de Biotecnología, Departamento de Salud Ambiental, Instituto de Salud Pública de Chile , Santiago, Chile .,4 Universidad San Sebastián , Facultad de Ciencia, Escuela de Bioquímica, Providencia, Santiago, Chile
| |
Collapse
|
37
|
Cheemarla NR, Guerrero-Plata A. Human Metapneumovirus Attachment Protein Contributes to Neutrophil Recruitment into the Airways of Infected Mice. Viruses 2017; 9:v9100310. [PMID: 29065494 PMCID: PMC5691661 DOI: 10.3390/v9100310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/26/2017] [Accepted: 10/21/2017] [Indexed: 12/22/2022] Open
Abstract
Human Metapneumovirus (HMPV) is a leading respiratory pathogen that causes lower respiratory tract infections worldwide. Acute HMPV infection induces an exacerbated inflammatory neutrophilic response leading to bronchiolitis and pneumonia. However, the mechanism by which the virus regulates neutrophil infiltration into the airways still remains unexplored. In this work, we used an experimental mouse model of HMPV infection to demonstrate that the attachment (G) protein of HMPV contributes to the recruitment of neutrophils into the airways and modulate the production of neutrophil chemoattractants and Type I IFN responses, specifically IFN-α. These findings provide the first evidence that the HMPV G protein contributes to the in vivo neutrophilic response to HMPV infection and furthers our understanding on virus induced inflammatory responses in the airways.
Collapse
Affiliation(s)
- Nagarjuna R Cheemarla
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Antonieta Guerrero-Plata
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
- Center for Experimental Infectious Disease Research; Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
38
|
Tzannou I, Nicholas SK, Lulla P, Aguayo-Hiraldo PI, Misra A, Martinez CA, Machado AA, Orange JS, Piedra PA, Vera JF, Leen AM. Immunologic Profiling of Human Metapneumovirus for the Development of Targeted Immunotherapy. J Infect Dis 2017; 216:678-687. [PMID: 28934427 PMCID: PMC5853664 DOI: 10.1093/infdis/jix358] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/24/2017] [Indexed: 12/25/2022] Open
Abstract
Human metapneumovirus (hMPV) is a respiratory virus detected in ≥9% of allogeneic hematopoietic stem cell transplant (HSCT) recipients, in whom it can cause significant morbidity and mortality. Given the lack of effective antivirals, we investigated the potential for immunotherapeutic intervention, using adoptively transferred T cells. Thus, we characterized the cellular immune response to the virus and identified F, N, M2-1, M, and P as immunodominant target antigens. Reactive T cells were polyclonal (ie, they expressed CD4 and CD8), T-helper type 1 polarized, and polyfunctional (ie, they produced interferon γ, tumor necrosis factor α, granulocyte-macrophage colony-stimulating factor, and granzyme B), and they were able to kill autologous antigen-loaded targets. The detection of hMPV-specific T cells in HSCT recipients who endogenously controlled active infections support the clinical importance of T-cell immunity in mediating protective antiviral effects. Our results demonstrate the feasibility of developing an immunotherapy for immunocompromised patients with uncontrolled infections.
Collapse
Affiliation(s)
- Ifigeneia Tzannou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital
| | - Sarah K Nicholas
- Solid Organ Transplant Immunology, Section of Immunology, Allergy and Rheumatology
| | - Premal Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital
| | - Paibel I Aguayo-Hiraldo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital
| | - Anisha Misra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine
| | - Caridad A Martinez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital
| | - Annette A Machado
- Department of Molecular Virology and Microbiology, Baylor College of Medicine
| | - Jordan S Orange
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine
| | - Juan F Vera
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital
| |
Collapse
|
39
|
Dubois J, Cavanagh MH, Terrier O, Hamelin MÈ, Lina B, Shi R, Rosa-Calatrava M, Boivin G. Mutations in the fusion protein heptad repeat domains of human metapneumovirus impact on the formation of syncytia. J Gen Virol 2017; 98:1174-1180. [PMID: 28613142 DOI: 10.1099/jgv.0.000796] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human metapneumovirus (HMPV) is an important cause of respiratory tract infections. The mechanism by which its fusion (F) protein is responsible for variable cytopathic effects in vitro remains unknown. We aligned the F sequences of the poorly fusogenic B2/CAN98-75 strain and the hyperfusogenic A1/C-85473 strain and identified divergent residues located in the two functional heptad repeats domains (HRA and HRB). We generated recombinant viruses by inserting the mutations N135T-G139N-T143K-K166E-E167D in HRA and/or K479R-N482S in HRB, corresponding to swapped sequences from C-85473, into CAN98-75 background and investigated their impact on in vitro phenotype and fusogenicity. We demonstrated that the five HRA mutations enhanced the fusogenicity of the recombinant rCAN98-75 virus, almost restoring the phenotype of the wild-type rC-85473 strain, whereas HRB substitutions alone had no significant effect on cell-cell fusion. Altogether, our results support the importance of the HRA domain for an HMPV-triggered fusion mechanism and identify key residues that modulate syncytium formation.
Collapse
Affiliation(s)
- Julia Dubois
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, Canada.,Laboratoire de Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie CIRI, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Marie-Hélène Cavanagh
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, Canada
| | - Olivier Terrier
- Laboratoire de Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie CIRI, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Marie-Ève Hamelin
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, Canada
| | - Bruno Lina
- Laboratoire de Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie CIRI, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Hospices Civils de Lyon, Centre National de Référence Virus Influenzae France Sud, Laboratoire de Virologie, Groupement Hospitalier Nord, F-69317, Lyon, France
| | - Rong Shi
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugene-Marchand, Québec, Canada.,Département de Biochimie, de Microbiologie et de Bio-informatique, PROTEO, Université Laval, Québec, Canada
| | - Manuel Rosa-Calatrava
- Laboratoire de Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie CIRI, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Guy Boivin
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, Canada
| |
Collapse
|
40
|
Márquez-Escobar VA. Current developments and prospects on human metapneumovirus vaccines. Expert Rev Vaccines 2017; 16:419-431. [PMID: 28116910 DOI: 10.1080/14760584.2017.1283223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Human metapneumovirus (hMPV) has become one of the major pathogens causing acute respiratory infections (ARI) mainly affecting young children, immunocompromised patients, and the elderly. Currently there are no licensed vaccines against this virus. Areas covered: Since the discovery of hMPV in 2001, many groups have focused on developing vaccines against this pathogen. This review presents the outcomes and perspectives derived from preclinical studies performed in cell cultures and animals as well as the only candidate that has reached evaluation in a clinical trial. Limitations of the current vaccine candidates are discussed and perspectives for the development of plant-based vaccines are analyzed. Expert commentary: Several hMPV vaccine candidates are under development with the potential to progress into clinical trials. In parallel, the molecular farming field offers new opportunities to generate innovative vaccines that will offer several advantages in the fight against hMPV.
Collapse
Affiliation(s)
- Verónica Araceli Márquez-Escobar
- a Facultad de Ciencias Químicas , Universidad Autónoma de San Luis Potosí , Av. Dr. Manuel Nava 6, San Luis Potosí 78210 , SLP , Mexico
| |
Collapse
|
41
|
|
42
|
Affiliation(s)
- Raj D Shah
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, 676 North St. Clair Street, Arkes 14-045, Chicago, IL 60611, USA
| | - Richard G Wunderink
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, 676 North St. Clair Street, Arkes 14-045, Chicago, IL 60611, USA.
| |
Collapse
|
43
|
González AE, Lay MK, Jara EL, Espinoza JA, Gómez RS, Soto J, Rivera CA, Abarca K, Bueno SM, Riedel CA, Kalergis AM. Aberrant T cell immunity triggered by human Respiratory Syncytial Virus and human Metapneumovirus infection. Virulence 2016; 8:685-704. [PMID: 27911218 DOI: 10.1080/21505594.2016.1265725] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human Respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV) are the two major etiological viral agents of lower respiratory tract diseases, affecting mainly infants, young children and the elderly. Although the infection of both viruses trigger an antiviral immune response that mediate viral clearance and disease resolution in immunocompetent individuals, the promotion of long-term immunity appears to be deficient and reinfection are common throughout life. A possible explanation for this phenomenon is that hRSV and hMPV, can induce aberrant T cell responses, which leads to exacerbated lung inflammation and poor T and B cell memory immunity. The modulation of immune response exerted by both viruses include different strategies such as, impairment of immunological synapse mediated by viral proteins or soluble factors, and the induction of pro-inflammatory cytokines by epithelial cells, among others. All these viral strategies contribute to the alteration of the adaptive immunity in order to increase the susceptibility to reinfections. In this review, we discuss current research related to the mechanisms underlying the impairment of T and B cell immune responses induced by hRSV and hMPV infection. In addition, we described the role each virulence factor involved in immune modulation caused by these viruses.
Collapse
Affiliation(s)
- Andrea E González
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Margarita K Lay
- b Departamento de Biotecnología , Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta , Antofagasta , Chile
| | - Evelyn L Jara
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Janyra A Espinoza
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Roberto S Gómez
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Jorge Soto
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Claudia A Rivera
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Katia Abarca
- c Departamento de Pediatría , Facultad de Medicina, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Susan M Bueno
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile.,d INSERM UMR1064 , Nantes , France
| | - Claudia A Riedel
- e Millennium Institute of Immunology and Immunotherapy , Departamento de Ciencias Biológicas , Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello , Santiago , Chile
| | - Alexis M Kalergis
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile.,c Departamento de Pediatría , Facultad de Medicina, Pontificia Universidad Católica de Chile , Santiago , Chile.,f Millennium Institute of Immunology and Immunotherapy , Departamento de Endocrinología , Facultad de Medicina, Pontificia Universidad Católica de Chile , Santiago , Chile
| |
Collapse
|
44
|
Inhibition of Human Metapneumovirus Binding to Heparan Sulfate Blocks Infection in Human Lung Cells and Airway Tissues. J Virol 2016; 90:9237-50. [PMID: 27489270 DOI: 10.1128/jvi.01362-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/27/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human metapneumovirus (HMPV), a recently discovered paramyxovirus, infects nearly 100% of the world population and causes severe respiratory disease in infants, the elderly, and immunocompromised patients. We previously showed that HMPV binds heparan sulfate proteoglycans (HSPGs) and that HMPV binding requires only the viral fusion (F) protein. To characterize the features of this interaction critical for HMPV binding and the role of this interaction in infection in relevant models, we utilized sulfated polysaccharides, heparan sulfate mimetics, and occluding compounds. Iota-carrageenan demonstrated potent anti-HMPV activity by inhibiting binding to lung cells mediated by the F protein. Furthermore, analysis of a minilibrary of variably sulfated derivatives of Escherichia coli K5 polysaccharide mimicking the HS structure revealed that the highly O-sulfated K5 polysaccharides inhibited HMPV infection, identifying a potential feature of HS critical for HMPV binding. The peptide dendrimer SB105-A10, which binds HS, reduced binding and infection in an F-dependent manner, suggesting that occlusion of HS at the target cell surface is sufficient to prevent infection. HMPV infection was also inhibited by these compounds during apical infection of polarized airway tissues, suggesting that these interactions take place during HMPV infection in a physiologically relevant model. These results reveal key features of the interaction between HMPV and HS, supporting the hypothesis that apical HS in the airway serves as a binding factor during infection, and HS modulating compounds may serve as a platform for potential antiviral development. IMPORTANCE Human metapneumovirus (HMPV) is a paramyxovirus that causes respiratory disease worldwide. It has been previously shown that HMPV requires binding to heparan sulfate on the surfaces of target cells for attachment and infection. In this study, we characterize the key features of this binding interaction using heparan sulfate mimetics, identify an important sulfate modification, and demonstrate that these interactions occur at the apical surface of polarized airway tissues. These findings provide insights into the initial binding step of HMPV infection that has potential for antiviral development.
Collapse
|
45
|
Phosphorylation of Human Metapneumovirus M2-1 Protein Upregulates Viral Replication and Pathogenesis. J Virol 2016; 90:7323-7338. [PMID: 27252537 DOI: 10.1128/jvi.00755-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/25/2016] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Human metapneumovirus (hMPV) is a major causative agent of upper- and lower-respiratory-tract infections in infants, the elderly, and immunocompromised individuals worldwide. Like all pneumoviruses, hMPV encodes the zinc binding protein M2-1, which plays important regulatory roles in RNA synthesis. The M2-1 protein is phosphorylated, but the specific role(s) of the phosphorylation in viral replication and pathogenesis remains unknown. In this study, we found that hMPV M2-1 is phosphorylated at amino acid residues S57 and S60. Subsequent mutagenesis found that phosphorylation is not essential for zinc binding activity and oligomerization, whereas inhibition of zinc binding activity abolished the phosphorylation and oligomerization of the M2-1 protein. Using a reverse genetics system, recombinant hMPVs (rhMPVs) lacking either one or both phosphorylation sites in the M2-1 protein were recovered. These recombinant viruses had a significant decrease in both genomic RNA replication and mRNA transcription. In addition, these recombinant viruses were highly attenuated in cell culture and cotton rats. Importantly, rhMPVs lacking phosphorylation in the M2-1 protein triggered high levels of neutralizing antibody and provided complete protection against challenge with wild-type hMPV. Collectively, these data demonstrated that phosphorylation of the M2-1 protein upregulates hMPV RNA synthesis, replication, and pathogenesis in vivo IMPORTANCE The pneumoviruses include many important human and animal pathogens, such as human respiratory syncytial virus (hRSV), hMPV, bovine RSV, and avian metapneumovirus (aMPV). Among these viruses, hRSV and hMPV are the leading causes of acute respiratory tract infection in infants and children. Currently, there is no antiviral or vaccine to combat these diseases. All known pneumoviruses encode a zinc binding protein, M2-1, which is a transcriptional antitermination factor. In this work, we found that phosphorylation of M2-1 is essential for virus replication and pathogenesis in vivo Recombinant hMPVs lacking phosphorylation in M2-1 exhibited limited replication in the upper and lower respiratory tract and triggered strong protective immunity in cotton rats. This work highlights the important role of M2-1 phosphorylation in viral replication and that inhibition of M2-1 phosphorylation may serve as a novel approach to develop live attenuated vaccines as well as antiviral drugs for pneumoviruses.
Collapse
|
46
|
Gu W, Wang Y, Hao C, Zhang X, Yan Y, Chen Z, Jiang W, Shao X, Ji W. Elevated Serum Levels of Thymic Stromal Lymphopoietin in Wheezing Children Infected with Human Metapneumovirus. Jpn J Infect Dis 2016; 70:161-166. [PMID: 27357989 DOI: 10.7883/yoken.jjid.2016.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Our aim was to study the epidemiology and clinical manifestations of human metapneumovirus (hMPV) infection in children in the Suzhou area, China, and to investigate the effect of thymic stromal lymphopoietin (TSLP) on wheezing in hMPV-infected children. The study included 13,533 children with respiratory tract infections who were admitted to the Children's Hospital of Soochow University between January 2009 and December 2014. Clinical data were recorded. Plasma levels of TSLP, interleukin (IL)-4, and IL-2 were compared among 35 wheezing children with single hMPV infection, 15 non-wheezing children with hMPV infection, and 35 wheezing children with other viral infections. The annual rates of hMPV infection from 2009 to 2014 were 2.33%, 6.41%, 3.29%, 3.52%, 0.23%, and 0.64%, respectively, peaking in 2010. The number of CD3-/CD16+/CD56+ cells was significantly lower in inpatients with hMPV infection than that in patients with other viral infections. Serum levels of TSLP and IL-4 in wheezing children with hMPV infection were significantly higher than the levels in the other 2 groups. hMPV is a common viral pathogen that causes respiratory infections in children in Suzhou, but annual rates have declined since 2010. Infection with hMPV may affect cell-mediated immunity. Serum TSLP levels were elevated after hMPV infection.
Collapse
Affiliation(s)
- Wenjing Gu
- Department of Respiratory Medicine, Children's Hospital of Soochow University
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Li X, Guo L, Kong M, Su X, Yang D, Zou M, Liu Y, Lu L. Design and Evaluation of a Multi-Epitope Peptide of Human Metapneumovirus. Intervirology 2016; 58:403-12. [PMID: 27096202 DOI: 10.1159/000445059] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/23/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES No licensed vaccines or therapeutic agents for human metapneumovirus (hMPV) infection exist to date. We aimed to construct a multi-epitope peptide (MEP) of hMPV to show promising results for epitope-based vaccine development. METHODS Six independent algorithms were screened to predict B-cell epitopes of hMPV, and three algorithms were used to predict cytotoxic T lymphocyte and T helper (Th) lymphocyte epitopes. Predicted epitopes were assembled in series with the spacers GPGPG and KK introduced, termed MEP. Recombinant mep genes were inserted into pET32a(+) plasmid and expressed in Escherichia coli strain BL21 (DE3). BALB/c mice were immunized with MEP with different adjuvants. Antibody titer, lymphocyte proliferation, cytotoxic T lymphocyte (CTL) activity and splenocyte cytokines were detected 2 weeks later after the last immunization. Microneutralization assay was used to detect neutralizing antibodies. RESULTS Six B-cell epitopes, four CTL epitopes and two Th epitopes were screened to construct the mep gene. Expressed MEP induced >104 antibodies in BALB/c mice, and produced anti-MEP antibody reacting with hMPV strains specifically as detected in indirect fluorescent assay (the titer was 160). The lymphocyte proliferation index, CTL activity and splenocyte cytokines of the MEP immunization groups were higher than in the control group (p < 0.05). Both IgG1 and IgG2a antibodies could be detected in the different groups, and balanced Th1/Th2 cytokines were secreted by splenocytes in these groups. The mean neutralizing titers of the MEP+CpG ODN, MEP+Alum and MEP+Alum+ CpG ODN groups were 87 (95% CI 50-126), 93 (95% CI 67-121) and 96 (95% CI 69-147), respectively. CONCLUSION MEP of hMPV elicited both strong humoral immunity and cell-mediated immunity in mice. The anti-MEP serum could neutralize hMPV infection in vitro. Joint use of CpG ODN and aluminum hydroxide adjuvants obtained the best immune effects. This study may contribute to hMPV epitope-based vaccine development.
Collapse
Affiliation(s)
- Xiaoyan Li
- Tianjin Centers for Disease Control and Prevention, Tianjin, PR China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Human metapneumovirus (HMPV) has been described as an important etiologic agent of upper and lower respiratory tract infections, especially in young children and the elderly. Most of school-aged children might be introduced to HMPVs, and exacerbation with other viral or bacterial super-infection is common. However, our understanding of the molecular evolution of HMPVs remains limited. To address the comprehensive evolutionary dynamics of HMPVs, we report a genome-wide analysis of the eight genes (N, P, M, F, M2, SH, G, and L) using 103 complete genome sequences. Phylogenetic reconstruction revealed that the eight genes from one HMPV strain grouped into the same genetic group among the five distinct lineages (A1, A2a, A2b, B1, and B2). A few exceptions of phylogenetic incongruence might suggest past recombination events, and we detected possible recombination breakpoints in the F, SH, and G coding regions. The five genetic lineages of HMPVs shared quite remote common ancestors ranging more than 220 to 470 years of age with the most recent origins for the A2b sublineage. Purifying selection was common, but most protein genes except the F and M2-2 coding regions also appeared to experience episodic diversifying selection. Taken together, these suggest that the five lineages of HMPVs maintain their individual evolutionary dynamics and that recombination and selection forces might work on shaping the genetic diversity of HMPVs.
Collapse
|
49
|
Pancham K, Sami I, Perez GF, Huseni S, Kurdi B, Rose MC, Rodriguez-Martinez CE, Nino G. Human Metapneumovirus Infection is Associated with Severe Respiratory Disease in Preschool Children with History of Prematurity. Pediatr Neonatol 2016; 57:27-34. [PMID: 26117550 PMCID: PMC5544944 DOI: 10.1016/j.pedneo.2015.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/12/2015] [Accepted: 03/11/2015] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Human metapneumovirus (HMPV) is a recently discovered respiratory pathogen of the family Paramyxoviridae, the same family as that of respiratory syncytial virus (RSV). Premature children are at high risk of severe RSV infections, however, it is unclear whether HMPV infection is more severe in hospitalized children with a history of severe prematurity. METHODS We conducted a retrospective analysis of the clinical respiratory presentation of all polymerase chain reaction-confirmed HMPV infections in preschool-age children (≤5 years) with and without history of severe prematurity (<32 weeks gestation). Respiratory distress scores were developed to examine the clinical severity of HMPV infections. Demographic and clinical variables were obtained from reviewing electronic medical records. RESULTS A total of 571 preschool children were identified using polymerase chain reaction-confirmed viral respiratory tract infection during the study period. HMPV was identified as a causative organism in 63 cases (11%). Fifty-eight (n = 58) preschool-age children with HMPV infection were included in this study after excluding those with significant comorbidities. Our data demonstrated that 32.7% of children admitted with HMPV had a history of severe prematurity. Preschool children with a history of prematurity had more severe HMPV disease as illustrated by longer hospitalizations, new or increased need for supplemental O2, and higher severity scores independently of age, ethnicity, and history of asthma. CONCLUSION Our study suggests that HMPV infection causes significant disease burden among preschool children with a history of prematurity leading to severe respiratory infections and increasing health care resource utilization due to prolonged hospitalizations.
Collapse
Affiliation(s)
- Krishna Pancham
- Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, USA
| | - Iman Sami
- Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, USA
| | - Geovanny F Perez
- Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, USA
| | - Shehlanoor Huseni
- Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, USA
| | - Bassem Kurdi
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Mary C Rose
- Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, USA; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Department of Integrative Systems Biology and Center for Genetic Medicine Research, George Washington University, Washington, DC, USA; Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA
| | - Carlos E Rodriguez-Martinez
- Department of Pediatrics, School of Medicine, Universidad Nacional de Colombia, Bogota, Colombia; Department of Pediatric Pulmonology and Pediatric Critical Care Medicine, School of Medicine, Universidad El Bosque, Bogota, Colombia; Research Unit, Military Hospital of Colombia, Bogota, Colombia
| | - Gustavo Nino
- Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, USA; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Department of Integrative Systems Biology and Center for Genetic Medicine Research, George Washington University, Washington, DC, USA; Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA.
| |
Collapse
|
50
|
Kong W, Wang Y, Zhu H, Lin X, Yu B, Hu Q, Yang X, Guo D, Peng J, Zhou D. Circulation of human metapneumovirus among children with influenza-like illness in Wuhan, China. J Med Virol 2016; 88:774-81. [PMID: 26488078 PMCID: PMC7166970 DOI: 10.1002/jmv.24411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 01/25/2023]
Abstract
Human metapneumovirus (HMPV) is a worldwide distributed pathogen of the respiratory tract. The objectives of this study were to identify HMPV infections among children with influenza‐like illness (ILI) in Wuhan and to assess circulation patterns and molecular diversity of HMPV in this area. From July 2008 to December 2013, a total of 3,883 throat swab samples were collected from ILI outpatients under 16 years old. HMPV RNA was detected in 171 samples (4.40%). All the four subtypes of HMPV were identified, among which A2 was the most common subtype (61/145, 42.1%), followed by B1, B2, and A1. During the study period, HMPV circulation presented a biennial alternation between high and low incidence in Wuhan and the seasonal peak also shift between winter and spring in two continuous seasons. Subtype A2, B1, and B2 co‐circulated during the study period, with genotype A prevailing in epidemic season 2008–2009 and 2012–2013, and genotype B prevailing during other periods. This large‐scale analysis of HMPV prevalence in ILI outpatient children improves the understanding of local HMPV circulation patterns and provides molecular epidemic evidence for comparative analysis of HMPV infection. J. Med. Virol. 88:774–781, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wenhua Kong
- Department of Virology, Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei, China
| | - Ying Wang
- Department of Virology, Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei, China
| | - Honghao Zhu
- Department of Virology, Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei, China
| | - Xinming Lin
- Department of Virology, Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei, China
| | - Bin Yu
- Institute of Infectious Diseases, Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei, China
| | - Quan Hu
- Institute of Infectious Diseases, Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei, China
| | - Xiaobing Yang
- Institute of Infectious Diseases, Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei, China
| | - Deyin Guo
- State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, China
| | - Jinsong Peng
- Department of Virology, Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei, China
| | - Dunjin Zhou
- Institute of Infectious Diseases, Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei, China
| |
Collapse
|