1
|
Reja S. A simple, scalable protocol for the synthesis of ricinoleic acid-functionalised superparamagnetic nanoparticles with tunable size, shape, and hydrophobic or hydrophilic properties. NANOSCALE ADVANCES 2025:d5na00150a. [PMID: 40417165 PMCID: PMC12096511 DOI: 10.1039/d5na00150a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 05/05/2025] [Indexed: 05/27/2025]
Abstract
Vegetable oils such as oleic acid have been widely used in the synthesis of nanomaterials as they are environmentally benign, cheap, and biodegradable. Ricinoleic acid (RA), which differs from oleic acid by the presence of an additional hydroxyl group, has surprisingly remained unexplored in the preparation of metal oxide nanoparticles, although it offers the advantage over oleic acid of easy functionalization due to the presence of the hydroxyl group. Here is a simple one-pot procedure for the synthesis of a variety of superparamagnetic nanoparticles, iron oxides and ferrites, using RA both as a precursor complexing agent and as a capping agent outlined. This procedure overcomes the challenges associated with the traditional thermal decomposition method, which demands separate precursor preparation and purification steps, thus promoting a simple yet scalable economic production of various magnetic nanoparticles. Minor changes in the reaction conditions allowed for the production of nanoparticles with different sizes, ranging from 5 to 17 nm, as well as different shapes, spherical and cuboid. Iron oxide nanospheres with an average particle size of 10 nm were superparamagnetic at room temperature with a saturation magnetization of 41 emu g-1. The as-prepared RA-coated nanoparticles are hydrophobic and dispersible in non-polar solvents but may easily be rendered hydrophilic and water dispersible; epoxidation, followed by alkaline ring-opening, produced hydroxylated nanoparticles with a positive zeta potential of 31 eV, whereas exchange of the capping RA with nitrilotriacetic acid (NTA) gave nanoparticles with a negative zeta potential of -25 eV. The present study highlights the uniqueness of using RA in the preparation of magnetic nanoparticles; apart from the ease and economics of scaling, it offers the possibility of the nanoparticles being either hydrophobic or hydrophilic.
Collapse
Affiliation(s)
- Sohel Reja
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore Karnataka 560012 India
| |
Collapse
|
2
|
Khan SK, Dutta J, Rather MA, Ahmad I, Nazir J, Shah S, Ballal S, Garg A, Imam F, Kumar A. Assessing the Combined Toxicity of Silver and Copper Nanoparticles in Rainbow Trout (Oncorhynchus mykiss) Fingerlings. Biol Trace Elem Res 2025:10.1007/s12011-025-04607-z. [PMID: 40205257 DOI: 10.1007/s12011-025-04607-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/30/2025] [Indexed: 04/11/2025]
Abstract
The growing use of silver (Ag) and copper (Cu) nanoparticles (NPs) for their antimicrobial properties has raised environmental health concerns due to their coexistence in aquatic ecosystems. This study assessed the combined physiological and molecular toxicity of AgNPs and CuNPs in rainbow trout (Oncorhynchus mykiss) exposed to sub-lethal concentrations of the NP mixture for 21 days. Fish were exposed to varying concentrations of co-exposure of AgNPs and CuNPs (T1 group 0.2 AgNPs + 0.2 mg/L CuNPs, T2 group 0.8 AgNPs + 0.6 mg/L CuNPs, and T3 group 1.4 AgNPs + 1.0 mg/L CuNPs). Behavioral alterations were evident, accompanied by a significant (p < 0.05) reduction in hemoglobin, red blood cell count, and hematocrit levels, while white blood cell counts increased, indicating immune activation. Serum biochemical analyses revealed metabolic disturbances linked to oxidative stress and physiological imbalance. Enzymatic activities in gills and liver showed a dynamic response, with elevated catalase (CAT) and superoxide dismutase (SOD) levels at T2 and T3 after 14 days, followed by a decline by day 21. Glutathione S-transferase (GST) activity increased in gills at T2 and T3 after 7 days and in the liver at T3 after 14 days, while lipid peroxidation (LPO) significantly increased in gills at T3 after 7 days and in the liver at T2 and T3 after 14 days. Molecular analysis confirmed upregulation of oxidative stress genes (SOD1, CAT) and inflammatory markers (HSP70, IL- 1β). Histopathological examination revealed gill damage, including lamellar fusion and hyperplasia, and liver degeneration, such as hepatocyte vacuolation and necrosis, with the most severe effects observed at T3. These findings highlight dose-dependent toxicity and oxidative damage caused by the AgNPs-CuONPs mixture, emphasizing its potential physiological and molecular impacts on aquatic organisms.
Collapse
Affiliation(s)
- Saba Khursheed Khan
- Department of Zoology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-E-Kashmir University of Agricultural Science and Technology, Kashmir, India, 190006
| | - Joydeep Dutta
- Department of Zoology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411.
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-E-Kashmir University of Agricultural Science and Technology, Kashmir, India, 190006.
| | - Ishtiyaq Ahmad
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-E-Kashmir University of Agricultural Science and Technology, Kashmir, India, 190006
| | - Junaid Nazir
- Department of Clinical Biochemistry, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Showkat Shah
- Department of Veterinary Pathology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, India, 190006
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Akshay Garg
- Nanaji Deshmukh Veterinary Science University, Jabalpur, 482004, India
| | - Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box: 2457, 11451, Riyadh, KSA, Saudi Arabia
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Ekaterinburg, 620002, Russia
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
- Department of Mechanical Engineering and Renewable Energy, Technical Engineering College, The Islamic University, Najaf, Iraq
| |
Collapse
|
3
|
Gautam K, Singh H, Sinha AK. Nanotechnology in Plant Nanobionics: Mechanisms, Applications, and Future Perspectives. Adv Biol (Weinh) 2025; 9:e2400589. [PMID: 39936866 DOI: 10.1002/adbi.202400589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/04/2025] [Indexed: 02/13/2025]
Abstract
Plants are vital to ecosystems and human survival, possessing intricate internal and inter-plant signaling networks that allow them to adapt quickly to changing environments and maintain ecological balance. The integration of engineered nanomaterials (ENMs) with plant systems has led to the emergence of plant nanobionics, a field that holds the potential to enhance plant capabilities significantly. This integration may result in improved photosynthesis, increased nutrient uptake, and accelerated growth and development. Plants treated with ENMs can be stress mitigators, pollutant detectors, environmental sensors, and even light emitters. This review explores recent advancements in plant nanobionics, focusing on nanoparticle (NP) synthesis, adhesion, uptake, transport, fate, and application in enhancing plant physiological functioning, stress mitigation, plant health monitoring, energy production, environmental sensing, and overall plant growth and productivity. Potential research directions and challenges in plant nanobionics are highlighted, and how material optimization and innovation are propelling the growth in the field of smart agriculture, pollution remediation, and energy/biomass production are discussed.
Collapse
Affiliation(s)
- Kajal Gautam
- Department of Chemistry, School of advanced Engineering, UPES, Dehradun, India
| | - Hukum Singh
- Plant Physiology, Genetics and Tree Improvement Division, Forest Research institute (FRI), Dehradun, India
| | - A K Sinha
- Department of Physics, School of advanced Engineering, UPES, Dehradun, India
| |
Collapse
|
4
|
Vysakh VG, Sukumaran S, Gopalakrishnan A. Evaluating the effects of zinc oxide nanoparticles on a sentinel aquatic invertebrate species: Transcriptomic analysis and potential implications for ecosystem health. MARINE POLLUTION BULLETIN 2025; 212:117570. [PMID: 39824139 DOI: 10.1016/j.marpolbul.2025.117570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
The widespread use of zinc oxide nanoparticles (ZnO NPs) in various products raises significant ecological concerns due to their potential toxic effects in aquatic environments. This study employed the Asian green mussel (Perna viridis) as a model to explore the molecular and ecological risks of ZnO NP exposure using transcriptomics. Mussels exposed to ZnO NPs (5, 10, and 15 mg/L) for 28 days showed significant gene expression changes in gill tissues, affecting immune response, calcium homeostasis, and cellular stress. Disrupted pathways such as FOXO, Wnt, and TGFβ reveal complex toxicity mechanisms. These findings provide crucial insights into the environmental impact of nanoparticle pollution, emphasizing the need for stringent regulations. Furthermore, the shared molecular pathways suggest that similar mechanisms may occur in humans, highlighting potential health risks associated with nanoparticle exposure.
Collapse
Affiliation(s)
- V G Vysakh
- Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Post Box No 1603, Ernakulam North PO., Kochi 682018, Kerala, India; Mangalore University. Mangalagangotri, Mangalore 574199, Karnataka, India
| | - Sandhya Sukumaran
- Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Post Box No 1603, Ernakulam North PO., Kochi 682018, Kerala, India.
| | - A Gopalakrishnan
- Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Post Box No 1603, Ernakulam North PO., Kochi 682018, Kerala, India
| |
Collapse
|
5
|
Mamidi N, Delgadillo RMV, Sustaita AO, Lozano K, Yallapu MM. Current nanocomposite advances for biomedical and environmental application diversity. Med Res Rev 2025; 45:576-628. [PMID: 39287199 DOI: 10.1002/med.22082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/29/2023] [Accepted: 08/25/2024] [Indexed: 09/19/2024]
Abstract
Nanocomposite materials are emerging as key players in addressing critical challenges in healthcare, energy storage, and environmental remediation. These innovative systems hold great promise in engineering effective solutions for complex problems. Nanocomposites have demonstrated various advantages such as simplicity, versatility, lightweight, and potential cost-effectiveness. By reinforcing synthetic and natural polymers with nanomaterials, a range of nanocomposites have exhibited unique physicochemical properties, biocompatibility, and biodegradability. Current research on nanocomposites has demonstrated promising clinical and translational applications. Over the past decade, the production of nanocomposites has emerged as a critical nano-structuring methodology due to their adaptability and controllable surface structure. This comprehensive review article systematically addresses two principal domains. A comprehensive survey of metallic and nonmetallic nanomaterials (nanofillers), elucidating their efficacy as reinforcing agents in polymeric matrices. Emphasis is placed on the methodical design and engineering principles governing the development of functional nanocomposites. Additionally, the review provides an exhaustive examination of recent noteworthy advancements in industrial, environmental, biomedical, and clinical applications within the realms of nanocomposite materials. Finally, the review concludes by highlighting the ongoing challenges facing nanocomposites in a wide range of applications.
Collapse
Affiliation(s)
- Narsimha Mamidi
- School of Pharmacy, Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Ramiro M V Delgadillo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Alan O Sustaita
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Karen Lozano
- Mechanical Engineering Department, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| |
Collapse
|
6
|
Li Y, Chen B, Yang S, Jiao Z, Zhang M, Yang Y, Gao Y. Advances in environmental pollutant detection techniques: Enhancing public health monitoring and risk assessment. ENVIRONMENT INTERNATIONAL 2025; 197:109365. [PMID: 40101528 DOI: 10.1016/j.envint.2025.109365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
Accurate detection and monitoring of environmental pollutants are of paramount importance for disease prevention and public health. In recent years, the ever-expanding human activities and industrial production have given rise to a sharp increase in the complexity and variety of these pollutants, which pose significant threats to human well - being. Environmental pollutants stem from multiple sources, such as heavy metals, persistent organic pollutants, inorganic non - metallic pollutants, emerging pollutants, and biological contaminants. Traditional detection technologies, though valuable for their sensitivity and accuracy, are constrained by complex sample preparation, poor selectivity, and the absence of standardized detection methods. On the other hand, emerging technologies, including nanotechnology, molecular detection methods, biosensors, Surface-Enhanced Raman Spectroscopy (SERS), multi-omics, and big data analysis, offer promising solutions for rapid and sensitive pollutant detection. The establishment of environmental monitoring networks and data - sharing platforms further enhances real - time pollutant monitoring and provides solid data support for public health initiatives. Nonetheless, challenges persist, including data integration, exposure assessment, and the development of cost-effective and portable detection solutions. Future progress in interdisciplinary approaches and technology integration will be crucial for advancing environmental pollutant detection and facilitating comprehensive disease prevention. This review systematically classifies environmental pollutants and showcases the latest advancements in detection technologies, offering critical insights for environmental monitoring and public health protection.
Collapse
Affiliation(s)
- Yang Li
- College of Pharmacy, Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Heilongjiang 150081, PR China; Heilongjiang Eye Hospital, Harbin, 150001, PR China; Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University, Zhejiang, 310009, PR China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China; Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, Penttikaiterankatu 1, 90570, Oulu, Finland; Department of Clinical Laboratory Diagnosis, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150006, PR China.
| | - Biqing Chen
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Shuaifei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China.
| | - Zhe Jiao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China.
| | - Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China.
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China.
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China.
| |
Collapse
|
7
|
Mintis DG, Cheimarios N, Tsoumanis A, Papadiamantis AG, van den Brink NW, van Lingen HJ, Melagraki G, Lynch I, Afantitis A. NanoBioAccumulate: Modelling the uptake and bioaccumulation of nanomaterials in soil and aquatic invertebrates via the Enalos DIAGONAL Cloud Platform. Comput Struct Biotechnol J 2024; 25:243-255. [PMID: 39526294 PMCID: PMC11550214 DOI: 10.1016/j.csbj.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 11/16/2024] Open
Abstract
NanoBioAccumulate is a free-to-use web-based tool hosted on the Enalos DIAGONAL Cloud Platform (https://www.enaloscloud.novamechanics.com/diagonal/pbpk/) that provides users with the capability to model and predict the uptake and bioaccumulation of nanomaterials (NMs) by soil and aquatic invertebrates using two common first-order one-compartment biokinetic models. NanoBioAccumulate offers an approach for comprehensively analyzing the kinetics of different forms of NMs via a nonlinear fitting feature, integrating them with environmental fate models, and considering important physiological processes. NanoBioAccumulate overcomes the constraint of requiring prior knowledge of kinetic rate constants associated with the biokinetic models and eliminates the need for external statistical analysis software as it quantifies the kinetic rate constants and other constants through the application of nonlinear regression, using user-provided experimental data. Furthermore, NanoBioAccumulate incorporates statistical analysis measures like the adjusted R-squared and the bias-corrected Akaike information criterion, allowing for assessment of the goodness-of-fit of the two different biokinetic models, assisting in the identification of the best-performing model for a specific nanoform and its uptake kinetics by a specific invertebrate. The tool also includes model scenarios, retrieved from literature, which involve examining the exposure of soil and aquatic invertebrates to various types of NMs such as TiO2, SiO2, C60, graphene, graphene oxide (GO), Au, Ag and its ionic control AgNO3. These model scenarios aim to enhance understanding of the uptake and elimination rates exhibited by different NM-species. NanoBioAccumulate features advanced integration capabilities, enabled by an extensive Application Programming Interface (API). This functionality promotes efficient data exchange and interoperability with other software and web applications, significantly expanding its utility in research, regulatory risk assessment and environmental surveillance and monitoring contexts. The inclusion of a user-friendly Graphical User Interface (GUI) in NanoBioAccumulate greatly improves the overall user experience by simplifying complex tasks and eliminating the need for programming proficiency, thereby expanding the tool's applicability to a diverse range of users across various fields such as environmental research, monitoring, and regulation.
Collapse
Affiliation(s)
- Dimitris G. Mintis
- NovaMechanics Ltd., Nicosia 1070, Cyprus
- Entelos Institute, Larnaca 6059, Cyprus
| | - Nikolaos Cheimarios
- NovaMechanics Ltd., Nicosia 1070, Cyprus
- Entelos Institute, Larnaca 6059, Cyprus
| | - Andreas Tsoumanis
- NovaMechanics Ltd., Nicosia 1070, Cyprus
- Entelos Institute, Larnaca 6059, Cyprus
| | - Anastasios G. Papadiamantis
- NovaMechanics Ltd., Nicosia 1070, Cyprus
- Entelos Institute, Larnaca 6059, Cyprus
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | - Henk J. van Lingen
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherland
| | - Georgia Melagraki
- Division of Physical Sciences and Applications, Hellenic Military Academy, Vari 16672, Greece
| | - Iseult Lynch
- Entelos Institute, Larnaca 6059, Cyprus
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Antreas Afantitis
- NovaMechanics Ltd., Nicosia 1070, Cyprus
- Entelos Institute, Larnaca 6059, Cyprus
- NovaMechanics MIKE, Piraeus 18545, Greece
| |
Collapse
|
8
|
Rana V, Dani U, Shah A. Environmental toxicity assessment of engineered nanoparticles manifest histo-hemato alterations to fresh water fish. Nanotoxicology 2024; 18:645-660. [PMID: 39578698 DOI: 10.1080/17435390.2024.2423653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
The present study rigorously examined the toxicological effects of nanoparticles (NPs), specifically nickel (Ni) and chromium oxide (Cr3O4) NPs, synthesized under controlled conditions and characterized. To evaluate their potential environmental impact exposed the freshwater fish Labeo rohita (L. rohita) to environmentally relevant concentrations of both NPs within a controlled laboratory conditions. Vital organs, including gills and liver were subjected to histopathological analysis, revealing profound alterations in tissue architecture that were distinctly correlated with pathological damage. The lesions exhibited moderate to severe changes that are further correlated with the semi-quantitative mean alteration value (MAV). Furthermore, conducted a quantitative assessment of tissue-specific morphological changes. Notably, there was a significant reduction in critical hematological changes, including red blood cell (RBC) and white blood cell (WBC) counts, hemoglobin concentrations and other parameters. All of which exhibited significant fluctuations in relation to increasing NPs concentrations. These findings underscore the critical necessity for continued investigation into the ecological risks associated with these nanoparticles.
Collapse
Affiliation(s)
- Vaishnavi Rana
- Department of Zoology, B. P. Baria Science Institute, Navsari, Gujarat, India
| | - Unnati Dani
- Department of Zoology, B. P. Baria Science Institute, Navsari, Gujarat, India
| | - Alkesh Shah
- Department of Zoology, B. P. Baria Science Institute, Navsari, Gujarat, India
| |
Collapse
|
9
|
Qamar W, Gulia S, Athar M, Ahmad R, Imam MT, Chandra P, Singh BP, Haque R, Hassan MI, Rahman S. An insight into impact of nanomaterials toxicity on human health. PeerJ 2024; 12:e17807. [PMID: 39364370 PMCID: PMC11448750 DOI: 10.7717/peerj.17807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/03/2024] [Indexed: 10/05/2024] Open
Abstract
In recent years, advances in nanotechnology have significantly influenced electronics manufacturing, industrial processes, and medical research. Various industries have seen a surge in the use of nanomaterials. However, several researchers have raised the alarm about the toxicological nature of nanomaterials, which appear to be quite different from their crude forms. This altered nature can be attributed to their unique physicochemical profile. They can adversely affect human health and the environment. Nanomaterials that have been released into the environment tend to accumulate over time and can cause a significant impact on the ecosystem and organisms with adverse health effects. Increased use of nanoparticles has led to increased human exposure in their daily lives, making them more vulnerable to nanoparticle toxicity. Because of their small size, nanomaterials can readily cross biological membranes and enter cells, tissues, and organs. Therefore, the effect of nanomaterials on the human environment is of particular concern. The toxicological effects of nanomaterials and their mechanisms of action are being researched worldwide. Technological advances also support monitoring new nanomaterials marketed for industrial and household purposes. It is a challenging area because of the exceptional physicochemical properties of nanomaterials. This updated review focuses on the diverse toxicological perspective of nanomaterials. We have discussed the use of different types of nanoparticles and their physiochemical properties responsible for toxicity, routes of exposure, bio-distribution, and mechanism of toxicity. The review also includes various in vivo and in vitro methods of assessing the toxicity of nanomaterials. Finally, this review will provide a detailed insight into nano material-induced toxicological response, which can be beneficial in designing safe and effective nanoparticles.
Collapse
Affiliation(s)
- Wajhul Qamar
- Department of Pharmacology and Toxicology and Central Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shweta Gulia
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Mohammad Athar
- Department of Medical Genetics, Umm Al-Qura University, Makkah, Saudi Arabia
- Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Razi Ahmad
- Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi, India
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Bhupendra Pratap Singh
- Department of Environmental Studies, Deshbandhu College, University of Delhi, New Delhi, India
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia University, New Delhi, India
| | - Shakilur Rahman
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, New Delhi, India
| |
Collapse
|
10
|
Guo H, Chen H, Yang Y, Xie D, Dang Y, Xiang M, Yu Y. Neurotoxicity of tetrabromobisphenol-A-bis(2,3-dibromopropyl ether) through the GABAergic and serotonergic neurotransmission in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124392. [PMID: 38897283 DOI: 10.1016/j.envpol.2024.124392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
Tetrabromobisphenol-A-bis(2,3-dibromopropyl ether) (TBBPA-BDBPE), a novel additive brominated flame retardant, is being developed for use in polyolefin and copolymers. Despite its emerging application, the neurotoxicity and mechanisms of action of TBBPA-BDBPE remain unexplored. Caenorhabditis elegans was utilized as the model organism to study the neurotoxic effects of TBBPA-BDBPE across environmental concentrations ranging from 0 to 100 μg/L. This investigation focused on various toxicological endpoints such as locomotive behavior, neuronal injury, neurotransmitter transmission, and the regulation of nervous system-related gene expression. Acute exposure to TBBPA-BDBPE at concentrations of 10-100 μg/L significantly impaired nematode movement, indicating potential neurotoxicity. In transgenic nematodes, this exposure also caused damage to γ-aminobutyric acid (GABAergic) and serotonergic neurons, along with notable changes in the levels of GABAergic and serotonergic neurotransmitters. Further molecular studies indicated alterations in neurotransmission-related genes (cat-4, mod-1, unc-25, and unc-47). Molecular docking analysis confirmed the binding affinity of TBBPA-BDBPE to key neurotransmission proteins-CAT-4, MOD-1, UNC-25, and UNC-47. These findings demonstrate that TBBPA-BDBPE exerts neurotoxic effects by impacting GABAergic and serotonergic neurotransmission in nematodes. This study provides new insights into the potential environmental risks of TBBPA-BDBPE.
Collapse
Affiliation(s)
- Hongzhi Guo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - Haibo Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yue Yang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Public Health, China Medical University, Liaoning, 110122, China
| | - Dongli Xie
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| |
Collapse
|
11
|
Freire BM, Rua-Ibarz A, Nakadi FV, Bolea-Fernandez E, Barriuso-Vargas JJ, Lange CN, Aramendía M, Batista BL, Resano M. Tracing isotopically labeled selenium nanoparticles in plants via single-particle ICP-mass spectrometry. Talanta 2024; 277:126417. [PMID: 38901191 DOI: 10.1016/j.talanta.2024.126417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/13/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Agronomic biofortification using selenium nanoparticles (SeNPs) shows potential for addressing selenium deficiency but further research on SeNPs-plants interaction is required before it can be effectively used to improve nutritional quality. In this work, single-particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) was used for tracing isotopically labeled SeNPs (82SeNPs) in Oryza sativa L. tissues. For this purpose, SeNPs with natural isotopic abundance and 82SeNPs were synthesized by a chemical method. The NPs characterization by transmission electron microscopy (TEM) confirmed that enriched NPs maintained the basic properties of unlabeled NPs, showing spherical shape, monodispersity, and sizes in the nano-range (82.8 ± 6.6 nm and 73.2 ± 4.4 nm for SeNPs and 82SeNPs, respectively). The use of 82SeNPs resulted in an 11-fold enhancement in the detection power for ICP-MS analysis, accompanied by an improvement in the signal-to-background ratio and a reduction of the size limits of detection from 89.9 to 39.9 nm in SP-ICP-MS analysis. This enabled 82SeNPs to be tracked in O. sativa L. plants cultivated under foliar application of 82SeNPs. Tracing studies combining SP-ICP-MS and TEM-energy-dispersive X-ray spectroscopy data confirmed the uptake of intact 82SeNPs by rice leaves, with most NPs remaining in the leaves and very few particles translocated to shoots and roots. Translocation of Se from leaves to roots and shoots was found to be lower when applied as NPs compared to selenite application. From the size distributions, as obtained by SP-ICP-MS, it can be concluded that a fraction of the 82SeNPs remained within the same size range as that of the applied NP suspension, while other fraction underwent an agglomeration process in the leaves, as confirmed by TEM images. This illustrates the potential of SP-ICP-MS analysis of isotopically enriched 82SeNPs for tracing NPs in the presence of background elements within complex plant matrices, providing important information about the uptake, accumulation, and biotransformation of SeNPs in rice plants.
Collapse
Affiliation(s)
- Bruna Moreira Freire
- Federal University of ABC (UFABC), Center for Natural and Human Sciences (CCNH), Santo André, São Paulo, 09210-580, Brazil; University of Zaragoza, Department of Analytical Chemistry, Aragon Institute of Engineering Research (I3A), Zaragoza, 50009, Spain
| | - Ana Rua-Ibarz
- University of Zaragoza, Department of Analytical Chemistry, Aragon Institute of Engineering Research (I3A), Zaragoza, 50009, Spain
| | - Flávio Venâncio Nakadi
- University of Zaragoza, Department of Analytical Chemistry, Aragon Institute of Engineering Research (I3A), Zaragoza, 50009, Spain
| | - Eduardo Bolea-Fernandez
- University of Zaragoza, Department of Analytical Chemistry, Aragon Institute of Engineering Research (I3A), Zaragoza, 50009, Spain
| | - Juan J Barriuso-Vargas
- Universidad de Zaragoza-CITA, AgriFood Institute of Aragon (IA2), Zaragoza, 50059, Spain
| | - Camila Neves Lange
- Federal University of ABC (UFABC), Center for Natural and Human Sciences (CCNH), Santo André, São Paulo, 09210-580, Brazil
| | - Maite Aramendía
- University of Zaragoza, Department of Analytical Chemistry, Aragon Institute of Engineering Research (I3A), Zaragoza, 50009, Spain
| | - Bruno Lemos Batista
- Federal University of ABC (UFABC), Center for Natural and Human Sciences (CCNH), Santo André, São Paulo, 09210-580, Brazil.
| | - Martín Resano
- University of Zaragoza, Department of Analytical Chemistry, Aragon Institute of Engineering Research (I3A), Zaragoza, 50009, Spain.
| |
Collapse
|
12
|
Song X, Zhao W, Cui S, Su X, Yu J, Guo L, Song K. Deciphering the dual role of persistent luminescence materials: Toxicity and photoreception effects on rice development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174542. [PMID: 38977096 DOI: 10.1016/j.scitotenv.2024.174542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
Studies on the toxicity of micro- and nanomaterials in plants have primarily focused on their intrinsic effects. However, there is often oversight when considering the potential perceptual responses that plants may exhibit in response to these materials. In this investigation, we assessed the impact of three commercially available persistent luminescence materials (PLMs) that emit red, green, or blue light under various environmental conditions. We subjected rice (Oryza sativa L.), a short-day plant, to nine distinct treatments, including exposure to particles in isolation, their nocturnal afterglow, or a combination of both. We thoroughly examined rice seedling morphology, photosynthesis patterns, metabolite dynamics, and flowering gene expression to determine the biological responses of plants to these particles. These findings demonstrated that PLMs stably interact with rice, and their emitted afterglow precisely matches the perceptual bandwidth of rice photoreceptors. Notably, the nocturnal afterglow from the red and blue PLMs enhanced the vegetative growth of rice seedlings while inhibiting their reproductive development. The blue PLMs exhibited the most pronounced positive effects, while the red PLMs exhibited inhibitory effects. When exposed to a combination of red and blue PLMs, rice displays enhanced growth and development. The observed alterations in the expression patterns of genes responsible for flowering supported these effects. We concluded that PLMs influence rice growth and development due to their inherent properties and intermittent illumination during dark periods. Both factors collectively shape rice growth and development.
Collapse
Affiliation(s)
- Xiangwei Song
- School of Life Science, Changchun Normal University, Changchun, 130032, China
| | - Wei Zhao
- School of Life Science, Changchun Normal University, Changchun, 130032, China
| | - Shuyuan Cui
- School of Life Science, Changchun Normal University, Changchun, 130032, China
| | - Xiaomeng Su
- School of Life Science, Changchun Normal University, Changchun, 130032, China
| | - Jingbo Yu
- School of Life Science, Changchun Normal University, Changchun, 130032, China
| | - Liquan Guo
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
| | - Kai Song
- School of Life Science, Changchun Normal University, Changchun, 130032, China; Research Institute for Scientific and Technological Innovation, Changchun Normal University.
| |
Collapse
|
13
|
Tang K, Cui X. A Review on Investigating the Interactions between Nanoparticles and the Pulmonary Surfactant Monolayer with Coarse-Grained Molecular Dynamics Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11829-11842. [PMID: 38809819 DOI: 10.1021/acs.langmuir.4c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Pulmonary drug delivery has garnered significant attention due to its targeted local lung action, minimal toxic side effects, and high drug utilization. However, the physicochemical properties of inhaled nanoparticles (NPs) used as drug carriers can influence their interactions with the pulmonary surfactant (PS) monolayer, potentially altering the fate of the NPs and impairing the biophysical function of the PS monolayer. Thus, the objective of this review is to summarize how the physicochemical properties of NPs affect their interactions with the PS monolayer. Initially, the definition and properties of NPs, as well as the composition and characteristics of the PS monolayer, are introduced. Subsequently, the coarse-grained molecular dynamics (CGMD) simulation method for studying the interactions between NPs and the PS monolayer is presented. Finally, the implications of the hydrophobicity, size, shape, surface charge, surface modification, and aggregation of NPs on their interactions with the PS monolayer and on the composition of biomolecular corona are discussed. In conclusion, gaining a deeper understanding of the effects of the physicochemical properties of NPs on their interactions with the PS monolayer will contribute to the development of safer and more effective nanomedicines for pulmonary drug delivery.
Collapse
Affiliation(s)
- Kailiang Tang
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinguang Cui
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
14
|
Dutta S, Sinelshchikova A, Andreo J, Wuttke S. Nanoscience and nanotechnology for water remediation: an earnest hope toward sustainability. NANOSCALE HORIZONS 2024; 9:885-899. [PMID: 38591932 DOI: 10.1039/d4nh00056k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Water pollution and the global freshwater crisis are the most alarming concerns of the 21st century, as they threaten the sustainability and ecological balance of the environment. The growth of global population, climate change, and expansion of industrial processes are the main causes of these issues. Therefore, effective remediation of polluted water by means of detoxification and purification is of paramount importance. To this end, nanoscience and nanotechnology have emerged as viable options that hold tremendous potential toward the advancement of wastewater treatment methods to enhance treatment efficiency along with augmenting water supply via utilization of unconventional water sources. Materials at the nano level have shown great promise toward water treatment applications owing to their unique physicochemical properties. In this focus article, we highlight the role of new fundamental properties at the nano scale and material properties that are drastically increased due to the nano dimension (e.g. volume-surface ratio) and highlight their impact and potential toward water treatment. We identify and discuss how nano-properties could improve the three main domains of water remediation: the identification of pollutants, their adsorption and catalytic degradation. After discussing all the beneficial aspects we further discuss the key challenges associated with nanomaterials for water treatment. Looking at the current state-of-the-art, the potential as well as the challenges of nanomaterials, we believe that in the future we will see a significant impact of these materials on many water remediation strategies.
Collapse
Affiliation(s)
- Subhajit Dutta
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48950 Leioa, Spain.
| | - Anna Sinelshchikova
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48950 Leioa, Spain.
| | - Jacopo Andreo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48950 Leioa, Spain.
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48950 Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
15
|
Yang L, He Z, Hu L, Tang H, Geng Y, Tan Q, Zhang Y, Wen Y, Wu W, Gu H, Liu X. Ti 3C 2 nanosheet-induced autophagy derails ovarian functions. J Nanobiotechnology 2024; 22:242. [PMID: 38735936 PMCID: PMC11089700 DOI: 10.1186/s12951-024-02495-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Two-dimensional ultrathin Ti3C2 (MXene) nanosheets have gained significant attention in various biomedical applications. Although previous studies have described the accumulation and associated damage of Ti3C2 nanosheets in the testes and placenta. However, it is currently unclear whether Ti3C2 nanosheets can be translocated to the ovaries and cause ovarian damage, thereby impairing ovarian functions. RESULTS We established a mouse model with different doses (1.25, 2.5, and 5 mg/kg bw/d) of Ti3C2 nanosheets injected intravenously for three days. We demonstrated that Ti3C2 nanosheets can enter the ovaries and were internalized by granulosa cells, leading to a decrease in the number of primary, secondary and antral follicles. Furthermore, the decrease in follicles is closely associated with higher levels of FSH and LH, as well as increased level of E2 and P4, and decreased level of T in mouse ovary. In further studies, we found that exposure toTi3C2 nanosheets increased the levels of Beclin1, ATG5, and the ratio of LC3II/Ι, leading to autophagy activation. Additionally, the level of P62 increased, resulting in autophagic flux blockade. Ti3C2 nanosheets can activate autophagy through the PI3K/AKT/mTOR signaling pathway, with oxidative stress playing an important role in this process. Therefore, we chose the ovarian granulosa cell line (KGN cells) for in vitro validation of the impact of autophagy on the hormone secretion capability. The inhibition of autophagy initiation by 3-Methyladenine (3-MA) promoted smooth autophagic flow, thereby partially reduced the secretion of estradiol and progesterone by KGN cells; Whereas blocking autophagic flux by Rapamycin (RAPA) further exacerbated the secretion of estradiol and progesterone in cells. CONCLUSION Ti3C2 nanosheet-induced increased secretion of hormones in the ovary is mediated through the activation of autophagy and impairment of autophagic flux, which disrupts normal follicular development. These results imply that autophagy dysfunction may be one of the underlying mechanisms of Ti3C2-induced damage to ovarian granulosa cells. Our findings further reveal the mechanism of female reproductive toxicity induced by Ti3C2 nanosheets.
Collapse
Affiliation(s)
- Limei Yang
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 120 Longshan Road, Yubei District, Chongqing, 401147, China
- Chongqing Municipal Health Commission Key Laboratory of Perinatal Medicine, Chongqing, 400016, China
| | - Zhiting He
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Box 197, Chongqing, 400016, China
| | - Le Hu
- Department of Obstetrics and Gynecology, Gansu Provincial Clinical Research Center for Gynecological Oncology, the First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Hongyu Tang
- Department of Pediatrics, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Yanqing Geng
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Box 197, Chongqing, 400016, China
- College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Qiaoyan Tan
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 120 Longshan Road, Yubei District, Chongqing, 401147, China
- Chongqing Municipal Health Commission Key Laboratory of Perinatal Medicine, Chongqing, 400016, China
| | - Yue Zhang
- Chongqing Municipal Health Commission Key Laboratory of Perinatal Medicine, Chongqing, 400016, China
- Prenatal Diagnosis Center, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Yixian Wen
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Box 197, Chongqing, 400016, China
| | - Wei Wu
- Senior Department of Ophthalmology, 3rd Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Huayan Gu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 120 Longshan Road, Yubei District, Chongqing, 401147, China.
- Chongqing Municipal Health Commission Key Laboratory of Perinatal Medicine, Chongqing, 400016, China.
| | - Xueqing Liu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 120 Longshan Road, Yubei District, Chongqing, 401147, China.
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Box 197, Chongqing, 400016, China.
| |
Collapse
|
16
|
Cáceres-Wenzel MI, Bernassani FN, Fuchs JS, Cortón E, Cochón AC. Mixture toxicity study of two metal oxide nanoparticles and chlorpyrifos on Eisenia andrei earthworms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35470-35482. [PMID: 38730216 DOI: 10.1007/s11356-024-33604-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Co-exposure soil studies of pollutants are necessary for an appropriate ecological risk assessment. Here, we examined the effects of two-component mixtures of metal oxide nanoparticles (ZnO NPs or goethite NPs) with the insecticide chlorpyrifos (CPF) under laboratory conditions in short-term artificial soil assays using Eisenia andrei earthworms. We characterized NPs and their mixtures by scanning electron microscopy, atomic force microscopy, dynamic light scattering and zeta potential, and evaluated effects on metal accumulation, oxidative stress enzymes, and neurotoxicity related biomarkers in single and combined toxicity assays. Exposure to ZnO NPs increased Zn levels compared to control in single and combined exposure (ZnO NPs + CPF) at 72 h and 7 days, respectively. In contrast, there was no indication of Fe increase in organisms exposed to goethite NPs. One of the most notable effects on oxidative stress biomarkers was produced by single exposure to goethite NPs, showing that the worms were more sensitive to goethite NPs than to ZnO NPs. Acetylcholinesterase and carboxylesterase activities indicated that ZnO NPs alone were not neurotoxic to earthworms, but similar degrees of inhibition were observed after single CPF and ZnO NPs + CPF exposure. Differences between single and combined exposure were found for catalase and superoxide dismutase (goethite NPs) and for glutathione S-transferase (ZnO NPs) activities, mostly at 72 h. These findings suggest a necessity to evaluate mixtures of NPs with co-existing contaminants in soil, and that the nature of metal oxide NPs and exposure time are relevant factors to be considered when assessing combined toxicity, as it may have an impact on ecotoxicological risk assessment.
Collapse
Affiliation(s)
- Marcela I Cáceres-Wenzel
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, 1428, Ciudad Autónoma de Buenos Aires (CABA), Argentina.
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina.
| | - Florencia N Bernassani
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, 1428, Ciudad Autónoma de Buenos Aires (CABA), Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Julio S Fuchs
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, 1428, Ciudad Autónoma de Buenos Aires (CABA), Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Eduardo Cortón
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, 1428, Ciudad Autónoma de Buenos Aires (CABA), Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Adriana C Cochón
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, 1428, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| |
Collapse
|
17
|
El-Samad LM, Bakr NR, Abouzid M, Shedid ES, Giesy JP, Khalifa SAM, El-Seedi HR, El Wakil A, Al Naggar Y. Nanoparticles-mediated entomotoxicology: lessons from biologica. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:305-324. [PMID: 38446268 DOI: 10.1007/s10646-024-02745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Nanotechnology has grown in importance in medicine, manufacturing, and consumer products. Nanoparticles (NPs) are also widely used in the field of insect pest management, where they show a variety of toxicological effects on insects. As a result, the primary goal of this review is to compile and evaluate available information on effects of NPs on insects, by use of a timely, bibliometric analysis. We also discussed the manufacturing capacity of NPs from insect tissues and the toxic effects of NPs on insects. To do so, we searched the Web of Science database for literature from 1995 to 2023 and ran bibliometric analyses with CiteSpace© and Bibliometrix©. The analyses covered 614 journals and identified 1763 relevant documents. We found that accumulation of NPs was one of the top trending topics. China, India, and USA had the most published papers. The most overall reported models of insects were those of Aedes aegypti (yellow fever mosquito), Culex quinquefasciatus (southern house mosquito), Bombyx mori (silk moth), and Anopheles stephensi (Asian malaria mosquito). The application and methods of fabrication of NPs using insect tissues, as well as the mechanism of toxicity of NPs on insects, were also reported. A uniform legal framework is required to allow nanotechnology to fully realize its potential while minimizing harm to living organisms and reducing the release of toxic metalloid nanoparticles into the environment.
Collapse
Affiliation(s)
- Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nahed R Bakr
- Department of Zoology, Faculty of Science, Damanhour University, Damanhur, Egypt
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Eslam S Shedid
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, 32512, Egypt
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
- Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX, 76798-7266, USA
| | - Shaden A M Khalifa
- Psychiatry and Psychology Department, Capio Saint Göran's Hospital, Sankt Göransplan 1, 112 19, Stockholm, Sweden
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Nanjing, 210024, China
| | - Abeer El Wakil
- Biological and Geological Sciences Department, Faculty of Education, Alexandria University, Alexandria, Egypt.
| | - Yahya Al Naggar
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
18
|
Tran TK, Nguyen MK, Lin C, Hoang TD, Nguyen TC, Lone AM, Khedulkar AP, Gaballah MS, Singh J, Chung WJ, Nguyen DD. Review on fate, transport, toxicity and health risk of nanoparticles in natural ecosystems: Emerging challenges in the modern age and solutions toward a sustainable environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169331. [PMID: 38103619 DOI: 10.1016/j.scitotenv.2023.169331] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
In today's era, nanoparticles (NPs) have become an integral part of human life, finding extensive applications in various fields of science, pharmacy, medicine, industry, electronics, and communication. The increasing popularity of NP usage worldwide is a testament to their tremendous potential. However, the widespread deployment of NPs unavoidably leads to their release into the environmental matrices, resulting in persistence in ecosystems and bioaccumulation in organisms. Understanding the environmental behavior of NPs poses a significant challenge due to their nanoscale size. Given the current environmental releases of NPs, known negative consequences, and the limited knowledge available for risk management, comprehending the toxicity of NPs in ecosystems is both awaiting and crucial. The present review aims to unravel the potential environmental influences of nano-scaled materials, and provides in-depth inferences of the current knowledge and understanding in this field. The review comprehensively summarizes the sources, fate, transport, toxicity, health risks, and remediation solutions associated with NP pollution in aquatic and soil ecosystems. Furthermore, it addresses the knowledge gaps and outlines further investigation priorities for the sustainable control of NP pollution in these environments. By gaining a holistic understanding of these aspects, we can work toward ensuring the responsible and sustainable use of NPs in today's fast-growing world.
Collapse
Affiliation(s)
- Thien-Khanh Tran
- Advanced Applied Sciences Research Group, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam; Faculty of Technology, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Tuan-Dung Hoang
- School of Chemistry and Life Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi 100000, Viet Nam; Vietnam National University, Hanoi, VNU Town, Hoa Lac, Thach That District, Hanoi 155500, Viet Nam
| | - Thanh-Cong Nguyen
- Faculty of Technology, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam
| | - Aasif Mohmad Lone
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Akhil Pradiprao Khedulkar
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Mohamed S Gaballah
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, India
| | - W Jin Chung
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
19
|
Huang YH, Wang MJ, Chung TS. Development of multifunctional membranes via plasma-assisted nonsolvent induced phase separation. Nat Commun 2024; 15:1092. [PMID: 38316772 PMCID: PMC10844271 DOI: 10.1038/s41467-024-45414-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Demands on superhydrophobic, self-cleaning and piezoelectric membranes have gained significantly due to their potential to overcome global shortages in clean water and energy. In this study, we have discovered a novel plasma-assisted nonsolvent induced phase separation (PANIPS) method to prepare superhydrophobic, self-cleaning and piezoelectric poly(vinylidene difluoride) (PVDF) membranes without additional chemical modifications or post-treatments. The PANIPS membranes exhibit water contact angles ranging from 151.2° to 166.4° and sliding angles between 6.7° and 29.7°. They also show a high piezoelectric coefficient (d33) of 10.5 pC N-1 and can generate a high output voltage of 10 Vpp. The PANIPS membranes can effectively recover pure water from various waste solutions containing Rose Bengal dye, humic acid, or sodium dodecyl sulfate via direct contact membrane distillation (DCMD). This study may provide valuable insights to fabricate PANIPS membranes and open up new avenues to molecularly design advanced superhydrophobic, self-cleaning, and piezoelectric membranes in the fields of clean water production, motion sensor, and piezoelectric nanogenerator.
Collapse
Affiliation(s)
- Yueh-Han Huang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan
| | - Meng-Jiy Wang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan
| | - Tai-Shung Chung
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan.
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan.
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan.
| |
Collapse
|
20
|
Samal D, Khandayataray P, Sravani M, Murthy MK. Silver nanoparticle ecotoxicity and phytoremediation: a critical review of current research and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8400-8428. [PMID: 38182947 DOI: 10.1007/s11356-023-31669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
Silver nanoparticles (AgNPs) are widely used in various industries, including textiles, electronics, and biomedical fields, due to their unique optical, electronic, and antimicrobial properties. However, the extensive use of AgNPs has raised concerns about their potential ecotoxicity and adverse effects on the environment. AgNPs can enter the environment through different pathways, such as wastewater, surface runoff, and soil application and can interact with living organisms through adsorption, ingestion, and accumulation, causing toxicity and harm. The small size, high surface area-to-volume ratio, and ability to generate reactive oxygen species (ROS) make AgNPs particularly toxic. Various bioremediation strategies, such as phytoremediation, have been proposed to mitigate the toxic effects of AgNPs and minimize their impact on the environment. Further research is needed to improve these strategies and ensure their safety and efficacy in different environmental settings.
Collapse
Affiliation(s)
- Dibyaranjan Samal
- Department of Biotechnology, Sri Satya Sai University of Technical and Medical Sciences, Sehore, Bhopal, Madhya Pradesh, India
| | - Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, 752057, Odisha, India
| | - Meesala Sravani
- Department of Computer Science and Engineering, GMR Institute of Technology, Rajam, 532127, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
21
|
Shovon SM, Akash FA, Rahman W, Rahman MA, Chakraborty P, Hossain HZ, Monir MU. Strategies of managing solid waste and energy recovery for a developing country - A review. Heliyon 2024; 10:e24736. [PMID: 38312703 PMCID: PMC10835228 DOI: 10.1016/j.heliyon.2024.e24736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 02/06/2024] Open
Abstract
Solid waste is considered one of the major pollutants of both water and surface worldwide. The growing global population, urban expansion, and industrial growth are the main reasons for solid waste generation. This has become a major challenge with both regional and worldwide consequences. The yearly generation of municipal solid wastes around the world is 2.01 BT (billion tons) among which about 33 % are not ecologically handled. To address this, proper solid waste management, especially recycling waste products, is crucial to achieving sustainability. High-income countries are able to recycle 51 % of their waste, while low-income countries only recycle 16 % of their waste. Inadequate solid waste management practices can only compound environmental and social problems. To handle these issues thermochemical and biochemical methods are used to convert solid waste to energy. Thermochemical method is suitable for developing countries though it is energy extensive. This review provides a detailed analysis of developing countries' solid waste management and energy recovery. It explores energy recovery technologies, including thermochemical and biochemical waste conversion processes.
Collapse
Affiliation(s)
- Shaik Muntasir Shovon
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Energy Conversion Laboratory, Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Faysal Ahamed Akash
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Energy Conversion Laboratory, Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Wahida Rahman
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Abdur Rahman
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Prosenjeet Chakraborty
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - H.M. Zakir Hossain
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Minhaj Uddin Monir
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Energy Conversion Laboratory, Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| |
Collapse
|
22
|
Solymos K, Babcsányi I, Ariya B, Gyulavári T, Ágoston Á, Szamosvölgyi Á, Kukovecz Á, Kónya Z, Farsang A, Pap Z. Photocatalytic and surface properties of titanium dioxide nanoparticles in soil solutions. ENVIRONMENTAL SCIENCE: NANO 2024; 11:1204-1216. [DOI: 10.1039/d3en00622k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Effet of chemical compounds in soil solution to the photocatalytic activity of TiO2 NPs.
Collapse
Affiliation(s)
- Karolina Solymos
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, Szeged, Hungary
| | - Izabella Babcsányi
- Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, Szeged, Hungary
| | - Badam Ariya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Tamás Gyulavári
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Áron Ágoston
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- Department of Physical Chemistry and Materials Sciences, University of Szeged, Szeged, Hungary
| | - Ákos Szamosvölgyi
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Ákos Kukovecz
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Andrea Farsang
- Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, Szeged, Hungary
| | - Zsolt Pap
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- Nanostructured Materials and Bio-Nano-Interfaces Center, Institute for Interdisciplinary Research on Bio-Nano-Sciences, Babeş–Bolyai University, Cluj-Napoca, Romania
- Institute of Research-Development-Innovation in Applied Natural Sciences, Babeş–Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
23
|
Chormey DS, Zaman BT, Borahan Kustanto T, Erarpat Bodur S, Bodur S, Tekin Z, Nejati O, Bakırdere S. Biogenic synthesis of novel nanomaterials and their applications. NANOSCALE 2023; 15:19423-19447. [PMID: 38018389 DOI: 10.1039/d3nr03843b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Despite the many benefits derived from the unique features and practicality of nanoparticles, the release of their toxic by-products or products from the synthesis stage into the environment could negatively impact natural resources and organisms. The physical and chemical methods for nanoparticle synthesis involve high energy consumption and the use of hazardous chemicals, respectively, going against the principles of green chemistry. Biological methods of synthesis that rely on extracts from a broad range of natural plants, and microorganisms, such as fungi, bacteria, algae, and yeast, have emerged as viable alternatives to the physical and chemical methods. Nanoparticles synthesized through biogenic pathways are particularly useful for biological applications that have high concerns about contamination. Herein, we review the physical and chemical methods of nanoparticle synthesis and present a detailed overview of the biogenic methods used for the synthesis of different nanoparticles. The major points discussed in this study are the following: (1) the fundamentals of the physical and chemical methods of nanoparticle syntheses, (2) the use of different biological precursors (microorganisms and plant extracts) to synthesize gold, silver, selenium, iron, and other metal nanoparticles, and (3) the applications of biogenic nanoparticles in diverse fields of study, including the environment, health, material science, and analytical chemistry.
Collapse
Affiliation(s)
- Dotse Selali Chormey
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Buse Tuğba Zaman
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
| | - Tülay Borahan Kustanto
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Sezin Erarpat Bodur
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
| | - Süleyman Bodur
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- İstinye University, Faculty of Pharmacy, Department of Analytical Chemistry, 34010 İstanbul, Türkiye
- İstinye University, Scientific and Technological Research Application and Research Center, 34010 İstanbul, Türkiye
| | - Zeynep Tekin
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Omid Nejati
- İstinye University, Institute of Health Sciences, Department of Stem Cell and Tissue Engineering, 34010, İstanbul, Türkiye
| | - Sezgin Bakırdere
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Çankaya, 06670, Ankara, Türkiye
| |
Collapse
|
24
|
Kumar S, Tripathi A, Chakraborty I, Ghangrekar MM. Engineered nanomaterials for carbon capture and bioenergy production in microbial electrochemical technologies: A review. BIORESOURCE TECHNOLOGY 2023; 389:129809. [PMID: 37797801 DOI: 10.1016/j.biortech.2023.129809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
The mounting threat of global warming, fuelled by industrialization and anthropogenic activities, is undeniable. In 2017, atmospheric carbon dioxide (CO2), the primary greenhouse gas, exceeded 410 ppm for the first time. Shockingly, on April 28, 2023, this figure surged even higher, reaching an alarming 425 ppm. Even though extensive research has been conducted on developing efficient carbon capture and storage technologies, most suffer from high costs, short lifespans, and significant environmental impacts. Recently, the use of engineered nanomaterials (ENM), particularly in microbial electrochemical technologies (METs), has gained momentum owing to their appropriate physicochemical properties and catalytic activity. By implementing ENM, the MET variants like microbial electrosynthesis (MES) and photosynthetic microbial fuel cells (pMFC) can enhance carbon capture efficiency with simultaneous bioenergy production and wastewater treatment. This review provides an overview of ENMs' role in carbon capture within MES and pMFC, highlighting advancements and charting future research directions.
Collapse
Affiliation(s)
- Santosh Kumar
- P. K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Akash Tripathi
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Indrajit Chakraborty
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Makarand M Ghangrekar
- P. K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
25
|
Ullah I, Toor MD, Basit A, Mohamed HI, Gamal M, Tanveer NA, Shah ST. Nanotechnology: an Integrated Approach Towards Agriculture Production and Environmental Stress Tolerance in Plants. WATER, AIR, & SOIL POLLUTION 2023; 234:666. [DOI: 10.1007/s11270-023-06675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
|
26
|
Chandran DG, Muruganandam L, Biswas R. A review on adsorption of heavy metals from wastewater using carbon nanotube and graphene-based nanomaterials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110010-110046. [PMID: 37804379 DOI: 10.1007/s11356-023-30192-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/26/2023] [Indexed: 10/09/2023]
Abstract
The rampant rise in world population, industrialization, and urbanization expedite the contamination of water sources. The presence of the non-biodegradable character of heavy metals in waterways badly affects the ecological balance. In this modern era, the unavailability of getting clear water as well as the downturn in water quality is a major concern. Therefore, the effective removal of heavy metals has become much more important than before. In recent years, the attention to better wastewater remediation was directed towards adsorption techniques with novel adsorbents such as carbon nanomaterials. This review paper primarily emphasizes the fundamental concepts, structures, and unique surface properties of novel adsorbents, the harmful effects of various heavy metals, and the adsorption mechanism. This review will give an insight into the current status of research in the realm of sustainable wastewater treatment, applications of carbon nanomaterials, different types of functionalized carbon nanotubes, graphene, graphene oxide, and their adsorption capacity. The importance of MD simulations and density functional theory (DFT) in the elimination of heavy metals from aqueous media is also discussed. In addition to that, the effect of factors on heavy metal adsorption such as electric field and pressure is addressed.
Collapse
Affiliation(s)
- Drisya G Chandran
- Process Simulation Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Loganathan Muruganandam
- Process Simulation Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Rima Biswas
- Process Simulation Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
27
|
Escorcia-Díaz D, García-Mora S, Rendón-Castrillón L, Ramírez-Carmona M, Ocampo-López C. Advancements in Nanoparticle Deposition Techniques for Diverse Substrates: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2586. [PMID: 37764615 PMCID: PMC10537803 DOI: 10.3390/nano13182586] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/03/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Nanoparticle deposition on various substrates has gained significant attention due to the potential applications of nanoparticles in various fields. This review paper comprehensively analyzes different nanoparticle deposition techniques on ceramic, polymeric, and metallic substrates. The deposition techniques covered include electron gun evaporation, physical vapor deposition, plasma enriched chemical vapor deposition (PECVD), electrochemical deposition, chemical vapor deposition, electrophoretic deposition, laser metal deposition, and atomic layer deposition (ALD), thermophoretic deposition, supercritical deposition, spin coating, and dip coating. Additionally, the sustainability aspects of these deposition techniques are discussed, along with their potential applications in anti-icing, antibacterial power, and filtration systems. Finally, the review explores the importance of deposition purities in achieving optimal nanomaterial performance. This comprehensive review aims to provide valuable insights into state-of-the-art techniques and applications in the field of nanomaterial deposition.
Collapse
Affiliation(s)
- Daniel Escorcia-Díaz
- Nanotechnology Engineering Program, Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Medellín 050031, Colombia; (D.E.-D.); (S.G.-M.)
| | - Sebastián García-Mora
- Nanotechnology Engineering Program, Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Medellín 050031, Colombia; (D.E.-D.); (S.G.-M.)
| | - Leidy Rendón-Castrillón
- Chemical Engineering Program, Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Medellín 050031, Colombia; (L.R.-C.); (M.R.-C.)
| | - Margarita Ramírez-Carmona
- Chemical Engineering Program, Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Medellín 050031, Colombia; (L.R.-C.); (M.R.-C.)
| | - Carlos Ocampo-López
- Chemical Engineering Program, Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Medellín 050031, Colombia; (L.R.-C.); (M.R.-C.)
| |
Collapse
|
28
|
Wang J, Wang P, Shao Y, He D. Advancing Treatment Strategies: A Comprehensive Review of Drug Delivery Innovations for Chronic Inflammatory Respiratory Diseases. Pharmaceutics 2023; 15:2151. [PMID: 37631365 PMCID: PMC10458134 DOI: 10.3390/pharmaceutics15082151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic inflammatory respiratory diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis, present ongoing challenges in terms of effective treatment and management. These diseases are characterized by persistent inflammation in the airways, leading to structural changes and compromised lung function. There are several treatments available for them, such as bronchodilators, immunomodulators, and oxygen therapy. However, there are still some shortcomings in the effectiveness and side effects of drugs. To achieve optimal therapeutic outcomes while minimizing systemic side effects, targeted therapies and precise drug delivery systems are crucial to the management of these diseases. This comprehensive review focuses on the role of drug delivery systems in chronic inflammatory respiratory diseases, particularly nanoparticle-based drug delivery systems, inhaled corticosteroids (ICSs), novel biologicals, gene therapy, and personalized medicine. By examining the latest advancements and strategies in these areas, we aim to provide a thorough understanding of the current landscape and future prospects for improving treatment outcomes in these challenging conditions.
Collapse
Affiliation(s)
- Junming Wang
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; (J.W.); (P.W.); (Y.S.)
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Pengfei Wang
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; (J.W.); (P.W.); (Y.S.)
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Yiru Shao
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; (J.W.); (P.W.); (Y.S.)
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Daikun He
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; (J.W.); (P.W.); (Y.S.)
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of General Practice, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
29
|
Dhanda A, Raj R, Sathe SM, Dubey BK, Ghangrekar MM. Graphene and biochar-based cathode catalysts for microbial fuel cell: Performance evaluation, economic comparison, environmental and future perspectives. ENVIRONMENTAL RESEARCH 2023; 231:116143. [PMID: 37187304 DOI: 10.1016/j.envres.2023.116143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/11/2023] [Accepted: 05/13/2023] [Indexed: 05/17/2023]
Abstract
Microbial fuel cells (MFCs) have been the prime focus of research in recent years because of their distinctive feature of concomitantly treating and producing electricity from wastewater. Nevertheless, the electrical performance of MFCs is hindered by a protracted oxygen reduction reaction (ORR), and often a catalyst is required to boost the cathodic reactions. Conventional transition metals-based catalysts are expensive and infeasible for field-scale usage. In this regard, carbon-based electrocatalysts like waste-derived biochar and graphene are used to enhance the commercialisation prospects of MFC technology. These carbon-catalysts possess unique properties like superior electrocatalytic activity, higher surface area, and high porosity conducive to ORR. Theoretically, graphene-based cathode catalysts yield superior results than a biochar-derived catalyst, though at a higher cost. In contrast, the synthesis of waste-extracted biochar is economical; however, its ability to catalyse ORR is debatable. Therefore, this review aims to make a side-by-side techno-economic assessment of biochar and graphene-based cathode catalyst used in MFC to predict the relative performance and typical cost of power recovery. Additionally, the life cycle analysis of the graphene and biochar-based materials has been briefly discussed to comprehend the associated environmental impacts and overall sustainability of these carbo-catalysts.
Collapse
Affiliation(s)
- Anil Dhanda
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Rishabh Raj
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - S M Sathe
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - B K Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India; School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - M M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India; School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
30
|
Wei Y, Bao R, Hu L, Geng Y, Chen X, Wen Y, Wang Y, Qin M, Zhang Y, Liu X. Ti 3C 2 (MXene) nanosheets disrupt spermatogenesis in male mice mediated by the ATM/p53 signaling pathway. Biol Direct 2023; 18:30. [PMID: 37312207 DOI: 10.1186/s13062-023-00382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Two-dimensional ultrathin Ti3C2 nanosheets are increasingly being used in biomedical applications owing to their special physicochemical properties. But, the biological effects of its exposure on the reproductive system is still unclear. This study evaluated the reproductive toxicity of Ti3C2 nanosheets in the testes. RESULTS Ti3C2 nanosheets at doses of 2.5 mg/kg bw and 5 mg/kg bw in mice caused defects in spermatogenic function, and we also clarified an underlying molecular mechanism of it in vivo and in vitro model. Ti3C2 nanosheets induced an increase of reactive oxygen species (ROS) in testicular and GC-1 cells, which in turn led to the imbalance in oxidative and antioxidant systems (also known as oxidative stress). Additionally, oxidative stress often induces cellular DNA strand damages via the oxidative DNA damages, which triggered cell cycle arrest in the G1/G0 phase, leading to cell proliferation inhibition and irreversible apoptosis. ATM/p53 signaling manifest key role in DNA damage repair (DDR), and we demonstrate that ATM/p53 signaling was activated, and mediated the toxic damage process caused by Ti3C2 nanosheet exposure. CONCLUSION Ti3C2 nanosheet-induced disruption of proliferation and apoptosis of spermatogonia perturbed normal spermatogenic function that was mediated by ATM/p53 signaling pathway. Our findings shed more light on the mechanisms of male reproductive toxicity induced by Ti3C2 nanosheets.
Collapse
Affiliation(s)
- Yang Wei
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ruilin Bao
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Le Hu
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology of Gansu Province, Lanzhou, People's Republic of China
| | - Yanqing Geng
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
- College of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xuemei Chen
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yixian Wen
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Mao Qin
- Department of Andrology, Women and Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yue Zhang
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.
- College of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China.
| | - Xueqing Liu
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
31
|
Pérez H, Quintero García OJ, Amezcua-Allieri MA, Rodríguez Vázquez R. Nanotechnology as an efficient and effective alternative for wastewater treatment: an overview. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2971-3001. [PMID: 37387425 PMCID: wst_2023_179 DOI: 10.2166/wst.2023.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The increase in the surface and groundwater contamination due to global population growth, industrialization, proliferation of pathogens, emerging pollutants, heavy metals, and scarcity of drinking water represents a critical problem. Because of this problem, particular emphasis will be placed on wastewater recycling. Conventional wastewater treatment methods may be limited due to high investment costs or, in some cases, poor treatment efficiency. To address these issues, it is necessary to continuously evaluate novel technologies that complement and improve these traditional wastewater treatment processes. In this regard, technologies based on nanomaterials are also being studied. These technologies improve wastewater management and constitute one of the main focuses of nanotechnology. The following review describes wastewater's primary biological, organic, and inorganic contaminants. Subsequently, it focuses on the potential of different nanomaterials (metal oxides, carbon-based nanomaterials, cellulose-based nanomaterials), membrane, and nanobioremediation processes for wastewater treatment. The above is evident from the review of various publications. However, nanomaterials' cost, toxicity, and biodegradability need to be addressed before their commercial distribution and scale-up. The development of nanomaterials and nanoproducts must be sustainable and safe throughout the nanoproduct life cycle to meet the requirements of the circular economy.
Collapse
Affiliation(s)
- Heilyn Pérez
- Centro Nacional de Estudios Avanzados de Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico E-mail:
| | - Omar Jasiel Quintero García
- Centro Nacional de Estudios Avanzados de Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico
| | - Myriam Adela Amezcua-Allieri
- Gerencia de Transformación de Biomasa, Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, colonia San Bartolo Atepehuacan, Mexico City 07730, Mexico
| | - Refugio Rodríguez Vázquez
- Centro Nacional de Estudios Avanzados de Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico
| |
Collapse
|
32
|
Rafik ST, Vaidya JS, MacRobert AJ, Yaghini E. Organic Nanodelivery Systems as a New Platform in the Management of Breast Cancer: A Comprehensive Review from Preclinical to Clinical Studies. J Clin Med 2023; 12:jcm12072648. [PMID: 37048731 PMCID: PMC10095028 DOI: 10.3390/jcm12072648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Breast cancer accounts for approximately 25% of cancer cases and 16.5% of cancer deaths in women, and the World Health Organization predicts that the number of new cases will increase by almost 70% over the next two decades, mainly due to an ageing population. Effective diagnostic and treatment strategies are, therefore, urgently required for improving cure rates among patients since current therapeutic modalities have many limitations and side effects. Nanomedicine is evolving as a promising approach for cancer management, including breast cancer, and various types of organic and inorganic nanomaterials have been investigated for their role in breast cancer diagnosis and treatment. Following an overview on breast cancer characteristics and pathogenesis and challenges of the current treatment strategies, the therapeutic potential of biocompatible organic-based nanoparticles such as liposomes and polymeric micelles that have been tested in breast cancer models are reviewed. The efficacies of different drug delivery and targeting strategies are documented, ranging from synthetic to cell-derived nanoformulations together with a summary of the interaction of nanoparticles with externally applied energy such as radiotherapy. The clinical translation of nanoformulations for breast cancer treatment is summarized including those undergoing clinical trials.
Collapse
Affiliation(s)
- Salma T. Rafik
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London (UCL), London W1W 7TY, UK
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria 21516, Egypt
| | - Jayant S. Vaidya
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London (UCL), London W1W 7TY, UK
| | - Alexander J. MacRobert
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London (UCL), London W1W 7TY, UK
| | - Elnaz Yaghini
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London (UCL), London W1W 7TY, UK
| |
Collapse
|
33
|
Ye P, Chen K, Liu X, Zhu Z, Li C, Cheng Y, Yin Y, Xiao K. In situ fabrication of recyclable CuO@MoS2 nanosheet arrays-coated copper mesh for enhanced visible light photocatalytic degradation of tetracycline and microbial inactivation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
34
|
Liu F, Cao X, Tian F, Jiang J, Lin K, Cheng J, Hu X. Continuous and discontinuous multi-generational disturbances of tetrabromobisphenol A on longevity in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114522. [PMID: 36628875 DOI: 10.1016/j.ecoenv.2023.114522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is one of the most prevalently used brominated flame retardants. Due to its persistence, it is predominantly found in environmental matrices and has the potential to generate multi-generational toxicity. However, knowledge of its adaptive response or long-term residual effect in multi-generations, and molecular mechanisms remain understudied. In the current study, the model animal nematode Caenorhabditis elegans (C. elegans) was exposed to TBBPA at environmentally realistic concentrations (0.1-1000 μg L-1) for four consecutive generations (G0 to G3). Degenerative age-related multiple endpoints including lifespan, locomotion behaviors, growth, reproduction, oxidative stress-related biochemical responses, cell apoptosis, and stress related gene expressions were assessed in the continuous exposure generations (G0 and G3) and the discontinuously exposed generations (T3 and T'3). The results showed that changes in degenerative age-related response monitored four generations varied in direction and magnitude depending on the TBBPA concentrations, and the response intensify ranked as G0 > T'3/G3 > T3. TBBPA at 1 μg L-1 dosage was detected as the lowest observed effect concentration in multi-biomarkers. The underlying mechanism of aging phenotypes was that reactive oxygen species accumulation led to cell apoptosis regulated by gene ape-1, and confirmed catalase enzyme and superoxide dismutase activity played a crucial role in the detoxification process of TBBPA at the molecular level. This study provided insights into the underlying mechanism of TBBPA-interfered longevity and its environmental multi-generational potential risks.
Collapse
Affiliation(s)
- Fuwen Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xue Cao
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Fuxiang Tian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jingxian Jiang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junjie Cheng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiaojun Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
35
|
Nandhini SN, Sisubalan N, Vijayan A, Karthikeyan C, Gnanaraj M, Gideon DAM, Jebastin T, Varaprasad K, Sadiku R. Recent advances in green synthesized nanoparticles for bactericidal and wound healing applications. Heliyon 2023; 9:e13128. [PMID: 36747553 PMCID: PMC9898667 DOI: 10.1016/j.heliyon.2023.e13128] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Nanotechnology has become an exciting area of research in diverse fields, such as: healthcare, food, agriculture, cosmetics, paints, lubricants, fuel additives and other fields. This review is a novel effort to update the practioneers about the most current developments in the widespread use of green synthesized nanoparticles in medicine. Biosynthesis is widely preferred among different modes of nanoparticle synthesis since they do not require toxic chemical usage and they are environment-friendly. In the green bioprocess, plant, algal, fungal and cyanobacterial extract solutions have been utilized as nucleation/capping agents to develop effective nanomaterials for advanced medical applications. Several metal salts, such as silver, zinc, titanium and other inorganic salts, were utilized to fabricate innovative nanoparticles for healthcare applications. Irrespective of the type of wound, infection in the wound area is a widespread problem. Micro-organisms, the prime reason for wound complications, are gradually gaining resistance against the commonly used antimicrobial drugs. This necessitates the need to generate nanoparticles with efficient antimicrobial potential to keep the pathogenic microbes under control. These nanoparticles can be topically applied as an ointment and also be used by incorporating them into hydrogels, sponges or electrospun nanofibers. The main aim of this review is to highlight the recent advances in the Ag, ZnO and TiO2 nanoparticles with possible wound healing applications, coupled with the bactericidal ability of a green synthesis process.
Collapse
Affiliation(s)
- Shankar Nisha Nandhini
- PG and Research Department of Botany, St. Joseph's College (Autonomous), Tiruchirappalli, 620 002, Tamil Nadu, India
| | - Natarajan Sisubalan
- Department of Botany, Bishop Heber College (Autonomous), Affi. to Bharathidasan University, Trichy, 620017, Tamil Nadu, India,Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea,Corresponding author. Department of Botany, Bishop Heber College (Autonomous), Affi. to Bharathidasan University, Trichy, 620017, Tamil Nadu, India.;
| | - Arumugam Vijayan
- Department of Microbiology, SRM Institute of Science and Technology, Tiruchirappalli Campus, Tiruchirappalli, 621105, TN, India
| | | | - Muniraj Gnanaraj
- Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, 620 017, India
| | - Daniel Andrew M. Gideon
- Department of Biochemistry, St. Joseph's University, Langford Road, Bengaluru, 560027, Karnataka, India
| | - Thomas Jebastin
- Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, 620 017, India
| | - Kokkarachedu Varaprasad
- Facultad de Ingeniería, Arquitectura y Deseno, Universidad San Sebastián, Lientur 1457, Concepción, 4080871, Chile,Corresponding author. Universidad San Sebastián, Lientur 1457, Concepción, 4080871, Chile.;
| | - Rotimi Sadiku
- Institute of Nano Engineering Research (INER), Department of Chemical, Metallurgical and Materials Engineering (Polymer Division), Tshwane University of Technology, Pretoria West Campus, Staatsarillerie Rd, Pretoria, 1083, South Africa
| |
Collapse
|
36
|
Advanced Polymeric Nanocomposite Membranes for Water and Wastewater Treatment: A Comprehensive Review. Polymers (Basel) 2023; 15:polym15030540. [PMID: 36771842 PMCID: PMC9920371 DOI: 10.3390/polym15030540] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Nanomaterials have been extensively used in polymer nanocomposite membranes due to the inclusion of unique features that enhance water and wastewater treatment performance. Compared to the pristine membranes, the incorporation of nanomodifiers not only improves membrane performance (water permeability, salt rejection, contaminant removal, selectivity), but also the intrinsic properties (hydrophilicity, porosity, antifouling properties, antimicrobial properties, mechanical, thermal, and chemical stability) of these membranes. This review focuses on applications of different types of nanomaterials: zero-dimensional (metal/metal oxide nanoparticles), one-dimensional (carbon nanotubes), two-dimensional (graphene and associated structures), and three-dimensional (zeolites and associated frameworks) nanomaterials combined with polymers towards novel polymeric nanocomposites for water and wastewater treatment applications. This review will show that combinations of nanomaterials and polymers impart enhanced features into the pristine membrane; however, the underlying issues associated with the modification processes and environmental impact of these membranes are less obvious. This review also highlights the utility of computational methods toward understanding the structural and functional properties of the membranes. Here, we highlight the fabrication methods, advantages, challenges, environmental impact, and future scope of these advanced polymeric nanocomposite membrane based systems for water and wastewater treatment applications.
Collapse
|
37
|
Plant and Microbial Approaches as Green Methods for the Synthesis of Nanomaterials: Synthesis, Applications, and Future Perspectives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010463. [PMID: 36615655 PMCID: PMC9823860 DOI: 10.3390/molecules28010463] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023]
Abstract
The unique biological and physicochemical characteristics of biogenic (green-synthesized) nanomaterials (NMs) have attracted significant interest in different fields, with applications in the agrochemical, food, medication delivery, cosmetics, cellular imaging, and biomedical industries. To synthesize biogenic nanomaterials, green synthesis techniques use microorganisms, plant extracts, or proteins as bio-capping and bio-reducing agents and their role as bio-nanofactories for material synthesis at the nanoscale size. Green chemistry is environmentally benign, biocompatible, nontoxic, and economically effective. By taking into account the findings from recent investigations, we shed light on the most recent developments in the green synthesis of nanomaterials using different types of microbes and plants. Additionally, we cover different applications of green-synthesized nanomaterials in the food and textile industries, water treatment, and biomedical applications. Furthermore, we discuss the future perspectives of the green synthesis of nanomaterials to advance their production and applications.
Collapse
|
38
|
Biopolymer composites for removal of toxic organic compounds in pharmaceutical effluents – a review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
39
|
Mendes Hacke AC, Lima D, Kuss S. Green synthesis of electroactive nanomaterials by using plant-derived natural products. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Zhang W, Liu H, Fu G, Li Y, Ji X, Zhang S, Wei M, Qiao K. Exposure to fluopimomide at sublethal doses causes oxidative stress in Caenorhabditis elegans regulated by insulin/insulin-like growth factor 1-like signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:2529-2539. [PMID: 35833599 DOI: 10.1002/tox.23616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Fluopimomide is an innovative pesticide, widely used for agricultural pest management; however, little is known about its effect on non-target organisms. This study was designed to assess the potential risk of fluopimomide and the molecular mechanisms using Caenorhabditis elegans, a common model animal. The oxidative stress-related indicators were analyzed in C. elegans after exposure to fluopimomide for 24 h at three sublethal doses (0.2, 1.0, and 5.0 mg/L). The results demonstrated that sublethal exposure to fluopimomide adversely affected the nematodes growth, locomotive behaviors, reproduction, and lifespan, accompanying with enhanced of reactive oxygen species (ROS) generation, lipid and lipofuscin accumulation, and malondialdehyde content. In addition, exposure to fluopimomide significantly inhibited antioxidant systems including superoxide dismutase, catalase, glutathione S-transferase, and glutathione in the nematodes. Moreover, the expression of oxidative stress-related genes of sod-3, hsp-16.1, gst-4, ctl-2, daf-16, and daf-2 were significantly down-regulated, while the expression of skn-1 was significantly up-regulated. Further evidence revealed that daf-16 and skn-1 mutant strains of C. elegans significantly decreased ROS production upon fluopimomide exposure compared with the wild-type nematodes. Overall, our findings indicated that exposure to fluopimomide at sublethal doses caused oxidative damage, mainly associated with insulin/IGF-1-like signaling pathway in C. elegans. This is the first report of potential toxic effects of fluopimomide even at low concentrations, providing a new insight into the mechanisms of toxicity to C. elegans by fluopimomide.
Collapse
Affiliation(s)
- Weiping Zhang
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Huimin Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Guanghan Fu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Yujie Li
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Xiaoxue Ji
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Shouan Zhang
- Tropical Research and Education Center, Department of Plant Pathology, University of Florida, IFAS, Homestead, Florida, USA
| | - Min Wei
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Kang Qiao
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| |
Collapse
|
41
|
Wang S, Zhao C, Xue B, Li C, Zhang X, Yang X, Li Y, Yang Y, Shen Z, Wang J, Qiu Z. Nanoalumina triggers the antibiotic persistence of Escherichia coli through quorum sensing regulators lrsF and qseB. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129198. [PMID: 35739728 DOI: 10.1016/j.jhazmat.2022.129198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Nanomaterials with bactericidal effects might provide novel strategies against bacteria. However, some bacteria can survive despite the exposure to nanomaterials, which challenges the safety of antibacterial nanomaterials. Here, we used a high dose of antibiotics to kill the E. coli. that survived under different concentrations of nanoalumina treatment to screen persisters, and found that nanoalumina could significantly trigger persisters formation. Treatment with 50 mg/L nanoalumina for 4 h resulted in the formation of (0.084 ± 0.005) % persisters. Both reactive oxygen species (ROS) and toxin-antitoxin (TA) system were involved in persisters formation. Interestingly, RT-PCR analysis and knockout of the five genes related to ROS and TA confirmed that only hipB was associated with the formation of persisters, suggesting the involvement of other mechanisms. We further identified 73 differentially expressed genes by transcriptome sequencing and analyzed them with bioinformatics tools. We selected six candidate genes and verified that five of them closely related to quorum sensing (QS) that were involved in persisters formation, and further validated that the coexpression of QS factors lrsF and qseB was a novel pathway for persisters. Our findings provided a better understanding on the emergence of bacterial persistence and the microbial behavior under nanomaterials exposure.
Collapse
Affiliation(s)
- Shang Wang
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Chen Zhao
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Bin Xue
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Chenyu Li
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xi Zhang
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xiaobo Yang
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yan Li
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yanping Yang
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhiqiang Shen
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Jingfeng Wang
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Zhigang Qiu
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
42
|
Jamshidinia N, Mohammadipanah F. Nanomaterial-Augmented Formulation of Disinfectants and Antiseptics in Controlling SARS CoV-2. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:105-119. [PMID: 35266117 PMCID: PMC8906532 DOI: 10.1007/s12560-022-09517-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/22/2022] [Indexed: 05/24/2023]
Abstract
The worldwide COVID-19 pandemic has brought significant consideration toward innovative strategies for overcoming the viral spread. Nanotechnology will change our lives in several forms as its uses span from electronics to pharmaceutical procedures. The use of nanoparticles provides a possibility to promote new antiviral treatments with a low possibility of increasing drug resistance compared to typical chemical-based antiviral treatments. Since the long-term usage of disinfectants and antiseptics at high concentrations has deleterious impacts on well-being and the environment, this review was intended to discuss the antiviral activity of disinfectants and antiseptics required for their activity against respiratory viruses especially SARS-CoV-2. It could improve the inhibition of viral penetration into cells, solvation of the lipid bilayer envelope, and ROS production, therefore enhancing the effect of disinfectants. However, significant concerns about nanomaterial's hazardous effects on individuals and the environment are increasing as nanotechnology flourishes. In this review, we first discuss the significant and essential types of nanomaterials, especially silver and copper, that could be used as antiviral agents and their viral entry mechanisms into host cells. Further, we consider the toxicity on health, and environmental concerns of nanoparticles. Eventually, we present our outlook on the fate of nanomaterials toward viral diseases.
Collapse
Affiliation(s)
- Niloofar Jamshidinia
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455, Tehran, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455, Tehran, Iran.
| |
Collapse
|
43
|
Javed R, Ain NU, Gul A, Arslan Ahmad M, Guo W, Ao Q, Tian S. Diverse biotechnological applications of multifunctional titanium dioxide nanoparticles: An up-to-date review. IET Nanobiotechnol 2022; 16:171-189. [PMID: 35411585 PMCID: PMC9178655 DOI: 10.1049/nbt2.12085] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/13/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) are one of the topmost widely used metallic oxide nanoparticles. Whether present in naked form or doped with metals or polymers, TiO2 NPs perform immensely important functions. However, the alteration in size and shape by doping results in improving the physical, chemical, and biological behaviour of TiO2 NPs. Hence, the differential effects of various TiO2 nanostructures including nanoflakes, nanoflowers, and nanotubes in various domains of biotechnology have been elucidated by researchers. Recently, the exponential growth of research activities regarding TiO2 NPs has been observed owing to their chemical stability, low toxicity, and multifaceted properties. Because of their enormous abundance, plants, humans, and environment are inevitably exposed to TiO2 NPs. These NPs play a significant role in improving agricultural attributes, removing environmental pollution, and upgrading the domain of nanomedicine. Therefore, the currently ongoing studies about the employment of TiO2 NPs in enhancement of different aspects of agriculture, environment, and medicine have been extensively discussed in this review.
Collapse
Affiliation(s)
- Rabia Javed
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.,Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Noor Ul Ain
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Gul
- NANOCAT Research Center, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Muhammad Arslan Ahmad
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Weihong Guo
- Fuwai Hospial, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Shen Tian
- Department of Neurology, The 4th Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
44
|
Conductivity Behaviour under Pressure of Copper Micro-Additive/Polyurethane Composites (Experiment and Modelling). Polymers (Basel) 2022; 14:polym14071287. [PMID: 35406161 PMCID: PMC9002542 DOI: 10.3390/polym14071287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, micro-size copper particles (less than 25 μm) were incorporated into polyurethane (PU) using a solution mixing method and spin-coating technique to fabricate composite films in concentrations from 0.5 to 20 vol.%. The conductivity behaviour of these composites under pressure was studied experimentally and numerically. The conductivity measurements were performed in-plane and through-thickness under pressure. It was found that changes in conductivity only occurred in the z-direction under an applied pressure from 1 to 20 kPa. The results showed that pressure could induce conductivity up to about 7.2 × 10−1 S∙m−1 for composites with a Cu concentration higher than 2.6 vol.%. It seems that applied pressure reduced the thickness of the polymer film, decreasing the distance between copper particles and promoting the formation of a conductive network, thus making the material conductive. A semi-analytical model that can accurately provide the percolation threshold (PT) concentration was used to fit the experimental conductivity. The PT concentrations for PU-Cu composite ranged from 7.1 vol.% to 1.4 vol.% and decreased with the rise in pressure. This is known as a pressure-induced percolation transition phenomenon (PIPT). Finally, the finite element method based on the representative volume element model (FE-RVE) simulation technique was used to predict the conductivity behaviour. This numerical simulation provided a good description of the experimental conductivity after the PT and correctly predicted the PT concentration. This study shows that FE-RVE could be used to effectively simulate the influence of pressure on the electrical properties of a polymer–metal composite, reducing the need for costly and time-consuming experiments.
Collapse
|
45
|
Wen Y, Hu L, Li J, Geng Y, Yang Y, Wang J, Chen X, Yu L, Tang H, Han T, Yang Y, Liu X. Exposure to two-dimensional ultrathin Ti3C2 (MXene) nanosheets during early pregnancy impairs neurodevelopment of offspring in mice. J Nanobiotechnology 2022; 20:108. [PMID: 35248077 PMCID: PMC8898431 DOI: 10.1186/s12951-022-01313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background Two-dimensional ultrathin Ti3C2 (MXene) nanosheets have been extensively explored for various biomedical applications. However, safety issues and the effects of Ti3C2 on human health remain poorly understood. Results To explore the influence on foetal or offspring after exposure to Ti3C2 nanosheets, we established a mouse model exposed to different doses of Ti3C2 nanosheets during early pregnancy in this study. We found that Ti3C2 nanosheets had negligible effect on the reproductive ability of maternal mice, including average pregnancy days, number of new-borns, and neonatal weight, etc. Unexpectedly, abnormal neurobehavior and pathological changes in the cerebral hippocampus and cortex in adult offspring were observed following Ti3C2 nanosheet treatment. In further studies, it was found that Ti3C2 exposure led to developmental and functional defects in the placenta, including reduced area of labyrinth, disordered secretion of placental hormones, and metabolic function derailment. The long-chain unsaturated fatty acids were significantly higher in the placenta after Ti3C2 exposure, especially docosahexaenoic acid (DHA) and linoleic acid. The metabolic pathway analysis showed that biosynthesis of unsaturated fatty acids was upregulated while linoleic acid metabolism was downregulated. Conclusions These developmental and functional defects, particularly metabolic function derailment in placenta may be the cause for the neuropathology in the offspring. This is the first report about the effects of Ti3C2 nanosheet exposure on pregnancy and offspring. The data provides a better understanding of Ti3C2 nanosheets safety. It is suggested that future studies should pay more attention to the long-term effects of nanomaterials exposure, including the health of offspring in adulthood, rather than only focus on short-term effects, such as pregnancy outcomes. Metabolomics could provide clues for finding the prevention targets of the biological negative effect of Ti3C2 nanosheets. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01313-z.
Collapse
|
46
|
Khan AH, López-Maldonado EA, Khan NA, Villarreal-Gómez LJ, Munshi FM, Alsabhan AH, Perveen K. Current solid waste management strategies and energy recovery in developing countries - State of art review. CHEMOSPHERE 2022; 291:133088. [PMID: 34856242 DOI: 10.1016/j.chemosphere.2021.133088] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/02/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Solid waste generation has rapidly increased due to the worldwide population, urbanization, and industrialization. Solid waste management (SWM) is a significant challenge for a society that arises local issues with global consequences. Thus, solid waste management strategies to recycle waste products are promising practices that positively impact sustainable goals. Several developed countries possess excellent solid waste management strategies to recycle waste products. Developing countries face many challenges, such as municipal solid waste (MSW) sorting and handling due to high population density and economic instability. This mismanagement could further expedite harmful environmental and socioeconomic concerns. This review discusses the current solid waste management and energy recovery production in developing countries; with statistics, this review provides a comprehensive revision on energy recovery technologies such as the thermochemical and biochemical conversion of waste with economic considerations. Furthermore, the paper discusses the challenges of SWM in developing countries, including several immediate actions and future policy recommendations for improving the current status of SWM via harnessing technology. This review has the potential of helping municipalities, government authorities, researchers, and stakeholders working on MSW management to make effective decisions for improved SWM for achieving sustainable development.
Collapse
Affiliation(s)
- Afzal Husain Khan
- Civil Engineering Department, College of Engineering, Jazan University, P.O. Box. 706, Jazan 45142, Saudi Arabia; School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Pulau, Pinang, Malaysia.
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, CP, 22390, Tijuana, Baja California, Mexico
| | - Nadeem A Khan
- Civil Engineering Department, Jamia Millia Islamia, New Delhi, India.
| | - Luis Jesús Villarreal-Gómez
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, CP, 22390, Tijuana, Baja California, Mexico; Facultad de Ciencias de La Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd Universitario 1000, Unidad Valle de Las Palmas, 22260, Tijuana, Baja California, Mexico
| | - Faris M Munshi
- Department of Civil Engineering, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
| | - Abdullah H Alsabhan
- Department of Civil Engineering, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
| | - Kahkashan Perveen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
47
|
Elemental Speciation Analysis in Environmental Studies: Latest Trends and Ecological Impact. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212135. [PMID: 34831893 PMCID: PMC8623758 DOI: 10.3390/ijerph182212135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Speciation analysis is a key aspect of modern analytical chemistry, as the toxicity, environmental mobility, and bioavailability of elemental analytes are known to depend strongly on an element’s chemical species. Henceforth, great efforts have been made in recent years to develop methods that allow not only the determination of elements as a whole, but also each of its separate species. Environmental analytical chemistry has not ignored this trend, and this review aims to summarize the latest methods and techniques developed with this purpose. From the perspective of each relevant element and highlighting the importance of their speciation analysis, different sample treatment methods are introduced and described, with the spotlight on the use of modern nanomaterials and novel solvents in solid phase and liquid-liquid microextractions. In addition, an in-depth discussion of instrumental techniques aimed both at the separation and quantification of metal and metalloid species is presented, ranging from chromatographic separations to electro-chemical speciation analysis. Special emphasis is made throughout this work on the greenness of these developments, considering their alignment with the precepts of the Green Chemistry concept and critically reviewing their environmental impact.
Collapse
|
48
|
Peng S, Huang X, Huang Y, Huang Y, Zheng J, Zhu F, Xu J, Ouyang G. Novel solid-phase microextraction fiber coatings: A review. J Sep Sci 2021; 45:282-304. [PMID: 34799963 DOI: 10.1002/jssc.202100634] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022]
Abstract
The materials used for the fabrication of solid-phase microextraction fiber coatings in the past five years are summarized in the current review, including carbon, metal-organic frameworks, covalent organic frameworks, aerogel, polymer, ionic liquids/poly (ionic liquids), metal oxides, and natural materials. The preparation approaches of different coatings, such as sol-gel technique, in-situ growth, electrodeposition, and glue methods, are briefly reviewed together with the evolution of the supporting substrates. In addition, the limitations of the current coatings and the future development directions of solid-phase microextraction are presented.
Collapse
Affiliation(s)
- Sheng Peng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaoyu Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yuyan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yiquan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Juan Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
49
|
Ahmed T, Noman M, Rizwan M, Ali S, Shahid MS, Li B. Recent progress on the heavy metals ameliorating potential of engineered nanomaterials in rice paddy: a comprehensive outlook on global food safety with nanotoxicitiy issues. Crit Rev Food Sci Nutr 2021; 63:2672-2686. [PMID: 34554039 DOI: 10.1080/10408398.2021.1979931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Soil contamination with toxic heavy metals (HMs) poses a serious threat to global food safety, soil ecosystem and human health. The rapid industrialization, urbanization and extensive application of agrochemicals on arable land have led to paddy soil pollution worldwide. Rice plants easily accumulate toxic HMs from contaminated agricultural soils, which ultimately accumulated in grains and enters the food chain. Although, physical and chemical remediation techniques have been used for the treatment of HMs-contaminated soils, however, they also have many drawbacks, such as toxicity, capital investment and environmental-associated hazards. Recently, engineered nanomaterials (ENMs) have gained substantial attention owing to their promising environmental remediation applications. Numerous studies have revealed the use of ENMs for reclamation of toxic HMs from contaminated environment. This review mainly focuses on HMs toxicity in paddy soils along with potential health risks to humans. It also provides a critical outlook on the recent advances and future perspectives of nanoremediation strategies. Additionally, we will also propose the interacting mechanism of HMs-ENMs to counteract metal-associated phytotoxicities in rice plants to achieve global food security and environmental safety.
Collapse
Affiliation(s)
- Temoor Ahmed
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Noman
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Bin Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
50
|
Influence of Titanium Dioxide Nanoparticles on Human Health and the Environment. NANOMATERIALS 2021; 11:nano11092354. [PMID: 34578667 PMCID: PMC8465434 DOI: 10.3390/nano11092354] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 01/23/2023]
Abstract
Nanotechnology has enabled tremendous breakthroughs in the development of materials and, nowadays, is well established in various economic fields. Among the various nanomaterials, TiO2 nanoparticles (NPs) occupy a special position, as they are distinguished by their high availability, high photocatalytic activity, and favorable price, which make them useful in the production of paints, plastics, paper, cosmetics, food, furniture, etc. In textiles, TiO2 NPs are widely used in chemical finishing processes to impart various protective functional properties to the fibers for the production of high-tech textile products with high added value. Such applications contribute to the overall consumption of TiO2 NPs, which gives rise to reasonable considerations about the impact of TiO2 NPs on human health and the environment, and debates regarding whether the extent of the benefits gained from the use of TiO2 NPs justifies the potential risks. In this study, different TiO2 NPs exposure modes are discussed, and their toxicity mechanisms—evaluated in various in vitro and in vivo studies—are briefly described, considering the molecular interactions with human health and the environment. In addition, in the conclusion of this study, the toxicity and biocompatibility of TiO2 NPs are discussed, along with relevant risk management strategies.
Collapse
|