1
|
Cai Y, Yang Y, Jiang J, Long T, Gu X, Guo Y, Li M, Xie Y. Response of soil organic carbon stocks and soil microbial biomass carbon to natural grassland conversion: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178481. [PMID: 39892238 DOI: 10.1016/j.scitotenv.2025.178481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/14/2024] [Accepted: 01/09/2025] [Indexed: 02/03/2025]
Abstract
Natural grasslands worldwide are increasingly being converted into other land-use types, such as cropland and forest, thereby impacting soil carbon cycles and stocks. Soil organic carbon (SOC) is essential for regulating soil properties and microbial communities, while microbial biomass carbon (MBC) is the most active fraction of the SOC pool, both of which play pivotal roles in the global carbon cycle. Here, we performed a meta-analysis on 623 and 85 individual observations from 85 peer-reviewed articles to quantitatively evaluate the effect of grassland conversion on SOCS and MBC. Overall, conversions significantly reduced SOCS and MBC by 10.11 % and 30.63 %, respectively. Notably, the impact varied by conversion type: converting grassland to forest, cropland, and plantation reduced SOCS by 7.69 %, 16.47 %, and 20.55 %, respectively. Meanwhile, converting grassland to cropland and abandoned land decreased MBC by 47.80 % and 38.74 %, respectively. Environmental factors such as mean annual temperature (MAT), mean annual precipitation (MAP), soil total nitrogen (TN), and soil carbon-to‑nitrogen ratio (C/N) influenced these changes. SOCS and MBC were positively correlated with MAT, soil C/N and TN. Specifically, when the C/N or TN of the converted soil exceeded 1.21 or 1.11 times that of the original grassland, SOCS would exhibit a trend of carbon sequestration. Our findings provide valuable insights for global soil carbon sequestration and land use management policies.
Collapse
Affiliation(s)
- Yijun Cai
- Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Yuwen Yang
- Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Jinlin Jiang
- Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China.
| | - Tao Long
- Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China.
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Yang Guo
- Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Ming Li
- Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Yufeng Xie
- Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| |
Collapse
|
2
|
Shimelis G, Kim DG, Yimer F, Tadesse M. Exploring compost production potential and its economic benefits and greenhouse gas mitigation in Addis Ababa, Ethiopia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176617. [PMID: 39378937 DOI: 10.1016/j.scitotenv.2024.176617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/07/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024]
Abstract
The increasing amount of municipal organic waste (MOW) and human excreta (HE) has led to socio-economic and environmental challenges in the cities of developing countries. This study estimated MOW and HE, compost production potential from MOW and HE, and compost application potential for urban agriculture fertilization, economic benefits, soil carbon sequestration, and greenhouse gas (GHG) mitigation in Addis Ababa, Ethiopia, for the period 2025-2050. MOW was forecasted using the Holt-Winters forecasting model. HE was estimated using the daily average rate of HE generation. The compost production potential was estimated using the forecasted MOW and HE. Compost fertilization was determined by considering compost nitrogen (N), phosphorus (P), and potassium (K) and the fertilizer requirements of cereals and vegetables. The economic benefits of compost were determined by considering the price of compost-equivalent urea, NPS, and potassium chloride fertilizers. The mitigation of GHG emissions from compost application was estimated using the IPCC Tier 1 method. The forecasted quantities of MOW, HE, and compost for 2050 are 301, 462, and 343 Gg, respectively. The compost could supply 5 Gg of N and 2.2 Gg of P in 2050, sufficient to fertilize 14,129 ha of vegetable fields. The economic benefits of using compost as a substitute for synthetic fertilizers could reach 10 million USD in 2050. Compost production and application could offset the total GHG emissions of Addis Ababa by 13.1 % (10,241Gg CO2-eq year-1) in 2050. The application of compost generated from MOW and HE in Addis Ababa can substitute synthetic fertilizers, provide economic benefits, and mitigate GHG emissions.
Collapse
Affiliation(s)
- Gezu Shimelis
- Department of Land Administration and Surveying, Institute of Land Administration, Oda Bultum University, P.O. Box 225, Chiro, Ethiopia; Wondo Genet College of Forestry and Natural Resources, Hawassa University, P.O. Box 128, Shashemene, Ethiopia.
| | - Dong-Gill Kim
- Wondo Genet College of Forestry and Natural Resources, Hawassa University, P.O. Box 128, Shashemene, Ethiopia.
| | - Fantaw Yimer
- Wondo Genet College of Forestry and Natural Resources, Hawassa University, P.O. Box 128, Shashemene, Ethiopia
| | - Menfese Tadesse
- Wondo Genet College of Forestry and Natural Resources, Hawassa University, P.O. Box 128, Shashemene, Ethiopia
| |
Collapse
|
3
|
You L, Ros GH, Chen Y, Zhang F, de Vries W. Optimized agricultural management reduces global cropland nitrogen losses to air and water. NATURE FOOD 2024; 5:995-1004. [PMID: 39533126 DOI: 10.1038/s43016-024-01076-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Nitrogen (N) losses from croplands substantially contribute to global N pollution. Assessing the reduction in N losses through improved N management practices is complex due to varying site conditions, such as land use, climate, soil properties and local farming methods. In this Article, we conducted a meta-analysis to evaluate the effects of improved practices on N loss reduction, analysing data from 1,065 studies with 6,753 pairs of observations comparing standard and optimized practices. Without considering site-specific conditions, optimized management practices can reduce N2O emissions by 3-39%, NH3 emissions by 15-68%, N run-off by 21-37% and N leaching by 19-52%. After considering local conditions and current practices, average reductions on a global scale were 31% for N2O, 23% for NH3, 18% for N run-off and 17% for N leaching. The effectiveness of N loss reduction was mainly influenced by optimized management practices and, to a lesser extent, site conditions. The results of this study underscore the importance of implementing optimized, site-specific management to effectively reduce N losses from global croplands.
Collapse
Affiliation(s)
- Luncheng You
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, China
| | - Gerard H Ros
- Earth Systems and Global Change Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Yongliang Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing, China.
| | - Fusuo Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing, China
| | - Wim de Vries
- Earth Systems and Global Change Group, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
4
|
Cao Y, Bai M, Han B, Butterly C, Hu H, He J, Griffith DWT, Chen D. NH 3 and greenhouse gas emissions during co-composting of lignite and poultry wastes and the following amendment of co-composted products in soil. ENVIRONMENTAL TECHNOLOGY 2024; 45:5794-5807. [PMID: 38379449 DOI: 10.1080/09593330.2024.2306799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/06/2024] [Indexed: 02/22/2024]
Abstract
Ammonia (NH3) and greenhouse gas (GHG) emissions are substantial contributors to C and N loss in composting. Lignite can increase N retention by absorbing N H 4 + and NH3. However, the effects of co-composting on NH3 and GHG emissions in view of closing nutrient cycle are still poorly investigated. In the study, poultry litter was composted without (CK) or with lignite (T1) or dewatered lignite (T2), and their respective composts N H 4 + Com_CK, Com_T1, and Com_T2) were tested in a soil incubation to assess NH3 and GHG emission during composting and following soil utilization. The cumulative NH3 flux in T1 and T2 were reduced by 39.3% and 50.2%, while N2O emissions were increased by 7.5 and 15.6 times, relative to CK. The total GHG emission in T2 was reduced by 16.8% compared to CK. Lignite addition significantly increased nitrification and denitrification as evidenced by the increased abundances of amoA, amoB, nirK, and nirS. The increased reduction on NH3 emission by dewatered lignite could be attributed to reduced pH and enhanced cation exchangeable capacity than lignite. The increased N2O was related to enhanced nitrification and denitrification. In the soil incubation experiment, compost addition reduced NH3 emission by 72%∼83% while increased emissions of CO2 and N2O by 306%∼740% and 208%∼454%, compared with urea. Com_T2 strongly reduced NH3 and GHG emissions after soil amendment compared to Com_CK. Overall, dewatered lignite, as an effective additive, exhibits great potential to simultaneously mitigate NH3 and GHG secondary pollution during composting and subsequent utilization of manure composts.
Collapse
Affiliation(s)
- Yun Cao
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Key Laboratory of Crop and Livestock Integrated Farming, Ministry of Agriculture, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, People's Republic of China
| | - Mei Bai
- Faculty of Veterinary and Agriculture Science, University of Melbourne, Melbourne, Australia
| | - Bing Han
- Faculty of Veterinary and Agriculture Science, University of Melbourne, Melbourne, Australia
| | - Clayton Butterly
- Faculty of Veterinary and Agriculture Science, University of Melbourne, Melbourne, Australia
| | - Hangwei Hu
- Faculty of Veterinary and Agriculture Science, University of Melbourne, Melbourne, Australia
| | - Jizheng He
- Faculty of Veterinary and Agriculture Science, University of Melbourne, Melbourne, Australia
| | - David W T Griffith
- Faculty of Science, Medicine and Health, Centre for Atmospheric Chemistry, University of Wollongong, Wollongong, Australia
| | - Deli Chen
- Faculty of Veterinary and Agriculture Science, University of Melbourne, Melbourne, Australia
| |
Collapse
|
5
|
Li C, Wei Z, Wang X, Ma X, Tang Q, Zhao B, Shan J, Yan X. Biochar mitigates the stimulatory effects of straw incorporation on N 2O emission and N 2O/(N 2O + N 2) ratio in upland soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122318. [PMID: 39216357 DOI: 10.1016/j.jenvman.2024.122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Straw incorporation, a common agricultural strategy designed to enhance soil organic carbon (SOC), often leads to increased nitrous oxide (N2O) emission, potentially offsetting benefits of SOC sequestration. However, the mechanism and mitigation options for the enhanced N2O emission following straw incorporation remain unclear. Here, N2 and N2O emission rate, as well as N2O/(N2O + N2) ratio under four different fertilization treatments [i.e., non-fertilization (Control), conventional chemical fertilization (CF), conventional chemical fertilization plus straw incorporation (SWCF), and conventional chemical fertilization plus straw and biochar incorporation (SWBCF)] were investigated by a robotized sampling and analysis system. High-throughput sequencing was also employed to assess the variation of bacterial community across different treatments. The results showed CF, SWCF, and SWBCF fertilization treatments significantly increased N2O emission rate by 1.04, 2.01, and 1.29 folds, respectively, relative to Control treatment. Albeit no significant enhancements in N2 emission rate, the N2O/(N2O + N2) ratio significantly increased by 65.53%, 1.10 folds, and 69.49% in CF, SWCF, and SWBCF treatments, respectively. The partial least squares path modeling analysis further revealed that fertilization treatments slightly increased N2 emission rate by increasing DOC content and keystone OTUs abundance. While the enhanced N2O emission rate and N2O/(N2O + N2) ratio in the fertilization treatments was primarily determined by reducing DOC/NO3- ratio and specific bacteria module abundance dominated by Gaiellales, Solirubrobacterales, and Micrococcales. Furthermore, SWBCF treatment alleviated the increase in net global warming potential due to straw incorporation, as indicated by the higher SOC sequestration and lower N2O/(N2O + N2) ratio therein. Collectively, these findings suggest that simultaneous application of straw and biochar has the potential to mitigate the risk of increased N2O emission from straw incorporation. This study provides valuable insights for developing targeted strategies in C sequestration and greenhouse gas mitigation, tackling the challenge presented by global climate change.
Collapse
Affiliation(s)
- Chenglin Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhijun Wei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaomin Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaofang Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Quan Tang
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, 225009, China
| | - Bingzi Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
6
|
Ny Avotra AAR, Nawaz A. Unveiling a water-resilient service economy: A model-based approach for enhanced service excellence in GVCs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122202. [PMID: 39146654 DOI: 10.1016/j.jenvman.2024.122202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
Urbanization, climate change, and irresponsible resource management exacerbate the global water crisis. The necessity for water resilience, the capacity of systems and communities to adjust and flourish in the face of water shocks and pressures, has been brought to light by these critical issues. Water resilience enables Global Value Chains (GVCs) to survive scarcity, pollution, and flooding, ensuring sustainability and service delivery. Current service excellence models focus on stakeholder satisfaction, punctuality, and reliability over water resilience. This oversight may limit GVC growth and flexibility, reducing sector services. As recommended service excellence models focus on satisfaction, punctuality and reliability among stakeholders but water resilience is not considered. This can create issues for the growth and flexibility of GVCs which could cut back on services sector. This research is examined a complex relationship between service quality and water resilience to improve the GVCs in China regions especially Guangdong Province, Shanghai Municipality, and Beijing Municipality. By using multiple regression, GVCs service quality and water resilience is analyzed in the existence of Service Excellence Model. The study used 15 years (2009-2023) secondary data to measure how water resilience and GVCs services quality affect each other in Chinese regions. The results show that water resilience strategies can strengthen global production networks, optimize resource usage, and enhance service excellence. Chinese GVCs can produce a water-resilient service economy, enlightening service quality and preserving competitiveness in rapidly changing global markets.
Collapse
Affiliation(s)
| | - Ahsan Nawaz
- Collage of Civil Engineering & Architecture, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Sharma P, Parakh SK, Tsui TH, Bano A, Singh SP, Singh VP, Lam SS, Nadda AK, Tong YW. Synergetic anaerobic digestion of food waste for enhanced production of biogas and value-added products: strategies, challenges, and techno-economic analysis. Crit Rev Biotechnol 2024; 44:1040-1060. [PMID: 37643972 DOI: 10.1080/07388551.2023.2241112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 08/31/2023]
Abstract
The generation of food waste (FW) is increasing at an alarming rate, contributing to a total of 32% of all the waste produced globally. Anaerobic digestion (AD) is an effective method for dealing with organic wastes of various compositions, like FW. Waste valorization into value-added products has increased due to the conversion of FW into biogas using AD technology. A variety of pathways are adopted by microbes to avoid unfavorable conditions in AD, including competition between sulfate-reducing bacteria and methane (CH4)-forming bacteria. Anaerobic bacteria decompose organic matter to produce biogas, a digester gas. The composition depends on the type of raw material and the method by which the digestion process is conducted. Studies have shown that the biogas produced by AD contains 65-75% CH4 and 35-45% carbon dioxide (CO2). Methanothrix soehngenii and Methanosaeta concilii are examples of species that convert acetate to CH4 and CO2. Methanobacterium bryantii, Methanobacterium thermoautotrophicum, and Methanobrevibacter arboriphilus are examples of species that produce CH4 from hydrogen and CO2. Methanobacterium formicicum, Methanobrevibacter smithii, and Methanococcus voltae are examples of species that consume formate, hydrogen, and CO2 and produce CH4. The popularity of AD has increased for the development of biorefinery because it is seen as a more environmentally acceptable alternative in comparison to physico-chemical techniques for resource and energy recovery. The review examines the possibility of using accessible FW to produce important value-added products such as organic acids (acetate/butyrate), biopolymers, and other essential value-added products.
Collapse
Affiliation(s)
- Pooja Sharma
- NUS Environmental Research Institute, National University of Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Sheetal Kishor Parakh
- NUS Environmental Research Institute, National University of Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - To Hung Tsui
- NUS Environmental Research Institute, National University of Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Ambreen Bano
- Department of Biosciences, Faculty of Sciences, IIRC-3, Plant-Microbe Interaction, and Molecular Immunology Laboratory, Integral University, Lucknow, India
| | - Surendra Pratap Singh
- Department of Botany, Plant Molecular Biology Laboratory, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Vijay Pratap Singh
- Department of Botany, Plant Physiology Laboratory, C.M.P. Degree College, a Constituent Post Graduate College of University of Allahabad, Prayagraj, India
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, India
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| |
Collapse
|
8
|
Kravchenko E, Dela Cruz TL, Chen XW, Wong MH. Ecological consequences of biochar and hydrochar amendments in soil: assessing environmental impacts and influences. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42614-42639. [PMID: 38900405 DOI: 10.1007/s11356-024-33807-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Anthropogenic activities have caused irreversible consequences on our planet, including climate change and environmental pollution. Nevertheless, reducing greenhouse gas (GHG) emissions and capturing carbon can mitigate global warming. Biochar and hydrochar are increasingly used for soil remediation due to their stable adsorption qualities. As soil amendments, these materials improve soil quality and reduce water loss, prevent cracking and shrinkage, and interact with microbial communities, resulting in a promising treatment method for reducing gas emissions from the top layer of soil. However, during long-term studies, contradictory results were found, suggesting that higher biochar application rates led to higher soil CO2 effluxes, biodiversity loss, an increase in invasive species, and changes in nutrient cycling. Hydrochar, generated through hydrothermal carbonization, might be less stable when introduced into the soil, which could lead to heightened GHG emissions due to quicker carbon breakdown and increased microbial activity. On the other hand, biochar, created via pyrolysis, demonstrates stability and can beneficially impact GHG emissions. Biochar could be the preferred red option for carbon sequestration purposes, while hydrochar might be more advantageous for use as a gas adsorbent. This review paper highlights the ecological impact of long-term applications of biochar and hydrochar in soil. In general, using these materials as soil amendments helps establish a sustainable pool of organic carbon, decreasing atmospheric GHG concentration and mitigating the impacts of climate change.
Collapse
Affiliation(s)
- Ekaterina Kravchenko
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Soil Health Laboratory, Southern Federal University, Rostov-On-Don, Russia
| | - Trishia Liezl Dela Cruz
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xun Wen Chen
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ming Hung Wong
- Soil Health Laboratory, Southern Federal University, Rostov-On-Don, Russia.
- Consortium On Health, Environment, Education, and Research (CHEER), The Education University of Hong Kong, Tai Po, Hong Kong, China.
| |
Collapse
|
9
|
Esteves C, Costa E, Mata M, Mota M, Martins M, Ribeiro H, Fangueiro D. Partial replacement of mineral fertilisers with animal manures in an apple orchard: Effects on GHG emission. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120552. [PMID: 38531128 DOI: 10.1016/j.jenvman.2024.120552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
Partial replacement of mineral fertilisers (MF) with animal manures is a good alternative to reduce MF use and increase both nutrient cycling in agriculture and soil organic matter. However, the adoption of this practice must not lead to increased environmental impacts. In this two-year study conducted in an apple orchard, MF were partially replaced with various animal manures, including cattle slurry (CS), acidified cattle slurry (ACS), solid cattle manure (CsM), or poultry manure (PM), and their impacts on greenhouse gas emission (GHG: CO2, N2O and CH4) were examined. A control (CTRL) receiving only MF served as the baseline, representing the conventional scenario in orchard fertilisation. Overall, replacing MF with manures increased GHG emissions, with the magnitude of the impacts depending on the specific characteristics of the manures and the amount of nutrients and organic matter applied. Comparing to the CTRL, application of ACS and CS led to higher CH4 and N2O emissions, while PM application increased both N2O and CO2 emissions. In contrast, replacement with PM and CsM decreased CH4 emissions. Nevertheless, results varied between the two years, influenced by several factors, including soil conditions. While acidification showed potential to mitigate CH4 emissions, it also led to increased N2O emissions compared to CS, particularly in 2022, suggesting the need for further investigation to avoid emission trade-offs. Replacement with CS (20.49 t CO2-eq ha-1) and CsM (20.30 t CO2-eq ha-1) showed comparable global warming potential (GWP) to the conventional scenario (CTRL, 19.49 t CO2-eq ha-1), highlighting their potential as viable MF substitutes.
Collapse
Affiliation(s)
- Catarina Esteves
- Linking Landscape, Environment, Agriculture and Food (LEAF) Research Centre, Terra Associate Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| | - Eva Costa
- Linking Landscape, Environment, Agriculture and Food (LEAF) Research Centre, Terra Associate Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| | - Miguel Mata
- Linking Landscape, Environment, Agriculture and Food (LEAF) Research Centre, Terra Associate Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| | - Mariana Mota
- Linking Landscape, Environment, Agriculture and Food (LEAF) Research Centre, Terra Associate Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| | - Miguel Martins
- Linking Landscape, Environment, Agriculture and Food (LEAF) Research Centre, Terra Associate Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| | - Henrique Ribeiro
- Linking Landscape, Environment, Agriculture and Food (LEAF) Research Centre, Terra Associate Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| | - David Fangueiro
- Linking Landscape, Environment, Agriculture and Food (LEAF) Research Centre, Terra Associate Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| |
Collapse
|
10
|
Li H, Lin L, Peng Y, Hao Y, Li Z, Li J, Yu M, Li X, Lu Y, Gu W, Zhang B. Biochar's dual role in greenhouse gas emissions: Nitrogen fertilization dependency and mitigation potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170293. [PMID: 38286282 DOI: 10.1016/j.scitotenv.2024.170293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/31/2024]
Abstract
Biochar was popularly used for reducing greenhouse gas (GHG) emissions in vegetable production, but using biochar does not necessarily guarantee a reduction in GHG emissions. Herein, it's meaningful to elucidate the intricate interplay among biochar properties, soil characteristics, and GHG emissions in vegetable production to provide valuable insights for informed and effective mitigation strategies. Therefore, in current research, a meta-analysis of 43 publications was employed to address these issues. The boost-regression analysis results indicated that the performance of biochar in inhibiting N2O emissions was most affected by the N application rate both in high and low N application conditions. Besides, biochar had dual roles and showed well performance in reducing GHG emissions under low N input (≤300 kg N ha-1), while having the opposite effect during high N input (>300 kg N ha-1). Specifically, applying biochar under low N fertilization input could obviously reduce soil N2O emissions, CO2 emissions, and CH4 emissions by 18.7 %, 17.9 %, and 16.9 %, respectively. However, the biochar application under high N fertilization input significantly (P < 0.05) increased soil N2O emissions, CO2 emissions, and CH4 emissions by 39.7 %, 43.0 %, and 27.7 %, respectively. Except for the N application rate, the soil pH, SOC, biochar C/N ratio, biochar pH, and biochar pyrolysis temperature are also the key factors affecting the control of GHG emissions in biochar-amended soils. The findings of this study will contribute to deeper insights into the potential application of biochar in regulating GHG under consideration of N input, offering scientific evidence and guidance for sustainable agriculture management.
Collapse
Affiliation(s)
- Hongzhao Li
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Faculty of Food Science and Engineering, Foshan University, Foshan 258000, China
| | - Liwen Lin
- School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China
| | - Yutao Peng
- School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China
| | - Yongzhou Hao
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Faculty of Food Science and Engineering, Foshan University, Foshan 258000, China
| | - Zhen Li
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jing Li
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Min Yu
- Faculty of Food Science and Engineering, Foshan University, Foshan 258000, China
| | - Xuewen Li
- Faculty of Food Science and Engineering, Foshan University, Foshan 258000, China
| | - Yusheng Lu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Wenjie Gu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Baige Zhang
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
11
|
Sultan H, Li Y, Ahmed W, Yixue M, Shah A, Faizan M, Ahmad A, Abbas HMM, Nie L, Khan MN. Biochar and nano biochar: Enhancing salt resilience in plants and soil while mitigating greenhouse gas emissions: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120448. [PMID: 38422850 DOI: 10.1016/j.jenvman.2024.120448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Salinity stress poses a significant challenge to agriculture, impacting soil health, plant growth and contributing to greenhouse gas (GHG) emissions. In response to these intertwined challenges, the use of biochar and its nanoscale counterpart, nano-biochar, has gained increasing attention. This comprehensive review explores the heterogeneous role of biochar and nano-biochar in enhancing salt resilience in plants and soil while concurrently mitigating GHG emissions. The review discusses the effects of these amendments on soil physicochemical properties, improved water and nutrient uptake, reduced oxidative damage, enhanced growth and the alternation of soil microbial communities, enhance soil fertility and resilience. Furthermore, it examines their impact on plant growth, ion homeostasis, osmotic adjustment and plant stress tolerance, promoting plant development under salinity stress conditions. Emphasis is placed on the potential of biochar and nano-biochar to influence soil microbial activities, leading to altered emissions of GHG emissions, particularly nitrous oxide(N2O) and methane(CH4), contributing to climate change mitigation. The comprehensive synthesis of current research findings in this review provides insights into the multifunctional applications of biochar and nano-biochar, highlighting their potential to address salinity stress in agriculture and their role in sustainable soil and environmental management. Moreover, it identifies areas for further investigation, aiming to enhance our understanding of the intricate interplay between biochar, nano-biochar, soil, plants, and greenhouse gas emissions.
Collapse
Affiliation(s)
- Haider Sultan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.
| | - Yusheng Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Waqas Ahmed
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Mu Yixue
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Asad Shah
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, India
| | - Aqeel Ahmad
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Hafiz Muhammad Mazhar Abbas
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Lixiao Nie
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.
| | - Mohammad Nauman Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.
| |
Collapse
|
12
|
Bekchanova M, Campion L, Bruns S, Kuppens T, Lehmann J, Jozefczak M, Cuypers A, Malina R. Biochar improves the nutrient cycle in sandy-textured soils and increases crop yield: a systematic review. ENVIRONMENTAL EVIDENCE 2024; 13:3. [PMID: 39294832 PMCID: PMC11376106 DOI: 10.1186/s13750-024-00326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/13/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND Biochar is a relatively new development in sustainable agricultural management that can be applied to ameliorate degraded and less fertile soils, especially sandy-textured ones, to improve their productivity with respect to crop production through improved nutrient availability. However, as the literature has shown, the response of sandy-textured soils to biochar varies in terms of effect size and direction. Therefore, the present study systematically reviewed the available evidence to synthesize the impact of biochar amendments on aspects of the nutrient cycle of sandy-textured soils. METHODS Both peer-reviewed and gray literature were searched in English in bibliographic databases, organizational web pages, and Internet search engines. Articles underwent a two-stage screening (title and abstract, and full-text) based on predefined criteria, with consistency checks. Validity assessments were conducted, utilizing specifically designed tools for study validity. Data extraction involved categorizing the various properties of the nutrient cycle into nine main Soil and Plant Properties (SPPs), each of which was studied independently. Nine meta-analyses were performed using a total of 1609 observations derived from 92 articles. Comparing meta-averages with and without correction for publication bias suggests that publication bias plays a minor role in the literature, while some indication for publication bias is found when accounting for heterogeneity by means of meta-regressions. REVIEW FINDINGS According to the results, soil total and available nitrogen [N], phosphorous [P] and potassium [K], plant nutrient level, and potential cation exchange capacity (CEC) increased by 36% (CI [23%, 50%]), 34% (CI [15%, 57%]), 15% (CI [1%, 31%]), and 18% (CI [3%, 36%), respectively, and N2O emission and mineral nutrient leaching decreased by 29% (CI [- 48%, - 3%]) and 38% (CI [- 56%, - 13%). On average, however, biochar had no effect on soil mineral nitrogen and nutrient use efficiency. Publication bias was identified in the response of effective CEC. After corrections for publication bias, the response shifted from 36% to a negative value of - 34% (CI [- 50%, - 14%]). Meta-regression found that the effect modifiers experimental continent, biochar application rate, and soil pH, explain result heterogeneity. Stronger responses came from the continent of South America, higher application rates, and higher pH soils. Overall, biochar is found useful for many SPPs of nutrient cycling of sandy-textured soils, thereby contributing to increased crop yields in such soils.
Collapse
Affiliation(s)
- Madina Bekchanova
- Centre for Environmental Sciences, Research Group Environmental Economics, UHasselt-Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium.
- Centre for Environmental Sciences, Research Group Environmental Biology, UHasselt-Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium.
| | - Luca Campion
- Centre for Environmental Sciences, Research Group Environmental Economics, UHasselt-Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| | - Stephan Bruns
- Centre for Environmental Sciences, Research Group Environmental Economics, UHasselt-Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| | - Tom Kuppens
- Centre for Environmental Sciences, Research Group Environmental Economics, UHasselt-Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
- Vrije Universiteit Brussel, Multidisciplinary Institute for Teacher Education (MILO), Pleinlaan 9, 1050, Brussels, Belgium
| | - Johannes Lehmann
- School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Marijke Jozefczak
- Centre for Environmental Sciences, Research Group Environmental Biology, UHasselt-Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| | - Ann Cuypers
- Centre for Environmental Sciences, Research Group Environmental Biology, UHasselt-Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| | - Robert Malina
- Centre for Environmental Sciences, Research Group Environmental Economics, UHasselt-Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| |
Collapse
|
13
|
He Z, Ding B, Pei S, Cao H, Liang J, Li Z. The impact of organic fertilizer replacement on greenhouse gas emissions and its influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166917. [PMID: 37704128 DOI: 10.1016/j.scitotenv.2023.166917] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/19/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Although organic fertilizers played an important role in enhancing crop yield and soil quality, the effects of organic fertilizers replacing chemical fertilizers on greenhouse gas (GHG) emissions remained inconsistent, and further impeding the widespread adoption of organic fertilizers. Therefore, a global meta-analysis used 568 comparisons from 137 publications was conducted to evaluate the responses of GHG emissions to organic fertilizers replacing chemical fertilizers. The results indicated that organic fertilizers replacing chemical fertilizers significantly decreased N2O emissions, but increasing global warming potential (GWP) by enhancing CH4 and CO2 emissions. When replacing chemical fertilizers with organic fertilizers, a variety of factors such as climate conditions, soil conditions, crop types and agricultural practices influenced the GHG emissions and GWP. Among these factors, fertilizer organic C and available N level were the main factors affecting GHG and GWP. However, considering the feasibility and ease of optimizing these factors, fertilizer organic C, C/N and N substitution rate showed a more favorable choice for GWP reduction, and their interactions significantly affecting GWP. Moreover, considering the distinct GHG emissions patterns in dryland and paddy field, the analysis of optimizing GWP based on fertilizer organic C, C/N and N substitution rate was separately conducted. According to the simulation optimization, the optimal combination of fertilizer organic C (137.2-228.8 g·kg-1), C/N (6.9-52.0) and N substitution rate (20.0-22.5 %) effectively suppressed the extent of increase in GWP in paddy field compared with chemical fertilizers. In dryland, optimizing fertilizer organic C (100-278 g·kg-1), C/N (70.7-76.6) and N substitution rate (10.2-16.0 %) led to a reduction in GWP compared with chemical fertilizers, indicating that dryland are more suitable for promoting organic fertilizer application. In conclusion, this meta-analysis study quantitatively assessed the GHG emissions when organic fertilizers replacing chemical fertilizers, and also provided a scientific basis for the mitigation of GHG emissions by organic fertilizers management.
Collapse
Affiliation(s)
- Zijian He
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Bangxin Ding
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuyao Pei
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongxia Cao
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jiaping Liang
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Zhijun Li
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
14
|
Fresno M, Pavez L, Poblete Y, Cortez A, Del Pozo T. Unveiling antimicrobial resistance in Chilean fertilized soils: a One Health perspective on environmental AMR surveillance. Front Microbiol 2023; 14:1239761. [PMID: 38107869 PMCID: PMC10722175 DOI: 10.3389/fmicb.2023.1239761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023] Open
Abstract
Antimicrobial resistance (AMR) poses a significant threat to humans and animals as well as the environment. Within agricultural settings, the utilization of antimicrobial agents in animal husbandry can lead to the emergence of antimicrobial resistance. In Chile, the widespread use of animal-derived organic amendments, including manure and compost, requires an examination of the potential emergence of AMR resulting from their application. The aim of this research was to identify and compare AMR genes found in fertilized soils and manure in Los Andes city, Chile. Soil samples were collected from an agricultural field, comprising unamended soils, amended soils, and manure used for crop fertilization. The selected genes (n = 28) included genes associated with resistance to beta-lactams, tetracyclines, sulfonamides, polymyxins, macrolides, quinolones, aminoglycosides, as well as mobile genetic elements and multidrug resistance genes. Twenty genes were successfully identified in the samples. Tetracycline resistance genes displayed the highest prevalence, followed by MGE and sulfonamides, while quinolone resistance genes were comparatively less abundant. Notably, blaOXA, sulA, tetO, tetW, tetM, aac (6) ib., and intI1, exhibited higher frequencies in unamended soils, indicating their potential persistence within the soil microbiome and contribution to the perpetuation of AMR over time. Given the complex nature of AMR, it is crucial to adopt an integrated surveillance framework that embraces the One Health approach, involving multiple sectors, to effectively address this challenge. This study represents the first investigation of antimicrobial resistance genes in agricultural soils in Chile, shedding light on the presence and dynamics of AMR in this context.
Collapse
Affiliation(s)
- Marcela Fresno
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Providencia, Santiago, Chile
- Red CYTED-USCC. CYTED 412RT0117: Una Salud en Iberoamérica y El Caribe frente al cambio climático y la pérdida de biodiversidad, Santiago, Chile
| | - Leonardo Pavez
- Núcleo de Investigación en Ciencias Biológicas (NICB), Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Providencia, Santiago, Chile
- Departamento de Ciencias Humanas, Universidad Bernardo O’Higgins, Santiago, Chile
| | - Yanina Poblete
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Providencia, Santiago, Chile
| | - Alexandra Cortez
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Talía Del Pozo
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Providencia, Santiago, Chile
| |
Collapse
|
15
|
Qayyum M, Zhang Y, Wang M, Yu Y, Li S, Ahmad W, Maodaa SN, Sayed SRM, Gan J. Advancements in technology and innovation for sustainable agriculture: Understanding and mitigating greenhouse gas emissions from agricultural soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119147. [PMID: 37776793 DOI: 10.1016/j.jenvman.2023.119147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/03/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
In recent decades, Technology and Innovation (TI) have shown tremendous potential for improving agricultural productivity and environmental sustainability. However, the adoption and implementation of TI in the agricultural sector and its impact on the environment remain limited. To gain deeper insights into the significance of TI in enhancing agricultural productivity while maintaining environmental balance, this study investigates 21 agriculture-dependent Asian countries. Two machine learning techniques, LASSO (Least Absolute Shrinkage and Selection Operator) and Elastic-Net, are employed to analyze the data, which is categorized into three regional groups: ASEAN (Association of Southeast Asian Nations), SAARC (South Asian Association for Regional Cooperation), and GCC (Gulf Cooperation Council). The findings of this study highlight the heterogeneous nature of technology adoption and its environmental implications across the three country groups. ASEAN countries emerge as proactive adopters of relevant technologies, effectively enhancing agricultural production while simultaneously upholding environmental quality. Conversely, SAARC countries exhibit weaker technology adoption, leading to significant fluctuations in environmental quality, which in turn impact agricultural productivity. Notably, agricultural emissions of N2O (nitrous oxide) and CO2 (carbon dioxide) in SAARC countries show a positive association with agricultural production, while CH4 (methane) emissions have an adverse effect. In contrast, the study reveals a lack of evidence regarding technological adoption in agriculture among GCC countries. Surprisingly, higher agricultural productivity in these countries is correlated with increased N2O emissions. Moreover, the results indicate that deforestation and expansion of cropland contribute to increased agricultural production; however, this expansion is accompanied by higher emissions related to agricultural activities. This research represents a pioneering empirical analysis of the impact of TI and environmental emission gases on agricultural productivity in the three aforementioned country groups. It underscores the imperative of embracing relevant technologies to enhance agricultural output while concurrently ensuring environmental sustainability. The findings of this study provide valuable insights for policymakers and stakeholders in formulating strategies to promote sustainable agriculture and technological advancement in the context of diverse regional dynamics.
Collapse
Affiliation(s)
- Muhammad Qayyum
- School of Economics and Statistics, Guangzhou University, Guangzhou, China.
| | - Yanping Zhang
- School of Management, Guangzhou University, Guangzhou, China.
| | - Mansi Wang
- School of Innovation and Entrepreneurship, Guangzhou University, Guangzhou, China.
| | - Yuyuan Yu
- Department of Economics and Finance, City University of Hong Kong, China.
| | - Shijie Li
- School of Economics, Nankai University, Tianjin City, China.
| | - Wasim Ahmad
- School of Economics and Statistics, Guangzhou University, Guangzhou, China.
| | - Saleh N Maodaa
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Shaban R M Sayed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Jiawei Gan
- School of Management, Guangzhou University, Guangzhou, China
| |
Collapse
|
16
|
Fu J, Zhou X, He Y, Liu R, Yao Y, Zhou G, Chen H, Zhou L, Fu Y, Bai SH. Co-application of biochar and organic amendments on soil greenhouse gas emissions: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:166171. [PMID: 37582442 DOI: 10.1016/j.scitotenv.2023.166171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
Biochar has been shown to reduce soil greenhouse gas (GHG) and increase nutrient retention in soil; however, the interaction between biochar and organic amendments on GHG emissions remain largely unclear. In this study, we collected 162 two-factor observations to explore how biochar and organic amendments jointly affect soil GHG emissions. Our results showed that biochar addition significantly increased soil CO2 emission by 8.62 %, but reduced CH4 and N2O emissions by 27.0 % and 23.9 %, respectively. Meanwhile, organic amendments and the co-application with biochar resulted in an increase of global warming potential based on the 100-year time horizon (GWP100) by an average of 18.3 % and 26.1 %. More importantly, the interactive effect of biochar and organic amendments on CO2 emission was antagonistic (the combined effect was weaker than the sum of their individual effects), while additive on CH4 and N2O emissions. Additionally, our results suggested that when biochar is co-applied with organic amendments, soil GHG emissions were largely influenced by soil initial total carbon, soil texture, and biochar feedstocks. Our work highlights the important interactive effects of biochar and organic amendments on soil GHG emissions, and provides new insights for promoting ecosystem sustainability as well as mitigating future climate change.
Collapse
Affiliation(s)
- Jia Fu
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Xuhui Zhou
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yanghui He
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Ruiqiang Liu
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yixian Yao
- Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Guiyao Zhou
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012 Sevilla, Spain
| | - Hongyang Chen
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Lingyan Zhou
- Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yuling Fu
- Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Shahla Hosseini Bai
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
17
|
Zhao Y, Zhang A, Zhu X, Han J, Li P, Shen X, Huang S, Jin X, Chen S, Chen J, Liu J, Liu H, Hussain Q, Chen D. Comparative biotic and abiotic effects on greenhouse gas emissions from agricultural ecosystems: application of straw or biochar? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112307-112320. [PMID: 37831243 DOI: 10.1007/s11356-023-30099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
Farmland has become a significant contributor to greenhouse gas (GHG) emissions, and research has shown that the addition of straw or biochar may be a viable method for mitigating these emissions. However, there is a lack of understanding regarding the comparative biotic and abiotic effects of straw and biochar amendments on GHG emissions. To address this knowledge gap, we conducted a meta-analysis of 100 published papers to quantify the impact of straw and biochar application on GHG emissions. Our findings indicate that straw application significantly increased CO2 and CH4 emissions from agricultural ecosystems by 46.2% and 113.5%, respectively, but did not have a significant effect on N2O emissions. Conversely, biochar amendment significantly reduced CO2, CH4, and N2O emissions by an average of 11.0%, 31.7%, and 22.8%, respectively. We also found that straw and biochar amendments increased soil pH, soil organic carbon (SOC), and C/N ratio, and there were significant differences between them. Moreover, straw application significantly increased the microbial biomass carbon (MBC) content and microbial quotient by 37.1% and 20.1%, respectively, while biochar application increased the MBC content by 25.0% without a significant effect on the microbial quotient. Furthermore, both straw and biochar applications promoted the nitrification process and increased the abundance of ammonia-oxidizing bacteria (AOB) by 50.7% with straw and by 57.5% and 75.1% with biochar for ammonia-oxidizing archaea (AOA) and AOB, respectively. The denitrification process was also stimulated by straw or biochar amendment, resulting in an increase in the abundance of nirK by 22.9% and 16.8%, respectively. Biochar amendment additionally increased the abundance of nosZ by 29.4%, indicating that the main reason for reducing N2O emissions through biochar application is the conversion of NO3--N to N2. Thus, compared to straw application, biochar application is a more effective method for reducing greenhouse gas emissions.
Collapse
Affiliation(s)
- Yikai Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- Ministry of Agriculture, Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Yangling, Shaanxi, 712100, People's Republic of China
| | - Afeng Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
- Ministry of Agriculture, Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Xinyu Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- Ministry of Agriculture, Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jiale Han
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- Ministry of Agriculture, Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Yangling, Shaanxi, 712100, People's Republic of China
| | - Pengfei Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- Ministry of Agriculture, Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaogang Shen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- Ministry of Agriculture, Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Yangling, Shaanxi, 712100, People's Republic of China
| | - Shiwei Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- Ministry of Agriculture, Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiangle Jin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- Ministry of Agriculture, Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Yangling, Shaanxi, 712100, People's Republic of China
| | - Shao Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- Ministry of Agriculture, Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jiayong Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- Ministry of Agriculture, Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jiaojiao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- Ministry of Agriculture, Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Yangling, Shaanxi, 712100, People's Republic of China
| | - Helei Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- Ministry of Agriculture, Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qaiser Hussain
- Institute of Soil and Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University, P.O BOX. 46300, Rawalpindi, Pakistan
| | - De Chen
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| |
Collapse
|
18
|
Wu JP, Li ML, Wang Y, Lin S, Hu RG, Xiang RB. Impact of bentonite on greenhouse gas emissions during pig manure composting and its subsequent application. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118453. [PMID: 37354585 DOI: 10.1016/j.jenvman.2023.118453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
Additives were widely investigated to retain the nutrients and mitigate the greenhouse gas emissions (GHGs) during manure composting. However, the sustained effects of additives on the GHGs emissions following incorporation of composts to soil were scarcely explored. This study evaluated the effects of bentonite added at the beginning of pig manure composting on the GHGs emissions during two successive processes, i.e., composting and soil incubation amended with composting products. Addition of bentonite did not hinder the composting process and alter the total CO2 emission. On the other hand, reduction by about 17% and 29% for CH4 and N2O emission, respectively, was achieved in the presence of bentonite during composting. Incorporation of the final composting products to soil enhanced significantly the soil C and N of various forms, and gas emissions of CO2 and N2O. However, no significant differences were observed between bentonite-manure co-compost and manure-only compost application except for the N2O emission. Compared to the manure-only compost, compost amended with bentonite reduced N2O loss by around 6.8%, but not statistically significant. This study confirmed that addition of bentonite at the composting stage can mitigate the GHGs emission considering both composting and compost application stages, with all reductions occurring at the composting stage.
Collapse
Affiliation(s)
- Jia-Ping Wu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Meng-Ling Li
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yan Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Shan Lin
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Rong-Gui Hu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Rong-Biao Xiang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
19
|
Peltokangas K, Kalu S, Huusko K, Havisalmi J, Heinonsalo J, Karhu K, Kulmala L, Liski J, Pihlatie M. Ligneous amendments increase soil organic carbon content in fine-textured boreal soils and modulate N2O emissions. PLoS One 2023; 18:e0284092. [PMID: 37561746 PMCID: PMC10414678 DOI: 10.1371/journal.pone.0284092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/22/2023] [Indexed: 08/12/2023] Open
Abstract
Organic soil amendments are used to improve soil quality and mitigate climate change. However, their effects on soil structure, nutrient and water retention as well as greenhouse gas (GHG) emissions are still poorly understood. The purpose of this study was to determine the residual effects of a single field application of four ligneous soil amendments on soil structure and GHG emissions. We conducted a laboratory incubation experiment using soil samples collected from an ongoing soil-amendment field experiment at Qvidja Farm in south-west Finland, two years after a single application of four ligneous biomasses. Specifically, two biochars (willow and spruce) produced via slow pyrolysis, and two mixed pulp sludges from paper industry side-streams were applied at a rate of 9-22 Mg ha-1 mixed in the top 0.1 m soil layer. An unamended fertilized soil was used as a control. The laboratory incubation lasted for 33 days, during which the samples were kept at room temperature (21°C) and at 20%, 40%, 70% or 100% water holding capacity. Carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) fluxes were measured periodically after 1, 5, 12, 20 and 33 days of incubation. The application of ligneous soil amendments increased the pH of the sampled soils by 0.4-0.8 units, whereas the effects on soil organic carbon content and soil structure varied between treatments. The GHG exchange was dominated by CO2 emissions, which were mainly unaffected by the soil amendment treatments. The contribution of soil CH4 exchange was negligible (nearly no emissions) compared to soil CO2 and N2O emissions. The soil N2O emissions exhibited a positive exponential relationship with soil moisture. Overall, the soil amendments reduced N2O emissions on average by 13%, 64%, 28%, and 37%, at the four soil moisture levels, respectively. Furthermore, the variation in N2O emissions between the amendments correlated positively with their liming effect. More specifically, the potential for the pulp sludge treatments to modulate N2O emissions was evident only in response to high water contents. This tendency to modulate N2O emissions was attributed to their capacity to increase soil pH and influence soil processes by persisting in the soil long after their application.
Collapse
Affiliation(s)
- Kenneth Peltokangas
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Finnish Meteorological Institute, Helsinki, Finland
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Subin Kalu
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Karoliina Huusko
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Jimi Havisalmi
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Jussi Heinonsalo
- Finnish Meteorological Institute, Helsinki, Finland
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
- Department of Microbiology, University of Helsinki, Helsinki, Finland
- Department of Agricultural Sciences, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Kristiina Karhu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Liisa Kulmala
- Finnish Meteorological Institute, Helsinki, Finland
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Jari Liski
- Finnish Meteorological Institute, Helsinki, Finland
| | - Mari Pihlatie
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
- Department of Agricultural Sciences, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Luo L, Wang J, Lv J, Liu Z, Sun T, Yang Y, Zhu YG. Carbon Sequestration Strategies in Soil Using Biochar: Advances, Challenges, and Opportunities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11357-11372. [PMID: 37493521 DOI: 10.1021/acs.est.3c02620] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Biochar, a carbon (C)-rich material obtained from the thermochemical conversion of biomass under oxygen-limited environments, has been proposed as one of the most promising materials for C sequestration and climate mitigation in soil. The C sequestration contribution of biochar hinges not only on its fused aromatic structure but also on its abiotic and biotic reactions with soil components across its entire life cycle in the environment. For instance, minerals and microorganisms can deeply participate in the mineralization or complexation of the labile (soluble and easily decomposable) and even recalcitrant fractions of biochar, thereby profoundly affecting C cycling and sequestration in soil. Here we identify five key issues closely related to the application of biochar for C sequestration in soil and review its outstanding advances. Specifically, the terms use of biochar, pyrochar, and hydrochar, the stability of biochar in soil, the effect of biochar on the flux and speciation changes of C in soil, the emission of nitrogen-containing greenhouse gases induced by biochar production and soil application, and the application barriers of biochar in soil are expounded. By elaborating on these critical issues, we discuss the challenges and knowledge gaps that hinder our understanding and application of biochar for C sequestration in soil and provide outlooks for future research directions. We suggest that combining the mechanistic understanding of biochar-to-soil interactions and long-term field studies, while considering the influence of multiple factors and processes, is essential to bridge these knowledge gaps. Further, the standards for biochar production and soil application should be widely implemented, and the threshold values of biochar application in soil should be urgently developed. Also needed are comprehensive and prospective life cycle assessments that are not restricted to soil C sequestration and account for the contributions of contamination remediation, soil quality improvement, and vegetation C sequestration to accurately reflect the total benefits of biochar on C sequestration in soil.
Collapse
Affiliation(s)
- Lei Luo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Jiaxiao Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jitao Lv
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Zhengang Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tianran Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yi Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
| | - Yong-Guan Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
21
|
Shrestha RK, Jacinthe PA, Lal R, Lorenz K, Singh MP, Demyan SM, Ren W, Lindsey LE. Biochar as a negative emission technology: A synthesis of field research on greenhouse gas emissions. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:769-798. [PMID: 36905388 DOI: 10.1002/jeq2.20475] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 02/28/2023] [Indexed: 05/06/2023]
Abstract
Biochar is one of the few nature-based technologies with potential to help achieve net-zero emissions agriculture. Such an outcome would involve the mitigation of greenhouse gas (GHG) emission from agroecosystems and optimization of soil organic carbon sequestration. Interest in biochar application is heightened by its several co-benefits. Several reviews summarized past investigations on biochar, but these reviews mostly included laboratory, greenhouse, and mesocosm experiments. A synthesis of field studies is lacking, especially from a climate change mitigation standpoint. Our objectives are to (1) synthesize advances in field-based studies that have examined the GHG mitigation capacity of soil application of biochar and (2) identify limitations of the technology and research priorities. Field studies, published before 2022, were reviewed. Biochar has variable effects on GHG emissions, ranging from decrease, increase, to no change. Across studies, biochar reduced emissions of nitrous oxide (N2 O) by 18% and methane (CH4 ) by 3% but increased carbon dioxide (CO2 ) by 1.9%. When biochar was combined with N-fertilizer, it reduced CO2 , CH4 , and N2 O emissions in 61%, 64%, and 84% of the observations, and biochar plus other amendments reduced emissions in 78%, 92%, and 85% of the observations, respectively. Biochar has shown potential to reduce GHG emissions from soils, but long-term studies are needed to address discrepancies in emissions and identify best practices (rate, depth, and frequency) of biochar application to agricultural soils.
Collapse
Affiliation(s)
- Raj K Shrestha
- Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, USA
| | - Pierre-Andre Jacinthe
- Department of Earth Sciences, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Rattan Lal
- CFAES Rattan Lal Center for Carbon Management and Sequestration, The Ohio State University, Columbus, Ohio, USA
| | - Klaus Lorenz
- CFAES Rattan Lal Center for Carbon Management and Sequestration, The Ohio State University, Columbus, Ohio, USA
| | - Maninder P Singh
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Scott M Demyan
- School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio, USA
| | - Wei Ren
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Laura E Lindsey
- Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
22
|
Canatoy RC, Jeong ST, Cho SR, Galgo SJC, Kim PJ. Importance of biochar as a key amendment to convert rice paddy into carbon negative. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162331. [PMID: 36805061 DOI: 10.1016/j.scitotenv.2023.162331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Biochar being made up of recalcitrant carbon (C) compounds is considered a negative emission technology (NET) due to its indirect removal of atmospheric carbon dioxide (CO2). However, there is no clear report about how biochar remains a NET when organic amendment application in rice paddy results in a huge emission of greenhouse gases (GHG) particularly, methane (CH4). To evaluate the net impact of biochar application on the net global warming potential (GWP) in rice paddy, no organic amendment (control), fresh manure, compost, and biochar treatments were selected during the whole investigation period. Compared to compost, biochar application decreased annual CH4 and N2O emissions by 55 and 31 %, respectively. In comparison to the control, biochar application increased CH4 emission by 163 % but decreased N2O emission by 19 %. Soil organic carbon (SOC) stock would annually deplete by 2.2 Mg C ha-1 under control; however, biochar application could increase the SOC stock by 18.1 Mg C ha-1 which was 63 and 33 % higher than fresh and compost treatments, respectively. As a result, the control had a net GWP of 10 Mg CO2-eq ha-1 however, this impact was increased with fresh manure and compost application by around 319 and 159 %, respectively. Interestingly, biochar application converted rice paddy into a C sink having a net GWP of -0.104 to -0.191 Mg CO2-eq ha-1. Since there was a comparable difference in grain yield among organic amendments, greenhouse gas intensity (GHGI) which is the net GWP per grain yield was significantly high in compost application of approximately 3.1 Mg CO2-eq Mg-1 grain being 127 % higher than control. However, the biochar application had a -0.02 Mg CO2-eq Mg-1 grain which was 1.4 Mg CO2-eq Mg-1 grain lower than the control. Conclusively, biochar application could be a considerable option in maintaining soil quality and productivity without contributing any GHG emissions and their associated impacts.
Collapse
Affiliation(s)
- Ronley C Canatoy
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea; Department of Soil Science, College of Agriculture, Central Mindanao University, Maramag, 8710, Republic of the Philippines
| | - Seung Tak Jeong
- Rural Development Administration, National Institute of Horticultural and Herbal Science, Wanju 55365, Republic of Korea
| | - Song Rae Cho
- Soil and Fertilizer Management Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Snowie Jane C Galgo
- Division of Applied Life Science (BK21+ Program), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Pil Joo Kim
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea; Division of Applied Life Science (BK21+ Program), Gyeongsang National University, Jinju 660-701, Republic of Korea.
| |
Collapse
|
23
|
Tufail MA, Irfan M, Umar W, Wakeel A, Schmitz RA. Mediation of gaseous emissions and improving plant productivity by DCD and DMPP nitrification inhibitors: Meta-analysis of last three decades. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64719-64735. [PMID: 36929253 PMCID: PMC10172236 DOI: 10.1007/s11356-023-26318-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/03/2023] [Indexed: 05/05/2023]
Abstract
Nitrification inhibitors (NIs), especially dicyandiamide (DCD) and 3,4-dimethylpyrazole phosphate (DMPP), have been extensively investigated to mitigate nitrogen (N) losses from the soil and thus improve crop productivity by enhancing N use efficiency. However, to provide crop and soil-specific guidelines about using these NIs, a quantitative assessment of their efficacy in mitigating gaseous emissions, worth for nitrate leaching, and improving crop productivity under different crops and soils is yet required. Therefore, based upon 146 peer-reviewed research studies, we conducted a meta-analysis to quantify the effect of DCD and DMPP on gaseous emissions, nitrate leaching, soil inorganic N, and crop productivity under different variates. The efficacy of the NIs in reducing the emissions of CO2, CH4, NO, and N2O highly depends on the crop, soil, and experiment types. The comparative efficacy of DCD in reducing N2O emission was higher than the DMPP under maize, grasses, and fallow soils in both organic and chemical fertilizer amended soils. The use of DCD was linked to increased NH3 emission in vegetables, rice, and grasses. Depending upon the crop, soil, and fertilizer type, both the NIs decreased nitrate leaching from soils; however, DMPP was more effective. Nevertheless, the effect of DCD on crop productivity indicators, including N uptake, N use efficiency, and biomass/yield was higher than DMPP due to certain factors. Moreover, among soils, crops, and fertilizer types, the response by plant productivity indicators to the application of NIs ranged between 35 and 43%. Overall, the finding of this meta-analysis strongly suggests the use of DCD and DMPP while considering the crop, fertilizer, and soil types.
Collapse
Affiliation(s)
| | - Muhammad Irfan
- Soil and Environmental Sciences Division, Nuclear Institute of Agriculture (NIA), Tandojam, Pakistan
| | - Wajid Umar
- Institute of Environmental Science, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100 Hungary
| | - Abdul Wakeel
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ruth A. Schmitz
- Institute for Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
24
|
Liu M, Song F, Yin Z, Chen P, Zhang Z, Qi Z, Wang B, Zheng E. Organic fertilizer substitutions maintain maize yield and mitigate ammonia emissions but increase nitrous oxide emissions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53115-53127. [PMID: 36853529 DOI: 10.1007/s11356-023-25666-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Organic fertilizer can improve soil structure and enhance the nutrient content in soil and is beneficial to sustainable agricultural development. However, the influence of organic fertilizer substitutions on NH3 and N2O emissions from farmland is unclear. Thus, we set up an organic substitution field experiment in Northeast China. The experiment included six treatments: single application of chemical fertilizers (NPK: 250 kg N ha-1); NO10, 10% reduction in chemical nitrogen fertilizers (225 kg N ha-1) + chicken manure (25 kg N ha-1); NO20, 20% reduction in chemical nitrogen fertilizers (200 kg N ha-1) + chicken manure (50 kg N ha-1); NO30, 30% reduction in chemical nitrogen fertilizers (175 kg N ha-1) + chicken manure (75 kg N ha-1); NO40, 40% reduction in chemical nitrogen fertilizers (150 kg N ha-1) + chicken manure (100 kg N ha-1); and no-nitrogen fertilizer (CK). This experiment investigated the effects of partial substitution of chemical nitrogen fertilizer with organic fertilizer on NH3 and N2O emissions and nitrogen use efficiency in a maize field. The results showed that, compared with chemical N, organic fertilizer mitigated NH3 volatilization but promoted the soil N2O total emissions during the whole growth stage. NH3 cumulative volatilization decreased with the increase in the substitution rate of organic fertilizer. Compared with the NPK treatment, the cumulative volatilization of NH3 in the NO30 and NO40 treatments decreased by 15.24 and 17.92%, respectively. The NO40 treatment had the highest N2O emission in the whole growth stage, and the N2O emission of the NO40 treatment increased by 10.72% compared to the NPK treatment. Moreover, the yield, partial factor productivity (PFP), nitrogen harvest index (NHI), and apparent nitrogen recovery efficiency (NRE) of NO30 treatment were the highest of all treatments, and the yields, PFP, plant N accumulation, grain N accumulation, and the cumulative emissions of NH3 and N2O were similar to N20 treatment. In conclusion, nitrogen fertilizer use efficiency was enhanced, decreasing environmental pollution from livestock under organic fertilizer substitution conditions. We suggested 20% or 30% substitution rates of organic fertilizer were proper.
Collapse
Affiliation(s)
- Ming Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Effective Utilization of Agricultural Water Resources, Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Fang Song
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Effective Utilization of Agricultural Water Resources, Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Zhihao Yin
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Effective Utilization of Agricultural Water Resources, Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Peng Chen
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China
| | - Zhongxue Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China.
- Key Laboratory of Effective Utilization of Agricultural Water Resources, Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China.
| | - Zhijuan Qi
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Effective Utilization of Agricultural Water Resources, Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Bai Wang
- Heilongjiang Province Hydraulic Research Institute, Harbin, China
| | - Ennan Zheng
- School of Hydraulic and Electric Power, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
25
|
Doyeni MO, Barcauskaite K, Buneviciene K, Venslauskas K, Navickas K, Rubezius M, Baksinskaite A, Suproniene S, Tilvikiene V. Nitrogen flow in livestock waste system towards an efficient circular economy in agriculture. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:701-712. [PMID: 36129010 DOI: 10.1177/0734242x221123484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The race is on to achieve an important level of efficiency in the attainment of a circular economy in agriculture especially with the aim of sustainable nitrogen management. This cycle in the agricultural sector cuts across livestock farming, agriculture-induced waste generation, recycling and utilization, energy generation, crop production, ecosystem protection and environmental management through the mitigation of climate changes. In this work, we assess the process and functionalities of livestock waste generated from the piggery farm and their combinations with other by-products such as biochar and ash in comparison with mineral fertilization as sources of nitrogen applied in agricultural soil. The experiment was performed in a controlled environment with wheat (Triticum aestivum L.) grown in a neutral and an acidic soil. Pig manure was used as the primary feedstock, fed and processed to biogas and nutrient-rich digestate by the anaerobic digestion process. The results revealed that the co-amendments of pig manure digestate with biochar and ash had complimentary positive effect on measured indices such as mobile potassium, phosphorus, biomass yield and nitrogen use efficiency. The mineral nitrogen fertilizer significantly induced carbon dioxide emissions from day 35 when compared to emissions from the organic amendments. In contrast, the organic amendments influenced nitrous oxide emissions from the onset till day 30 before flattening out. The individual combination of pig manure digestate with biochar and ash had a negative influence on enzymatic activity (dehydrogenase). Soil microbial biomass carbon was induced across all treatments in both soil types. Pig manure digestate + ash and pig manure digestate had 32.1 and 48.8% soil microbial biomass increase in neutral soil and acidic soil, respectively. Overall, the processing and application of single-use amendment or in combination with biochar and ash holds huge potential in the optimization of nitrogen and carbon efficiency towards sustainable soil management via improving soil quality, carbon sequestration and climate change.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ausra Baksinskaite
- Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Skaidre Suproniene
- Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Vita Tilvikiene
- Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| |
Collapse
|
26
|
Sobhi M, Zheng J, Li B, Gaballah MS, Aboagye D, Guo J, Dong R. Carbon footprint of dairy manure management chains in response to nutrient recovery by aerobic pre-treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116975. [PMID: 36527801 DOI: 10.1016/j.jenvman.2022.116975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Aerobic pre-treatment of liquid dairy manure has previously been reported as an effective nutrient export and emissions mitigation approach. The first objective of this study was to experimentally determine the optimal intermittent aeration ratio for nutrient recovery from liquid dairy manure through an on-site pilot-scale reactor to partially reduce the required energy for the aerobic process. The second objective was to theoretically investigate the total carbon footprints of direct manure spreading on croplands and permanent manure storage in open anaerobic lagoons in response to nutrient removal by the optimal determined intermittent aerobic treatment ratio. Four scenarios (S) were included; S1 was the traditional scenario of manure spread on croplands without the aerobic pre-treatment, S2 was the modified scenario of manure spread on croplands that included the aerobic pre-treatment, S3 was the traditional scenario of manure storage in lagoons, and S4 was the modified scenario of manure storage in lagoons that included the aerobic pre-treatment. The results showed that comparable nutrient removal efficiencies could be obtained with a 5:1 intermittent aeration ratio. Total nitrogen (TN) and total phosphorus (TP) were recovered were 41.5 ± 1.3% and 37.0 ± 4.0%, respectively, in ammonium sulfate and phosphorus-rich sludge, while 55.3 ± 1.4% of the chemical oxygen demand (COD) was removed. The estimated total carbon footprint for S1, S2, S3, and S4 were 24.4, 37.9, 45.3, and 45.9 kg CO2-eqton-1, respectively. However, the total carbon footprint of S2' and S4', which used renewable-based energy to run the reactor instead of fossil-based energy used in S2 and S4, were estimated to 29.5 and 37.5 kg CO2-eqton-1, respectively. Clearly, applying the aerobic pre-treatment increased the total carbon footprint of all cases except S4', in which the total carbon footprint was mitigated by -17.2%. Accordingly, the aerobic pre-treatment is only recommended in the case of S4' from a carbon footprint point of view although it is an effective nutrient recovery technology.
Collapse
Affiliation(s)
- Mostafa Sobhi
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, PR China; Agricultural and Bio-systems Engineering Department, Faculty of Agriculture, Alexandria University, Alexandria, 21526, Egypt
| | - Jiabao Zheng
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, PR China
| | - Bowen Li
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, PR China
| | - Mohamed S Gaballah
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, PR China; National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Dominic Aboagye
- Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, PR China.
| | - Renjie Dong
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, PR China
| |
Collapse
|
27
|
Hu Y, Thomsen TP, Fenton O, Sommer SG, Shi W, Cui W. Effects of dairy processing sludge and derived biochar on greenhouse gas emissions from Danish and Irish soils. ENVIRONMENTAL RESEARCH 2023; 216:114543. [PMID: 36252841 DOI: 10.1016/j.envres.2022.114543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Globally, to ensure food security bio-based fertilizers must replace a percentage of chemical fertilizers. Such replacement must be deemed sustainable from agronomic and greenhouse gas (GHG) emission perspectives. For agronomic performance several controlled protocols are in place but not for testing GHG emissions. Herein, a pre-screening tool is presented to examine GHG emissions from bio-waste as fertilizers. The various treatments examined are as follows: soil with added mineral nitrogen (N, 140 kg N ha-1) fertilizer (MF), the same amount of MF combined with dairy processing sludge (DS), sludge-derived biochar produced at 450 °C (BC450) and 700 °C (BC700) and untreated control (CK). These treatments were combined with Danish (sandy loam) or Irish (clay loam) soils, with carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions and soil inorganic-N contents measured on selected days. During the incubation, biochar mitigated N2O emissions by regulating denitrification. BC450 reduced N2O emissions from Danish soil by 95.5% and BC700 by 97.7% compared to emissions with the sludge application, and for Irish soil, the N2O reductions were 93.6% and 32.3%, respectively. For both soils, biochar reduced CO2 emissions by 50% as compared to the sludge. The lower N2O reduction potential of BC700 for Irish soil could be due to the high soil organic carbon and clay content and pyrolysis temperature. For the same reasons emissions of N2O and CO2 from Irish soil were significantly higher than from Danish soil. The temporal variation in N2O emissions was correlated with soil inorganic-N contents. The CH4 emissions across treatments were not significantly different. This study developed a simple and cost-effective pre-screening method to evaluate the GHG emission potential of new bio-waste before its field application and guide the development of national emission inventories, towards achieving the goals of circular economy and the European Green Deal.
Collapse
Affiliation(s)
- Yihuai Hu
- Department of Biological and Chemical Engineering, Aarhus University, Finlandsgade 12, 8200, Aarhus N, Denmark
| | - Tobias Pape Thomsen
- Department of People and Technology, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
| | - Owen Fenton
- Teagasc, Johnstown Castle, Environment Research Centre, Wexford, Ireland
| | - Sven Gjedde Sommer
- Department of Biological and Chemical Engineering, Aarhus University, Finlandsgade 12, 8200, Aarhus N, Denmark.
| | - Wenxuan Shi
- Teagasc, Johnstown Castle, Environment Research Centre, Wexford, Ireland; Civil Engineering and Ryan Institute, College of Science and Engineering, National University of Ireland, Galway, Ireland
| | - Wenjing Cui
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
28
|
Tufail MA, Ayyub M, Irfan M, Shakoor A, Chibani CM, Schmitz RA. Endophytic bacteria perform better than endophytic fungi in improving plant growth under drought stress: A meta-comparison spanning 12 years (2010-2021). PHYSIOLOGIA PLANTARUM 2022; 174:e13806. [PMID: 36271716 DOI: 10.1111/ppl.13806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/30/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Drought stress is a serious issue that affects agricultural productivity all around the world. Several researchers have reported using plant growth-promoting endophytic bacteria to enhance the drought resistance of crops. However, how endophytic bacteria and endophytic fungi are effectively stimulating plant growth under drought stress is still largely unknown. In this article, a global meta-analysis was undertaken to compare the plant growth-promoting effects of bacterial and fungal endophytes and to identify the processes by which both types of endophytes stimulate plant growth under drought stress. Moreover, this meta-analysis enlightens how plant growth promotion varies across crop types (C3 vs. C4 and monocot vs. dicot), experiment types (in vitro vs. pots vs. field), and the inoculation methods (seed vs. seedling). Specifically, this research included 75 peer-reviewed publications, 170 experiments, 20 distinct bacterial genera, and eight fungal classes. On average, both endophytic bacterial and fungal inoculation increased plant dry and fresh biomass under drought stress. The effect of endophytic bacterial inoculation on plant dry biomass, shoot dry biomass, root length, photosynthetic rate, leaf area, and gibberellins productions were at least two times greater than that of fungal inoculation. In addition, under drought stress, bacterial inoculation increased the proline content of C4 plants. Overall, the findings of this meta-analysis indicate that both endophytic bacterial and fungal inoculation of plants is beneficial under drought conditions, but the extent of benefit is higher with endophytic bacteria inoculation but it varies across crop type, experiment type, and inoculation method.
Collapse
Affiliation(s)
| | - Muhaimen Ayyub
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Irfan
- Soil and Environmental Sciences Division, Nuclear Institute of Agriculture (NIA), Tandojam, Pakistan
| | - Awais Shakoor
- Teagasc, Environment, Soils, and Land-Use Department, Wexford, Ireland
| | | | - Ruth A Schmitz
- Institute for Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
29
|
Shi F, Zhao X, Cheng Q, Lin H, Zheng H, Zhou Q. High-Energy-Density Organic Amendments Enhance Soil Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12212. [PMID: 36231512 PMCID: PMC9566092 DOI: 10.3390/ijerph191912212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Soil microbial biomass (SMB) and soil microbial communities (SMCs) are the key factors in soil health and agricultural sustainability. We hypothesized that low bioavailable carbon (C) and energy were the key limiting factors influencing soil microbial growth and developed a new fertilization system to address this: the simultaneous application of mineral fertilizers and high-energy-density organic amendments (HED-OAs). A microcosm soil incubation experiment and a Brassica rapa subsp. chinensis pot culture experiment were used to test the effects of this new system. Compared to mineral fertilizer application alone, the simultaneous input of fertilizers and vegetable oil (SIFVO) achieved a bacterial abundance, fungal abundance, and fungal:bacterial ratio that were two orders of magnitude higher, significantly higher organic C and nitrogen (N) content, significantly lower N loss, and nearly net-zero N2O emissions. We proposed an energy and nutrient threshold theory to explain the observed bacterial and fungal growth characteristics, challenging the previously established C:N ratio determination theory. Furthermore, SIFVO led to microbial community improvements (an increased fungal:bacterial ratio, enriched rhizosphere bacteria and fungi, and reduced N-transformation bacteria) that were beneficial for agricultural sustainability. A low vegetable oil rate (5 g/kg) significantly promoted Brassica rapa subsp. chinensis growth and decreased the shoot N content by 35%, while a high rate caused severe N deficiency and significantly inhibited growth of the crop, confirming the exceptionally high microbial abundance and indicating severe microbe-crop competition for nutrients in the soil.
Collapse
Affiliation(s)
- Feifan Shi
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyue Zhao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qilu Cheng
- Institute of Environment Resources Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hui Lin
- Institute of Environment Resources Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huabao Zheng
- Zhejiang Province Key Laboratory of Soil Contamination Bioremediation, Zhejiang A&F University, Hangzhou 311300, China
| | - Qifa Zhou
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
30
|
Yan W, Farooq TH, Chen Y, Wang W, Shabbir R, Kumar U, Riaz MU, Alotaibi SS, Peng Y, Chen X. Soil Nitrogen Transformation Process Influenced by Litterfall Manipulation in Two Subtropical Forest Types. FRONTIERS IN PLANT SCIENCE 2022; 13:923410. [PMID: 35909763 PMCID: PMC9330477 DOI: 10.3389/fpls.2022.923410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen (N) is often recognized as the primary limiting nutrient element for the growth and production of forests worldwide. Litterfall represents a significant pathway for returning nutrients from aboveground parts of trees to the soils and plays an essential role in N availability in different forest ecosystems. This study explores the N transformation processes under litterfall manipulation treatments in a Masson pine pure forest (MPPF), and Masson pine and Camphor tree mixed forest (MCMF) stands in subtropical southern China. The litterfall manipulation included litterfall addition (LA), litterfall removal (LR), and litterfall control (LC) treatments. The project aimed to examine how litterfall inputs affect the soil N process in different forest types in the study region. Results showed that soil ammonium N (NH4 +-N) and nitrate N (NO3 --N) content increased under LA treatment and decreased under LR treatment compared to LC treatment. LA treatment significantly increased soil total inorganic N (TIN) content by 41.86 and 22.19% in MPPF and MCMF, respectively. In contrast, LR treatment decreased the TIN content by 10 and 24% in MPPF and MCMF compared to LC treatment. Overall, the soil net ammonification, nitrification, and N mineralization rates were higher in MCMF than in MPPF; however, values in both forests were not significantly different. LA treatment significantly increased annual net ammonification, nitrification, and mineralization in both forest types (p < 0.05) compared to LC treatment. LR treatment significantly decreased the values (p < 0.05), except for ammonification, where LR treatment did not differ substantially compared to LC treatment. Our results suggested that changes in litterfall inputs would significantly alter soil N dynamics in studied forests of sub-tropical region. Moreover, mixed forest stands have higher nutrient returns due to mixed litter and higher decomposition compared to pure forest stands.
Collapse
Affiliation(s)
- Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Changsha, China
- Ecological Restoration Innovation Alliance for Southern Purple Shale Mountains, Changsha, China
- College of Life Science, Central South University of Forestry and Technology, Changsha, China
- National Observation Research Station of Forest Ecosystem of Lutou Forest Farm in Hunan Province, Yueyang, China
| | - Taimoor Hassan Farooq
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Changsha, China
- Bangor College China, A Joint Unit of Bangor University and Central South University of Forestry and Technology, Changsha, China
| | - Yi Chen
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Changsha, China
- College of Life Science, Central South University of Forestry and Technology, Changsha, China
| | - Wancai Wang
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Changsha, China
- College of Life Science, Central South University of Forestry and Technology, Changsha, China
| | - Rubab Shabbir
- Department of Plant Breeding and Genetics, Seed Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Uttam Kumar
- Faculty of Agriculture, Center for Molecular and Functional Ecology in Agroecosystems, University of Talca, Talca, Chile
| | - Muhammad Umair Riaz
- Department of Forestry, Range and Wildlife Management, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Yuanying Peng
- College of Arts and Sciences, Lewis University, Romeoville, IL, United States
| | - Xiaoyong Chen
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Changsha, China
- College of Arts and Sciences, Governors State University, University Park, IL, United States
| |
Collapse
|
31
|
Farooq TH, Xincheng X, Shakoor A, Rashid MHU, Bashir MF, Nawaz MF, Kumar U, Shahzad SM, Yan W. Spatial distribution of carbon dynamics and nutrient enrichment capacity in different layers and tree tissues of Castanopsis eyeri natural forest ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10250-10262. [PMID: 34519003 DOI: 10.1007/s11356-021-16400-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/03/2021] [Indexed: 05/12/2023]
Abstract
Forest ecosystem carbon (C) storage primarily includes vegetation layers C storage, litter C storage, and soil C storage. The precise assessment of forest ecosystem C storage is a major concern that has drawn widespread attention in global climate change worldwide. This study explored the C storage of different layers of the forest ecosystem and the nutrient enrichment capacity of the vegetation layer to the soil in the Castanopsis eyeri natural forest ecosystem (CEF) present in the northeastern Hunan province, central China. The direct field measurements were used for the estimations. Results illustrate that trunk biomass distribution was 48.42% and 62.32% in younger and over-mature trees, respectively. The combined biomass of the understory shrub, herb, and litter layers was 10.46 t·hm-2, accounting for only 2.72% of the total forest biomass. On average, C content increased with the tree age increment. The C content of tree, shrub, and herb layers was 45.68%, 43.08%, and 35.76%, respectively. Litter C content was higher in the undecomposed litter (44.07 %). Soil C content continually decreased as the soil depth increased, and almost half of soil C was stored in the upper soil layer. Total C stored in CEF was 329.70 t·hm-2 and it follows the order: tree layer > soil layer > litter layer > shrub layer > herb layer, with C storage distribution of 51.07%, 47.80%, 0.78%, 0.25%, and 0.10%, respectively. Macronutrient enrichment capacity from vegetation layers to soil was highest in the herb layer and lowest in the tree layer, whereas no consistent patterns were observed for trace elements. This study will help understand the production mechanism and ecological process of the C. eyeri natural forest ecosystem and provide the basics for future research on climate mitigation, nutrient cycling, and energy exchange in developing and utilizing sub-tropical vegetation.
Collapse
Affiliation(s)
- Taimoor Hassan Farooq
- Bangor College China, a Joint Unit of Bangor University and Central South University of Forestry and Technology, Changsha, 410004, China.
- National Engineering Laboratory for Applied Technology in Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Xen Xincheng
- National Engineering Laboratory for Applied Technology in Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, Avinguda Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Muhammad Haroon U Rashid
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410000, Hunan Province, People's Republic of China
| | | | - Muhammad Farrakh Nawaz
- Department of Forestry and Range Management, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Uttam Kumar
- Institute of Applied Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Sher Muhammad Shahzad
- Department of Soil and Environmental Sciences, College of Agriculture, University of Sargodha, Sargodha, Punjab, 40100, Pakistan
| | - Wende Yan
- National Engineering Laboratory for Applied Technology in Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
32
|
Gross CD, Bork EW, Carlyle CN, Chang SX. Biochar and its manure-based feedstock have divergent effects on soil organic carbon and greenhouse gas emissions in croplands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151337. [PMID: 34743889 DOI: 10.1016/j.scitotenv.2021.151337] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/13/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Applying organic amendments to soil can increase soil organic carbon (SOC) storage and reduce greenhouse gas (GHG) emissions generated by agriculture, helping to mitigate climate change. However, it is necessary to determine which type of amendment produces the most desirable results. We conducted a 3-y field study comparing one-time addition of manure compost and its biochar derivative to a control to assess their effects on SOC and GHG emissions at ten annually cropped sites in central Alberta, Canada. Manure compost and biochar were applied at equivalent carbon rates (7 Mg ha-1) and tilled into the surface 10 cm of soil. Two years post-treatment, biochar addition increased surface (0-10 cm) SOC by 12 and 10 Mg ha-1 relative to the control and manure addition, respectively. Therefore, biochar addition led to the sequestration of SOC at a rate of 2.5 Mg ha-1 y-1 relative to the control. No treatment effect on deeper (10-100 cm) or cumulative SOC was found. In 2018 and 2019, manure addition increased cumulative GHG (sum of CO2, CH4, and N2O) emissions by 33%, on average, due to greater CO2 emissions relative to both the control and biochar addition. In contrast, in 2020, biochar addition reduced cumulative GHG emissions by an average of 21% due to lower CO2 emissions relative to both the control and manure addition. Our study shows that the application of biochar, rather than its manure compost feedstock, increased surface SOC sequestration and had either no effect on (first two years) or reduced GHG emissions (year three) relative to the control. We recommend that policy and carbon sequestration initiatives focus on optimizing biochar production-application systems to fully realize the potential of biochar application as a viable climate change mitigation practice in agriculture.
Collapse
Affiliation(s)
- Cole D Gross
- Department of Renewable Resources, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada.
| | - Edward W Bork
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB T6G 2P5, Canada.
| | - Cameron N Carlyle
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB T6G 2P5, Canada.
| | - Scott X Chang
- Department of Renewable Resources, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada.
| |
Collapse
|
33
|
Shakoor A, Dar AA, Arif MS, Farooq TH, Yasmeen T, Shahzad SM, Tufail MA, Ahmed W, Albasher G, Ashraf M. Do soil conservation practices exceed their relevance as a countermeasure to greenhouse gases emissions and increase crop productivity in agriculture? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150337. [PMID: 34543788 DOI: 10.1016/j.scitotenv.2021.150337] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Globally, agriculture sector is the significant source of greenhouse gases (GHGs) emissions into the atmosphere. To achieve the goal of limiting or mitigating these emissions, a rigorous abatement strategy with an additional focus on improving crop productivity is now imperative. Replacing traditional agriculture with soil conservation-based farming can have numerous ecological benefits. However, most assessments only consider improvements in soil properties and crop productivity, and often preclude the quantitative impact analysis on GHGs emissions. Here, we conducted a meta-analysis to evaluate crop productivity (i.e., biomass, grain, total yield) and GHGs emissions (i.e., CO2, N2O, CH4) for three major soil conservation practices i.e., no-tillage, manures, and biochar. We also examined the yield potential of three major cereal crops (i.e., wheat, rice, maize) and their significance in mitigating GHGs emissions. None of the manures were able to reduce GHGs emissions, with poultry manure being the largest contributor to all GHGs emissions. However, pig-manure had the greatest impact on crop yield while emitting the least CO2 emissions. Use of biochar showed a strong coupling effect between reduction of GHGs (i.e., CH4 by -37%; N2O by -25%; CO2 by -5%) and the increase in crop productivity. In contrast, no-tillage resulted in higher GHGs emissions with only a marginal increase in grain yield. Depending on crop type, all cereal crops showed varied degrees of GHGs mitigation under biochar application, with wheat responding most strongly due to the additional yield increment. The addition of biochar significantly reduced CO2 and N2O emissions under both rainfed and irrigated conditions, although CH4 reductions were identical in both agroecosystems. Interestingly, the use of biochar resulted in a greater yield benefit in rainfed than in irrigated agriculture. Despite significant GHGs emissions, manure application contributed to higher crop yields, regardless of soil type or agroecosystem. Moreover, no-tillage showed a significant reduction in CH4 and N2O emissions under rainfed and irrigated conditions. Notably , biochar application in coarse while no-till in fine textured soils contributed to N2O mitigation. Most importantly, effectiveness of no-tillage as a countermeasure to GHGs emissions while providing yield benefits is inconsistent. Overall, the decision to use farm manures should be reconsidered due to higher GHGs emissions. We conclude that the use of biochar could be an ideal way to reduce GHGs emissions. However, further understanding of the underlying mechanisms and processes affecting GHGs emissions is needed to better understand the feedback effects in conservation agriculture.
Collapse
Affiliation(s)
- Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, Avinguda Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| | - Afzal Ahmed Dar
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Muhammad Saleem Arif
- Department of Environmental Sciences & Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Taimoor Hassan Farooq
- Bangor College China, a joint unit of Bangor University, Wales, UK and Central South University of Forestry and Technology, Changsha 410004, China
| | - Tahira Yasmeen
- Department of Environmental Sciences & Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sher Muhammad Shahzad
- Department of Soil and Environmental Sciences, College of Agriculture, University of Sargodha, Sargodha 40100, Punjab, Pakistan
| | - Muhammad Aammar Tufail
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123 Trento, Italy
| | - Waqas Ahmed
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Ashraf
- Department of Soil Science, Faculty of Agriculture, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| |
Collapse
|
34
|
Khan MN, Huang J, Shah A, Li D, Daba NA, Han T, Du J, Qaswar M, Anthonio CK, Sial TA, Haseeb A, Zhang L, Xu Y, He Z, Zhang H, Núñez-Delgado A. Mitigation of greenhouse gas emissions from a red acidic soil by using magnesium-modified wheat straw biochar. ENVIRONMENTAL RESEARCH 2022; 203:111879. [PMID: 34390716 DOI: 10.1016/j.envres.2021.111879] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
To mitigate greenhouse gas (GHG) emissions, different strategies have been proposed, including application of dolomite, crop straw and biochar, thus contributing to cope with the increasing global warming affecting the planet. In the current study, pristine wheat straw biochar (WBC) and magnesium (MgCl2.6H2O) modified wheat straw biochar (MWBC) were used. Treatments included control (CK), two WBC dosages (1% and 2.5%), and two MWBC doses (1% and 2.5%). After 90 days of incubation, WBC and MWBC improved the soil physiochemical properties, being more pronounced with increasing rates of biochar. MWBC2.5 significantly decreased microbial biomass carbon (MBC), while microbial biomass nitrogen (MBN) increased when both biochar materials (WBC1 and MWBC1) were applied at low rate. Compared to control soil, Urease and Alkaline phosphatase activities increased with the increasing rate of WBC and MWBC. The activities of dehydrogenase and β-glucosidase decreased with the WBC and MWBC application, compared to CK. The fluxes of all the three GHGs evaluated (CO2, CH4 and N2O) decreased with time for both biochar amendments, while cumulative emission of CO2 increased by 58% and 45% for WBC, and by 54% and 41% for MWBC, as compared to CK. The N2O cumulative emissions decreased by 18 and 34% for WBC, and by 25 and 41% for MWBC, compared to CK, whereas cumulative methane emission showed non-significant differences among all treatments. These findings indicate that Mg-modified wheat straw biochar would be an appropriate management strategy aiding to reduce GHG emissions and improving the physiochemical properties of affected soils, and specifically of the red dry land soil investigated in the current work.
Collapse
Affiliation(s)
- Muhammad Numan Khan
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Huang
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; National Observation Station of Qiyang Agri-Ecology System, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Qiyang, 426182, Hunan, China
| | - Asad Shah
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dongchu Li
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; National Observation Station of Qiyang Agri-Ecology System, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Qiyang, 426182, Hunan, China
| | - Nano Alemu Daba
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tainfu Han
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiangxue Du
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Muhammad Qaswar
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Christian Kofi Anthonio
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tanveer Ali Sial
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Abdul Haseeb
- Department of Horticulture, The University of Agriculture Peshawar, 23200, KPK, Pakistan
| | - Lu Zhang
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; National Observation Station of Qiyang Agri-Ecology System, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Qiyang, 426182, Hunan, China
| | - Yongmei Xu
- Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Zhongqun He
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huimin Zhang
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; National Observation Station of Qiyang Agri-Ecology System, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Qiyang, 426182, Hunan, China.
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Campus Univ. s/n, University of Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
35
|
Hu Y, Khomenko O, Shi W, Velasco-Sánchez Á, Ashekuzzaman SM, Bennegadi-Laurent N, Daly K, Fenton O, Healy MG, Leahy JJ, Sørensen P, Sommer SG, Taghizadeh-Toosi A, Trinsoutrot-Gattin I. Systematic Review of Dairy Processing Sludge and Secondary STRUBIAS Products Used in Agriculture. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.763020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Worldwide dairy processing plants produce high volumes of dairy processing sludge (DPS), which can be converted into secondary derivatives such as struvite, biochar and ash (collectively termed STRUBIAS). All of these products have high fertilizer equivalent values (FEV), but future certification as phosphorus (P)-fertilizers in the European Union will mean they need to adhere to new technical regulations for fertilizing materials i.e., content limits pertaining to heavy metals (Cd, Cu, Hg, Ni, Pb, and Zn), synthetic organic compounds and pathogens. This systematic review presents the current state of knowledge about these bio-based fertilizers and identifies knowledge gaps. In addition, a review and calculation of greenhouse gas emissions from a range of concept dairy sludge management and production systems for STRUBIAS products [i.e., biochar from pyrolysis and hydrochar from hydrothermal carbonization (HTC)] is presented. Results from the initial review showed that DPS composition depends on product type and treatment processes at a given processing plant, which leads to varied nutrient, heavy metal and carbon contents. These products are all typically high in nutrients and carbon, but low in heavy metals. Further work needs to concentrate on examining their pathogenic microorganism and emerging contaminant contents, in addition to conducting an economic assessment of production and end-user costs related to chemical fertilizer equivalents. With respect to STRUBIAS products, contaminants not present in the raw DPS may need further treatment before being land applied in agriculture e.g., heated producing ashes, hydrochar, or biochar. An examination of these products from an environmental perspective shows that their water quality footprint could be minimized using application rates based on P incorporation of these products into nutrient management planning and application by incorporation into the soil. Results from the concept system showed that elimination of methane emissions was possible, along with a reduction in nitrous oxide. Less carbon (C) is transferred to agricultural fields where DPS is processed into biochar and hydrochar, but due to high recalcitrance, the C in this form is retained much longer in the soil, and therefore STRUBIAS products represent a more stable and long-term option to increase soil C stocks and sequestration.
Collapse
|
36
|
Shakoor A, Arif MS, Shahzad SM, Farooq TH, Ashraf F, Altaf MM, Ahmed W, Tufail MA, Ashraf M. Does biochar accelerate the mitigation of greenhouse gaseous emissions from agricultural soil? - A global meta-analysis. ENVIRONMENTAL RESEARCH 2021; 202:111789. [PMID: 34333013 DOI: 10.1016/j.envres.2021.111789] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Greenhouse gaseous (GHGs) emissions from cropland soils are one of the major contributors to global warming. However, the extent and pattern of these climatic breakdowns are usally determined by the management practices in-place. The use of biochar on cropland soils holds a great promise for increasing the overall crop productivity. Nevertheless, biochar application to agricultural soils has grown in popularity as a strategy to off-set the negative feedback associated with agriculture GHGs emissions, i.e., CO2 (carbon dioxide), CH4 (methane), and N2O (nitrous oxide). Despite increasing efforts to uncover the potential of biochar to mitigate the farmland GHGs effects, there has been little synthesis of how different types of biochar affect GHGs fluxes from cropland soils under varied experimental conditions. Here, we presented a meta-analysis of the interactions between biochar and GHGs emissions across global cropland soils, with field experiments showing the strongest GHG mitigation potential, i.e. CO2 (RR = -0.108) and CH4 (RR = -0.399). The biochar pyrolysis temperature, feedstock, C: N ratio, and pH were also found to be important factors influencing GHGs emissions. A prominent reduction in N2O (RR = -0.13) and CH4 (RR = -1.035) emissions was observed in neutral soils (pH = 6.6-7.3), whereas acidic soils (pH ≤ 6.5) accounted for the strongest mitigation effect on CO2 compared to N2O and CH4 emissions. We also found that a biochar application rate of 30 t ha-1 was best for mitigating GHGs emissions while achieving optimal crop yield. According to our meta-analysis, maize crop receiving biochar amendment showed a significant mitigation potential for CO2, N2O, and CH4 emissions. On the other hand, the use of biochar had shown significant impact on the global warming potential (GWP) of total GHGs emissions. The current data synthesis takes the lead in analyzing emissions status and mitigation potential for three of the most common GHGs from cropland soils and demonstrates that biochar application can significantly reduce the emissions budget from agriculture.
Collapse
Affiliation(s)
- Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, Avinguda Alcalde Rovira Roure 191, 25198, Lleida, Spain.
| | - Muhammad Saleem Arif
- Department of Environmental Sciences & Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Sher Muhammad Shahzad
- Department of Soil and Environmental Sciences, College of Agriculture, University of Sargodha, Sargodha, 40100, Punjab, Pakistan
| | - Taimoor Hassan Farooq
- Bangor College China, a Joint Unit of Bangor University, Wales, UK and Central South University of Forestry and Technology, Changsha 410004, China
| | - Fatima Ashraf
- Department of Chemistry, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Mohsin Altaf
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Waqas Ahmed
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Muhammad Aammar Tufail
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123, Trento, Italy
| | - Muhammad Ashraf
- Department of Soil Science, Faculty of Agriculture, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| |
Collapse
|
37
|
Influence of Intraspecific Competition Stress on Soil Fungal Diversity and Composition in Relation to Tree Growth and Soil Fertility in Sub-Tropical Soils under Chinese Fir Monoculture. SUSTAINABILITY 2021. [DOI: 10.3390/su131910688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Soil microorganisms provide valuable ecosystem services, such as nutrient cycling, soil remediation, and biotic and abiotic stress resistance. There is increasing interest in exploring total belowground biodiversity across ecological scales to understand better how different ecological aspects, such as stand density, soil properties, soil depth, and plant growth parameters, influence belowground communities. In various environments, microbial components of belowground communities, such as soil fungi, respond differently to soil features; however, little is known about their response to standing density and vertical soil profiles in a Chinese fir monoculture plantation. This research examined the assemblage of soil fungal communities in different density stands (high, intermediate, and low) and soil depth profiles (0–20 cm and 20–40 cm). This research also looked into the relationship between soil fungi and tree canopy characteristics (mean tilt angle of the leaf (MTA), leaf area index (LAI), and canopy openness index (DIFN)), and general growth parameters, such as diameter, height, and biomass. The results showed that low-density stand soil had higher fungal alpha diversity than intermediate- and high-density stand soils. Ascomycota, Basidiomycota, Mucromycota, and Mortierellomycota were the most common phyla of the soil fungal communities, in that order. Saitozyma, Penicillium, Umbelopsis, and Talaromyces were the most abundant fungal genera. Stand density composition was the dominant factor in changing fungal community structure compared to soil properties and soil depth profiles. The most significant soil elements in soil fungal community alterations were macronutrients. In addition, the canopy openness index and fungal community structure have a positive association in the low-density stand. Soil biota is a nutrient cycling driver that can promote better plant growth in forest ecosystems by supporting nutrient cycling. Hence, this research will be critical in understanding soil fungal dynamics, improving stand growth and productivity, and improving soil quality in intensively managed Chinese fir plantations.
Collapse
|
38
|
Can Bacterial Endophytes Be Used as a Promising Bio-Inoculant for the Mitigation of Salinity Stress in Crop Plants?-A Global Meta-Analysis of the Last Decade (2011-2020). Microorganisms 2021; 9:microorganisms9091861. [PMID: 34576756 PMCID: PMC8467090 DOI: 10.3390/microorganisms9091861] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 01/20/2023] Open
Abstract
Soil salinity is a major problem affecting crop production worldwide. Lately, there have been great research efforts in increasing the salt tolerance of plants through the inoculation of plant growth-promoting endophytic bacteria. However, their ability to promote plant growth under no-stress and salinity-stress conditions remains largely uncertain. Here, we carried out a global meta-analysis to quantify the plant growth-promoting effects (improvement of morphological attributes, photosynthetic capacity, antioxidative ability, and ion homeostasis) of endophytic bacteria in plants under no-stress and salinity-stress conditions. In addition, we elucidated the underlying mechanisms of growth promotion in salt-sensitive (SS) and salt-tolerant (ST) plants derived from the interaction with endophytic bacteria under no-stress and salinity-stress conditions. Specifically, this work encompassed 42 peer-reviewed articles, a total of 77 experiments, and 24 different bacterial genera. On average, endophytic bacterial inoculation increased morphological parameters. Moreover, the effect of endophytic bacteria on the total dry biomass, number of leaves, root length, shoot length, and germination rate was generally greater under salinity-stress conditions than no-stress conditions. On a physiological level, the relative better performance of the bacterial inoculants under the salinity-stress condition was associated with the increase in total chlorophyll and chlorophyll-b, as well as with the decrease of 1-aminocylopropane-1-carboxylate concentration. Moreover, under the salinity-stress condition, bacterial inoculation conferred a significantly higher increase in root K+ concentration and decrease in leaf Na+ concentration than under the no-stress condition. In SS plants, bacterial inoculation induced a higher increase in chlorophyll-b and superoxide dismutase activity, as well as a higher decrease in abscisic acid content, than in ST plants. Under salinity-stress, endophytic bacterial inoculation increased root K+ concentration in both SS and ST plants but decreased root Na+ concentration only in ST plants. Overall, this meta-analysis suggests that endophytic bacterial inoculation is beneficial under both no salinity-stress and salinity-stress conditions, but the magnitude of benefit is definitely higher under salinity-stress conditions and varies with the salt tolerance level of plants.
Collapse
|
39
|
Feng L, Wenting H, Akhter T, Albasher G, Aamir A, Imran A. Evading the Entrepreneurship: A Study to Discover Implementable Online Approaches to Avoid Greenhouse Consequences. Front Psychol 2021; 12:713957. [PMID: 34434152 PMCID: PMC8381331 DOI: 10.3389/fpsyg.2021.713957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Greenhouse gases emissions due to climate change are a continuous threat to the global world, mainly relying on the pervasive consumption of numerous products, including synthetic and non-synthetic products. This research focused on the green purchase intentions of students in Pakistan towards different products, which are related to minimising the greenhouse effect and are available for sale on numerous e-commerce websites, ultimately proceeding to green entrepreneurship. The main objective of this study was to determine which methodology was better among product listing, social media advertising, and online virtual community to enhance customer online green purchase intention while considering online information about the greenhouse effect as a mediating variable. The AMOS 24 was used for this research. SEM was performed with the help of bootstrap methodology. The research was conducted on 280 students at different educational institutes in Pakistan, using a simple random sampling technique. A finding of this study suggested that all three methods positively impacted the green purchase intention of consumers and green entrepreneurship, but online virtual communities could be considered in a more effective way to enhance the green purchase intention of its targeted customers.
Collapse
Affiliation(s)
- Lian Feng
- School of Philosophy and Social Development, Shandong University, Shandong, China
| | - Hu Wenting
- Business School, Nanjing University, Nanjing, China
- Business College, Jiangsu Open University, Nanjing, China
| | | | - Gadah Albasher
- Department of Zoology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Alamzeb Aamir
- Department of Management Science, FATA University, Kohat, Pakistan
| | - Asma Imran
- Department of Management Sciences, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
40
|
Unraveling the Influence of Land-Use Change on δ 13C, δ 15N, and Soil Nutritional Status in Coniferous, Broadleaved, and Mixed Forests in Southern China: A Field Investigation. PLANTS 2021; 10:plants10081499. [PMID: 34451544 PMCID: PMC8398092 DOI: 10.3390/plants10081499] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/14/2022]
Abstract
Natural isotopic abundance in soil and foliar can provide integrated information related to the long-term alterations of carbon (C) and nitrogen (N) cycles in forest ecosystems. We evaluated total carbon (TC), total nitrogen (TN), and isotopic natural abundance of C (δ13C) and N (δ15N) in soil and foliar of coniferous plantation (CPF), natural broadleaved forest (NBF), and mixed forest stands at three different soil depths (i.e., 0–10, 10–20, and 20–40 cm). This study also explored how soil available nutrients are affected by different forest types. Lutou forest research station, located in Hunan Province, central China, was used as the study area. Results demonstrated that the topsoil layer had higher TC and TN content in the mixed forest stand, resulting in a better quality of organic materials in the topsoil layer in the mixed forest than NBF and CPF. In general, soil TC, TN, and δ15N varied significantly in different soil depths and forest types. However, the forest type did not exhibit any significant effect on δ13C. Overall, soil δ13C was significantly enriched in CPF, and δ15N values were enriched in mixed forest. Foliar C content varied significantly among forest types, whereas foliar N content was not significantly different. No big differences were observed for foliar δ15N and δ13C across forest types. However, foliar δ13C and δ15N were positively related to soil δ13C and δ15N, respectively. Foliar N, soil and foliar C:N ratio, soil moisture content (SMC), and forest type were observed as the major influential factors affecting isotopic natural abundance, whereas soil pH was not significantly correlated. In addition, forest type change and soil depth increment had a significant effect on soil nutrient availability. In general, soil nutrient availability was higher in mixed forest. Our findings implied that forest type and soil depth alter TC, TN, and soil δ15N, whereas δ13C was only driven by soil depth. Moreover, plantations led to a decline in soil available nutrient content compared with NBF and mixed forest stands.
Collapse
|
41
|
Farooq TH, Kumar U, Mo J, Shakoor A, Wang J, Rashid MHU, Tufail MA, Chen X, Yan W. Intercropping of Peanut-Tea Enhances Soil Enzymatic Activity and Soil Nutrient Status at Different Soil Profiles in Subtropical Southern China. PLANTS 2021; 10:plants10050881. [PMID: 33925476 PMCID: PMC8145338 DOI: 10.3390/plants10050881] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 01/23/2023]
Abstract
Intercropping is one of the most widely used agroforestry techniques, reducing the harmful impacts of external inputs such as fertilizers. It also controls soil erosion, increases soil nutrients availability, and reduces weed growth. In this study, the intercropping of peanut (Arachishypogaea L.) was done with tea plants (Camellia oleifera), and it was compared with the mono-cropping of tea and peanut. Soil health and fertility were examined by analyzing the variability in soil enzymatic activity and soil nutrients availability at different soil depths (0-10 cm, 10-20 cm, 20-30 cm, and 30-40 cm). Results showed that the peanut-tea intercropping considerably impacted the soil organic carbon (SOC), soil nutrient availability, and soil enzymatic responses at different soil depths. The activity of protease, sucrase, and acid phosphatase was higher in intercropping, while the activity of urease and catalase was higher in peanut monoculture. In intercropping, total phosphorus (TP) was 14.2%, 34.2%, 77.7%, 61.9%; total potassium (TK) was 13.4%, 20%, 27.4%, 20%; available phosphorus (AP) was 52.9%, 26.56%, 61.1%; 146.15% and available potassium (AK) was 11.1%, 43.06%, 46.79% higher than the mono-cropping of tea in respective soil layers. Additionally, available nitrogen (AN) was 51.78%, 5.92%, and 15.32% lower in the 10-20 cm, 20-30 cm, and 30-40 cm layers of the intercropping system than in the mono-cropping system of peanut. Moreover, the soil enzymatic activity was significantly correlated with SOC and total nitrogen (TN) content across all soil depths and cropping systems. The depth and path analysis effect revealed that SOC directly affected sucrase, protease, urease, and catalase enzymes in an intercropping system. It was concluded that an increase in the soil enzymatic activity in the intercropping pattern improved the reaction rate at which organic matter decomposed and released nutrients into the soil environment. Enzyme activity in the decomposition process plays a vital role in forest soil morphology and function. For efficient land use in the cropping system, it is necessary to develop coherent agroforestry practices. The results in this study revealed that intercropping certainly enhance soil nutrients status and positively impacts soil conservation.
Collapse
Affiliation(s)
- Taimoor Hassan Farooq
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha 410004, China; (T.H.F.); (J.M.); (J.W.)
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Uttam Kumar
- Institute of Applied Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Jing Mo
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha 410004, China; (T.H.F.); (J.M.); (J.W.)
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, Avinguda Alcalde Rovira Roure 191, 25198 Lleida, Spain;
| | - Jun Wang
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha 410004, China; (T.H.F.); (J.M.); (J.W.)
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | | | - Muhammad Aammar Tufail
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy;
| | - Xiaoyong Chen
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha 410004, China; (T.H.F.); (J.M.); (J.W.)
- College of Arts and Sciences, Governors State University, University Park, IL 60484, USA
- Correspondence: (X.C.); (W.Y.)
| | - Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha 410004, China; (T.H.F.); (J.M.); (J.W.)
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence: (X.C.); (W.Y.)
| |
Collapse
|