1
|
Hu S, Zhang A, Wu H, Peng W, Li P, Su W. Analysis of Volatile Compounds in Citri grandis from Different Regions in South China and the Response of Volatile Compounds to Ecological Factors. Molecules 2025; 30:622. [PMID: 39942726 PMCID: PMC11821023 DOI: 10.3390/molecules30030622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Citri grandis Exocarpium (Chinese name Huajuhong, HJH) is a traditional Chinese medicinal herb widely used in traditional medicines and foods in China due to its efficacy in treating coughs and excessive phlegm. This study employed HS-SPME-GC-MS to analyze the volatile compounds in HJH samples from different regions, with the aim of distinguishing samples from Huazhou from those of other origins and exploring their potential relationship with ecological factors. A multidimensional strategy was utilized to analyze the relationships between volatile oils, climatic factors, and soil elements, examining how volatile compounds responded to ecological factors. From 47 batches of HJH samples across various regions, eight significantly different volatile compounds were identified, serving as chemical markers for HJH from Huazhou. The findings elucidate the impact of ecological factors on the volatile compounds of HJH, highlighting environmental factors relating to the authenticity of HJH from Huazhou. The results indicate that the authenticity of HJH is shaped by the unique climatic and soil environments of Huazhou.
Collapse
Affiliation(s)
| | | | | | | | | | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
2
|
Xiao Y, Hu X, Xing W, Yan J, Wang R, Li X, Li J, Zhang Z, Sun J, Wu J. SAL0114: a novel deuterated dextromethorphan-bupropion combination with improved antidepressant efficacy and safety profile. Front Pharmacol 2024; 15:1464564. [PMID: 39386030 PMCID: PMC11462627 DOI: 10.3389/fphar.2024.1464564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Background Esketamine, the first Food and Drug Administration-approved fast-acting antidepressant, has limited use because of its addictive properties. Although the combination of dextromethorphan and bupropion partially addresses the limitations of esketamine, concerns remain regarding neurologic side effects related to dextromethorphan metabolites, and seizure risks associated with high-dose bupropion. SAL0114, a novel formulation combining deuterated dextromethorphan (in which hydrogen atoms are replaced with deuterium) with bupropion, seeks to enhance dextromethorphan stability through deuteration of its metabolic sites. This approach is expected to increase antidepressant efficacy, reduce metabolite-induced safety issues, and allow for lower bupropion dosages. Methods Radioligand competition binding assays were used to evaluate the impact of deuterium substitution on the in vitro activity of dextromethorphan and its metabolite, dextrorphan. In vitro hepatic microsomal stability and in vivo mouse pharmacokinetic assays were performed to assess the effects of deuteration on dextromethorphan stability. Two mouse models of behavioral despair were used to determine the antidepressant and synergistic effects of deuterated dextromethorphan and bupropion. Additionally, a reserpine-induced hypothermia rat model and an ammonia-induced cough mouse model were used to assess the in vivo effects from a pathological perspective. Results Deuterated dextromethorphan maintained the same in vitro activity as dextromethorphan while exhibiting twice the metabolic stability both in vitro and in vivo. Combination with bupropion further improved its in vivo stability, increasing the exposure by 2.4 times. The combination demonstrated efficacy and synergistic effects in all tested animal models, showing superior efficacy compared with the dextromethorphan-bupropion combination. Conclusion Deuteration improved dextromethorphan metabolic stability without altering its in vitro activity. Bupropion enhanced this stability and synergistically boosted the antidepressant effect by increasing deuterated dextromethorphan exposure in vivo. This enhanced metabolic stability suggests a reduction in dextromethorphan metabolites associated with clinical neurological side effects. Consequently, SAL0114 is hypothesized to offer improved efficacy and safety compared with the non-deuterated combination, potentially allowing for lower bupropion dosages. Further clinical studies are required to confirm these preclinical findings.
Collapse
|
3
|
Fan XL, Qin ZP, Wen JH, Wang ZZ, Xiao W. An updated and comprehensive review of the morphology, ethnomedicinal uses, phytochemistry, and pharmacological activity of Aster tataricus L. f. Heliyon 2024; 10:e35267. [PMID: 39166058 PMCID: PMC11334675 DOI: 10.1016/j.heliyon.2024.e35267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/20/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
Ethnopharmacological relevance Aster tataricus L.f., an extensively used herb in traditional Chinese medicine for more than 2000 years, is known as "Zi wan" or "Fan huncao". Its dried root and rhizome hold great promise in the treatment of cough, asthma, tumor, inflammation, etc.Aim of the study: This literature review summarizes the morphology characteristics, ethnopharmacological use, phytochemical properties, pharmacological effects, and potential applications of Aster tataricus. Furthermore, this review will discuss the future research trends and development prospects of this plant. Materials and methods Using "Aster tataricus L.f.", "Traditional medicinal usage", "Phytochemistry", "Pharmacological effects" as the keywords and gathered relevant data on Aster tataricus L.f. using electronic databases (Elsevier, PubMed, ACS, CNKI, Google Scholar, Baidu Scholar, Web of Science), relevant books, and classic literature about Chinese herb. Result A total of 186 compounds have been isolated and identified from Aster tataricus, including terpenes, organic acids, peptides, and flavonoids. And Aster tataricus has been widely used as a natural cough suppressant and has anti-oxidative, anti-inflammatory, anti-depressive, and anti-tumor effects. In addition, Aster tataricus has also been reported to have damaging effects on the liver as well as other toxicities were discussed in this review. Conclusions Aster tataricus is an ancient herbal medicine with a broad spectrum of pharmaco logical activities that has been used for thousands of years in China, and has shown remarkable effectiveness in the treatment of various diseases, especially cough, asthma, inflammation. Although its rich chemical constituents have various pharmacological activities, the underlying mechanisms, as well as its toxicity and safety, remains unclear and warrant further investigation.
Collapse
Affiliation(s)
- Xi-Ling Fan
- Henan University of Chinese Medicine, Zhengzhou, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, China
| | | | - Jian-Hui Wen
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, China
| | - Zhen-Zhong Wang
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, China
| | - Wei Xiao
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, China
| |
Collapse
|
4
|
Xu Z, Li J, Zhou K, Wang K, Hu H, Hu Y, Gao Y, Luo Z, Huang J. Exocarpium Citri Grandis ameliorates LPS-induced acute lung injury by suppressing inflammation, NLRP3 inflammasome, and ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118162. [PMID: 38588989 DOI: 10.1016/j.jep.2024.118162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Exocarpium Citri Grandis (ECG), the epicarp of C. grandis 'Tomentosa' which is also known as Hua-Ju-Hong in China, has been widely used for thousands of years to treat inflammatory lung disorders such as asthma, and cough as well as dispelling phlegm. However, its underlying pharmacological mechanisms in acute lung injury (ALI) remain unclear. AIM OF THE STUDY To explore the therapeutic effect of ECG on ALI and reveal the potential mechanisms based on experimental techniques in vivo and in vitro. MATERIALS AND METHODS Lipopolysaccharides (LPS) induced ALI in mice and induced RAW 264.7 cell inflammatory model were established to investigate the pharmacodynamics of ECG. ELISA kits, commercial kits, Western Blot, qPCR, Hematoxylin and Eosin (H&E) staining, immunohistochemistry, and immunofluorescence technologies were used to evaluate the pharmacological mechanisms of ECG in ameliorating ALI. RESULTS ECG significantly attenuated pulmonary edema in LPS-stimulated mice and decreased the levels of IL1β, IL6, and TNF-α in serum and BALF, reduced MDA and iron concentration as well as increased SOD and GSH levels in lung tissues, and also decreased the ROS level in BALF and Lung tissue. Further pharmacological mechanism studies showed that ECG significantly inhibited mRNA expression of inflammatory signaling factors and chemokines, and down-regulated the expression of TLR4, MyD88, NF-κB p65, NF-κB p-p65 (S536), COX2, iNOS, Txnip, NLRP3, ASC, Caspase-1, JAK1, p-JAK1 (Y1022), JAK2, STAT1, p-STAT1 (S727), STAT3, p-STAT3 (Y705), STAT4, p-STAT4 (Y693), and Keap1, and also up-regulated the expression of Trx-1, Nrf2, HO-1, NQO1, GPX4, PCBP1, and SLC40A1. In the LPS-induced RAW264.7 cell inflammatory model, ECG showed similar results to animal experiments. CONCLUSIONS Our results showed that ECG alleviated ALI by inhibiting TLR4/MyD88/NF-κB p65 and JAK/STAT signaling pathway-mediated inflammatory response, Txnip/NLRP3 signaling pathway-mediated inflammasome activation, and regulating Nrf2/GPX4 axis-mediated ferroptosis. Our findings provide an experimental basis for the application of ECG.
Collapse
Affiliation(s)
- Zaibin Xu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jiayu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Kaili Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Kongyan Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Huiyu Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yingjie Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Yong Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Zhuohui Luo
- Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou, 571199, China; Hainan Pharmaceutical Research and Development Science Park, Haikou, 571199, China.
| | - Jiawen Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
5
|
Feng Q, Shu X, Fang H, Shi X, Zhang Y, Zhang H. Discovery of pharmacological effects and targets of Citri Grandis Exocarpium based on SYSTCM and virtual screening. Food Nutr Res 2024; 68:10618. [PMID: 38974913 PMCID: PMC11227261 DOI: 10.29219/fnr.v68.10618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 07/09/2024] Open
Abstract
Citri Grandis Exocarpium (Huajuhong, CGE) is the peel of the unripe fruits of Citrus grandis 'Tomentosa' and Citrus grandis (L.) Osbeck, which is commonly used in the clinic for the treatment of cough and indigestion. The pharmacological mechanism of CGE is unclear. In this study, the pharmacological effect of CGE was predicted by System Traditional Chinese Medicine (SYSTCM), which integrated the pharmacological effect prediction approach by artificial intelligence into the systemic traditional Chinese medicine (TCM) platform. The main pharmacological effect of CGE was antiallergy, promoting bile, blood lipid regulation, cardiotonics, diuresis, and antiarrhythmia by prediction of SYSTCM. In vitro cell experiments were carried out to identify the antiallergic effect of CGE. Extracts of Citri Grandis Exocarpium (ECGE) inhibited lipopolysaccharide-induced cell injury and nitric oxide release in RAW264.7 cells. ECGE and naringin-inhibited immunoglobulin E-induced cell degranulation in RBL-2H3 cells. Target profiling, protein interaction network, and molecular docking of compounds from CGE indicated that mitogen-activated protein kinase 14 (MAPK14) and matrix metalloprotease 9 (MMP9) were key potential targets of CGE with antiallergic activity. This study identified and validated the antiallergic effect of CGE by combining SYSTCM, cell experiments, and virtual screening, which provided a new paradigm and approach for studying the pharmacological effect and mechanism of TCM.
Collapse
Affiliation(s)
- Qinqi Feng
- Beijing University of Chinese Medicine, Beijing, China
- Department of Traditional Chinese Medicine for Pulmonar y Diseases, National Center for Respirator y Medicine, National Clinical Research Center for Respirator y Diseases, Institute of Respirator y Medicine, Center of Respirator y Medicine, China-Japan Friendship Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyang Shu
- Department of Traditional Chinese Medicine for Pulmonar y Diseases, National Center for Respirator y Medicine, National Clinical Research Center for Respirator y Diseases, Institute of Respirator y Medicine, Center of Respirator y Medicine, China-Japan Friendship Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Hanyu Fang
- Beijing University of Chinese Medicine, Beijing, China
- Department of Traditional Chinese Medicine for Pulmonar y Diseases, National Center for Respirator y Medicine, National Clinical Research Center for Respirator y Diseases, Institute of Respirator y Medicine, Center of Respirator y Medicine, China-Japan Friendship Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxi Shi
- Beijing University of Chinese Medicine, Beijing, China
- Department of Traditional Chinese Medicine for Pulmonar y Diseases, National Center for Respirator y Medicine, National Clinical Research Center for Respirator y Diseases, Institute of Respirator y Medicine, Center of Respirator y Medicine, China-Japan Friendship Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Yanling Zhang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hongchun Zhang
- Department of Traditional Chinese Medicine for Pulmonar y Diseases, National Center for Respirator y Medicine, National Clinical Research Center for Respirator y Diseases, Institute of Respirator y Medicine, Center of Respirator y Medicine, China-Japan Friendship Hospital Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Zhong C, Wu Y, Cao C, Lin D, Zhang J, Wu F, Deng J, Ma Z, Zhang Y, Cao H, Wu M. Analytical strategies to identify multicomponent quality markers for commercial Hua-ju-hong using multidimensional chemical analysis. J Sep Sci 2024; 47:e2400127. [PMID: 38819762 DOI: 10.1002/jssc.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024]
Abstract
Hua-ju-hong (HJH) is a Chinese medicinal material obtained from Citrus grandis 'Tomentosa' (CGT) and Citrus grandis (L.) Osbeck (CG) with various commercial specifications. It is known for relieving cough and dispelling phlegm. To reveal the quality marker for distinguishing the various HJH, 215 batches of commercial HJH were studied systematically using multidimensional chemical analysis. Ten major components were identified by high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry and quantified via high-performance liquid chromatography coupled with diode array detection. In this study, a rapid, efficient, and low-cost chromatographic method was established. Total coumarin-hemiterpene and total coumarin-monoterpene were first classified and analyzed in HJH. The result indicated that the main component, naringin, was not the quality marker for differentiating CGT from CG. For reflecting the unique medicinal and food value of HJH, coumarins should be the more potential quality markers. Flavonoids were the possible quality markers for distinguishing two growth stages of fruit-exocarp and young fruit. For the first time, two chemotypes of HJH were identified in CG. This study provides a convenient yet reliant chromatographic method and novel yet systematic strategies for overall quality control of commercial HJH.
Collapse
Affiliation(s)
- Chuchu Zhong
- Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yuting Wu
- Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Changhong Cao
- Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Danlin Lin
- Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jinju Zhang
- Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Fan Wu
- Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jing Deng
- Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhiguo Ma
- Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Ying Zhang
- College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Key Lab of Traditional Chinese Medicine Information Technology, Jinan University, Guangzhou, China
| | - Hui Cao
- College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Key Lab of Traditional Chinese Medicine Information Technology, Jinan University, Guangzhou, China
| | - Menghua Wu
- Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, Guangzhou, China
- Lingnan Resource Sub-center of the National Engineering Technology Research Center for Modernization of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Huang X, Liu X, Wang Q, Zhou Y, Deng S, He Q, Han H. Transcriptomic and targeted metabolome analyses revealed the regulatory mechanisms of the synthesis of bioactive compounds in Citrus grandis 'tomentosa'. PeerJ 2024; 12:e16881. [PMID: 38410798 PMCID: PMC10896087 DOI: 10.7717/peerj.16881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/12/2024] [Indexed: 02/28/2024] Open
Abstract
Exocarpium Citri Grandis is a popular Chinese herbal medicine prepared from Citrus grandis 'tomentosa', and it is rich in several bioactive compounds, including flavonoids, coumarins, and volatile oils. However, studies are yet to elucidate the mechanisms of synthesis and regulation of these active components. Therefore, the present study examined the profiles of flavonoids and volatile oil bioactive compounds in plant petals, fruits, and tender leaves, and then performed RNA sequencing on different tissues to identify putative genes involved in the synthesis of bioactive compounds. The results show that the naringin, naringenin, and coumarin contents of the fruitlets were significantly higher than those of the tender leaves and petals, whereas the tender leaves had significantly higher levels of rhoifolin and apigenin. A total of 49 volatile oils, of which 10 were mainly found in flowers, 15 were mainly found in fruits, and 18 were mainly found in leaves, were identified. RNA sequencing identified 9,942 genes that were differentially expressed in different tissues. Further analysis showed that 20, 15, and 74 differentially expressed genes were involved in regulating flavonoid synthesis, regulating coumarin synthesis, and synthesis and regulation of terpenoids, respectively. CHI1 (Cg7g005600) and 1,2Rhat gene (Cg1g023820) may be involved in the regulation of naringin synthesis in C. grandis fruits. The HDR (Cg8g006150) gene, HMGS gene (Cg5g009630) and GGPS (Cg1g003650) may be involved in the regulation and synthesis of volatile oils in C. grandis petals. Overall, the findings of the present study enhance our understanding of the regulatory mechanisms of secondary metabolites in C. grandis, which could promote the breeding of C. grandis with desired characteristics.
Collapse
Affiliation(s)
- Xinmin Huang
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
- Guangdong Provincial Engineering Technique Research Center for Exocarpium Citri Grandis Planting and Processing, Maoming, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Xiaoli Liu
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Qi Wang
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Yanqing Zhou
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Shiting Deng
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Qinqin He
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
- Guangdong Provincial Engineering Technique Research Center for Exocarpium Citri Grandis Planting and Processing, Maoming, China
| | - Hanbing Han
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
- Guangdong Provincial Engineering Technique Research Center for Exocarpium Citri Grandis Planting and Processing, Maoming, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
8
|
Song L, Wang J, Gong M, Duan Y, Zhang Y, Li Y, Qin L, He Q, Ji L, Zhang T, Wu X, Wang Y. Investigation of the principle of concoction by using the processing excipient Glycyrrhiza uralensis Fisch. juice to reduce the main toxicity of Dioscorea bulbifera L. and enhance its main efficacy as expectorant and cough suppressant. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117372. [PMID: 37913830 DOI: 10.1016/j.jep.2023.117372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dioscorea bulbifera L. (Rhizoma Dioscoreae Bulbiferae; RDB) is commonly used as an expectorant and cough suppressant herb but is accompanied by severe hepatotoxicity. Using the juice of auxiliary herbs (such as Glycyrrhiza uralensis Fisch. (Glycyrrhizae Radix et Rhizoma; GRR) juice) in concocting poisonous Chinese medicine is a conventional method to reduce toxicity or increase effects. Our previous study found that concoction with GRR juice provided a detoxifying effect against the major toxic hepatotoxicity induced by RDB, but the principle for the detoxification of the concoction is unknown to date. AIM OF THE STUDY The principle of concoction was investigated by using the processing excipient GRR juice to reduce the major toxic hepatotoxicity of RDB, and the efficacy of RDB as an expectorant and cough suppressant was enhanced. MATERIALS AND METHODS In this study, common factors (RDB:GRR ratio, concocted temperature, and concocted time) in the concoction process were used for the preparation of each RDB concocted with GRR juice by using an orthogonal experimental design. We measured the content of the main toxic compound diosbulbin B (DB) and serum biochemical indicators and performed pathological analysis in liver tissues of mice to determine the best detoxification process of RDB concocted with GRR juice. On this basis, the biological mechanisms of target organs were detected by Western blot and enzyme-linked immunosorbent assay at the inflammation and apoptosis levels. Further, the effects of RDB on expectorant and cough suppressant with GRR juice were evaluated by the conventional tests of phenol red expectorant and concentrated ammonia-induced cough. Lastly, the major compounds in the GRR juice introduced to RDB concoction were determined. RESULTS RDB concocted with GRR juice significantly alleviated DB content, serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase levels, and improved liver pathological damages. The best detoxification process was achieved by using an RDB:GRR ratio of 100:20 at 120 °C for 20 min. Further, RDB concocted with GRR juice down-regulated the protein levels of nuclear factor kappa B (NF-κB), cyclooxygenase 2 (COX-2), and Bcl-2 related X protein (Bax) in the liver and enhanced the expectorant and cough suppressant effects of RDB. Finally, liquiritin (LQ) and glycyrrhizic acid (GA) in the GRR juice were introduced to the RDB concoction. CONCLUSION Concoction with GRR juice not only effectively reduced the major toxic hepatotoxicity of RDB but also enhanced its main efficacy as an expectorant and cough suppressant, and that the rationale for the detoxification and/or potentiation of RDB was related to the reduction in the content of the main hepatotoxic compound, DB, the introduction of the hepatoprotective active compounds, LQ and GA, in the auxiliary GRR juice, as well as the inhibition of NF-κB/COX-2/Bax signaling-mediated inflammation and apoptosis.
Collapse
Affiliation(s)
- Lingling Song
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Junming Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Mingzhu Gong
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Yaqian Duan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Yueyue Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Yamin Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Lingyu Qin
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Qingwen He
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Lijie Ji
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Tianzhu Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Xiaohui Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Yanmei Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
9
|
Meng T, Ding J, Shen S, Xu Y, Wang P, Song X, Li Y, Li S, Xu M, Tian Z, He Q. Xuanfei Baidu decoction in the treatment of coronavirus disease 2019 (COVID-19): Efficacy and potential mechanisms. Heliyon 2023; 9:e19163. [PMID: 37809901 PMCID: PMC10558324 DOI: 10.1016/j.heliyon.2023.e19163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 10/10/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide and become a major global public health concern. Although novel investigational COVID-19 antiviral candidates such as the Pfizer agent PAXLOVID™, molnupiravir, baricitinib, remdesivir, and favipiravir are currently used to treat patients with COVID-19, there is still a critical need for the development of additional treatments, as the recommended therapeutic options are frequently ineffective against SARS-CoV-2. The efficacy and safety of vaccines remain uncertain, particularly with the emergence of several variants. All 10 versions of the National Health Commission's diagnosis and treatment guidelines for COVID-19 recommend using traditional Chinese medicine. Xuanfei Baidu Decoction (XFBD) is one of the "three Chinese medicines and three Chinese prescriptions" recommended for COVID-19. This review summarizes the clinical evidence and potential mechanisms of action of XFBD for COVID-19 treatment. With XFBD, patients with COVID-19 experience improved clinical symptoms, shorter hospital stay, prevention of the progression of their symptoms from mild to moderate and severe symptoms, and reduced mortality in critically ill patients. The mechanisms of action may be associated with its direct antiviral, anti-inflammatory, immunomodulatory, antioxidative, and antimicrobial properties. High-quality clinical and experimental studies are needed to further explore the clinical efficacy and underlying mechanisms of XFBD in COVID-19 treatment.
Collapse
Affiliation(s)
- Tiantian Meng
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100032, China
- Department of Rehabilitation, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100071, China
| | - Jingyi Ding
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100032, China
| | - Shujie Shen
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100089, China
| | - Yingzhi Xu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100010 China
| | - Peng Wang
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100010, China
- Department of Traditional Chinese Medicine, Beijing Jiangong Hospital, Beijing, 100032, China
| | - Xinbin Song
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yixiang Li
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Shangjin Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100032, China
| | - Minjie Xu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100010 China
| | - Ziyu Tian
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qingyong He
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100032, China
| |
Collapse
|
10
|
Huang D, Wu PE, Chen ZJ, Pang YC, Xu ZW, Tan J, Jiang ZH, Yang BB, Zhan R, Xu H, Liu YQ. Ethanol Extract of Citrus grandis 'Tomentosa' Exerts Anticancer Effects by Targeting Skp2/p27 Pathway in Non-Small Cell Lung Cancer. Mol Nutr Food Res 2023; 67:e2300061. [PMID: 37436082 DOI: 10.1002/mnfr.202300061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/22/2023] [Indexed: 07/13/2023]
Abstract
SCOPE This study aims to investigate the anticancer properties of Citrus grandis 'Tomentosa' (CGT) in non-small cell lung cancer (NSCLC). METHODS AND RESULTS The ethanol extract of CGT (CGTE) is prepared by using anhydrous ethanol and analyzed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), revealing that the main chemical components in CGTE are flavonoids and coumarins, such as naringin, rhoifolin, apigenin, bergaptol, and osthole. CGTE at concentrations without inducing cell death significantly inhibits cell proliferation via inducing cell cycle G1 phase arrest by MTT, colony formation, and flow cytometry assays, implying that CGT has anticancer potential. CGTE markedly inhibits the activity of Skp2-SCF E3 ubiquitin ligase, decreases the protein level of Skp2, and promotes the accumulation of p27 by co-immunoprecipitation (co-IP) and in vivo ubiquitination assay; whereas Skp2 overexpression rescues the effects of CGTE in NSCLC cells. In subcutaneous LLC allograft and A549 xenograft mouse models, CGTE, without causing obvious side effects in mice, significantly inhibits lung tumor growth by targeting the Skp2/p27 signaling pathway. CONCLUSION These findings demonstrate that CGTE efficiently inhibits NSCLC proliferation both in vitro and in vivo by targeting the Skp2/p27 signaling pathway, suggesting that CGTE may serve as a therapeutic candidate for NSCLC treatment.
Collapse
Affiliation(s)
- Da Huang
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Pei-En Wu
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zi-Jie Chen
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yan-Chun Pang
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zi-Wei Xu
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jingbo Tan
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhi-Hua Jiang
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bing-Bing Yang
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ruoting Zhan
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hui Xu
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yong-Qiang Liu
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, China
| |
Collapse
|
11
|
Ye L, Fan S, Zhao P, Wu C, Liu M, Hu S, Wang P, Wang H, Bi H. Potential herb‒drug interactions between anti-COVID-19 drugs and traditional Chinese medicine. Acta Pharm Sin B 2023; 13:S2211-3835(23)00203-4. [PMID: 37360014 PMCID: PMC10239737 DOI: 10.1016/j.apsb.2023.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 06/28/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide. Effective treatments against COVID-19 remain urgently in need although vaccination significantly reduces the incidence, hospitalization, and mortality. At present, antiviral drugs including Nirmatrelvir/Ritonavir (PaxlovidTM), Remdesivir, and Molnupiravir have been authorized to treat COVID-19 and become more globally available. On the other hand, traditional Chinese medicine (TCM) has been used for the treatment of epidemic diseases for a long history. Currently, various TCM formulae against COVID-19 such as Qingfei Paidu decoction, Xuanfei Baidu granule, Huashi Baidu granule, Jinhua Qinggan granule, Lianhua Qingwen capsule, and Xuebijing injection have been widely used in clinical practice in China, which may cause potential herb-drug interactions (HDIs) in patients under treatment with antiviral drugs and affect the efficacy and safety of medicines. However, information on potential HDIs between the above anti-COVID-19 drugs and TCM formulae is lacking, and thus this work seeks to summarize and highlight potential HDIs between antiviral drugs and TCM formulae against COVID-19, and especially pharmacokinetic HDIs mediated by metabolizing enzymes and/or transporters. These well-characterized HDIs could provide useful information on clinical concomitant medicine use to maximize clinical outcomes and minimize adverse and toxic effects.
Collapse
Affiliation(s)
- Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chenghua Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Menghua Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuang Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongyu Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
12
|
Tao X, Li J, He J, Jiang Y, Liu C, Cao W, Wu H. Pinellia ternata (Thunb.) Breit. Attenuates the allergic airway inflammation of cold asthma via inhibiting the activation of TLR4-medicated NF-kB and NLRP3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116720. [PMID: 37268256 DOI: 10.1016/j.jep.2023.116720] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pinellia ternata (Thunb.) Breit. (PT) has been demonstrated to be effective against the allergic airway inflammation (AAI) in clinical practices, especially in cold asthma (CA). Until now, the active ingredients, protective effect, and possible mechanism of PT against CA remain unknown. AIM OF THE STUDY The aim of this investigation was to examine the therapeutic impact and elucidate the underlying mechanism of PT on the AAI of CA. METHODS The compositions of PT water extract were determined via the UPLC-Q-TOF-MS/MS. The ovalbumin (OVA) and cold-water baths were used to induce CA in female mice. Morphological characteristic observations, expectorant effect, bronchial hyperreactivity (BHR), excessive mucus secretion, and inflammatory factors were used to uncover the treatment effect of PT water extract. In addition, the mucin 5AC (MUC5AC) mRNA and protein levels and the aquaporin 5 (AQP5) mRNA and protein levels were detected via qRT-PCR, immunohistochemistry (IHC), and western blotting. Moreover, the protein expressions associated with the TLR4, NF-κB, and NLRP3 signaling pathway were monitored by western blot analysis. RESULTS Thirty-eight compounds were identified from PT water extract. PT showed significant therapeutic effects on mice with cold asthma in terms of expectorant activity, histopathological changes, airway inflammation, mucus secretion, and hyperreactivity. PT exhibited good anti-inflammatory effects in vitro and in vivo. The expression levels of MUC5AC mRNA and protein decreased significantly, while AQP5 expression levels increased significantly in the lung tissues of mice after administration with PT as compared to mice induced by CA. Furthermore, the protein expressions of TLR4, p-iκB, p-p65, IL-1β, IL-18, NLRP3, cleaved caspase-1, and ASC were markedly reduced following PT treatment. CONCLUSIONS PT attenuated the AAI of CA by modulating Th1- and Th2-type cytokines. PT could inhibit the TLR4-medicated NF-kB signaling pathway and activate the NLRP3 inflammasome to reduce CA. This study provides an alternative therapeutic agent of the AAI of CA after administration with PT.
Collapse
Affiliation(s)
- Xingbao Tao
- College of Pharmacy, Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China; Post-Doctoral Research Center, Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Juan Li
- Rehabilitation Center, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China
| | - Jun He
- College of Traditional Chinese Medicine, Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Yunbin Jiang
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Chunshan Liu
- Rehabilitation Center, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China
| | - Weiguo Cao
- College of Pharmacy, Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China.
| | - Hao Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
13
|
Deng G, Liu C, Zhao J, Wang M, Li Y, Yang M, Ye H, Li J, Qin M, Wu C, Shi H, Liao Y, Zhou Z, Zhang S, Lam Yung KK, Gao L. Exocarpium Citri Grandis alleviates the aggravation of NAFLD by mitigating lipid accumulation and iron metabolism disorders. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116559. [PMID: 37116730 DOI: 10.1016/j.jep.2023.116559] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Exocarpium Citri grandis (ECG, Huajuhong in Chinese), the epicarp of C. grandis 'Tomentosa', has been used for hundreds of years as an anti-inflammatory, expectorant, hypoglycemic, and lipid-lowering medication in China. Nevertheless, there have been few papers that have explored the mechanism behind ECG's hypolipidemic characteristics from the perspective of treating nonalcoholic fatty liver disease (NAFLD). AIM OF STUDY The purpose of our study was to confirm the therapeutic and preventative effects of ECG in NAFLD by regulating lipid accumulation and iron metabolism, and to explore the specific mechanism of ECG in enhancing hepatic iron transport and excretion capabilities. STUDY DESIGN We constructed a NAFLD model by feeding male C57BL/6 J mice with a high-fat diet for 12 weeks. Mice were gavaged with ECG beginning in the seventh week of modeling, and three dosage gradients were established: low dose group (2.5 g/kg/d), medium dose group (5 g/kg/d) y, and high dose group (10 g/kg/d) until the end of model construction in week 12. MATERIALS AND METHODS We used network pharmacology to analyze the relationship between ECG and NAFLD. In addition, we constructed a nonalcoholic fatty liver disease model by feeding male C57BL/6 J mice a high-fat diet for 12 weeks. Finally, lipid accumulation, iron accumulation, inflammation and oxidative stress were evaluated by serological index detection, histological detection, immunofluorescent and immunohistochemical staining, and western blotting. RESULTS Network pharmacology confirmed the treatment effect of ECG in NAFLD. Three active components of ECG, including Naringenin, Naringin and Neohesperidin, were detected by UHPLC-HRMS analysis. The results of serum TC, TG, LDL concentration, HE staining, Oil red staining and Nile red staining demonstrated that ECG could improve lipid metabolism disorders. The results of serum iron concentration, liver tissue iron concentration, iron metabolism-related proteins Ferritin light chain, Ferroportin1, Transferrin receptor, and Transferrin demonstrated that ECG improved the iron transport and storage capacities of hepatic cells. CONCLUSIONS Our results demonstrated that ECG relieved liver injury by inhibiting lipid accumulation and iron accumulation in NAFLD.
Collapse
Affiliation(s)
- Guanghui Deng
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Gastroenterology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Chang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jiamin Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Ming Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yunjia Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Menghan Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Haixin Ye
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Junjie Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Mengchen Qin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Chaofeng Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Hao Shi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yuxin Liao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zhaoxi Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shiqing Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China.
| | - Ken Kin Lam Yung
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of China; Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of China.
| | - Lei Gao
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Gastroenterology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Optimisation of the Extraction Process of Naringin and Its Effect on Reducing Blood Lipid Levels In Vitro. Molecules 2023; 28:molecules28041788. [PMID: 36838786 PMCID: PMC9968178 DOI: 10.3390/molecules28041788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
The naringin extraction process was optimised using response surface methodology (RSM). A central component design was adopted, which included four parameters: extraction temperature (X1), material-liquid ratio (X2), extraction time (X3), and ultrasonic frequency (X4) of 74.79 °C, 1.58 h, 1:56.51 g/mL, and 28.05 KHz, respectively. Based on these optimal extraction conditions, naringin was tested to verify the model's accuracy. Naringin yield was 36.2502 mg/g, which was equivalent to the predicted yield of 36.0124 mg/g. DM101 macroporous adsorption resin was used to purify naringin. The effects of loading concentration, loading flow rate, and sample pH on the adsorption rate of naringin and the effect of ethanol concentration on the desorption rate of naringin were investigated. The optimum conditions for naringin purification using macroporous resins were determined. The optimal loading concentration, sample solution pH, and loading flow rate were 0.075 mg/mL, 3.5, and 1.5 mL/min, respectively. Three parallel tests were conducted under these conditions, and the average naringin yield was 77.5643%. Naringin's structure was identified using infrared spectroscopy and nuclear magnetic resonance. In vitro determination of the lipid-lowering activity of naringin was also conducted. These results showed that naringin has potential applications as a functional food for lowering blood lipid levels.
Collapse
|
15
|
Zhao L, Liu H, Wang Y, Wang S, Xun D, Wang Y, Cheng Y, Zhang B. Multimodal Identification by Transcriptomics and Multiscale Bioassays of Active Components in Xuanfeibaidu Formula to Suppress Macrophage-Mediated Immune Response. ENGINEERING (BEIJING, CHINA) 2023; 20:63-76. [PMID: 34815890 PMCID: PMC8601788 DOI: 10.1016/j.eng.2021.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/23/2021] [Accepted: 09/21/2021] [Indexed: 05/22/2023]
Abstract
Xuanfeibaidu Formula (XFBD) is a Chinese medicine used in the clinical treatment of coronavirus disease 2019 (COVID-19) patients. Although XFBD has exhibited significant therapeutic efficacy in clinical practice, its underlying pharmacological mechanism remains unclear. Here, we combine a comprehensive research approach that includes network pharmacology, transcriptomics, and bioassays in multiple model systems to investigate the pharmacological mechanism of XFBD and its bioactive substances. High-resolution mass spectrometry was combined with molecular networking to profile the major active substances in XFBD. A total of 104 compounds were identified or tentatively characterized, including flavonoids, terpenes, carboxylic acids, and other types of constituents. Based on the chemical composition of XFBD, a network pharmacology-based analysis identified inflammation-related pathways as primary targets. Thus, we examined the anti-inflammation activity of XFBD in a lipopolysaccharide-induced acute inflammation mice model. XFBD significantly alleviated pulmonary inflammation and decreased the level of serum proinflammatory cytokines. Transcriptomic profiling suggested that genes related to macrophage function were differently expressed after XFBD treatment. Consequently, the effects of XFBD on macrophage activation and mobilization were investigated in a macrophage cell line and a zebrafish wounding model. XFBD exerts strong inhibitory effects on both macrophage activation and migration. Moreover, through multimodal screening, we further identified the major components and compounds from the different herbs of XFBD that mediate its anti-inflammation function. Active components from XFBD, including Polygoni cuspidati Rhizoma, Phragmitis Rhizoma, and Citri grandis Exocarpium rubrum, were then found to strongly downregulate macrophage activation, and polydatin, isoliquiritin, and acteoside were identified as active compounds. Components of Artemisiae annuae Herba and Ephedrae Herba were found to substantially inhibit endogenous macrophage migration, while the presence of ephedrine, atractylenolide I, and kaempferol was attributed to these effects. In summary, our study explores the pharmacological mechanism and effective components of XFBD in inflammation regulation via multimodal approaches, and thereby provides a biological illustration of the clinical efficacy of XFBD.
Collapse
Affiliation(s)
- Lu Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Liu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingchao Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shufang Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dejin Xun
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yiyu Cheng
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Boli Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
16
|
Extraction of Naringin from Pomelo and Its Therapeutic Potentials against Hyperlipidemia. Molecules 2022; 27:molecules27249033. [PMID: 36558166 PMCID: PMC9783781 DOI: 10.3390/molecules27249033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Pomelo peel is a natural plant product with numerous pharmacological effects and is used in traditional Chinese medicine. In the present study, we extracted naringin from pomelo peel and aimed to decipher its therapeutic potential against hyperlipidemia. We used ultrasonic-assisted extraction to obtain naringin prior to identifying its structure, to evaluate its ability in binding sodium glycine cholate and sodium bovine cholate in vitro by simulating the gastrointestinal environment, so as to evaluate its blood lipid-lowering activity. The hyperlipidemia mouse model was established. Following the intragastric administration of naringin for 5 weeks, we measured the weight change, organ index, high-density lipoprotein cholesterol (HDL-C), serum total cholesterol (TC), serum triglycerides (TG), liver superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), low-density lipoprotein cholesterol (LDL-C) level, malondialdehyde (MDA), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) level of mice in the normal control and high-fat diet groups in addition to the high-, medium-, and low-dose naringin groups. The pathological changes in the liver were observed under a light microscope. The total RNA of the liver was extracted, and the mRNA expression level of lipid metabolism-related factors in mouse liver was detected via a fluorescence quantitative polymerase chain reaction (PCR). Naringin significantly (p < 0.01) reduced the body weight, organ index, serum TG, LDL-C, and TC levels of hyperlipidemic mice, but increased the serum HDL-C levels (p < 0.01). Furthermore, naringin increased GSH Px and SOD activity (p < 0.01), while decreasing MDA, ALT, and AST levels, as well as the liver index (p < 0.01). There was no statistically significant difference in the brain, heart, spleen, kidney, and other indicators (p > 0.05). A histopathological analysis of mouse liver showed that naringin could alleviate the degenerative damage of fatty liver cells in hyperlipidemic mice. Naringin could significantly (p < 0.01) reduce the expression of FAS and SREBP-1c mRNA, and simultaneously increase PPARα mRNA expression. This study shows that naringin has the strong effect of lowering lipids and protecting the liver in hyperlipidemic mice. Our findings underscore the anti-hyperlipidemia potential of naringin and increase the scientific understanding of its anti-hyperlipidemia effects, that may lead to its potential application as a dietary strategy for hyperlipidemia management in the future.
Collapse
|
17
|
Integrated Analysis of Metabolome and Transcriptome Reveals the Difference in Flavonoid Biosynthesis between the Red- and White-Sarcocarp Pomelo Fruits. Metabolites 2022; 12:metabo12121161. [PMID: 36557200 PMCID: PMC9782486 DOI: 10.3390/metabo12121161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Flavonoids are bioactive secondary metabolites that play multiple roles in plants. However, studies on the flavonoid accumulation of the pomelo fruit are rare. In this study, we conducted a widely targeted metabolome analysis by using ultra-performance liquid chromatography and tandem mass spectrometry and identified 550 metabolites in the sarcocarp from red (C. maxima Merr. var. Tubtim Siam) and white pomelos (C. maxima (Burm.) Osbeck). A total of 263 significantly changed metabolites were detected from the 550 metabolites. Content analysis of the significantly changed metabolites (SCMs) showed that 138 SCMs were highly accumulated, whereas 125 SCMs were observed with lower content in red-sarcocarp pomelo. Importantly, 103 of the 263 SCMs were flavonoids, including 34 flavonoids, 29 flavonols, 18 flavonoid carbonosides, 9 dihydroflavones, 6 isoflavones, 5 anthocyanins, 1 dihydroflavonol, and 1 chalcone. Gene ontology analysis indicated that upregulated genes in red-sarcocarp pomelo were significantly enriched in GO terms related to flavonoids including flavonoid biosynthetic processes. Several important differentially expressed genes were detected in the correlation network, especially Cg2g009540 which is an orthologous gene of AtCHS, also detected in flavonoid biosynthesis networks, and which could be related to the high level of total flavonoids in the red-sarcocarp pomelo. Our study demonstrated the fluctuation of flavonoid biosynthesis in the two pomelo cultivars and laid a theoretical foundation for pomelo breeding to generate fruits with a high flavonoid content.
Collapse
|
18
|
Liang M, Hu L, Luo N, Lv H, Chen Z, Mo J, Yang M, Lin Y, Chen C. Effects of Juhongtanke oral solution on alleviating the symptoms of community-acquired pneumonia: A multicenter, prospective, randomized controlled trial. Front Pharmacol 2022; 13:1027901. [PMID: 36339599 PMCID: PMC9630601 DOI: 10.3389/fphar.2022.1027901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/06/2022] [Indexed: 12/01/2022] Open
Abstract
Introduction: The timely alleviation of symptoms is essential for managing community-acquired pneumonia (CAP). Juhongtanke oral solution is a traditional marketed Chinese patent medicine believed to ease CAP symptoms. The currently available evidence is based on a few retrospective studies of patients with various types of pneumonia, whereas robust randomized controlled trials (RCTs) that support this notion are lacking. Material and methods: In this multi-center, prospective RCT, patients were randomly allocated to receive routine treatment alone or a combination of Juhongtanke oral solution (20 mL q8h) for 5 days and maintained for an additional 3-day safety observation period. The primary outcome was Breathlessness, Cough, and Sputum Scale (BCSS) score evaluated on day 5. Secondary outcomes included the evaluation of cough and dyspnea items in the Visual Analogue Scale (VAS) from days 1-5, remission rate in BCSS and VAS during the treatment course, and the length of hospitalization and in-hospital mortality. Results: Of 272 patients assessed for eligibility, 240 were enrolled in the study (n =120 per group). The mean difference in BCSS evaluated on day 5 was a median 1 point [95%CI (1.00, 2.00)], significantly lower in the treatment group compared with the control group (p < 0.001). Similar results were observed in VAS on day 5, with statistics of a median 2 points [95%CI (1.40, 2.50)] in the cough item and a median 1 point [95%CI (0.50, 2.00)] in the dyspnea item, significantly lower in the treatment group compared with the control group (both p < 0.001). The treatment group had a favorable outcome in BCSS and VAS remission rate assessments compared with the control group, with 99.50% vs. 89.17% in BCSS (p = 0.01), 98.33% vs. 75% in the cough item of VAS (p < 0.001), and 88.33% vs. 62.50% in the dyspnea item of VAS (p < 0.001), respectively. No notable adverse effects were observed during the study. No differences were observed in the length of hospitalization between groups (with a median of 7 days for both groups, p = 0.871). Conclusion: Juhongtanke oral solution may be considered to alleviate the clinical symptoms of CAP.
Collapse
Affiliation(s)
- Min Liang
- Department of Respiratory and Critical Care Medicine, Maoming People’s Hospital, Maoming, China
| | - Linhui Hu
- Department of Critical Care Medicine, Maoming People’s Hospital, Maoming, China
- Department of Clinical Research Center, Maoming People’s Hospital, Maoming, China
| | - Ning Luo
- Department of Respiratory and Critical Care Medicine, Maoming People’s Hospital, Maoming, China
| | - Hualiang Lv
- Department of Respiratory and Critical Care Medicine, Maoming People’s Hospital, Maoming, China
| | - Zhihua Chen
- Department of Respiratory and Critical Care Medicine, Maoming People’s Hospital, Maoming, China
| | - Jianping Mo
- Department of Pulmonary Disease, Gaozhou Hospital of Traditional Chinese Medicine, Maoming, China
| | - Meiyan Yang
- Department of Pulmonary Disease, Maoming Traditional Chinese Medicine Hospital, Maoming, China
| | - Ying Lin
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| | - Chunbo Chen
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Emergency, Maoming People’s Hospital, Maoming, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Song L, Wang J, Gong M, Zhang Y, Li Y, Wu X, Qin L, Duan Y. Detoxification technology and mechanism of processing with Angelicae sinensis radix in reducing the hepatotoxicity induced by rhizoma Dioscoreae bulbiferae in vivo. Front Pharmacol 2022; 13:984858. [PMID: 36249801 PMCID: PMC9554241 DOI: 10.3389/fphar.2022.984858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Rhizoma Dioscoreae Bulbiferae (RDB) was effective on relieving cough and expectorant but accompanied by severe toxicity, especially in hepatotoxicity. A previous study found that processing with Angelicae Sinensis Radix (ASR) reduced RDB-induced hepatotoxicity. However, up to now, the optimized processing process of ASR-processed RDB has not been explored or optimized, and the detoxification mechanism is still unknown. This study evaluated the detoxification technology and possible mechanism of processing with ASR on RDB-induced hepatotoxicity. The optimized processing process of ASR-processed RDB was optimized by the content of diosbulbin B (DB), the levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and histopathological analysis. The processing detoxification mechanism was evaluated by detecting the antioxidant levels of nuclear factor E2 related factor 2 (Nrf2) and its downstream heme oxygenase 1 (HO-1), quinone oxidoreductase 1 (NQO1), glutamylcysteine ligase catalytic subunit (GCLM), and the levels of downstream antioxidant factors of Nrf2. Besides, the antitussive and expectorant efficacy of RDB was also investigated. This work found that processing with ASR attenuated RDB-induced hepatotoxicity, which can be verified by reducing the levels of ALT, AST, and ALP, and reversing the pathological changes of liver histomorphology. And the optimized processing process of ASR-processed RDB is “processing at a mass ratio of 100:20 (RDB:ASR) and a temperature of 140°C for 10 min.” Further results corroborated that the intervention of processed products of ASR-processed RDB remarkably upregulated the Nrf2/HO-1/NQO1/GCLM protein expression levels in liver, and conserved antitussive and expectorant efficacy of RDB. The above findings comprehensively indicated that the optimized processing process of ASR-processed RDB was “processing at a mass ratio of 100:20 (RDB:ASR) and a temperature of 140°C for 10 min,” and the processing detoxification mechanism involved enhancing the level of Nrf2-mediated antioxidant defense in liver as a key target organ.
Collapse
Affiliation(s)
- Lingling Song
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Junming Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Junming Wang,
| | - Mingzhu Gong
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yueyue Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yamin Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaohui Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lingyu Qin
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yaqian Duan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
20
|
Li KJ, Liu YY, Wang D, Yan PZ, Lu DC, Zhao DS. Radix Asteris: Traditional Usage, Phytochemistry and Pharmacology of An Important Traditional Chinese Medicine. Molecules 2022; 27:molecules27175388. [PMID: 36080154 PMCID: PMC9458035 DOI: 10.3390/molecules27175388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Radix Asteris (RA), also known as ‘Zi Wan’, is the dried root and rhizome of Aster tataricus L. f., which has been used to treat cough and asthma in many countries such as China, Japan, Korea and Vietnam. This article summarizes the available information on RA in ancient Chinese medicine books and modern research literature: its botanical properties, traditional uses, chemical composition, pharmacological activity, toxicity and quality control. Studies have shown that RA extracts contain terpenes, triterpenoid saponins, organic acids, peptides and flavonoids, and have various pharmacological activities such as anti-inflammatory, anti-tumor, anti-oxidation, and anti-depression. RA is considered to be a promising medicinal plant based on its traditional use, chemical constituents and pharmacological activities. However, there are few studies on its toxicity and the consistency of its components, which indicates the need for further in-depth studies on the toxicity and quality control of RA and its extracts.
Collapse
Affiliation(s)
- Ke-Jie Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yang-Yang Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Dong Wang
- Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Pei-Zheng Yan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - De-Chao Lu
- International Education College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Dong-Sheng Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: ; Tel./Fax: +86-531-89628172
| |
Collapse
|
21
|
Metabolic Profiling and Transcriptional Analysis of Carotenoid Accumulation in a Red-Fleshed Mutant of Pummelo (Citrus grandis). Molecules 2022; 27:molecules27144595. [PMID: 35889470 PMCID: PMC9324369 DOI: 10.3390/molecules27144595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
Citrus grandis ‘Tomentosa’, commonly known as ‘Huajuhong’ pummelo (HJH), is used in traditional Chinese medicine and can moisten the lungs, resolve phlegm, and relieve coughs. A spontaneous bud mutant, named R-HJH, had a visually attractive phenotype with red albedo tissue and red juice sacs. In this study, the content and composition of carotenoids were investigated and compared between R-HJH and wild-type HJH using HPLC–MS analysis. The total carotenoids in the albedo tissue and juice sacs of R-HJH were 4.03- and 2.89-fold greater than those in HJH, respectively. The massive accumulation of carotenoids, including lycopene, β-carotene and phytoene, led to the attractive red color of R-HJH. However, the contents of flavones, coumarins and most volatile components (mainly D-limonene and γ-terpinene) were clearly reduced in R-HJH compared with wild-type HJH. To identify the molecular basis of carotenoid accumulation in R-HJH, RNA-Seq transcriptome sequencing was performed. Among 3948 differentially expressed genes (DEGs), the increased upstream synthesis genes (phytoene synthase gene, PSY) and decreased downstream genes (β-carotene hydroxylase gene, CHYB and carotenoid cleavage dioxygenase gene, CCD7) might be the key factors that account for the high level of carotenoids in R-HJH. These results will be beneficial for determining the molecular mechanism of carotenoid accumulation and metabolism in pummelo.
Collapse
|
22
|
Wen S, An R, Li DL, Cao JX, Li Z, Zhang W, Chen R, Li Q, Lai X, Sun L, Sun S. Tea and Citrus maxima complex induces apoptosis of human liver cancer cells via PI3K/AKT/mTOR pathway in vitro. CHINESE HERBAL MEDICINES 2022; 14:449-458. [PMID: 36118010 PMCID: PMC9476756 DOI: 10.1016/j.chmed.2021.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/08/2021] [Accepted: 09/05/2021] [Indexed: 11/25/2022] Open
Abstract
Objective In this study, black tea and Citrus maxima (BT-CM), yellow tea and C. maxima (YT-CM), green tea and C. maxima (GT-CM) as subjects, the active ingredient content and antioxidant activity of three tea and C. maxima (T-CM) were analyzed. The effects of three T-CMs on apoptosis of liver cells in vitro and its mechanism were further explored. Methods National standard method and HPLC were used for active ingredient analysis. MTT, cell flow cytometry and Western blot were used to analyze the effects of three T-CMs on cell proliferation, apoptosis, and its underlying molecular mechanism. Results The content of tea polyphenols, free amino acids, ratio of polyphenols and amino acids, ester catechins, non-ester catechins and caffeine in YT-CM and GT-CM was significantly higher than that of BT-CM. The in vitro antioxidant capacity of YT-CM and GT-CM was also significantly stronger than that of BT-CM. Three T-CMs had the effects of inhibiting proliferation, arresting cell cycle and inducing apoptosis in HepG2 and Bel7402 cells, especially YT-CM and GT-CM. Western blot analysis showed three T-CMs activated PI3K/AKT/mTOR signaling pathway and regulated the expression levels of apoptosis-related proteins Bax, Bcl-2 and Caspase-3/9. YT-CM and GT-CM had better ability to change the signal pathway than BT-CM. Conclusion In short, T-CMs, which combined different degrees of fermentation tea with C. maxima, were rich in nutrients and biologically active substances. T-CMs, especially YT-CM and GT-CM, are healthy drinks that help to prevent and treat liver cancer.
Collapse
|
23
|
Dong Z, Manawasinghe IS, Huang Y, Shu Y, Phillips AJL, Dissanayake AJ, Hyde KD, Xiang M, Luo M. Endophytic Diaporthe Associated With Citrus grandis cv. Tomentosa in China. Front Microbiol 2021; 11:609387. [PMID: 33633693 PMCID: PMC7900006 DOI: 10.3389/fmicb.2020.609387] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/29/2020] [Indexed: 11/26/2022] Open
Abstract
Diaporthe species are associated with Citrus as endophytes, pathogens, and saprobes worldwide. However, little is known about Diaporthe as endophytes in Citrus grandis in China. In this study, 24 endophytic Diaporthe isolates were obtained from cultivated C. grandis cv. "Tomentosa" in Huazhou, Guangdong Province in 2019. The nuclear ribosomal internal transcribed spacer (ITS), partial sequences of translation elongation factor 1-α (tef1), β-tubulin (tub2), and partial calmodulin (cal) gene regions were sequenced and employed to construct phylogenetic trees. Based on morphology and combined multigene phylogeny, eleven Diaporthe species were identified including two new species, Diaporthe endocitricola and D. guangdongensis. These are the first report of D. apiculata, D. aquatica, D. arecae, D. biconispora, D. limonicola, D. masirevicii, D. passifloricola, D. perseae, and D. sennae on C. grandis. This study provides the first intensive study of endophytic Diaporthe species on C. grandis cv. tomentosa in China. These results will improve the current knowledge of Diaporthe species associated with C. grandis. The results obtained in this study will also help to understand the potential pathogens and biocontrol agents and to develop a platform in disease management.
Collapse
Affiliation(s)
- Zhangyong Dong
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ishara S. Manawasinghe
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Mueang Chiang Rai, Thailand
| | - Yinghua Huang
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yongxin Shu
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Alan J. L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Lisbon, Portugal
| | - Asha J. Dissanayake
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Kevin D. Hyde
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Mueang Chiang Rai, Thailand
| | - Meimei Xiang
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Mei Luo
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
24
|
Kong F, Ding Z, Zhang K, Duan W, Qin Y, Su Z, Bi Y. Optimization of extraction flavonoids from Exocarpium Citri Grandis and evaluation its hypoglycemic and hypolipidemic activities. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113178. [PMID: 32736047 DOI: 10.1016/j.jep.2020.113178] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/13/2020] [Accepted: 07/08/2020] [Indexed: 05/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Exocarpium Citri Grandis (ECG; Huajuhong in Chinese) is a precious traditional Chinese medicine with a history of hundreds of years in China. It has been demonstrated to possess numerous pharmacological properties, including antitussive, expectorant, anti-inflammatory, hypoglycemic, and hypolipidemic. However, no in-depth report exists on the hypoglycemic and hypolipidemic properties of ECG. AIM OF THE STUDY This study aimed to evaluate the hypoglycemic and hypolipidemic properties of ECG flavonoids extract in vitro and in vivo so as to lay the foundation for further researches in this field. MATERIALS AND METHODS Total flavonoids (TF) and naringin were separately extracted from ECG, and the components of TF were identified by HPLC-MS. The antioxidant capacities of TF and naringin were determined by 2,2,1-diphenyl-1-picrylhydrazyl (DPPH)-free radical scavenging tests, and digestive enzymes activity inhibition assays in vitro in order to evaluate their hypoglycemic properties. Furthermore, diabetic mice experiments were performed to assess the hypoglycemic and hypolipidemic properties of TF and naringin in vivo. RESULTS Five compounds were identified from TF, including naringin, rhoifolin, poncirin, bergaptol, and naringenin. The half maximal inhibitory concentration (IC50) of TF and naringin to DPPH-free radicals were 0.269 and 1.946 mg/mL, respectively. TF and naringin demonstrated a certain inhibitory effect on α-glucosidase and a weaker inhibitory effect on α-amylase. The results of animal experiments showed that TF and naringin had no significant effect on the blood glucose levels, but they could lead to significant (p < 0.05 or p < 0.01) increase in the serum insulin level and high-density lipoprotein cholesterol (HDL-C) levels with concomitant reduction in the total cholesterol (TC), total triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) levels in diabetic mice. In addition, TF and naringin could reduce the liver index of diabetic mice (p < 0.01) and reduce the kidney index at low doses (p < 0.05). CONCLUSIONS Our study revealed that the hypoglycemic and hypolipidemic activities of TF is mainly derived from naringin, and other active ingredients in TF also have the effects of alleviating oxidative stress, inhibiting digestive enzyme activity and reducing blood lipids. Our results thus provide a scientific basis for the application of ECG in antidiabetic treatment.
Collapse
Affiliation(s)
- Fansheng Kong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zhendong Ding
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Kai Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Weijie Duan
- Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, 650021, China
| | - Yaru Qin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhipeng Su
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yongguang Bi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
25
|
Luo CH, Ma LL, Liu HM, Liao W, Xu RC, Ci ZM, Lin JZ, Han L, Zhang DK. Research Progress on Main Symptoms of Novel Coronavirus Pneumonia Improved by Traditional Chinese Medicine. Front Pharmacol 2020; 11:556885. [PMID: 33013395 PMCID: PMC7516165 DOI: 10.3389/fphar.2020.556885] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/25/2020] [Indexed: 12/31/2022] Open
Abstract
Novel coronavirus (COVID-19) pneumonia has become a major threat to worldwide public health, having rapidly spread to more than 180 countries and infecting over 1.6 billion people. Fever, cough, and fatigue are the most common initial symptoms of COVID-19, while some patients experience diarrhea rather than fever in the early stage. Many herbal medicine and Chinese patent medicine can significantly improve these symptoms, cure the patients experiencing a mild 22form of the illness, reduce the rate of transition from mild to severe disease, and reduce mortality. Therefore, this paper summarizes the physiopathological mechanisms of fever, cough, fatigue and diarrhea, and introduces Chinese herbal medicines (Ephedrae Herba, Gypsum Fibrosum, Glycyrrhizae Radix et Rhizoma, Asteris Radix et Rhizoma, Ginseng Radix et Rhizoma, Codonopsis Radix, Atractylodis Rhizoma, etc.) and Chinese patent medicines (Shuang-huang-lian, Ma-xing-gan-shi-tang, etc.) with their corresponding therapeutic effects. Emphasis was placed on their material basis, mechanism of action, and clinical research. Most of these medicines possess the pharmacological activities of anti-inflammatory, antioxidant, antiviral, and immunity-enhancement, and may be promising medicines for the treatment or adjuvant treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Chuan-hong Luo
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Le-le Ma
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui-min Liu
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Liao
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Run-chun Xu
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhi-min Ci
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun-zhi Lin
- Central Laboratory, Teaching Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Han
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ding-kun Zhang
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
26
|
Yang WK, Lyu YR, Kim SH, Chae SW, Kim KM, Jung IC, Park YC. Protective Effect of GHX02 Extract on Particulate Matter-Induced Lung Injury. J Med Food 2020; 23:611-632. [PMID: 32316823 DOI: 10.1089/jmf.2019.4568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Industrial development, along with the rapid growth of the economy, has greatly improved the quality of life in humans. Moreover, advancements in medical technology have increased life expectancy. Small particles increase airway inflammation when they penetrate the alveoli. We observed that GHX02 decreased the frequency and delayed the onset time of citric acid-induced coughing in guinea pigs. A phenol red secretion assay indicated that the GHX02 extract exhibits potent expectorant activity. The GHX02 extract also greatly reduced leukocyte levels. Our results indicate that GHX02 inhibits airway inflammation, reduces sputum production, and relieves cough. The GHX02 extract suppressed histamine release from mast cells resulting from compound 48/80-induced degranulation. The extract exhibited antimicrobial activity against Streptococcus pneumoniae and significantly inhibited the formation of LTC4. At high concentrations, the GHX02 extract suppressed the formation of PGE2 (prostaglandin E2). Interleukin (IL)-4 and IL-13 levels decreased with an increasing dosage of GHX02. Oral administration of the GHX02 extract suppressed PM10D-induced inflammatory symptoms in the lung, including increased alveolar wall thickness, accumulation of collagen fibers, and cytokine release. Treatment with the GHX02 extract also resulted in lower levels of inflammatory cells, in bronchoalveolar lavage fluid and lung tissue. Our results indicate that GHX02 may be a useful therapeutic agent for treatment of respiratory diseases.
Collapse
Affiliation(s)
- Won-Kyung Yang
- Department of Internal Medicine and College of Korean Medicine, Daejeon University, Daejeon, Korea.,Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Korea
| | - Yee Ran Lyu
- Department of Internal Medicine and College of Korean Medicine, Daejeon University, Daejeon, Korea
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Korea
| | - Sung-Wook Chae
- Herbal Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Ki Mo Kim
- Herbal Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - In Chul Jung
- Department of Neuropsychiatry, College of Korean Medicine, Daejeon University, Daejeon, Korea
| | - Yang-Chun Park
- Department of Internal Medicine and College of Korean Medicine, Daejeon University, Daejeon, Korea.,Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Korea
| |
Collapse
|
27
|
Zeng X, Su W, Liu B, Chai L, Shi R, Yao H. A Review on the Pharmacokinetic Properties of Naringin and Its Therapeutic Efficacies in Respiratory Diseases. Mini Rev Med Chem 2020; 20:286-293. [DOI: 10.2174/1389557519666191009162641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/11/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
Flavonoids are an important class of phytopharmaceuticals in plants. Naringin (naringenin-
7-O-rhamnoglucoside) is a flavanone glycoside isolated from folk herbal medicine Exocarpium Citri
grandis (called Huajuhong in Chinese). Massive experimental works have been performed on naringin
describing its phytochemical, pharmacokinetic, and bioactive properties. Naringin was found to possess
multiple pharmacological activities in relieving inflammation, diabetes, neurodegeneration, cardiovascular
disorders, and metabolic syndrome. Recently, it has been approved as a potential antitussive
and expectorant for clinical trials. However, the pharmacokinetic aspects of naringin and its therapeutic
potentials in respiratory diseases have not been comprehensively reviewed. The present review provides
highlights of naringin with respect to its absorption, distribution, metabolism, excretion and its
therapeutic effects on cough, phlegm, and pulmonary inflammation. This review would be helpful for
the interpretation of pharmacokinetics and pharmacodynamics of naringin in clinical trials.
Collapse
Affiliation(s)
- Xuan Zeng
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yatsen University, 510275 Guangzhou, China
| | - Weiwei Su
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yatsen University, 510275 Guangzhou, China
| | - Buming Liu
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, 530022 Nanning, China
| | - Ling Chai
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, 530022 Nanning, China
| | - Rui Shi
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yatsen University, 510275 Guangzhou, China
| | - Hongliang Yao
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yatsen University, 510275 Guangzhou, China
| |
Collapse
|
28
|
Zhu Z, Wu H, Su W, Shi R, Li P, Liao Y, Wang Y, Li P. Effects of Total Flavonoids from Exocarpium Citri Grandis on Air Pollution Particle-Induced Pulmonary Inflammation and Oxidative Stress in Mice. J Food Sci 2019; 84:3843-3849. [PMID: 31762039 DOI: 10.1111/1750-3841.14966] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022]
Abstract
Exocarpium Citri Grandis (ECG) is a famous traditional Chinese medicine, which has been commonly used to alleviate cough and phlegm for more than several hundred years, and total flavonoids are the main effective components of this medicine. This study investigated the effects of total flavonoids from ECG (TFECG) on pulmonary inflammation and oxidative stress induced by PM2.5 in mice. Model mice received an intratracheal instillation of PM2.5 (10 mg/mL) once at day 0. Bronchoalveolar lavage fluid (BALF) was collected after 72 hr to measure the total number of white blood cell (WBC), neutrophils (NEUT), lymphocytes (LYMPH), and monocytes (MONO). The levels of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), interleukin-6 (IL-6), and interleukin-18 (IL-18) in BALF were quantified by using enzyme-linked immunosorbent assay kits. Lung tissues were used to determine the contents of total protein (TP), malondialdehyde (MDA), nitric oxide (NO), reduced glutathione (GSH), oxidized glutathione (GSSG) and the activities of superoxide dismutase (SOD), lactate dehydrogenase (LDH), Glutathione Peroxidase (GSH-Px), and inducible nitric oxide synthase (iNOS). We found that TFECG significantly inhibited PM2.5 -stimulated overproduction of TNF-α, IL-1β, IL-6, and IL-18 and increased the numbers of WBC, NEUT, LYMPH, and MONO in BALF. TFECG observably relieved the PM2.5 -induced increases in the contents of TP, MDA, and NO, and the activities of LDH and iNOS. TFECG also alleviated PM2.5 -induced decreases in the activities of iNOS and GSH-Px as well as GSH/GSSG ratio. The results indicate that TFECG has anti-inflammatory and antioxidant activities, which may potentially contribute to the treatment of PM2.5 -induced lung injury. PRACTICAL APPLICATION: Exocarpium Citri Grandis (ECG) is rich in flavonoids, which are beneficial to improve anti-inflammation and antioxidant capacity. We proved that total flavonoids of ECG had a positive therapeutic effect on PM2.5 -induced lung injury, which expands the potential applications of ECG in the dietary supplement industries.
Collapse
Affiliation(s)
- Zhiting Zhu
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen Univ., 510275, Guangzhou, PR China
| | - Hao Wu
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen Univ., 510275, Guangzhou, PR China
| | - Weiwei Su
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen Univ., 510275, Guangzhou, PR China
| | - Rui Shi
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen Univ., 510275, Guangzhou, PR China
| | - Panlin Li
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen Univ., 510275, Guangzhou, PR China
| | - Yan Liao
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen Univ., 510275, Guangzhou, PR China
| | - Yonggang Wang
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen Univ., 510275, Guangzhou, PR China
| | - Peibo Li
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen Univ., 510275, Guangzhou, PR China
| |
Collapse
|
29
|
Fan R, Zhu C, Qiu D, Zeng J. Comparison of the bioactive chemical components and antioxidant activities in three tissues of six varieties of Citrus grandis ‘Tomentosa’ fruits. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1683027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ruiyi Fan
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Congyi Zhu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Diyang Qiu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Jiwu Zeng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| |
Collapse
|
30
|
Peng Y, Hu M, Lu Q, Tian Y, He W, Chen L, Wang K, Pan S. Flavonoids derived from Exocarpium Citri Grandis inhibit LPS-induced inflammatory response via suppressing MAPK and NF-κB signalling pathways. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2018.1550056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Ying Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Mengjun Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Qi Lu
- Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, People’s Republic of China
| | - Yan Tian
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Wanying He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Liang Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Kexing Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, People’s Republic of China
| |
Collapse
|
31
|
Zeng X, Su W, Zheng Y, Liu H, Li P, Zhang W, Liang Y, Bai Y, Peng W, Yao H. UFLC-Q-TOF-MS/MS-Based Screening and Identification of Flavonoids and Derived Metabolites in Human Urine after Oral Administration of Exocarpium Citri Grandis Extract. Molecules 2018; 23:molecules23040895. [PMID: 29649170 PMCID: PMC6017061 DOI: 10.3390/molecules23040895] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 11/26/2022] Open
Abstract
Exocarpium Citri grandis (ECG) is an important Traditional Chinese Medicine (TCM) for the treatment of cough and phlegm, and the flavonoids contained were considered the main effective components. To date, the systematic chemical profiling of these flavonoids and derived in vivo metabolites in human have not been well investigated. ECG was extracted using boiling water and then provided to volunteers for oral administration. Following the ingestion, urine samples were collected from volunteers over 48 h. The extract and urine samples were analyzed using ultra-fast liquid chromatography/quadrupole-time-of-flight tandem mass spectrometry (UFLC-Q-TOF-MS/MS) system to screen and identify flavonoids and derived in vivo metabolites. A total of 18 flavonoids were identified in the ECG extract, and 20 metabolites, mainly glucuronide and sulfate conjugates, were screened in urine samples collected post consumption. The overall excretion of naringenin metabolites corresponded to 5.45% of intake and occurred mainly within 4–12 h after the ingestion. Meanwhile, another 29 phenolic catabolites were detected in urine. Obtained data revealed that flavonoids were abundant in the ECG extract, and these components underwent extensive phase II metabolism in humans. These results provided valuable information for further study of the pharmacology and mechanism of action of ECG.
Collapse
Affiliation(s)
- Xuan Zeng
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China.
| | - Weiwei Su
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China.
| | - Yuying Zheng
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China.
| | - Hong Liu
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China.
| | - Panlin Li
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China.
| | - Weijian Zhang
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China.
| | - Yuting Liang
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China.
| | - Yang Bai
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China.
| | - Wei Peng
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China.
| | - Hongliang Yao
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China.
| |
Collapse
|
32
|
Cheng L, Ren Y, Lin D, Peng S, Zhong B, Ma Z. The Anti-Inflammatory Properties of Citrus wilsonii Tanaka Extract in LPS-Induced RAW 264.7 and Primary Mouse Bone Marrow-Derived Dendritic Cells. Molecules 2017; 22:molecules22071213. [PMID: 28753918 PMCID: PMC6152223 DOI: 10.3390/molecules22071213] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022] Open
Abstract
‘Zhique’ (Citrus wilsonii Tanaka) is a traditional Chinese medicine. Its fruits have been used to treat inflammation-related symptoms, such as cough and sputum, though the underlying mechanism remains poorly understood. The aim of this study was to investigate the anti-inflammatory properties of ‘Zhique’ pulp extract (ZQE) in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages and primary mouse bone marrow-derived dendritic cells (BMDCs). The flavonoid profiles of the ZQE were determined by high performance liquid chromatography. The anti-inflammatory activity was evaluated in LPS-induced inflammatory RAW 264.7 macrophages and BMDCs through enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, and Western blot assays. Naringin was a predominant flavonoid occurring in ZQE, followed by eriocitrin, hesperidin, neohesperidin, rhoifolin, naringenin, and poncirin. ZQE exhibited a very low cytotoxicity in LPS-stimulated RAW 264.7 macrophages. Meanwhile, ZQE significantly inhibited the production of prostaglandins E2 and secretion of cyclooxygenase-2 protein in LPS-stimulated RAW 264.7 macrophages, and markedly suppressed the mRNA expression of inflammatory mediators, such as cyclooxygenase-2, tumor necrosis factor alpha, interleukin-1 beta (IL-1β), and IL-6 in LPS-induced RAW 264.7 macrophages and/or primary BMDCs. The ZQE inhibited the inflammatory responses in RAW 264.7 macrophages and BMDCs triggered by LPS. The results suggested that ‘Zhique’ has a high potential as a novel therapeutic agent to treat chronic inflammatory diseases.
Collapse
Affiliation(s)
- Liping Cheng
- College of Horticulture and Forestry Sciences, Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China.
| | - Yujie Ren
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan 430072, China.
| | - Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, 419 Human Sciences, Stillwater, OK 74078, USA.
| | - Shu'ang Peng
- College of Horticulture and Forestry Sciences, Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China.
| | - Bo Zhong
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan 430072, China.
| | - Zhaocheng Ma
- College of Horticulture and Forestry Sciences, Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
33
|
Wu QZ, Zhao DX, Xiang J, Zhang M, Zhang CF, Xu XH. Antitussive, expectorant, and anti-inflammatory activities of four caffeoylquinic acids isolated from Tussilago farfara. PHARMACEUTICAL BIOLOGY 2016; 54:1117-1124. [PMID: 26439905 DOI: 10.3109/13880209.2015.1075048] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CONTEXT The flower bud of Tussilago farfara L. (Compositae) (FTF) is one of the traditional Chinese medicinal herbs used to treat cough, phlegm, bronchitic, and asthmatic conditions. OBJECTIVE The objective of this study is to isolate four caffeoylquinic acids from the ethyl acetate extract (EtE) of FTF and to evaluate their antitussive, expectorant, and anti-inflammatory activities. MATERIALS AND METHODS The structures of compounds 1-4 isolated from EtE were determined by spectral analysis. Mice were orally treated with these compounds and their mixture (in a ratio of 5:28:41:26 as in EtE) at doses of 10 and 20 mg/kg once daily for 3 d. The antitussive and expectorant activities were evaluated separately with the ammonia liquor-induced model and the phenol red secretion model. The anti-inflammation activity was evaluated using leukocyte count in the bronchoalveolar lavage fluid after ammonia liquor-induced acute airway inflammation. RESULTS The four compounds were identified as chlorogenic acid (1), 3,5-dicaffeoylquinic acid (2), 3,4-dicaffeoylquinic acid (3), and 4,5-dicaffeoylquinic acid (4). All compounds, especially compound 4 (58.0% inhibition in cough frequency), showed a significant antitussive effect. However, the mixture was the most effective to inhibit the cough frequency by 61.7%. All compounds also showed a significant expectorant effect, while compound 2 was the most potent to enhance the phenol red secretion by 35.7%. All compounds significantly alleviated inflammation, but compound 4 showed the strongest effect to inhibit the leukocytosis by 49.7%. DISCUSSION AND CONCLUSION The caffeoylquinic acids and their mixture, exhibiting significant antitussive, expectorant, and anti-inflammatory effects, could be considered as the main effective ingredients of FTF, and they may act in a collective and synergistic way.
Collapse
Affiliation(s)
- Qi-Zhen Wu
- a Research Department of Pharmacognosy , China Pharmaceutical University , Nanjing , China
| | - Dong-Xia Zhao
- a Research Department of Pharmacognosy , China Pharmaceutical University , Nanjing , China
| | - Juan Xiang
- a Research Department of Pharmacognosy , China Pharmaceutical University , Nanjing , China
| | - Mian Zhang
- a Research Department of Pharmacognosy , China Pharmaceutical University , Nanjing , China
| | - Chao-Feng Zhang
- a Research Department of Pharmacognosy , China Pharmaceutical University , Nanjing , China
| | - Xiang-Hong Xu
- a Research Department of Pharmacognosy , China Pharmaceutical University , Nanjing , China
| |
Collapse
|