1
|
Ran M, Li H, Jiao Y, Li J. Two birds with one stone: Alleviating copper toxicity and inhibiting its upward transport in non-host rice (Oryza sativa L.) by inoculation of Cu-resistant endophytes from the hyperaccumulator Commelina communis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125520. [PMID: 39667572 DOI: 10.1016/j.envpol.2024.125520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Endophytic bacteria derived from metal hyperaccumulators have demonstrated potential for improving copper (Cu) remediation in host plants; however, their potential application in non-host crops remains unclear. In this study, endophytic bacteria isolated from Commelina communis growing in mining areas and their mitigation effects on Cu toxicity in non-host rice were comprehensively evaluated. Among the isolated endophytes, Bacillus sp. D2 exhibited the highest Cu resistance, producing indole-3-acetic acid (IAA) at a concentration of 0.93 mg/L and exhibiting ACC deaminase activity of 13.88 μmol/mg·h under 200 mg/L Cu stress. Pot-experiment results revealed that Bacillus sp. D2 addition significantly increased the biomass and lengths of shoots under Cu stress conditions by 47.6% and 14.2%, respectively. Furthermore, Bacillus sp. D2 inoculation significantly reduced oxidative damage, enhanced antioxidant responses, and modulated plant hormone levels in Cu-exposed rice. Notably, Bacillus sp. D2 inoculation substantially decreased the upward translocation of Cu from underground roots to aboveground tissues. Moreover, Bacillus sp. D2 effectively alleviated Cu toxicity in rice plants by regulating the expression levels of genes involved in antioxidant systems (tAPx, Csd2, and FeSOD1), Cu transporters (AtPDR8 and HMA3), as well as metallothionein (MT2c). These results highlight the value of Bacillus sp. D2 as a bioinoculant for improving crop growth while reducing the risks associated with copper contamination in naturally Cu-contaminated soils.
Collapse
Affiliation(s)
- Maodi Ran
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - He Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Ying Jiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China.
| |
Collapse
|
2
|
Wu BS, Chen XF, Rao RY, Hua D, Huang WL, Chen WS, Yang LT, Huang ZR, Ye X, Wu J, Chen LS. Both hormones and energy-rich compounds play a role in the mitigation of elevated pH on aluminum toxicity in Citrus sinensis leaves. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116975. [PMID: 39216222 DOI: 10.1016/j.ecoenv.2024.116975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/19/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The contribution of plant hormones and energy-rich compounds and their metabolites (ECMs) in alleviating aluminum (Al) toxicity by elevated pH remains to be clarified. For the first time, a targeted metabolome was applied to identify Al-pH-interaction-responsive hormones and ECMs in Citrus sinensis leaves. More Al-toxicity-responsive hormones and ECMs were identified at pH 4.0 [4 (10) upregulated and 7 (17) downregulated hormones (ECMs)] than those at pH 3.0 [1 (9) upregulated and 4 (14) downregulated hormones (ECMs)], suggesting that the elevated pH improved the adaptation of hormones and ECMs to Al toxicity in leaves. The roles of hormones and ECMs in reducing leaf Al toxicity mediated by elevated pH might include the following aspects: (a) improved leaf growth by upregulating the levels of jasmonoyl-L-isoleucine (JA-ILE), 6-benzyladenosine (BAPR), N6-isopentenyladenosine (IPR), cis-zeatin-O-glucoside riboside (cZROG), and auxins (AUXs), preventing Al toxicity-induced reduction of gibberellin (GA) biosynthesis, and avoiding jasmonic acid (JA)-mediated defense; (b) enhanced biosynthesis and accumulation of tryptophan (TRP), as well as the resulting increase in biosynthesis of auxin, melatonin and secondary metabolites (SMs); (c) improved ability to maintain the homeostasis of ATP and other phosphorus (P)-containing ECMs; and (d) enhanced internal detoxification of Al due to increased organic acid (OA) and SM accumulation and elevated ability to detoxify reactive oxygen species (ROS) due to enhanced SM accumulation. To conclude, the current results corroborate the hypotheses that elevated pH reduces Al toxicity by upregulating the ability to maintain the homeostasis of ATP and other P-containing ECMs in leaves under Al toxicity and (b) hormones participate in the elevated pH-mediated alleviation of Al toxicity by positively regulating growth, the ability to detoxify ROS, and the internal detoxification of Al in leaves under Al toxicity. Our findings provide novel insights into the roles of hormones and ECMs in mitigating Al toxicity mediated by the elevated pH.
Collapse
Affiliation(s)
- Bi-Sha Wu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants/Key Laboratory of Ecological Environment and Information Atlas, Fujian Provincial University, College of Environmental and Biological Engineering, Putian University, Putian 351100, China.
| | - Xu-Feng Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Rong-Yu Rao
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Dan Hua
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wei-Lin Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wen-Shu Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lin-Tong Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zeng-Rong Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xin Ye
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jincheng Wu
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants/Key Laboratory of Ecological Environment and Information Atlas, Fujian Provincial University, College of Environmental and Biological Engineering, Putian University, Putian 351100, China.
| | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Timofeeva AM, Galyamova MR, Sedykh SE. How Do Plant Growth-Promoting Bacteria Use Plant Hormones to Regulate Stress Reactions? PLANTS (BASEL, SWITZERLAND) 2024; 13:2371. [PMID: 39273855 PMCID: PMC11397614 DOI: 10.3390/plants13172371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024]
Abstract
Phytohormones play a crucial role in regulating growth, productivity, and development while also aiding in the response to diverse environmental changes, encompassing both biotic and abiotic factors. Phytohormone levels in soil and plant tissues are influenced by specific soil bacteria, leading to direct effects on plant growth, development, and stress tolerance. Specific plant growth-promoting bacteria can either synthesize or degrade specific plant phytohormones. Moreover, a wide range of volatile organic compounds synthesized by plant growth-promoting bacteria have been found to influence the expression of phytohormones. Bacteria-plant interactions become more significant under conditions of abiotic stress such as saline soils, drought, and heavy metal pollution. Phytohormones function in a synergistic or antagonistic manner rather than in isolation. The study of plant growth-promoting bacteria involves a range of approaches, such as identifying singular substances or hormones, comparing mutant and non-mutant bacterial strains, screening for individual gene presence, and utilizing omics approaches for analysis. Each approach uncovers the concealed aspects concerning the effects of plant growth-promoting bacteria on plants. Publications that prioritize the comprehensive examination of the private aspects of PGPB and cultivated plant interactions are of utmost significance and crucial for advancing the practical application of microbial biofertilizers. This review explores the potential of PGPB-plant interactions in promoting sustainable agriculture. We summarize the interactions, focusing on the mechanisms through which plant growth-promoting bacteria have a beneficial effect on plant growth and development via phytohormones, with particular emphasis on detecting the synthesis of phytohormones by plant growth-promoting bacteria.
Collapse
Affiliation(s)
- Anna M Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Maria R Galyamova
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergey E Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Dhandapani S, Sng YH, Agisha VN, Suraby EJ, Park BS. Mitigating aluminum toxicity and promoting plant resilience in acidic soil with Penicillium olsonii TLL1. FRONTIERS IN PLANT SCIENCE 2024; 15:1423617. [PMID: 38974977 PMCID: PMC11225409 DOI: 10.3389/fpls.2024.1423617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024]
Abstract
Aluminum (Al), prevalent in the crust of the Earth, jeopardizes plant health in acidic soils, hindering root growth and overall development. In this study, we first analysed the Al- and pH- tolerance of the Penicillium olsonii TLL1 strain (POT1; NRRL:68252) and investigated the potential for enhancing plant resilience under Al-rich acidic soil conditions. Our research illustrates the extraordinary tolerance of POT1 to both high Al concentrations and acidic conditions, showcasing its potential to alleviate Al-induced stress in plants. Metabolite analysis revealed that POT1 detoxifies Al through organic acid-dependent chelation mechanisms, significantly reducing Al stress in Arabidopsis and Pak Choi plants. Consequently, plant growth conditions improved, and the Al content in plant tissues decreased. Transcriptome analysis indicated that POT1 treatment downregulates genes associated with Al and oxidative stress such as MATE, ALS3, NIP1-2 and several peroxidases, highlighting its effectiveness in lessening Al-induced damage. Comparative assessments highlight the superior performance of POT1 compared to other Al-tolerant Penicillium species, attributed to its ability to thrive in diverse pH levels and effectively detoxify Al. These findings position POT1 as a promising agent for enhancing crop resilience in Al-compromised acidic soils, offering new avenues for promoting plant health and bolstering food security through increased crop yield and safety.
Collapse
Affiliation(s)
| | | | | | | | - Bong Soo Park
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Piotrowska-Niczyporuk A, Bonda-Ostaszewska E, Bajguz A. Mitigating Effect of Trans-Zeatin on Cadmium Toxicity in Desmodesmus armatus. Cells 2024; 13:686. [PMID: 38667301 PMCID: PMC11049045 DOI: 10.3390/cells13080686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Phytohormones, particularly cytokinin trans-zeatin (tZ), were studied for their impact on the green alga Desmodesmus armatus under cadmium (Cd) stress, focusing on growth, metal accumulation, and stress response mechanisms. Using atomic absorption spectroscopy for the Cd level and high-performance liquid chromatography for photosynthetic pigments and phytochelatins, along with spectrophotometry for antioxidants and liquid chromatography-mass spectrometry for phytohormones, we found that tZ enhances Cd uptake in D. armatus, potentially improving phycoremediation of aquatic environments. Cytokinin mitigates Cd toxicity by regulating internal phytohormone levels and activating metal tolerance pathways, increasing phytochelatin synthase activity and phytochelatin accumulation essential for Cd sequestration. Treatment with tZ and Cd also resulted in increased cell proliferation, photosynthetic pigment and antioxidant levels, and antioxidant enzyme activities, reducing oxidative stress. This suggests that cytokinin-mediated mechanisms in D. armatus enhance its capacity for Cd uptake and tolerance, offering promising avenues for more effective aquatic phycoremediation techniques.
Collapse
Affiliation(s)
- Alicja Piotrowska-Niczyporuk
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| | - Elżbieta Bonda-Ostaszewska
- Department of Evolutionary and Physiological Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| | - Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| |
Collapse
|
6
|
Daroodi Z, Taheri P. The genus Acrophialophora: History, phylogeny, morphology, beneficial effects and pathogenicity. Fungal Genet Biol 2024; 171:103875. [PMID: 38367800 DOI: 10.1016/j.fgb.2024.103875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/21/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
The genus Acrophialophora is a thermotolerant fungus, which is widely distributed in temperate and tropical zones. This fungus is classified in Ascomycota and belongs to the Chaetomiaceae family and the genera of Parathielavia, Pseudothielavia and Hyalosphaerella are closely related to Acrophialophora. For this genus have been reported 28 species so far, which two species of Acrophialophora jodhpurensis and Acrophialophora teleoafricana produce only sexual phase and other species produce asexual form. Therefore, producing both sexual and asexual forms were not reported by any species. Many applications were reported by some species in agriculture, pharmacy and industry. Production of enzymes, antimicrobial metabolites and plant growth-promoting factors were reported by some species. The species of A. nainiana is used in the industries of textile, fruit juice, pulp and paper due to extracellular enzyme production. Also, other species produce extracellular enzymes that can be used in various industries. The species Acrophialophora are used in the composting industry due to the production of various enzymes and to be thermotolerant. In addition, some species were isolated from hostile environmental conditions. Therefore has been suggested that it can be used for mycoremediation. Also, antimicrobial metabolites of Acrophialophora have been reported to be effective against human and plant pathogens. In contrast to the beneficial effects described, the Acrophialophora pathogenicity has been rarely reported. Two species A. fusispora and A. levis are opportunistic fungi and have been reported as pathogens in humans, animals and plants. Currently, the development and applications of Acrophialophora species have increased more than past. To our knowledge, there is no report with comprehensive information on the species of Acrophialophora, which include their disadvantage and beneficial effects, particularly in agriculture. Therefore, it seems necessary to pay more in-depth attention to the application of this genus as a beneficial fungus in agriculture, pharmaceutical and industry. This review is focused on the history, phylogeny, morphology, valuable roles of Acrophialophora and pathogenicity.
Collapse
Affiliation(s)
- Zoha Daroodi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Parissa Taheri
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
7
|
Kumar V, Nautiyal CS. Endophytes Modulate Plant Genes: Present Status and Future Perspectives. Curr Microbiol 2023; 80:353. [PMID: 37740026 DOI: 10.1007/s00284-023-03466-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/31/2023] [Indexed: 09/24/2023]
Abstract
Interactions among endophytes and plants are widespread and can vary from neutral or positive or negative. Plants are continually in a functionally dynamic state due to interactions with diverse endophytic microorganisms, which produce various metabolic substances. Through quorum sensing, these substances not only help endophytes to outcompete other host-associated pathogens or microbes but also allow them to overcome the plant immune system. Manifold interactions between endophytic microbiota cause a reflective impact on the host plant functioning and the development of 'endobiomes,' by synthesizing chemicals that fill the gap between host and endophytes. Despite the advances in the field, specific mechanisms for the endophytes' precise methods to modulate plant genome and their effects on host plants remain poorly understood. Deeper genomic exploration can provide a locked away understanding of the competencies of endophytes and their conceivable function in host growth and health. Endophytes also can modify host metabolites, which could manipulate plants' growth, adaptation, and proliferation, and can be a more exciting and puzzling topic that must be properly investigated. The consequence of the interaction of endophytes on the host genome was analyzed as it can help unravel the gray areas of endophytes about which very little or no knowledge exists. This review discusses the recent advances in understanding the future challenges in the emerging research investigating how endosymbionts affect the host's metabolism and gene expression as an effective strategy for imparting resistance to biotic and abiotic challenges.
Collapse
Affiliation(s)
- Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jollygrant, Dehradun-248016, Uttrakhand, India.
| | - Chandra S Nautiyal
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jollygrant, Dehradun-248016, Uttrakhand, India
| |
Collapse
|
8
|
Kaur G, Patel A, Dwibedi V, Rath SK. Harnessing the action mechanisms of microbial endophytes for enhancing plant performance and stress tolerance: current understanding and future perspectives. Arch Microbiol 2023; 205:303. [PMID: 37561224 DOI: 10.1007/s00203-023-03643-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Microbial endophytes are microorganisms that reside within plant tissues without causing any harm to their hosts. These microorganisms have been found to confer a range of benefits to plants, including increased growth and stress tolerance. In this review, we summarize the recent advances in our understanding of the mechanisms by which microbial endophytes confer abiotic and biotic stress tolerance to their host plants. Specifically, we focus on the roles of endophytes in enhancing nutrient uptake, modulating plant hormones, producing secondary metabolites, and activating plant defence responses. We also discuss the challenges associated with developing microbial endophyte-based products for commercial use, including product refinement, toxicology analysis, and prototype formulation. Despite these challenges, there is growing interest in the potential applications of microbial endophytes in agriculture and environmental remediation. With further research and development, microbial endophyte-based products have the potential to play a significant role in sustainable agriculture and environmental management.
Collapse
Affiliation(s)
- Gursharan Kaur
- University Institute of Biotechnology, Chandigarh University, Mohali, 140413, India
| | - Arvind Patel
- University Institute of Biotechnology, Chandigarh University, Mohali, 140413, India
| | - Vagish Dwibedi
- University Institute of Biotechnology, Chandigarh University, Mohali, 140413, India.
- Institute of Soil, Water and Environmental Sciences, Volcani Resaerch Center, Agricultural Research Organization, 7528809, Rishon Lezion, Israel.
| | - Santosh Kumar Rath
- Department of Pharmaceutical Chemistry, School of Pharmaceuticals and Population Health Informatics, Faculty of Pharmacy, DIT University, Dehradun, 248009, Uttarakhand, India.
| |
Collapse
|
9
|
Gómez-Godínez LJ, Aguirre-Noyola JL, Martínez-Romero E, Arteaga-Garibay RI, Ireta-Moreno J, Ruvalcaba-Gómez JM. A Look at Plant-Growth-Promoting Bacteria. PLANTS (BASEL, SWITZERLAND) 2023; 12:1668. [PMID: 37111891 PMCID: PMC10145503 DOI: 10.3390/plants12081668] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/06/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Bacteria have been used to increase crop yields. For their application on crops, bacteria are provided in inoculant formulations that are continuously changing, with liquid- and solid-based products. Bacteria for inoculants are mainly selected from natural isolates. In nature, microorganisms that favor plants exhibit various strategies to succeed and prevail in the rhizosphere, such as biological nitrogen fixation, phosphorus solubilization, and siderophore production. On the other hand, plants have strategies to maintain beneficial microorganisms, such as the exudation of chemoattractanst for specific microorganisms and signaling pathways that regulate plant-bacteria interactions. Transcriptomic approaches are helpful in attempting to elucidate plant-microorganism interactions. Here, we present a review of these issues.
Collapse
Affiliation(s)
- Lorena Jacqueline Gómez-Godínez
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 47600, Jalisco, Mexico
| | - José Luis Aguirre-Noyola
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Esperanza Martínez-Romero
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Ramón Ignacio Arteaga-Garibay
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 47600, Jalisco, Mexico
| | - Javier Ireta-Moreno
- Centro de Investigación Regional Pacífico Centro, Centro Altos Jalisco, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 2470, Jalisco, Mexico
| | - José Martín Ruvalcaba-Gómez
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 47600, Jalisco, Mexico
| |
Collapse
|
10
|
Vaz LRL, Borges AC, Ribeiro DM. Exogenous Auxin and Gibberellin on Fluoride Phytoremediation by Eichhornia crassipes. PLANTS (BASEL, SWITZERLAND) 2023; 12:1624. [PMID: 37111848 PMCID: PMC10144029 DOI: 10.3390/plants12081624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
High rates of fluorosis were reported worldwide as a result of human consumption of water with fluoride contents. Adjusting fluoride concentration in water as recommended by the World Health Organization (<1.5 mg L-1) is a concern and it needs to be conducted through inexpensive, but efficient techniques, such as phytoremediation. The application of phytohormones was investigated as a strategy to improve this process. Thus, the main goal of this research was to evaluate the effect of exogenous auxin and gibberellin on the tropical duckweed Eichhornia crassipes performance for fluoride phytoremediation. Definitive screening and central composite rotatable designs were used for experiments where fluoride concentration (5~15 mg L-1), phosphorus concentration (1~10 mg L-1), and pH (5~9) were assessed as well throughout 10 days. Fluoride contents were determined in solution and plant tissues by potentiometry. Higher concentrations of fluoride reflected on greater absorptions by plants, though in relative terms removal efficiencies were quite similar for all treatments (~60%). Auxin and acidic conditions favored fluoride removals per mass of plant. Fluoride accumulated mostly in leaves and auxin probably alleviated toxic effects on E. crassipes while gibberellin showed no effect. Therefore, E. crassipes could be employed as a fluoride accumulator plant for water treatment and exogenous auxin may be used to improve the process.
Collapse
Affiliation(s)
- Lucas Rafael Lommez Vaz
- Department of Agricultural Engineering, Federal University of Viçosa, Viçosa 36570-900, Brazil
| | - Alisson Carraro Borges
- Department of Agricultural Engineering, Federal University of Viçosa, Viçosa 36570-900, Brazil
| | - Dimas Mendes Ribeiro
- Department of Plant Biology, Federal University of Viçosa, Viçosa 36570-900, Brazil
| |
Collapse
|
11
|
Aizaz M, Ahmad W, Asaf S, Khan I, Saad Jan S, Salim Alamri S, Bilal S, Jan R, Kim KM, Al-Harrasi A. Characterization of the Seed Biopriming, Plant Growth-Promoting and Salinity-Ameliorating Potential of Halophilic Fungi Isolated from Hypersaline Habitats. Int J Mol Sci 2023; 24:ijms24054904. [PMID: 36902334 PMCID: PMC10003710 DOI: 10.3390/ijms24054904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Salinity stress is one of the major abiotic factors limiting crop yield in arid and semi-arid regions. Plant growth-promoting fungi can help plants thrive in stressful conditions. In this study, we isolated and characterized 26 halophilic fungi (endophytic, rhizospheric, and soil) from the coastal region of Muscat, Oman, for plant growth-promoting activities. About 16 out of 26 fungi were found to produce IAA, and about 11 isolates (MGRF1, MGRF2, GREF1, GREF2, TQRF4, TQRF5, TQRF5, TQRF6, TQRF7, TQRF8, TQRF2) out of 26 strains were found to significantly improve seed germination and seedling growth of wheat. To evaluate the effect of the above-selected strains on salt tolerance in wheat, we grew wheat seedlings in 150 mM, 300 mM NaCl and SW (100% seawater) treatments and inoculated them with the above strains. Our findings showed that fungal strains MGRF1, MGRF2, GREF2, and TQRF9 alleviate 150 mM salt stress and increase shoot length compared to their respective control plants. However, in 300 mM stressed plants, GREF1 and TQRF9 were observed to improve shoot length. Two strains, GREF2 and TQRF8, also promoted plant growth and reduced salt stress in SW-treated plants. Like shoot length, an analogous pattern was observed in root length, and different salt stressors such as 150 mM, 300 mM, and SW reduced root length by up to 4%, 7.5%, and 19.5%, respectively. Three strains, GREF1, TQRF7, and MGRF1, had higher catalase (CAT) levels, and similar results were observed in polyphenol oxidase (PPO), and GREF1 inoculation dramatically raised the PPO level in 150 mM salt stress. The fungal strains had varying effects, with some, such as GREF1, GREF2, and TQRF9, showing a significant increase in protein content as compared to their respective control plants. Under salinity stress, the expression of DREB2 and DREB6 genes was reduced. However, the WDREB2 gene, on the other hand, was shown to be highly elevated during salt stress conditions, whereas the opposite was observed in inoculated plants.
Collapse
Affiliation(s)
- Muhammad Aizaz
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Waqar Ahmad
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
- Department of Engineering Technology, University of Houston, Sugar Land, TX 77479, USA
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Ibrahim Khan
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Syed Saad Jan
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Safiya Salim Alamri
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Saqib Bilal
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Correspondence: (K.-M.K.); (A.A.-H.)
| | - Ahmed Al-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
- Correspondence: (K.-M.K.); (A.A.-H.)
| |
Collapse
|
12
|
Pourjalali Z, Shahpiri A, Golkar P. Barley metallothionein isoforms, MT2b2 and MT4, differentially respond to photohormones in barley aleurone layer and their recombinant forms show different affinity for binding to zinc and cadmium. Biometals 2023; 36:3-18. [PMID: 36309886 DOI: 10.1007/s10534-022-00452-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/25/2022] [Indexed: 11/25/2022]
Abstract
Metallothioneins (MTs) are metal-binding proteins that have important roles in the homeostasis of heavy metals. In this study, the two MT genes was studied in response to phytohormones using the barley aleurone layer as a kind of model system. The aleurone layer was isolated from barley embryo-less half grains and was incubated for 24 h with different phytohormones. Based on the results the genes encoding HvMT2b2 and HvMT4 were down-regulated through gibberellic acid (GA), while they were and up-regulated through salicylic acid (SA). Despite this, these two genes were differentially expressed to other hormones. Furthermore, the proteins HvMT2b2 and HvMT4 were heterologous expressed as GST-fusion proteins in E. coli. The HvMT4 and HvMT2b2 heterologous expression in E. coli gives rise to 10- and 3-fold improvements in the accumulation capacity for Zn2+, respectively. Whereas the transgenic E. coli strain that expresses HvMT2b2 could accumulate Cd2+ three-fold higher than control. The expression of HvMT4 did not affect the accumulation of Cd2+. HvMT4 which is known as seed-specific isoform seems to be able to bind to Zn2+ with good affinity and cannot bind Cd2+. In comparison, HvMT2b2 was able to bind both Zn2+ and Cd2+. Therefore HvMT4 could serve a noteworthy role in zinc storage in barley seeds. The expression of HvMT4 is induced by SA 30-fold, concerning the untreated aleurone layer. Such results could provide good insights for the assessment of the effects of phytohormones in the molecular mechanism involved in essential metal storage in cereal seeds.
Collapse
Affiliation(s)
- Zahra Pourjalali
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Azar Shahpiri
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Pooran Golkar
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
13
|
Daroodi Z, Taheri P, Tarighi S. Acrophialophora jodhpurensis: an endophytic plant growth promoting fungus with biocontrol effect against Alternaria alternata. FRONTIERS IN PLANT SCIENCE 2022; 13:984583. [PMID: 36212286 PMCID: PMC9540611 DOI: 10.3389/fpls.2022.984583] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
In this study, efficiency of the endophytic fungal isolate Msh5 was evaluated on promoting tomato plant growth and controlling Alternaria alternata, the causal agent of early blight in tomatoes. Morphological and molecular (ITS and tub2 sequences) analyses revealed that the fungal isolate, Msh5, was Acrophialophora jodhpurensis (Chaetomium jodhpurense Lodha). This beneficial fungus was capable of producing indole-3-acetic acid (IAA), urease, siderophore, extracellular enzymes, and solubilized phosphate. Under laboratory conditions, the Msh5 isolate of A. jodhpurensis inhibited A. alternata growth in dual culture, volatile and non-volatile metabolites assays. The supernatant of this endophytic fungus was capable of reducing spore germination and altering the hyphal structure of A. alternata and the spores produced germ tubes showed vacuolization and abnormal structure compared to the control. Also, the effect of A. jodhpurensis on plant growth parameters (such as shoot and root weight and length) and suppressing A. alternata was investigated in vivo via seed inoculation with spores of A. jodhpurensis using 1% sugar, 0.5% carboxymethyl cellulose (CMC) or 0.5% molasses solution as stickers. Colonization of tomato roots by the endophytic fungus resulted in significant increasing plant growth parameters and reduction in the progress of the diseases caused by A. alternata compared to the controls. Among the different coating materials used as stickers, sugar was found to be the most effective for enhancing plant growth parameters and decreasing the disease progress. Therefore, A. jodhpurensis isolate Msh5 can be suggested as a potential biofertilizer and biocontrol agent for protecting tomato plants against A. alternata.
Collapse
Affiliation(s)
| | - Parissa Taheri
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
14
|
Seddouk L, Jamai L, Tazi K, Ettayebi M, Alaoui-Mhamdi M, Aleya L, Janati-Idrissi A. Isolation and characterization of a mesophilic cellulolytic endophyte Preussia africana from Juniperus oxycedrus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45589-45600. [PMID: 35146609 DOI: 10.1007/s11356-022-19151-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The medicinal plant Juniperus oxycedrus is less recognized for the diversity of its fungal endophytes and their potential to produce extracellular enzymes. The present study is the first report on the isolation and identification of a mesophilic endophytic strain JO-A, Preussia africana, from fresh stems of the J. oxycedrus endemic tree in the Ifrane region-Morocco, and the evaluation of its ability to produce cellulases. A one-time multi-parameter one-factor screening was optimized to select factors that enhance cellulase production in P. africana. The maximum production of both CMCase and FPase activities were 1.913 IU.mL-1 and 0.885 IU.mL-1, respectively, when the medium was supplemented with 2% w/v glucose. These remarkable titers were tenfold greater than those obtained under the initial non-optimized conditions. This mesophilic P. africana JO-A strain grows and actively produces cellulases at 37 °C demonstrating its great potential for various biotechnology applications. The cellulolytic extract showed the highest enzymatic activities at pH 5.0 and 50 °C with a half-life of 24 h at 50 °C.
Collapse
Affiliation(s)
- Loubna Seddouk
- Laboratory of Biotechnology, Conservation and Valorization of Natural Resources, Faculty of Sciences DM, Sidi Mohammed Ben Abdellah University, P.O. Box 1796 Atlas, Fez, Morocco
| | - Latifa Jamai
- Laboratory of Biotechnology, Conservation and Valorization of Natural Resources, Faculty of Sciences DM, Sidi Mohammed Ben Abdellah University, P.O. Box 1796 Atlas, Fez, Morocco
| | - Karima Tazi
- Laboratory of Biotechnology, Conservation and Valorization of Natural Resources, Faculty of Sciences DM, Sidi Mohammed Ben Abdellah University, P.O. Box 1796 Atlas, Fez, Morocco
| | - Mohamed Ettayebi
- The Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
| | - Mohammed Alaoui-Mhamdi
- Laboratory of Biotechnology, Conservation and Valorization of Natural Resources, Faculty of Sciences DM, Sidi Mohammed Ben Abdellah University, P.O. Box 1796 Atlas, Fez, Morocco.
| | - Lotfi Aleya
- CNRS 6249-Université de Franche-Comté, 16, route de Gray F-25030, Besançon cedex, France
| | - Abellatif Janati-Idrissi
- Laboratory of Biotechnology, Conservation and Valorization of Natural Resources, Faculty of Sciences DM, Sidi Mohammed Ben Abdellah University, P.O. Box 1796 Atlas, Fez, Morocco
| |
Collapse
|
15
|
Mpenda F, Mkangara M. Antimicrobial activity of n-hexane and ethyl acetate extracts from Candida tropicalis and Phyllosticta capitalensis fungal endophytes. BAGHDAD JOURNAL OF BIOCHEMISTRY AND APPLIED BIOLOGICAL SCIENCES 2022. [DOI: 10.47419/bjbabs.v3i02.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background ad objective: Among the notable achievements of the twentieth century was the discovery and identification of new drugs from plants against microbial infections. However, the discovery of novel drugs since then is inadequate due to emergence of resistant microbes. In an effort to discover novel drugs, the study aimed to investigate the antimicrobial activity of crude extracts from endophytic fungi isolated from Cnidoscolas aconitifolius and Ocimum suave.
Methods: Following morphological characterization and initial screening for antimicrobial activity, isolates that had higher inhibition were genotypes by Sanger sequencing. Two isolates (Candida tropicalis from O. suave and Phyllosticta capitalensis from C. aconitifolius) were tested for antimicrobial activity against Escherichia coli and Staphylococcus aureus.
Results: Overall, the range of crude extract concentration was from 152 mg/mL to 1353 mg/mL, and that of a zone of inhibition was from 7 to 21 mm. The lowest minimum inhibition concentration (19>MIC>9.5) was observed in Phyllosticta spp. extract against S. aureus.
Conclusions: Findings of the present study have shown that endophytes isolated from medicinal plants can generate secondary metabolites with therapeutic applications. Therefore, further investigations are warranted to decipher the content and structure of bioactive compounds that may be associated with the antimicrobial activity of crude extracts.
Collapse
|
16
|
Bist V, Anand V, Srivastava S, Kaur J, Naseem M, Mishra S, Srivastava PK, Tripathi RD, Srivastava S. Alleviative mechanisms of silicon solubilizing Bacillus amyloliquefaciens mediated diminution of arsenic toxicity in rice. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128170. [PMID: 35032955 DOI: 10.1016/j.jhazmat.2021.128170] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/30/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Silicon (Si) has gained considerable attention for its utility in improved plant health under biotic and abiotic stresses through alteration of physiological and metabolic processes. Its interaction with arsenic (As) has been the compelling area of research amidst heavy metal toxicity. However, microbe mediated Si solubilization and their role for reduced As uptake is still an unexplored domain. Foremost role of Bacillus amyloliquefaciens (NBRISN13) in impediment of arsenite (AsIII) translocation signifies our work. Reduced grain As content (52-72%) during SN13 inoculation under feldspar supplementation (Si+SN+As) highlight the novel outcome of our study. Upregulation of Lsi1, Lsi2 and Lsi3genes in Si+SN+As treated rice plants associated with restricted As translocation, frames new propositions for future research on microbemediated reduced As uptake through increased Si transport. In addition to low As accumulation, alleviation of oxidative stress markers by modulation of defense enzyme activities and differential accumulation of plant hormones was found to be associated with improved growth and yield. Thus, our findings confer the potential role of microbe mediated Si solubilization in mitigation of As stress to restore plant growth and yield.
Collapse
Affiliation(s)
- Vidisha Bist
- Division of Microbial Technology, CSIR-National Botanical Research Institute, RanaPratapMarg, Lucknow 226 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vandana Anand
- Division of Microbial Technology, CSIR-National Botanical Research Institute, RanaPratapMarg, Lucknow 226 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sonal Srivastava
- Division of Microbial Technology, CSIR-National Botanical Research Institute, RanaPratapMarg, Lucknow 226 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jasvinder Kaur
- Division of Microbial Technology, CSIR-National Botanical Research Institute, RanaPratapMarg, Lucknow 226 001, India
| | - Mariya Naseem
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Seema Mishra
- Department of Chemistry, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur 273009, India
| | - Pankaj Kumar Srivastava
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Rudra Deo Tripathi
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Suchi Srivastava
- Division of Microbial Technology, CSIR-National Botanical Research Institute, RanaPratapMarg, Lucknow 226 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
17
|
Cai S, Wu L, Wang G, Liu J, Song J, Xu H, Luo J, Shen Y, Shen S. DA-6 improves sunflower seed vigor under Al 3+ stress by regulating Al 3+ balance and ethylene metabolic. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113048. [PMID: 34883324 DOI: 10.1016/j.ecoenv.2021.113048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/05/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Aluminum (Al3+) stress restricts plant seed germination and seedling growth seriously. Here, the sunflower "S175″ variety was used to explore the technique of improving seed vigor under Al3+ stress and investigate the effect of diethyl aminoethyl hexanoate (DA-6) on physiological characteristics in sunflower seeds during germination under Al3+ stress. The results showed that 3.0 mmol·L-1 Al3+ treatment significantly suppressed the sunflower seed germination and seedling growth. Al3+ stress significantly increased Al3+ content and secretion rates of citric and malic acids in sunflower seeds during germination. Besides, endogenous ethylene content was increased in Al3+-treated seeds. DA-6 serves as a positive signal to regulate the sunflower seed germination under Al3+ stress. Moreover, DA-6 enhanced the activities of malic dehydrogenase, citrate synthase, and isocitrate dehydrogenase, up-regulated the expressions of organic acid transport-related genes (ALMT and MATE), resulting in reduced accumulation of Al3+. Furthermore, exogenous DA-6 mitigated excessive accumulation of ethylene by decreasing the 1-aminocyclopropane-1-dihydrodipicolinate synthase activity and related-gene expression. However, DA-6 treatment had no effect on abscisic acid or gibberellin metabolism in sunflower seeds under Al3+ stress. These results confirmed that DA-6 application enhanced the germination capacity through induction of the synthesis and transport of malic and citric acids, and suppression of the excessive accumulation of endogenous ethylene, thus contributing to alleviate Al3+ toxicity in sunflower seeds.
Collapse
Affiliation(s)
- Shuyu Cai
- School of Architectural Engineering, Shaoxing University Yuanpei College, Qunxianzhong Road 2799, Shaoxing 312000, China.
| | - Liyuan Wu
- School of Architectural Engineering, Shaoxing University Yuanpei College, Qunxianzhong Road 2799, Shaoxing 312000, China
| | - Guofu Wang
- School of Architectural Engineering, Shaoxing University Yuanpei College, Qunxianzhong Road 2799, Shaoxing 312000, China
| | - Jianxin Liu
- School of Architectural Engineering, Shaoxing University Yuanpei College, Qunxianzhong Road 2799, Shaoxing 312000, China
| | - Jiangping Song
- School of Architectural Engineering, Shaoxing University Yuanpei College, Qunxianzhong Road 2799, Shaoxing 312000, China
| | - Hua Xu
- School of Architectural Engineering, Shaoxing University Yuanpei College, Qunxianzhong Road 2799, Shaoxing 312000, China
| | - Jie Luo
- School of Architectural Engineering, Shaoxing University Yuanpei College, Qunxianzhong Road 2799, Shaoxing 312000, China
| | - Yi Shen
- School of Architectural Engineering, Shaoxing University Yuanpei College, Qunxianzhong Road 2799, Shaoxing 312000, China
| | - Shuyu Shen
- School of Architectural Engineering, Shaoxing University Yuanpei College, Qunxianzhong Road 2799, Shaoxing 312000, China
| |
Collapse
|
18
|
El-Shafey NM, Marzouk MA, Yasser MM, Shaban SA, Beemster GT, AbdElgawad H. Harnessing Endophytic Fungi for Enhancing Growth, Tolerance and Quality of Rose-Scented Geranium ( Pelargonium graveolens (L'Hér) Thunb.) Plants under Cadmium Stress: A Biochemical Study. J Fungi (Basel) 2021; 7:1039. [PMID: 34947021 PMCID: PMC8705862 DOI: 10.3390/jof7121039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 01/24/2023] Open
Abstract
Heavy metal contamination in soil is increasing rapidly due to increasing anthropogenic activities. Despite the importance of rose-scented geranium as a medicinal plant, little attention was paid to enhancing its productivity in heavy metal-polluted soil. In this regard, endophytes improve plant resistance to heavy metal toxicity and enhance its tissue quality. Here, the impact of the three endophytic fungi Talaromyces versatilis (E6651), Emericella nidulans (E6658), and Aspergillus niger (E6657) on geranium growth, tolerance, and tissue quality under cadmium (Cd) stress was investigated. In contrast to E. nidulans, T. versatilis and A. niger enhanced geranium growth and the stimulatory effect was more pronounced under Cd-stress. The three endophytes significantly alleviated Cd accumulation and increased mineral content in geranium leaves. In addition, endophytic fungi successfully alleviated Cd-induced membrane damage and reinforced the antioxidant defenses in geranium leaves. Inoculation with endophytes stimulated all the antioxidant enzymes under Cd-stress, and the response was more obvious in the case of T. versatilis and A. niger. To reduce the toxicity of tissue-Cd levels, T. versatilis and A. niger upregulated the detoxification mechanisms; glutathione-S-transferase, phytochelatin, and metallothionein levels. Moreover, endophytic fungi improved the medicinal value and quality of geranium by increasing total antioxidant capacity (TAC), phenolic compound biosynthesis (phenylalanine ammonia-lyase), and vitamin content as well as the quantity and quality of essential oil, particularly under Cd-stress conditions. The variation in the mechanisms modulated by the different endophytic fungi was supported by Principal Component Analysis (PCA). Overall, this study provided fundamental insights into endophytes' impact as a feasible strategy to mitigate the phytotoxicity hazards of Cd-stress in geranium and enhance its quality, based on the growth and biochemical investigations.
Collapse
Affiliation(s)
- Nadia Mohamed El-Shafey
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (M.A.M.); (M.M.Y.); (S.A.S.); (H.A.)
| | - Marym A. Marzouk
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (M.A.M.); (M.M.Y.); (S.A.S.); (H.A.)
| | - Manal M. Yasser
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (M.A.M.); (M.M.Y.); (S.A.S.); (H.A.)
| | - Salwa A. Shaban
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (M.A.M.); (M.M.Y.); (S.A.S.); (H.A.)
| | - Gerrit T.S. Beemster
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, 2020 Antwerp, Belgium;
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (M.A.M.); (M.M.Y.); (S.A.S.); (H.A.)
| |
Collapse
|
19
|
Re-vitalizing of endophytic microbes for soil health management and plant protection. 3 Biotech 2021; 11:399. [PMID: 34422540 DOI: 10.1007/s13205-021-02931-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022] Open
Abstract
Soil health management and increase crop productivity are challenging issues for researchers and scientists. Many research publications have given multiple technological solutions for improving soil health and crop productivity but main problem is sustainability of those technologies under field condition and different agro-climatic zone. Due to the random industrialization, deforestation, mining and other environmental factor reduce soil fertility and human health. Many alternative options e.g., crop rotation, green manuring, integrated farming, biofertilizer (plant-growth-promoting microorganism, microbial consortium of rhizosphere soils), and vermicomposting are available for adapting and improving the soil heath and crop productivity by farmers. Recent trends of new research dimension for sustainable agriculture, endophytic microbes and its consortium is one of the better alternative for increasing crop productivity, soil health and fertility management. However, current trends are focuses on the endophytic microbes, which are present mostly in all plant species. Endophytic microbes are isolated from plant parts-root, shoot, leaf, flower and seeds which have very potential ability of plant growth promotion and bio-controlling agent for enhancing plant growth and development. Mostly plant endophytes showed multi-dimensional (synergistic, mutualistic, symbiotic etc.) interactions within the host plants. It promotes the plant growth, protects from pathogen, and induces resistance against biotic and abiotic environmental stresses, and improves the soil fertility. Till date, most of the scientific research has been done on assuming that interaction of plant endophytes with the host is similar like the plant-growth-promoting microorganism (PGPM). It would be very interesting to explore the functional properties of plant endophytes to modulate the essential gene expression during biotic and abiotic stresses. Endophytes have the ability to induce the soil fertility by improving soil essential nutrient, enzymatic activity and influence the other physiochemical property. In this study, we have discussed details about functional properties of plant endophytes and their mechanism for enhancing plant productivity and soil health and fertility management under climate-resilient agricultural practices. Our main objective is to promote and explore the beneficial plant endophytes for enhancing sustainable agricultural productivity.
Collapse
|
20
|
Lu H, Wei T, Lou H, Shu X, Chen Q. A Critical Review on Communication Mechanism within Plant-Endophytic Fungi Interactions to Cope with Biotic and Abiotic Stresses. J Fungi (Basel) 2021; 7:719. [PMID: 34575757 PMCID: PMC8466524 DOI: 10.3390/jof7090719] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/28/2022] Open
Abstract
Endophytic fungi infect plant tissues by evading the immune response, potentially stimulating stress-tolerant plant growth. The plant selectively allows microbial colonization to carve endophyte structures through phenotypic genes and metabolic signals. Correspondingly, fungi develop various adaptations through symbiotic signal transduction to thrive in mycorrhiza. Over the past decade, the regulatory mechanism of plant-endophyte interaction has been uncovered. Currently, great progress has been made on plant endosphere, especially in endophytic fungi. Here, we systematically summarize the current understanding of endophytic fungi colonization, molecular recognition signal pathways, and immune evasion mechanisms to clarify the transboundary communication that allows endophytic fungi colonization and homeostatic phytobiome. In this work, we focus on immune signaling and recognition mechanisms, summarizing current research progress in plant-endophyte communication that converge to improve our understanding of endophytic fungi.
Collapse
Affiliation(s)
- Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (T.W.); (H.L.)
| | - Tianyu Wei
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (T.W.); (H.L.)
| | - Hanghang Lou
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (T.W.); (H.L.)
| | - Xiaoli Shu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (T.W.); (H.L.)
| |
Collapse
|
21
|
Molecular identification and evaluation of gamma irradiation effect on modulating heavy metals tolerance in some of novel endophytic fungal strains. Arch Microbiol 2021; 203:4867-4878. [PMID: 34235584 DOI: 10.1007/s00203-021-02472-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Heavy metal (HM) pollution is a worldwide environmental issue. Given the urgent need to develop more powerful approaches for effective phytoremediation of HMs, isolation of novel endophytic strains from hyperaccumulator plants having potent HM tolerance is the main objective in this research. Moreover, the recovered strains were characterized and subjected to radiation mutagenesis to enhance their tolerance to HMs. Among 105 isolates, Alternaria alternata AUMC14431 was identified as the most effective Cd+2 tolerant strain having high recorded tolerance index (TI) (76.24%); in addition, the recorded minimum inhibitory concentration (MIC) was 300 ppm. Meanwhile, Chaetomium globosum AUMC14432 was identified as the most effective Pb+2 and Ni+2 tolerant strain having high recorded TI (97.46 and 93.34%, respectively); in addition, the evaluated MICs were 250 and 200 ppm, respectively. UV and gamma irradiation of the tested strains enhanced their Cd+2 and Pb+2 tolerance significantly (P ≤ 0.05). Meanwhile, irradiation had a negative impact on Ni+2 tolerance of C. globosum. The mutation incidence at the molecular level arising from exposure to irradiation was investigated. Genomic DNA of both the wild and mutated endophytic strains were isolated followed by random amplified polymorphic DNA (RAPD-PCR) analysis, using two short primers. A remarkable difference in DNA gel pattern between the wild type and mutated strains was observed. In conclusion, the novel isolated and irradiated endophytic strains, A. alternata S5 and C. globosum El26, having high efficiency in Cd+2 and Pb+2 tolerance, respectively, are considered to be prospective and powerful bioremediation candidates for potential application in microbially assisted phytoremediation.
Collapse
|
22
|
Harman G, Khadka R, Doni F, Uphoff N. Benefits to Plant Health and Productivity From Enhancing Plant Microbial Symbionts. FRONTIERS IN PLANT SCIENCE 2021; 11:610065. [PMID: 33912198 PMCID: PMC8072474 DOI: 10.3389/fpls.2020.610065] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/20/2020] [Indexed: 05/24/2023]
Abstract
Plants exist in close association with uncountable numbers of microorganisms around, on, and within them. Some of these endophytically colonize plant roots. The colonization of roots by certain symbiotic strains of plant-associated bacteria and fungi results in these plants performing better than plants whose roots are colonized by only the wild populations of microbes. We consider here crop plants whose roots are inhabited by introduced organisms, referring to them as Enhanced Plant Holobionts (EPHs). EPHs frequently exhibit resistance to specific plant diseases and pests (biotic stresses); resistance to abiotic stresses such as drought, cold, salinity, and flooding; enhanced nutrient acquisition and nutrient use efficiency; increased photosynthetic capability; and enhanced ability to maintain efficient internal cellular functioning. The microbes described here generate effects in part through their production of Symbiont-Associated Molecular Patterns (SAMPs) that interact with receptors in plant cell membranes. Such interaction results in the transduction of systemic signals that cause plant-wide changes in the plants' gene expression and physiology. EPH effects arise not only from plant-microbe interactions, but also from microbe-microbe interactions like competition, mycoparasitism, and antibiotic production. When root and shoot growth are enhanced as a consequence of these root endophytes, this increases the yield from EPH plants. An additional benefit from growing larger root systems and having greater photosynthetic capability is greater sequestration of atmospheric CO2. This is transferred to roots where sequestered C, through exudation or root decomposition, becomes part of the total soil carbon, which reduces global warming potential in the atmosphere. Forming EPHs requires selection and introduction of appropriate strains of microorganisms, with EPH performance affected also by the delivery and management practices.
Collapse
Affiliation(s)
- Gary Harman
- Department of Plant Pathology, Cornell University, Geneva, NY, United States
| | - Ram Khadka
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States
- Nepal Agricultural Research Council, Directorate of Agricultural Research, Banke, Nepal
| | - Febri Doni
- Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Norman Uphoff
- CALS International Agriculture Programs, Cornell University, Ithaca, NY, United States
| |
Collapse
|
23
|
Al-Harrasi A, Khan AL, Rehman NU, Csuk R. Biosynthetic diversity in triterpene cyclization within the Boswellia genus. PHYTOCHEMISTRY 2021; 184:112660. [PMID: 33524859 DOI: 10.1016/j.phytochem.2021.112660] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
This review is not intended to describe the triterpenes isolated from the Boswellia genus, since this information has been covered elsewhere. Instead, the aim is to provide insights into the biosynthesis of triterpenes in Boswellia. This genus, which has 24 species, displays fascinating structural diversity and produces a number of medicinally important triterpenes, particularly boswellic acids. Over 300 volatile components have been reported in the essential oil of Boswellia, and more than 100 diterpenes and triterpenes have been isolated from this genus. Given that no triterpene biosynthetic enzymes have yet been isolated from any members of the Boswellia genus, this review will cover the likely biosynthetic pathways as inferred from structures in nature and the probable types of biosynthetic enzymes based on knowledge of triterpene biosynthesis in other plant species. It highlights the importance of frankincense and the factors and threats affecting its production. It covers triterpene biosynthesis in the genus Boswellia, including dammaranes, tirucallic acids, lupanes, oleananes, ursanes and boswellic acids. Strategies for elucidating triterpene biosynthetic pathways in Boswellia are considered. Furthermore, the possible mechanisms behind wound-induced resin synthesis by the tree and related gene expression profiling are covered. In addition, the influence of the environment and the genotype on the biosynthesis of resin and on variations in the compositions and types of resins will also be reviewed.
Collapse
Affiliation(s)
- Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman.
| | - Abdul Latif Khan
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - Najeeb Ur Rehman
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - René Csuk
- Department of Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| |
Collapse
|
24
|
Nguyen TQ, Sesin V, Kisiala A, Emery RJN. Phytohormonal Roles in Plant Responses to Heavy Metal Stress: Implications for Using Macrophytes in Phytoremediation of Aquatic Ecosystems. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:7-22. [PMID: 33074580 DOI: 10.1002/etc.4909] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/25/2020] [Accepted: 10/15/2020] [Indexed: 05/20/2023]
Abstract
Heavy metals can represent a threat to the health of aquatic ecosystems. Unlike organic chemicals, heavy metals cannot be eliminated by natural processes such as their degradation into less toxic compounds, and this creates unique challenges for their remediation from soil, water, and air. Phytoremediation, defined as the use of plants for the removal of environmental contaminants, has many benefits compared to other pollution-reducing methods. Phytoremediation is simple, efficient, cost-effective, and environmentally friendly because it can be carried out at the polluted site, which simplifies logistics and minimizes exposure to humans and wildlife. Macrophytes represent a unique tool to remediate diverse environmental media because they can accumulate heavy metals from contaminated sediment via roots, from water via submerged leaves, and from air via emergent shoots. In this review, a synopsis is presented about how plants, especially macrophytes, respond to heavy metal stress; and we propose potential roles that phytohormones can play in the alleviation of metal toxicity in the aquatic environment. We focus on the uptake, translocation, and accumulation mechanisms of heavy metals in organs of macrophytes and give examples of how phytohormones interact with plant defense systems under heavy metal exposure. We advocate for a more in-depth understanding of these processes to inform more effective metal remediation techniques from metal-polluted water bodies. Environ Toxicol Chem 2021;40:7-22. © 2020 SETAC.
Collapse
Affiliation(s)
- Thien Q Nguyen
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Verena Sesin
- Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
| | - Anna Kisiala
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - R J Neil Emery
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
25
|
Barberis L, Michalet S, Piola F, Binet P. Root fungal endophytes: identity, phylogeny and roles in plant tolerance to metal stress. Fungal Biol 2020; 125:326-345. [PMID: 33766311 DOI: 10.1016/j.funbio.2020.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/12/2020] [Accepted: 11/29/2020] [Indexed: 12/27/2022]
Abstract
Metal trace elements accumulate in soils mainly because of anthropic activities, leading living organisms to develop strategies to handle metal toxicity. Plants often associate with root endophytic fungi, including nonmycorrhizal fungi, and some of these organisms are associated with metal tolerance. The lack of synthetic analyses of plant-endophyte-metal tripartite systems and the scant consideration for taxonomy led to this review aiming (1) to inventory non-mycorrhizal root fungal endophytes described with respect to their taxonomic diversity and (2) to determine the mutualistic roles of these plant-fungus associations under metal stress. More than 1500 species in 100 orders (mainly Hypocreales and Pleosporales) were reported from a wide variety of environments and hosts. Most reported endophytes had a positive effect on their host under metal stress, but with various effects on metal uptake or translocation and no clear taxonomic consistency. Future research considering the functional patterns and dynamics of these associations is thus encouraged.
Collapse
Affiliation(s)
- Louise Barberis
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France
| | - Serge Michalet
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5557 Écologie microbienne, Villeurbanne, France
| | - Florence Piola
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France
| | - Philippe Binet
- Université de Bourgogne-Franche-Comté, CNRS-UFC, UMR6249 Chrono-environnement, Montbéliard, France.
| |
Collapse
|
26
|
Majumdar S, Sachdev S, Kundu R. Salicylic acid mediated reduction in grain cadmium accumulation and amelioration of toxicity in Oryza sativa L. cv Bandana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111167. [PMID: 32827967 DOI: 10.1016/j.ecoenv.2020.111167] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/19/2020] [Accepted: 08/10/2020] [Indexed: 05/07/2023]
Abstract
Contamination of agricultural fields with Cadmium (Cd) due to several agricultural practices is increasing worldwide. The rice plants can easily take up Cd and accumulate it into different parts, including the grains, posing a threat to human health even at low concentration exposure. Several phytohormones, including Salicylic acid (SA) have been investigated since long for its alleviating properties under various biotic and abiotic stress conditions. In the present study, 100 μM SA application to ameliorate 25 μM Cd stress was studied for 72 h in hydroponics in Oryza sativa cv. Bandana seedlings. Pot experiments were done with same treatment condition and plants were grown till maturity. SA application to Cd exposed rice seedlings alleviated the stress condition, which was established by several physiological, biochemical, histochemical and gene expression analysis. SA treatment to Cd stressed seedlings showed elevated photosynthetic pigment content, on-protein thiol content and relieved the Cd induced growth inhibition considerably. It lowered the accumulation of ROS like, O2- and H2O2 with a regulated antioxidative enzymatic activity. SA application in Cd exposed rice seedlings had upregulated expression of OsHMA3 and OsPCS1 whereasOsNRAMP2 gene was downregulated. Co-application of SA and Cd led to higher yield and improved agronomic traits in comparison to only Cd exposed plants under pot experimentation. Daily intake of Cd and Carcinogenic risk were also reduced by 99.75% and 99.99% respectively in the SA treated Cd stressed plants. SA positively affected the growth and tolerance of rice seedlings to Cd stress. Hence, SA addition to Cd contaminated soil can ensure rice cultivation without posing health risk to consumers.
Collapse
Affiliation(s)
- Snehalata Majumdar
- Department of Botany, Centre of Advanced Study, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Sonal Sachdev
- Division of Plant Biology, Bose Institute, P-1/12, CIT Road, Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Rita Kundu
- Department of Botany, Centre of Advanced Study, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
27
|
Babalola OO, Fadiji AE, Enagbonma BJ, Alori ET, Ayilara MS, Ayangbenro AS. The Nexus Between Plant and Plant Microbiome: Revelation of the Networking Strategies. Front Microbiol 2020; 11:548037. [PMID: 33013781 PMCID: PMC7499240 DOI: 10.3389/fmicb.2020.548037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
The diversity of plant-associated microbes is enormous and complex. These microbiomes are structured and form complex interconnected microbial networks that are important in plant health and ecosystem functioning. Understanding the composition of the microbiome and their core function is important in unraveling their networking strategies and their potential influence on plant performance. The network is altered by the host plant species, which in turn influence the microbial interaction dynamics and co-evolution. We discuss the plant microbiome and the complex interplay among microbes and between their host plants. We provide an overview of how plant performance is influenced by the microbiome diversity and function.
Collapse
Affiliation(s)
- Olubukola Oluranti Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Ayomide E Fadiji
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Ben J Enagbonma
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Elizabeth T Alori
- Department of Crop and Soil Sciences, Landmark University, Omu-Aran, Nigeria
| | - Modupe S Ayilara
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Ayansina S Ayangbenro
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
28
|
Silicon and Gibberellins: Synergistic Function in Harnessing ABA Signaling and Heat Stress Tolerance in Date Palm ( Phoenix dactylifera L.). PLANTS 2020; 9:plants9050620. [PMID: 32413955 PMCID: PMC7285242 DOI: 10.3390/plants9050620] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022]
Abstract
Date palm is one of the most economically vital fruit crops in North African and Middle East countries, including Oman. A controlled experiment was conducted to investigate the integrative effects of silicon (Si) and gibberellic acid (GA3) on date palm growth and heat stress. The exogenous application of Si and GA3 significantly promoted plant growth attributes under heat stress (44 ± 1 °C). The hormonal modulation (abscisic acid [ABA] and salicylic acid [SA]), antioxidant accumulation, and the expression of abiotic stress-related genes were evaluated. Interestingly, heat-induced oxidative stress was markedly reduced by the integrative effects of Si and GA3 when compared to their sole application, with significant reductions in superoxide anions and lipid peroxidation. The reduction of oxidative stress was attributed to the enhancement of polyphenol oxidase, catalase, peroxidase, and ascorbate peroxidase activities as well as the upregulation of their synthesis related genes expression viz. GPX2, CAT, Cyt-Cu/Zn SOD, and glyceraldehyde3-phosphate dehydrogenase gene (GAPDH). The results showed the activation of heat shock factor related genes (especially HsfA3) during exogenous Si and GA3 as compared to the control. Furthermore, the transcript accumulation of ABA signaling-related genes (PYL4, PYL8, and PYR1) were significantly reduced with the combined treatment of Si and GA3, leading to reduced production of ABA and, subsequently, SA antagonism via its increased accumulation. These findings suggest that the combined application of Si and GA3 facilitate plant growth and metabolic regulation, impart tolerance against stress, and offers novel stress alleviating strategies for a green revolution in sustainable food security.
Collapse
|
29
|
Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications. 3 Biotech 2020; 10:107. [PMID: 32095421 DOI: 10.1007/s13205-020-2081-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022] Open
Abstract
Penicillium genus constituted by over 200 species is one of the largest and fascinating groups of fungi, particularly well established as a source of antibiotics. Endophytic Penicillium has been reported to colonize their ecological niches and protect their host plant against multiples stresses by exhibiting diverse biological functions that can be exploited for countless applications including agricultural, biotechnological, and pharmaceutical. Over the past 2 decades, endophytic Penicillium species have been investigated beyond their antibiotic potential and numerous applications have been reported. We comprehensively summarized in this review available data (2000-2019) regarding bioactive compounds isolated from endophytic Penicillium species as well as the application of these fungi in multiple agricultural and biotechnological processes. This review has shown that a very large number (131) of endophytes from this genus have been investigated so far and more than 280 compounds exhibiting antimicrobial, anticancer, antiviral, antioxidants, anti-inflammatory, antiparasitics, immunosuppressants, antidiabetic, anti-obesity, antifibrotic, neuroprotective effects, and insecticidal and biocontrol activities have been reported. Moreover, several endophytic Penicillium spp. have been characterized as biocatalysts, plant growth promoters, phytoremediators, and enzyme producers. We hope that this review summarizes the status of research on this genus and will stimulate further investigations.
Collapse
|
30
|
Kohli SK, Handa N, Bali S, Khanna K, Arora S, Sharma A, Bhardwaj R. Current Scenario of Pb Toxicity in Plants: Unraveling Plethora of Physiological Responses. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 249:153-197. [PMID: 30900073 DOI: 10.1007/398_2019_25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lead (Pb) is an extremely toxic metal for all living forms including plants. It enters plants through roots from soil or soil solution. It is considered as one of the most eminent examples of anthropogenic environmental pollutant added in environment through mining and smelting of lead ores, coal burning, waste from battery industries, leaded paints, metal plating, and automobile exhaust. Uptake of Pb in plants is a nonselective process and is driven by H+/ATPases. Translocation of Pb metal ions occurs by apoplastic movement resulting in deposition of metal ions in the endodermis and is further transported by symplastic movement. Plants exposed to high concentration of Pb show toxic symptoms due to the overproduction of reactive oxygen species (ROS) through Fenton-Haber-Weiss reaction. ROS include superoxide anion, hydroxyl radical, and hydrogen peroxide, which reach to macro- and micro-cellular levels in the plant cells and cause oxidative damage. Plant growth and plethora of biochemical and physiological attributes including plant growth, water status, photosynthetic efficiency, antioxidative defense system, phenolic compounds, metal chelators, osmolytes, and redox status are adversely influenced by Pb toxicity. Plants respond to toxic levels of Pb in varied ways such as restricted uptake of metal, chelation of metal ions to the root endodermis, enhancement in activity of antioxidative defense, alteration in metal transporters expression, and involvement of plant growth regulators.
Collapse
Affiliation(s)
- Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India.
| | - Neha Handa
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Shagun Bali
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
31
|
Amelioration of heavy metal stress by endophytic Bacillus amyloliquefaciens RWL-1 in rice by regulating metabolic changes: potential for bacterial bioremediation. Biochem J 2019; 476:3385-3400. [DOI: 10.1042/bcj20190606] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 12/23/2022]
Abstract
This study aimed to investigate the bioremediation efficiency of phytohormone-producing endophytic Bacillus amyloliquefaciens RWL-1 isolated from rice seeds. In this study, we tested RWL-1 against various heavy metals (Cu, Cr, Pb, and Cd). Among the tested heavy metals, RWL-1 showed the highest tolerance for Cu stress and we observed alterations in growth kinetics with various Cu concentrations (1, 2.5, and 5 mM). We confirmed the biosorption potential of RWL-1 by scanning electron microscopy coupled with energy-dispersive X-ray spectrometry showing that Cu ions were adsorbed on RWL-1 cell surfaces. We further tested RWL-1 for its plant growth promoting and stress reliance efficiency in response to a dose-dependent increase in soil Cu (1, 2.5, and 5 mM). The RWL-1 inoculation significantly increased seedling biomass and growth attributes compared with non-inoculated control seedlings with and without Cu stress. Moreover, RWL-1 inoculation significantly promoted a physiochemical response in seedlings with and without Cu stress by reducing Cu uptake, improving carbohydrate levels (glucose, sucrose, fructose, and raffinose), enhancing amino acids regulation, and augmenting antioxidant levels (POD, PPO, and GHS). Levels of stress-responsive phytohormones such as abscisic acid (ABA) and jasmonic acid were significantly reduced in RWL-1-inoculated seedlings as compared with non-inoculated control seedlings under normal condition and same levels of Cu stress. In conclusion, the inoculation of B. amyloliquefaciens RWL-1 can significantly improve plant growth in Cu-contaminated soil and reduce metal accumulation, thus making plants safer for consumption. This approach could be tremendously helpful for safe and sustainable agriculture in heavy metal-contaminated areas.
Collapse
|
32
|
Bilal S, Shahzad R, Khan AL, Al-Harrasi A, Kim CK, Lee IJ. Phytohormones enabled endophytic Penicillium funiculosum LHL06 protects Glycine max L. from synergistic toxicity of heavy metals by hormonal and stress-responsive proteins modulation. JOURNAL OF HAZARDOUS MATERIALS 2019; 379:120824. [PMID: 31271935 DOI: 10.1016/j.jhazmat.2019.120824] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/04/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
This study investigates the stress-mitigating effects of endophytic Penicillium funiculosum LHL06 on soybean roots via modulation of physio-biochemical, molecular, and proteomic responses to combined heavy metal (Ni, Cu, Pb, Cr, and Al) toxicity. Preliminary screening revealed that LHL06 can tolerate and remediate combined heavy metal contamination in its media and upregulate gibberellins (GA1, GA3, GA4, GA7 and GA9) and indole-3-acetic acid (IAA) production. Inoculation of LHL06 resulted in marked reduction of metals uptake in roots and shoots by downregulating heavy metal ATPase genes (GmHMA13, GmHMA14, GmHMA19) and GmMATE1 compared to non-inoculated plants; in turn, this decreased abscisic acid and jasmonic acid levels. Moreover, triggering of free amino acid metabolism in LHL06-inoculated roots significantly upregulated expression of stress-related proteins (glutathione S-transferase L3, isoflavone reductase-like, chalcone isomerase A, NAD(P)H dehydrogenase (quinone), FQR1-like 1 isoform X2, and Peroxidase 3) to combat metals toxicity. Compared to non-inoculated-plants, LHL06-inoculated-plants exhibited higher antioxidant activity and transcript accumulation of glutathione S-transferase (GmGST8 and GmGST3), G6PDH, and GmSOD1[Cu-Zn], which decreased metal-induced reactive oxygen species. Therefore, LHL06-inoculation remediate combined metal contamination in soil, activate signaling network of stress-responsive hormones and antioxidant systems for promoting growth and tolerance, and reduce metal-accumulation, thereby making plants safer for consumption.
Collapse
Affiliation(s)
- Saqib Bilal
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Raheem Shahzad
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Chang Kil Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea.
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
33
|
Kohli SK, Bali S, Tejpal R, Bhalla V, Verma V, Bhardwaj R, Alqarawi AA, Abd Allah EF, Ahmad P. In-situ localization and biochemical analysis of bio-molecules reveals Pb-stress amelioration in Brassica juncea L. by co-application of 24-Epibrassinolide and Salicylic Acid. Sci Rep 2019; 9:3524. [PMID: 30837530 PMCID: PMC6401096 DOI: 10.1038/s41598-019-39712-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/28/2019] [Indexed: 11/30/2022] Open
Abstract
Lead (Pb) toxicity is a major environmental concern affirming the need of proper mitigation strategies. In the present work, potential of combined treatment of 24-Epibrassinolide (24-EBL) and Salicylic acid (SA) against Pb toxicity to Brassica juncea L. seedlings were evaluated. Seedlings pre-imbibed in EBL (0.1 mM) and SA (1 mM) individually and in combination, were sown in Pb supplemented petri-plates (0.25, 0.50 and 0.75 mM). Various microscopic observations and biochemical analysis were made on 10 days old seedlings of B. juncea. The toxic effects of Pb were evident with enhancement in in-situ accumulation of Pb, hydrogen peroxide (H2O2), malondialdehyde (MDA), nuclear damage, membrane damage, cell death and polyamine. Furthermore, free amino acid were lowered in response to Pb toxicity. The levels of osmoprotectants including total carbohydrate, reducing sugars, trehalose, proline and glycine betaine were elevated in response to Pb treatment. Soaking treatment with combination of 24-EBL and SA led to effective amelioration of toxic effects of Pb. Reduction in Pb accumulation, reactive oxygen content (ROS), cellular damage and GSH levels were noticed in response to treatment with 24-EBL and SA individual and combined levels. The contents of free amino acid, amino acid profiling as well as in-situ localization of polyamine (spermidine) was recorded to be enhanced by co-application of 24-EBLand SA. Binary treatment of 24-EBL and SA, further elevated the content of osmoprotectants. The study revealed that co-application of combined treatment of 24-EBL and SA led to dimination of toxic effects of Pb in B. juncea seedlings.
Collapse
Affiliation(s)
- Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Shagun Bali
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Ruchi Tejpal
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Vandana Bhalla
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Vinod Verma
- Department of Botany, DAV University, Jalandhar, Punjab, 144012, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - A A Alqarawi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia. .,Department of Botany, S.P. College, Srinagar, 190001, Jammu and Kashmir, India.
| |
Collapse
|
34
|
Lastochkina O, Aliniaeifard S, Seifikalhor M, Yuldashev R, Pusenkova L, Garipova S. Plant Growth-Promoting Bacteria: Biotic Strategy to Cope with Abiotic Stresses in Wheat. WHEAT PRODUCTION IN CHANGING ENVIRONMENTS 2019:579-614. [DOI: 10.1007/978-981-13-6883-7_23] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
|
35
|
Khan AL, Mabood F, Akber F, Ali A, Shahzad R, Al-Harrasi A, Al-Rawahi A, Shinwari ZK, Lee IJ. Endogenous phytohormones of frankincense producing Boswellia sacra tree populations. PLoS One 2018; 13:e0207910. [PMID: 30566477 PMCID: PMC6300221 DOI: 10.1371/journal.pone.0207910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 11/08/2018] [Indexed: 12/17/2022] Open
Abstract
Boswellia sacra, an endemic tree to Oman, is exposed to man-made incisions for commercial level frankincense production, whereas unsustainable harvesting may lead to population decline. In this case, assessment of endogenous phytohormones (gibberellic acid (GA), indole-acetic acid (IAA), salicylic acid (SA) and kinetin) can help to understand population health and growth dynamics. Hence, it was aimed to devise a robust method using Near-Infrared spectroscopy (NIRS) coupled with multivariate methods for phytohormone analysis of thirteen different populations of B. sacra. NIRS data was recorded in absorption mode (10000-4000 cm-1) to build partial least squares regression model (calibration set 70%). Model was externally cross validated (30%) as a test set to check their prediction ability before the application to quantify the unknown amount of phytohormones in thirteen different populations of B. sacra. The results showed that phytohormonal contents varied significantly, showing a trend of SA>GA/IAA>kinetin across different populations. SA and GA contents were significantly higher in Pop13 (Hasik), followed by Pop2 (Dowkah)-an extreme end of B. sacra tree cover in Dhofar region. A similar trend in the concentration of phytohormones was found when the samples from 13 populations were subjected to advance liquid chromatography mass spectrophotometer and gas chromatograph with selected ion monitor analysis. The current analysis provides alternative tool to assess plant health, which could be important to in situ propagation of tree population as well as monitoring tree population growth dynamics.
Collapse
Affiliation(s)
- Abdul Latif Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Fazal Mabood
- Department of Biological Sciences & Chemistry, University of Nizwa, Nizwa, Oman
| | - Fazal Akber
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Amjad Ali
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Raheem Shahzad
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Rawahi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | | | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
36
|
Bilal S, Khan AL, Shahzad R, Kim YH, Imran M, Khan MJ, Al-Harrasi A, Kim TH, Lee IJ. Mechanisms of Cr(VI) resistance by endophytic Sphingomonas sp. LK11 and its Cr(VI) phytotoxic mitigating effects in soybean (Glycine max L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:648-658. [PMID: 30170313 DOI: 10.1016/j.ecoenv.2018.08.043] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/11/2018] [Accepted: 08/14/2018] [Indexed: 05/27/2023]
Abstract
Chromium Cr(VI) is highly toxic and leads to impaired phenotypic plasticity of economically important crops. The current study assessed an endophytic-bacteria assisted metal bio-remediation strategy to understand stress-alleviating mechanisms in Glycine max L (soybean) plants inoculated with Sphingomonas sp. LK11 under severe Cr(VI) toxicity. The screening analysis showed that high Cr concentrations (5.0 mM) slightly suppressed LK11 growth and metal uptake by LK11 cells, while significantly enhancing indole-3-acetic acid (IAA) production. Endophytic LK11 significantly upregulated its antioxidant system compared to control by enhancing reduced glutathione (GSH), catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activities to counteract Cr-induced oxidative stress. Cr toxicity induced cell morphological alteration, as shown by SEM-EDX analysis and triggered significant lipid peroxidation. The interaction between LK11 and soybean in Cr-contaminated soil significantly increased plant growth attributes and down-regulated the synthesis of endogenous defense-related phytohormones, salicylic acid and abscisic acid, by 20% and 37%, respectively, and reduced Cr translocation to the roots, shoot, and leaves. Additionally, Cr-induced oxidative stress was significantly reduced in LK11-inoculated soybean, regulating metal responsive reduced GSH and enzymatic antioxidant CAT. Current findings indicate that LK11 may be a suitable candidate for the bioremediation of Cr-contaminated soil and stimulation of host physiological homeostasis.
Collapse
Affiliation(s)
- Saqib Bilal
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Raheem Shahzad
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yoon-Ha Kim
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Muhammad Jamil Khan
- Institute of Soil and Environmental Sciences, Gomal University DI Khan, Pakistan; Department of Biological Sciences, The University of Lakki Marwat, Kyber Pukhtunkhwa, Pakistan
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Tae Han Kim
- School of agricultural civil & bio-industrial machinery engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
37
|
Alori ET, Babalola OO. Microbial Inoculants for Improving Crop Quality and Human Health in Africa. Front Microbiol 2018; 9:2213. [PMID: 30283427 PMCID: PMC6156547 DOI: 10.3389/fmicb.2018.02213] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022] Open
Abstract
Current agricultural practices depend heavily on chemical inputs (such as fertilizers, pesticides, herbicides, etc.) which, all things being equal cause a deleterious effect on the nutritional value of farm product and health of farm workers and consumers. Excessive and indiscriminate use of these chemicals have resulted in food contamination, weed and disease resistance and negative environmental outcomes which together have a significant impact on human health. Application of these chemical inputs promotes the accumulation of toxic compounds in soils. Chemical compounds are absorbed by most crops from soil. Several synthetic fertilizers contain acid radicals, such as hydrochloride and sulfuric radicals, and hence increase the soil acidity and adversely affect soil and plant health. Highly recalcitrant compounds can also be absorbed by some plants. Continuous consumption of such crops can lead to systematic disorders in humans. Quite a number of pesticides and herbicides have carcinogenicity potential. The increasing awareness of health challenges as a result of consumption of poor quality crops has led to a quest for new and improved technologies of improving both the quantity and quality of crop without jeopardizing human health. A reliable alternative to the use of chemical inputs is microbial inoculants that can act as biofertilizers, bioherbicide, biopesticides, and biocontrol agents. Microorganisms are able to carry out the plant growth promotion, pest and disease and weed control. Microbial inoculants are beneficiary microorganisms applied to either the soil or the plant in order to improve productivity and crop health. Microbial inoculants are natural-based products being widely used to control pests and improve the quality of the soil and crop, and hence human health. Microbial inoculants involve a blend of microorganisms that work with the soil and the soil life to improve soil fertility and health and by extension improve human health. Microbial inoculants have the ability to minimize the negative impact of chemical input and consequently increase the quantity and quality of farm produce. Microbial inoculants are environmental-friendly and deliver plant nutrients to plants in a more sustainable manner. Microbial inoculants can help reduce chemical fertilizer application. Microbial inoculants could include bacteria, fungi and algae. This research summarizes the impact of agricultural chemical inputs on human health. The contribution of microbial inoculants in sustainable maintenance of human health will be expatiated. Advances in microbial inoculants and technology and strategies to explore this natural, user friendly biological resource for sustainable maintenance of plant health will be discussed.
Collapse
Affiliation(s)
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mahikeng, South Africa
| |
Collapse
|
38
|
Li X, He X, Hou L, Ren Y, Wang S, Su F. Dark septate endophytes isolated from a xerophyte plant promote the growth of Ammopiptanthus mongolicus under drought condition. Sci Rep 2018; 8:7896. [PMID: 29785041 PMCID: PMC5962579 DOI: 10.1038/s41598-018-26183-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/04/2018] [Indexed: 02/04/2023] Open
Abstract
Dark septate endophytes (DSE) may facilitate plant growth and stress tolerance in stressful ecosystems. However, little is known about the response of plants to non-host DSE fungi isolated from other plants, especially under drought condition. This study aimed to seek and apply non-host DSE to evaluate their growth promoting effects in a desert species, Ammopiptanthus mongolicus, under drought condition. Nine DSE strains isolated from a super-xerophytic shrub, Gymnocarpos przewalskii, were identified and used as the non-host DSE. And DSE colonization rate (30–35%) and species composition in the roots of G. przewalskii were first reported. The inoculation results showed that all DSE strains were effective colonizers and formed a strain-dependent symbiosis with A. mongolicus. Specifically, one Darksidea strain, Knufia sp., and Leptosphaeria sp. increased the total biomass of A. mongolicus compared to non-inoculated plants. Two Paraconiothyrium strains, Phialophora sp., and Embellisia chlamydospora exhibited significantly positive effects on plant branch number, potassium and calcium content. Two Paraconiothyrium and Darksidea strains particularly decreased plant biomass or element content. As A. mongolicus plays important roles in fixing moving sand and delay desertification, the ability of certain DSE strains to promote desert plant growth indicates their potential use for vegetation recovery in arid environments.
Collapse
Affiliation(s)
- Xia Li
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Xueli He
- College of Life Sciences, Hebei University, Baoding, 071002, China.
| | - Lifeng Hou
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Ying Ren
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Shaojie Wang
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Fang Su
- College of Life Sciences, Hebei University, Baoding, 071002, China
| |
Collapse
|
39
|
Shukla A, Srivastava S, Suprasanna P. Genomics of Metal Stress-Mediated Signalling and Plant Adaptive Responses in Reference to Phytohormones. Curr Genomics 2017; 18:512-522. [PMID: 29204080 PMCID: PMC5684655 DOI: 10.2174/1389202918666170608093327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/15/2016] [Accepted: 10/30/2016] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION As a consequence of a sessile lifestyle, plants often have to face a number of life threatening abiotic and biotic stresses. Plants counteract the stresses through morphological and physiological adaptations, which are imparted through flexible and well-coordinated network of signalling and effector molecules, where phytohormones play important role. Hormone synthesis, signal transduction, perception and cross-talks create a complex network. Omics approaches, which include transcriptomics, genomics, proteomics and metabolomics, have opened new paths to understand such complex networks. OBJECTIVE This review concentrates on the importance of phytohormones and enzymatic expressions under metal stressed conditions. CONCLUSION This review sheds light on gene expressions involved in plant adaptive and defence responses during metal stress. It gives an insight of genomic approaches leading to identification and functional annotation of genes involved in phytohormone signal transduction and perception. Moreover, it also emphasizes on perception, signalling and cross-talks among various phytohormones and other signalling components viz., Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS).
Collapse
Affiliation(s)
- Anurakti Shukla
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi - 221005, U.P., India
| | - Sudhakar Srivastava
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi - 221005, U.P., India
| | - Penna Suprasanna
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai - 400085, Maharashtra, India
| |
Collapse
|
40
|
Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 2017; 33:197. [PMID: 28986676 PMCID: PMC5686270 DOI: 10.1007/s11274-017-2364-9] [Citation(s) in RCA: 394] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/04/2017] [Indexed: 01/01/2023]
Abstract
The idea of eliminating the use of fertilizers which are sometimes environmentally unsafe is slowly becoming a reality because of the emergence of microorganisms that can serve the same purpose or even do better. Depletion of soil nutrients through leaching into the waterways and causing contamination are some of the negative effects of these chemical fertilizers that prompted the need for suitable alternatives. This brings us to the idea of using microbes that can be developed for use as biological fertilizers (biofertilizers). They are environmentally friendly as they are natural living organisms. They increase crop yield and production and, in addition, in developing countries, they are less expensive compared to chemical fertilizers. These biofertilizers are typically called plant growth-promoting bacteria (PGPB). In addition to PGPB, some fungi have also been demonstrated to promote plant growth. Apart from improving crop yields, some biofertilizers also control various plant pathogens. The objective of worldwide sustainable agriculture is much more likely to be achieved through the widespread use of biofertilizers rather than chemically synthesized fertilizers. However, to realize this objective it is essential that the many mechanisms employed by PGPB first be thoroughly understood thereby allowing workers to fully harness the potentials of these microbes. The present state of our knowledge regarding the fundamental mechanisms employed by PGPB is discussed herein.
Collapse
|
41
|
Methane enhances aluminum resistance in alfalfa seedlings by reducing aluminum accumulation and reestablishing redox homeostasis. Biometals 2017; 30:719-732. [DOI: 10.1007/s10534-017-0040-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
|
42
|
Bilal S, Khan AL, Shahzad R, Asaf S, Kang SM, Lee IJ. Endophytic Paecilomyces formosus LHL10 Augments Glycine max L. Adaptation to Ni-Contamination through Affecting Endogenous Phytohormones and Oxidative Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:870. [PMID: 28611799 PMCID: PMC5447229 DOI: 10.3389/fpls.2017.00870] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/10/2017] [Indexed: 05/21/2023]
Abstract
This study investigated the Ni-removal efficiency of phytohormone-producing endophytic fungi Penicillium janthinellum, Paecilomyces formosus, Exophiala sp., and Preussia sp. Among four different endophytes, P. formosus LHL10 was able to tolerate up to 1 mM Ni in contaminated media as compared to copper and cadmium. P. formosus LHL10 was further assessed for its potential to enhance the phytoremediation of Glycine max (soybean) in response to dose-dependent increases in soil Ni (0.5, 1.0, and 5.0 mM). Inoculation with P. formosus LHL10 significantly increased plant biomass and growth attributes as compared to non-inoculated control plants with or without Ni contamination. LHL10 enhanced the translocation of Ni from the root to the shoot as compared to the control. In addition, P. formosus LHL10 modulated the physio-chemical apparatus of soybean plants during Ni-contamination by reducing lipid peroxidation and the accumulation of linolenic acid, glutathione, peroxidase, polyphenol oxidase, catalase, and superoxide dismutase. Stress-responsive phytohormones such as abscisic acid and jasmonic acid were significantly down-regulated in fungal-inoculated soybean plants under Ni stress. LHL10 Ni-remediation potential can be attributed to its phytohormonal synthesis related genetic makeup. RT-PCR analysis showed the expression of indole-3-acetamide hydrolase, aldehyde dehydrogenase for indole-acetic acid and geranylgeranyl-diphosphate synthase, ent-kaurene oxidase (P450-4), C13-oxidase (P450-3) for gibberellins synthesis. In conclusion, the inoculation of P. formosus can significantly improve plant growth in Ni-polluted soils, and assist in improving the phytoremediation abilities of economically important crops.
Collapse
Affiliation(s)
- Saqib Bilal
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Abdul L. Khan
- UoN Chair of Oman’s Medicinal Plants and Marine Natural Products, University of NizwaNizwa, Oman
| | - Raheem Shahzad
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Sajjad Asaf
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| |
Collapse
|
43
|
Khan AL, Al-Harrasi A, Al-Rawahi A, Al-Farsi Z, Al-Mamari A, Waqas M, Asaf S, Elyassi A, Mabood F, Shin JH, Lee IJ. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid. PLoS One 2016; 11:e0158207. [PMID: 27359330 PMCID: PMC4928835 DOI: 10.1371/journal.pone.0158207] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 06/13/2016] [Indexed: 11/19/2022] Open
Abstract
Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%), Chaetomiaceae (17.6%), Incertae sadis (29.5%), Aureobasidiaceae (17.6%), Nectriaceae (5.9%) and Sporomiaceae (17.6%) from the phylloplane (leaf) and caulosphere (stem) of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33%) than the stem (0.262%). The Shannon-Weiner diversity index was H′ 0.8729, while Simpson index was higher in the leaf (0.583) than in the stem (0.416). Regarding the endophytic fungi’s potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL) and cellulases (62.11±1.6 μM-1min-1mL), whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL) and phosphatases (3.46±0.31μM-1min-1mL) compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways). Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin could establish a unique niche for ecological adaptation during symbiosis with the host Frankincense tree.
Collapse
Affiliation(s)
- Abdul Latif Khan
- UoN Chair of Oman’s Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- UoN Chair of Oman’s Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa, Oman
- * E-mail: (AAH); (IJL)
| | - Ahmed Al-Rawahi
- UoN Chair of Oman’s Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa, Oman
| | - Zainab Al-Farsi
- UoN Chair of Oman’s Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa, Oman
| | - Aza Al-Mamari
- UoN Chair of Oman’s Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa, Oman
| | - Muhammad Waqas
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Agriculture, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Sajjad Asaf
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ali Elyassi
- UoN Chair of Oman’s Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa, Oman
| | - Fazal Mabood
- UoN Chair of Oman’s Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa, Oman
| | - Jae-Ho Shin
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- * E-mail: (AAH); (IJL)
| |
Collapse
|
44
|
Leitão AL, Enguita FJ. Gibberellins in Penicillium strains: Challenges for endophyte-plant host interactions under salinity stress. Microbiol Res 2016; 183:8-18. [DOI: 10.1016/j.micres.2015.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/14/2015] [Indexed: 01/01/2023]
|