1
|
Zhang Y, Liu H, Ma X, Zhao L, He F, Li M, Wang X, Long R, Kang J, Yang Q, Chen L. Genome-wide identification and expression analysis of the class III peroxidase gene (PRXIII) family in Medicago sativa L. and its function in the abiotic stress response. BMC PLANT BIOLOGY 2025; 25:443. [PMID: 40200136 PMCID: PMC11977876 DOI: 10.1186/s12870-025-06470-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025]
Abstract
Peroxidase (POD) is a widespread and highly active enzyme in plants that plays an important role in plant growth and development and stress response. No genome-wide analysis and characterization of the POD gene family in alfalfa has been performed yet. In this study, we used bioinformatics techniques to identify 343 members of this family in alfalfa and performed predictive analyses of their physicochemical properties, subcellular localization, phylogenetic relationships and conserved motifs. Expression analysis showed that 58 of the 343 genes were specifically expressed. Expression pattern analysis under different stresses showed that the MsPOD gene family was responsive to salt stress, cold stress, and drought stress, and there were genes responsive to multiple stresses. Among them, 24 MsPOD genes responded to all three stresses. Understanding the expression patterns of alfalfa MsPOD family members can enhance alfalfa's ability to resist abiotic stresses, thereby providing a theoretical basis for increasing alfalfa yield under adverse conditions.
Collapse
Affiliation(s)
- Yuqi Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hao Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xinyue Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Li Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fei He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mingna Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xue Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ruicai Long
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lin Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
2
|
Chen XF, Huang WT, Shen Q, Huang WL, Lu F, Yang LT, Lai NW, Huang ZR, Chen LS. The protective roles of boron against copper excess in citrus roots: Insights from physiology, transcriptome, and metabolome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109588. [PMID: 39938160 DOI: 10.1016/j.plaphy.2025.109588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/14/2025] [Accepted: 01/30/2025] [Indexed: 02/14/2025]
Abstract
Boron (B) deficiency and copper (Cu) excess are common problems in citrus orchard soils. Citrus sinensis seedlings were exposed to 25 (B25) or 2.5 (B2.5) μM H3BO3 and 0.5 (Cu0.5) or 350 (Cu350) μM CuCl3 for 24 weeks. Cu350 upregulated 2210 (1012) genes and 482 (341) metabolites and downregulated 3201 (695) genes and 175 (43) metabolites in roots at B2.5 (B25). Further analysis showed that the B-mediated mitigation of Cu toxicity in roots involved the coordination of the following aspects: (a) enhancing the ability to maintain cell wall and plasma membrane stability and function; (b) lowering the impairment of Cu350 to primary and secondary metabolisms and enhancing their adaptability to Cu350; and (c) alleviating Cu350-induced oxidative stress via the coordination of reactive oxygen species (ROS) and methylglyoxal detoxification systems. Cu350 upregulated the abundances of some saccharides, amino acids and derivatives, phospholipids, secondary metabolites, and vitamins, and the expression of several ROS detoxification-related genes in roots of B2.5-treated seedlings (RB2.5), but these adaptive responses did not prevent RB2.5 from Cu-toxicity (oxidative damage). The study identified some genes, metabolites, and metabolic processes/pathways possibly involved in root Cu tolerance. Additionally, the responses of gene expression and metabolite profiling to Cu-B treatments differed between leaves and roots. Therefore, this study provided novel information for B to reduce Cu toxicity in roots and might contribute to the development of soil amendments targeting Cu excess in citrus and other crops.
Collapse
Affiliation(s)
- Xu-Feng Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Cangshan District, 350002, Fuzhou, China.
| | - Wei-Tao Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Cangshan District, 350002, Fuzhou, China.
| | - Qian Shen
- College of Resources and Environment, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Cangshan District, 350002, Fuzhou, China.
| | - Wei-Lin Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Cangshan District, 350002, Fuzhou, China.
| | - Fei Lu
- College of Resources and Environment, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Cangshan District, 350002, Fuzhou, China.
| | - Lin-Tong Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Cangshan District, 350002, Fuzhou, China.
| | - Ning-Wei Lai
- College of Resources and Environment, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Cangshan District, 350002, Fuzhou, China.
| | - Zeng-Rong Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Cangshan District, 350002, Fuzhou, China.
| | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Cangshan District, 350002, Fuzhou, China.
| |
Collapse
|
3
|
Huang G, Yu G, Li H, Yu H, Huang Z, Tang L, Yang P, Zhong Z, Hu G, Zhang P, Tong H. Recent Advances in Transcriptome Analysis Within the Realm of Low Arsenic Rice Breeding. PLANTS (BASEL, SWITZERLAND) 2025; 14:606. [PMID: 40006866 PMCID: PMC11859722 DOI: 10.3390/plants14040606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025]
Abstract
Arsenic (As), a toxic element, is widely distributed in soil and irrigation water. Rice (Oryza sativa L.), the staple food in Southern China, exhibits a greater propensity for As uptake compared to other crops. Arsenic pollution in paddy fields not only impairs rice growth but also poses a serious threat to food security and human health. Nevertheless, the molecular mechanism underlying the response to As toxicity has not been completely revealed until now. Transcriptome analysis represents a powerful tool for revealing the mechanisms conferring phenotype formation and is widely employed in crop breeding. Consequently, this review focuses on the recent advances in transcriptome analysis within the realm of low As breeding in rice. It particularly highlights the applications of transcriptome analysis in identifying genes responsive to As toxicity, revealing gene interaction regulatory modules and analyzing secondary metabolite biosynthesis pathways. Furthermore, the molecular mechanisms underlying rice As tolerance are updated, and the recent outcomes in low As breeding are summarized. Finally, the challenges associated with applying transcriptome analysis to low-As breeding are deliberated upon, and future research directions are envisioned, with the aim of providing references to expedite high-yield and low-arsenic breeding in rice.
Collapse
Affiliation(s)
- Guanrong Huang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (G.H.); (H.L.); (H.Y.); (Z.H.); (L.T.); (P.Y.); (Z.Z.); (G.H.)
| | - Guoping Yu
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China;
| | - Huijuan Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (G.H.); (H.L.); (H.Y.); (Z.H.); (L.T.); (P.Y.); (Z.Z.); (G.H.)
| | - Haipeng Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (G.H.); (H.L.); (H.Y.); (Z.H.); (L.T.); (P.Y.); (Z.Z.); (G.H.)
| | - Zengying Huang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (G.H.); (H.L.); (H.Y.); (Z.H.); (L.T.); (P.Y.); (Z.Z.); (G.H.)
| | - Lu Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (G.H.); (H.L.); (H.Y.); (Z.H.); (L.T.); (P.Y.); (Z.Z.); (G.H.)
| | - Pengfei Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (G.H.); (H.L.); (H.Y.); (Z.H.); (L.T.); (P.Y.); (Z.Z.); (G.H.)
| | - Zhengzheng Zhong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (G.H.); (H.L.); (H.Y.); (Z.H.); (L.T.); (P.Y.); (Z.Z.); (G.H.)
| | - Guocheng Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (G.H.); (H.L.); (H.Y.); (Z.H.); (L.T.); (P.Y.); (Z.Z.); (G.H.)
| | - Peng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (G.H.); (H.L.); (H.Y.); (Z.H.); (L.T.); (P.Y.); (Z.Z.); (G.H.)
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China;
| | - Hanhua Tong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (G.H.); (H.L.); (H.Y.); (Z.H.); (L.T.); (P.Y.); (Z.Z.); (G.H.)
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China;
| |
Collapse
|
4
|
Jia Y, Li M, Xu J, Chen S, Han X, Qiu W, Lu Z, Zhuo R, Qiao G. Comprehensive analysis of class III peroxidase genes revealed PePRX2 enhanced lignin biosynthesis and drought tolerance in Phyllostachys edulis. TREE PHYSIOLOGY 2025; 45:tpaf008. [PMID: 39893630 DOI: 10.1093/treephys/tpaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/18/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025]
Abstract
Class III peroxidase (PRX) is the key enzyme in lignin biosynthesis and critical for maintaining the redox balance in plants to respond to stress. In moso bamboo (Phyllostachys edulis), a globally significant non-timber forestry species, the potential roles of PRX genes remain largely unknown. In this research, a total of 179 PePRXs was identified on a genome-wide scale in moso bamboo. Phylogenic relationship, conserved motifs, gene structure, collinearity and cis-acting elements were investigated. Analysis of gene expression indicated that PePRXs exhibited tissue-specific expression and different response patterns to hormones and abiotic stresses. Based on the transcriptome data, 10 PePRXs with positive correlations between expression levels and lignification degree were screened out. Among them, PePRX2 was selected as a candidate gene according to the co-expression network. Y1H and Dual-Luc assays demonstrated that PeMYB61 could bind to the promoter of PePRX2 and enhance its transcription. The result of in situ hybridization showed that PePRX2 was specifically expressed in the vascular bundle sheath cells of bamboo shoot. As a secreted protein, PePRX2 was located on the cell wall. Overexpression of PePRX2 led to a significant increase in lignin content in transgenic poplar, indicating that PePRX2 could promote lignin polymerization. In comparison with the WT, the PePRX2-OE poplar lines exhibited increased peroxidase activity and decreased levels of MDA, O2- and H2O2 under drought stress, indicating enhanced drought resistance. This thorough analysis of the PRX family in moso bamboo provided new insight into the roles of PePRXs in lignin biosynthesis and drought adaptation.
Collapse
Affiliation(s)
- Yuhan Jia
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 12 Zhongguancun South Street, Haidian District, Beijing 100091, P. R. China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, 73 Daqiao Road, Fuyang District, Hangzhou, Zhejiang 311400, P. R. China
| | - Mengyun Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 12 Zhongguancun South Street, Haidian District, Beijing 100091, P. R. China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, 73 Daqiao Road, Fuyang District, Hangzhou, Zhejiang 311400, P. R. China
| | - Jing Xu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 12 Zhongguancun South Street, Haidian District, Beijing 100091, P. R. China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, 73 Daqiao Road, Fuyang District, Hangzhou, Zhejiang 311400, P. R. China
| | - Shuxin Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 12 Zhongguancun South Street, Haidian District, Beijing 100091, P. R. China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, 73 Daqiao Road, Fuyang District, Hangzhou, Zhejiang 311400, P. R. China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 12 Zhongguancun South Street, Haidian District, Beijing 100091, P. R. China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, 73 Daqiao Road, Fuyang District, Hangzhou, Zhejiang 311400, P. R. China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 12 Zhongguancun South Street, Haidian District, Beijing 100091, P. R. China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, 73 Daqiao Road, Fuyang District, Hangzhou, Zhejiang 311400, P. R. China
| | - Zhuchou Lu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 12 Zhongguancun South Street, Haidian District, Beijing 100091, P. R. China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, 73 Daqiao Road, Fuyang District, Hangzhou, Zhejiang 311400, P. R. China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 12 Zhongguancun South Street, Haidian District, Beijing 100091, P. R. China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, 73 Daqiao Road, Fuyang District, Hangzhou, Zhejiang 311400, P. R. China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 12 Zhongguancun South Street, Haidian District, Beijing 100091, P. R. China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, 73 Daqiao Road, Fuyang District, Hangzhou, Zhejiang 311400, P. R. China
| |
Collapse
|
5
|
Mishra A, Kar S, Bisht N, Mishra SK, Chauhan PS. Synergistic effect of Adathoda vasica plant-derived biostimulant and PGPR on Zea mays L. for drought stress management. Microbiol Res 2025; 290:127968. [PMID: 39536514 DOI: 10.1016/j.micres.2024.127968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Drought is a significant abiotic stress that adversely affects the physiological and biochemical processes in crops, posing a considerable challenge to agricultural productivity. The present study explored the efficacy of plant-derived biostimulant (PDB) and plant growth-promoting rhizobacteria (PGPR) strains Pseudomonas putida (RA) and Paenibacillus lentimorbus CHM12) in the management of negative impacts of drought stress in Zea mays (maize). Adathoda vasica leaf extracts (ADLE) emerged as the most potent biostimulant of the seven evaluated medicinal plant extracts. The synergetic effect of ADLE and RA enhances plant vegetative growth (root length, shoot length, fresh weight and dry weight) as well as significantly modulates drought-induced oxidative stress, as indicated by higher chlorophyll content and increased sugar and phenolic levels and reduction of proline level. The expression of defence-related (ZmAPX, ZmSOD, and ZmCAT) and transcription factor (ZmNAC, ZmWRKY, and ZmMYB) genes further supported the beneficial effects of this synergism under drought conditions. Furthermore, metabolite profiling through GC-MS analysis showed significant alterations in metabolites such as glucose, galactose, mannose, hexopyranose, linolenic acid, hexadecenoic acid, and butanedioic acid when PDB and PGPR were applied together. Overall, the findings of the present study affirm that the combined application of plant-derived biostimulant ADLE and plant-beneficial rhizobacteria RA can effectively alleviate the adverse effects of drought on maize, providing an eco-friendly and sustainable solution for improving productivity under stress.
Collapse
Affiliation(s)
- Abhilasha Mishra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Srishti Kar
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Nikita Bisht
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Shashank Kumar Mishra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Puneet Singh Chauhan
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India.
| |
Collapse
|
6
|
Tian W, Peng Z, Zhang X, Zheng Y, Wang Y, Feng B, Li Y, He G, Sang X. OsMAPKKKε regulates apical spikelet development by adjusting Reactive Oxygen Species accumulates in Oryza sativa. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112280. [PMID: 39401544 DOI: 10.1016/j.plantsci.2024.112280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/21/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Rice panicle abortion can significantly impact rice yield and food security. Recent research has revealed that panicle abortion is influenced by environmental factors as well as regulated by specific genes. Here we report a novel panicle apical abortion 4 (paa4) mutant with semi-dwarf and panicle apical abortion phenotype, and its abortion occurs when the panicle length is approximately 7 cm. Map-based cloning has identified that PAA4 encodes a Mitogen-activated Protein Kinase Kinase Kinase ε (OsMAPKKKε) protein, and a substitution of G to A in exon 19 of OsMAPKKKε that leads to panicle apical abortion. PAA4 has a higher expression in the spikelet although which expressed in all organs of rice. During panicle growth, excessive Reactive Oxygen Species (ROS) accumulate in the apical panicle of paa4, eventually inducing programmed cell death (PCD). Transcriptome sequencing indicates that PAA4 plays a role in both the generation and elimination of ROS. Therefore, PAA4 might be involved in the balance of ROS at the apical panicle and then affects spikelet development in Oryza sativa.
Collapse
Affiliation(s)
- Weijiang Tian
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Ziwei Peng
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Xin Zhang
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Yumeng Zheng
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Yuanyuan Wang
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Beiqi Feng
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Yangyang Li
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Guanghua He
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Xianchun Sang
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China.
| |
Collapse
|
7
|
Huang M, Liu Y, Bian Q, Zhao W, Zhao J, Liu Q. OsbHLH6, a basic helix-loop-helix transcription factor, confers arsenic tolerance and root-to-shoot translocation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2485-2499. [PMID: 39506610 DOI: 10.1111/tpj.17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/03/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024]
Abstract
Arsenic (As) is extremely toxic to plants, posing a serious concern for food safety. Identification of genes responsive to As is significative for figuring out this issue. Here, we identified a bHLH transcription factor OsbHLH6 that was involved in mediating the processes of As tolerance, uptake, and root-to-shoot translocation in rice. The expression of OsbHLH6 gene was strongly induced after 3 and 48 h of arsenite [As(III)] treatment. The OsbHLH6-overexpressed transgenic rice (OE-OsbHLH6) was sensitive to, while the knockout mutant of OsbHLH6 gene (Osbhlh6) was tolerant to As(III) stress by affecting the contents of reactive oxygen species (ROS) and non-protein thiols (NPT), etc. Knockout of OsbHLH6 gene increased significantly the As concentration in roots, but decreased extensively As accumulation in shoots, compared to that in OE-OsbHLH6 and WT plants. The transcripts of phytochelatins (PCs) synthetase encoding genes OsPCS1 and OsPCS2, as well as As(III) transporter encoding genes OsLsi1 and OsABCC1 were greatly abundant in Osbhlh6 mutants than in OE-OsbHLH6 and WT plants under As(III) stress. In contrast, the expression of OsLsi2 gene was extensively suppressed by As(III) in Osbhlh6 mutants. OsbHLH6 acted as a transcriptional activator to bind directly to the promoter and regulate the expression of OsPrx2 gene that encodes a peroxidase precursor. Moreover, overexpression of OsbHLH6 gene resulted in significant change of expression of amounts of abiotic stress-related genes, which might partially contribute to the As sensitivity of OE-OsbHLH6 plants. These findings may broaden our understanding of the molecular mechanism of OsbHLH6-mediated As response in rice and provide novel useful genes for rice As stress-resistant breeding.
Collapse
Affiliation(s)
- Menghan Huang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P. R. China
| | - Yang Liu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P. R. China
| | - Qianwen Bian
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P. R. China
| | - Wenjing Zhao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P. R. China
| | - Juan Zhao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P. R. China
| | - Qingpo Liu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P. R. China
| |
Collapse
|
8
|
Chawda K, Indoliya Y, Siddique W, Gautam N, Chakrabarty D. Identification and characterization of a rice expansin-like protein with metal-binding properties. Int J Biol Macromol 2024; 283:137791. [PMID: 39557252 DOI: 10.1016/j.ijbiomac.2024.137791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Heavy metal (HM) contamination poses significant threat to agricultural productivity. This study identified and characterized Os09g29690 (OsELP), a rice expansin-like protein. We demonstrated OsELP localizes to the cell wall and is upregulated under various abiotic stresses. Sequence analysis revealed a potential metal-binding CXXXC motif in its conserved domain. Heterologous expression of OsELP in yeast mutants (Δacr3 and Δycf1) enhanced metal tolerance under arsenate [As(V)], arsenite [As(III)], and cadmium [Cd] stress. Yeast cells expressing OsELP accumulated higher amounts of As and Cd, suggesting a potential metal-binding mechanism. This was confirmed through site-directed mutagenesis on the conserved cysteine and serine residues within OsELP. Mutants lacking cysteine residues (mutCS) reduced tolerance to As(III) and Cd but enhanced tolerance to As(V), indicating a role of cysteine in As(III) and Cd binding. Conversely, mutants lacking serine residues (mutSA) reduced tolerance to As(V), suggesting serine's involvement in As(V) binding. These findings reveal the roles of cysteine and serine residues in mediating HM tolerance and binding, confirming OsELP as a key player in HM detoxification through cell wall localization and chelation. This study provides novel insights into the molecular mechanisms of HM tolerance in plants, with potential applications in developing crops with enhanced resistance to HM toxicity.
Collapse
Affiliation(s)
- Khushboo Chawda
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yuvraj Indoliya
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Waseem Siddique
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neelam Gautam
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debasis Chakrabarty
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Li S, Zheng H, Sui N, Zhang F. Class III peroxidase: An essential enzyme for enhancing plant physiological and developmental process by maintaining the ROS level: A review. Int J Biol Macromol 2024; 283:137331. [PMID: 39549790 DOI: 10.1016/j.ijbiomac.2024.137331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
Since plants are sessile organisms, they are inevitably exposed to various environmental stresses, and the accumulation of reactive oxygen species (ROS) could affect the growth and development of plants. ROS play either positive or negative roles in various plant life activities as a two-edge sword. Class III peroxidase (CIII PRX) is a highly conserved antioxidant enzyme family specifically identified in plants, which is involved in maintaining ROS homeostasis in the cell and plays multiple functions in plant growth metabolism and stress response. In this review, the classification and structure of CIII PRXs are represented, and the roles of CIII PRXs in physiological and developmental processes such as plant growth, cell wall modification, loosening and stiffening, and lignin biosynthesis are described in detail. The molecular mechanisms of CIII PRXs in response to abiotic stress such as salt and drought, and biological stress such as pathogens invasion are introduced, with emphasis on the research results of PRX related genes in signal transduction. Furthermore, we summarize the difficulty in exploring the function of individual CIII PRX gene due to functional redundancy and promising technique that may break this research bottleneck.
Collapse
Affiliation(s)
- Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Hongxiang Zheng
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying 257000, China.
| | - Fangning Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, China.
| |
Collapse
|
10
|
Chakrabarty D. Editorial: Molecular mechanisms of metal toxicity and transcriptional/post-transcriptional regulation in plant model systems. FRONTIERS IN PLANT SCIENCE 2024; 15:1502021. [PMID: 39665110 PMCID: PMC11632460 DOI: 10.3389/fpls.2024.1502021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024]
Affiliation(s)
- Debasis Chakrabarty
- Molecular Biology and Biotechnology, National Botanical Research Institute (CSIR), Lucknow, Uttar Pradesh, India
| |
Collapse
|
11
|
De Coninck T, Desmet T, Van Damme EJM. Carbohydrate-active enzymes involved in rice cell wall metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6206-6227. [PMID: 38980746 DOI: 10.1093/jxb/erae295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
Plant cell walls are complex, multifunctional structures, built up of polysaccharides and proteins. The configuration and abundance of cell wall constituents determine cellular elongation and plant growth. The emphasis of this review is on rice, a staple crop with economic importance, serving as model for grasses/cereals. Recent advancements have contributed to a better understanding of the grass/cereal cell wall. This review brings together current knowledge of the organization and metabolism of the rice cell wall, and addresses gaps in the information regarding the cell wall and enzymes involved. Several cell wall fractions, including cellulose, mixed-linkage glucans, and glucuronoarabinoxylans, are well understood in rice and other grasses/grains. Conversely, there are still open questions and missing links in relation to xyloglucans, glucomannans, pectin, lignin, and arabinogalactan proteins. There is still a large and untapped potential to identify carbohydrate-active enzymes (CAZymes), to characterize their activity, and to elucidate their involvement in the metabolism of the mentioned cell wall fractions. This review highlights the involvement of carbohydrate-active enzymes in rice cell wall metabolism, providing an update of current understanding with the aim of demarcating research areas with potential for further investigations.
Collapse
Affiliation(s)
- Tibo De Coninck
- Laboratory for Biochemistry & Glycobiology, Department of Biotechnology, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Els J M Van Damme
- Laboratory for Biochemistry & Glycobiology, Department of Biotechnology, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
| |
Collapse
|
12
|
Semwal P, Mishra SK, Majhi B, Mishra A, Joshi H, Misra S, Misra A, Srivastava S, Chauhan PS. Bacillus australimaris protect Gloriosa superba L. against Alternaria alternata infestation. World J Microbiol Biotechnol 2024; 40:354. [PMID: 39419894 DOI: 10.1007/s11274-024-04156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
Gloriosa superba L., a medicinally important plant, is often affected by leaf blight disease caused by Alternaria alternata, which compromises its productivity. This study explores the protective effects of Bacillus australimaris endophyte (NBRI GS34), demonstrating that its inoculation not only inhibits the disease but also promotes plant growth and increases the concentrations of bioactive metabolites. Co-culturing NBRI GS34 with A. alternata significantly boosts protease (30-50%) and chitinase (6-28%) activities, evidencing a synergistic interaction. Scanning electron microscopy and GC-MS analysis confirm NBRI GS34's antagonistic action and reveal antifungal compounds like undecanoic acid and benzene carboxylic acid in treatments. Greenhouse experiments show a 78% reduction in disease incidence with NBRI GS34 treatment, enhancing vegetative growth and upregulating defense-related genes. Additionally, HPLC analysis reveals increased gloriosine and colchicine concentrations by 52% and 33%, respectively. These findings suggest NBRI GS34 could serve as a sustainable fungicide alternative, enhancing the production of medically valuable compounds and highlighting its potential pharmaceutical applications.
Collapse
Affiliation(s)
- Pradeep Semwal
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shashank Kumar Mishra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Basudev Majhi
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abhilasha Mishra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Harshita Joshi
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Sankalp Misra
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow- Deva Road, Barabanki, Uttar Pradesh, 225003, India
| | - Ankita Misra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sharad Srivastava
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, U.P, 226001, India
| | - Puneet Singh Chauhan
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
13
|
Luo W, Liu J, Xu W, Zhi S, Wang X, Sun Y. Molecular Characterization of Peroxidase ( PRX) Gene Family in Cucumber. Genes (Basel) 2024; 15:1245. [PMID: 39457369 PMCID: PMC11507654 DOI: 10.3390/genes15101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The Peroxidase (PRX) gene family is essential for plant growth and significantly contributes to defense against stresses. However, information about PRX genes in cucumber (Cucumis sativus L.) remains limited. Methods: In this present study, CsPRX genes were identified and characterized using bioinformatics analysis. The expression pattern analysis of CsPRX genes were examined utilizing the RNA-seq data of cucumber from public databases and real-time quantitative PCR (qRT-PCR) analysis. Results: Here, we identified 60 CsPRX genes and mapped them onto seven chromosomes of cucumber. The CsPRX proteins exhibited the presence of 10 conserved motifs, with motif 8, motif 2, motif 5, and motif 3 consistently appearing across all 60 CsPRX protein sequences, indicating the conservation of CsPRX proteins. Furthermore, RNA-seq analysis revealed that differential expression of CsPRX genes in various tissues. Notably, a majority of the CsPRX genes exhibited significantly higher expression levels in the root compared to the other plant tissues, suggesting a potential specialization of these genes in root function. In addition, qRT-PCR analysis for four selected CsPRX genes under different stress conditions indicated that these selected CsPRX genes demonstrated diverse expression levels when subjected to NaCl, CdCl2, and PEG treatments, and the CsPRX17 gene was significantly induced by NaCl, CdCl2, and PEG stresses, suggesting a vital role of the CsPRX17 gene in response to environmental stresses. Conclusions: These findings will contribute valuable insights for future research into the functions and regulatory mechanisms associated with CsPRX genes in cucumber.
Collapse
Affiliation(s)
- Weirong Luo
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Junjun Liu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Wenchen Xu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Shenshen Zhi
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Xudong Wang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Yongdong Sun
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| |
Collapse
|
14
|
Yadav P, Ansari MW, Gill R, Tuteja N, Gill SS. Arsenic transport, detoxification, and recent technologies for mitigation: A systemic review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108848. [PMID: 38908350 DOI: 10.1016/j.plaphy.2024.108848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/28/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024]
Abstract
Arsenic (As) is an acute toxic metalloid that affects plant growth and development. As is found in the environment in organic and inorganic forms, but arsenite As(III) and arsenate As(V) are the most prevalent forms that negatively impact the plants. Roots exposed to As can easily absorb it mainly through transporters that carry vital mineral nutrients. As reach the food chain via crops irrigated with As-polluted water and exerts a negative impact. Even at low levels, As exposure disrupts the regular functioning of plants by generating a high level of reactive oxygen species (ROS) results into oxidative damage, and disruption of redox system. Plants have built-in defence mechanisms to combat this oxidative damage. The development of a food crop with lower As levels is dependent upon understanding the molecular process of As detoxification in plants, which will help reduce the consumption of As-contaminated food. Numerous genes in plants that may provide tolerance under hazardous conditions have been examined using genetic engineering techniques. The suppression of genes by RNA interference (RNAi) and CRISPR-Cas 9 (CRISPR associated protein 9) technology revealed an intriguing approach for developing a crop that has minimal As levels in consumable portions. This study aims to present current information on the biochemical and molecular networks associated with As uptake, as well as recent advances in the field of As mitigation using exogenous salicylic acid (SA), Serendipita indica and biotechnological tools in terms of generating As-tolerant plants with low As accumulation.
Collapse
Affiliation(s)
- Priya Yadav
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India
| | - Mohammad Wahid Ansari
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India.
| | - Ritu Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Narendra Tuteja
- International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Sarvajeet Singh Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
15
|
Sun X, Jiang C, Guo Y, Li C, Zhao W, Nie F, Liu Q. Suppression of OsSAUR2 gene expression immobilizes soil arsenic bioavailability by modulating root exudation and rhizosphere microbial assembly in rice. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134587. [PMID: 38772107 DOI: 10.1016/j.jhazmat.2024.134587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/27/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
One of the factors influencing the behavior of arsenic (As) in environment is microbial-mediated As transformation. However, the detailed regulatory role of gene expression on the changes of root exudation, rhizosphere microorganisms, and soil As occurrence forms remains unclear. In this study, we evidence that loss-of-function of OsSAUR2 gene, a member of the SMALL AUXIN-UP RNA family in rice, results in significantly higher As uptake in roots but greatly lower As accumulation in grains via affecting the expression of OsLsi1, OsLsi2 in roots and OsABCC1 in stems. Further, the alteration of OsSAUR2 expression extensively affects the metabolomic of root exudation, and thereby leading to the variations in the composition of rhizosphere microbial communities in rice. The microbial community in the rhizosphere of Ossaur2 plants strongly immobilizes the occurrence forms of As in soil. Interestingly, Homovanillic acid (HA) and 3-Coumaric acid (CA), two differential metabolites screened from root exudation, can facilitate soil iron reduction, enhance As bioavailability, and stimulate As uptake and accumulation in rice. These findings add our further understanding in the relationship of OsSAUR2 expression with the release of root exudation and rhizosphere microbial assembly under As stress in rice, and provide potential rice genetic resources and root exudation in phytoremediation of As-contaminated paddy soil.
Collapse
Affiliation(s)
- Xueyang Sun
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Cheng Jiang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Yao Guo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Chunyan Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Wenjing Zhao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Fanhao Nie
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Qingpo Liu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China.
| |
Collapse
|
16
|
Umair Hassan M, Huang G, Haider FU, Khan TA, Noor MA, Luo F, Zhou Q, Yang B, Ul Haq MI, Iqbal MM. Application of Zinc Oxide Nanoparticles to Mitigate Cadmium Toxicity: Mechanisms and Future Prospects. PLANTS (BASEL, SWITZERLAND) 2024; 13:1706. [PMID: 38931138 PMCID: PMC11207998 DOI: 10.3390/plants13121706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Cadmium (Cd), as the most prevalent heavy metal contaminant poses serious risks to plants, humans, and the environment. The ubiquity of this toxic metal is continuously increasing due to the rapid discharge of industrial and mining effluents and the excessive use of chemical fertilizers. Nanoparticles (NPs) have emerged as a novel strategy to alleviate Cd toxicity. Zinc oxide nanoparticles (ZnO-NPs) have become the most important NPs used to mitigate the toxicity of abiotic stresses and improve crop productivity. The plants quickly absorb Cd, which subsequently disrupts plant physiological and biochemical processes and increases the production of reactive oxygen species (ROS), which causes the oxidation of cellular structures and significant growth losses. Besides this, Cd toxicity also disrupts leaf osmotic pressure, nutrient uptake, membrane stability, chlorophyll synthesis, and enzyme activities, leading to a serious reduction in growth and biomass productivity. Though plants possess an excellent defense mechanism to counteract Cd toxicity, this is not enough to counter higher concentrations of Cd toxicity. Applying Zn-NPs has proven to have significant potential in mitigating the toxic effects of Cd. ZnO-NPs improve chlorophyll synthesis, photosynthetic efficiency, membrane stability, nutrient uptake, and gene expression, which can help to counter toxic effects of Cd stress. Additionally, ZnO-NPs also help to reduce Cd absorption and accumulation in plants, and the complex relationship between ZnO-NPs, osmolytes, hormones, and secondary metabolites plays an important role in Cd tolerance. Thus, this review concentrates on exploring the diverse mechanisms by which ZnO nanoparticles can alleviate Cd toxicity in plants. In the end, this review has identified various research gaps that need addressing to ensure the promising future of ZnO-NPs in mitigating Cd toxicity. The findings of this review contribute to gaining a deeper understanding of the role of ZnO-NPs in combating Cd toxicity to promote safer and sustainable crop production by remediating Cd-polluted soils. This also allows for the development of eco-friendly approaches to remediate Cd-polluted soils to improve soil fertility and environmental quality.
Collapse
Affiliation(s)
- Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.U.H.); (T.A.K.); (M.A.N.); (F.L.); (Q.Z.); (B.Y.)
| | - Guoqin Huang
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.U.H.); (T.A.K.); (M.A.N.); (F.L.); (Q.Z.); (B.Y.)
| | | | - Tahir Abbas Khan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.U.H.); (T.A.K.); (M.A.N.); (F.L.); (Q.Z.); (B.Y.)
| | - Mehmood Ali Noor
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.U.H.); (T.A.K.); (M.A.N.); (F.L.); (Q.Z.); (B.Y.)
| | - Fang Luo
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.U.H.); (T.A.K.); (M.A.N.); (F.L.); (Q.Z.); (B.Y.)
| | - Quan Zhou
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.U.H.); (T.A.K.); (M.A.N.); (F.L.); (Q.Z.); (B.Y.)
| | - Binjuan Yang
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.U.H.); (T.A.K.); (M.A.N.); (F.L.); (Q.Z.); (B.Y.)
| | | | - Muhammad Mahmood Iqbal
- Agronomy (Forage Production) Section, Ayub Agricultural Research Institute, Faisalabad 38040, Pakistan;
| |
Collapse
|
17
|
Yang J, Chen R, Xiang X, Liu W, Fan C. Genome-Wide Identification and Expression Analysis of the Class III Peroxidase Gene Family under Abiotic Stresses in Litchi ( Litchi chinensis Sonn.). Int J Mol Sci 2024; 25:5804. [PMID: 38891992 PMCID: PMC11172018 DOI: 10.3390/ijms25115804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Class III peroxidases (CIII PRXs) are plant-specific enzymes with high activity that play key roles in the catalysis of oxidation-reduction reactions. In plants, CIII PRXs can reduce hydrogen peroxide to catalyze oxidation-reduction reactions, thereby affecting plant growth, development, and stress responses. To date, no systematic analysis of the CIII PRX gene family in litchi (Litchi chinensis Sonn.) has been documented, although the genome has been reported. In this study, a total of 77 CIII PRX (designated LcPRX) gene family members were predicted in the litchi genome to provide a reference for candidate genes in the responses to abiotic stresses during litchi growth and development. All of these LcPRX genes had different numbers of highly conserved PRX domains and were unevenly distributed across fifteen chromosomes. They were further clustered into eight clades using a phylogenetic tree, and almost every clade had its own unique gene structure and motif distribution. Collinearity analysis confirmed that there were eleven pairs of duplicate genes among the LcPRX members, and segmental duplication (SD) was the main driving force behind the LcPRX gene expansion. Tissue-specific expression profiles indicated that the expression levels of all the LcPRX family members in different tissues of the litchi tree were significantly divergent. After different abiotic stress treatments, quantitative real-time PCR (qRT-PCR) analysis revealed that the LcPRX genes responded to various stresses and displayed differential expression patterns. Physicochemical properties, transmembrane domains, subcellular localization, secondary structures, and cis-acting elements were also analyzed. These findings provide insights into the characteristics of the LcPRX gene family and give valuable information for further elucidating its molecular function and then enhancing abiotic stress tolerance in litchi through molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | - Chao Fan
- Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.Y.); (R.C.); (X.X.); (W.L.)
| |
Collapse
|
18
|
Zaghdoud C, Yahia Y, Nagaz K, Martinez-Ballesta MDC. Foliar spraying of zinc oxide nanoparticles improves water transport and nitrogen metabolism in tomato (Solanum lycopersicum L.) seedlings mitigating the negative impacts of cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37428-37443. [PMID: 38777976 DOI: 10.1007/s11356-024-33738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The use of bio-nanotechnology in agriculture-such as the biological applications of metal oxide nanoparticles (NPs)-greatly improves crop yield and quality under different abiotic stress factors including soil metal contamination. Here, we explore the effectiveness of zinc oxide (ZnO)-NPs (0, 50 mg/L) foliar spraying to ameliorate the detrimental effects of cadmium (Cd) on the water transport and nitrogen metabolism in tomato (Solanum lycopersicum Mill. cv. Chibli F1) plants grown on a Cd-supplied (CdCl2; 0, 10, 40 μM) Hoagland nutrient solution. The results depicted that the individually studied factors (ZnO-NPs and Cd) had a significant impact on all the physiological parameters analyzed. Independently to the Cd concentration, ZnO-NPs-sprayed plants showed significantly higher dry weight (DW) in both leaves and roots compared to the non-sprayed ones, which was in consonance with higher and lower levels of Zn2+ and Cd2+ ions, respectively, in these organs. Interestingly, ZnO-NPs spraying improved water status in all Cd-treated plants as evidenced by the increase in root hydraulic conductance (L0), apoplastic water pathway percentage, and leaf and root relative water content (RWC), compared to the non-sprayed plants. This improved water balance was associated with a significant accumulation of osmoprotectant osmolytes, such as proline and soluble sugars in the plant organs, reducing electrolyte leakage (EL), and osmotic potential (ψπ). Also, ZnO-NPs spraying significantly improved NO3- and NH4+ assimilation in the leaf and root tissues of all Cd-treated plants, leading to a reduction in NH4+ toxicity. Our findings point out new insights into how ZnO-NPs affect water transport and nitrogen metabolism in Cd-stressed plants and support their use to improve crop resilience against Cd-contaminated soils.
Collapse
Affiliation(s)
- Chokri Zaghdoud
- Dry Land Farming and Oasis Cropping Laboratory, Institute of Arid Regions of Medenine, University of Gabes, 4119, Medenine, Tunisia.
- Technology Transfer Office (TTO), University of Gafsa, 2112, Gafsa, Tunisia.
| | - Yassine Yahia
- Dry Land Farming and Oasis Cropping Laboratory, Institute of Arid Regions of Medenine, University of Gabes, 4119, Medenine, Tunisia
| | - Kamel Nagaz
- Dry Land Farming and Oasis Cropping Laboratory, Institute of Arid Regions of Medenine, University of Gabes, 4119, Medenine, Tunisia
| | - Maria Del Carmen Martinez-Ballesta
- Ingeniería Agronómica, Technical University of Cartagena, Paseo Alfonso XIII 48, E-30203, Cartagena, Spain
- Recursos Fitogenéticos, Instituto de Biotecnología Vegetal, Edificio I+D+i, E-30202, Cartagena, Spain
| |
Collapse
|
19
|
Gao W, Jiang Y, Yang X, Li T, Zhang L, Yan S, Cao J, Lu J, Ma C, Chang C, Zhang H. Functional analysis of a wheat class III peroxidase gene, TaPer12-3A, in seed dormancy and germination. BMC PLANT BIOLOGY 2024; 24:318. [PMID: 38654190 PMCID: PMC11040755 DOI: 10.1186/s12870-024-05041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Class III peroxidases (PODs) perform crucial functions in various developmental processes and responses to biotic and abiotic stresses. However, their roles in wheat seed dormancy (SD) and germination remain elusive. RESULTS Here, we identified a wheat class III POD gene, named TaPer12-3A, based on transcriptome data and expression analysis. TaPer12-3A showed decreasing and increasing expression trends with SD acquisition and release, respectively. It was highly expressed in wheat seeds and localized in the endoplasmic reticulum and cytoplasm. Germination tests were performed using the transgenic Arabidopsis and rice lines as well as wheat mutant mutagenized with ethyl methane sulfonate (EMS) in Jing 411 (J411) background. These results indicated that TaPer12-3A negatively regulated SD and positively mediated germination. Further studies showed that TaPer12-3A maintained H2O2 homeostasis by scavenging excess H2O2 and participated in the biosynthesis and catabolism pathways of gibberellic acid and abscisic acid to regulate SD and germination. CONCLUSION These findings not only provide new insights for future functional analysis of TaPer12-3A in regulating wheat SD and germination but also provide a target gene for breeding wheat varieties with high pre-harvest sprouting resistance by gene editing technology.
Collapse
Affiliation(s)
- Wei Gao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China
| | - Yating Jiang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China
| | - Xiaohu Yang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China
| | - Ting Li
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China
| | - Litian Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China
| | - Shengnan Yan
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China
| | - Jiajia Cao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China
| | - Cheng Chang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China.
| | - Haiping Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China.
| |
Collapse
|
20
|
Gracia-Rodriguez C, Lopez-Ortiz C, Flores-Iga G, Ibarra-Muñoz L, Nimmakayala P, Reddy UK, Balagurusamy N. From genes to ecosystems: Decoding plant tolerance mechanisms to arsenic stress. Heliyon 2024; 10:e29140. [PMID: 38601600 PMCID: PMC11004893 DOI: 10.1016/j.heliyon.2024.e29140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
Arsenic (As), a metalloid of considerable toxicity, has become increasingly bioavailable through anthropogenic activities, raising As contamination levels in groundwater and agricultural soils worldwide. This bioavailability has profound implications for plant biology and farming systems. As can detrimentally affect crop yield and pose risks of bioaccumulation and subsequent entry into the food chain. Upon exposure to As, plants initiate a multifaceted molecular response involving crucial signaling pathways, such as those mediated by calcium, mitogen-activated protein kinases, and various phytohormones (e.g., auxin, methyl jasmonate, cytokinin). These pathways, in turn, activate enzymes within the antioxidant system, which combat the reactive oxygen/nitrogen species (ROS and RNS) generated by As-induced stress. Plants exhibit a sophisticated genomic response to As, involving the upregulation of genes associated with uptake, chelation, and sequestration. Specific gene families, such as those coding for aquaglyceroporins and ABC transporters, are key in mediating As uptake and translocation within plant tissues. Moreover, we explore the gene regulatory networks that orchestrate the synthesis of phytochelatins and metallothioneins, which are crucial for As chelation and detoxification. Transcription factors, particularly those belonging to the MYB, NAC, and WRKY families, emerge as central regulators in activating As-responsive genes. On a post-translational level, we examine how ubiquitination pathways modulate the stability and function of proteins involved in As metabolism. By integrating omics findings, this review provides a comprehensive overview of the complex genomic landscape that defines plant responses to As. Knowledge gained from these genomic and epigenetic insights is pivotal for developing biotechnological strategies to enhance crop As tolerance.
Collapse
Affiliation(s)
- Celeste Gracia-Rodriguez
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Carlos Lopez-Ortiz
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Gerardo Flores-Iga
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Lizbeth Ibarra-Muñoz
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
| | - Padma Nimmakayala
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Umesh K. Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
| |
Collapse
|
21
|
Moy A, Nkongolo K. Decrypting Molecular Mechanisms Involved in Counteracting Copper and Nickel Toxicity in Jack Pine ( Pinus banksiana) Based on Transcriptomic Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1042. [PMID: 38611570 PMCID: PMC11013723 DOI: 10.3390/plants13071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
The remediation of copper and nickel-afflicted sites is challenged by the different physiological effects imposed by each metal on a given plant system. Pinus banksiana is resilient against copper and nickel, providing an opportunity to build a valuable resource to investigate the responding gene expression toward each metal. The objectives of this study were to (1) extend the analysis of the Pinus banksiana transcriptome exposed to nickel and copper, (2) assess the differential gene expression in nickel-resistant compared to copper-resistant genotypes, and (3) identify mechanisms specific to each metal. The Illumina platform was used to sequence RNA that was extracted from seedlings treated with each of the metals. There were 449 differentially expressed genes (DEGs) between copper-resistant genotypes (RGs) and nickel-resistant genotypes (RGs) at a high stringency cut-off, indicating a distinct pattern of gene expression toward each metal. For biological processes, 19.8% of DEGs were associated with the DNA metabolic process, followed by the response to stress (13.15%) and the response to chemicals (8.59%). For metabolic function, 27.9% of DEGs were associated with nuclease activity, followed by nucleotide binding (27.64%) and kinase activity (10.16%). Overall, 21.49% of DEGs were localized to the plasma membrane, followed by the cytosol (16.26%) and chloroplast (12.43%). Annotation of the top upregulated genes in copper RG compared to nickel RG identified genes and mechanisms that were specific to copper and not to nickel. NtPDR, AtHIPP10, and YSL1 were identified as genes associated with copper resistance. Various genes related to cell wall metabolism were identified, and they included genes encoding for HCT, CslE6, MPG, and polygalacturonase. Annotation of the top downregulated genes in copper RG compared to nickel RG revealed genes and mechanisms that were specific to nickel and not copper. Various regulatory and signaling-related genes associated with the stress response were identified. They included UGT, TIFY, ACC, dirigent protein, peroxidase, and glyoxyalase I. Additional research is needed to determine the specific functions of signaling and stress response mechanisms in nickel-resistant plants.
Collapse
Affiliation(s)
| | - Kabwe Nkongolo
- Biomolecular Sciences Program, Department of Biology, School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| |
Collapse
|
22
|
Dutta P, Prasad P, Indoilya Y, Gautam N, Kumar A, Sahu V, Kumari M, Singh S, Asthana AK, Bag SK, Chakrabarty D. Unveiling the molecular mechanisms of arsenic tolerance and resilience in the primitive bryophyte Marchantia polymorpha L. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123506. [PMID: 38360385 DOI: 10.1016/j.envpol.2024.123506] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/19/2024] [Accepted: 02/03/2024] [Indexed: 02/17/2024]
Abstract
This study addresses the pressing issue of high arsenic (As) contaminations, which poses a severe threat to various life forms in our ecosystem. Despite this prevailing concern, all organisms have developed some techniques to mitigate the toxic effects of As. Certain plants, such as bryophytes, the earliest land plants, exhibit remarkable tolerance to wide range of harsh environmental conditions, due to their inherent competence. In this study, bryophytes collected from West Bengal, India, across varying contamination levels were investigated for their As tolerance capabilities. Assessment of As accumulation potential and antioxidant defense efficiency, including SOD, CAT, APX, GPX etc. revealed Marchantia polymorpha as the most tolerant species. It exhibited highest As accumulation, antioxidative proficiency, and minimal damage. Transcriptomic analysis of M. polymorpha exposed to 40 μM As(III) for 24 and 48 h identified several early responsive differentially expressing genes (DEGs) associated with As tolerance. These includes GSTs, GRXs, Hsp20s, SULTR1;2, ABCC2 etc., indicating a mechanism involving vacuolar sequestration. Interestingly, one As(III) efflux-transporter ACR3, an extrusion pump, known to combat As toxicity was found to be differentially expressed compared to control. The SEM-EDX analysis, further elucidated the operation of As extrusion mechanism, which contributes added As resilience in M. polymorpha. Yeast complementation assay using Δacr3 yeast cells, showed increased tolerance towards As(III), compared to the mutant cells, indicating As tolerant phenotype. Overall, these findings significantly enhance our understanding of As tolerance mechanisms in bryophytes. This can pave the way for the development of genetically engineered plants with heightened As tolerance and the creation of improved plant varieties.
Collapse
Affiliation(s)
- Prasanna Dutta
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priti Prasad
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yuvraj Indoilya
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neelam Gautam
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit Kumar
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Vinay Sahu
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Bryology Lab, PDSH Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Monica Kumari
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shivani Singh
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashish Kumar Asthana
- Bryology Lab, PDSH Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Sumit Kumar Bag
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debasis Chakrabarty
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
23
|
Pan J, Song J, Sohail H, Sharif R, Yan W, Hu Q, Qi X, Yang X, Xu X, Chen X. RNA-seq-based comparative transcriptome analysis reveals the role of CsPrx73 in waterlogging-triggered adventitious root formation in cucumber. HORTICULTURE RESEARCH 2024; 11:uhae062. [PMID: 38659441 PMCID: PMC11040206 DOI: 10.1093/hr/uhae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/18/2024] [Indexed: 04/26/2024]
Abstract
Abiotic stressors like waterlogging are detrimental to cucumber development and growth. However, comprehension of the highly complex molecular mechanism underlying waterlogging can provide an opportunity to enhance cucumber tolerance under waterlogging stress. We examined the hypocotyl and stage-specific transcriptomes of the waterlogging-tolerant YZ026A and the waterlogging-sensitive YZ106A, which had different adventitious rooting ability under waterlogging. YZ026A performed better under waterlogging stress by altering its antioxidative machinery and demonstrated a greater superoxide ion (O 2-) scavenging ability. KEGG pathway enrichment analysis showed that a high number of differentially expressed genes (DEGs) were enriched in phenylpropanoid biosynthesis. By pairwise comparison and weighted gene co-expression network analysis analysis, 2616 DEGs were obtained which were categorized into 11 gene co-expression modules. Amongst the 11 modules, black was identified as the common module and yielded a novel key regulatory gene, CsPrx73. Transgenic cucumber plants overexpressing CsPrx73 enhance adventitious root (AR) formation under waterlogging conditions and increase reactive oxygen species (ROS) scavenging. Silencing of CsPrx73 expression by virus-induced gene silencing adversely affects AR formation under the waterlogging condition. Our results also indicated that CsERF7-3, a waterlogging-responsive ERF transcription factor, can directly bind to the ATCTA-box motif in the CsPrx73 promoter to initiate its expression. Overexpression of CsERF7-3 enhanced CsPrx73 expression and AR formation. On the contrary, CsERF7-3-silenced plants decreased CsPrx73 expression and rooting ability. In conclusion , our study demonstrates a novel CsERF7-3-CsPrx73 module that allows cucumbers to adapt more efficiently to waterlogging stress by promoting AR production and ROS scavenging.
Collapse
Affiliation(s)
- Jiawei Pan
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jia Song
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hamza Sohail
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Rahat Sharif
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wenjing Yan
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qiming Hu
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaohua Qi
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaodong Yang
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xuewen Xu
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute ofVegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Xuehao Chen
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute ofVegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| |
Collapse
|
24
|
Dong Q, Wu Y, Wang H, Li B, Huang R, Li H, Tao Q, Li Q, Tang X, Xu Q, Luo Y, Wang C. Integrated morphological, physiological and transcriptomic analyses reveal response mechanisms of rice under different cadmium exposure routes. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133688. [PMID: 38310845 DOI: 10.1016/j.jhazmat.2024.133688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Rice (Oryza sativa) is one of the major cereal crops and takes up cadmium (Cd) more readily than other crops. Understanding the mechanism of Cd uptake and defense in rice can help us avoid Cd in the food chain. However, studies comparing Cd uptake, toxicity, and detoxification mechanisms of leaf and root Cd exposure at the morphological, physiological, and transcriptional levels are still lacking. Therefore, experiments were conducted in this study and found that root Cd exposure resulted in more severe oxidative and photosynthetic damage, lower plant biomass, higher Cd accumulation, and transcriptional changes in rice than leaf Cd exposure. The activation of phenylpropanoids biosynthesis in both root and leaf tissues under different Cd exposure routes suggests that increased lignin is the response mechanism of rice under Cd stress. Moreover, the roots of rice are more sensitive to Cd stress and their adaptation responses are more pronounced than those of leaves. Quantitative PCR revealed that OsPOX, OsCAD, OsPAL and OsCCR play important roles in the response to Cd stress, which further emphasize the importance of lignin. Therefore, this study provides theoretical evidence for future chemical and genetic regulation of lignin biosynthesis in crop plants to reduce Cd accumulation.
Collapse
Affiliation(s)
- Qin Dong
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Haidong Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Youlin Luo
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
25
|
Gaddam SR, Sharma A, Trivedi PK. miR397b-LAC2 module regulates cadmium stress response by coordinating root lignification and copper homeostasis in Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133100. [PMID: 38042003 DOI: 10.1016/j.jhazmat.2023.133100] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Non-essential heavy metal cadmium (Cd) is toxic to plants and animals. Cadmium affects plant photosynthesis, respiration, and causes water imbalance and may lead to plant death. Cadmium induces toxicity by interfering with the essential metal copper (Cu) homeostasis, which affects plant nutrition. Though root lignin biosynthesis is positively regulated by Cd stress, the underlying mechanisms promoting lignin accumulation and controlling Cd-induced Cu limitation responses are unclear. Here, we elucidated the role of Cu-responsive microRNA (miR397b) in Arabidopsis thaliana plants for Cd stress by targeting the LACCASE2 (LAC2) gene. This study demonstrated the fundamental mechanism of miR397b-mediated Cd stress response by enhancing the lignin content in root tissues. We developed miR397b over-expressing plants, which showed considerable Cd stress tolerance. Plants with knockdown function of LAC2 also showed significant tolerance to Cd stress. miR397b overexpressing and lac2 mutant plants showed root reduction, higher biomass and chlorophyll content, and significantly lower Reactive Oxygen Species (ROS). This study demonstrated the miR397b-mediated Cd stress response in Arabidopsis by enhancing the lignin content in root tissues. We conclude that modulation in miR397b can be potentially used for improving plants for Cd tolerance and Cu homeostasis.
Collapse
Affiliation(s)
- Subhash Reddy Gaddam
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; CSIR, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India
| | - Ashish Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India
| | - Prabodh Kumar Trivedi
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India.
| |
Collapse
|
26
|
Geng A, Lian W, Wang Y, Liu M, Zhang Y, Wang X, Chen G. The Molecular Mechanism of the Response of Rice to Arsenic Stress and Effective Strategies to Reduce the Accumulation of Arsenic in Grain. Int J Mol Sci 2024; 25:2861. [PMID: 38474107 DOI: 10.3390/ijms25052861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Rice (Oryza sativa L.) is the staple food for more than 50% of the world's population. Owing to its growth characteristics, rice has more than 10-fold the ability to enrich the carcinogen arsenic (As) than other crops, which seriously affects world food security. The consumption of rice is one of the primary ways for humans to intake As, and it endangers human health. Effective measures to control As pollution need to be studied and promoted. Currently, there have been many studies on reducing the accumulation of As in rice. They are generally divided into agronomic practices and biotechnological approaches, but simultaneously, the problem of using the same measures to obtain the opposite results may be due to the different species of As or soil environments. There is a lack of systematic discussion on measures to reduce As in rice based on its mechanism of action. Therefore, an in-depth understanding of the molecular mechanism of the accumulation of As in rice could result in accurate measures to reduce the content of As based on local conditions. Different species of As have different toxicity and metabolic pathways. This review comprehensively summarizes and reviews the molecular mechanisms of toxicity, absorption, transport and redistribution of different species of As in rice in recent years, and the agronomic measures to effectively reduce the accumulation of As in rice and the genetic resources that can be used to breed for rice that only accumulates low levels of As. The goal of this review is to provide theoretical support for the prevention and control of As pollution in rice, facilitate the creation of new types of germplasm aiming to develop without arsenic accumulation or within an acceptable limit to prevent the health consequences associated with heavy metal As as described here.
Collapse
Affiliation(s)
- Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yihan Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Minghao Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yue Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
27
|
Raza A, Salehi H, Bashir S, Tabassum J, Jamla M, Charagh S, Barmukh R, Mir RA, Bhat BA, Javed MA, Guan DX, Mir RR, Siddique KHM, Varshney RK. Transcriptomics, proteomics, and metabolomics interventions prompt crop improvement against metal(loid) toxicity. PLANT CELL REPORTS 2024; 43:80. [PMID: 38411713 PMCID: PMC10899315 DOI: 10.1007/s00299-024-03153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024]
Abstract
The escalating challenges posed by metal(loid) toxicity in agricultural ecosystems, exacerbated by rapid climate change and anthropogenic pressures, demand urgent attention. Soil contamination is a critical issue because it significantly impacts crop productivity. The widespread threat of metal(loid) toxicity can jeopardize global food security due to contaminated food supplies and pose environmental risks, contributing to soil and water pollution and thus impacting the whole ecosystem. In this context, plants have evolved complex mechanisms to combat metal(loid) stress. Amid the array of innovative approaches, omics, notably transcriptomics, proteomics, and metabolomics, have emerged as transformative tools, shedding light on the genes, proteins, and key metabolites involved in metal(loid) stress responses and tolerance mechanisms. These identified candidates hold promise for developing high-yielding crops with desirable agronomic traits. Computational biology tools like bioinformatics, biological databases, and analytical pipelines support these omics approaches by harnessing diverse information and facilitating the mapping of genotype-to-phenotype relationships under stress conditions. This review explores: (1) the multifaceted strategies that plants use to adapt to metal(loid) toxicity in their environment; (2) the latest findings in metal(loid)-mediated transcriptomics, proteomics, and metabolomics studies across various plant species; (3) the integration of omics data with artificial intelligence and high-throughput phenotyping; (4) the latest bioinformatics databases, tools and pipelines for single and/or multi-omics data integration; (5) the latest insights into stress adaptations and tolerance mechanisms for future outlooks; and (6) the capacity of omics advances for creating sustainable and resilient crop plants that can thrive in metal(loid)-contaminated environments.
Collapse
Affiliation(s)
- Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Hajar Salehi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Shanza Bashir
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Javaria Tabassum
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Monica Jamla
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Rutwik Barmukh
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Basharat Ahmad Bhat
- Department of Bio-Resources, Amar Singh College Campus, Cluster University Srinagar, Srinagar, JK, India
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST), Srinagar, Kashmir, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia.
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
28
|
Bao H, Cui Y, Ge L, Li Y, Xu X, Tang M, Yi Y, Chen L. OsGEX3 affects anther development and improves osmotic stress tolerance in rice. PLANTA 2024; 259:68. [PMID: 38337086 DOI: 10.1007/s00425-024-04342-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
MAIN CONCLUSION Overexpression and loss of function of OsGEX3 reduce seed setting rates and affect pollen fertility in rice. OsGEX3 positively regulates osmotic stress response by regulating ROS scavenging. GEX3 proteins are conserved in plants. AtGEX3 encodes a plasma membrane protein that plays a crucial role in pollen tube guidance. However, the function of its homolog in rice, OsGEX3, has not been determined. Our results demonstrate that OsGEX3 is localized in the plasma membrane and the nucleus as shown by a transiently transformed assay using Nicotiana benthamiana leaves. The up-regulation of OsGEX3 was detected in response to treatments with polyethylene glycol (PEG) 4000, hydrogen peroxide, and abscisic acid (ABA) via RT-qPCR analysis. Interestingly, we observed a significant decline in the seed setting rates of OsGEX3-OE lines and mutants, compared to the wild type. Further investigations reveal that overexpression and loss of function of OsGEX3 affect pollen maturation. TEM observation revealed a significant decrease in the fertile pollen rates of OsGEX3-OE transgenic lines and Osgex3 mutants due to a delay in pollen development at the late vacuolated stage. Overexpression of OsGEX3 improved osmotic stress and oxidative stress tolerance by enhancing reactive oxygen species (ROS) scavenging in rice seedlings, whereas Osgex3 mutants exhibited an opposite phenotype in osmotic stress. These findings highlight the multifunctional roles of OsGEX3 in pollen development and the response to abiotic stress. The functional characterization of OsGEX3 provides a fundamental basis for rice molecular breeding and can facilitate efforts to cultivate drought resistance and yield-related varieties.
Collapse
Affiliation(s)
- Han Bao
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- School of Life Sciences, Ningxia University, Yinchuan, 750021, China
| | - Yuchao Cui
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Li Ge
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yan Li
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Xiaorong Xu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Ming Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Yin Yi
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Liang Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
29
|
Yang S, Luo X, Jin J, Guo Y, Zhang L, Li J, Tong S, Luo Y, Li T, Chen X, Wu Y, Qin C. Key candidate genes for male sterility in peppers unveiled via transcriptomic and proteomic analyses. FRONTIERS IN PLANT SCIENCE 2024; 15:1334430. [PMID: 38384767 PMCID: PMC10880382 DOI: 10.3389/fpls.2024.1334430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/12/2024] [Indexed: 02/23/2024]
Abstract
This study aimed to enhance the use of male sterility in pepper to select superior hybrid generations. Transcriptomic and proteomic analyses of fertile line 1933A and nucleic male sterility line 1933B of Capsicum annuum L. were performed to identify male sterility-related proteins and genes. The phylogenetic tree, physical and chemical characteristics, gene structure characteristics, collinearity and expression characteristics of candidate genes were analyzed. The study identified 2,357 differentially expressed genes, of which 1,145 and 229 were enriched in the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases, respectively. A total of 7,628 quantifiable proteins were identified and 29 important proteins and genes were identified. It is worth noting that the existence of CaPRX genes has been found in both proteomics and transcriptomics, and 3 CaPRX genes have been identified through association analysis. A total of 66 CaPRX genes have been identified at the genome level, which are divided into 13 subfamilies, all containing typical CaPRX gene conformal domains. It is unevenly distributed across 12 chromosomes (including the virtual chromosome Chr00). Salt stress and co-expression analysis show that male sterility genes are expressed to varying degrees, and multiple transcription factors are co-expressed with CaPRXs, suggesting that they are involved in the induction of pepper salt stress. The study findings provide a theoretical foundation for genetic breeding by identifying genes, metabolic pathways, and molecular mechanisms involved in male sterility in pepper.
Collapse
Affiliation(s)
- Shimei Yang
- Industrial Technology Institute of Pepper, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- Engineering Research Center of Zunyi Pepper Germplasm Resources Conservation and Breeding Cultivation of Guizhou Province, Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
| | - Xirong Luo
- Engineering Research Center of Zunyi Pepper Germplasm Resources Conservation and Breeding Cultivation of Guizhou Province, Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
| | - Jing Jin
- Industrial Technology Institute of Pepper, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Ya Guo
- Engineering Research Center of Zunyi Pepper Germplasm Resources Conservation and Breeding Cultivation of Guizhou Province, Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
| | - Lincheng Zhang
- Industrial Technology Institute of Pepper, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Jing Li
- Engineering Research Center of Zunyi Pepper Germplasm Resources Conservation and Breeding Cultivation of Guizhou Province, Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
| | - Shuoqiu Tong
- Industrial Technology Institute of Pepper, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Yin Luo
- Engineering Research Center of Zunyi Pepper Germplasm Resources Conservation and Breeding Cultivation of Guizhou Province, Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
| | - Tangyan Li
- Engineering Research Center of Zunyi Pepper Germplasm Resources Conservation and Breeding Cultivation of Guizhou Province, Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
| | - Xiaocui Chen
- Key Lab of Zunyi Crop Gene Resource and Germplasm Innovation, Zunyi Academy of Agricultural Sciences, Zunyi, China
| | - Yongjun Wu
- Industrial Technology Institute of Pepper, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Cheng Qin
- Engineering Research Center of Zunyi Pepper Germplasm Resources Conservation and Breeding Cultivation of Guizhou Province, Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
- Key Lab of Zunyi Crop Gene Resource and Germplasm Innovation, Zunyi Academy of Agricultural Sciences, Zunyi, China
| |
Collapse
|
30
|
Li Y, Shi X, Xu J, Huang X, Feng J, Huang Y, Liu K, Yu F. Proteomics-based analysis on the stress response mechanism of Bidens pilosa L. under cadmium exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132761. [PMID: 37837780 DOI: 10.1016/j.jhazmat.2023.132761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Bidens pilosa L. (B. pilosa) has great potential for the phytoremediation of cadmium (Cd)-contaminated soils. However, the molecular mechanism underlying Cd tolerance and detoxification in B. pilosa is still unclear. In the present study, a 4D label-free quantification technique combined with liquid chromatography-parallel reaction monitoring mass spectrometry was used to explore the stress response mechanism of B. pilosa. Proteomic analysis revealed 213 and 319 differentially expressed proteins (DEPs) in the roots and leaves of B. pilosa, respectively, and 12 target proteins were selected for further analysis. SWISS-MODEL was used to predict the 3D structures of the target proteins. The cation-ATPase-N structural domain and an ATPase-E1-E2 motif, which help to regulate ATPase function, were detected in the TR10519_c0_g1_ORF protein. In addition, the TR6620_c0_g1_ORF_1 and TR611_c1_g1_ORF proteins contained peroxidase-1 and peroxidase-2 motifs. The TR11239_c0_g1_ORF protein was found to belong to the Fe-SOD family, to have a dimeric structure and to contain a relatively high proportion of α-helices but few β-sheets, which play important roles in reactive oxygen intermediate scavenging. Thus, the current study provides an overview of the proteomic response of B. pilosa in scavenging of Cd-induced reactive oxygen intermediates and reveals key proteins involved in the stress response of B. pilosa under Cd exposure.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Xinwei Shi
- College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Jie Xu
- College of Life Science, Guangxi Normal University, Guilin 541004, China
| | - Xiaofang Huang
- College of Life Science, Guangxi Normal University, Guilin 541004, China
| | - Jingpei Feng
- College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Yuanyuan Huang
- College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Kehui Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Life Science, Guangxi Normal University, Guilin 541004, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
31
|
Qu L, Xu Z, Huang W, Han D, Dang B, Ma X, Liu Y, Xu J, Jia W. Selenium-molybdenum interactions reduce chromium toxicity in Nicotiana tabacum L. by promoting chromium chelation on the cell wall. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132641. [PMID: 37797574 DOI: 10.1016/j.jhazmat.2023.132641] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
Chromium (Cr) is a hazardous heavy metal that negatively affects animals and plants. The micronutrients selenium (Se) and molybdenum (Mo) have been widely shown to alleviate heavy metal toxicity in plants. However, the molecular mechanism of Cr chelation on the cell wall by combined treatment with Se and Mo has not been reported. Therefore, this study aimed to explore the effects of Se-Mo interactions on the subcellular distribution of Cr (50 µM) and on cell wall composition, structure, functional groups and Cr content, in addition to performing a comprehensive analysis of the transcriptome. Our results showed that the cell walls of shoots and roots accumulated 51.0% and 65.0% of the Cr, respectively. Furthermore, pectin in the cell wall bound 69.5%/90.2% of the Cr in the shoots/roots. Se-Mo interactions upregulated the expression levels of related genes encoding galacturonosyltransferase (GAUT), UTP-glucose-1-phosphate uridylyltransferase (UGP), and UDP-glucose-4-epimerase (GALE), involved in polysaccharide biosynthesis, thereby increasing pectin and cellulose levels. Moreover, combined treatment with Se and Mo increased the lignin content and cell wall thickness by upregulating the expression levels of genes encoding cinnamyl alcohol dehydrogenase (CAD), peroxidase (POX) and phenylalanine amino-lyase (PAL), involved in lignin biosynthesis. Fourier-transform infrared (FTIR) spectroscopy results showed that Se + Mo treatment (in combination) increased the number of carboxylic acid groups (-COOH) groups, thereby enhancing the Cr chelation ability. The results not only elucidate the molecular mechanism of action of Se-Mo interactions in mitigating Cr toxicity but also provide new insights for phytoremediation and food safety.
Collapse
Affiliation(s)
- Lili Qu
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Zicheng Xu
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Wuxing Huang
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Dan Han
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Bingjun Dang
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Xiaohan Ma
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Yizan Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jiayang Xu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China.
| | - Wei Jia
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China.
| |
Collapse
|
32
|
Zheng C, Wang X, Xu Y, Wang S, Jiang X, Liu X, Cui W, Wu Y, Yan C, Liu H, Lu Y, Chen J, Zhou J. The peroxidase gene OsPrx114 activated by OsWRKY50 enhances drought tolerance through ROS scavenging in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108138. [PMID: 39492168 DOI: 10.1016/j.plaphy.2023.108138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
Drought is among the most severe environmental stressors, imposing detrimental effects on plant growth and development. In this study, we have identified a class III peroxidase gene, OsPrx114, which was induced under PEG (Polyethylene glycol) and drought conditions and found to be localized in both the plasma membrane and endoplasmic reticulum. The promoter region of OsPrx114 encompasses cis-elements, including ABRE (ABA response elements), MBS (MYB binding elements), and W-box, which are likely contributors to drought tolerance. In comparison to Nipponbare (Nip) plants, the overexpression of OsPrx114 enhanced drought tolerance by reducing the accumulation of reactive oxygen species (ROS) through the upregulation of enzyme activities, such as peroxide dismutase (POD) and catalase (CAT). This was accompanied by an increase in proline (Pro) content and a decrease in malondialdehyde (MDA) content. Furthermore, a series of assays including yeast one-hybrid, electrophoretic mobility shift, and dual luciferase assays, demonstrated that the transcription factor OsWRKY50 binds to the W-box (TTGACC) within the promoter of OsPrx114, thereby activating its transcription. OsWRKY50 plays a positive role in regulating OsPrx114-mediated drought resistance by mitigating ROS accumulation in rice. These findings offer a molecular foundation for comprehending the function of the OsWRKY50-OsPrx114 module in response to drought stress in rice.
Collapse
Affiliation(s)
- Chao Zheng
- College of Plant Protection, Northwest A&F University, Yangling, 712100, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xuming Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yue Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; Zhejiang Wan Li University, Ningbo, 315100, China
| | - Shaomin Wang
- Agricultural Technology Extension and Service Station of Yuyao City, Yuyao, 315400, China
| | - Xin Jiang
- College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Xiuli Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weijun Cui
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yueyan Wu
- Zhejiang Wan Li University, Ningbo, 315100, China
| | - Chengqi Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; Zhejiang Wan Li University, Ningbo, 315100, China
| | - Hongjia Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yin Lu
- College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Jianping Chen
- College of Plant Protection, Northwest A&F University, Yangling, 712100, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Jie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
33
|
Liu Y, Liu Q, Li X, Zhang Z, Ai S, Liu C, Ma F, Li C. MdERF114 enhances the resistance of apple roots to Fusarium solani by regulating the transcription of MdPRX63. PLANT PHYSIOLOGY 2023; 192:2015-2029. [PMID: 36721923 PMCID: PMC10315273 DOI: 10.1093/plphys/kiad057] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
As the main fungal etiologic agent of apple (Malus domestica) replant disease (ARD), Fusarium solani seriously damages apple roots. Ethylene response factors (ERFs) play an important role in plant resistance to biotic stress. Here, we show that MdERF114 is expressed during F. solani infections and positively regulates the resistance of apple roots to F. solani. Yeast one-hybrid, dual-luciferase, electrophoretic mobility shift assays and determinations of lignin content indicated that MdERF114 directly binds the GCC-box of the MdPEROXIDASE63 (MdPRX63) promoter and activates its expression, resulting in lignin deposition in apple roots and increased resistance to F. solani. We identified a WRKY family transcription factor, MdWRKY75, that binds to the W-box of the MdERF114 promoter. Overexpression of MdWRKY75 enhanced resistance of apple roots to F. solani. MdMYB8 interacted with MdERF114 to enhance resistance to F. solani by promoting the binding of MdERF114 to the MdPRX63 promoter. In summary, our findings reveal that the MdWRKY75-MdERF114-MdMYB8-MdPRX63 module is required for apple resistance to F. solani and the application of this mechanism by Agrobacterium rhizogenes-mediated root transformation provides a promising strategy to prevent ARD.
Collapse
Affiliation(s)
- Yusong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Qianwei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Xuewen Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Zhijun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Shukang Ai
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Cheng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | | | - Chao Li
- Author for correspondence: ; (F.M.); (C.L.)
| |
Collapse
|
34
|
Geng A, Lian W, Wang X, Chen G. Regulatory Mechanisms Underlying Arsenic Uptake, Transport, and Detoxification in Rice. Int J Mol Sci 2023; 24:11031. [PMID: 37446207 DOI: 10.3390/ijms241311031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Arsenic (As) is a metalloid environmental pollutant ubiquitous in nature that causes chronic and irreversible poisoning to humans through its bioaccumulation in the trophic chain. Rice, the staple food crop for 350 million people worldwide, accumulates As more easily compared to other cereal crops due to its growth characteristics. Therefore, an in-depth understanding of the molecular regulatory mechanisms underlying As uptake, transport, and detoxification in rice is of great significance to solving the issue of As bioaccumulation in rice, improving its quality and safety and protecting human health. This review summarizes recent studies on the molecular mechanisms of As toxicity, uptake, transport, redistribution, regulation, and detoxification in rice. It aims to provide novel insights and approaches for preventing and controlling As bioaccumulation in rice plants, especially reducing As accumulation in rice grains.
Collapse
Affiliation(s)
- Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
35
|
AbdElgawad H, Negi P, Zinta G, Mohammed AE, Alotaibi MO, Beemster G, Saleh AM, Srivastava AK. Nocardiopsis lucentensis and thiourea co-application mitigates arsenic stress through enhanced antioxidant metabolism and lignin accumulation in rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162295. [PMID: 36801323 DOI: 10.1016/j.scitotenv.2023.162295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Arsenic (As) is a group-1 carcinogenic metalloid that threatens global food safety and security, primarily via its phytotoxicity in the staple crop rice. In the present study, ThioAC, the co-application of thiourea (TU, a non-physiological redox regulator) and N. lucentensis (Act, an As-detoxifying actinobacteria), was evaluated as a low-cost approach for alleviating As(III) toxicity in rice. To this end, we phenotyped rice seedlings subjected to 400 mg kg-1 As(III) with/without TU, Act or ThioAC and analyzed their redox status. Under As-stress conditions, ThioAC treatment stabilized photosynthetic performance, as indicated by 78 % higher total chlorophyll accumulation and 81 % higher leaf biomass, compared with those of As-stressed plants. Further, ThioAC improved root lignin levels (2.08-fold) by activating the key enzymes of lignin biosynthesis under As-stress. The extent of reduction in total As under ThioAC (36 %) was significantly higher than TU (26 %) and Act (12 %), compared to those of As-alone treatment, indicating their synergistic interaction. The supplementation of TU and Act activated enzymatic and non-enzymatic antioxidant systems, respectively, with a preference for young (TU) and old (Act) leaves. Additionally, ThioAC activated enzymatic antioxidants, specifically GR (∼3-fold), in a leaf-age specific manner and suppressed ROS-producing enzymes to near-control levels. This coincided with 2-fold higher induction of polyphenols and metallothionins in ThioAC-supplemented plants, resulting in improved antioxidant defence against As-stress. Thus, our findings highlighted ThioAC application as a robust, cost-effective ameliorative strategy, for achieving As-stress mitigation in a sustainable manner.
Collapse
Affiliation(s)
- Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt.
| | - Pooja Negi
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400094, India.
| | - Gaurav Zinta
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| | - Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Modhi O Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Gerrit Beemster
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium.
| | - Ahmed M Saleh
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400094, India; Homi Bhabha National Institute, Mumbai 400094, India.
| |
Collapse
|
36
|
Xu X, Liu M, Hu Q, Yan W, Pan J, Yan Y, Chen X. A CsEIL3-CsARN6.1 module promotes waterlogging-triggered adventitious root formation in cucumber by activating the expression of CsPrx5. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:824-835. [PMID: 36871136 DOI: 10.1111/tpj.16172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 05/27/2023]
Abstract
The formation of adventitious roots (ARs) derived from hypocotyl is the most important morphological adaptation to waterlogging stress in Cucumis sativus (cucumber). Our previous study showed that cucumbers with the gene CsARN6.1, encoding an AAA ATPase domain-containing protein, were more tolerant to waterlogging through increased AR formation. However, the apparent function of CsARN6.1 remained unknown. Here, we showed that the CsARN6.1 signal was predominantly observed throughout the cambium of hypocotyls, where de novo AR primordia are formed upon waterlogging treatment. The silencing of CsARN6.1 expression by virus-induced gene silencing and CRISPR/Cas9 technologies adversely affects the formation of ARs under conditions of waterlogging. Waterlogging treatment significantly induced ethylene production, thus upregulating CsEIL3 expression, which encodes a putative transcription factor involved in ethylene signaling. Furthermore, yeast one-hybrid, electrophoretic mobility assay and transient expression analyses showed that CsEIL3 binds directly to the CsARN6.1 promoter to initiate its expression. CsARN6.1 was found to interact with CsPrx5, a waterlogging-responsive class-III peroxidase that enhanced H2 O2 production and increased AR formation. These data provide insights into understanding the molecular mechanisms of AAA ATPase domain-containing protein and uncover a molecular mechanism that links ethylene signaling with the formation of ARs triggered by waterlogging.
Collapse
Affiliation(s)
- Xuewen Xu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
| | - Mengyao Liu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Qiming Hu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Wenjing Yan
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Jiawei Pan
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yongming Yan
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xuehao Chen
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| |
Collapse
|
37
|
Sinha D, Datta S, Mishra R, Agarwal P, Kumari T, Adeyemi SB, Kumar Maurya A, Ganguly S, Atique U, Seal S, Kumari Gupta L, Chowdhury S, Chen JT. Negative Impacts of Arsenic on Plants and Mitigation Strategies. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091815. [PMID: 37176873 PMCID: PMC10181087 DOI: 10.3390/plants12091815] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Arsenic (As) is a metalloid prevalent mainly in soil and water. The presence of As above permissible levels becomes toxic and detrimental to living organisms, therefore, making it a significant global concern. Humans can absorb As through drinking polluted water and consuming As-contaminated food material grown in soil having As problems. Since human beings are mobile organisms, they can use clean uncontaminated water and food found through various channels or switch from an As-contaminated area to a clean area; but plants are sessile and obtain As along with essential minerals and water through roots that make them more susceptible to arsenic poisoning and consequent stress. Arsenic and phosphorus have many similarities in terms of their physical and chemical characteristics, and they commonly compete to cause physiological anomalies in biological systems that contribute to further stress. Initial indicators of arsenic's propensity to induce toxicity in plants are a decrease in yield and a loss in plant biomass. This is accompanied by considerable physiological alterations; including instant oxidative surge; followed by essential biomolecule oxidation. These variables ultimately result in cell permeability and an electrolyte imbalance. In addition, arsenic disturbs the nucleic acids, the transcription process, and the essential enzymes engaged with the plant system's primary metabolic pathways. To lessen As absorption by plants, a variety of mitigation strategies have been proposed which include agronomic practices, plant breeding, genetic manipulation, computer-aided modeling, biochemical techniques, and the altering of human approaches regarding consumption and pollution, and in these ways, increased awareness may be generated. These mitigation strategies will further help in ensuring good health, food security, and environmental sustainability. This article summarises the nature of the impact of arsenic on plants, the physio-biochemical mechanisms evolved to cope with As stress, and the mitigation measures that can be employed to eliminate the negative effects of As.
Collapse
Affiliation(s)
- Dwaipayan Sinha
- Department of Botany, Government General Degree College, Mohanpur 721436, Paschim Medinipur, West Bengal, India
| | - Soumi Datta
- Bioactive Natural Product Laboratory, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Reema Mishra
- Department of Botany, Gargi College, University of Delhi, New Delhi 110049, India
| | - Preeti Agarwal
- Department of Botany, Gargi College, University of Delhi, New Delhi 110049, India
| | - Tripti Kumari
- Department of Chemistry, Gargi College, University of Delhi, New Delhi 110049, India
| | - Sherif Babatunde Adeyemi
- Ethnobotany/Phytomedicine Laboratory, Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin PMB 1515, Kwara State, Nigeria
| | - Arun Kumar Maurya
- Department of Botany, Multanimal Modi College, Modinagar, Ghaziabad 201204, Uttar Pradesh, India
| | - Sharmistha Ganguly
- University Department of Botany, Ranchi University, Ranchi 834008, Jharkhand, India
| | - Usman Atique
- Department of Bioscience and Biotechnology, College of Biological Systems, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sanchita Seal
- Department of Botany, Polba Mahavidyalaya, Polba 712148, West Bengal, India
| | - Laxmi Kumari Gupta
- Bioprocess Development Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Shahana Chowdhury
- Department of Biotechnology, Faculty of Engineering Sciences, German University Bangladesh, TNT Road, Telipara, Chandona Chowrasta, Gazipur 1702, Bangladesh
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan
| |
Collapse
|
38
|
Wu J, Ge F, Zhu L, Liu N. Potential Toxic Mechanisms of Neonicotinoid Insecticides in Rice: Inhibiting Auxin-Mediated Signal Transduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4852-4862. [PMID: 36926880 DOI: 10.1021/acs.est.2c09352] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Inappropriate application of pesticides not only causes sub-lethal effects on ecosystem service providers but also reduces crop yield and quality. As a xenobiotic signal molecule, pesticides may interact with signal transduction receptors in crops, resulting in oxidative damage and even metabolic perturbations. We discovered that three neonicotinoid insecticides (NIs), namely, imidacloprid, thiamethoxam, and clothianidin, at 0.06-0.12 kg ai/ha significantly inhibited the auxin signal pathway in rice leaves, thereby reducing the intracellular auxin (IAA) content. Molecular simulation further confirmed that NIs occupied the binding site where auxin transporter-like proteins 1 (LAX11) and 2 (LAX12), in which Thr253 and Asn66 of LAX11, as well as Thr244 and Asn57 of LAX12, were bound to the nitroguanidine of NIs via H-bonds. Meanwhile, Asn66 of LAX11 and Asn57 of LAX12 interacted with nitroguanidine via aromatic H-bonds. Moreover, phenylpropanoid biosynthesis was significantly disturbed because of the inhibited auxin signal pathway. Notably, peroxidase-coding genes were downregulated with a maximum value greater than 10-fold, resulting in decreased antioxidant metabolites flavone (37.82%) and lignin content (20.15%). Ultimately, rice biomass was reduced by up to 25.41% due to the decline in IAA content and antioxidant capacity. This study deeply explored the molecular mechanism of metabolic perturbations in crops stressed by pesticides, thus providing a scientific basis for pesticide environmental risk assessment and agricultural product safety.
Collapse
Affiliation(s)
- Jianjian Wu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Fei Ge
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Na Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
39
|
Xian P, Yang Y, Xiong C, Guo Z, Alam I, He Z, Zhang Y, Cai Z, Nian H. Overexpression of GmWRKY172 enhances cadmium tolerance in plants and reduces cadmium accumulation in soybean seeds. FRONTIERS IN PLANT SCIENCE 2023; 14:1133892. [PMID: 36968408 PMCID: PMC10033887 DOI: 10.3389/fpls.2023.1133892] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/27/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Cadmium (Cd) stress is a significant threat to soybean production, and enhancing Cd tolerance in soybean is the focus of this study. The WRKY transcription factor family is associated with abiotic stress response processes. In this study, we aimed to identify a Cd-responsive WRKY transcription factor GmWRKY172 from soybean and investigate its potential for enhancing Cd tolerance in soybean. METHODS The characterization of GmWRKY172 involved analyzing its expression pattern, subcellular localization, and transcriptional activity. To assess the impact of GmWRKY172, transgenic Arabidopsis and soybean plants were generated and examined for their tolerance to Cd and Cd content in shoots. Additionally, transgenic soybean plants were evaluated for Cd translocation and various physiological stress indicators. RNA sequencing was performed to identify the potential biological pathways regulated by GmWRKY172. RESULTS GmWRKY172 was significantly upregulated by Cd stress, highly expressed in leaves and flowers, and localized to the nucleus with transcriptional activity. Transgenic plants overexpressing GmWRKY172 showed enhanced Cd tolerance and reduced Cd content in shoots compared to WT. Lower Cd translocation from roots to shoots and seeds was also observed in transgenic soybean. Under Cd stress, transgenic soybean accumulated less malondialdehyde (MDA) and hydrogen peroxide (H2O2) than WT plants, with higher flavonoid and lignin contents, and peroxidase (POD) activity. RNA sequencing analysis revealed that many stress-related pathways were regulated by GmWRKY172 in transgenic soybean, including flavonoid biosynthesis, cell wall synthesis, and peroxidase activity. DISCUSSION Our findings demonstrated that GmWRKY172 enhances Cd tolerance and reduces seed Cd accumulation in soybean by regulating multiple stress-related pathways, and could be a promising candidate for breeding Cd-tolerant and low Cd soybean varieties.
Collapse
Affiliation(s)
- Peiqi Xian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yuan Yang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Chuwen Xiong
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhibin Guo
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Intikhab Alam
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Zihang He
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yakun Zhang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Hainan Yazhou Bay Seed Lab, Hainan, China
| |
Collapse
|
40
|
Shukla P, Kidwai M, Narayan S, Shirke PA, Pandey KD, Misra P, Chakrabarty D. Phytoremediation potential of Solanum viarum Dunal and functional aspects of their capitate glandular trichomes in lead, cadmium, and zinc detoxification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41878-41899. [PMID: 36640234 DOI: 10.1007/s11356-023-25174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023]
Abstract
In the present scenario, remediation of heavy metals (HMs) contaminated soil has become an important work to be done for the well-being of human and their environment. Phytoremediation can be regarded as an excellent method in environmental technologies. The present contemporary research explores the Solanum viarum Dunal function as a potential accumulator of hazardous HMs viz. lead (Pb), cadmium (Cd), zinc (Zn), and their combination (CHM). On toxic concentrations of Pb, Cd, Zn, and their synergistic exposure, seeds had better germination percentage and their 90d old aerial tissues accumulated Pb, Cd, and Zn concentrations ranging from 44.53, 84.06, and 147.29 mg kg-1 DW, respectively. Pattern of accumulation in roots was as Zn 70.08 > Pb 48.55 > Cd 42.21 mg kg-1DW. Under HMs treatment, positive modulation in physiological performances, antioxidant activities suggested an enhanced tolerance along with higher membrane stability due to increased levels of lignin, proline, and sugar. Phenotypic variations were recorded in prickles and roots of 120 d old HM stressed plants, which are directly correlated with better acclimation. Interestingly, trichomes of the plant also showed HM accumulation. Later, SEM-EDX microanalysis suggested involvement of S. viarum capitate glandular trichomes as excretory organs for Cd and Zn. Thus, the present study provides an understanding of the mechanism that makes S. viarum to function as potent accumulator and provides information to generate plants to be used for phytoremediation.
Collapse
Affiliation(s)
- Pragya Shukla
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Maria Kidwai
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Department of Plant Physiology, Umeå Plant Science Centre, 90187, Umeå, Sweden
| | - Shiv Narayan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Pramod Arvind Shirke
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Kapil Deo Pandey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Pratibha Misra
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
- 291, Eldeco Greens, Gomti Nagar, Lucknow, 226010, India.
| | - Debasis Chakrabarty
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
41
|
Su P, Sui C, Niu Y, Li J, Wang S, Sun F, Yan J, Guo S. Comparative transcriptomic analysis and functional characterization reveals that the class III peroxidase gene TaPRX-2A regulates drought stress tolerance in transgenic wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1119162. [PMID: 36875561 PMCID: PMC9976582 DOI: 10.3389/fpls.2023.1119162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Drought is a major abiotic stress that reduces crop yields and quality worldwide. Although some genes involved in the response to drought stress have been identified, a more in-depth understanding of the mechanisms underlying wheat tolerance to drought is needed for the control of drought tolerance. Here, we evaluated the drought tolerance of 15 wheat cultivars and measured their physiological-biochemical parameters. Our data showed that the drought tolerance of the resistant wheat cultivars was significantly higher than that of drought-sensitive cultivars, which was associated with a greater antioxidant capacity of the former. Transcriptomic analysis revealed that different mechanisms of drought tolerance exist between the wheat cultivars Ziyou 5 and Liangxing 66. Transcriptomic analysis also revealed a large number of DEGs, including those involved in flavonoid biosynthesis, phytohormone signalling, phenolamides and antioxidants. qRT-PCR was performed, and the results showed that the expression levels of TaPRX-2A were significantly different among the various wheat cultivars under drought stress. Further study revealed that overexpression of TaPRX-2A enhanced tolerance to drought stress through the maintenance of increased antioxidase activities and reductions in ROS contents. Overexpression of TaPRX-2A also increased the expression levels of stress-related genes and ABA-related genes. Taken together, our findings show that flavonoids, phytohormones, phenolamides and antioxidants are involved in the plant response to drought stress and that TaPRX-2A is a positive regulator of this response. Our study provides insights into tolerance mechanisms and highlights the potential of TaPRX-2A overexpression in enhancing drought tolerance in crop improvement programmes.
Collapse
Affiliation(s)
- Peisen Su
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Chao Sui
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Yufei Niu
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Jingyu Li
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Shuhan Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Fanting Sun
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Jun Yan
- Key Laboratory of Huang-Huai-Hai Smart Agricultural Technology of the Ministry of Agriculture and Rural Affairs, College of Information Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Shangjing Guo
- College of Agronomy, Liaocheng University, Liaocheng, China
| |
Collapse
|
42
|
Potential applications of peroxidase from Luffa acutangula in biotransformation. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
43
|
Shang H, Fang L, Qin L, Jiang H, Duan Z, Zhang H, Yang Z, Cheng G, Bao Y, Xu J, Yao W, Zhang M. Genome-wide identification of the class III peroxidase gene family of sugarcane and its expression profiles under stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1101665. [PMID: 36794222 PMCID: PMC9924293 DOI: 10.3389/fpls.2023.1101665] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 06/01/2023]
Abstract
INTRODUCTION Plant-specific Class III peroxidases (PRXs) play a crucial role in lignification, cell elongation, seed germination, and biotic and abiotic stresses. METHODS The class III peroxidase gene family in sugarcane were identified by bioinformatics methods and realtime fluorescence quantitative PCR. RESULTS Eighty-two PRX proteins were characterized with a conserved PRX domain as members of the class III PRX gene family in R570 STP. The ShPRX family genes were divided into six groups by the phylogenetic analysis of sugarcane, Saccharum spontaneum, sorghum, rice, and Arabidopsis thaliana. The analysis of promoter cis-acting elements revealed that most ShPRX family genes contained cis-acting regulatory elements involved in ABA, MeJA, light responsiveness, anaerobic induction, and drought inducibility. An evolutionary analysis indicated that ShPRXs was formed after Poaceae and Bromeliaceae diverged, and tandem duplication events played a critical role in the expansion of ShPRX genes of sugarcane. Purifying selection maintained the function of ShPRX proteins. SsPRX genes were differentially expressed in stems and leaves at different growth stages in S. spontaneum. However, ShPRX genes were differentially expressed in the SCMV-inoculated sugarcane plants. A qRT-PCR analysis showed that SCMV, Cd, and salt could specifically induce the expression of PRX genes of sugarcane. DISCUSSION These results help elucidate the structure, evolution, and functions of the class III PRX gene family in sugarcane and provide ideas for the phytoremediation of Cd-contaminated soil and breeding new sugarcane varieties resistant to sugarcane mosaic disease, salt, and Cd stresses.
Collapse
Affiliation(s)
- Heyang Shang
- National Engineering Research Center for Sugarcane & Guangxi Key Laboratory of Sugarcane Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Linqi Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Lifang Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Hongtao Jiang
- National Engineering Research Center for Sugarcane & Guangxi Key Laboratory of Sugarcane Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Zhenzhen Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Hai Zhang
- National Engineering Research Center for Sugarcane & Guangxi Key Laboratory of Sugarcane Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zongtao Yang
- National Engineering Research Center for Sugarcane & Guangxi Key Laboratory of Sugarcane Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guangyuan Cheng
- National Engineering Research Center for Sugarcane & Guangxi Key Laboratory of Sugarcane Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yixue Bao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Jingsheng Xu
- National Engineering Research Center for Sugarcane & Guangxi Key Laboratory of Sugarcane Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Muqing Zhang
- National Engineering Research Center for Sugarcane & Guangxi Key Laboratory of Sugarcane Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| |
Collapse
|
44
|
Czégény G, Rácz A. Phenolic peroxidases: Dull generalists or purposeful specialists in stress responses? JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153884. [PMID: 36543063 DOI: 10.1016/j.jplph.2022.153884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/11/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
This study focuses on class III peroxidases (POD) (EC 1.11.1.7) as regulators of cellular H2O2 levels in leaves under oxidative stress. The effective regulation of reactive oxygen species (ROS) concentrations in plant tissues is crucial for plant survival, and has been extensively reviewed. However, the majority of studies regard POD as a generalist without substrate specificity. This is partly due to the fact that laboratory protocols assessing POD levels use substrates, which are not contained in plants. Here, we show that both base- and stress-inducible POD activity depends on the choice of substrate. Moreover, the application of diverse substrates, particularly those contained in plants, unmasks POD isoenzymes that are distinguished by substrate preferences. This functional heterogeneity of POD responses is worth studying, especially in parallel with stress-induced changes in the phenolic profiles.
Collapse
Affiliation(s)
- Gyula Czégény
- Department of Plant Biology, Faculty of Sciences, University of Pécs, H-7633, Ifjúság útja 6, Pécs, Hungary
| | - Arnold Rácz
- Department of Plant Biology, Faculty of Sciences, University of Pécs, H-7633, Ifjúság útja 6, Pécs, Hungary.
| |
Collapse
|
45
|
Gao F, Zhang X, Zhang J, Li J, Niu T, Tang C, Wang C, Xie J. Zinc oxide nanoparticles improve lettuce ( Lactuca sativa L.) plant tolerance to cadmium by stimulating antioxidant defense, enhancing lignin content and reducing the metal accumulation and translocation. FRONTIERS IN PLANT SCIENCE 2022; 13:1015745. [PMID: 36388475 PMCID: PMC9647129 DOI: 10.3389/fpls.2022.1015745] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) contamination is a serious global concern that warrants constant attention. Therefore, a hydroponic study was conducted to evaluate the effect of different concentrations (0, 1, 2.5, 5, 10, 15 mg/l) of zinc oxide nanoparticles (ZnONPs) on the Cd content in lettuce (Lactuca sativa L.) under Cd stress conditions. The results showed that Cd stress triggered a decrease in plant biomass, an increase in relative electrolyte conductivity (REC), a decrease in root activity, accumulation of reactive oxygen species (ROS) accumulation, and nutrient imbalance. The application of ZnONPs reduced the toxicity symptoms of lettuce seedlings under Cd stress, with the most pronounced effect being observed 2.5 mg/l. ZnONPs promoted the growth of lettuce under Cd stress, mainly in terms of increase in biomass, chlorophyll content, antioxidant enzyme activity, and proline content, as well as reduction in Cd content, malondialdehyde, and reactive oxygen species (ROS) in plant tissues. ZnONPs also enhanced the uptake of ions associated with photosynthesis, such as iron, manganese, magnesium, and zinc. In addition, ZnONPs increase the amount of lignin in the roots, which blocks or reduces the entry of Cd into plant tissues.
Collapse
Affiliation(s)
- Feng Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xiaodan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Tianhang Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Chaonan Tang
- Institute of Vegetables, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Cheng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
46
|
Identification of KFB Family in Moso Bamboo Reveals the Potential Function of PeKFB9 Involved in Stress Response and Lignin Polymerization. Int J Mol Sci 2022; 23:ijms232012568. [PMID: 36293422 PMCID: PMC9604269 DOI: 10.3390/ijms232012568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 02/08/2023] Open
Abstract
The Kelch repeat F-box (KFB) protein is an important E3 ubiquitin ligase that has been demonstrated to perform an important post-translational regulatory role in plants by mediating multiple biological processes. Despite their importance, KFBs have not yet been identified and characterized in bamboo. In this study, 19 PeKFBs were identified with F-box and Kelch domains; genes encoding these PeKFBs were unevenly distributed across 12 chromosomes of moso bamboo. Phylogenetic analysis indicated that the PeKFBs were divided into eight subclades based on similar gene structures and highly conserved motifs. A tissue-specific gene expression analysis showed that the PeKFBs were differentially expressed in various tissues of moso bamboo. All the promoters of the PeKFBs contained stress-related cis-elements, which was supported by the differentially expression of PeKFBs of moso bamboo under drought and cold stresses. Sixteen proteins were screened from the moso bamboo shoots' cDNA library using PeKFB9 as a bait through a yeast two-hybrid (Y2H) assay. Moreover, PeKFB9 physically interacted with PeSKP1-like-1 and PePRX72-1, which mediated the activity of peroxidase in proteolytic turnover. Taken together, these findings improved our understanding of PeKFBs, especially in response to stresses, and laid a foundation for revealing the molecular mechanism of PeKFB9 in regulating lignin polymerization by degrading peroxidase.
Collapse
|
47
|
Ahmad B, Dar TA, Khan MMA, Ahmad A, Rinklebe J, Chen Y, Ahmad P. Oligochitosan fortifies antioxidative and photosynthetic metabolism and enhances secondary metabolite accumulation in arsenic-stressed peppermint. FRONTIERS IN PLANT SCIENCE 2022; 13:987746. [PMID: 36304406 PMCID: PMC9595047 DOI: 10.3389/fpls.2022.987746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
The current study was designed to investigate whether application of irradiated chitosan (ICn), a recently established plant growth promoter, can prove effective in alleviating arsenic (As) stress in peppermint, a medicinally important plant. This study investigated how foliar application of ICn alleviated As toxicity in peppermint (Mentha piperita L.). Peppermint plants were treated with ICn (80 mg L-1) alone or in combination with As (10, 20, or 40 mg kg-1 of soil, as Na2HAsO4·7H2O) 40 days after transplantation (DAT), and effects on the growth, photosynthesis, and antioxidants were assessed at 150 DAT as stress severely decreases plant growth, affects photosynthesis, and alters enzymatic (ascorbate peroxidase, superoxide dismutase) and non-enzymatic (glutathione) antioxidants. When applied at 40 mg kg-1, ICn significantly decreased the content of essential oil (EO) and total phenols in peppermint by 13.8 and 16.0%, respectively, and decreased phenylalanine ammonia lyase (PAL) and deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) activities by 12.8 and 14.6%, respectively. Application of ICn mitigated the disadvantageous effects caused by As toxicity in peppermint by enhancing activities of antioxidative enzymes and photosynthesis and increased accretion of secondary metabolism products (EOs and phenols). An enhancement of total phenols (increased by 17.3%) and EOs (36.4%) is endorsed to ICn-stimulated enhancement in the activities of PAL and DXR (65.9 and 28.9%, respectively) in comparison to the control. To conclude, this study demonstrated that foliar application of ICn (80 mgL-1) effectively promoted the growth and physiology of peppermint and eliminated As-induced toxicity to achieve high production of EO-containing crops grown in metal-contaminated soils.
Collapse
Affiliation(s)
- Bilal Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, India
- Department of Botany, Government Degree College for Women, University of Kashmir, Pulwama, India
| | - Tariq Ahmad Dar
- Department of Botany, Aligarh Muslim University, Aligarh, India
- Department of Botany, Government Degree College for Women, University of Kashmir, Pulwama, India
| | | | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Jörg Rinklebe
- Laboratory of Soil- and Groundwater-Management, School of Architecture and Civil Engineering, Institute of Soil Engineering, Waste- and Water Science, University of Wuppertal, Wuppertal, Germany
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, India
| | - Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | | |
Collapse
|
48
|
Khanna K, Kohli SK, Kumar P, Ohri P, Bhardwaj R, Alam P, Ahmad P. Arsenic as hazardous pollutant: Perspectives on engineering remediation tools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155870. [PMID: 35568183 DOI: 10.1016/j.scitotenv.2022.155870] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) is highly toxic metal (loid) that impairs plant growth and proves fatal towards human population. It disrupts physiological, biochemical and molecular attributes of plants associated with water/nutrient uptake, redox homeostasis, photosynthetic machineries, cell/membrane damage, and ATP synthesis. Numerous transcription factors are responsive towards As through regulating stress signaling, toxicity and resistance. Additionally, characterization of specific genes encoding uptake, translocation, detoxification and sequestration has also explained their underlying mechanisms. Arsenic within soil enters the food chain and cause As-poisoning. Plethora of conventional methods has been used since decades to plummet As-toxicity, but the success rate is quite low due to environmental hazards. Henceforth, exploration of effective and eco-friendly methods is aimed for As-remediation. With the technological advancements, we have enumerated novel strategies to address this concern for practicing such techniques on global scale. Novel strategies such as bioremediation, phytoremediation, mycorrhizae-mediated remediation, biochar, algal-remediation etc. possess extraordinary results. Moreover, nitric oxide (NO), a signaling molecule has also been explored in relieving As-stress through reducing oxidative damages and triggering antioxidative responses. Other strategies such as role of plant hormones (salicylic acid, indole-3-acetic acid, jasmonic acid) and micro-nutrients such as selenium have also been elucidated in As-remediation from soil. This has been observed through stimulated antioxidant activities, gene expression of transporters, defense genes, cell-wall modifications along with the synthesis of chelating agents such as phytochelatins and metallothioneins. This review encompasses the updated information about As toxicity and its remediation through novel techniques that serve to be the hallmarks for stress revival. We have summarised the genetic engineering protocols, biotechnological as well as nanotechnological applications in plants to combat As-toxicity.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; Department of Microbiology, D.A.V University, Sarmastpur, Jalandhar 144001, Punjab, India.
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Pankaj Kumar
- Department of Chemical Engineering, D.A.V University, Sarmastpur, Jalandhar 144001, Punjab, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Pravej Alam
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University (PSAU), Alkharj, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
49
|
Hou X, Lu Z, Hong K, Song K, Gu H, Hu W, Yao Q. The class III peroxidase gene family is involved in ascorbic acid induced delay of internal browning in pineapple. FRONTIERS IN PLANT SCIENCE 2022; 13:953623. [PMID: 35991401 PMCID: PMC9382127 DOI: 10.3389/fpls.2022.953623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/06/2022] [Indexed: 06/02/2023]
Abstract
Excessive production of reactive oxygen species (ROS) leads to potential toxicity in an organism. Class III peroxidases (PRXs) play an important role in maintaining ROS homeostasis in plants. Internal browning (IB) limits industrial development of pineapple, which is the third most important fruit trade in the world. IB is mainly caused by ROS, and the mechanism underlying IB is still unknown from the perspective of ROS. Here, we soaked pineapples in ascorbic acid after harvest and before storage to decrease excessive ROS and polyphenol oxidase (PPO) activity, ultimately restraining the spread and deterioration of IB. Using phylogenetic analysis; we identified 78 pineapple PRX genes (AcPRXs) and divided them into five subgroups. Gene structure analysis indicated that the exon numbers ranged from 2 to 14, and conserved motif analysis verified that all of the AcPRXs identified here have standard peroxidase domains. Analysis of duplication events suggested that tandem and segmental duplication events may have played equal and important roles in expanding the AcPRX family. Comprehensive transcriptomic analysis uncovered that AcPRXs may play an important role in negatively regulating the occurrence of IB. In summary, we found that ROS scavenging delayed IB occurrence. The results of characterized AcPRX family revealed that AcPRXs family responded to growth and development, and negatively regulated to IB occurrence in storage stage. This research provides potential target genes for future in-depth analysis of the molecular mechanisms underlying IB and contributes to develop IB-resistant pineapple varieties.
Collapse
Affiliation(s)
- Xiaowan Hou
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhiwei Lu
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Keqian Hong
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Kanghua Song
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Hui Gu
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Quansheng Yao
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| |
Collapse
|
50
|
Tissue-specific enhancement of OsRNS1 with root-preferred expression is required for the increase of crop yield. J Adv Res 2022; 42:69-81. [PMID: 35609869 PMCID: PMC9788951 DOI: 10.1016/j.jare.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/03/2022] [Accepted: 05/17/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Root development is a fundamental process that supports plant survival and crop productivity. One of the essential factors to consider when developing biotechnology crops is the selection of a promoter that can optimize the spatial-temporal expression of introduced genes. However, there are insufficient cases of suitable promoters in crop plants, including rice. OBJECTIVES This study aimed to verify the usefulness of a new rice root-preferred promoter to optimize the function of a target gene with root-preferred expression in rice. METHODS osrns1 mutant had defects in root development based on T-DNA insertional mutant screening and CRISPR technology. To optimize the function of OsRNS1, we generated OsRNS1-overexpression plants under two different promoters: a whole-plant expression promoter and a novel root-preferred expression promoter. Root growth, yield-related agronomic traits, RNA-seq, and reactive oxygen species (ROS) accumulation were analyzed for comparison. RESULTS OsRNS1 was found to be involved in root development through T-DNA insertional mutant analysis and gene editing mutant analysis. To understand the gain of function of OsRNS1, pUbi1::OsRNS1 was generated for the whole-plant expression, and both root growth defects and overall growth defects were found. To overcome this problem, a root-preferential overexpression line using Os1-CysPrxB promoter (Per) was generated and showed an increase in root length, plant height, and grain yield compared to wild-type (WT). RNA-seq analysis revealed that the response to oxidative stress-related genes was significantly up-regulated in both overexpression lines but was more obvious in pPer::OsRNS1. Furthermore, ROS levels in the roots were drastically decreased in pPer::OsRNS1 but were increased in the osrns1 mutants compared to WT. CONCLUSION The results demonstrated that the use of a root-preferred promoter effectively optimizes the function of OsRNS1 and is a useful strategy for improving root-related agronomic traits as well as ROS regulation.
Collapse
|