1
|
Wang H, Zhong Y, Yang Q, Li J, Li D, Wu J, Yang S, Liu J, Deng Y, Song J, Peng P. Coupling of sulfate reduction and dissolved organic carbon degradation accelerated by microplastics in blue carbon ecosystems. WATER RESEARCH 2025; 279:123414. [PMID: 40056474 DOI: 10.1016/j.watres.2025.123414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025]
Abstract
Microplastics have increasingly accumulated in sulfate- and organic matter-rich mangrove ecosystems, yet their effects on microbially mediated carbon and sulfur cycling in sediments remains poorly understood. In this study, we performed a 70-day anaerobic microcosm experiment to examine the effects of polylactic acid (PLA) microplastics with different sizes on sulfate reduction and dissolved organic carbon (DOC) degradation in mangrove sediments. Our results demonstrated that millimeter-scale PLA (mm-PLA) more effectively enhanced sulfate reduction, sulfur isotope fractionation, reduced sulfide production, and carbon dioxide (CO2) emission compared to micrometer-scale PLA (m-PLA). These results suggested that mm-PLA had a more pronounced impact on the carbon and sulfur cycles. Integrated 16S rRNA gene amplicon sequencing and metagenomic analyses revealed that mm-PLA preferentially enriched key functional microorganisms, including acetate-producing bacteria (e.g., Acetobacteroides), completely oxidizing sulfate-reducing bacteria (e.g., Desulfobacter), and incompletely oxidizing sulfate-reducing bacteria (e.g., Desulfobulbus). These microorganisms exhibited higher abundances and greater genetic potential for carbon metabolism and sulfate reduction under mm-PLA treatment. Their relative abundances showed positive correlations with sulfate reduction rates, sulfur isotope fractionation, and CO2 emission, identifying them as crucial drivers of coupled carbon-sulfur cycling. Furthermore, the synergistic interactions among Acetobacteroides, Desulfobacter, and Desulfobulbus facilitated the oxidation of sediment-derived DOC, highlighting significant implications for carbon sequestration in blue carbon ecosystems.
Collapse
Affiliation(s)
- Heli Wang
- State Key Laboratory of Advanced Environmental Technology and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou 510640, China; Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China 523808, China
| | - Yin Zhong
- State Key Laboratory of Advanced Environmental Technology and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou 510640, China.
| | - Qian Yang
- State Key Laboratory of Advanced Environmental Technology and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaying Li
- State Key Laboratory of Advanced Environmental Technology and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan
| | - Junhong Wu
- State Key Laboratory of Advanced Environmental Technology and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sen Yang
- State Key Laboratory of Advanced Environmental Technology and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiashuo Liu
- State Key Laboratory of Advanced Environmental Technology and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yirong Deng
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China 523808, China
| | - Jianzhong Song
- State Key Laboratory of Advanced Environmental Technology and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou 510640, China
| | - Ping'an Peng
- State Key Laboratory of Advanced Environmental Technology and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou 510640, China
| |
Collapse
|
2
|
Liu X, Li H, Yang J, Yan S, Zhou Y, Jiang R, Li R, Wang M, Ren P. Different effects of bio/non-degradable microplastics on sewage sludge compost performance: Focusing on antibiotic resistance genes, virulence factors and key metabolic functions. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137329. [PMID: 39879766 DOI: 10.1016/j.jhazmat.2025.137329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Microplastics (MP) have aroused increasing concern due to the negative environmental impact. However, the impact of bio/non-biodegradable MPs on the sludge composting process has not been thoroughly investigated. This study examined antibiotic resistance genes (ARGs), virulence factors (VFs), and microbial community functions in sludge compost with the application of polylactic acid (PLA) and polypropylene (PP), using metagenomic sequencing. The findings indicated that both types of MPs could extend the thermophilic phase, enhance microbial activity, and inhibit the formation of humic acids. Compared to CK, the subtypes of ARGs decreased 4.22 % and 13.11 % in PLA and PP groups, respectively. But new ARGs emerged, particularly in the PLA group. The proportions of ARGs related to efflux and VFs associated with the adhesion system increased 1.62 %-2.27 % and 55.56 %-60.00 %, respectively, in MPs-added composts. The relative abundance of potential bacterial hosts (e.g., Psychrobacter) carrying multiple ARGs and VFs was much higher in PLA-added compost than in the other two. Moreover, PP facilitated denitrification process and PLA enhanced dissimilatory nitrate reduction to ammonium. Both types of MPs inhibited assimilatory nitrate reduction to ammonia but promoted inorganic nitrogen assimilation. This study broadens our understanding of the potential environmental risks posed by biodegradable and non-biodegradable microplastics on sludge compost and offers valuable insights for the management and application of compost products.
Collapse
Affiliation(s)
- Xiangyu Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huiyue Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jie Yang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shen Yan
- Staff Development Institute of China National Tobacco Corporation, Zhengzhou 450000, China
| | - Yufei Zhou
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rui Jiang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Renhe Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mengmeng Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Peng Ren
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China
| |
Collapse
|
3
|
Bai F, Fan J, Zhang X, Wang X, Liu S. Biodegradation of polyethylene with polyethylene-group-degrading enzyme delivered by the engineered Bacillus velezensis. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137330. [PMID: 39862780 DOI: 10.1016/j.jhazmat.2025.137330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/30/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Microplastics (MPs) pose an emerging threat to vegetable growing soils in Harbin, which have a relatively high abundance (11,065 n/kg) with 17.26 of potential ecological risk of single polymer hazard (EI) and 33.92 of potential ecological risk index (PERI). Polyethylene (PE) is the main type of microplastic pollution in vegetable growing soils in Harbin. In this study, the engineered Bacillus velezensis with polyethylene-group-degrading enzyme pathway (BCAv-PEase) was constructed to enhance the degradation of MPs of PE (PE-MPs). BCAv-PEase increased the biodegradation of PE-MPs, promoted weight loss of PE films, elevated surface tension, and decreased the surface hydrophobicity of PE through upregulating activities of depolymerases, dehydrogenase, and catalase. Mechanism analysis showed that BCAv-PEase degraded PE-MPs by promoting the secretion of PEase, thereby leading to the generation of new oxygenated functional groups within the PE-MPs substrate, which further accelerated the metabolic pathway of PE-MPs. The analysis of the microbial community during the PE-MPs degradation processes revealed that BCAv-PEase emerged as the principal bacterial player and stimulated the abundance of microbes and functional genes associated with the biodegradation of PE. In conclusion, this study provides a potential mechanism for biodegradation of PE-MPs mediated by BCAv-PEase via modulating substrate selectivity and optimizing biocatalytic pathways.
Collapse
Affiliation(s)
- Fuliang Bai
- School of Geographical Science, Harbin Normal University, Harbin 150025, China.
| | - Jie Fan
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Xiangyu Zhang
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Xuemeng Wang
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Shuo Liu
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
4
|
Li S, Peng Y, Li M, Li X, Li H, Dabu X, Yang Y. Different active exogenous carbons improve the yield and quality of roses by shaping different bacterial communities. Front Microbiol 2025; 16:1558322. [PMID: 40226102 PMCID: PMC11985833 DOI: 10.3389/fmicb.2025.1558322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/14/2025] [Indexed: 04/15/2025] Open
Abstract
The application of exogenous organic carbon represents a significant strategy for enhancing soil fertility and promoting sustainable agricultural development. This approach modifies the physicochemical properties of soil and influences microbial community structures, consequently improving crop yield and quality. Nevertheless, the mechanisms underlying microbial community responses to various forms of active exogenous organic carbon remain poorly understood and require further investigation. A 1-year follow-up experiment was conducted to examine the effects of different carbon sources on the yield and quality of cut roses, along with the characteristics of the soil bacterial community. The results indicated that applying organic fertiliser and biochar significantly enhanced the productivity of cut roses, demonstrating a sustained growth-promoting effect. Organic fertiliser provides more active, readily oxidisable organic carbon to the soil compared to biochar. In contrast, biochar supplies stable organic carbon, including inert organic carbon that is difficult to oxidise, firm organic carbon (FOC), and total inert organic carbon, which has a high degree of humification that significantly exceeds that of organic fertiliser. The application of biochar and organic fertiliser not only altered the abundance, diversity, and composition of the rhizosphere microbial community but also enriched beneficial microorganisms. Redundancy analysis results indicated that FOC, available phosphorus, and soil organic matter were the primary factors influencing the bacterial community. The results of this study demonstrated that exogenous organic carbon exerted positive and indirect effects on crop yield by influencing soil properties and bacterial communities. These findings provide novel evidence supporting the rational application of biochar and organic fertilisers as a means to promote agricultural sustainability in red soil regions.
Collapse
Affiliation(s)
- Shixiong Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yuanyang Peng
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Manying Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xin Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Haoyang Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xilatu Dabu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yun Yang
- Yunnan Huayan Agricultural Science and Technology Co., Ltd., Kunming, China
| |
Collapse
|
5
|
Yang F, Yang L, Wei J, Ma T, Zhou M, Liao L, Xie J, Zhou P. Comprehensive genomic and transcriptomic analyses of the anaerobic degradation of microcystin in Alcaligenes faecalis D04. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117721. [PMID: 39823672 DOI: 10.1016/j.ecoenv.2025.117721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/19/2025]
Abstract
Microcystin LR (MC-LR) pollution is a serious threat to aquatic ecosystems and public health in China and is an environmental problem that urgently needs to be solved. However, few studies have investigated the anaerobic degradation pathway and related molecular biological mechanisms of MC-LR. In this study, a bacterium capable of degrading MC-LR with a degradation efficiency of 0.303 µg/mL/d under anaerobic conditions was isolated from water. The strain was identified as Alcaligenes and named Alcaligenes faecalis D04. Two new anaerobic degradation products, one pentapeptide (Adda-Glu-Mdha-Ala-Leu) and one tripeptide (Adda-Glu-Mdha), were identified by chromatography and mass spectrometry, and two new anaerobic degradation pathways for microcystins were proposed. This study revealed a new connection between related functional genes (mblH, ridA, paaA, livI, soxR, gltD, marR, etc.) and bacterial degradation functions through the analysis of multiomics data. Real-time quantitative PCR analysis verified that the expression trends of the differentially expressed genes were consistent with the transcriptomic data. Our study aimed to elucidate the anaerobic degradation pathway and molecular regulatory mechanism of MC-LR in Alcaligenes faecalis D04, which offers important practical significance for microbial strategies to prevent and regulate microcystin contamination.
Collapse
Affiliation(s)
- Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China.
| | - Lili Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China.
| | - Jia Wei
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China.
| | - Tian Ma
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China.
| | - Mengna Zhou
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China.
| | - Liwen Liao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China.
| | - Junhao Xie
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China.
| | - Pengji Zhou
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
6
|
Kuai Y, Chen Z, Xie K, Chen J, He J, Gao J, Yu C. Long-term exposure to polystyrene microplastics reduces macrophages and affects the microbiota-gut-brain axis in mice. Toxicology 2024; 509:153951. [PMID: 39265698 DOI: 10.1016/j.tox.2024.153951] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The remarkably increase in plastic use has led to worldwide pollution involving microplastics (MPs), which have been shown to be potentially hazardous substances. Although several studies have focused on the effects of small MPs on the brain and behavior of aquatic species, their effects on the mouse brain and the underlying mechanisms remain unclear. Our study's aim was to investigate the effects of long-term oral ingestion of different sizes of MPs (0.1, 5, and 50 μm) on mouse colon tissue. Of these sizes, the smallest (0.1 μm) had the greatest effect. Pre-administration of MP promotes colitis but reduces tumor growth in a colitis-associated colorectal cancer (CAC) mouse mode. MPs can increase inflammation in mice via activation of the very late antigen 4-vascular cell adhesion molecule 1 (VLA4-VCAM1) signaling pathway in macrophages, while also inducing macrophage reduction in the late phase of inflammation. In the microbiota-gut-brain axis, polystyrene MP treatment altered bile acid and carbohydrate metabolism in the intestine, inhibited intestinal motility, reduced water reabsorption, and led to a certain degree of depression in mice. These findings suggest that small MPs can induce macrophage reduction, thereby affecting the physical and mental health by modulating the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Yue Kuai
- The Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Zhuoneng Chen
- The Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Kai Xie
- The Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Jianning Chen
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China.
| | - Jiannan He
- The Department of Anesthesiology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China.
| | - Jianguo Gao
- The Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Chaohui Yu
- The Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
7
|
Wang Z, Liu L, Zhou G, Yu H, Hrynsphan D, Tatsiana S, Robles-Iglesias R, Chen J. Impact of microplastics on microbial community structure in the Qiantang river: A potential source of N 2O emissions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124755. [PMID: 39151781 DOI: 10.1016/j.envpol.2024.124755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
This study aimed to investigate the spatial distribution of microplastics (MPs) and the features of the bacterial community in the Qiantang River urban river. Surface water samples from the Qiantang River were analyzed for this purpose. The results of the 16S high-throughput sequencing indicated that the microbial community diversity of MPs was significantly lower than in natural water but higher than in natural substrates. The biofilm of MPs was mainly composed of Enterobacteriaceae (28.00%), Bacillaceae (16.25%), and Phormidiaceae (6.75%). The biodiversity on MPs, natural water, and natural substrates varied significantly and was influenced by seasonal factors. In addition, the presence of MPs hindered the denitrification process in the aquatic environment and intensified N2O emission when the nitrate concentration was higher than normal. In particular, polyethylene terephthalate (PET) exhibited a 12% residue of NO3--N and a 4.2% accumulation of N2O after a duration of 48 h. Further findings on gene abundance and cell viability provided further confirmation that PET had a considerable impact on reducing the expression of nirS (by 0.34-fold) and nosZ (by 0.53-fold), hence impeding the generation of nicotinamide adenine dinucleotide (NADH) (by 0.79-fold). Notably, all MPs demonstrated higher the nirK gene abundances than the nirS gene, which could account for the significant accumulation of N2O. The results suggest that MPs can serve as a novel carrier substrate for microbial communities and as a potential promoter of N2O emission in aquatic environments.
Collapse
Affiliation(s)
- Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Lingxiu Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China; College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Gang Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hui Yu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dzmitry Hrynsphan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Savitskaya Tatsiana
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Raúl Robles-Iglesias
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research/Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, La Coruña, 15008, Spain
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
8
|
Tang B, Hung W, Salam M, Zhang L, Yang Y, Niu J, Li H, Zhang L. Suspended particulate matter-biofilm aggregates benefit microcystin removal in turbulent water but trigger toxicity toward Daphnia magna. WATER RESEARCH 2024; 263:122150. [PMID: 39084089 DOI: 10.1016/j.watres.2024.122150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Suspended particulate matter (SPM) and biofilm are critical in removing contaminants in aquatic environments, but the environmental behavior and ecological toxicity of SPM-biofilm aggregates modulated by turbulence intensities are largely unknown. This study determined the removal pathways of microcystin-LR (MC-LR) by SPM and its biofilm under different turbulence intensities (2.25 × 10-3, 1.01 × 10-2, and 1.80 × 10-2 m2/s3). Then, we evaluated the toxicity of SPM-biofilm aggregates to Daphnia magna. The results revealed that SPM contributed to the adsorption of MC-LR, and the removal of MC-LR can be accelerated with biofilm formation on SPM, with 95.66 % to 97.45 % reduction in MC-LR concentration under the studied turbulence intensities. Higher turbulence intensity triggered more frequent contact of SPM and MC-LR, formed compact but smaller clusters of SPM-biofilm aggregates, and enhanced the abundance of mlrA and mlrB; thus benefiting the adsorption, biosorption, and biodegradation of MC-LR. Furthermore, the SPM-biofilm aggregates formed in turbulent water triggered oxidative stress to Daphnia magna, while a weak lethal toxic effect was identified under moderate turbulence intensity. The results indicate that the toxicity of SPM-biofilm aggregates fail to display a linear relationship with turbulence intensity. These findings offer new perspectives on understanding the environmental behavior and ecological outcomes of SPM and its biofilms in turbulent aquatic environments.
Collapse
Affiliation(s)
- Bingran Tang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Wei Hung
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Muhammad Salam
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Lixue Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yongchuan Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Hong Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Lilan Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
9
|
Yang W, Zhang H, Yang S, Xiao Y, Ye K, He R, Liu Y, Hu Z, Guo W, Zhang Q, Qu H, Mao Y. Combined effects of microplastics and pharmaceutical and personal care products on algae: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124478. [PMID: 38950849 DOI: 10.1016/j.envpol.2024.124478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/03/2024]
Abstract
Microplastics (MPs) and pharmaceuticals and personal care products (PPCPs) are ubiquitous in aquatic environments. Algae play an important role in aquatic environments. Thus, it is important to study the response of algae to combined exposure of MPs and PPCPs. Here, we review the effects of MPs and PPCPs on algae. First, the individual effects of MPs and PPCPs on algae were summarized. Second, the combined effects of MPs and PPCPs on algae were systematically analyzed. (1) Antagonism: ① when the MPs are too large to enter the algal cells, the adsorption of PPCPs onto MPs results in decreased the contact of MPs and PPCPs with algae; ② PPCPs and MPs have opposing actions on the same biological target; ③ MPs increase the activity of metabolic enzymes in algae, thus promoting the PPCP degradation. (2) Synergy: ① when the MPs are small enough to enter algal cells, the adsorption of PPCPs on MPs promotes the entry of PPCPs; ② when MPs are negatively charged, the adsorption of positively charged PPCPs by MPs decreases the electrostatic repulsion, increasing the interaction between algae and MPs; ③ complementary modes of action between MPs and PPCPs show combined effects on the same biological target. Third, the relative importance of the factors that impact the combined effects are evaluated using the random forest model decreased in the following order: PPCP types > algal species > MP size > MP concentration > MP types > exposure time. Finally, future directions for the combined effects of MPs and PPCPs are proposed, which will facilitate a better understanding of the environmental fate and risks of both MPs and PPCPs.
Collapse
Affiliation(s)
- Wei Yang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Hao Zhang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Shengfa Yang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yi Xiao
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Kailai Ye
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Ruixu He
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yao Liu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Zuoyuan Hu
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Wenshu Guo
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Qin Zhang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Han Qu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China.
| | - Yufeng Mao
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China; Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China; Lingzhi Environmental Protection Co., Ltd, Wuxi, 214200, China.
| |
Collapse
|
10
|
Kutralam-Muniasamy G, Shruti VC, Pérez-Guevara F. Plastisphere-hosted viruses: A review of interactions, behavior, and effects. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134533. [PMID: 38749241 DOI: 10.1016/j.jhazmat.2024.134533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
Microbial communities, including bacteria, diatoms, and fungi, colonize plastic surfaces, forming biofilms known as the "plastisphere." Recent research has revealed that plastispheres also host a wide range of viruses, sparking interest in microbial ecology and virology. This shared habitat allows viruses to replicate, interact, infect, and spread, potentially impacting the environment and human health. Consequently, viruses attached to microplastics are now recognized to have broad effects on cellular and immune responses. However, the ecology and implications of viruses hosted in plastisphere habitats remain poorly understood, highlighting their fundamental importance as a subject of study. This review explores various pathways for virus attachment to plastispheres, factors influencing these interactions, their impacts within plastisphere and host-associated environments, and associated issues. It also summarizes current research and identifies knowledge gaps. We anticipate that this paper will help improve our predictive understanding of plastisphere viruses in natural settings and emphasizes the need for more research in real-world environments to advance the field.
Collapse
Affiliation(s)
- Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México.
| | - V C Shruti
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México
| |
Collapse
|
11
|
Zhang Y, Xu X, Xu J, Li Z, Cheng L, Fu J, Sun W, Dang C. When antibiotics encounter microplastics in aquatic environments: Interaction, combined toxicity, and risk assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172455. [PMID: 38636871 DOI: 10.1016/j.scitotenv.2024.172455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Antibiotics and microplastics (MPs), known as emerging pollutants, are bound to coexist in aquatic environments due to their widespread distribution and prolonged persistence. To date, few systematic summaries are available for the interaction between MPs and antibiotics in aquatic ecosystems, and a comprehensive reanalysis of their combined toxicity is also needed. Based on the collected published data, we have analyzed the source and distribution of MPs and antibiotics in global aquatic environments, finding their coexistence occurs in a lot of study sites. Accordingly, the presence of MPs can directly alter the environmental behavior of antibiotics. The main influencing factors of interaction between antibiotics and MPs have been summarized in terms of the characteristics of MPs and antibiotics, as well as the environmental factors. Then, we have conducted a meta-analysis to evaluate the combined toxicity of antibiotics and MPs on aquatic organisms and the related toxicity indicators, suggesting a significant adverse effect on algae, and inapparent on fish and daphnia. Finally, the environmental risk assessments for antibiotics and MPs were discussed, but unfortunately the standardized methodology for the risk assessment of MPs is still challenging, let alone assessment for their combined toxicity. This review provides insights into the interactions and environment risks of antibiotics and MPs in the aquatic environment, and suggests perspectives for future research.
Collapse
Affiliation(s)
- Yibo Zhang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Xin Xu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jing Xu
- Dezhou Eco-environment Monitoring Center of Shandong Province, Dezhou, 253000, China
| | - Zhang Li
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Long Cheng
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jie Fu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Weiling Sun
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chenyuan Dang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China.
| |
Collapse
|
12
|
Guo Z, Zhang M, Li J. Modifying luteolin's algicidal effect on Microcystis by virgin and diversely-aged polystyrene microplastics: Unveiling novel mechanisms through microalgal adaptive strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124237. [PMID: 38801882 DOI: 10.1016/j.envpol.2024.124237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 05/29/2024]
Abstract
Luteolin has shown great potential in inhibiting Microcystis-dominated cyanobacterial blooms. However, widespread microplastics (MPs) in natural aquatic systems often serve as substrates for cyanobacterial growth, which could impact cyanobacterial resistance to external stresses and interfere with luteolin's algicidal effect. This study explored the influence of virgin and diversely-aged polystyrene microplastics (PS-MPs) on inhibitory effect of luteolin on Microcystis growth and its microcystins (MCs) production/release. Moreover, the underlying mechanisms were also revealed by jointly analyzing SEM image, antioxidant response, exopolymeric substances (EPSs) production, and functional gene expression. Results suggested that 0.5, 5, and 50 mg/L virgin and diversely-aged PS-MPs almost weakened growth inhibition and oxidative damage of two doses of luteolin against Microcystisby stimulating its EPSs production and inducing self-aggregation of Microcystis cells and/or hetero-aggregation between Microcystis cells and PS-MPs. Compared to virgin PS-MPs, photo-aged PS-MPs possessed rougher flaky surfaces, and hydrothermal-aged PS-MPs showed internal cracking. These characteristics led to greater stimulation of EPS production and exhibited more significant protective effects on Microcystis. Notably, PS-MPs also decreased MCs content in aqueous phase, likely because they adsorbed some MCs. Such toxigenic hetero-aggregates formed by MCs, MPs, and Microcystis cells would directly poison grazing organisms that consume them and create more pathways for MCs into food web, posing greater eco-risks. This is the first study to clarify the influence and mechanisms of virgin and diversely-aged MPs on allelopathic algicidal effects from the perspective of microalgal inherent adaptive strategies.
Collapse
Affiliation(s)
- Zhonghui Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Mingxia Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Jieming Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
13
|
Mao Y, Hu Z, Li H, Zheng H, Yang S, Yu W, Tang B, Yang H, He R, Guo W, Ye K, Yang A, Zhang S. Recent advances in microplastic removal from drinking water by coagulation: Removal mechanisms and influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123863. [PMID: 38565391 DOI: 10.1016/j.envpol.2024.123863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Microplastics (MPs) are emerging contaminants that are widely detected in drinking water and pose a potential risk to humans. Therefore, the MP removal from drinking water is a critical challenge. Recent studies have shown that MPs can be removed by coagulation. However, the coagulation removal of MPs from drinking water remains inadequately understood. Herein, the efficiency, mechanisms, and influencing factors of coagulation for removing MPs from drinking water are critically reviewed. First, the efficiency of MP removal by coagulation in drinking water treatment plants (DWTPs) and laboratories was comprehensively summarized, which indicated that coagulation plays an important role in MP removal from drinking water. The difference in removal effectiveness between the DWTPs and laboratory was mainly due to variations in treatment conditions and limitations of the detection techniques. Several dominant coagulation mechanisms for removing MPs and their research methods are thoroughly discussed. Charge neutralization is more relevant for small-sized MPs, whereas large-sized MPs are more dependent on adsorption bridging and sweeping. Furthermore, the factors influencing the efficiency of MP removal were jointly analyzed using meta-analysis and a random forest model. The meta-analysis was used to quantify the individual effects of each factor on coagulation removal efficiency by performing subgroup analysis. The random forest model quantified the relative importance of the influencing factors on removal efficiency, the results of which were ordered as follows: MPs shape > Coagulant type > Coagulant dosage > MPs concentration > MPs size > MPs type > pH. Finally, knowledge gaps and potential future directions are proposed. This review assists in the understanding of the coagulation removal of MPs, and provides novel insight into the challenges posed by MPs in drinking water.
Collapse
Affiliation(s)
- Yufeng Mao
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China; Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Zuoyuan Hu
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Huaili Zheng
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Shengfa Yang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Bingran Tang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Hao Yang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Ruixu He
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Wenshu Guo
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Kailai Ye
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Aoguang Yang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Shixin Zhang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China.
| |
Collapse
|
14
|
Tang S, Gong J, Song B, Cao W, Li J. Remediation of biochar-supported effective microorganisms and microplastics on multiple forms of heavy metals in eutrophic lake. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133098. [PMID: 38064949 DOI: 10.1016/j.jhazmat.2023.133098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 02/08/2024]
Abstract
In mineral-rich areas, eutrophic lakes are at risk of HMs pollution. However, few papers focused on the repair of HMs in eutrophic environment. Our study analyzed multiple forms of HMs, pore structure and microbial responses in the water-sediment system of eutrophic lake treated with biochar, Effective Microorganisms (EMs) or/and microplastics (MPs). As biochar provided an ideal carrier for EMs, the remediation of biochar-supported EMs (BE) achieved the greatest repairment that improved the bacterial indexes and greatly decreased the most HMs in various forms across the water-sediment system, and it also reduced metal mobility, bioavailability and ecological risk. The addition of aged MPs (MP) stimulated the microbial activity and significantly reduced the HMs levels in different forms due to the adsorption of biofilms/EPS adhered on MPs, but it increased metals mobility and ecological risks. The strong adsorption and high mobility of aged MPs would increase enrichment of HMs and cause serious ecological hazards. The incorporation of BE and MP (MBE) also greatly reduced the HMs in full forms, which was primarily ascribed to the adsorption of superfluous biofilms/EPS, but it distinctly depressed the microbial activity. The single addition of biochar and EMs resulted in the inability of HMs to be adsorbed due to the preferentially adsorption of dissolved nutrients and the absence of effective carrier, respectively. In the remediation cases, the remarkable removal of HMs was principally accomplished by the adsorption of HMs with molecular weight below 100 kDa, especially 3 kDa ∼100 kDa, which had higher specific surfaces and abundant active matters, resulting in higher adsorption onto biofilms/EPS.
Collapse
Affiliation(s)
- Siqun Tang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| | - Jilai Gong
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China.
| | - Biao Song
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| | - Weicheng Cao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| | - Juan Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| |
Collapse
|
15
|
Ren X, Mao M, Feng M, Peng T, Long X, Yang F. Fate, abundance and ecological risks of microcystins in aquatic environment: The implication of microplastics. WATER RESEARCH 2024; 251:121121. [PMID: 38277829 DOI: 10.1016/j.watres.2024.121121] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/14/2023] [Accepted: 01/07/2024] [Indexed: 01/28/2024]
Abstract
Microcystins are highly toxic cyanotoxins and have been produced worldwide with the global expansion of harmful cyanobacterial blooms (HABs), posing serious threats to human health and ecosystem safety. Yet little knowledge is available on the underlying process occurring in the aquatic environment with microcystins. Microplastics as vectors for pollutants has received growing attention and are widely found co-existing with microcystins. On the one hand, microplastics could react with microcystins by adsorption, altering their environmental behavior and ecological risks. On the other hand, particular attention should be given to microplastics due to their implications on the outbreak of HABs and the generation and release of microcystins. However, limited reviews have been undertaken to link the co-existing microcystins and microplastics in natural water. This study aims to provide a comprehensive understanding on the environmental relevance of microcystins and microplastics and their potential interactions, with particular emphasis on the adsorption, transport, sources, ecotoxicity and environmental transformation of microcystins affected by microplastics. In addition, current knowledge gaps and future research directions on the microcystins and microplastics are presented. Overall, this review will provide novel insights into the ecological risk of microcystins associated with microplastics in real water environment and lay foundation for the effective management of HABs and microplastic pollution.
Collapse
Affiliation(s)
- Xiaoya Ren
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Meiyi Mao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Mengqi Feng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Tangjian Peng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xizi Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiang Ya School of Public Health, Central South University, Changsha 410078, China.
| |
Collapse
|
16
|
Liu J, Dong Y, Lin H. Effects of microcystin-LR on purification efficiency of simulating drinking water source by Hydrocharis dubia (Bl.) backer. Toxicon 2024; 241:107654. [PMID: 38368956 DOI: 10.1016/j.toxicon.2024.107654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
The safety of drinking water source directly affects human health. Microcystin-LR (MC-LR), a toxic and common pollutant in drinking water source, is released by algae and can impede the in-situ remediation effect of aquatic plant. Finding out the effect mechanism of MC-LR on the purification of drinking water by aquatic plant is the key to its application. This study aims to explore the performance and mechanism of MC-LR on drinking water source purification by Hydrocharis dubia (Bl.) backer. The optimum removal efficiency of NH4+-N, TP and COD were 90.7%, 93.2% and 77.3% at MC-LR concentration of 0.5 μg L-1, respectively. With the increase of MC-LR concentration, the pollutants removal rate was obviously inhibited causing by concentration-dependent. Furthermore, the growth and development of the Hydrocharis dubia (Bl.) backer roots were significantly promoted at the concentration of 0.1 μg L-1. The length, tips, surface area, and average diameter of the root increased by 71.3%, 271.4%, 265.5%, and 113.0%, respectively. Chlorophyll contents under low-concentration MC-LR show a 14.5%-15.7% promoting effect compared with the control group. The activities of POD and CAT were also stimulated with the MC-LR increasing (<1.0 μg L-1). Notably, the MDA contents increased with increasing MC-LR concentration (p < 0.01). This study indicates the effect mechanism of MC-LR on Hydrocharis dubia (Bl.) backer purification performance relies on the increased growth and enzyme activity of Hydrocharis dubia (Bl.) backer.
Collapse
Affiliation(s)
- Junfei Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Shunde, 528399, China.
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|
17
|
Mao Y, Lin T, Li H, He R, Ye K, Yu W, He Q. Aerobic methane production by phytoplankton as an important methane source of aquatic ecosystems: Reconsidering the global methane budget. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167864. [PMID: 37866611 DOI: 10.1016/j.scitotenv.2023.167864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
Biological methane, a major source of global methane budget, is traditionally thought to be produced in anaerobic environments. However, the recent reports about methane supersaturation occurring in oxygenated water layer, termed as "methane paradox", have challenged this prevailing paradigm. Significantly, growing evidence has indicated that phytoplankton including prokaryotic cyanobacteria and eukaryotic algae are capable of generating methane under aerobic conditions. In this regard, a systematic review of aerobic methane production by phytoplankton is expected to arouse the public attention, contributing to the understanding of methane paradox. Here, we comprehensively summarize the widespread phenomena of methane supersaturation in oxic layers. The remarkable correlation relationships between methane concentration and several key indicators (depth, chlorophyll a level and organic sulfide concentration) indicate the significance of phytoplankton in in-situ methane accumulation. Subsequently, four mechanisms of aerobic methane production by phytoplankton are illustrated in detail, including photosynthesis-driven metabolism, reactive oxygen species (ROS)-driven demethylation of methyl donors, methanogenesis catalyzed by nitrogenase and demethylation of phosphonates catalyzed by CP lyase. The first two pathways occur in various phytoplankton, while the latter two have been specially discovered in cyanobacteria. Additionally, the effects of four crucial factors on aerobic methane production by phytoplankton are also discussed, including phytoplankton species, light, temperature and crucial nutrients. Finally, the measures to control global methane emissions from phytoplankton, the precise intracellular mechanisms of methane production and a more complete global methane budget model are definitely required in the future research on methane production by phytoplankton. This review would provide guidance for future studies of aerobic methane production by phytoplankton and emphasize the potential contribution of aquatic ecosystems to global methane budget.
Collapse
Affiliation(s)
- Yufeng Mao
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China; Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China; Lingzhi Environmental Protection Co., Ltd, Wuxi 214200, China
| | - Tong Lin
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Ruixu He
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Kailai Ye
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Qiang He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
18
|
Ma T, Zhang J, Yang L, Zhang S, Long X, Zeng Q, Li Z, Ren X, Yang F. Reusable and Practical Biocomposite Based on Sphingopyxis sp. YF1 and Polyacrylonitrile-Based Carbon Fiber for the Efficient Bioremediation of Microcystin-LR-Contaminated Water. Toxins (Basel) 2023; 16:20. [PMID: 38251236 PMCID: PMC10819031 DOI: 10.3390/toxins16010020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Microbial degradation is a cost-effective and environmentally friendly method for removing microcystin-LR (MC-LR). However, the application of free bacteria has limitations due to low operational stability and difficulties in recovery. In a previous study, our group successfully isolated a highly efficient MC-LR-degrading bacterium, Sphingopyxis sp. YF1, from Taihu. To enhance its practical potential in addressing MC-LR-contaminated water pollution, a novel biological material named polyacrylonitrile-based carbon fiber @Sphingopyxis sp. YF1 (PAN-CF@YF1) was synthesized. The immobilization conditions of strain Sphingopyxis sp. YF1 on PAN-CF surfaces were optimized using Box-Behnken design and response surface methodology (RSM), which turned out to be an optimal pH of 7.6 for the culture medium, a ratio of 0.038 g of supporting materials per 100 mL of culture media, and an incubation time of 53.4 h. The resultant PAN-CF@YF1 showed a great degradation effect both for low and high concentrations of MC-LR and exhibited satisfactory cyclic stability (85.75% after six cycles). Moreover, the application of PAN-CF@YF1 in the bioreactors demonstrated effective and sustainable MC-LR removal, with a removal efficiency of 78.83% after three consecutive treatments. Therefore, PAN-CF@YF1 with high degradation activity, environmental compatibility, straightforward preparation, and recyclability shows significant application potential for the bioremediation of MC-LR-contaminated water bodies.
Collapse
Affiliation(s)
- Tian Ma
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
| | - Jiajia Zhang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiang Ya School of Public Health, Central South University, Changsha 410078, China
| | - Lili Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
| | - Shengyu Zhang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
| | - Xizi Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
| | - Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, School of Nursing, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Xiaoya Ren
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiang Ya School of Public Health, Central South University, Changsha 410078, China
| |
Collapse
|
19
|
Zhao W, Hu T, Ma H, He S, Zhao Q, Jiang J, Wei L. Deciphering the role of polystyrene microplastics in waste activated sludge anaerobic digestion: Changes of organics transformation, microbial community and metabolic pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166551. [PMID: 37633377 DOI: 10.1016/j.scitotenv.2023.166551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Microplastics are ubiquitous in the natural environment, which inevitably affect the relevant biochemical process. Nevertheless, the knowledge about the impacts of microplastics on organics transformation and corresponding microbial metabolism response in anaerobic environment is limited. Here, polystyrene (PS) microplastics were selected as model microplastics to explore their potential impacts on organics transformation, microbial community and metabolic pathway during sludge anaerobic digestion system operation. The results indicated that the PS microplastics exhibited the dose-dependent effects on methane production, i.e., the additive of 20-40 particles/g TS of PS microplastics improved the maximum methane yield by 3.38 %-8.22 %, whereas 80-160 particles/g TS additive led to a 4.78 %-11.04 % declining. Overall, PS microplastics facilitated the solubilization and hydrolysis of sludge, but inhibited the acidogenesis process. Key functional enzyme activities were stimulated under low PS microplastics exposure, whereas were almost severely inhibited due to the increased oxidative stress induced from excess PS microplastics. Microbial community and further metabolic analysis indicated that low PS microplastics improved the acetotrophic and hydrogenotrophic methanogenesis, while a high level of PS microplastics shifted methanogenesis from acetotrophic to hydrogenotrophic pathway. Further analysis showed that the reacted PS microplastics exhibited greater toxicity and ecological than the raw PS microplastics due to that they are more likely to adsorb contaminants. These findings revealed the dosage-dependent relationships between microplastics and organics transformation process in anaerobic environments, providing new insights for assessing the impact of PS microplastics on sludge anaerobic digestion.
Collapse
Affiliation(s)
- Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyi Hu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Ma
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
20
|
Qiu C, Zhou Y, Wang H, Chu Y, Zheng L, Chen Y, Song Y, Fang C. Microplastics enrichment characteristics of antibiotic resistance genes and pathogens in landfill leachate. CHEMOSPHERE 2023; 341:140100. [PMID: 37683946 DOI: 10.1016/j.chemosphere.2023.140100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Microplastics (MPs) pollution is a pressing environmental issue for aquatic ecosystems. Landfill leachate is an important contributor of MPs and antibiotic resistant genes (ARGs). However, there are few studies on the colonization of ARGs and pathogens on MPs in leachate. This study conducted incubation experiments with polyethylene terephthalate (PET) and polypropylene (PP) MPs in landfill leachate which were about 3-5 years old (PL) and 5-10 years old (AL). After incubation, the bacterial cells colonized and grew on the surface of MPs, inducing the increase of oxygenated oxygen functional groups (e.g., hydroxyl, carbonyl) on the MPs surface. Real-time PCR indicated that MPs selectively enriched ARGs, such as genes tetM, tetC, mcr-1, aac(6')-Ib-cr, blaTEM and blaSHV in leachate. The diversity of bacterial communities on MPs was significantly increased in AL leachate, but decreased in PL leachate. The differences in bacterial communities in MPs biofilms were related to the type of MPs. Compared with AL leachate, the abundance of Chloroflexi increased by 15.7% on the PET, and the abundance of Acidobacteriota increased by 6.23 fold on the PP. The abundance of Firmicutes increased from 20.7% in PL leachate to 65.8% and 60.7% on PET and PP, respectively. Additionally, pathogens were observed to be more abundant on MPs compared to leachate. In particular, pathogens (Staphylococcus, Streptococcus, Enterobacter and Rhodococcus) associated with sul1 and sul2 were generally present at higher levels on MPs than in the surrounding leachate. These results provide significant implications for understanding the health risk of MPs in the environment.
Collapse
Affiliation(s)
- Cheng Qiu
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Yiwei Zhou
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Hua Wang
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China.
| | - Yixuan Chu
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Lei Zheng
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Yongmin Chen
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Yali Song
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Chengran Fang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China
| |
Collapse
|
21
|
Silori R, Shrivastava V, Mazumder P, Mootapally C, Pandey A, Kumar M. Understanding the underestimated: Occurrence, distribution, and interactions of microplastics in the sediment and soil of China, India, and Japan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:120978. [PMID: 36586556 DOI: 10.1016/j.envpol.2022.120978] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are non-biodegradable substances that can sustain our environment for up to a century. What is more worrying is the incapability of modern technologies to annihilate MPs from om environment. One ramification of MPs is their impact on every kind of life form on this planet, which has been discussed ahead; that is why these substances are surfacing in everyday discussions of scholars and researchers. This paper discusses the overview of the global occurrence, abundance, analysis, and remediation techniques of MPs in the environment. This paper primarily reviews the event and abundance of MPs in coastal sediments and agricultural soil of three major Asian countries, India, China, and Japan. A significant concentration of MPs has been recorded from these countries, which affirms its strong presence and subsequent environmental impacts. Concentrations such as 73,100 MPs/kg in Indian coastal sediments and 42,960 particles/kg in the agricultural soil of China is a solid testimony to prove their massive outbreak in our environment and require urgent attention towards this issue. Conclusions show that human activities, rivers, and plastic mulching on agricultural fields have majorly acted as carriers of MPs towards coastal and terrestrial soil and sediments. Later, based on recorded concentrations and gaps, future research studies are recommended in the concerned domain; a dearth of studies on MPs influencing Indian agricultural soil make a whole sector and its consumer vulnerable to the adverse effects of this emerging contaminant.
Collapse
Affiliation(s)
- Rahul Silori
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Vikalp Shrivastava
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Payal Mazumder
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Chandrashekar Mootapally
- School of Applied Sciences & Technology (SAST), Gujarat Technological University (GTU), Ahmedabad, Gujarat, India
| | - Ashok Pandey
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Manish Kumar
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico.
| |
Collapse
|
22
|
Liu R, Zhao S, Zhang B, Li G, Fu X, Yan P, Shao Z. Biodegradation of polystyrene (PS) by marine bacteria in mangrove ecosystem. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130056. [PMID: 36183512 DOI: 10.1016/j.jhazmat.2022.130056] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Plastics pollution poses a new threat to marine ecosystems. Mangrove locating at estuary worldwide is probably the most heavily polluted area trapping various plastics transported from terrestrial and nearby marine aquaculture. Expanded polystyrene (EPS) is one of most common plastic debris therein and even in the plastic garbage. Here we showed the bacterial diversity of the polystyrene-degrading microbial community from EPS waste sites from a subtropical mangrove area. After enrichment with EPS, the degradation consortia were obtained. They shared a similar community structure dominated by bacteria of Sphingomonadaceae, Rhodanobacteraceae, Rhizobiaceae, Dermacoccaceae, Rhodocyclaceae, Hyphomicrobiaceae, and Methyloligellaceae. Diverse bacteria standing for the first member of the genera of Novosphingobium, Gordonia, Stappia, Mesobacillus, Alcanivorax, Flexivirga, Cytobacillus, Thioclava, and Thalassospira showed PS degradation capability as a pure culture. Further, PS biodegradation of Gordonia sp. and Novosphingobium sp. was quantified by weight loss, in addition to obvious morphological and structural changes of the PS films observed by SEM, ATR-FTIR, and contact angle analysis. The formation of new oxygen-containing functional groups implied the degradation pathway of oxidation. Although the degradation rates ranged from 2.7% to 7.7% after one month in lab and possibly lower in situ, their role in EPS removal is unneglectable.
Collapse
Affiliation(s)
- Renju Liu
- School of Environmental Science, Harbin Institute of Technology, Harbin 150090, PR China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361005, PR China
| | - Sufang Zhao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361005, PR China; School of Fisheries and life, Shanghai Ocean University, Shanghai 201306, PR China
| | - Benjuan Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361005, PR China; School of Fisheries and life, Shanghai Ocean University, Shanghai 201306, PR China
| | - Guangyu Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361005, PR China
| | - Xiaoteng Fu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361005, PR China
| | - Peisheng Yan
- School of Environmental Science, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Zongze Shao
- School of Environmental Science, Harbin Institute of Technology, Harbin 150090, PR China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361005, PR China; School of Fisheries and life, Shanghai Ocean University, Shanghai 201306, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China.
| |
Collapse
|
23
|
Hataley EK, Shahmohamadloo RS, Almirall XO, Harrison AL, Rochman CM, Zou S, Orihel DM. Experimental Evidence from the Field that Naturally Weathered Microplastics Accumulate Cyanobacterial Toxins in Eutrophic Lakes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:3017-3028. [PMID: 36148929 DOI: 10.1002/etc.5485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/11/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Freshwater ecosystems with recurring harmful algal blooms can also be polluted with plastics. Thus the two environmental problems may interact. To test whether microplastics influence the partitioning of microcystins in freshwater lakes, we examined the sorption of four microcystin congeners to different polymers of commercially available plastics (low-density polyethylene, polyethylene terephthalate, polyvinyl chloride, and polypropylene). We conducted three experiments: a batch sorption experiment in the laboratory with pristine microplastics of four different polymers, a second batch sorption experiment in the laboratory to compare pristine and naturally weathered microplastics of a single polymer, and a 2-month sorption experiment in the field with three different polymers experiencing natural weathering in a eutrophic lake. This series of experiments led to a surprising result: microcystins sorbed poorly to all polymers tested under laboratory conditions (<0.01% of the initial amount added), irrespective of weathering, yet in the field experiment, all polymers accumulated microcystins under ambient conditions in a eutrophic lake (range: 0-84.1 ng/g). Furthermore, we found that the sorption capacity for microcystins differed among polymers in the laboratory experiment yet were largely the same in the field. We also found that the affinity for plastic varied among microcystin congeners, namely, more polar congeners demonstrated a greater affinity for plastic than less polar congeners. Our study improves our understanding of the role of polymer and congener type in microplastic-microcystin sorption and provides novel evidence from the field, showing that naturally weathered microplastics in freshwater lakes can accumulate microcystins. Consequently, we caution that microplastics may alter the persistence, transport, and bioavailability of microcystins in freshwaters, which could have implications for human and wildlife health. Environ Toxicol Chem 2022;41:3017-3028. © 2022 SETAC.
Collapse
Affiliation(s)
- Eden K Hataley
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - René S Shahmohamadloo
- School of Biological Sciences, Washington State University, Vancouver, Washington, USA
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Xavier Ortiz Almirall
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
- Ontario Ministry of the Environment, Conservation and Parks, Etobicoke, Ontario, Canada
- Department of Chemical Engineering and Material Sciences, IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Anna L Harrison
- Géosciences Environnement Toulouse, UMR 5563, Centre National de la Recherche Scientifique, Toulouse, France
| | - Chelsea M Rochman
- Department of Ecology and Evolutionary Biology, St. George Campus, University of Toronto, Toronto, Ontario, Canada
| | - Shan Zou
- Metrology Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Diane M Orihel
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
24
|
Tang B, Tang Y, Zhou X, Liu M, Li H, Qi J. The Inhibition of Microcystin Adsorption by Microplastics in the Presence of Algal Organic Matters. TOXICS 2022; 10:toxics10060339. [PMID: 35736947 PMCID: PMC9230722 DOI: 10.3390/toxics10060339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
Microplastics (MPs) could act as vectors of synthetic chemicals; however, their influence on the adsorption of chemicals of natural origin (for example, MC-LR and intracellular organic matter (IOM), which could be concomitantly released by toxic Microcystis in water) is less understood. Here, we explored the adsorption of MC-LR by polyethylene (PE), polystyrene (PS), and polymethyl methacrylate (PMMA). The results showed that the MPs could adsorb both MC-LR and IOM, with the adsorption capability uniformly following the order of PS, PE, and PMMA. However, in the presence of IOM, the adsorption of MC-LR by PE, PS, and PMMA was reduced by 22.3%, 22.7% and 5.4%, respectively. This is because the benzene structure and the specific surface area of PS facilitate the adsorption of MC-LR and IOM, while the formation of Π-Π bonds favor its interaction with IOM. Consequently, the competition for binding sites between MC-LR and IOM hindered MC-LR adsorption. The C=O in PMMA benefits its conjunction with hydroxyl and carboxyl in the IOM through hydrogen bonding; thus, the adsorption of MC-LR is also inhibited. These findings highlight that the adsorption of chemicals of natural origin by MPs is likely overestimated in the presence of metabolites from the same biota.
Collapse
Affiliation(s)
- Bingran Tang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China; (B.T.); (X.Z.); (M.L.)
| | - Ying Tang
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, Department of Soil Science, College of Resources and Environment, Southwest University, Chongqing 400715, China;
| | - Xin Zhou
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China; (B.T.); (X.Z.); (M.L.)
| | - Mengzi Liu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China; (B.T.); (X.Z.); (M.L.)
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China; (B.T.); (X.Z.); (M.L.)
- Correspondence: (H.L.); (J.Q.)
| | - Jun Qi
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing 400045, China
- Correspondence: (H.L.); (J.Q.)
| |
Collapse
|