1
|
Ding Y, Wang J, Chen Y, Yang Y, Liu X. Natural transformation of antibiotic resistance genes and the enhanced adaptability in bacterial biofilm under antibiotic and heavy metal stresses. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137740. [PMID: 40037188 DOI: 10.1016/j.jhazmat.2025.137740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
Bacterial biofilms are hotspots for the natural transformation of antibiotic resistance genes (ARGs). Antibiotics and heavy metals at the sub-minimal inhibitory concentrations (sub-MICs) are ubiquitous in water environments, but their impact on the ARG dissemination via natural transformation in biofilms and the biofilm development remains poorly understood. This study found that the individual stressors including tetracycline, sulfamethoxazole, and Zn at the sub-MIC levels, significantly enhanced ARG transformation. Notably, Zn exhibited the most obvious effect, increasing transformation frequencies by up to 4.62-fold in B. subtilis and 6.42-fold in A. baylyi biofilms. Their combined stressors increased the higher ARG transformation compared to the individual. These stressors significantly elevated ARG transformation by stimulating reactive oxygen species generation, increasing membrane permeability, and enhancing polysaccharide production. Meanwhile, the bacterial adaptability in biofilm to stressors was achieved via ARG transformation, and the biofilm growth was increased by 25.4 % in B. subtilis and 49.6 % in A. baylyi, respectively, compared to biofilms without natural transformation. Except for ARG uptake via transformation, the enhanced bacterial adaptability in biofilms to stressors can also be attributed to the expression of the plasmid-borne SOS response-related genes. These findings broaden the understanding of the influence of sub-MIC stressors in ARG dissemination in biofilm.
Collapse
Affiliation(s)
- Yan Ding
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Jing Wang
- School of Biology, Food, and Environment, Hefei University, Hefei 230601, China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yihan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yaning Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Xiaowei Liu
- School of Biology, Food, and Environment, Hefei University, Hefei 230601, China.
| |
Collapse
|
2
|
Su H, Xu W, Hu X, Xu Y, Wen G, Cao Y. The impact of microplastics on antibiotic resistance genes, metal resistance genes, and bacterial community in aquaculture environment. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137704. [PMID: 39987738 DOI: 10.1016/j.jhazmat.2025.137704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/14/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Microplastics are emerging contaminants. However, their effects on antibiotic resistance genes (ARGs), metal resistance genes (MRGs), and the structure and abundance of bacterial communities, particularly pathogens, in aquaculture environments remains poorly understood. Therefore, this study investigated the effect of microplastics of different sizes on the abundance and distribution of ARGs, MRGs, and bacterial communities in aquaculture environments. The results revealed that, compared with pond water, large microplastics harbored significantly higher ARG abundances, particularly for multidrug-resistant genes; notably, level-I- and -II-risk ARGs were more prevalent on microplastics, highlighting the potential for horizontal gene transfer. Microplastics also exhibited a propensity to aggregate pathogenic bacteria such as Brucella and Pseudomonas, which could pose direct risks to aquatic product safety and public health. Network and differential network analyses revealed significant correlations between bacterial genera and ARG/MRG abundance, particularly on microplastics. Therefore, our findings suggest that microplastics act as vectors for the spread of ARGs, MRGs, and pathogens in aquaculture, potentially leading to the formation of complexes of these materials that threaten ecosystem health and human well-being. This study provides critical insights into the need for targeted management strategies to mitigate microplastic pollution in aquaculture settings.
Collapse
Affiliation(s)
- Haochang Su
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences /Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510300, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs /Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, 231 West Xingang Road, Guangzhou 510301, China
| | - Wujie Xu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences /Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510300, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs /Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, 231 West Xingang Road, Guangzhou 510301, China
| | - Xiaojuan Hu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences /Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510300, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs /Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, 231 West Xingang Road, Guangzhou 510301, China
| | - Yu Xu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences /Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510300, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs /Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, 231 West Xingang Road, Guangzhou 510301, China
| | - Guoliang Wen
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences /Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510300, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs /Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, 231 West Xingang Road, Guangzhou 510301, China
| | - Yucheng Cao
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences /Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510300, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs /Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, 231 West Xingang Road, Guangzhou 510301, China.
| |
Collapse
|
3
|
Lin B, Hu T, Xu Z, Ke Y, Zhang L, Zheng J, Ma J. Stratified biofilm structure of MABR enabling efficient ammonia removal from aquaculture medicated bath wastewater. WATER RESEARCH 2025; 277:123326. [PMID: 39983264 DOI: 10.1016/j.watres.2025.123326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/08/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
The presence of high concentrations of residual antibiotics in aquaculture medicated bath wastewater poses challenges to conventional biological nitrogen removal processes. Membrane aerated biofilm reactor (MABR), known for its energy efficiency and stratified biofilm structure that supports diverse ecological niches, was therefore introduced. Experimental results revealed that MABR achieved an exceptional NH4+-N removal efficiency of 98.2 ± 1.8 % even under high oxytetracycline exposure, attributed to the protective effects of the biofilm on functional bacteria colonized in the inner layer (e.g., ammonia- and nitrite-oxidizing bacteria). Genes mediating the nitrification process, such as amoA/B and nxrA, showed an overall upward trend, with the activation of efflux pumps synergistically constituting the microbial response. Conversely, total nitrogen removal efficiency decreased from 95.3 ± 2.5 % to 76.0 ± 8.8 %, despite enrichment of Denitratisoma oestradiolicum (14.5 %) and denitrifying bacterium clone NOA-1-C (41.7 %), likely due to limited expression of the narG gene. After ceasing oxytetracycline dosing and adjusting operational parameters, total nitrogen removal improved to 87.4 ± 5.8 %. The results of this study underscore the significance and resilience of MABR technology in the treatment of aquaculture medicated bath wastewater.
Collapse
Affiliation(s)
- Bincheng Lin
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Tanqiu Hu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhihao Xu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Youqing Ke
- China Construction Eighth Engineering Division. Corp. Ltd., Guangzhou 510663, China
| | - Lei Zhang
- Ecological Environment Monitoring Center, Xingtai 054001, China
| | - Junjian Zheng
- College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Jinxing Ma
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
4
|
Fu J, Chen Y, Wang S. Protein corona as a mediator in antibiotic adsorption onto microplastics: Mechanisms and implications. Int J Biol Macromol 2025; 311:143982. [PMID: 40334886 DOI: 10.1016/j.ijbiomac.2025.143982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/23/2025] [Accepted: 05/05/2025] [Indexed: 05/09/2025]
Abstract
Microplastics are emerging pollutants capable of adsorbing antibiotics in the environment through interactions mediated by biological molecules such as proteins, ultimately posing risks to human health. However, direct evidence demonstrating that microplastics and antibiotics form chemical-adsorption products has not been explored. One key mechanism contributing to their co-exposure risks during their transmission is biofilm formation, particularly the development of a protein corona, which may also serve as a potential virulence mechanism. In this study, the interactions and adsorption processes among microplastics, proteins, and antibiotics within biofilm formation were innovatively analysed using molecular docking. Hydrophobic interactions contributing to the formation of a stable protein corona have been evidenced even in vitro digestive simulations. Notably, the presence of a protein corona on microplastics enhances the maximum adsorption capacity of antibiotics by 51.9 ± 2.7 %-64.7 ± 3.5 %, without affecting the chemical adsorption mode on Site II or the heterogeneous diffusion mechanism. Furthermore, compared to previous studies, this research provides compelling evidence that sulfamethoxazole interacts with Glu 166 in Site II of bovine serum albumin with high accuracy. Overall, this study addresses a previously overlooked aspect of toxicological research by offering new insights into pollutant adsorption facilitated by the protein corona on microplastics.
Collapse
Affiliation(s)
- Jianxin Fu
- College of Food Science and Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China; Institute of Dietary Nutrition and Health Food, Shandong Agriculture and Engineering University, Jinan 250100, China.
| | - Yuhang Chen
- College of Food Science and Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China; Institute of Dietary Nutrition and Health Food, Shandong Agriculture and Engineering University, Jinan 250100, China
| | - Shaolei Wang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
5
|
Li Q, Wang X, Zhang J, Guo X, Li Y, Andom O, Li Z. Microplastics alter microbial structure and assembly processes in different soil types: Driving effects of environmental factors. ENVIRONMENTAL RESEARCH 2025; 278:121672. [PMID: 40274093 DOI: 10.1016/j.envres.2025.121672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Microplastics (MPs) are emerging pollutants with potential impacts on soil ecosystems. However, it is unclear how MPs-induced changes in the soil environment drive microbial structure and assembly in different soils. Here we investigated the responses of microbial structure, enzyme activities and soil properties to biodegradable polylactic acid (PLA) and conventional polythene (PE) with different doses in different soil types. Results showed that PLA generally decreased soil NH4+-N and NO3--N levels but increased dissolved organic carbon (DOC) and pH, whereas PE exhibited contrasting effects depending on soil type. MPs significantly stimulated soil urease, sucrase, catalase and phosphatase activities, with dose-dependent responses observed under PLA treatments in fluvo-aquic soil. Additionally, MPs altered microbial composition and colonized specific bacterial taxa in different soils. In microbial assemblies dominated by stochastic processes, MPs, especially PE promoted the deterministic processes. Co-occurrence patterns showed lower microbial complexity under PLA treatments compared to PE. Notably, we revealed soil-type-specific response patterns: DOC emerged as the primary driver in red soil ecosystems, while pH exerted dominant control in fluvo-aquic soil systems. Furthermore, perturbation of microbial communities by MPs affected functions related to metabolism. These findings highlight that MPs-induced shifts in microbial communities and assembly processes are soil-type-specific and mediated by soil characteristics changes, providing critical insights for assessing the ecological risks of MPs in diverse agricultural soils.
Collapse
Affiliation(s)
- Qingjie Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoxing Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; College of Biological Sciences and Technology, Yili Normal University, Yili, 835000, Xinjiang, China
| | - Jiaqi Zhang
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Xueqi Guo
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanli Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Okbagaber Andom
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhaojun Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
6
|
Jin Z, Chen K, Zhu Q, Hu X, Tian S, Xiang A, Sun Y, Yuan M, Yao H. Non-degradable microplastic promote microbial colonization: A meta-analysis comparing the effects of microplastic properties and environmental factors. ENVIRONMENTAL RESEARCH 2025; 270:121053. [PMID: 39920968 DOI: 10.1016/j.envres.2025.121053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/12/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Microplastics serve as favorable substrates for microbial colonization, promoting biofilm formation, which consequently facilitates the accumulation of pollutants and aids in the degradation of microplastics. Hence, obtaining a thorough comprehension of the factors that influence the development of microplastic biofilms is imperative. Nevertheless, there have been conflicting responses concerning biofilm formation in conjunction with microplastic characteristics and environmental conditions. As a result, a meta-analysis was conducted to quantitatively evaluate the impact of microplastic properties and environmental factors on biofilm formation. The findings indicated that the type and size of microplastics significantly influence biofilm growth on their surfaces. Non-degradable microplastics, particularly polyvinyl chloride (PVC) and polystyrene (PS), exhibited higher surface biomass and biodiversity in microplastic-attached biofilms compared to degradable microplastics. Furthermore, it was observed that smaller microplastics were more conducive to microbial colonization. Model selection and correlation analysis further indicated that the environment acts as a substantial predictor of biofilm formation, with prolonged exposure significantly enhancing microbial diversity within biofilms as opposed to short-term exposure. Moreover, meta-regression analysis illustrated a positive correlation between biofilm biomass and alpha-diversity with temperature, while salinity exhibited a negative correlation in diverse aquatic settings. Notably, the ease of biofilm formation on microplastics was observed to be greater in oceans compared to lakes, yet biofilms exhibited a higher diversity increment in lakes than their oceanic counterparts. In the long-term growth of biofilms, initial biomass and diversity are influenced by microplastic characteristics and the surrounding environment, although environmental influences may assume more significance as time progresses.
Collapse
Affiliation(s)
- Zhihui Jin
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Keyi Chen
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Qing Zhu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xiaodie Hu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Sijia Tian
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Airong Xiang
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yaru Sun
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Ming Yuan
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Huaiying Yao
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China.
| |
Collapse
|
7
|
Wu L, Zhang X, Jin D, Wu P. Insights into combined stress mechanisms of microplastics and antibiotics on anammox: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124947. [PMID: 40081039 DOI: 10.1016/j.jenvman.2025.124947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/20/2025] [Accepted: 03/09/2025] [Indexed: 03/15/2025]
Abstract
The microplastic and antibiotic pollution poses a major threat to human health and natural ecology. Wastewater treatment systems act as a link between human societies and natural ecosystems. Microplastics (MPs) and antibiotics (ATs) in wastewater endanger the stabilization of the anaerobic ammonium oxidation (anammox) system. However, most existing studies have primarily concentrated on the effects and stress mechanisms of either MPs-induced or ATs-induced stress on anammox. A comprehensive and holistic overview of the effects and underlying mechanisms of the combined stress exerted on anammox by both MPs and ATs is currently lacking. This review concludes the effects of MPs and ATs on anammox bacteria (AnAOB) and describes the mechanisms of the effects of these two emerging contaminants on AnAOB. Subsequently, the effects that the combined stress of MPs and ATs can have on the anammox system are reviewed. The adsorption of ATs by MPs, an indispensable mechanism affecting the combined stress, is explained. Additionally, the effect of MPs' aging on their ability to adsorb ATs is presented. Finally, this paper proposes to alleviate the combined stress of MPs and ATs by enriching biofilms and points out the risk of propagation of ARGs under the combined stress. This review sheds light on valuable insights into the combined stress of MPs and ATs on anammox and points out future research directions for this combined stress.
Collapse
Affiliation(s)
- Long Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Da Jin
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
8
|
Yadav DS, Mantri VA. The microplastic menace: a critical review of its impact on marine photoautotrophs and their environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:4387-4402. [PMID: 39885075 DOI: 10.1007/s11356-025-35981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025]
Abstract
Seaweeds contribute to the energy input in marine communities and affect the chemical makeup, species composition, nutrient availability, pH, and seawater oxygen levels. However, the annual introduction of 28.5 million tons of plastic waste into oceans makes up 85% of marine litter, which is expected to grow fourfold in the next 25 years, causing a rise in concern for human health and the environment. Microplastics are small plastic particles of 1-5 mm that are either manufactured or formed due to the degradation of large plastic materials. This study analyzes the prevalence of microplastics in marine environments, their interaction with marine macro- and microalgae, environmental implications, genetic responses to microplastic exposure, and potential strategies for mitigating microplastic pollution. The leading causes identified were high plastic production rate (390 million tons annually), increased usage, inefficient waste management, meager recycling (9% is recycled), slow degradation (up to 1200 years), easy distribution via oceanic currents, and industrialization that has led to the accumulation of microplastics in the marine ecosystems. Therefore, it is recommended that the waste management system be strengthened, focusing on recycling, repurposing, reducing single-use plastics, and redirecting plastic waste away from water bodies. Developing reliable detection technologies, studying the long-term effects of microplastics in marine ecosystems, and collaborating with the public and private sectors may be encouraged. Further investigations on microplastic-seaweed interaction, the bioremediation potential of various species, and the involved molecular mechanisms may lead to new strategies for reducing microplastic loads in marine ecosystems.
Collapse
Affiliation(s)
- Digvijay Singh Yadav
- Applied Phycology and Biotechnology Department, CSIR- Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, India, 364002
| | - Vaibhav A Mantri
- Applied Phycology and Biotechnology Department, CSIR- Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, India, 364002.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Dogra S, Kumar M, Zang J. The nexus of microplastics, food and antimicrobial resistance in the context of aquatic environment: Interdisciplinary linkages of pathways. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104512. [PMID: 39922004 DOI: 10.1016/j.jconhyd.2025.104512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/04/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
The exponential rise in plastic production since the mid-20th century has led to the widespread existence of microplastics in various ecosystems, posing significant environmental and health concerns. Microplastics, defined as plastic particles smaller than 5 mm, have infiltrated diverse environments, including oceans, freshwater bodies, and even remote Arctic ice. Their ability to absorb toxic chemicals and serve as vectors for microbial colonization raises concerns about their impacts on aquatic organisms and human health. This review examines the pathways by which microplastics infiltrate the food chain, highlighting their presence in various food items consumed by humans. Furthermore, it explores the nexus between microplastics and antimicrobial resistance (AMR), elucidating how microorganisms inhabiting plastic surfaces facilitate the transmission of antibiotic resistance genes (ARGs). The review underscores the urgent need for interdisciplinary research integrating environmental science, microbiology, public health, and policy to address the multifaceted challenges posed by microplastics. Standardized protocols for sampling and analysis are essential to enable meaningful comparisons across research and regions. By collectively addressing these challenges, we can strive towards a more sustainable and resilient future for ecosystems and human societies.
Collapse
Affiliation(s)
- Shiwangi Dogra
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo León, Mexico
| | - Manish Kumar
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo León, Mexico; Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, 248007, Uttarakhand, India.
| | - Jian Zang
- The National Centre for International Research of Low-carbon & Green Buildings, Ministry of Science & Technology, School of Civil Engineering, Chongqing University, Chongqing, China; Tianfu Yongxing Laboratory, Chengdu, China
| |
Collapse
|
10
|
Wang Y, Yuan P, Gao P. Microplastics accelerate nitrification, shape the microbial community, and alter antibiotic resistance during the nitrifying process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178306. [PMID: 39740624 DOI: 10.1016/j.scitotenv.2024.178306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/03/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
Microplastics (MPs) and antibiotic resistance genes (ARGs) are both emerging pollutants that are frequently detected in wastewater treatment plants. In this study, the effects of various MPs, including polyethylene (PE), polyvinyl chloride (PVC), and biodegradable polylactic acid (PLA), on nitrification performance, dominant microbial communities, and antibiotic resistance during nitrification were investigated. The results revealed that the addition of MPs increased the specific ammonia oxidation rate and specific nitrate production rate by 15.2 % - 15.5 % and 8.0 % - 11.6 %, respectively, via enrichment of nitrifying microorganisms, Nitrospira and Nitrosomonas. Moreover, ARGs were selectively enriched in nitrifying sludge and microplastic biofilms under stress from different MPs. Compared with PE-MPs (23.9 %) and PVC-MPs (21.4 %), exposure to PLA-MPs significantly increased intI1 abundance by 51.6 %. The results of the variance decomposition analysis implied that MPs and the microbial community play important roles in the behavior of ARGs. Network analysis indicated that Nitrosomonas and potentially pathogenic bacteria emerged as possible hosts, harboring ARGs and intI1 genes in the nitrifying sludge and microplastic biofilms. Critically, PLA-MPs were found to enrich both ARGs and potential pathogenic bacteria during nitrification, which should be considered in their promotion of application processes due to their biodegradability.
Collapse
Affiliation(s)
- Yang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Peikun Yuan
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agroenvironmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
11
|
Luo H, Chang L, Ju T, Li Y. Factors Influencing the Vertical Migration of Microplastics up and down the Soil Profile. ACS OMEGA 2024; 9:50064-50077. [PMID: 39741809 PMCID: PMC11683605 DOI: 10.1021/acsomega.4c04083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/20/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025]
Abstract
Soil ecosystems are under serious threat from microplastics (MPs), and this is causing worldwide concern. The relationship between soil and MPs has become a popular research topic, and the vertical migration of soil MPs is of increasing interest. This Review summarizes the current status of research into the factors affecting the vertical migration of soil MPs. Published research shows that the characteristics of MPs and the physicochemical properties of the soil affect the infiltration process. Soil organisms play a key role in the vertical migration by acting as vectors or as a result of adsorption. Dissolved organic matter and metal oxides transfer MPs by adsorption-desorption. In addition, rainfall and dry-wet cycles alter the mobility of soil MPs, leading to changes in migration processes. Agricultural activities such as tillage and irrigation may distribute MPs throughout the topsoil. Vertical migration of soil MPs is a process influenced by a combination of factors, and the role of these factors in MP deposition needs to be explored further.
Collapse
Affiliation(s)
- Han Luo
- College
of Earth Sciences, Jilin University, Changchun 130061, China
| | - Lei Chang
- College
of Earth Sciences, Jilin University, Changchun 130061, China
| | - Tianhang Ju
- College
of Earth Sciences, Jilin University, Changchun 130061, China
| | - Yuefen Li
- College
of Earth Sciences, Jilin University, Changchun 130061, China
| |
Collapse
|
12
|
Jia J, Liu Q, Zhao E, Li X, Xiong X, Wu C. Biofilm formation on microplastics and interactions with antibiotics, antibiotic resistance genes and pathogens in aquatic environment. ECO-ENVIRONMENT & HEALTH 2024; 3:516-528. [PMID: 39605964 PMCID: PMC11599983 DOI: 10.1016/j.eehl.2024.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Accepted: 05/04/2024] [Indexed: 11/29/2024]
Abstract
Microplastics (MPs) in aquatic environments easily support biofilm development, which can interact with other environmental pollutants and act as harbors for microorganisms. Recently, numerous studies have investigated the fate and behavior of MP biofilms in aquatic environments, highlighting their roles in the spread of pathogens and antibiotic resistance genes (ARGs) to aquatic organisms and new habitats. The prevalence and effects of MP biofilms in aquatic environments have been extensively investigated in recent decades, and their behaviors in aquatic environments need to be synthesized systematically with updated information. This review aims to reveal the development of MP biofilm and its interactions with antibiotics, ARGs, and pathogens in aquatic environments. Recent research has shown that the adsorption capabilities of MPs to antibiotics are enhanced after the biofilm formation, and the adsorption of biofilms to antibiotics is biased towards chemisorption. ARGs and microorganisms, especially pathogens, are selectively enriched in biofilms and significantly different from those in surrounding waters. MP biofilm promotes the propagation of ARGs through horizontal gene transfer (HGT) and vertical gene transfer (VGT) and induces the emergence of antibiotic-resistant pathogens, resulting in increased threats to aquatic ecosystems and human health. Some future research needs and strategies in this review are also proposed to better understand the antibiotic resistance induced by MP biofilms in aquatic environments.
Collapse
Affiliation(s)
- Jia Jia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qian Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - E. Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xin Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiong Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenxi Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
13
|
Mishra S, Ren Y, Sun X, Lian Y, Singh AK, Sharma N, Shikhar KC. Microplastics-biofilm in aquatic ecosystem: Formation, pollutants complexation, greenhouse gas emission and ecotoxicology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122930. [PMID: 39423625 DOI: 10.1016/j.jenvman.2024.122930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
The omnipresent microplastics (MPs) have gradually become a significant environmental problem due to its adverse consequences for ecological systems. MPs serve as substrates for biofilms colonization, which enhances adsorption of harmful contaminants on MPs surface in the aquatic ecosystem. The present study provides a critical discussion on the mechanism involved in MPs-biofilm formation, microbial colonization and the robust factors influencing the process in the aquatic ecosystem. Subsequently, the impact of MPs-biofilm on adsorption of inorganic and organic contaminants is explored. The ecological significance of MPs-biofilm associated pollutant complex for promoting greenhouse gases (GHGs) emissions from aquatic ecosystem is extensively discussed for understanding the climatic risk. Furthermore, the discussion is extended over ecotoxicological impact of MPs-biofilm on aquatic biodiversity and humans. The protective extracellular polymeric substances secreted by colonised bacteria over MPs during biofilm formation creates sticky MPs surface for heteroaggregates formation with swift adsorption of chemical compounds and microorganisms. MPs with functional aromatic groups facilitate the bacterial adhesion on the surface, but affect formation of biofilm. Alternatively, MPs-biofilm promotes the Mn and Fe hydrous oxides formation that can co-precipitate with heavy metal ions and facilitate in remediation measures. However, MPs biodegradation generates GHGs emission per unit mass, comparably more from freshwater than marine ecosystem. Considering the toxicity, MPs-biofilm induces the oxidative response in fishes, causing painful death and thus, destroys aquatic biodiversity. This study will be useful to address MPs-biofilm associated pollution scenario via trace, test and treat strategy involving future engineering research framework for ecological restoration.
Collapse
Affiliation(s)
- Saurabh Mishra
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Yuling Ren
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Xiaonan Sun
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Yanqing Lian
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, Jiangsu, China.
| | - Anurag Kumar Singh
- Transport Planning and Environment Division, CSIR-Central Road Research Institute, New Delhi, 110025, India
| | - Niraj Sharma
- Transport Planning and Environment Division, CSIR-Central Road Research Institute, New Delhi, 110025, India
| | - K C Shikhar
- Institute of Water Resources and Hydropower, Hohai University, Nanjing, 210098, China
| |
Collapse
|
14
|
Wang Z, Liu L, Zhou G, Yu H, Hrynsphan D, Tatsiana S, Robles-Iglesias R, Chen J. Impact of microplastics on microbial community structure in the Qiantang river: A potential source of N 2O emissions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124755. [PMID: 39151781 DOI: 10.1016/j.envpol.2024.124755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
This study aimed to investigate the spatial distribution of microplastics (MPs) and the features of the bacterial community in the Qiantang River urban river. Surface water samples from the Qiantang River were analyzed for this purpose. The results of the 16S high-throughput sequencing indicated that the microbial community diversity of MPs was significantly lower than in natural water but higher than in natural substrates. The biofilm of MPs was mainly composed of Enterobacteriaceae (28.00%), Bacillaceae (16.25%), and Phormidiaceae (6.75%). The biodiversity on MPs, natural water, and natural substrates varied significantly and was influenced by seasonal factors. In addition, the presence of MPs hindered the denitrification process in the aquatic environment and intensified N2O emission when the nitrate concentration was higher than normal. In particular, polyethylene terephthalate (PET) exhibited a 12% residue of NO3--N and a 4.2% accumulation of N2O after a duration of 48 h. Further findings on gene abundance and cell viability provided further confirmation that PET had a considerable impact on reducing the expression of nirS (by 0.34-fold) and nosZ (by 0.53-fold), hence impeding the generation of nicotinamide adenine dinucleotide (NADH) (by 0.79-fold). Notably, all MPs demonstrated higher the nirK gene abundances than the nirS gene, which could account for the significant accumulation of N2O. The results suggest that MPs can serve as a novel carrier substrate for microbial communities and as a potential promoter of N2O emission in aquatic environments.
Collapse
Affiliation(s)
- Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Lingxiu Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China; College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Gang Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hui Yu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dzmitry Hrynsphan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Savitskaya Tatsiana
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Raúl Robles-Iglesias
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research/Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, La Coruña, 15008, Spain
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
15
|
Tang KHD, Li R. Aged Microplastics and Antibiotic Resistance Genes: A Review of Aging Effects on Their Interactions. Antibiotics (Basel) 2024; 13:941. [PMID: 39452208 PMCID: PMC11504238 DOI: 10.3390/antibiotics13100941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Microplastic aging affects the dynamics of antibiotic resistance genes (ARGs) on microplastics, yet no review presents the effects of microplastic aging on the associated ARGs. Objectives: This review, therefore, aims to discuss the effects of different types of microplastic aging, as well as the other pollutants on or around microplastics and the chemicals leached from microplastics, on the associated ARGs. Results: It highlights that microplastic photoaging generally results in higher sorption of antibiotics and ARGs due to increased microplastic surface area and functional group changes. Photoaging produces reactive oxygen species, facilitating ARG transfer by increasing bacterial cell membrane permeability. Reactive oxygen species can interact with biofilms, suggesting combined effects of microplastic aging on ARGs. The effects of mechanical aging were deduced from studies showing larger microplastics anchoring more ARGs due to rough surfaces. Smaller microplastics from aging penetrate deeper and smaller places and transport ARGs to these places. High temperatures are likely to reduce biofilm mass and ARGs, but the variation of ARGs on microplastics subjected to thermal aging remains unknown due to limited studies. Biotic aging results in biofilm formation on microplastics, and biofilms, often with unique microbial structures, invariably enrich ARGs. Higher oxidative stress promotes ARG transfer in the biofilms due to higher cell membrane permeability. Other environmental pollutants, particularly heavy metals, antibacterial, chlorination by-products, and other functional genes, could increase microplastic-associated ARGs, as do microplastic additives like phthalates and bisphenols. Conclusions: This review provides insights into the environmental fate of co-existing microplastics and ARGs under the influences of aging. Further studies could examine the effects of mechanical and thermal MP aging on their interactions with ARGs.
Collapse
Affiliation(s)
- Kuok Ho Daniel Tang
- Department of Environmental Science, College of Agriculture, Life & Environmental Sciences, The University of Arizona (UA), Tucson, AZ 85721, USA
- School of Natural Resources and Environment, UA Microcampus, Northwest A&F University (NWAFU), Yangling 712100, China;
| | - Ronghua Li
- School of Natural Resources and Environment, UA Microcampus, Northwest A&F University (NWAFU), Yangling 712100, China;
- Department of Environmental Science and Engineering, College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, China
| |
Collapse
|
16
|
Chen Z, Liu Y, Jiang L, Zhang C, Qian X, Gu J, Song Z. Bacterial outer membrane vesicles increase polymyxin resistance in Pseudomonas aeruginosa while inhibiting its quorum sensing. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135588. [PMID: 39181004 DOI: 10.1016/j.jhazmat.2024.135588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
The persistent emergence of multidrug-resistant bacterial pathogens is leading to a decline in the therapeutic efficacy of antibiotics, with Pseudomonas aeruginosa (P. aeruginosa) emerging as a notable threat. We investigated the antibiotic resistance and quorum sensing (QS) system of P. aeruginosa, with a particular focused on outer membrane vesicles (OMVs) and polymyxin B as the last line of antibiotic defense. Our findings indicate that OMVs increase the resistance of P. aeruginosa to polymyxin B. The overall gene transcription levels within P. aeruginosa also reveal that OMVs can reduce the efficacy of polymyxin B. However, both OMVs and sublethal concentrations of polymyxin B suppressed the transcription levels of genes associated with the QS system. Furthermore, OMVs and polymyxin B acted in concert on the QS system of P. aeruginosa to produce a more potent inhibitory effect. This suppression was evidenced by a decrease in the secretion of virulence factors, impaired bacterial motility, and a notable decline in the ability to form biofilms. These results reveal that OMVs enhance the resistance of P. aeruginosa to polymyxin B, yet they collaborate with polymyxin B to inhibit the QS system. Our research contribute to a deeper understanding of the resistance mechanisms of P. aeruginosa in the environment, and provide new insights into the reduction of bacterial infections caused by P. aeruginosa through the QS system.
Collapse
Affiliation(s)
- Zhihui Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yucheng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lan Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
17
|
Cheng S, Keang K, Cross JS. Evidence that microplastics at environmentally relevant concentration and size interfere with energy metabolism of microalgal community. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134995. [PMID: 38909468 DOI: 10.1016/j.jhazmat.2024.134995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/08/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
To address two current issues in evaluating the toxicity of microplastics (MPs) namely, conflicting results due to species specificity and the ecological irrelevance of laboratory data, this study conducted a 10-day exposure experiment using a microalgal community comprising three symbiotic species. The experiment involved virgin and Benzo[a]pyrene-spiked micron-scale fibers and fragments made of polyethylene terephthalate (PET) and polypropylene (PP). The results showed that, from a physiological perspective, environmentally relevant concentrations of micron-scale MPs decreased saccharide accumulation in microalgal cells, as confirmed by ultrastructural observations. MPs may increase cellular energy consumption by obstructing cellular motility, interfering with nutrient uptake, and causing sustained oxidative stress. Additionally, MPs and adsorbed B[a]P induced DNA damage in microalgae, potentially further disrupting cellular energy metabolism. Ecologically, MPs altered the species abundance in microalgal communities, suggesting they could weaken the ecological functions of these communities as producers and affect ecosystem diversity and stability. This study marks a significant advancement from traditional single-species toxicity experiments to community-level assessments, providing essential insights for ecological risk assessment of microplastics and guiding future mechanistic studies utilizing multi-omics analysis.
Collapse
Affiliation(s)
- Shuo Cheng
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Tokyo, Japan.
| | - Kimleng Keang
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Tokyo, Japan
| | - Jeffrey S Cross
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
18
|
Thi Nguyen H, Choi W, Jeong S, Bae H, Oh S, Cho K. Comprehensive assessment of chlorination disinfection on microplastic-associated biofilms. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134751. [PMID: 38820748 DOI: 10.1016/j.jhazmat.2024.134751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Chlorination on microplastic (MP) biofilms was comprehensively investigated with respect to disinfection efficiency, morphology, and core microbiome. The experiments were performed under various conditions: i) MP particles; polypropylene (PP) and polystyrene (PS), ii) MP biofilms; Escherichia coli for single-species and river water microorganisms for multiple-species, iii) different chlorine concentrations, and iv) different chlorine exposure periods. As a result, chlorination effectively inactivated the MP biofilm microorganisms. The disinfection efficiency increased with increasing the free chlorination concentration and exposure periods for both single- and multiple-species MP biofilms. The multiple-species MP biofilms were inactivated 1.3-6.0 times less than single-species MP biofilms. In addition, the PP-MP biofilms were more vulnerable to chlorination than the PS-MP biofilms. Morphology analysis verified that chlorination detached most MP biofilms, while a small part still remained. Interestingly, chlorination strongly changed the biofilm microbiome on MPs; the relative abundance of some microbes increased after the chlorination, suggesting they could be regarded as chlorine-resistant bacteria. Some potential pathogens were also remained on the MP particles after the chlorination. Notably, chlorination was effective in inactivating the MP biofilms. Further research should be performed to evaluate the impacts of residual MP biofilms on the environment.
Collapse
Affiliation(s)
- Hien Thi Nguyen
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Woodan Choi
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Seongpil Jeong
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Hyokwan Bae
- Department of Civil, Urban, Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Seungdae Oh
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Kyungjin Cho
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
19
|
Roubeau Dumont E, Gagné F. Nanoplastic Contamination in Freshwater Biofilms Using Gel Permeation Chromatography and Plasmonic Nanogold Sensor Approaches. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1288. [PMID: 39120392 PMCID: PMC11313748 DOI: 10.3390/nano14151288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
The worldwide contamination of aquatic ecosystems by plastics is raising concern, including their potential impacts on the base of the food chain, which has been poorly documented. This study sought to examine, for the first time, the presence of nanoplastics (NPs) in biofilms from freshwater streams/rivers. They were collected at selected polluted sites, such as the industrial sector for plastic recycling and production, miscellaneous industries, agriculture, municipal wastewaters/effluents and road runoffs. In parallel, the functional properties of sampled biofilms were determined by proteins, lipids, esterase (lipase), viscosity and oxidative stress. The results revealed that biofilms collected at the plastic industries and road runoffs contained the highest NP levels based on size exclusion chromatography, fluorescence detection and a new nanogold sensor visualization method. Examination of the chromatographic elution profiles showed increased abundance and size of NPs in the 10-150 nm size range at the polluted sites. Biofilms from the plastic industry site had elevated levels of aldehydes (oxidative stress) and lipids compared to the other sites. Biofilms collected at the municipal sites had elevated levels of proteins and esterases/lipases, with a decrease in total lipids. Biofilms collected at agriculture sites had the lowest levels of NPs in this campaign, but more samples would be needed to confirm these trends. In conclusion, biofilms represent an important sink for plastics in freshwater environments and display signs of distress upon oxidative stress.
Collapse
Affiliation(s)
| | - Francois Gagné
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montréal, QC H2Y2E7, Canada;
| |
Collapse
|
20
|
Li Y, Yu J, Zhang W, Shan J, Chen H, Ma Y, Wang X. Copper selenide nanosheets with photothermal therapy-related properties and multienzyme activity for highly effective eradication of drug resistance. J Colloid Interface Sci 2024; 666:434-446. [PMID: 38608638 DOI: 10.1016/j.jcis.2024.03.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Bacterial infections are among the most significant causes of death in humans. Chronic misuse or uncontrolled use of antibiotics promotes the emergence of multidrug-resistant superbugs that threaten public health through the food chain and cause environmental pollution. Based on the above considerations, copper selenide nanosheets (CuSe NSs) with photothermal therapy (PTT)- and photodynamic therapy (PDT)-related properties have been fabricated. These CuSe NSs possess enhanced PDT-related properties and can convert O2 into highly toxic reactive oxygen species (ROS), which can cause significant oxidative stress and damage to bacteria. In addition, CuSe NSs can efficiently consume glutathione (GSH) at bacterial infection sites, thus further enhancing their sterilization efficacy. In vitro antibacterial experiments with near-infrared (NIR) irradiation have shown that CuSe NSs have excellent photothermal bactericidal properties. These experiments also showed that CuSe NSs exerted excellent bactericidal effects on wounds infected with methicillin-resistant Staphylococcus aureus (MRSA) and significantly promoted the healing of infected wounds. Because of their superior biological safety, CuSe NSs are novel copper-based antimicrobial agents that are expected to enter clinical trials, serving as a modern approach to the major problem of treating bacterially infected wounds.
Collapse
Affiliation(s)
- Yongsheng Li
- Department of Vascular Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Jiajia Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wei Zhang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China
| | - Jie Shan
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Hongrang Chen
- Department of Hepatobiliary Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Ma
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China.
| | - Xianwen Wang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
21
|
Lubis AR, Sumon MAA, Dinh-Hung N, Dhar AK, Delamare-Deboutteville J, Kim DH, Shinn AP, Kanjanasopa D, Permpoonpattana P, Doan HV, Linh NV, Brown CL. Review of quorum-quenching probiotics: A promising non-antibiotic-based strategy for sustainable aquaculture. JOURNAL OF FISH DISEASES 2024; 47:e13941. [PMID: 38523339 DOI: 10.1111/jfd.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
The emergence of antibiotic-resistant bacteria (ARBs) and genes (ARGs) in aquaculture underscores the urgent need for alternative veterinary strategies to combat antimicrobial resistance (AMR). These measures are vital to reduce the likelihood of entering a post-antibiotic era. Identifying environmentally friendly biotechnological solutions to prevent and treat bacterial diseases is crucial for the sustainability of aquaculture and for minimizing the use of antimicrobials, especially antibiotics. The development of probiotics with quorum-quenching (QQ) capabilities presents a promising non-antibiotic strategy for sustainable aquaculture. Recent research has demonstrated the effectiveness of QQ probiotics (QQPs) against a range of significant fish pathogens in aquaculture. QQ disrupts microbial communication (quorum sensing, QS) by inhibiting the production, replication, and detection of signalling molecules, thereby reducing bacterial virulence factors. With their targeted anti-virulence approach, QQPs have substantial promise as a potential alternative to antibiotics. The application of QQPs in aquaculture, however, is still in its early stages and requires additional research. Key challenges include determining the optimal dosage and treatment regimens, understanding the long-term effects, and integrating QQPs with other disease control methods in diverse aquaculture systems. This review scrutinizes the current literature on antibiotic usage, AMR prevalence in aquaculture, QQ mechanisms and the application of QQPs as a sustainable alternative to antibiotics.
Collapse
Affiliation(s)
- Anisa Rilla Lubis
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Md Afsar Ahmed Sumon
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Nguyen Dinh-Hung
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Arun K Dhar
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | | | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| | | | - Duangkhaetita Kanjanasopa
- Agricultural Science and Technology Program, Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Surat Thani, Thailand
| | - Patima Permpoonpattana
- Agricultural Science and Technology Program, Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Surat Thani, Thailand
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Nguyen Vu Linh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Christopher L Brown
- FAO World Fisheries University Pilot Programme, Pukyong National University, Busan, South Korea
| |
Collapse
|
22
|
Wang WM, Lu TH, Chen CY, Liao CM. Assessing microplastics-antibiotics coexistence induced ciprofloxacin-resistant Pseudomonas aeruginosa at a water region scale. WATER RESEARCH 2024; 257:121721. [PMID: 38728782 DOI: 10.1016/j.watres.2024.121721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Microplastics (MPs) waste is widespread globally in water systems. The opportunistic human pathogen Pseudomonas aeruginosa can cause serious acute and chronic infections that are notoriously difficult to treat. Ciprofloxacin (CIP) is broadly applied as an anti-P. aeruginosa drug. A growing evidence reveals that antibiotic-resistance genes-carrying Pseudomonas aeruginosa were detected on MPs forming plastisphere due to their adsorbability along with high occurrence of CIP in water environments. The MPs-niched CIP-resistant P. aeruginosa has been likely to emerge as an unignorable public health issue. Here, we offered a novel approach to assess the development of CIP-resistant P. aeruginosa under MPs-antibiotic coexistence at a water region scale. By combing the adsorption isotherm models used to estimate CIP condensation around MPs and a pharmacokinetic/pharmacodynamic-based microbial population dynamic model, we predicted the P. aeruginosa development on CIP-adsorbed MPs in waters. Our assessment revealed a high antibiotic resistance in the P. aeruginosa populations (∼50 %) with a wider range of waterborne total cell counts (∼10-2-104 cfu mL-1) among water regions in that the resistance proportion was primarily determined by CIP pollution level and relative abundance of various polymer type of MPs. We implicate that water region-specific MPs were highly likely to provide media for P. aeruginosa propagation. Our results highlight the importance of antibiotic-resistant pathogen colonization-emerging environmental medium interactions when addressing global threat from MPs pollution, in the context of MPs-antibiotics co-contamination assessment and for the continued provision of water system management.
Collapse
Affiliation(s)
- Wei-Min Wang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan 106319, China
| | - Tien-Hsuan Lu
- Department of Science Education and Application, National Taichung University of Education, Taichung 403514, China
| | - Chi-Yun Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, United States; Center for Environmental and Human Toxicology, University of Florida, FL 32608, United States
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan 106319, China.
| |
Collapse
|
23
|
Zhou R, Huang X, Xie Z, Ding Z, Wei H, Jin Q. A review focusing on mechanisms and ecological risks of enrichment and propagation of antibiotic resistance genes and mobile genetic elements by microplastic biofilms. ENVIRONMENTAL RESEARCH 2024; 251:118737. [PMID: 38493850 DOI: 10.1016/j.envres.2024.118737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Microplastics (MPs) are emerging ubiquitous pollutants in aquatic environment and have received extensive global attention. In addition to the traditional studies related to the toxicity of MPs and their carrier effects, their unique surface-induced biofilm formation also increases the ecotoxicity potential of MPs from multiple perspectives. In this review, the ecological risks of MPs biofilms were summarized and assessed in detail from several aspects, including the formation and factors affecting the development of MPs biofilms, the selective enrichment and propagation mechanisms of current pollution status of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in MPs biofilms, the dominant bacterial communities in MPs biofilms, as well as the potential risks of ARGs and MGEs transferring from MPs biofilms to aquatic organisms. On this basis, this paper also put forward the inadequacy and prospects of the current research and revealed that the MGEs-mediated ARG propagation on MPs under actual environmental conditions and the ecological risk of the transmission of ARGs and MGEs to aquatic organisms and human beings are hot spots for future research. Relevant research from the perspective of MPs biofilm should be carried out as soon as possible to provide support for the ecological pollution prevention and control of MPs.
Collapse
Affiliation(s)
- Ranran Zhou
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| | - Xirong Huang
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| | - Zhongtang Xie
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China.
| | - Zhuhong Ding
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| | - Hengchen Wei
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| | - Qijie Jin
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| |
Collapse
|
24
|
Zhang Y, Xu X, Xu J, Li Z, Cheng L, Fu J, Sun W, Dang C. When antibiotics encounter microplastics in aquatic environments: Interaction, combined toxicity, and risk assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172455. [PMID: 38636871 DOI: 10.1016/j.scitotenv.2024.172455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Antibiotics and microplastics (MPs), known as emerging pollutants, are bound to coexist in aquatic environments due to their widespread distribution and prolonged persistence. To date, few systematic summaries are available for the interaction between MPs and antibiotics in aquatic ecosystems, and a comprehensive reanalysis of their combined toxicity is also needed. Based on the collected published data, we have analyzed the source and distribution of MPs and antibiotics in global aquatic environments, finding their coexistence occurs in a lot of study sites. Accordingly, the presence of MPs can directly alter the environmental behavior of antibiotics. The main influencing factors of interaction between antibiotics and MPs have been summarized in terms of the characteristics of MPs and antibiotics, as well as the environmental factors. Then, we have conducted a meta-analysis to evaluate the combined toxicity of antibiotics and MPs on aquatic organisms and the related toxicity indicators, suggesting a significant adverse effect on algae, and inapparent on fish and daphnia. Finally, the environmental risk assessments for antibiotics and MPs were discussed, but unfortunately the standardized methodology for the risk assessment of MPs is still challenging, let alone assessment for their combined toxicity. This review provides insights into the interactions and environment risks of antibiotics and MPs in the aquatic environment, and suggests perspectives for future research.
Collapse
Affiliation(s)
- Yibo Zhang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Xin Xu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jing Xu
- Dezhou Eco-environment Monitoring Center of Shandong Province, Dezhou, 253000, China
| | - Zhang Li
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Long Cheng
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jie Fu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Weiling Sun
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chenyuan Dang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China.
| |
Collapse
|
25
|
Shen H, Zheng R, Du M, Christiani DC. Environmental pollutants exposure-derived extracellular vesicles: crucial players in respiratory disorders. Thorax 2024; 79:680-691. [PMID: 38631896 DOI: 10.1136/thorax-2023-221302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Individual exposure to environmental pollutants, as one of the most influential drivers of respiratory disorders, has received considerable attention due to its preventability and controllability. Considering that the extracellular vesicle (EV) was an emerging intercellular communication medium, recent studies have highlighted the crucial role of environmental pollutants derived EVs (EPE-EVs) in respiratory disorders. METHODS PubMed and Web of Science were searched from January 2018 to December 2023 for publications with key words of environmental pollutants, respiratory disorders and EVs. RESULTS Environmental pollutants could disrupt airway intercellular communication by indirectly stimulating airway barrier cells to secrete endogenous EVs, or directly transmitting exogenous EVs, mainly by biological pollutants. Mechanistically, EPE-EVs transferred specific contents to modulate biological functions of recipient cells, to induce respiratory inflammation and impair tissue and immune function, which consequently contributed to the development of respiratory diseases, such as asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, pulmonary hypertension, lung cancer and infectious lung diseases. Clinically, EVs could emerged as promising biomarkers and biological agents for respiratory diseases attributed by their specificity, convenience, sensibility and stability. CONCLUSIONS Further studies of EPE-EVs are helpful to understand the aetiology and pathology of respiratory diseases, and facilitate the precision respiratory medicine in risk screening, early diagnosis, clinical management and biotherapy.
Collapse
Affiliation(s)
- Haoran Shen
- School of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rui Zheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Departments of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - David C Christiani
- Departments of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Xu M, Gao P, Gao Y, Xiong SJ, Chen HQ, Shen XX. Impacts of microplastic type on the fate of antibiotic resistance genes and horizontal gene transfer mechanism during anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121090. [PMID: 38772228 DOI: 10.1016/j.jenvman.2024.121090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
Microplastics (MPs) and antibiotic resistance genes (ARGs) are important pollutants in waste activated sludge (WAS), but their interactions during anaerobic digestion (AD) still need to be further explored. This study investigated variations in ARGs, mobile genetic elements (MGEs), and host bacteria during AD under the pressure of polyamide (PA), polyethylene (PE), and polypropylene (PP). The results showed that the MPs increased methane production by 11.7-35.5%, and decreased ARG abundance by 5.6-24.6%. Correlation analysis showed that the decrease of MGEs (plasmid, prophage, etc.) promoted the decrease of the abundance of multidrug, aminoglycoside and tetracycline resistance genes. Metagenomic annotation revealed that the reduction of key host bacteria (Arenimonas, Lautropia, etc.) reduced the abundance of major ARGs (rsmA, rpoB2, etc.). Moreover, PP MPs contributed to a reduction in the abundance of functional genes related to the production of reactive oxygen species, ATP synthesis, and cell membrane permeability, which was conducive to reducing the potential for horizontal gene transfer of ARGs. These findings provide insights into the treatment of organic waste containing MPs.
Collapse
Affiliation(s)
- Ming Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Peng Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Yuan Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Shi-Jin Xiong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Hao-Qiang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiao-Xiao Shen
- Institute of Water Science and Technology, Hohai University, Nanjing, 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
27
|
Joannard B, Sanchez-Cid C. Bacterial dynamics of the plastisphere microbiome exposed to sub-lethal antibiotic pollution. MICROBIOME 2024; 12:97. [PMID: 38790062 PMCID: PMC11127405 DOI: 10.1186/s40168-024-01803-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/27/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Antibiotics and microplastics are two major aquatic pollutants that have been associated to antibiotic resistance selection in the environment and are considered a risk to human health. However, little is known about the interaction of these pollutants at environmental concentrations and the response of the microbial communities in the plastisphere to sub-lethal antibiotic pollution. Here, we describe the bacterial dynamics underlying this response in surface water bacteria at the community, resistome and mobilome level using a combination of methods (next-generation sequencing and qPCR), sequencing targets (16S rRNA gene, pre-clinical and clinical class 1 integron cassettes and metagenomes), technologies (short and long read sequencing), and assembly approaches (non-assembled reads, genome assembly, bacteriophage and plasmid assembly). RESULTS Our results show a shift in the microbial community response to antibiotics in the plastisphere microbiome compared to surface water communities and describe the bacterial subpopulations that respond differently to antibiotic and microplastic pollution. The plastisphere showed an increased tolerance to antibiotics and selected different antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs). Several metagenome assembled genomes (MAGs) derived from the antibiotic-exposed plastisphere contained ARGs, virulence factors, and genes involved in plasmid conjugation. These include Comamonas, Chryseobacterium, the opportunistic pathogen Stenotrophomonas maltophilia, and other MAGs belonging to genera that have been associated to human infections, such as Achromobacter. The abundance of the integron-associated ciprofloxacin resistance gene aac(6')-Ib-cr increased under ciprofloxacin exposure in both freshwater microbial communities and in the plastisphere. Regarding the antibiotic mobilome, although no significant changes in ARG load in class 1 integrons and plasmids were observed in polluted samples, we identified three ARG-containing viral contigs that were integrated into MAGs as prophages. CONCLUSIONS This study illustrates how the selective nature of the plastisphere influences bacterial response to antibiotics at sub-lethal selective pressure. The microbial changes identified here help define the selective role of the plastisphere and its impact on the maintenance of environmental antibiotic resistance in combination with other anthropogenic pollutants. This research highlights the need to evaluate the impact of aquatic pollutants in environmental microbial communities using complex scenarios with combined stresses. Video Abstract.
Collapse
Affiliation(s)
- Brune Joannard
- Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAe 1418, VetAgro Sup, Ecologie Microbienne, 69622, Villeurbanne, France
| | - Concepcion Sanchez-Cid
- Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAe 1418, VetAgro Sup, Ecologie Microbienne, 69622, Villeurbanne, France.
| |
Collapse
|
28
|
Wei L, Li J, Wang Z, Wu J, Wang S, Cai Z, Lu Y, Su C. Evaluating effects of tetrabromobisphenol A and microplastics on anaerobic granular sludge: Physicochemical properties, microbial metabolism, and underlying mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121077. [PMID: 38718604 DOI: 10.1016/j.jenvman.2024.121077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/07/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Tetrabromobisphenol A (TBBPA) and microplastics are emerging contaminants of widespread concern. However, little is known about the effects of combined exposure to TBBPA and microplastics on the physicochemical properties and microbial metabolism of anaerobic granular sludge. This study investigated the effects of TBBPA, polystyrene microplastics (PS MP) and polybutylene succinate microplastics (PBS MP) on the physicochemical properties, microbial communities and microbial metabolic levels of anaerobic granular sludge. The results showed that chemical oxygen demand (COD) removal of sludge was lowest in the presence of TBBPA alone and PS MP alone with 33.21% and 30.06%, respectively. The microorganisms promoted the secretion of humic substances under the influence of TBBPA, PS MP and PBS MP. The lowest proportion of genes controlling glycolytic metabolism in sludge was 1.52% when both TBBPA and PS MP were added. Microbial reactive oxygen species were increased in anaerobic granular sludge exposed to MPS. In addition, TBBPA treatment decreased electron transfer of the anaerobic granular sludge and disrupted the pathway of anaerobic microorganisms in acquiring adenosine triphosphate, and MPs attenuated the negative effects of TBBPA on the acetate methanogenesis process of the anaerobic granular sludge. This study provides a reference for evaluating the impact of multiple pollutants on anaerobic granular sludge.
Collapse
Affiliation(s)
- Lixin Wei
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Junjian Li
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Zi Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Jinyan Wu
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Shuying Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Zhexiang Cai
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Yuxiang Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Chengyuan Su
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China.
| |
Collapse
|
29
|
Zhao K, Li C, Li F. Research progress on the origin, fate, impacts and harm of microplastics and antibiotic resistance genes in wastewater treatment plants. Sci Rep 2024; 14:9719. [PMID: 38678134 PMCID: PMC11055955 DOI: 10.1038/s41598-024-60458-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024] Open
Abstract
Previous studies reported microplastics (MPs), antibiotics, and antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs). There is still a lack of research progress on the origin, fate, impact and hazards of MPs and ARGs in WWTPs. This paper fills a gap in this regard. In our search, we used "microplastics", "antibiotic resistance genes", and "wastewater treatment plant" as topic terms in Web of Science, checking the returned results for relevance by examining paper titles and abstracts. This study mainly explores the following points: (1) the origins and fate of MPs, antibiotics and ARGs in WWTPs; (2) the mechanisms of action of MPs, antibiotics and ARGs in sludge biochemical pools; (3) the impacts of MPs in WWTPs and the spread of ARGs; (4) and the harm inflicted by MPs and ARGs on the environment and human body. Contaminants in sewage sludge such as MPs, ARGs, and antibiotic-resistant bacteria enter the soil and water. Contaminants can travel through the food chain and thus reach humans, leading to increased illness, hospitalization, and even mortality. This study will enhance our understanding of the mechanisms of action among MPs, antibiotics, ARGs, and the harm they inflict on the human body.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China
| | - Chengzhi Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Fengxiang Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China.
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
30
|
Sun H, Yang B, Zhu X, Li Q, Song E, Song Y. Oral exposure of polystyrene microplastics and doxycycline affects mice neurological function via gut microbiota disruption: The orchestrating role of fecal microbiota transplantation. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133714. [PMID: 38340564 DOI: 10.1016/j.jhazmat.2024.133714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
The debris of plastics with a size < 5 mm, called microplastics, possess long-lived legacies of plastic pollution and a growing threat to human beings. The adverse effects and corresponding molecular mechanisms of microplastics are still largely unknown and must be prioritized. Antibiotics commonly co-existed with microplastics; the current study investigated the syngenetic toxic effect of doxycycline (Dox) and polystyrene microplastics (PS). Specifically, we found that Dox combined with PS exposure perturbed gut microbiota homeostasis in mice, which mediated brain lesions and inflammation with a concomitant decline in learning and memory behaviors through the gut-brain axis. Of note, PS exposure resulted in intestinal damage and structural change, but Dox did not accelerate the disruption of intestinal barrier integrity in PS-treated mice. Interestingly, fecal microbiota transplantation (FMT) can reverse neurological impairment caused by combined PS and Dox exposure via compensating gut microbes; therefore, the learning and memory abilities of mice were also recovered. This work not only provides insights into the syngenetic effect of microplastics and antibiotics and highlights their distal neurotoxicity through the gut-brain axis but also offers a promising strategy against their combined toxicity.
Collapse
Affiliation(s)
- Hang Sun
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bingwei Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaokang Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qiong Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
31
|
Liu F, Luo Y, Xu T, Lin H, Qiu Y, Li B. Current examining methods and mathematical models of horizontal transfer of antibiotic resistance genes in the environment. Front Microbiol 2024; 15:1371388. [PMID: 38638913 PMCID: PMC11025395 DOI: 10.3389/fmicb.2024.1371388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
The increasing prevalence of antibiotic resistance genes (ARGs) in the environment has garnered significant attention due to their health risk to human beings. Horizontal gene transfer (HGT) is considered as an important way for ARG dissemination. There are four general routes of HGT, including conjugation, transformation, transduction and vesiduction. Selection of appropriate examining methods is crucial for comprehensively understanding characteristics and mechanisms of different HGT ways. Moreover, combined with the results obtained from different experimental methods, mathematical models could be established and serve as a powerful tool for predicting ARG transfer dynamics and frequencies. However, current reviews of HGT for ARG spread mainly focus on its influencing factors and mechanisms, overlooking the important roles of examining methods and models. This review, therefore, delineated four pathways of HGT, summarized the strengths and limitations of current examining methods, and provided a comprehensive summing-up of mathematical models pertaining to three main HGT ways of conjugation, transformation and transduction. Finally, deficiencies in current studies were discussed, and proposed the future perspectives to better understand and assess the risks of ARG dissemination through HGT.
Collapse
Affiliation(s)
- Fan Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yuqiu Luo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Tiansi Xu
- School of Environment, Tsinghua University, Beijing, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yong Qiu
- School of Environment, Tsinghua University, Beijing, China
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
32
|
Zhang S, Li Y, Jiang L, Chen X, Zhao Y, Shi W, Xing Z. From organic fertilizer to the soils: What happens to the microplastics? A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170217. [PMID: 38307274 DOI: 10.1016/j.scitotenv.2024.170217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/24/2023] [Accepted: 01/14/2024] [Indexed: 02/04/2024]
Abstract
In recent, soil microplastic pollution arising from organic fertilizers has been of a great increasing concern. In response to this concern, this review presents a comprehensive analysis of the occurrence and evolution of microplastics in organic fertilizers, their ingress into the soil, and the subsequent impacts. Organic fertilizers are primarily derived from solid organic waste generated by anthropocentric activities including urban (daily-life, municipal wastes and sludge), agricultural (manure, straw), and industrial (like food industrial waste etc.) processes. In order to produce organic fertilizer, the organic solid wastes are generally treated by aerobic composting or anaerobic digestion. Currently, microplastics have been widely detected in the raw materials and products of organic fertilizer. During the process of converting organic solid waste materials into fertilizer, intense oxidation, hydrolysis, and microbial actions significantly alter the physical, chemical, and surface biofilm properties of the plastics. After the organic fertilizer application, the abundances of microplastics significantly increased in the soil. Additionally, the degradation of these microplastics often promotes the adsorption of organic pollutants and affects their retention time in the soil. These microplastics, covered by biofilms, also significantly alter soil ecology due to the unique properties of the biofilm. Furthermore, the biofilms also play a role in the degradation of microplastics in the soil environment. This review offers a new perspective on the soil environmental processes involving microplastics from organic fertilizer sources and highlights the challenges associated with further research on organic fertilizers and microplastics.
Collapse
Affiliation(s)
- Shengwei Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yanxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Linshu Jiang
- Beijing University of Agriculture, Beijing 102206, China.
| | - Xingcai Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yan Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wenzhuo Shi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhijie Xing
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
33
|
Kim H, Yoo K. Marine plastisphere selectively enriches microbial assemblages and antibiotic resistance genes during long-term cultivation periods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123450. [PMID: 38280464 DOI: 10.1016/j.envpol.2024.123450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/07/2024] [Accepted: 01/24/2024] [Indexed: 01/29/2024]
Abstract
Several studies have focused on identifying and quantifying suspended plastics in surface and subsurface seawater. Microplastics (MPs) have attracted attention as carriers of antibiotic resistance genes (ARGs) in the marine environment. Plastispheres, specific biofilms on MP, can provide an ideal niche to spread more widely through horizontal gene transfer (HGT), thereby increasing risks to ecosystems and human health. However, the microbial communities formed on different plastic types and ARG abundances during exposure time in natural marine environments remain unclear. Four types of commonly used MPs (polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyvinyl chloride (PVC)) were periodically cultured (46, 63, and 102 d) in a field-based marine environment to study the co-selection of ARGs and microbial communities in marine plastispheres. After the first 63 d of incubation (p < 0.05), the initial 16S rRNA gene abundance of microorganisms in the plastisphere increased significantly, and the biomass subsequently decreased. These results suggest that MPs can serve as vehicles for various microorganisms to travel to different environments and eventually provide a niche for a variety of microorganisms. Additionally, the qPCR results showed that MPs selectively enriched ARGs. In particular, tetA, tetQ, sul1, and qnrS were selectively enriched in the PVC-MPs. The abundances of intl1, a mobile genetic element, was measured in all MP types for 46 d (5.22 × 10-5 ± 8.21 × 10-6 copies/16s rRNA gene copies), 63 d (5.90 × 10-5 ± 2.49 × 10-6 copies/16s rRNA gene copies), and 102 d (4.00 × 10-5 ± 5.11 × 10-6 copies/16s rRNA gene copies). Network analysis indicated that ARG profiles co-occurred with key biofilm-forming bacteria. This study suggests that the selection of ARGs and their co-occurring bacteria in MPs could potentially accelerate their transmission through HGT in natural marine plastics.
Collapse
Affiliation(s)
- Hyunsu Kim
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea
| | - Keunje Yoo
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea.
| |
Collapse
|
34
|
Parida D, Katare K, Ganguly A, Chakraborty D, Konar O, Nogueira R, Bala K. Molecular docking and metagenomics assisted mitigation of microplastic pollution. CHEMOSPHERE 2024; 351:141271. [PMID: 38262490 DOI: 10.1016/j.chemosphere.2024.141271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Microplastics, tiny, flimsy, and direct progenitors of principal and subsidiary plastics, cause environmental degradation in aquatic and terrestrial entities. Contamination concerns include irrevocable impacts, potential cytotoxicity, and negative health effects on mortals. The detection, recovery, and degradation strategies of these pollutants in various biota and ecosystems, as well as their impact on plants, animals, and humans, have been a topic of significant interest. But the natural environment is infested with several types of plastics, all having different chemical makeup, structure, shape, and origin. Plastic trash acts as a substrate for microbial growth, creating biofilms on the plastisphere surface. This colonizing microbial diversity can be glimpsed with meta-genomics, a culture-independent approach. Owing to its comprehensive description of microbial communities, genealogical evidence on unconventional biocatalysts or enzymes, genomic correlations, evolutionary profile, and function, it is being touted as one of the promising tools in identifying novel enzymes for the degradation of polymers. Additionally, computational tools such as molecular docking can predict the binding of these novel enzymes to the polymer substrate, which can be validated through in vitro conditions for its environmentally feasible applications. This review mainly deals with the exploration of metagenomics along with computational tools to provide a clearer perspective into the microbial potential in the biodegradation of microplastics. The computational tools due to their polymathic nature will be quintessential in identifying the enzyme structure, binding affinities of the prospective enzymes to the substrates, and foretelling of degradation pathways involved which can be quite instrumental in the furtherance of the plastic degradation studies.
Collapse
Affiliation(s)
- Dinesh Parida
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, India.
| | - Konica Katare
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, India.
| | - Atmaadeep Ganguly
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, West Bengal State University, Kolkata, 700118, India.
| | - Disha Chakraborty
- Department of Botany, Shri Shikshayatan College, University of Calcutta, Lord Sinha Road, Kolkata, 700071, India.
| | - Oisi Konar
- Department of Botany, Shri Shikshayatan College, University of Calcutta, Lord Sinha Road, Kolkata, 700071, India.
| | - Regina Nogueira
- Institute of Sanitary Engineering and Waste Management, Leibniz Universität, Hannover, Germany.
| | - Kiran Bala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, India.
| |
Collapse
|
35
|
Zheng Z, Wang X, Zhang W, Wang L, Lyu H, Tang J. Regulation of ARGs abundance by biofilm colonization on microplastics under selective pressure of antibiotics in river water environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120402. [PMID: 38428183 DOI: 10.1016/j.jenvman.2024.120402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/22/2023] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Abstract
Interactions of microplastics (MPs) biofilm with antibiotic resistance genes (ARGs) and antibiotics in aquatic environments have made microplastic biofilm an issue of keen scholarly interest. The process of biofilm formation and the degree of ARGs enrichment in the presence of antibiotic-selective pressure and the impact on the microbial community need to be further investigated. In this paper, the selective pressure of ciprofloxacin (CIP) and illumination conditions were investigated to affect the physicochemical properties, biomass, and extracellular polymer secretion of polyvinyl chloride (PVC) microplastic biofilm. In addition, relative copy numbers of nine ARGs were analyzed by real-time quantitative polymerase chain reaction (qPCR). In the presence of CIP, microorganisms in the water and microplastic biofilm were more inclined to carry associated ARGs (2-3 times higher), which had a contributing effect on ARGs enrichment. The process of pre-microplastic biofilm formation might have an inhibitory effect on ARGs (total relative abundance up to 0.151) transfer and proliferation compared to the surrounding water (total relative abundance up to 0.488). However, in the presence of CIP stress, microplastic biofilm maintained the abundance of ARGs (from 0.151 to 0.149) better compared to the surrounding water (from 0.488 to 0.386). Therefore, microplastic biofilm act as abundance buffer island of ARGs stabilizing the concentration of ARGs. In addition, high-throughput analyses showed the presence of antibiotic-resistant (Pseudomonas) and pathogenic (Vibrio) microorganisms in biofilm under different conditions. The above research deepens our understanding of ARGs enrichment in biofilm and provides important insights into the ecological risks of interactions between ARGs, antibiotics, and microplastic biofilm.
Collapse
Affiliation(s)
- Zhijie Zheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiaolong Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Wenzhu Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
36
|
Du J, Zhang N, Ma S, Wang G, Ma C, Liu G, Wang Y, Wang J, Ni T, An Z, Wu W. Visible light-driven C/O-g-C 3N 4 activating peroxydisulfate to effectively inactivate antibiotic resistant bacteria and inhibit the transformation of antibiotic resistance genes: Insights on the mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132972. [PMID: 37976858 DOI: 10.1016/j.jhazmat.2023.132972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) dissemination within water pose a serious threat to public health. Herein, C and O dual-doped g-C3N4 (C/O-g-C3N4) photocatalyst, fabricated via calcination treatment, was utilized to activate peroxydisulfate (PDS) to investigate the disinfection effect on tetracycline-resistant Escherichia coli and the transformation frequency of ARGs. As a result, approximately 7.08 log E. coli were inactivated, and 72.36 % and 53.96 % of antibiotics resistance gene (tetB) and 16 S rRNA were degraded respectively within 80 min. Futhermore, the transformation frequency was reduced to 0.8. Characterization and theoretical results indicated that C and O doping in g-C3N4 might lead to the electronic structure modulation and band gap energy reduction, resulting in the production of more free radicals. The mechanism analysis revealed that C/O-g-C3N4 exhibited a lower adsorption energy and reaction energy barrier for PDS compared to g-C3N4. This was beneficial for the homolysis of O-O bonds, forming SO4•- radicals. The attack of the generated active species led to oxidative stress in cells, resulting in damage to the electron transport chain and inhibition of ATP production. Our findings disclose a valuable insight for inactivating ARB, and provide a prospective strategy for ARGs dissemination in water contamination.
Collapse
Affiliation(s)
- Jinge Du
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Na Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuanglong Ma
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China.
| | - Guansong Wang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Chang Ma
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Guangyong Liu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Yan Wang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China.
| | - Jingzhen Wang
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Tianjun Ni
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang 453003, China.
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
37
|
Wang Y, Xv X, Shao T, He Q, Guo Z, Wang Y, Guo Q, Xing B. A case on source to soil to solutions: Distribution characteristics of microplastics in farmland soil of the largest vegetable base in Northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167910. [PMID: 37866595 DOI: 10.1016/j.scitotenv.2023.167910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/21/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
The wide application of facility agriculture accelerated the rapid development of agriculture. However, microplastics pollution in the soil caused by long-term residual agricultural film posed a significant threat to the soil ecosystem and human health. Jingyang County of Shaanxi Province was the largest vegetable planting base in northwest China. Soil samples of facility agriculture and non-facility agriculture were collected to investigate the distribution characteristics and risks of microplastics. The abundance of microplastics in Jingyang County ranged from 200.00 to 4733.33 n·kg-1, and the mean abundance was 1955.00 n·kg-1. Microplastics abundance in facility agriculture soil was higher than that in non-facility agriculture soil, and it increased with the growth of planting years. In general, the size of soil microplastics was mainly <100 μm and the abundance was negatively correlated with particle size. There were 30 types of chemical constituents in the microplastics detected, and PE (47.03 %) and PET (11.48 %) were the main ones. In addition, the types of microplastics in soil were identical with those detected in irrigation water and fertilizer, which provided another source of soil microplastics. All the sampling sites were ecological risk category I, and there was no carcinogenic risk to human health at present. In the future, the government should advocated and encouraged farmers to improve mulch recycling efficiency. Correspondingly, more positive action should be taken to the management on mulch recycling and the standards on placement of waste agricultural inputs. This study would provide foundation data for the research of microplastics pollution in farmland and the risk assessment of ecosystem and human health.
Collapse
Affiliation(s)
- Yanhua Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| | - Xinqi Xv
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Tianjie Shao
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Qianyao He
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Ziyi Guo
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Yuting Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Qing Guo
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|