1
|
Mehdi SF, Qureshi MH, Pervaiz S, Kumari K, Saji E, Shah M, Abdullah A, Zahoor K, Qadeer HA, Katari DK, Metz C, Mishra L, LeRoith D, Tracey K, Brownstein MJ, Roth J. Endocrine and metabolic alterations in response to systemic inflammation and sepsis: a review article. Mol Med 2025; 31:16. [PMID: 39838305 PMCID: PMC11752782 DOI: 10.1186/s10020-025-01074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025] Open
Abstract
Severe sepsis is cognate with life threatening multi-organ dysfunction. There is a disturbance in endocrine functions with alterations in several hormonal pathways. It has frequently been linked with dysfunction in the hypothalamic pituitary-adrenal axis (HPA). Increased cortisol or cortisolemia is evident throughout the acute phase, along with changes in the hypothalamic pituitary thyroid (HPT) axis, growth hormone-IGF-1 axis, insulin-glucose axis, leptin, catecholamines, renin angiotensin aldosterone axis, ghrelin, glucagon, hypothalamic pituitary gonadal (HGA) axis, and fibroblast growth factor-21. These changes and metabolic alterations constitute the overall response to infection in sepsis. Further research is essential to look into the hormonal changes that occur during sepsis, not only to understand their potential relevance in therapy but also because they may serve as prognostic indicators.
Collapse
Affiliation(s)
- Syed Faizan Mehdi
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | | | - Salman Pervaiz
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Karishma Kumari
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Edwin Saji
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Mahnoor Shah
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Ahmad Abdullah
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Kamran Zahoor
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Hafiza Amna Qadeer
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Disha Kumari Katari
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Christine Metz
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Lopa Mishra
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Derek LeRoith
- Division of Endocrinology, Diabetes & Bone Disease, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Kevin Tracey
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | | | - Jesse Roth
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA.
| |
Collapse
|
2
|
Abstract
Hypermetabolism is a hallmark of larger burn injuries. The hypermetabolic response is characterized by marked and sustained increases in catecholamines, glucocorticoids, and glucagon. There is an increasing body of literature for nutrition and metabolic treatment and supplementation to counter the hypermetabolic and catabolic response secondary to burn injury. Early and adequate nutrition is key in addition to adjunctive therapies, such as oxandrolone, insulin, metformin, and propranolol. The duration of administration of anabolic agents should be at minimum for the duration of hospitalization, and possibly up to 2 to 3 years postburn.
Collapse
Affiliation(s)
- Shahriar Shahrokhi
- Burn Program at Hamilton Health Sciences, Hamilton, Ontario, Canada; Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Marc G Jeschke
- Burn Program at Hamilton Health Sciences, Hamilton, Ontario, Canada; Department of Surgery, McMaster University, Hamilton, Ontario, Canada; TaAri Institute, Hamilton Health Sciences Research Institute, Hamilton, Ontario, Canada; David Braley Research Institute, C5-104, 237 Barton Street East, Hamilton, Ontario L8L 2X2, Canada.
| |
Collapse
|
3
|
Ma A, Wang B, Cheng J, Dong M, Li Y, Wei C, Zhou Y, Xue Y, Gao H, Zhao L, Li S, Qin Y, Zhang M, Wu Q, Yang J, Kang Y. Effects of airway pressure release ventilation on multi-organ injuries in severe acute respiratory distress syndrome pig models. BMC Pulm Med 2022; 22:468. [PMID: 36476475 PMCID: PMC9730639 DOI: 10.1186/s12890-022-02238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Extra-pulmonary multi-organ failure in patients with severe acute respiratory distress syndrome (ARDS) is a major cause of high mortality. Our purpose is to assess whether airway pressure release ventilation (APRV) causes more multi-organ damage than low tidal volume ventilation (LTV). METHODS Twenty one pigs were randomized into control group (n = 3), ARDS group (n = 3), LTV group (n = 8) and APRV group (n = 7). Severe ARDS model was induced by repeated bronchial saline lavages. Pigs were ventilated and monitored continuously for 48 h. Respiratory data, hemodynamic data, serum inflammatory cytokines were collected throughout the study. Histological injury and apoptosis were assessed by two pathologists. RESULTS After severe ARDS modeling, pigs in ARDS, LTV and APRV groups experienced significant hypoxemia and reduced lung static compliance (Cstat). Oxygenation recovered progressively after 16 h mechanical ventilation (MV) in LTV and APRV group. The results of the repeated measures ANOVA showed no statistical difference in the PaO2/FiO2 ratio between the APRV and LTV groups (p = 0.54). The Cstat showed a considerable improvement in APRV group with statistical significance (p < 0.01), which was significantly higher than in the LTV group since 16 h (p = 0.04). Histological injury scores showed a significantly lower injury score in the middle and lower lobes of the right lung in the APRV group compared to LTV (pmiddle = 0.04, plower = 0.01), and no significant increase in injury scores for extra-pulmonary organs, including kidney (p = 0.10), small intestine (p = 1.0), liver (p = 0.14, p = 0.13) and heart (p = 0.20). There were no significant differences in serum inflammatory cytokines between the two groups. CONCLUSION In conclusion, in the experimental pig models of severe ARDS induced by repetitive saline lavage, APRV improved lung compliance with reduced lung injury of middle and lower lobes, and did not demonstrate more extra-pulmonary organ injuries as compared with LTV.
Collapse
Affiliation(s)
- Aijia Ma
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Bo Wang
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Jiangli Cheng
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Meiling Dong
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Yang Li
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Canzheng Wei
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Yongfang Zhou
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Yang Xue
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Hui Gao
- grid.412901.f0000 0004 1770 1022Department of Nursing, West China Hospital of Sichuan University, Chengdu, Sichuan Province China
| | - Lican Zhao
- grid.412901.f0000 0004 1770 1022Department of Nursing, West China Hospital of Sichuan University, Chengdu, Sichuan Province China
| | - Siyu Li
- grid.412901.f0000 0004 1770 1022Department of Nursing, West China Hospital of Sichuan University, Chengdu, Sichuan Province China
| | - Yiwei Qin
- grid.414880.1Department of Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan Province China
| | - Mengni Zhang
- grid.412901.f0000 0004 1770 1022Department of Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan Province China
| | - Qin Wu
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Jing Yang
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Yan Kang
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| |
Collapse
|
4
|
Chen Y, Cheng Y, Wang W, Wang A, Zhou Y. Protective effects of dietary supplementation with a silicate clay mineral (palygorskite) in lipopolysaccharide-challenged broiler chickens at an early age. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Huang CT, Lue JH, Cheng TH, Tsai YJ. Glycemic control with insulin attenuates sepsis-associated encephalopathy by inhibiting glial activation via the suppression of the nuclear factor kappa B and mitogen-activated protein kinase signaling pathways in septic rats. Brain Res 2020; 1738:146822. [PMID: 32272096 DOI: 10.1016/j.brainres.2020.146822] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/11/2022]
Abstract
Sepsis-associated encephalopathy (SAE) is frequently encountered in critically ill patients. Hyperglycemia is a common phenomenon among patients with sepsis, and glycemic control improves patient outcomes. Therefore, here, we aimed to explore whether glycemic control using insulin inhibits the pro-inflammatory cytokine response and glial activation in the cerebrum and is concomitantly associated with the relief of SAE. Using cecal ligation and puncture (CLP), sepsis was induced in male Sprague-Dawley rats. The CLP rats were administered intravenous glucose or subjected to subcutaneous insulin implant within the first hour after CLP. The survival rate, blood glucose (BG) values, and behavioral expression were assessed daily for 5 days after CLP. At day 5 after CLP, electroencephalography (EEG) recordings and blood-brain barrier (BBB) permeability testing were performed. Immunohistochemistry, immunoblotting, and enzyme-linked immunosorbent assays were used to evaluate glial activation and the pro-inflammatory cytokine response qualitatively and quantitatively, respectively. The glucose-treated CLP rats (BG > 390 mg/dL) exhibited a decline in survival rate; insensitivity to mechanical and thermal stimuli; slowed EEG activity; and an increase in BBB permeability, pro-inflammatory cytokine (TNF-α, IL-1β, and IL-6) levels, and glial activation (astrocytes and microglia) in the cerebral tissues compared with CLP rats (BG ~ 270 mg/dL). Double-immunofluorescence showed that activated astrocytes and microglia co-expressed phosphorylated nuclear factor kappa B and mitogen-activated protein kinases, respectively. Furthermore, glycemic control using insulin therapy maintained the BG at 120-160 mg/dL and inhibited the production of pro-inflammatory cytokines and glial activation in the cerebrum of septic rats. In addition, the survival rate, sensory threshold, EEG activity, and BBB permeability recovered to near-normal levels in septic rats after insulin therapy. Taken together, the results of this study elucidated the pathophysiological alterations in brains subjected to sepsis, especially regarding glycemic control. These findings improve our understanding of SAE and support the importance of glycemic control in sepsis.
Collapse
Affiliation(s)
- Chun-Ta Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | - June-Horng Lue
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tong-Hong Cheng
- Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Yi-Ju Tsai
- Graduate Institute of Biomedical and Pharmaceutical Science, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
6
|
Soudi SA, Nounou MI, Sheweita SA, Ghareeb DA, Younis LK, El-Khordagui LK. Protective effect of surface-modified berberine nanoparticles against LPS-induced neurodegenerative changes: a preclinical study. Drug Deliv Transl Res 2019; 9:906-919. [PMID: 30868509 DOI: 10.1007/s13346-019-00626-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Berberine (BBR) exerts documented protection against neurodegenerative disorders. However, data on the effect of nano-encapsulation on the neuroprotective effect of BBR are lacking. We investigated the effect of BBR loading into chitosan (CS) nanoparticles (NPs) and their surface modification with Tween 80 (T80), polyethylene glycol 4000 (PEG), and miltefosine (MFS) against lipopolysaccharide (LPS)-induced neurodegenerative changes in addition to hepatotoxicity in rats. BBR-NPs were prepared by ionic gelation and characterized for morphology by transmission electron microscopy (TEM), colloidal properties, and entrapment efficiency (EE%). The neuroprotective and hepatoprotective effects of a 14-day pretreatment with four BBR-NPs formulations (4 mg/kg BBR/day) by intraperitoneal (i.p.) injection were challenged by a single i.p. 4 mg/kg dose of LPS on the fifteenth day. Neuroprotective efficacy and potential toxicity of BBR-NPs relative to BBR solution were assessed biochemically and histopathologically. One-way ANOVA followed by Tukey's comparison test was used for statistical analysis. CS nano-encapsulation and surface modification of BBR-NPs altered the neuroprotective and hepatoprotective effects of BBR depending on the physicochemical and/or biological effects of BBR, CS, coating materials, and NP-related features. Similar to the prophylactic and treatment efficacy of NPs for brain delivery, safety of these nanostructures and their individual formulation components warrants due research attention.
Collapse
Affiliation(s)
- Salma A Soudi
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohamed I Nounou
- Department of Pharmaceutical Sciences, School of Pharmacy and Physician Assistant Studies (SOPPAS), University of Saint Joseph (USJ), Hartford, CT, 06103, USA.
| | - Salah A Sheweita
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
- Department of Clinical Biochemistry, Faculty of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Doaa A Ghareeb
- Biological screening and preclinical trial laboratory, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
- Pharmaceutical and Fermentation Industries Development Center, City for Scientific Research and Technology Applications, Alexandria, Egypt
| | - Layla K Younis
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Labiba K El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
7
|
Stošić-Grujičić S, Saksida T, Miljković Đ, Stojanović I. MIF and insulin: Lifetime companions from common genesis to common pathogenesis. Cytokine 2019; 125:154792. [PMID: 31400637 DOI: 10.1016/j.cyto.2019.154792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/01/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022]
Abstract
Pro-inflammatory nature of macrophage migration inhibitory factor (MIF) has been generally related to the propagation of inflammatory and autoimmune diseases. But this molecule possesses many other peculiar functions, unrelated to the immune system, among which is its supportive role in the post-translational modifications of insulin. In this way MIF enables proper insulin conformation within the pancreatic beta cell and its full activity. The inherent or acquired changes in MIF expression might therefore lead to different insulin processing and initiation of autoimmunity. The relation between MIF and insulin does not stop at this point; these two molecules continue to interact during pathological states characterized by inflammation and insulin resistance. In this context, MIF indirectly and negatively influences insulin action by boosting inflammatory environment and disabling target cells to respond to insulin. On the other side, insulin might interfere with MIF action as well, acting as an anti-inflammatory mediator. Therefore, the proper interaction between MIF and insulin is crucial for maintaining homeostasis, while anti-inflammatory therapies based on the systemic MIF blockage may disturb this balance. This review covers MIF-insulin relationship in the physiological and pathological conditions and discusses the approaches for MIF inhibition and their net effect specifically considering possible impact on insulin misfolding and the possible misinterpretation of previous results due to the discovery of MIF functional homolog D-dopachrome tautomerase.
Collapse
Affiliation(s)
- Stanislava Stošić-Grujičić
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Tamara Saksida
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
8
|
Taibi-Djennah Z, Martin-Eauclaire MF, Laraba-Djebari F. Evaluation of neuroprotective effects of insulin on immuno-inflammatory and systemic disorders induced by kaliotoxin, a Kv1.3 channel blocker. Inflamm Res 2018; 67:863-877. [DOI: 10.1007/s00011-018-1177-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/12/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022] Open
|
9
|
Caldwell A, Morick JN, Jentsch AM, Wegner A, Pavlovic D, Al-Banna N, Lehmann C. Impact of insulin on the intestinal microcirculation in a model of sepsis-related hyperglycemia. Microvasc Res 2018; 119:117-128. [PMID: 29778648 DOI: 10.1016/j.mvr.2018.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/22/2018] [Accepted: 05/13/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Sepsis involves dysfunctional glucose metabolism. Among patients with sepsis, hyperglycemia is frequent and insulin administration has been evaluated for glycemic control to improve patient outcomes. Only few studies have examined the hyperglycemic microcirculation and the impact of insulin on the microvasculature in sepsis. OBJECTIVE To study the functional capillary density (FCD) and leukocyte activation within the intestinal microcirculation in endotoxin-induced experimental sepsis. METHODS In 50 male Lewis rats, endotoxemia was induced with lipopolysaccharide (LPS; 5 mg/kg). Low dose (LD) glucose was administered to avoid insulin-induced hypoglycemia. High dose (HD) glucose was administered to model sepsis-related hyperglycemia. Animals in LD and HD glucose groups received an insulin bolus (1.4 IU/kg). Two hours after LPS administration, intravital microscopy (IVM) of the terminal ileum was performed, and FCD and leukocyte adherence were measured in a blinded fashion. Blood glucose levels were measured every 30 min following the onset of endotoxemia. Plasma samples were collected 3 h after the onset of endotoxemia to measure IFN-γ, TNF-α, IL-1α, IL-4, GM-CSF and MCP-1 levels using multiplex bead immunoassay. RESULTS Endotoxemia significantly reduced FCD and increased leukocyte adherence within the intestinal microvasculature. LD and HD glucose administration combined with insulin improved the FCD and decreased the adherence of leukocytes in endotoxemic animals as did HD glucose administration alone. Consistent with these results, IL-4, IL-1α, GM-CSF and IFN-γ levels were decreased following combined HD glucose and insulin administration in endotoxemic animals. CONCLUSIONS Insulin administration, as well as an endogenous insulin response triggered by HD glucose administration, improved the FCD and decreased leukocyte activation in endotoxemic rats. The results of this study give insight into the immune and vaso-modulatory role of insulin administration during experimental endotoxemia, and may be extrapolated for clinical sepsis and other critical illnesses with marked microcirculatory dysfunction.
Collapse
Affiliation(s)
- Alexa Caldwell
- Department of Pharmacology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College St, Halifax, NS B3H 4R2, Canada
| | - Jan Niklas Morick
- Department of Anesthesia and Intensive Care Medicine, University of Greifswald, Ferdinand-Sauerbruch, 17475 Greifswald, Germany
| | - Anne-Marie Jentsch
- Department of Anesthesia and Intensive Care Medicine, University of Greifswald, Ferdinand-Sauerbruch, 17475 Greifswald, Germany
| | - Annette Wegner
- Department of Anesthesia and Intensive Care Medicine, University of Greifswald, Ferdinand-Sauerbruch, 17475 Greifswald, Germany
| | - Dragan Pavlovic
- Department of Anesthesia and Intensive Care Medicine, University of Greifswald, Ferdinand-Sauerbruch, 17475 Greifswald, Germany
| | - Nadia Al-Banna
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College St, Halifax, NS B3H 4R2, Canada
| | - Christian Lehmann
- Department of Pharmacology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College St, Halifax, NS B3H 4R2, Canada; Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College St, Halifax, NS B3H 4R2, Canada; Department of Microbiology and Immunology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College St, Halifax, NS B3H 4R2, Canada; Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College St, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
10
|
Hydroalcoholic extract of Stevia rebaudiana bert. leaves and stevioside ameliorates lipopolysaccharide induced acute liver injury in rats. Biomed Pharmacother 2017; 95:1040-1050. [DOI: 10.1016/j.biopha.2017.08.082] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 08/06/2017] [Accepted: 08/20/2017] [Indexed: 12/11/2022] Open
|
11
|
Abstract
Hypermetabolism is the ubiquitous response to a severe burn injury, which was first described in the nineteenth century. Despite identification of important components of this complex response, hypermetabolism is still not well understood in its entirety. This article describes this incredibly fascinating response and the understanding we have gained over the past 100 years. Additionally, this article describes novel insights and delineates treatment options to modulate postburn hypermetabolism with the goal to improve outcomes of burn patients.
Collapse
|
12
|
Abstract
This study examined the role of exogenous heat shock protein 72 (Hsp72) in reversing sepsis-induced liver dysfunction. Sepsis was induced by cecal ligation and puncture. Liver function was determined on the basis of the enzymatic activities of serum glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT). Apoptosis was determined using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), cleaved caspase-3 and caspase-9, and cleaved poly (ADP-ribose) polymerase (PARP) protein expressions were analyzed using Western blotting. Results showed GOT and GPT levels increased during sepsis, and levels were restored following the administration of human recombinant Hsp72 (rhHsp72). Increased liver tissue apoptosis was observed during sepsis, and normal apoptosis resumed on rhHsp72 administration. The Bcl-2/Bax ratio, cleaved caspase-3, caspase-9, and PARP protein expressions in the liver tissues were upregulated during sepsis and normalized after rhHsp72 treatment. We conclude that, during sepsis, exogenous Hsp72 restored liver dysfunction by inhibiting apoptosis via the mitochondria-initiated caspase pathway.
Collapse
|
13
|
Abstract
The purpose of the present study was to compare the activity of two different clinically available iron chelators on the development of acute liver injury after administration of the bacterial endotoxin (lipopolysaccharide [LPS]) in rats. Lipopolysaccharide was administered either alone or after pretreatment with dexrazoxane (DEX) or deferoxamine (DFO). Control groups received only saline or its combination with either chelator. After 8 h, untreated LPS rats developed liver injury, with signs of inflammation and oxidative stress. Lipopolysaccharide reduced plasma iron concentrations in association with increased production of hepcidin and the reduced liver expression of ferroportin. Administration of chelating agents to LPS animals showed distinct effects. Although both drugs were able to reduce liver iron content, together with corresponding changes in hepcidin and ferroportin expressions, only DFO showed a protective effect against liver injury despite relatively small liver concentrations. In sharp contrast, DEX failed to improve any hallmark of liver injury and even worsened the GSH/GSSG ratio, the indicator of oxidative stress in the tissue. High-performance liquid chromatography-mass spectrometry analysis showed marked liver accumulation of iron-chelating metabolite of DEX (ADR-925), whereas the parent compound was undetectable. Further downregulation of transporters involved in bile formation was observed after DFO in the LPS group as well as in healthy animals. Neither chelator imposed significant liver injury in healthy animals. In conclusion, we demonstrated marked differences in the modulation of endotoxemic liver impairment between two iron chelators, implicating that particular qualities of chelating agents may be of crucial importance.
Collapse
|
14
|
Mazeraud A, Polito A, Annane D. Experimental and clinical evidences for glucose control in intensive care: is infused glucose the key point for study interpretation? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:232. [PMID: 25177798 PMCID: PMC4220093 DOI: 10.1186/cc13998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Stress-induced hyperglycemia has been considered an adaptive mechanism to stress up to the first intensive insulin therapy trial, which showed a 34% reduction in relative risk of in-hospital mortality when normalizing blood glucose levels. Further trials had conflicting results and, at present, stress-induced hyperglycemia management remains non-consensual. These findings could be explained by discrepancies in trials, notably regarding the approach to treat hyperglycemia: high versus restrictive caloric intake. Stress-induced hyperglycemia is a frequent complication during intensive care unit stay and is associated with a higher mortality. It results from an imbalance between insulin and counter-regulatory hormones, increased neoglucogenesis, and the cytokine-induced insulin-resistant state of tissues. In this review, we summarize detrimental effects of hyperglycemia on organs in the critically ill (peripheric and central nervous, liver, immune system, kidney, and cardiovascular system). Finally, we show clinical and experimental evidence of potential benefits from glucose and insulin administration, notably on metabolism, immunity, and the cardiovascular system.
Collapse
|
15
|
Hypoglycemia is associated with increased postburn morbidity and mortality in pediatric patients. Crit Care Med 2014; 42:1221-31. [PMID: 24368343 DOI: 10.1097/ccm.0000000000000138] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The objective of this study was to determine the prevalence of hypoglycemia after burn injury and whether hypoglycemia is associated with increased postburn morbidity and mortality. DESIGN Cohort analysis. SETTING Academic pediatric burn hospital. PATIENTS This analysis included 760 pediatric burn patients, who were stratified according the number of hypoglycemic episodes (< 60 mg/dL glucose) they experienced while in the ICU. Clinical outcomes and metabolic and inflammatory biomarkers were analyzed during the first 60 days post admission. Patients with one or more hypoglycemic events were matched with patients not experiencing any event using propensity score matching, and outcomes and biomarker expression were compared between groups. MEASUREMENTS AND MAIN RESULTS Eighty-four patients had one episode of hypoglycemia, 108 patients had two or more episodes of hypoglycemia, and 568 patients never experienced hypoglycemia. Patients with one or more hypoglycemic episodes had longer hospitalization, as well as more frequent infections, sepsis, multiple organ failure, and death (p < 0.05). The 166 propensity score-matched patients with one or more hypoglycemic events had greater inflammatory and metabolic responses, prevalence of sepsis, multiple organ failure, and mortality than burn patients without hypoglycemic (p < 0.05). CONCLUSIONS Hypoglycemic episodes correlate with injury severity and inhalation injury. When adjusted for injury severity, hypoglycemia is associated with significantly higher postburn morbidity and mortality.
Collapse
|
16
|
Palma HE, Wolkmer P, Gallio M, Corrêa MMB, Schmatz R, Thomé GR, Pereira LB, Castro VSP, Pereira AB, Bueno A, de Oliveira LS, Rosolen D, Mann TR, de Cecco BS, Graça DL, Lopes STA, Mazzanti CMA. Oxidative stress parameters in blood, liver, and kidney of diabetic rats treated with curcumin and/or insulin. Mol Cell Biochem 2013; 386:199-210. [PMID: 24130039 DOI: 10.1007/s11010-013-1858-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 09/28/2013] [Indexed: 01/27/2023]
Abstract
This study evaluated the effects of curcumin and/or insulin on antioxidant enzyme activity in blood, liver, and kidney, as well as on lipid peroxidation and delta aminolevulinic dehydratase (δ-ALA-D) activity, and a histopathological analysis of streptozotocin-induced diabetic rats. The animals were divided into six groups (n = 6): control/saline (C); control/curcumin (CCur); diabetic/saline (D); diabetic/insulin (DIns); diabetic/curcumin (DCur); and diabetic/insulin/curcumin (DInsCur). After 30 days of treatment with curcumin and/or insulin, the animals were sacrificed and the liver, kidney, and serum were used for experimental determinations. Results of histopathological analysis showed that the treatment with insulin ameliorate renal and hepatic lesions from both DIns and DInsCur groups. TBARS levels were significantly increased in serum, liver, and kidney in D group and the administration of curcumin and insulin prevented this increase in DIns and DCur groups. The activities of catalase (CAT), superoxide dismutase, and δ-ALA-D presented a significant decrease in the liver and kidney D group when compared to C group (P < 0.05). The animals treated with curcumin and insulin presented an increase of CAT activity, revealing a positive interaction between both substances. The treatments with curcumin or insulin prevented oxidative stress in blood, through modulation of enzymatic antioxidant defenses. These findings contributed to the comprehension that antioxidants from medicinal plants could be used as adjuvant in the treatment of this endocrinopathy and not as single therapy.
Collapse
Affiliation(s)
- Heloisa Einloft Palma
- Department of Small Animals, Hospital Veterinário, Universidade Federal de Santa Maria, Faixa de Camobi, Km 9, Avenida Roraima no 1000, Campus Universitário, Sala 103, Santa Maria, RS, 97105-900, Brazil,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jeschke MG. Clinical review: Glucose control in severely burned patients - current best practice. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:232. [PMID: 23890278 PMCID: PMC4056030 DOI: 10.1186/cc12678] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tight glucose control changed the way many burn centers practice burn ICU care. However, after the initial impressive data, various clinical trials followed that showed mixed results. The objective of the present review is to discuss recent studies in the area of burn and critical care, and to identify the current best practice for current burn care providers. We reviewed relevant publications from PubMed and selected high-impact publications on tight glycemic control in various patient populations with a focus on burn patients. We conclude that in burns there seems to be a signal that insulin administration to a target range of 130 to 150 mg/dl is beneficial in terms of morbidity and mortality without the risk of hypoglycemia.
Collapse
|
18
|
Depboylu B, Giriş M, Olgaç V, Doğru-Abbasoğlu S, Uysal M. Response of liver to lipopolysaccharide treatment in male and female rats. ACTA ACUST UNITED AC 2013; 65:645-50. [DOI: 10.1016/j.etp.2012.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 04/30/2012] [Accepted: 07/21/2012] [Indexed: 01/20/2023]
|
19
|
Modulation of inflammatory responses following insulin therapy in experimentally bolus intravenous Escherichia coli lipopolysaccharide serotype O55:B5 induced endotoxemia in Iranian fat-tailed sheep. Small Rumin Res 2013. [DOI: 10.1016/j.smallrumres.2013.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
20
|
Zou B, Chen Q, Tang S, Gao T, Zhang J, Xi F, Yu W. Timing of insulin therapy affects the inflammatory response in endotoxemic rats. Inflammation 2012; 35:723-9. [PMID: 21809046 DOI: 10.1007/s10753-011-9367-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The aim of the present study was to determine whether timing of insulin administration influences the hepatic and serum proinflammatory and anti-inflammatory cytokines during endotoxemia stimulated by lipopolysaccharide (LPS). Eighty-one male Sprague-Dawley rats were divided into different time groups and insulin was given 30 min pre-LPS administration or hour 0, 1, 3, 6, 12, 24 after the induction of endotoxemia, respectively. Hepatic and serum proinflammatory cytokines IL-1β, IL-6, and TNF-α, and anti-inflammatory cytokine IL-10 were detected 24 and 48 h after the induction of endotoxemia. Compared with sham control rats, serum concentrations of proinflammatory cytokines IL-1β, IL-6, and TNF-α and anti-inflammatory cytokine IL-10 significantly increased on 24 and 48 h after induction of endotoxemia. Similarly, LPS administration also significantly increased the hepatic IL-1β, TNF-α, IL-6, and IL-10 protein concentration 48 h after LPS injection. Compared with levels in positive LPS controls animals receiving saline, on 24 and 48 h after LPS injection, insulin administrated ahead of 6 h after LPS injection significantly decreased the serum IL-1β, IL-6, and TNF-a concentration (P < 0.05), and significantly increased anti-inflammatory cytokine IL-10 concentration (P < 0.05); hepatic IL-1β and IL-6 expression were (P < 0.05) significantly decreased compared with levels in positive LPS controls. But, the significant decrease of hepatic TNF-a expression and significant increase of hepatic IL-10 were only seen in the animals in which insulin was administrated at 30 min pre-LPS or coadministrated with LPS. Insulin administrated 6 h after LPS injection lost the ability to significantly reduce serum or hepatic IL-1β, TNF-α, and IL-6 concentrations. Insulin has a protective role in systemic inflammatory response syndrome related to sepsis, such as downregulation of proinflammatory cytokines and upregulation of anti-inflammatory cytokine production. However, timing of insulin administrated may change its effect of inflammatory response in endotoxemic rats. Insulin administrated 6 h after LPS injection weaken the ability to protect inflammatory response related to sepsis.
Collapse
Affiliation(s)
- Bo Zou
- Medical School of Nanjing University, Nanjing 210093, Jiangsu Province, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Jeschke MG, Boehning D. Endoplasmic reticulum stress and insulin resistance post-trauma: similarities to type 2 diabetes. J Cell Mol Med 2012; 16:437-44. [PMID: 21812914 PMCID: PMC3217064 DOI: 10.1111/j.1582-4934.2011.01405.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Type 2 diabetes, a rapidly growing disease of modern aetiology, has a profound impact on morbidity and mortality. Explosions in the understanding of the underlying cellular mechanisms which lead to type 2 diabetes have recently been elucidated. In particular, the central role of endoplasmic reticulum stress (ER stress) and the unfolding protein response (UPR) in insulin resistance in type 2 diabetes has recently been discovered. We hypothesize that ER stress and UPR are not only central for type 2 diabetes but also for stress-induced diabetes. We review here the evidence that post-burn insulin resistance and hyperglycaemia have pathophysiologic mechanisms in common with type 2 diabetes. These recent discoveries not only highlight the importance of ER stress in the post-burn patient recovery, but furthermore enable new models to study fundamental and interventional aspects of type 2 diabetes.
Collapse
Affiliation(s)
- Marc G Jeschke
- Ross Tilley Burn Center, Sunnybrook Health Science Centre and University of Toronto, ON, Canada.
| | | |
Collapse
|
22
|
Schreiber A, Theilig F, Schweda F, Höcherl K. Acute endotoxemia in mice induces downregulation of megalin and cubilin in the kidney. Kidney Int 2012; 82:53-9. [PMID: 22437417 DOI: 10.1038/ki.2012.62] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Severe sepsis is often accompanied by acute renal failure with renal tubular dysfunction. Albuminuria is a common finding in septic patients and we studied whether it was due to an impairment of proximal tubular endocytosis of filtered albumin. We studied the regulation of megalin and cubilin, the two critical multiligand receptors responsible for albumin absorption, during severe experimental endotoxemia. Lipopolysaccharide (LPS) caused a time- and dose-dependent suppression of megalin and cubilin expression that was paralleled by a decrease in plasma albumin levels and an increase in the urine concentration of albumin in mice. Incubation of rat renal cortical slices with LPS also reduced the mRNA expression of megalin and cubilin. Further, LPS suppressed megalin and cubilin mRNA expression in murine primary proximal tubule cells and decreased the uptake of FITC albumin in these cells. In addition, the increase in urine levels of albumin in response to ischemia/reperfusion-induced acute renal failure was paralleled by a decrease in the expression of megalin and cubilin. Thus, our data indicate that the expression of megalin and cubilin is decreased during experimental endotoxemia and in response to renal ischemia/reperfusion injury. This downregulation may contribute, in part, to an increase in urine levels of albumin during acute renal failure.
Collapse
Affiliation(s)
- Andrea Schreiber
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | | | | | | |
Collapse
|
23
|
Williams FN, Branski LK, Jeschke MG, Herndon DN. What, how, and how much should patients with burns be fed? Surg Clin North Am 2011; 91:609-29. [PMID: 21621699 DOI: 10.1016/j.suc.2011.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The hypermetabolic response to severe burn injury is characterized by hyperdynamic circulation and profound metabolic, physiologic, catabolic, and immune system derangements. Failure to satisfy overwhelming energy and protein requirements after, and during, severe burn injury results in multiorgan dysfunction, increased susceptibility to infection, and death. Attenuation of the hypermetabolic response by various pharmacologic modalities is emerging as an essential component of the management of patients with severe burn injury. This review focuses on the more recent advances in therapeutic strategies to attenuate the hypermetabolic response and its postburn-associated insulin resistance.
Collapse
Affiliation(s)
- Felicia N Williams
- Department of Surgery, Shriners Hospital for Children and University of Texas Medical Branch, 815 Market Street, Galveston, TX 77550, USA
| | | | | | | |
Collapse
|
24
|
Çöl R, Durgun Z. Effect of recombinant interleukin-10 on some haematological and biochemical parameters in a rat endotoxaemic model. Acta Vet Hung 2011; 59:237-45. [PMID: 21665577 DOI: 10.1556/avet.2011.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recombinant interleukin-10 (rIL10) has been found to suppress the synthesis of tumour necrosis factor (TNF), interleukin-1 (IL-1), interleukin-6 (IL-6) and tissue factor and to improve survival from experimental sepsis. The aim of this study was to evaluate the protective effect of rIL-10 on lipopolysaccharide-(LPS-) induced haematological and biochemical disturbances in rats. In the present study, 40 rats were used and divided equally into four groups. Group 1 (control group, C) was treated with 0.9% saline. Group 2: LPS was injected intravenously (1.6 mg/100 g), Group 3 received rIL10 treatment (125 μg/kg) 2 min before 0.9% saline injection, Group 4 received rIL10 treatment 2 min before endotoxin treatment. When compared with the controls, platelet count, leukocyte count (with a marked neutrophilia and lymphopenia) and fibrinogen were decreased, while activated partial thromboplastin time (APTT) and prothrombin time (PT) were prolonged in the endotoxaemic rats. In addition, LPS caused statistically significant increases in plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities as well as creatinine, cholesterol and triglyceride concentrations, while it caused a statistically significant decrease in glucose, total protein and albumin levels as compared to the control group. On the other hand, rIL10 significantly suppressed disturbances in the haematological and biochemical parameters associated with endotoxaemia. As a result, rIL10 may be efficacious in preventing haematological disorders, tissue damage and changes in lipid, protein and carbohydrate metabolism in endotoxaemia.
Collapse
Affiliation(s)
- Ramazan Çöl
- 1 University of Selçuk Department of Physiology, Faculty of Veterinary Medicine Campus 42031 Selçuklu, Konya Turkey
| | - Zafer Durgun
- 1 University of Selçuk Department of Physiology, Faculty of Veterinary Medicine Campus 42031 Selçuklu, Konya Turkey
| |
Collapse
|
25
|
Wallerstedt E, Sandqvist M, Smith U, Andersson CX. Anti-inflammatory effect of insulin in the human hepatoma cell line HepG2 involves decreased transcription of IL-6 target genes and nuclear exclusion of FOXO1. Mol Cell Biochem 2011; 352:47-55. [PMID: 21298325 DOI: 10.1007/s11010-011-0738-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 01/21/2011] [Indexed: 10/18/2022]
Abstract
The liver is an important target for interleukin-6 (IL-6) action leading to an increased inflammatory response with impaired insulin signaling and action. The aims of this study are to address if insulin is anti-inflammatory and attenuates IL-6-induced inflammation in the human hepatoma cell line HepG2 and if this involves signal transducer and activator of transcription 3 (STAT3) signal transduction. It was found that insulin significantly reduced IL-6-induced gene transcription of serum amyloid 1 (SAA1), serum amyloid 2 (SAA2), haptoglobin, orosomucoid, and plasmin activator inhibitor-1 (PAI-1). However, the authors did not find any evidence that insulin inhibited IL-6 signal transduction, i.e., no effect of insulin was detected on STAT3 phosphorylation or its translocation to cell nucleus. The potential role of PKCδ was also analyzed but no evidence of its involvement was found. Taken together, these results suggest that the anti-inflammatory effect of insulin on IL-6 action is exerted at the level of the transcriptional activation of the genes. Further analysis revealed that insulin regulates nuclear localization of FOXO1, which is an important co-activator for STAT3 mediated transcription. Insulin induced nuclear exit and Thr24 phosphorylation of FOXO1, thus, inhibiting STAT3-mediated transcription.
Collapse
Affiliation(s)
- Emelie Wallerstedt
- Department of Molecular and Clinical Medicine/Diabetes, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | | | | | | |
Collapse
|
26
|
Jeschke MG, Kraft R, Song J, Gauglitz GG, Cox RA, Brooks NC, Finnerty CC, Kulp GA, Herndon DN, Boehning D. Insulin protects against hepatic damage postburn. Mol Med 2011; 17:516-22. [PMID: 21267509 DOI: 10.2119/molmed.2010.00166] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 01/18/2011] [Indexed: 01/04/2023] Open
Abstract
Burn injury causes hepatic dysfunction associated with endoplasmic reticulum (ER) stress and induction of the unfolded protein response (UPR). ER stress/UPR leads to hepatic apoptosis and activation of the Jun-N-terminal kinase (JNK) signaling pathway, leading to vast metabolic alterations. Insulin has been shown to attenuate hepatic damage and to improve liver function. We therefore hypothesized that insulin administration exerts its effects by attenuating postburn hepatic ER stress and subsequent apoptosis. Male Sprague Dawley rats received a 60% total body surface area (TBSA) burn injury. Animals were randomized to receive saline (controls) or insulin (2.5 IU/kg q. 24 h) and euthanized at 24 and 48 h postburn. Burn injury induced dramatic changes in liver structure and function, including induction of the ER stress response, mitochondrial dysfunction, hepatocyte apoptosis, and up-regulation of inflammatory mediators. Insulin decreased hepatocyte caspase-3 activation and apoptosis significantly at 24 and 48 h postburn. Furthermore, insulin administration decreased ER stress significantly and reversed structural and functional changes in hepatocyte mitochondria. Finally, insulin attenuated the expression of inflammatory mediators IL-6, MCP-1, and CINC-1. Insulin alleviates burn-induced ER stress, hepatocyte apoptosis, mitochondrial abnormalities, and inflammation leading to improved hepatic structure and function significantly. These results support the use of insulin therapy after traumatic injury to improve patient outcomes.
Collapse
Affiliation(s)
- Marc G Jeschke
- Shriners Hospitals for Children, The University of Texas Medical Branch, Galveston, Texas, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Calisto KL, Carvalho BDM, Ropelle ER, Mittestainer FC, Camacho ACA, Guadagnini D, Carvalheira JBC, Saad MJA. Atorvastatin improves survival in septic rats: effect on tissue inflammatory pathway and on insulin signaling. PLoS One 2010; 5:e14232. [PMID: 21151908 PMCID: PMC2997789 DOI: 10.1371/journal.pone.0014232] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 11/13/2010] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to investigate whether the survival-improving effect of atorvastatin in sepsis is accompanied by a reduction in tissue activation of inflammatory pathways and, in parallel, an improvement in tissue insulin signaling in rats. Diffuse sepsis was induced by cecal ligation and puncture surgery (CLP) in male Wistar rats. Serum glucose and inflammatory cytokines levels were assessed 24 h after CLP. The effect of atorvastatin on survival of septic animals was investigated in parallel with insulin signaling and its modulators in liver, muscle and adipose tissue. Atorvastatin improves survival in septic rats and this improvement is accompanied by a marked improvement in insulin sensitivity, characterized by an increase in glucose disappearance rate during the insulin tolerance test. Sepsis induced an increase in the expression/activation of TLR4 and its downstream signaling JNK and IKK/NF-κB activation, and blunted insulin-induced insulin signaling in liver, muscle and adipose tissue; atorvastatin reversed all these alterations in parallel with a decrease in circulating levels of TNF-α and IL-6. In summary, this study demonstrates that atorvastatin treatment increased survival, with a significant effect upon insulin sensitivity, improving insulin signaling in peripheral tissues of rats during peritoneal-induced sepsis. The effect of atorvastatin on the suppression of the TLR-dependent inflammatory pathway may play a central role in regulation of insulin signaling and survival in sepsis insult.
Collapse
Affiliation(s)
- Kelly Lima Calisto
- Department of Internal Medicine, FCM, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Bruno de Melo Carvalho
- Department of Internal Medicine, FCM, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Eduardo Rochete Ropelle
- Department of Internal Medicine, FCM, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | | | - Dioze Guadagnini
- Department of Internal Medicine, FCM, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | - Mario José Abdalla Saad
- Department of Internal Medicine, FCM, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
28
|
Lee J, Yee ST, Kim JJ, Choi MS, Kwon EY, Seo KI, Lee MK. Ursolic acid ameliorates thymic atrophy and hyperglycemia in streptozotocin-nicotinamide-induced diabetic mice. Chem Biol Interact 2010; 188:635-642. [PMID: 20869956 DOI: 10.1016/j.cbi.2010.09.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/15/2010] [Accepted: 09/17/2010] [Indexed: 12/26/2022]
Abstract
The purpose of this study was to assess the effects of low-dose ursolic acid (UA) on glycemic regulation and immune responses in streptozotocin-nicotinamide (STZ/NA)-induced diabetic mice. Diabetic mice were supplemented with two different doses of UA (0.01 and 0.05%, w/w) or metformin (0.5%, w/w) for 4 weeks. Compared with the untreated diabetic group, UA and metformin significantly improved blood glucose, glycosylated hemoglobin, glucose tolerance, insulin tolerance and plasma leptin levels as well as aminotransferase activity. The plasma and pancreatic insulin concentrations were significantly higher in both UA groups than in the untreated diabetic group. Supplementation with metformin increased the pancreatic insulin level without a change in the plasma insulin level. The relative thymus weights were lower in the untreated diabetic group compared to the non-diabetic group; however, the UA or metformin group had significantly improved thymus weights. Mice receiving UA or metformin supplementation had increased CD4(+)CD8(+) subpopulations in the thymus compared to the untreated diabetic mice. Concanavalin A-stimulated splenic T-lymphocyte proliferation and single-positive (CD4(+) and CD8(+)) subpopulations were significantly higher in the UA-supplemented diabetic groups than in the untreated diabetic group, but lipopolysaccharide-stimulated B-lymphocyte proliferation and the CD19(+) subpopulation were not significantly different among the groups. In the STZ/NA-induced diabetic mice, metformin increased the splenic T-lymphocyte CD4(+) and CD8(+) cell numbers without any change in T-lymphocyte proliferation. Both doses of UA lowered splenic IL-6 levels, whereas metformin increased IFN-γ, IL-6 and TNF-α levels compared to the untreated diabetic mice. These results suggest that low-dose UA may be used as a hypoglycemic agent and immune modulator in non-obese type 2 diabetic mice.
Collapse
Affiliation(s)
- Jin Lee
- Department of Food and Nutrition, Sunchon National University, Suncheon 540-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Inhaled aerosolized insulin: a "topical" anti-inflammatory treatment for acute lung injury and respiratory distress syndrome? Inflammation 2010; 33:315-9. [PMID: 20186475 DOI: 10.1007/s10753-010-9187-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute lung injury (ALI) and the more severe acute respiratory distress syndrome (ARDS) are forms of pulmonary edema that result from robust local and systemic inflammatory states, such as sepsis. The morbidity and mortality associated with ALI and ARDS are significant and the treatment of these conditions presents a formidable challenge. Controlling hyperglycemia with insulin is a core component of patient management in the critically ill. Insulin treatment also exerts beneficial metabolic effects beyond glucose control, as well as non-metabolic effects, in insulin-resistant states. For instance, insulin inhibits NF-kappaB--dependent synthesis of pro-inflammatory factors and attenuates production of ROS. Indeed, intravenous administration of insulin ameliorates pulmonary injury and dysfunction in the LPS model of ALI. Most recently, an inhalable insulin formulation was shown to effectively reduce glucose concentrations with minimal impact on long-term pulmonary function. We propose that administering inhalable insulin to hyperglycemic ALI/ARDS patients could directly reduce alveolar inflammation while reducing circulating glucose levels.
Collapse
|
30
|
Glucose metabolism in burn patients: The role of insulin and other endocrine hormones. Burns 2010; 36:599-605. [DOI: 10.1016/j.burns.2009.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 07/24/2009] [Accepted: 11/11/2009] [Indexed: 01/08/2023]
|
31
|
Jeschke MG, Gauglitz GG, Song J, Kulp GA, Finnerty CC, Cox RA, Barral JM, Herndon DN, Boehning D. Calcium and ER stress mediate hepatic apoptosis after burn injury. J Cell Mol Med 2010; 13:1857-65. [PMID: 20141609 DOI: 10.1111/j.1582-4934.2009.00644.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A hallmark of the disease state following severe burn injury is decreased liver function, which results in gross metabolic derangements that compromise patient survival. The underlying mechanisms leading to hepatocyte dysfunction after burn are essentially unknown. The aim of the present study was to determine the underlying mechanisms leading to hepatocyte dysfunction and apoptosis after burn. Rats were randomized to either control (no burn) or burn (60% total body surface area burn) and sacrificed at various time-points. Liver was either perfused to isolate primary rat hepatocytes, which were used for in vitro calcium imaging, or liver was harvested and processed for immunohistology, transmission electron microscopy, mitochondrial isolation, mass spectroscopy or Western blotting to determine the hepatic response to burn injury in vivo. We found that thermal injury leads to severely depleted endoplasmic reticulum (ER) calcium stores and consequent elevated cytosolic calcium concentrations in primary hepatocytes in vitro. Burn-induced ER calcium depletion caused depressed hepatocyte responsiveness to signalling molecules that regulate hepatic homeostasis, such as vasopressin and the purinergic agonist ATP. In vivo, thermal injury resulted in activation of the ER stress response and major alterations in mitochondrial structure and function - effects which may be mediated by increased calcium release by inositol 1,4,5-trisphosphate receptors. Our results reveal that thermal injury leads to dramatic hepatic disturbances in calcium homeostasis and resultant ER stress leading to mitochondrial abnormalities contributing to hepatic dysfunction and apoptosis after burn injury.
Collapse
Affiliation(s)
- Marc G Jeschke
- Shriners Hospitals for Children, University of Texas Medical Branch, Galveston, TX 77550, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Jeschke MG, Gauglitz GG, Song J, Kulp GA, Finnerty CC, Cox RA, Barral JM, Herndon DN, Boehning D. Calcium and ER stress mediate hepatic apoptosis after burn injury. J Cell Mol Med 2010. [PMID: 20141609 DOI: 10.1111/j.1582-4934.2008.00644.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A hallmark of the disease state following severe burn injury is decreased liver function, which results in gross metabolic derangements that compromise patient survival. The underlying mechanisms leading to hepatocyte dysfunction after burn are essentially unknown. The aim of the present study was to determine the underlying mechanisms leading to hepatocyte dysfunction and apoptosis after burn. Rats were randomized to either control (no burn) or burn (60% total body surface area burn) and sacrificed at various time-points. Liver was either perfused to isolate primary rat hepatocytes, which were used for in vitro calcium imaging, or liver was harvested and processed for immunohistology, transmission electron microscopy, mitochondrial isolation, mass spectroscopy or Western blotting to determine the hepatic response to burn injury in vivo. We found that thermal injury leads to severely depleted endoplasmic reticulum (ER) calcium stores and consequent elevated cytosolic calcium concentrations in primary hepatocytes in vitro. Burn-induced ER calcium depletion caused depressed hepatocyte responsiveness to signalling molecules that regulate hepatic homeostasis, such as vasopressin and the purinergic agonist ATP. In vivo, thermal injury resulted in activation of the ER stress response and major alterations in mitochondrial structure and function - effects which may be mediated by increased calcium release by inositol 1,4,5-trisphosphate receptors. Our results reveal that thermal injury leads to dramatic hepatic disturbances in calcium homeostasis and resultant ER stress leading to mitochondrial abnormalities contributing to hepatic dysfunction and apoptosis after burn injury.
Collapse
Affiliation(s)
- Marc G Jeschke
- Shriners Hospitals for Children, University of Texas Medical Branch, Galveston, TX 77550, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Jeschke MG, Kulp GA, Kraft R, Finnerty CC, Mlcak R, Lee JO, Herndon DN. Intensive insulin therapy in severely burned pediatric patients: a prospective randomized trial. Am J Respir Crit Care Med 2010; 182:351-9. [PMID: 20395554 DOI: 10.1164/rccm.201002-0190oc] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RATIONALE Hyperglycemia and insulin resistance have been shown to increase morbidity and mortality in severely burned patients, and glycemic control appears essential to improve clinical outcomes. However, to date no prospective randomized study exists that determines whether intensive insulin therapy is associated with improved post-burn morbidity and mortality. OBJECTIVES To determine whether intensive insulin therapy is associated with improved post-burn morbidity. METHODS A total of 239 severely burned pediatric patients with burns over greater than 30% of their total body surface area were randomized (block randomization 1:3) to intensive insulin treatment (n = 60) or control (n = 179). MEASUREMENTS AND MAIN RESULTS Demographics, clinical outcomes, sepsis, glucose metabolism, organ function, and inflammatory, acute-phase, and hypermetabolic responses were determined. Demographics were similar in both groups. Intensive insulin treatment significantly decreased the incidence of infections and sepsis compared with controls (P < 0.05). Furthermore, intensive insulin therapy improved organ function as indicated by improved serum markers, DENVER2 scores, and ultrasound (P < 0.05). Intensive insulin therapy alleviated post-burn insulin resistance and the vast catabolic response of the body (P < 0.05). Intensive insulin treatment dampened inflammatory and acute-phase responses by deceasing IL-6 and acute-phase proteins compared with controls (P < 0.05). Mortality was 4% in the intensive insulin therapy group and 11% in the control group (P = 0.14). CONCLUSIONS In this prospective randomized clinical trial, we showed that intensive insulin therapy improves post-burn morbidity. Clinical trial registered with www.clinicaltrials.gov (NCT00673309).
Collapse
Affiliation(s)
- Marc G Jeschke
- Shriners Hospitals for Children, Galveston, TX 77550, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Shinozaki S, Inoue Y, Yang W, Fukaya M, Carter EA, Yu YM, Ming-Yu Y, Fischman A, Tompkins R, Kaneki M. Farnesyltransferase inhibitor improved survival following endotoxin challenge in mice. Biochem Biophys Res Commun 2009; 391:1459-64. [PMID: 20034462 DOI: 10.1016/j.bbrc.2009.12.094] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 12/16/2009] [Indexed: 01/09/2023]
Abstract
Endotoxemia plays an important role in the pathogenesis of sepsis and is accompanied by dysregulated apoptosis of immune and non-immune cells. Treatment with statins reduces mortality in rodent models of sepsis and endotoxemia. Inhibition of protein isoprenylation, including farnesylation, has been proposed as a mechanism to mediate the lipid-lowering-independent effects of statins. Nonetheless, the effects of the inhibition of isoprenylation have not yet been studied. To investigate the role of farnesylation, we evaluated the effects of farnesyltransferase inhibitor and statin on survival following lipopolysaccharide (LPS) challenge in mice. Both simvastatin (2mg/kg BW) and FTI-277 (20mg/kg BW) treatment improved survival by twofold after LPS injection, as compared with vehicle alone (p<0.01). LPS-induced cleavage (activation) of caspase-3, an indicator of apoptotic change, and increased protein expression of proapoptotic molecules, Bax and Bim, and activation of c-Jun NH(2)-terminal kinase (JNK/SAPK) in the liver and spleen were attenuated by both simvastatin and FTI-277. These results demonstrate that farnesyltransferase inhibitor as well as statin significantly reduced LPS-induced mortality in mice. Our findings also suggest that inhibition of protein farnesylation may contribute to the lipid-lowering-independent protective effects of statins in endotoxemia, and that protein farnesylation may play a role in LPS-induced stress response, including JNK/SAPK activation, and apoptotic change. Our data argue that farnesyltransferase may be a potential molecular target for treating patients with endotoxemia.
Collapse
|
35
|
Deng HP, Chai JK. The effects and mechanisms of insulin on systemic inflammatory response and immune cells in severe trauma, burn injury, and sepsis. Int Immunopharmacol 2009; 9:1251-9. [DOI: 10.1016/j.intimp.2009.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 07/09/2009] [Accepted: 07/21/2009] [Indexed: 12/16/2022]
|
36
|
Abstract
OBJECTIVES : The mechanisms by which correcting hyperglycemia with exogenous insulin improves mortality and morbidity in critically ill patients remain unclear. We designed this study to test the hypothesis that relative endogenous insulin deficiency is associated with adverse outcomes in critical illness related to hyperglycemia. DESIGN : Prospective controlled animal study. SETTING : University research laboratory. SUBJECTS : Male C57BL/6J mice, 8-12 wks old. INTERVENTIONS : Spontaneously breathing mice were instrumented with chronic indwelling arterial and venous catheters. After a postoperative recovery period, endotoxemia was initiated with intra-arterial lipopolysaccharide (1 mg/kg) in the presence of dextrose infusion (100 microL/hr). Insulin secretion was blocked with diazoxide (2.5-30 mg/kg/day). Mice were monitored continuously for 48 hrs with blood sampled serially for blood glucose and plasma insulin determinations. MEASUREMENTS AND MAIN RESULTS : In both saline- and glucose-infused mice, lipopolysaccharide administration induced transient hemodynamic instability without significant impact on mortality. In the saline-infused group, lipopolysaccharide administration caused a transient reduction in blood glucose and in circulating insulin. However, in glucose-infused mice, lipopolysaccharide induced a large and unexpected increase in circulating insulin without significant alteration in blood glucose. Blockade of insulin secretion in response to lipopolysaccharide in the presence of exogenous glucose precipitated marked hyperglycemia and resulted in >90% mortality. In a subanalysis of animals matched for the degree of hyperglycemia, nonsurvivors had markedly lower insulin levels compared with survivors (3.5 +/- 0.8 ng/dL vs. 9.3 +/- 1.4 ng/dL; p < .004). CONCLUSIONS : Endogenous insulin deficiency in the face of hyperglycemia is associated with mortality in a mouse model of lipopolysaccharide-induced critical illness.
Collapse
|
37
|
The hepatic response to thermal injury: is the liver important for postburn outcomes? Mol Med 2009; 15:337-51. [PMID: 19603107 DOI: 10.2119/molmed.2009.00005] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 04/03/2009] [Indexed: 12/11/2022] Open
Abstract
Thermal injury produces a profound hypermetabolic and hypercatabolic stress response characterized by increased endogenous glucose production via gluconeogenesis and glycogenolysis, lipolysis, and proteolysis. The liver is the central body organ involved in these metabolic responses. It is suggested that the liver, with its metabolic, inflammatory, immune, and acute phase functions, plays a pivotal role in patient survival and recovery by modulating multiple pathways following thermal injury. Studies have evaluated the role and function of the liver during the postburn response and showed that liver integrity and function are essential for survival, and that hepatic acute phase proteins are strong predictors for postburn survival. This review discusses these studies and delineates the pivotal role of the liver in patients following severe thermal injury.
Collapse
|
38
|
Parrish WR, Gallowitsch-Puerta M, Czura CJ, Tracey KJ. Experimental therapeutic strategies for severe sepsis: mediators and mechanisms. Ann N Y Acad Sci 2009; 1144:210-36. [PMID: 19076379 DOI: 10.1196/annals.1418.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Severe sepsis is the leading cause of mortality in intensive care units. The limited ability of current therapies to reduce sepsis mortality rates has fueled research efforts for the development of novel treatment strategies. Through the close collaboration between clinicians and scientists, progress can be seen in the struggle to develop effective therapeutic approaches for the treatment of sepsis and other immune and inflammatory disorders. Indeed, significant advances in intensive care, such as lung protective mechanical ventilation, improved antibiotics, and superior monitoring of systemic perfusion, are improving patient survival. Nonetheless, specific strategies that target the pathophysiological disorders in sepsis patients are essential to further improve clinical outcomes. This article reviews current clinical management approaches and experimental interventions that target pleiotropic or late-acting inflammatory mediators like caspases, C5a, MIF, and HMGB1, or the body's endogenous inflammatory control mechanisms such as the cholinergic anti-inflammatory pathway. These inflammatory mediators and anti-inflammatory mechanisms, respectively, show significant potential for the development of new experimental therapies for the treatment of severe sepsis and other infectious and inflammatory disorders.
Collapse
Affiliation(s)
- William R Parrish
- The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | | | | | | |
Collapse
|
39
|
Abstract
The profound hypermetabolic response to burn injury is associated with insulin resistance and hyperglycemia, significantly contributing to the incidence of morbidity and mortality in this patient population. These responses are present in all trauma, surgical, or critically ill patients, but the severity, length, and magnitude is unique for burn patients. Although advances in therapeutic strategies to attenuate the postburn hypermetabolic response have significantly improved the clinical outcome of these patients during the past years, therapeutic approaches to overcome stress-induced hyperglycemia have remained challenging. Intensive insulin therapy has been shown to significantly reduce morbidity and mortality in critically ill patients. High incidence of hypoglycemic events and difficult blood glucose titrations have led to investigation of alternative strategies, including the use of metformin, a biguanide, or fenofibrate, a peroxisome proliferator-activated receptor (PPAR)-gamma agonist. Nevertheless, weaknesses and potential side affects of these drugs reinforces the need for better understanding of the molecular mechanisms underlying insulin resistance postburn that may lead to novel therapeutic strategies further improving the prognosis of these patients. This review aims to discuss the mechanisms underlying insulin resistance induced hyperglycemia postburn and outlines current therapeutic strategies that are being used to modulate hyperglycemia after thermal trauma.
Collapse
|
40
|
Zanoni FL, Benabou S, Greco KV, Moreno ACR, Cruz JWMC, Filgueira FP, Martinez MB, Figueiredo LFPD, Silva MRE, Sannomiya P. Mesenteric microcirculatory dysfunctions and translocation of indigenous bacteria in a rat model of strangulated small bowel obstruction. Clinics (Sao Paulo) 2009; 64:911-9. [PMID: 19759886 PMCID: PMC2745135 DOI: 10.1590/s1807-59322009000900013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 06/11/2009] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Bacterial translocation has been shown to occur in critically ill patients after extensive trauma, shock, sepsis, or thermal injury. The present study investigates mesenteric microcirculatory dysfunctions, the bacterial translocation phenomenon, and hemodynamic/metabolic disturbances in a rat model of intestinal obstruction and ischemia. METHODS Anesthetized (pentobarbital 50 mg/kg, i.p.) male Wistar rats (250-350 g) were submitted to intestinal obstruction or laparotomy without intestinal obstruction (Sham) and were evaluated 24 hours later. Bacterial translocation was assessed by bacterial culture of the mesenteric lymph nodes (MLN), liver, spleen, and blood. Leukocyte-endothelial interactions in the mesenteric microcirculation were assessed by intravital microscopy, and P-selectin and intercellular adhesion molecule (ICAM)-1 expressions were quantified by immunohistochemistry. Hematocrit, blood gases, lactate, glucose, white blood cells, serum urea, creatinine, bilirubin, and hepatic enzymes were measured. RESULTS About 86% of intestinal obstruction rats presented positive cultures for E. coli in samples of the mesenteric lymph nodes, liver, and spleen, and 57% had positive hemocultures. In comparison to the Sham rats, intestinal obstruction induced neutrophilia and increased the number of rolling (approximately 2-fold), adherent (approximately 5-fold), and migrated leukocytes (approximately 11-fold); this increase was accompanied by an increased expression of P-selectin (approximately 2-fold) and intercellular adhesion molecule-1 (approximately 2-fold) in the mesenteric microcirculation. Intestinal obstruction rats exhibited decreased PaCO2, alkalosis, hyperlactatemia, and hyperglycemia, and increased blood potassium, hepatic enzyme activity, serum urea, creatinine, and bilirubin. A high mortality rate was observed after intestinal obstruction (83% at 72 h vs. 0% in Sham rats). CONCLUSION Intestinal obstruction and ischemia in rats is a relevant model for the in vivo study of mesenteric microcirculatory dysfunction and the occurrence of bacterial translocation. This model parallels the events implicated in multiple organ dysfunction (MOD) and death.
Collapse
Affiliation(s)
- Fernando Luiz Zanoni
- Heart Institute (InCor), LIM 11, University of São Paulo Medical School, São Paulo/SP, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kidd LB, Schabbauer GA, Luyendyk JP, Holscher TD, Tilley RE, Tencati M, Mackman N. Insulin activation of the phosphatidylinositol 3-kinase/protein kinase B (Akt) pathway reduces lipopolysaccharide-induced inflammation in mice. J Pharmacol Exp Ther 2008; 326:348-53. [PMID: 18445780 PMCID: PMC2836781 DOI: 10.1124/jpet.108.138891] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Insulin is used to control pro-inflammatory hyperglycemia in critically ill patients. However, recent studies suggest that insulin-induced hypoglycemia may negate its beneficial effects in these patients. It is noteworthy that recent evidence indicates that insulin has anti-inflammatory effects that are independent of controlling hyperglycemia. To date, the mechanism by which insulin directly reduces inflammation has not been elucidated. It is well established that insulin activates phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling in many cell types. We and others have shown that this pathway negatively regulates LPS-induced signaling and pro-inflammatory cytokine production in monocytic cells. We hypothesized that insulin inhibits inflammation during endotoxemia by activation of the PI3K/Akt pathway. We used a nonhyperglycemic mouse model of endotoxemia to determine the effect of continuous administration of a low dose of human insulin on inflammation and survival. It is noteworthy that insulin treatment induced phosphorylation of Akt in muscle and adipose tissues but did not exacerbate lipopolysaccharide (LPS)-induced hypoglycemia. Insulin decreased plasma levels of interleukin-6, tumor necrosis factor-alpha, monocyte chemotactic protein 1 (MCP1)/JE, and keratinocyte chemoattractant, and decreased mortality. The PI3K inhibitor wortmannin abolished the insulin-mediated activation of Akt and the reduction of chemokine and interleukin-6 levels. We conclude that insulin reduces LPS-induced inflammation in mice in a PI3K/Akt-dependent manner without affecting blood glucose levels.
Collapse
Affiliation(s)
- Linda B Kidd
- The Department of Immunology, The Scripps Research Institute, La Jolla, California, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Jeschke MG, Klein D, Thasler WE, Bolder U, Schlitt HJ, Jauch KW, Weiss TS. Insulin decreases inflammatory signal transcription factor expression in primary human liver cells after LPS challenge. Mol Med 2008; 14:11-9. [PMID: 18037968 DOI: 10.2119/2007-00062.jeschke] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 11/08/2007] [Indexed: 12/22/2022] Open
Abstract
Hepatic homeostasis is essential for survival in critically ill and burned patients. Insulin administration improves survival and decreases infections in these patients. To determine the molecular mechanisms, the aim of the present study was to establish a stress model using primary human hepatocytes (PHHs) and to study the effects of insulin on the hepatic inflammatory signaling cascade. Liver tissue was obtained from general surgical patients, and PHHs were isolated and maintained in culture. Primary hepatocyte cultures were challenged with various doses of lipopolysaccharide (LPS), and the inflammatory signal transcription cascade was determined by real-time PCR. In subsequent experiments, primary hepatocyte cultures were challenged with LPS and insulin was added in various doses. Glucose was determined by colorimetric assays. PHHs treated with 100 microg/mL LPS showed a profound inflammatory reaction with increased expression of interleukin (IL)-6, IL-10, IL-1beta, tumor necrosis factor (TNF), and signal transducer and activator of transcription 5 (STAT-5). Insulin at 10 IU/mL significantly decreased IL-6, TNF, and IL-1beta at pretranslational levels, an effect associated with decreased STAT-5 mRNA expression (P < 0.05). Glucose concentration and cellular metabolic activity were not different between controls and insulin-treated cells. Based on our results, we suggest that primary hepatocyte cultures can be used to study the effect of LPS on the inflammatory cascade. Insulin decreases hepatic cytokine expression, which is associated with decreased STAT-5 expression.
Collapse
Affiliation(s)
- Marc G Jeschke
- Shriners Hospitals for Children, Galveston Burns Unit, Galveston, TX 77550, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Granado M, Martín AI, López-Menduiña M, López-Calderón A, Villanúa MA. GH-releasing peptide-2 administration prevents liver inflammatory response in endotoxemia. Am J Physiol Endocrinol Metab 2008; 294:E131-41. [PMID: 17986630 DOI: 10.1152/ajpendo.00308.2007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been reported that growth hormone (GH)-releasing peptide-2 (GHRP-2), a ghrelin receptor agonist, has an anti-inflammatory effect. We investigated whether this GH secretagogue attenuates liver injury in LPS-treated rats. Wistar rats were simultaneously injected (ip) with LPS (1 mg/kg) and/or GHRP-2 (100 microg/kg). Serum levels of aspartate and alanine transaminases were measured as an index of liver damage. Circulating nitrites/nitrates and hepatic IGF-I and TNF-alpha were evaluated as possible mediators of GHRP-2 actions. LPS increased serum levels of transaminases and nitrites/nitrates. Moreover, LPS increased hepatic TNF-alpha and decreased hepatic IGF-I mRNAs. GHRP-2 administration attenuated the effects of LPS on transaminases, nitrites/nitrates, TNF-alpha, and IGF-I in vivo. This GHRP-2 effect does not seem to be due to modifications in food intake, since fasting did not modify serum levels of transaminases, serum nitrites/nitrates, and hepatic TNF-alpha mRNA both in vehicle rats and in LPS-injected rats. To elucidate whether GHRP-2 is acting directly on the liver, cocultures of hepatocytes and nonparenchymal cells and monocultures of isolated hepatocytes were incubated with LPS and GHRP-2. The ghrelin receptor agonist prevented an endotoxin-induced increase in transaminases and nitrite/nitrate release as well as in TNF-alpha mRNA and increased IGF-I mRNA from cocultures of hepatocytes and nonparenchymal cells, but not from monocultures. In summary, these data indicate that GHRP-2 has a protective effect on the liver in LPS-injected rats that seems to be mediated by IGF-I, TNF-alpha, and nitric oxide. Our data also suggest that the anti-inflammatory effect of GHRP-2 in the liver is exerted on nonparenchymal cells.
Collapse
Affiliation(s)
- Miriam Granado
- Department of Physiology, Faculty of Medicine, Complutense Univ., Avda. Complutense s/n, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
44
|
Jeschke MG, Herndon DN. The Hepatic Response to Severe Injury. Intensive Care Med 2007. [DOI: 10.1007/978-0-387-49518-7_58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Insulin therapy in the pediatric intensive care unit. Clin Nutr 2007; 26:677-90. [PMID: 17950500 DOI: 10.1016/j.clnu.2007.08.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 08/22/2007] [Accepted: 08/29/2007] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Hyperglycemia is a major risk factor for increased morbidity and mortality in the intensive care unit. Insulin therapy has emerged in adult intensive care units and several pediatric studies are currently being conducted. This review discusses hyperglycemia and the effects of insulin on metabolic and non-metabolic pathways, with a focus on pediatric critical illness. METHODS A PubMed search was performed by using the following keywords and limits (("hyperglycemia"[MeSH terms] or ("insulin resistance"[MeSH major topic]) and ("critical care"[MeSH terms] or "critical illness"[MeSH terms])) in different combinations with ("metabolism"[MeSH terms] or "metabolic networks and pathways"[MeSH terms]) and ("outcome"[all fields]) and ("infant"[MeSH terms] or "child"[MeSH terms] or "adolescent"[MeSH terms]). Quality assessment of selected studies included clinical pertinence, publication in peer-reviewed journals, objectivity of measurements and techniques used to minimize bias. Reference lists of such studies were included. RESULTS The magnitude and duration of hyperglycemia are associated with increased morbidity and mortality in the pediatric intensive care unit (PICU), but prospective, randomized controlled studies with insulin therapy have not been published yet. Evidence concerning the mechanism and the effect of insulin on glucose and lipid metabolism in pediatric critical illness is scarce. More is known about the positive effect on protein homeostasis, especially in severely burned children. The effect in septic children is less clear and seems age dependent. Some non-metabolic properties of insulin such as the modulation of inflammation, endothelial dysfunction and coagulopathy have not been fully investigated in children. CONCLUSION Future studies on the effect of insulin on morbidity and mortality as well as on the mechanisms through which insulin exerts these effects are necessary in critically ill children. We propose these studies to be conducted under standardized conditions including precise definitions of hyperglycemia and rates of glucose intake.
Collapse
|
46
|
Jeschke MG, Micak RP, Finnerty CC, Herndon DN. Changes in liver function and size after a severe thermal injury. Shock 2007; 28:172-7. [PMID: 17529902 DOI: 10.1097/shk.0b013e318047b9e2] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatic homeostasis and metabolism are essential for survival in critically ill and severely burned patients. There is evidence that the liver undergoes hypertrophy after burn. However, the extension and the duration of liver enlargement are not known. The aim of the present study was to determine the changes in liver size, weight, and hepatic protein synthesis in a large prospective clinical trial throughout acute hospitalization and up to 12 months after burn. Liver size was measured by means of ultrasound, and liver weight was calculated weekly during short-term hospital stay and at 6, 9, and 12 months after burn. The liver size was then compared with the predicted liver size for each individual. The levels of hepatic proteins and enzymes were determined by using standard laboratory techniques. One hundred two children were included in the study, with 58% +/- 2% total body surface area and 45% +/- 2% third-degree burn. Liver size and weight significantly increased during the first week after burn (mean +/- SEM, 85% +/- 5%), peaked at 2 weeks after burn (mean +/- SEM, 126% +/- 19%), and, at discharge, increased by 89% +/- 10%. At 6, 9, and 12 months, the liver weight increased by 40% to 50% compared with the predicted liver weight. The hepatic protein synthesis was affected up to 9 months after burn. The liver demonstrates a significant enlargement during short-term hospitalization, accompanied with impairment in the hepatic protein synthesis. The treatment to prevent liver enlargement and the improved impaired function may result in a reduction of complications accompanied with liver hypertrophy and failure.
Collapse
Affiliation(s)
- Marc G Jeschke
- Shriners Hospitals for Children and University of Texas Medical Branch, 815 Market Street, Galveston, TX 77550, USA
| | | | | | | |
Collapse
|
47
|
Jeschke MG, Boehning DF, Finnerty CC, Herndon DN. Effect of insulin on the inflammatory and acute phase response after burn injury. Crit Care Med 2007; 35:S519-23. [PMID: 17713402 DOI: 10.1097/01.ccm.0000282027.10288.10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
After a severe burn, the liver plays a pivotal role by modulating inflammatory processes, metabolic pathways, immune functions, and the acute phase response. Therefore, liver integrity and function are important for recovery. A thermal injury, however, causes hepatic damage by inducing hepatic edema, fatty infiltration, hepatocyte apoptosis, and metabolic derangements associated with insulin resistance and impaired insulin signaling. In preliminary studies, we found that these pathophysiological processes are related to hepatic inflammation, altered intracellular signaling, and mitochondrial dysfunction. We hypothesize that modulation of these processes with insulin could improve hepatic structure and function and, therefore, outcome of burned and critically ill patients. Insulin administration improves survival and decreases the rate of infections in severely burned and critically ill patients. Here, we show that insulin administration decreases the synthesis of proinflammatory cytokines and signal transcription factors and improves hepatic structure and function after a severe burn injury; insulin also restores hepatic homeostasis and improves hepatic dysfunction postburn via alterations in the signaling cascade.
Collapse
Affiliation(s)
- Marc G Jeschke
- Shriners Hospital for Children, Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.
| | | | | | | |
Collapse
|
48
|
Leffler M, Hrach T, Stuerzl M, Horch RE, Herndon DN, Jeschke MG. Insulin attenuates apoptosis and exerts anti-inflammatory effects in endotoxemic human macrophages. J Surg Res 2007; 143:398-406. [PMID: 17583747 DOI: 10.1016/j.jss.2007.01.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 01/16/2007] [Accepted: 01/25/2007] [Indexed: 12/13/2022]
Abstract
BACKGROUND Insulin decreases the incidence of sepsis and improves mortality of critically ill patients. In endotoxemic as well as in thermally injured rats, insulin attenuates the systemic inflammatory response by decreasing the proinflammatory and increasing the antiinflammatory cascade. The aim of the present study was to determine the effects of insulin on cell survival, cell activity, apoptosis, and proinflammatory response in a human macrophage-like cell line (THP-1 cells) stressed with lipopolysaccharide (LPS). MATERIALS AND METHODS Human macrophages were stressed with LPS and received either saline or insulin. Cell viability was analyzed by MTS, apoptosis was detected using JC-1 and terminal deoxynucleotidyl transferase-mediated nick end labeling-staining, and to elucidate on the signaling pathway, we used wortmannin as a phosphatidylinositol-3-kinase inhibitor. Tumor necrosis factor (TNF) and interleukin-1beta (IL-1beta) were measured to determine the effect of insulin on proinflammatory cytokine expression. RESULTS Insulin caused a significant increase in cell viability and significantly reduced apoptosis in LPS-stimulated human macrophages in a dose-dependent manner. The antiapoptotic effect of insulin could be completely blocked with the addition of wortmannin. Insulin significantly decreased TNF and IL-1beta in endotoxemic human macrophages. CONCLUSIONS Our results indicate that insulin exerts antiapoptotic effects and reduces the expression of proinflammatory cytokines in endotoxemic human macrophages. The antiapoptotic effects are mediated via the phospatidylinositol-3-kinase-pathway.
Collapse
Affiliation(s)
- Mareike Leffler
- Department of Plastic and Hand Surgery, University Hospital Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Jeschke MG, Norbury WB, Finnerty CC, Branski LK, Herndon DN. Propranolol does not increase inflammation, sepsis, or infectious episodes in severely burned children. ACTA ACUST UNITED AC 2007; 62:676-81. [PMID: 17414346 DOI: 10.1097/ta.0b013e318031afd3] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Propranolol, a nonselective beta1-2 antagonist, attenuates hypermetabolism and catabolism in severely burned patients. However, recent data suggest that propranolol impairs immune function and enhances inflammation. The purpose of the present study was to determine the effect of propranolol administration on infection, sepsis, and inflammation in severely burned pediatric patients. PATIENTS A prospective, intent-to-treat study was performed; patient demographics (age, gender, burn size, and mortality); infectious episodes (colony count greater then 10); and sepsis (guidelines by the society of critical care medicine) were determined. Hypermetabolic response was determined by resting energy expenditure (REE), and the inflammatory response was determined by measuring serum cytokine expression. RESULTS Two hundred forty-five patients (143 controls, 102 propranolol) were included into the study. There were no differences between the control and propranolol groups for age, gender distribution, burn size, third degree burn, and length of stay. Mortality was 6% in the control group and 5% in the propranolol group. Propranolol significantly decreased REE and predicted REE during acute hospital stay. Forty-three patients developed infections in the control group (30%), whereas 21 developed infections in the propranolol group (21%). The incidence of sepsis was 10% for controls and 7% for propranolol. Analysis of the cytokine expression profile in 20 patients in each group revealed that propranolol significantly decreased serum tumor necrosis factor and interleukin-1beta compared with controls (p < 0.05). CONCLUSION Propranolol treatment attenuates hypermetabolism and does not cause increased incidence of infection and sepsis.
Collapse
Affiliation(s)
- Marc G Jeschke
- Department of Surgery, Shriners Hospitals for Children, University of Texas Medical Branch, TX 77550, USA.
| | | | | | | | | |
Collapse
|
50
|
Diesel B, Kulhanek-Heinze S, Höltje M, Brandt B, Höltje HD, Vollmar AM, Kiemer AK. Alpha-lipoic acid as a directly binding activator of the insulin receptor: protection from hepatocyte apoptosis. Biochemistry 2007; 46:2146-55. [PMID: 17274632 DOI: 10.1021/bi602547m] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND AIM Alpha-lipoic acid has cytoprotective potential which has previously been explained by its antioxidant properties. The aim of this study was to assess LA-induced-specific cytoprotective signalling pathways in hepatocytes. METHODS Apoptosis of rat hepatocytes was induced by actinomycinD/TNF-alpha. Caspase-3-like activity was determined by a fluorometric; LDH by an enzymatic assay; and phosphorylation of the insulin receptor, Akt, and Bad by Western blot (after immunoprecipitation). Protein kinase and insulin receptor activities were measured by in vitro phosphorylation. Computer modeling studies were performed by using the program GRID. RESULTS Alpha-lipoic acid decreased actinomycinD/TNF-alpha-induced apoptosis, as did the antioxidants Trolox and N-acetylcysteine. The activation of PI3-kinase/Akt involving phosphorlyation of Bad markedly contributed to the cytoprotective action of alpha-lipoic acid. Alpha-lipoic acid but not other antioxidants protected against actinomycinD/TNF-alpha-induced apoptosis via phosphorylation of the insulin receptor. Computer modeling studies revealed a direct binding site for alpha-lipoic acid at the tyrosine kinase domain of the insulin receptor, suggesting a stabilizing function in loop A that is involved in ATP binding. Treatment of immunoprecipitated insulin receptor with LA induced substrate phosphorylation. CONCLUSIONS Alpha-lipoic acid mediates its antiapoptotic action via activation of the insulin receptor/PI3-kinase/Akt pathway. We show for the first time a direct binding site for alpha-lipoic acid at the insulin receptor tyrosine kinase domain, which might make alpha-lipoic acid a model substance for the development of insulin mimetics.
Collapse
Affiliation(s)
- Britta Diesel
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | | | | | | | | | | | | |
Collapse
|