1
|
Liu R, Wang G, Qian Y, Jiang Z, Wang W, Cai M, Zhang S, Wang G, Wang C, Zou T, Cao H, Zhang D, Wang X, Deng S, Li T, Gu J. Hexosamine biosynthesis dysfunction-induced LIFR N-glycosylation deficiency exacerbates steatotic liver ischemia/reperfusion injury. Metabolism 2025; 168:156258. [PMID: 40185397 DOI: 10.1016/j.metabol.2025.156258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND More and more steatotic livers undergo resection or transplantation but they exhibit higher susceptibility to ischemia-reperfusion injury (IRI), which results in increased perioperative complication morbidity and mortality. IRI is driven by various cytokines and receptors, both of which are extensively modified by N-glycosylation. We aim to elucidate susceptibility of steatotic livers to IRI from the perspective of N-glycosylation. METHODS Differentially expressed genes and glycoproteins were identified with RNA-seq and N-glycoproteomics. Myeloid LIF or hepatocyte LIFR knockout mice were developed to examine the function of LIF and LIFR. Modalities including phosphoproteomics, ChIP-seq, single cell RNA-seq, metabolomics and immunoblotting were utilized to investigate underlying mechanisms. RESULTS LIF transcription in myeloid cells and LIFR N-glycosylation in hepatocytes were substantially induced by IRI of normal livers. LIF and LIFR protected normal livers from IRI through activating STAT3 and promoting downstream TNFAIP3 expression, which was facilitated by LIFR N-glycosylation. Mechanistically, N-glycosylation at N238 stabilized LIFR protein by disrupting TRIM28-mediated K48 ubiquitination at LIFR K254. Furthermore, N-glycosylation at N358/N658/N675 of LIFR facilitated LIF/LIFR/gp130 complex formation and subsequent signal transduction. However, in steatotic livers, myeloid cell LIF transcription was partially inhibited due to hepatic microenvironment L-arginine insufficiency, while hepatocyte LIFR N-glycosylation was defective due to intracellular UDP-GlcNAc exhaustion. Importantly, combined L-arginine and GlcNAc treatment reversed LIF expression and LIFR N-glycosylation insufficiency, which represents potential therapeutic strategy to protect steatotic livers. CONCLUSIONS LIF expression and LIFR N-glycosylation insufficiency aggravates steatotic liver IRI, which can be reversed by combined L-arginine and GlcNAc treatment.
Collapse
Affiliation(s)
- Ran Liu
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Gengqiao Wang
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Yongbing Qian
- Department of Liver Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhengting Jiang
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Weimin Wang
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Mao Cai
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Shuhua Zhang
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Guoliang Wang
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Chuanzheng Wang
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Tianhao Zou
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Huan Cao
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Di Zhang
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xueling Wang
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Shenghe Deng
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Tongxi Li
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jinyang Gu
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
2
|
Pareek CS, Sachajko M, Kalra G, Sultana S, Szostak A, Chalaskiewicz K, Kepka-Borkowska K, Poławska E, Ogłuszka M, Pierzchała D, Starzyński R, Taniguchi H, Juszczuk-Kubiak E, Lepczyński A, Ślaska B, Kozera W, Czarnik U, Wysocki P, Kadarmideen HN, Te Pas MFW, Szyda J, Pierzchała M. Identification of trait-associated microRNA modules in liver transcriptome of pig fed with PUFAs-enriched supplementary diet. J Appl Genet 2025; 66:389-407. [PMID: 39546271 PMCID: PMC12000271 DOI: 10.1007/s13353-024-00912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/16/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024]
Abstract
Dietary lipids provide energy, are cellular structural components, and are involved in physiological processes. Lipids are the dietary source in supplementary diet experiments in pigs. This study aims to investigate the dietary effects of PUFAs on the hepatic transcriptome and physiological pathways of two diets on two pig breeds. Polish Landrace (PL: n = 6) and six PLxDuroc (PLxD: n = 6) pigs were fed with a normal diet (n = 3) or PUFAs-enriched healthy diet (n = 3), and the hepatic miRNA profiles were studied for weighted gene co-expression network analysis biological interactions between gene networks and metabolic pathways of DE miRNA genes. The study identified trait-associated modules that were significantly associated with four phenotypic traits in the dietary groups of PL and PLxD: meat colour (a*), shoulder subcutaneous fat thickness, conductivity 24 h post-mortem (PE24), and ashes. Trait-wise, a large set of co-expressed miRNAs of porcine liver were identified in these trait-associated significant modules (9, 7, 2, and 8) in PL and PLxD. Each module is represented by a module eigengene (ME). Forty-four miRNAs out of 94 miRNAs interacted with 6719 statistically significant target genes with a target score > 90. The GO/pathway analysis showed association with pathways including regulation of metallopeptidase activity, sebaceous gland development, collagen fibril organization, WNT signalling, epithelial tube morphogenesis, etc. The study showed the differences in miRNA expression between the dietary groups of PL and PLxD breeds. Hub genes of discovered miRNA clusters can be considered predicted miRNA genes associated with PE24, meat colour, shoulder subcutaneous fat thickness, and ashes. Discovered target genes for miRNA clusters play significant roles in biological functions such as (i) muscle and body growth development, (ii) different cellular processes and developments, (iii) system development, and (iv) metabolic processes.
Collapse
Affiliation(s)
- C S Pareek
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Toruń, Poland
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100, Torun, Poland
| | - M Sachajko
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Toruń, Poland
| | - G Kalra
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Toruń, Poland
| | - S Sultana
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Toruń, Poland
| | - A Szostak
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A Str, 05-552, Jastrzebiec, Magdalenka, Poland
| | - K Chalaskiewicz
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A Str, 05-552, Jastrzebiec, Magdalenka, Poland
| | - K Kepka-Borkowska
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A Str, 05-552, Jastrzebiec, Magdalenka, Poland
| | - E Poławska
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A Str, 05-552, Jastrzebiec, Magdalenka, Poland
| | - M Ogłuszka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A Str, 05-552, Jastrzebiec, Magdalenka, Poland
| | - D Pierzchała
- Maria Sklodowska-Curie National Research Institute of Oncology, W.K. Roentgena 5 Str, 02-781, Warsaw, Poland
| | - R Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A Str, 05-552, Jastrzebiec, Magdalenka, Poland
| | - H Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A Str, 05-552, Jastrzebiec, Magdalenka, Poland
- African Genome Center, Mohammed VI Polytechnic University, UM6P, Lot 660, Hay Moulay Rachid Ben Guerir, 43150, Morocco
| | - E Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology Prof. Wacław, Dąbrowski Institute of Agriculture and Food Biotechnology - State Research Institute (IBPRS-PIB), Rakowiecka 36 Str, 02-532, Warsaw, Poland
| | - A Lepczyński
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, K. Janickiego 32 Str, 71-270, Szczecin, Poland
| | - B Ślaska
- Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13 Str, 20-950, Lublin, Poland
| | - W Kozera
- Department of Pig Breeding, Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bio-Engineering, University of Warmia and Mazury in Olsztyn, Ul. M. Oczapowskiego 5 Str, 10-719, Olsztyn, Poland
| | - U Czarnik
- Department of Pig Breeding, Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bio-Engineering, University of Warmia and Mazury in Olsztyn, Ul. M. Oczapowskiego 5 Str, 10-719, Olsztyn, Poland
| | - P Wysocki
- Department of Pig Breeding, Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bio-Engineering, University of Warmia and Mazury in Olsztyn, Ul. M. Oczapowskiego 5 Str, 10-719, Olsztyn, Poland
| | - H N Kadarmideen
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Alle 20, 8830, Tjele, Denmark
| | - M F W Te Pas
- Wageningen Livestock Research, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - J Szyda
- Biostatistics Group, Department of Genetics, Wrocław University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wrocław, Poland
| | - M Pierzchała
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A Str, 05-552, Jastrzebiec, Magdalenka, Poland.
| |
Collapse
|
3
|
Gu X, Chen W, Xia HM, Du LJ, Wang YH, Gao SY, He ZY, Cai JY, Hu X, Zhang XX, Yang LJ, Pan LY, Li J, Li YQ, Gu XJ, Yang B. Inverse association of healthy diet scores with non-alcoholic fatty liver disease among Chinese patients with type 2 diabetes mellitus. Int J Food Sci Nutr 2025:1-10. [PMID: 40300836 DOI: 10.1080/09637486.2025.2499042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 02/20/2025] [Accepted: 04/23/2025] [Indexed: 05/01/2025]
Abstract
We aimed to investigate the association of healthy diet scores (HDS), comprising major components (fruits and vegetables, soybean, fish, and sugar-sweetened beverages), with non-alcoholic fatty liver disease (NAFLD) in patients with type 2 diabetes mellitus (T2DM). In this cross-sectional study of 2,404 T2DM individuals aged 35-70 years, individuals with higher HDS (≥3 components) had a lower odds of NAFLD (adjusted odds ratio [OR]: 0.64; 95% confidence interval [CI]: 0.48, 0.84) and lower fatty liver index (FLI) levels (β: -4.70; 95% CI: -7.61, -1.79). Each one-component increase in HDS was associated with a 14% reduction in the odds of NAFLD (OR: 0.86; 95% CI: 0.75, 0.98) and a 1.95-unit reduction in FLI levels (β: -1.95; 95% CI: -3.21, -0.70). These results suggest that adherence to a higher HDS pattern may be protective against NAFLD in T2DM.
Collapse
Affiliation(s)
- Xiao Gu
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Wei Chen
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, China
- Insitute of Lipids Medicine, Wenzhou Medical University, Wenzhou, China
| | - Hui-Min Xia
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lin-Jia Du
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu-Hua Wang
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Si-Yu Gao
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi-Ying He
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jia-Yao Cai
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiang Hu
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xing-Xing Zhang
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li-Juan Yang
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lin-Yu Pan
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Li
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying-Qian Li
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xue-Jiang Gu
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bo Yang
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, China
- Insitute of Lipids Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Dai Y, Zhu B, Yan X, Xie X, Zhan Z, Lv Y. Iridium Isotope Tag-Assisted LC-MS Method for Global Profiling and Quantification of Nonvolatile Serum Fatty Acids in Nonalcoholic Fatty Liver Mice. Anal Chem 2025; 97:7055-7062. [PMID: 40150933 DOI: 10.1021/acs.analchem.4c05310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Highly accurate and sensitive measurements of fatty acids (FAs) in biological samples are essential for advancing our understanding of their diverse biofunctions. In this work, based on the characteristic isotope pattern of iridium (191/193Ir), we employed an iridium-encoded amine (Ir-NH2) as the derivatization reagent to establish a selective and sensitive liquid chromatography-mass spectrometry (LC-MS) method for rapid identification and accurate quantification of FAs in biological samples. Upon derivatization, nonvolatile FAs were transformed into amide derivatives tagged with a charged iridium tag, exhibiting improved sensitivity and selectivity in the electrospray ionization (ESI) positive ion mode. By leveraging the unique 2.002 Da mass shift and the 3:5 peak intensity ratio from the natural 191Ir and 193Ir isotopes, we can rapidly and efficiently screen the potential carboxyl-containing metabolites from biological samples. Compared to other existing methods, our technique offers higher sensitivity, better signal-to-noise ratio, lower detection limit (1.2-8.4 pg/mL), and easier quantification due to the clear identification of iridium-tagged derivatives. With this method, a total of 58 FAs, including both saturated and unsaturated types, were detected in mice serum lipid extracts, with carbon chain lengths varying from C9 to C24. More importantly, this method was successfully employed for global profiling of nonvolatile serum FAs from mice with nonalcoholic fatty liver disease (NAFLD), providing a novel means for detecting them and offering new avenues for exploring their functional roles and disease associations.
Collapse
Affiliation(s)
- Yongcheng Dai
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Beicheng Zhu
- Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Xueting Yan
- Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Xiaobo Xie
- Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Zixuan Zhan
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
5
|
Guo C, Liu Z, Fan H, Wang H, Zhang X, Zhao S, Li Y, Wang T, Dai L, Huang J, Chen X, Zhang T. Nonlinear relationships of circulating polyunsaturated fatty acids with the complications of liver cirrhosis: A prospective, longitudinal cohort study. Clin Nutr 2024; 43:2083-2091. [PMID: 39094473 DOI: 10.1016/j.clnu.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND & AIMS The role of circulating polyunsaturated fatty acids (PUFAs) in preventing liver cirrhosis complications remains unclear. METHODS Between 2006 and 2010, 273,834 UK Biobank participants with plasma PUFA quantification data were enrolled and followed up until October 31, 2022. Plasma PUFAs were quantified using a high-throughput nuclear magnetic resonance-based metabolic profiling platform. Liver cirrhosis complications were defined as hospitalization for liver cirrhosis or presentation with hepatocellular carcinoma. RESULTS During a median follow-up of 13.9 years, 2026 participants developed liver cirrhosis complications. Total plasma PUFAs, omega-3 PUFAs, docosahexaenoic acid (DHA), omega-6 PUFAs, and linoleic acid (LA) were inversely associated with the risk of liver cirrhosis complications, whereas the plasma omega-6/omega-3 ratio was positively associated. Nonparametrically restricted cubic spline regression showed nonlinear associations of plasma PUFAs with liver cirrhosis complications. The inflection points were 4.78 mmol/L for total PUFAs, 0.73 mmol/L for omega-3 PUFAs, 0.25 mmol/L for DHA, 4.07 mmol/L for omega-6 PUFAs, and 2.99 mmol/L for LA. Plasma omega-3 PUFAs were negatively associated with the risk of liver cirrhosis complications when omega-3 PUFAs were <0.73 mmol/L (adjusted hazard ratio [HR], 0.11 [0.08-0.16]), whereas the association was inverted when omega-3 PUFAs were ≥0.73 mmol/L (adjusted HR, 1.87 [1.20-2.92]). CONCLUSIONS The protective effect of plasma omega-3 PUFAs on liver cirrhosis complications is reversed after passing the corresponding inflection point, suggesting an optimal dietary omega-3 PUFA supplementation dose.
Collapse
Affiliation(s)
- Chengnan Guo
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China; Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai, China
| | - Zhenqiu Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Hong Fan
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai, China
| | - Haili Wang
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai, China
| | - Xin Zhang
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai, China
| | - Shuzhen Zhao
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai, China
| | - Yi Li
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai, China
| | - Tianye Wang
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai, China
| | - Luojia Dai
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai, China
| | - Jiayi Huang
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, China.
| | - Tiejun Zhang
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China; Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, China.
| |
Collapse
|
6
|
Núñez-Sánchez MÁ, Martínez-Sánchez MA, Martínez-Montoro JI, Balaguer-Román A, Murcia-García E, Fernández-Ruiz VE, Ferrer-Gómez M, Martínez-Cáceres CM, Sledzinski T, Frutos MD, Hernández-Morante JJ, Fernández-García JC, Queipo-Ortuño MI, Ruiz-Alcaraz AJ, Mika A, Ramos-Molina B. Lipidomic Analysis Reveals Alterations in Hepatic FA Profile Associated With MASLD Stage in Patients With Obesity. J Clin Endocrinol Metab 2024; 109:1781-1792. [PMID: 38217869 DOI: 10.1210/clinem/dgae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 01/15/2024]
Abstract
CONTEXT Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by the intracellular lipid accumulation in hepatocytes. Excess caloric intake and high-fat diets are considered to significantly contribute to MASLD development. OBJECTIVE To evaluate the hepatic and serum fatty acid (FA) composition in patients with different stages of MASLD, and their relationship with FA dietary intake and MASLD-related risk factors. METHODS This was a case-control study in patients with obesity undergoing bariatric surgery at a university hospital between January 2020 and December 2021. Participants were distributed in 3 groups: no MASLD (n = 26), steatotic liver disease (n = 33), and metabolic dysfunction-associated steatohepatitis (n = 32). Hepatic and serum FA levels were determined by gas chromatography-mass spectrometry. Nutritional status was evaluated using validated food frequency questionnaires. The hepatic expression of genes involved in FA metabolism was analyzed by reverse transcription quantitative polymerase chain reaction. RESULTS The hepatic, but not serum, FA profiles were significantly altered in patients with MASLD compared with those without MASLD. No differences were observed in FA intake between the groups. Levels of C16:0, C18:1, and the C18:1/C18:0 ratio were higher, while C18:0 levels and C18:0/C16:0 ratio were lower in patients with MASLD, being significantly different between the 3 groups. Hepatic FA levels and ratios correlated with histopathological diagnosis and other MASLD-related parameters. The expression of genes involved in the FA metabolism was upregulated in patients with MASLD. CONCLUSION Alterations in hepatic FA levels in MASLD patients were due to enhancement of de novo lipogenesis in the liver.
Collapse
Affiliation(s)
- María Ángeles Núñez-Sánchez
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | | | - José Ignacio Martínez-Montoro
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Biomedical Research Institute of Malaga (IBIMA), Faculty of Medicine, University of Malaga, 29010 Malaga, Spain
| | - Andrés Balaguer-Román
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, 30120 Murcia, Spain
| | - Elena Murcia-García
- Eating Disorders Research Unit, Faculty of Nursing, UCAM Catholic University of Murcia, 30107 Murcia, Spain
| | - Virginia Esperanza Fernández-Ruiz
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
- Department of Endocrinology and Nutrition, Virgen de la Arrixaca University Hospital, 30120 Murcia, Spain
| | - Mercedes Ferrer-Gómez
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
- Department of Endocrinology and Nutrition, Virgen de la Arrixaca University Hospital, 30120 Murcia, Spain
| | | | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - María Dolores Frutos
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, 30120 Murcia, Spain
| | - Juan José Hernández-Morante
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
- Eating Disorders Research Unit, Faculty of Nursing, UCAM Catholic University of Murcia, 30107 Murcia, Spain
| | - José Carlos Fernández-García
- Department of Endocrinology and Nutrition, Regional University Hospital of Malaga, Biomedical Research Institute of Malaga (IBIMA), Faculty of Medicine, University of Malaga, 29010 Malaga, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Isabel Queipo-Ortuño
- Intercenter Medical Oncology Clinical Management Unit, Regional and Virgen de la Victoria University Hospitals, Málaga Biomedical Research Institute (IBIMA)-CIMES-UMA, 29010 Málaga, Spain
- Department of Surgical Specialties, Biochemical and Immunology. Faculty of Medicine, University of Málaga, 29071 Malaga, Spain
| | - Antonio José Ruiz-Alcaraz
- Department of Biochemistry, Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, 80-211 Gdansk, Poland
| | - Bruno Ramos-Molina
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| |
Collapse
|
7
|
Tiniakos DG, Anstee QM, Brunt EM, Burt AD. Fatty Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:330-401. [DOI: 10.1016/b978-0-7020-8228-3.00005-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Šmíd V, Dvořák K, Stehnová K, Strnad H, Rubert J, Stříteský J, Staňková B, Stránská M, Hajšlová J, Brůha R, Vítek L. The Ameliorating Effects of n-3 Polyunsaturated Fatty Acids on Liver Steatosis Induced by a High-Fat Methionine Choline-Deficient Diet in Mice. Int J Mol Sci 2023; 24:17226. [PMID: 38139055 PMCID: PMC10743075 DOI: 10.3390/ijms242417226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
The pathogenesis of non-alcoholic fatty liver disease (NAFLD) is associated with abnormalities of liver lipid metabolism. On the contrary, a diet enriched with n-3 polyunsaturated fatty acids (n-3-PUFAs) has been reported to ameliorate the progression of NAFLD. The aim of our study was to investigate the impact of dietary n-3-PUFA enrichment on the development of NAFLD and liver lipidome. Mice were fed for 6 weeks either a high-fat methionine choline-deficient diet (MCD) or standard chow with or without n-3-PUFAs. Liver histology, serum biochemistry, detailed plasma and liver lipidomic analyses, and genome-wide transcriptome analysis were performed. Mice fed an MCD developed histopathological changes characteristic of NAFLD, and these changes were ameliorated with n-3-PUFAs. Simultaneously, n-3-PUFAs decreased serum triacylglycerol and cholesterol concentrations as well as ALT and AST activities. N-3-PUFAs decreased serum concentrations of saturated and monounsaturated free fatty acids (FAs), while increasing serum concentrations of long-chain PUFAs. Furthermore, in the liver, the MCD significantly increased the hepatic triacylglycerol content, while the administration of n-3-PUFAs eliminated this effect. Administration of n-3-PUFAs led to significant beneficial differences in gene expression within biosynthetic pathways of cholesterol, FAs, and pro-inflammatory cytokines (IL-1 and TNF-α). To conclude, n-3-PUFA supplementation appears to represent a promising nutraceutical approach for the restoration of abnormalities in liver lipid metabolism and the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Václav Šmíd
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08 Prague, Czech Republic (R.B.); (L.V.)
| | - Karel Dvořák
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08 Prague, Czech Republic (R.B.); (L.V.)
| | - Kamila Stehnová
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.S.); (J.R.); (J.H.)
| | - Hynek Strnad
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Josep Rubert
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.S.); (J.R.); (J.H.)
| | - Jan Stříteský
- Institute of Pathology, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 00 Prague, Czech Republic;
| | - Barbora Staňková
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08 Prague, Czech Republic (R.B.); (L.V.)
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08 Prague, Czech Republic
| | - Milena Stránská
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.S.); (J.R.); (J.H.)
| | - Jana Hajšlová
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.S.); (J.R.); (J.H.)
| | - Radan Brůha
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08 Prague, Czech Republic (R.B.); (L.V.)
| | - Libor Vítek
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08 Prague, Czech Republic (R.B.); (L.V.)
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08 Prague, Czech Republic
| |
Collapse
|
9
|
Poláková K, Bobková A, Demianová A, Bobko M, Lidiková J, Jurčaga L, Belej Ľ, Mesárošová A, Korčok M, Tóth T. Quality Attributes and Sensory Acceptance of Different Botanical Coffee Co-Products. Foods 2023; 12:2675. [PMID: 37509767 PMCID: PMC10378423 DOI: 10.3390/foods12142675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Coffee processing is a major contributor to the creation of food and product waste. Using coffee co-products can play an essential role in addressing environmental problems and issues with nutritionally unbalanced foods, population growth, and food-related diseases. This research aimed to determine the quality and sensory parameters (aw, pH, dry matter, TAC, TPC, fat, fatty acids profile, fiber, caffeine, chlorogenic acids, color, and sensory analysis) of different botanical origins of cascara (coffee husks) and silverskin (thin layer). The results of this study show that silverskin and cascara are a good source of TAC (1S 58.17 ± 1.28%, 2S 46.65 ± 1.20%, 1C 36.54 ± 1.84%, 2C 41.12 ± 2.11%). Cascara showed the presence of polyphenols (2C 49.135 g GAE·kg-1). Coffee co-products are good sources of fiber. Silverskin had higher values of caffeine than cascara. Palmitic, stearic, oleic, linoleic, and arachidic acids were the most represented acids in the samples. Given the obtained results, cascara can be considered "low-fat" (1C 4.240 g·kg-1 and 2C 5.4 g·kg-1). Based on the sensory evaluation, no sample reached the acceptable index value of 70%. Understanding the link between the character, identification properties, and composition of coffee co-products of different botanical origins can enable their application in the food industry.
Collapse
Affiliation(s)
- Katarína Poláková
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Alica Bobková
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Alžbeta Demianová
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Marek Bobko
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Judita Lidiková
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Lukáš Jurčaga
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Ľubomír Belej
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Andrea Mesárošová
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Melina Korčok
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Tomáš Tóth
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| |
Collapse
|
10
|
Huang YL, De Gregorio C, Silva V, Elorza ÁA, Léniz P, Aliaga-Tobar V, Maracaja-Coutinho V, Budini M, Ezquer F, Ezquer M. Administration of Secretome Derived from Human Mesenchymal Stem Cells Induces Hepatoprotective Effects in Models of Idiosyncratic Drug-Induced Liver Injury Caused by Amiodarone or Tamoxifen. Cells 2023; 12:cells12040636. [PMID: 36831304 PMCID: PMC9954258 DOI: 10.3390/cells12040636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Drug-induced liver injury (DILI) is one of the leading causes of acute liver injury. While many factors may contribute to the susceptibility to DILI, obese patients with hepatic steatosis are particularly prone to suffer DILI. The secretome derived from mesenchymal stem cell has been shown to have hepatoprotective effects in diverse in vitro and in vivo models. In this study, we evaluate whether MSC secretome could improve DILI mediated by amiodarone (AMI) or tamoxifen (TMX). Hepatic HepG2 and HepaRG cells were incubated with AMI or TMX, alone or with the secretome of MSCs obtained from human adipose tissue. These studies demonstrate that coincubation of AMI or TMX with MSC secretome increases cell viability, prevents the activation of apoptosis pathways, and stimulates the expression of priming phase genes, leading to higher proliferation rates. As proof of concept, in a C57BL/6 mouse model of hepatic steatosis and chronic exposure to AMI, the MSC secretome was administered endovenously. In this study, liver injury was significantly attenuated, with a decrease in cell infiltration and stimulation of the regenerative response. The present results indicate that MSC secretome administration has the potential to be an adjunctive cell-free therapy to prevent liver failure derived from DILI caused by TMX or AMI.
Collapse
Affiliation(s)
- Ya-Lin Huang
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Cristian De Gregorio
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Verónica Silva
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Álvaro A. Elorza
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Ciencias de la Vida, Universidad Andres Bello, Santiago 7610658, Chile
| | - Patricio Léniz
- Unidad de Cirugía Plástica, Reparadora y Estética, Clínica Alemana, Santiago 7610658, Chile
| | - Víctor Aliaga-Tobar
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua 7610658, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
| | - Mauricio Budini
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago 7610658, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
- Correspondence: (F.E.); (M.E.); Tel.: +56-990-699-272 (F.E.); +56-976-629-880 (M.E.)
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
- Correspondence: (F.E.); (M.E.); Tel.: +56-990-699-272 (F.E.); +56-976-629-880 (M.E.)
| |
Collapse
|
11
|
Alagawany M, Elnesr SS, Farag MR, El-Sabrout K, Alqaisi O, Dawood MAO, Soomro H, Abdelnour SA. Nutritional significance and health benefits of omega-3, -6 and -9 fatty acids in animals. Anim Biotechnol 2022; 33:1678-1690. [PMID: 33470155 DOI: 10.1080/10495398.2020.1869562] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The balance between omega-3 (ω-3), omega-6 (ω-6) and omega-9 (ω-9) fatty acids (FAs) is very important because these types of oils constitute essential components for the formation of the cell membrane, also they are precursors for a large number of substances in the body. One of the most important strategies for improving the increment of polyunsaturated FAs in poultry and animal meat is the dietary administration of these FAs. Additionally, the different sources of ω-3 or 6 in the diet improve the performance, public health and physiological aspects including anti-oxidative properties and immunity. ω-3 FAs have anti-inflammatory characteristics due to their ability to reduce cytokines liberation. High-level of ω-6 FAs is always associated with an increased incidence of dangerous disorders like depression and heart disease. These FAs showed a tremendous series of beneficial impacts like improved cholesterol levels and a decreased occurrence of coronary heart diseases. This article includes some information on the use of ω-3, ω-6 and ω-9 FAs in animal and human diets. These oils are vital for the physiological and health aspects, and the information mentioned here will improve our understanding of the functions and roles of these FAs in the body.
Collapse
Affiliation(s)
- Mahmoud Alagawany
- Faculty of Agriculture, Department of Poultry, Zagazig University, Zagazig, Egypt
| | - Shaaban S Elnesr
- Faculty of Agriculture, Department of Poultry Production, Fayoum University, Fayoum, Egypt
| | - Mayada R Farag
- Faculty of Veterinary Medicine, Forensic Medicine and Toxicology Department, Zagazig University, Zagazig, Egypt
| | - Karim El-Sabrout
- Faculty of Agriculture (El-Shatby), Department of Poultry Production, Alexandria University, Alexandria, Egypt
| | - Othman Alqaisi
- College of Agricultural & Marine Sciences, Animal and Veterinary Sciences Department, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Mahmoud A O Dawood
- Faculty of Agriculture, Department of Animal Production, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hidayatullah Soomro
- Faculty of Animal Production and Technology, Department of Poultry Production, Shaheed Benazir Bhutto University of Veterinary and Animal Science Sakrand, Sakrand, Pakistan
| | - Sameh A Abdelnour
- Faculty of Agriculture, Animal Production Department, Zagazig University, Zagazig, Egypt
| |
Collapse
|
12
|
Meneses MJ, Sousa-Lima I, Jarak I, Raposo JF, Alves MG, Macedo MP. Distinct impacts of fat and fructose on the liver, muscle, and adipose tissue metabolome: An integrated view. Front Endocrinol (Lausanne) 2022; 13:898471. [PMID: 36060961 PMCID: PMC9428722 DOI: 10.3389/fendo.2022.898471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Objective In the last years, changes in dietary habits have contributed to the increasing prevalence of metabolic disorders, such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM). The differential burden of lipids and fructose on distinct organs needs to be unveiled. Herein, we hypothesized that high-fat and high-fructose diets differentially affect the metabolome of insulin-sensitive organs such as the liver, muscle, and different adipose tissue depots. Methods We have studied the impact of 12 weeks of a control (11.50% calories from fat, 26.93% from protein, and 61.57% from carbohydrates), high-fat/sucrose (HFat), or high-fructose (HFruct) feeding on C57Bl/6J male mice. Besides glucose homeostasis, we analyzed the hepatic levels of glucose and lipid-metabolism-related genes and the metabolome of the liver, the muscle, and white (WAT) and brown adipose tissue (BAT) depots. Results HFat diet led to a more profound impact on hepatic glucose and lipid metabolism than HFruct, with mice presenting glucose intolerance, increased saturated fatty acids, and no glycogen pool, yet both HFat and HFruct presented hepatic insulin resistance. HFat diet promoted a decrease in glucose and lactate pools in the muscle and an increase in glutamate levels. While HFat had alterations in BAT metabolites that indicate increased thermogenesis, HFruct led to an increase in betaine, a protective metabolite against fructose-induced inflammation. Conclusions Our data illustrate that HFat and HFruct have a negative but distinct impact on the metabolome of the liver, muscle, WAT, and BAT.
Collapse
Affiliation(s)
- Maria João Meneses
- iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, Lisbon, Portugal
- Portuguese Diabetes Association - Education and Research Center (APDP-ERC), Lisbon, Portugal
| | - Inês Sousa-Lima
- iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ivana Jarak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - João F. Raposo
- iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, Lisbon, Portugal
- Portuguese Diabetes Association - Education and Research Center (APDP-ERC), Lisbon, Portugal
| | - Marco G. Alves
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Maria Paula Macedo
- iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, Lisbon, Portugal
- Portuguese Diabetes Association - Education and Research Center (APDP-ERC), Lisbon, Portugal
- Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
13
|
Li P, Zhang R, Wang M, Chen Y, Chen Z, Ke X, Zuo L, Wang J. Baicalein Prevents Fructose-Induced Hepatic Steatosis in Rats: In the Regulation of Fatty Acid De Novo Synthesis, Fatty Acid Elongation and Fatty Acid Oxidation. Front Pharmacol 2022; 13:917329. [PMID: 35847050 PMCID: PMC9280198 DOI: 10.3389/fphar.2022.917329] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), hepatic fibrosis and even hepatocellular carcinoma, is a liver disease worldwide without approved therapeutic drugs. Baicalein (BAL), a flavonoid compound extracted from the Traditional Chinese Medicine (TCM) Scutellariae Radix (Scutellaria baicalensis Georgi.), has been used in TCM clinical practice for thousands of years to treat liver diseases due to its "hepatoprotective effect". However, the underlying liver-protecting mechanisms remain largely unknown. Here, we found that oral administration of BAL significantly decreased excess serum levels of triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), aspartate aminotransferase (AST) as well as hepatic TG in fructose-fed rats. Attenuation of the increased vacuolization and Oil Red O staining area was evident on hepatic histological examination in BAL-treated rats. Mechanistically, results of RNA-sequencing, western-blot, real-time quantitative PCR (RT-qPCR) and hepatic metabolomics analyses indicated that BAL decreased fructose-induced excessive nuclear expressions of mature sterol regulatory element-binding protein 1c (mSREBP1c) and carbohydrate response element-binding protein (ChREBP), which led to the decline of lipogenic molecules [including fatty acid synthase (FASN), stearoyl-CoA desaturase 1 (SCD1), elongation of very long chain fatty acids 6 (ELOVL6), acetyl-CoA carboxylase (ACC)], accompanying with the alternation of hepatic fatty acids composition. Meanwhile, BAL enhanced fatty acid oxidation by activating AMPK/PGC1α signaling axis and PPARα signal pathway, which elicited high expression of carnitine palmitoyl transferase 1α (CPT1α) and Acyl-CoA oxidase 1 (ACO1) in livers of fructose-fed rats, respectively. BAL ameliorated fructose-induced hepatic steatosis, which is associated with regulating fatty acid synthesis, elongation and oxidation.
Collapse
Affiliation(s)
- Pan Li
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Ruoyu Zhang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Meng Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Yuwei Chen
- The Pharmacy Department, the Second People’s Hospital of Jiulongpo District, Chongqing, China
| | - Zhiwei Chen
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xiumei Ke
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Ling Zuo
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Halade GV, Kain V, De La Rosa X, Lindsey ML. Metabolic transformation of fat in obesity determines the inflammation resolving capacity of splenocardiac and cardiorenal networks in heart failure. Am J Physiol Heart Circ Physiol 2022; 322:H953-H970. [PMID: 35333119 PMCID: PMC9054267 DOI: 10.1152/ajpheart.00684.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 01/02/2023]
Abstract
All fats are not created equal, and despite the extensive literature, the effect of fat intake is the most debated question in obesity, cardiovascular, and cardiorenal research. Cellular and molecular mechanisms underlying cardiac dysfunction and consequent heart failure in the setting of obesity are not well understood. Our understanding of how fats are metabolically transformed after nonreperfused myocardial infarction (MI), in particular, is incomplete. Here, using male C57BL/6J mice (2 mo old), we determined the role of omega-6 fatty acids, provided as safflower oil (SO) for 12 wk, followed by supplementation with docosahexaenoic acid (DHA; n-3 fatty acids) for 8 wk before MI. With SO feeding, inflammation resolution was impaired. Specialized proresolving mediators (SPMs) increased in DHA-fed mice to reverse the effects of SO, whereas prostaglandins and thromboxane B2 were reduced in the spleen and amplified multiple resolving mechanisms in heart and kidney post-MI. DHA amplified the number of resolving macrophages and cardiac reparative pathways of the splenocardiac and cardiorenal networks in acute heart failure, with higher Treg cells in chronic heart failure and marked expression of Foxp3+ in the myocardium. Our findings indicate that surplus ingestion of SO intensified systemic, baseline, nonresolving inflammation, and DHA intake dominates splenocardiac resolving phase with the biosynthesis of SPMs and controlled cardiorenal inflammation in heart failure survivor mice.NEW & NOTEWORTHY Chronic and surplus dietary intake of safflower oil (SO) increased plasma creatinine dysregulated post-MI splenocardiac inflammation coincides with the dysfunctional cardiorenal network. In contrast, docosahexaenoic acid (DHA) increases post-MI survival in chronic heart failure. DHA transforms into specialized proresolving mediators (SPMs) and limited proinflammatory prostaglandins and thromboxanes following myocardial infarction (MI). DHA promotes Ly6Clow resolving macrophages and T regulatory cells (Foxp3+) in a splenocardiac manner post-MI.
Collapse
Affiliation(s)
- Ganesh V Halade
- Division of Cardiovascular Sciences, Department of Medicine, The University of South Florida, Tampa, Florida
| | - Vasundhara Kain
- Division of Cardiovascular Sciences, Department of Medicine, The University of South Florida, Tampa, Florida
| | - Xavier De La Rosa
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Merry L Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| |
Collapse
|
15
|
Lee J, Lee JK, Lee JJ, Park S, Jung S, Lee HJ, Ha JH. Partial Replacement of High-Fat Diet with Beef Tallow Attenuates Dyslipidemia and Endoplasmic Reticulum Stress in db/ db Mice. J Med Food 2022; 25:660-674. [PMID: 35617705 DOI: 10.1089/jmf.2022.k.0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High-fat diet (HFD) consumption is closely associated with an increased risk of metabolic syndromes (MetS), such as obesity, type 2 diabetes, and cardiovascular diseases (CVDs). Therefore, the consumption of alternative and functional fatty acids to replace saturated fatty acids and/or trans-fatty acids with polyunsaturated fatty acids has become an important dietary strategy for the prevention of MetS. Consumption of omega-3 fatty acids (n-3) reduces various physiological complications, including CVDs, nonalcoholic fatty liver disease, and insulin resistance, related to inflammatory responses. In this study, we investigated the partial replacement effects of HFD with beef tallow (BT) on dyslipidemia and endoplasmic reticulum (ER) stress in male db/db mice. The animals were grouped to one of four dietary intervention groups (n = 16 per group): (1) normal diet, (2) HFD, (3) HFD partially replaced with regular beef tallow (HFD+BT1), or (4) HFD partially replaced with beef tallow containing a relatively reduced omega-6 fatty acid (n-6)/n-3 ratio (HFD+BT2) than HFD+BT1. After 6 weeks of dietary intervention, 1 mg/kg of phosphate-buffered saline or tunicamycin (TM) was injected intraperitoneally. HFD+BT2 significantly suppressed the serum total cholesterol and non-high-density lipoprotein cholesterol levels more than HFD and HFD+BT1, and triglyceride levels in the epididymal adipose tissue (EAT) were remarkably decreased. Mice that received HFD+BT2 had elevated protein expressions of phospho-AMP-activated protein kinase (p-AMPK). Moreover, HFD+BT2 effectively inhibited ER stress in the liver and EAT. Consistent with our hypothesis, HFD+BT2 remarkably alleviated dyslipidemia and TM-inducible ER stress, while activating p-AMPK.
Collapse
Affiliation(s)
- Jisu Lee
- Department of Food Science and Nutrition, Dankook University, Cheonan, Korea
| | - Jennifer K Lee
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, USA
| | - Jae-Joon Lee
- Department of Food and Nutrition, Chosun University, Gwangju, Korea
| | - Seohyun Park
- Department of Food Science and Nutrition, Dankook University, Cheonan, Korea
| | - Sunyoon Jung
- Department of Food Science and Nutrition, Dankook University, Cheonan, Korea
| | - Hyun-Joo Lee
- Department of Nutrition and Culinary Science, Hankyong National University, Ansung, Korea
| | - Jung-Heun Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan, Korea.,Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin, Korea
| |
Collapse
|
16
|
Maternal polyunsaturated fatty acid concentrations during pregnancy and childhood liver fat accumulation. Clin Nutr 2022; 41:847-854. [DOI: 10.1016/j.clnu.2022.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/01/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022]
|
17
|
YANG L, YANG C, SONG ZX, WAN M, XIA H, XU D, PAN D, WANG SK, SHU G, SUN G. Effects of blended oils with different n-6/n-3 polyunsaturated fatty acid ratios on high-fat diet-induced metabolic disorders and hepatic steatosis in rats. FOOD SCIENCE AND TECHNOLOGY 2022; 42. [DOI: 10.1590/fst.81322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Zhi Xiu SONG
- Nanjing University of Traditional Chinese Medicine, China
| | | | | | | | - Da PAN
- Southeast University, China
| | | | - Guofang SHU
- Zhongda Hospital of Southeast University, China
| | | |
Collapse
|
18
|
Association of adherence to the Australian Dietary Guidelines with cognitive performance and cognitive decline in the Sydney Memory and Ageing Study: a longitudinal analysis. J Nutr Sci 2021; 10:e86. [PMID: 34733498 PMCID: PMC8532065 DOI: 10.1017/jns.2021.44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/08/2022] Open
Abstract
This study investigated associations of adherence to the Australian Dietary Guidelines (ADG) with cognitive performance and cognitive decline over 6 years. We used longitudinal data from the Sydney Memory and Aging Study comprising 1037 community-dwelling non-demented participants aged 70–90 years. Dietary intake was assessed at baseline using the Dietary Questionnaire for Epidemiological Studies Version 2. Adherence to the ADG was scored using the Dietary Guideline Index 2013 (DGI-2013). Cognition was assessed using neuropsychological tests in six cognitive domains and global cognition at baseline and 2, 4 and 6 years later. Linear mixed models analysed the association between adherence to the ADG and cognitive function and cognitive decline over 6 years. Results indicated that overall adherence to the ADG was suboptimal (DGI-2013 mean score 43⋅8 with a standard deviation of 10⋅1; median score 44, range 12–73 with an interquartile range of 7). The percent of participants attaining recommended serves for the five food groups were 30⋅2 % for fruits, 11⋅2 % for vegetables, 54⋅6 % for cereals, 28⋅9 % for meat and alternatives and 2⋅1 % for dairy consumption. Adherence to the ADG was not associated with overall global cognition over 6 years (β = 0⋅000; 95 % CI: −0⋅007, 0⋅007; P = 0⋅95). Neither were DGI-2013 scores associated with change in global cognitive performance over 6 years (β = 0⋅002; 95 % CI: −0⋅002, 0⋅005; P = 0⋅41) nor in any individual cognitive domains. In conclusion, adherence to the ADG was not associated with cognitive health over time in this longitudinal analysis of older Australians. Future research is needed to provide evidence to support specific dietary guidelines for neurocognitive health among Australian older adults.
Collapse
Key Words
- ADG, Australian Dietary Guidelines
- APOE, apolipoprotein E
- Cognitive health
- DASH, Dietary Approaches to Stop Hypertension
- DGI-2013, Dietary Guideline Index
- DQES v2, Dietary Questionnaire for Epidemiological Studies Version 2
- Diet quality
- Dietary Guide Index
- Food consumption
- HEI, Healthy Eating Index
- MAS, Memory and Ageing Study
- MIND, Mediterranean-DASH Intervention for Neurodegenerative Delay
- NESB, non-English-speaking background
- Nutrition epidemiology
- WHO, World Health Organization
Collapse
|
19
|
The Association Between Serum Carnitine Level, Glucose Regulation, Body Fat and Nutrient Intake in Diabetic Individuals. EUROBIOTECH JOURNAL 2021. [DOI: 10.2478/ebtj-2021-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Carnitine (β-hydroxy-γ-trimethyl amino butyrate) is, a vitamin-like substance carrying long-chain fatty acids into the mitochondrial matrix. Due to its effect in energy metabolism, carnitine plays an important role in controlling diabetes and its complications. Studies on this topic have often focused on carnitine supplementation. This study was planned to investigate the relationship between serum carnitine level, glucose regulation and body fat in diabetic patients. A total of 64 people between the ages of 30-5, 32 patients with type 2 diabetes and 32 healthy subjects, were included in the study. Individual lipid profiles, glucose, insulin and serum carnitine levels were analyzed, anthropometric measurements were taken and 24-hour recall food consumption was recorded. As a result, blood glucose, insulin, triglyceride, VLDL-C, HDL-C and HOMA-IR were found to be higher in diabetic individuals than healthy group (p<0,05). Serum carnitine levels were found to be significantly lower in diabetic male (50,6±20,83 nmol/mL) than in healthy male (59,5±17,25 nmol/mL)(p<0,05). This difference was not statistically significant among female (p>0,05). It has been observed that intake of energy and macronutrients of diabetic individuals is generally lower than that of healthy individuals. Serum carnitine level was positively associated with polyunsaturated fatty acids and omega-6 fatty acid intake in male in the healthy group showed a negative correlation with fiber intake in female in the healthy group (p<0,05). There were negative correlations between serum carnitine level with body weight, body mass index and body fat mass in female in the healthy group (p<0,05). Individuals with diabetes are predisposed to dyslipidemia and insulin resistance. As a result; food consumption, and body fat affect individuals’ serum carnitine levels in type-2 diabetes. Since there is not enough study evaluating the relationship between anthropometric measurements of individuals and serum carnitine levels, it is thought that this result will guide future studies.
Collapse
|
20
|
Shan C, Wang R, Wang S, Zhang Z, Xing C, Feng W, Zhao Z, Zhou S, Zhao AZ, Mu Y, Li F. Endogenous production of n-3 polyunsaturated fatty acids protects mice from carbon tetrachloride-induced liver fibrosis by regulating mTOR and Bcl-2/Bax signalling pathways. Exp Physiol 2021; 106:983-993. [PMID: 33605486 DOI: 10.1113/ep089328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
NEW FINDINGS What is the central question of this study? What is the protective benefit of n-3 polyunsaturated fatty acids (PUFAs) on liver fibrosis and what are the relevant signalling pathways in a transgenic mouse model overexpressing the mfat-1 enzyme? What is the main finding and its importance? n-3 PUFA elevation strongly prevented carbon tetrachloride (CCl4 )-induced hepatic damage and inhibited the activation of hepatic stellate cells. n-3 PUFAs suppressed CCl4 -induced activation of mTOR, elevated Bcl-2 expression, and reduced Bax level, suggesting that n-3 PUFAs can render strong protective effects against liver fibrosis and point to the potential of mfat-1 gene therapy as a treatment modality. ABSTRACT Liver fibrosis is a reversible wound healing response with excessive accumulation of extracellular matrix proteins. It is a globally prevalent disease with ultimately severe pathological consequences. However, very few current clinical therapeutic options are available. Nutritional addition of n-3 polyunsaturated fatty acids (PUFAs) can delay and lessen the development of liver fibrosis. Herein, this study examined the protective benefit of n-3 PUFAs on liver fibrosis and the relevant signalling pathways using a transgenic mouse model overexpressing the mfat-1 enzyme that converts n-6 to n-3 PUFAs. Male C57BL/6 wild-type and mfat-1 transgenic mice were administered carbon tetrachloride (CCl4 ) or control corn oil by intraperitoneal injection. Blood alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were subsequently measured. CCl4 -induced hepatic damage and fibrosis were assessed using haematoxylin-eosin and Masson's trichrome staining. Western blot assays were used to detect and quantify fibrosis-related proteins and mechanistic target of rapamycin (mTOR) and B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) signalling components. The direct effect of docosahexaenoic acid (DHA) on primary hepatic stellate cells (HSCs) was also investigated in a co-culture experiment. n-3 PUFAs, as a result of mfat-1 activity, had a strong protective effect on liver fibrosis. The elevation of ALT and AST induced by CCl4 was significantly lessened in the mfat-1 mice. Histological determination revealed the protective effects of n-3 PUFAs on liver inflammation and collagen deposition. Co-incubation with DHA reduced the expression of profibrogenic factors in the primary HSCs. Moreover, mfat-1 transgenic mice showed significant reduction of proteins that are involved in mTOR and Bcl-2/Bax signalling pathways. Collectively, these results suggest that n-3 PUFA elevation strongly prevents CCl4 -induced hepatic damage by directly inhibiting the activation of HSCs and regulating the basal activity of the mTOR and Bcl-2/Bax signalling pathways. Gene therapy applying mfat-1 and elevating n-3 PUFAs represents a promising treatment strategy to prevent liver fibrosis.
Collapse
Affiliation(s)
- Changfeng Shan
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| | - Ronghua Wang
- Rural Work Office of Longmen County Committee of the Communist Party of China, Longmen County Agricultural and Rural Bureau, Huizhou, Guangdong Province, People's Republic of China
| | - Shuai Wang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| | - Zongmeng Zhang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| | - Chaofeng Xing
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| | - Wenbin Feng
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| | - Zhenggang Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| | - Sujin Zhou
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| | - Allan Zijian Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| | - Yunping Mu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
21
|
Lorzadeh E, Akhondi-Meybodi M, Mozaffari-Khosravi H, Mirzaei M, Salehi-Abargouei A. Association between empirically derived dietary patterns and liver function tests in adults: Shahedieh cohort study. Nutrition 2021; 81:110897. [PMID: 32738511 DOI: 10.1016/j.nut.2020.110897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/03/2020] [Accepted: 06/06/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Limited data exist on the association between dietary patterns (DPs) and enzymes mainly produced by the liver. This study aimed to examine the relationship between empirically derived DPs and serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and gamma glutamyl transferase (GGT) levels in addition to the alanine/aspartate aminotransferase ratio. METHODS This cross-sectional study was conducted on adults in the baseline phase of the Shahedieh cohort study in Yazd, Iran. Blood samples were taken from participants in a fasted state to provide data on dietary intake and other variables. Major DPs were derived using a principal component analysis. RESULTS In total, 4973 participants (age 46.33 ± 9.08 y) were included in the study. Three DPs were derived: Traditional diet (high in vegetables, fruits, tomatoes, dairy, dried fruits, fruit juice, yogurt, olive and olive oil, sweet desserts, and high-fat dairy products), western diet (high in pizza, refined grains, soft drinks, high-fat dairy products, processed meats, mayonnaise, and snack foods), and hydrogenated fat and sugar diet (high in hydrogenated fat, potatoes, sugars, and legumes). After adjustment for all confounders, the western DP had a significant linear association with serum GGT (P < 0.001). This diet was also associated with higher odds for developing abnormal levels of serum GGT (Ptrend < 0.001). Although the other DPs had some linear associations with enzymes levels, they were not associated with the likelihood for developing abnormally high liver enzymes levels. CONCLUSIONS A higher consumption of a western DP might adversely affect serum GGT levels. Prospective studies are recommended to confirm our results.
Collapse
Affiliation(s)
- Elnaz Lorzadeh
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohsen Akhondi-Meybodi
- Department of Internal Medicine, School of Medicine, Shahid Sadoughi General Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hassan Mozaffari-Khosravi
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Mirzaei
- Yazd Cardiovascular Research Center, Shahid Sadoughi General Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amin Salehi-Abargouei
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
22
|
Oxidative Stress in Chronic Liver Disease and Portal Hypertension: Potential of DHA as Nutraceutical. Nutrients 2020; 12:nu12092627. [PMID: 32872239 PMCID: PMC7551786 DOI: 10.3390/nu12092627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease constitutes a growing public health issue worldwide, with no safe and effective enough treatment clinical scenarios. The present review provides an overview of the current knowledge regarding advanced chronic liver disease (ACLD), focusing on the major contributors of its pathophysiology: inflammation, oxidative stress, fibrosis and portal hypertension. We present the benefits of supplementation with docosahexaenoic acid triglycerides (TG-DHA) in other health areas as demonstrated experimentally, and explore its potential as a novel nutraceutical approach for the treatment of ACLD and portal hypertension based on published pre-clinical data.
Collapse
|
23
|
Liu Z, Zhu H, Wang W, Xu J, Que S, Zhuang L, Qian J, Wang S, Yu J, Zhang F, Yin S, Xie H, Zhou L, Geng L, Zheng S. Metabonomic Profile of Macrosteatotic Allografts for Orthotopic Liver Transplantation in Patients With Initial Poor Function: Mechanistic Investigation and Prognostic Prediction. Front Cell Dev Biol 2020; 8:826. [PMID: 32984324 PMCID: PMC7484052 DOI: 10.3389/fcell.2020.00826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Our previous study revealled amplified hazardous effects of macrosteatosis (MaS) on graft failure (GF) in recipients with severe liver damage in short post-operative days, with vague mechanism inside. AIM We aimed to uncover the molecular mechanism of donor MaS on GF, and construct the predictive model to monitor post-transplant prognosis based on "omics" perspective. METHODS Ultra-performance liquid chromatography coupled to mass spectrometry metabolomic analysis was performed in allograft tissues from 82 patients with initial poor function (IPF) from multi-liver transplant (LT) centers. Pathway analysis was performed by on-line toolkit Metaboanalyst (v 3.0). Predictive model was constructed based on combinative metabonomic and clinical data extracted by stepwised cox proportional analysis. RESULTS Principle component analysis (PCA) analysis revealled stratification on metabolic feature in organs classified by MaS status. Differential metabolits both associated with MaS and GF were significantly enriched on pathway of glycerophospholipid metabolism (P < 0.05). Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) involved in glycerophospholipid metabolism was significantly decreased in cases with MaS donors and GF (P < 0.05). Better prediction was observed on graft survival by combinative model (area under the curve = 0.91) and confirmed by internal validation. CONCLUSION Metabonomic features of allografts can be clearly distinguished by MaS status in patients with IPF. Dysfunction on glycerophospholipid metabolism was culprit to link donor MaS and final GF. Decrement on PC and PE exerted the fatal effects of MaS on organ failure. Metabonomic data might help for monitoring long-term graft survival after LT.
Collapse
Affiliation(s)
- Zhengtao Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hai Zhu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenchao Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | - Li Zhuang
- Shulan Hospital (Hangzhou), Hangzhou, China
| | - Junjie Qian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuai Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Yu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Zhang
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shengyong Yin
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haiyang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lei Geng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Shulan Hospital (Hangzhou), Hangzhou, China
| |
Collapse
|
24
|
Ishizuka K, Kon K, Lee-Okada HC, Arai K, Uchiyama A, Yamashina S, Yokomizo T, Ikejima K. Aging exacerbates high-fat diet-induced steatohepatitis through alteration in hepatic lipid metabolism in mice. J Gastroenterol Hepatol 2020; 35:1437-1448. [PMID: 32030821 DOI: 10.1111/jgh.15006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 01/25/2020] [Accepted: 02/02/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Aging is an independent risk factor for the progression of non-alcoholic steatohepatitis. Here, we investigated the role of age-related alterations in fatty acid metabolism in dietary steatohepatitis using lipidomics analysis. METHODS Male 8-week and 55-week-old C57BL/6 J mice were fed a high-fat diet (HFD) for 8 weeks. The quality and quantity of lipid molecular species in the liver were evaluated using the lipidomics approach. RESULTS Elder mice fed an HFD developed more severe steatohepatitis than young mice. Oxidative stress and inflammatory cytokines in the liver were exacerbated following HFD feeding in elder mice compared with young mice. In elder mice, de novo fatty acid synthesis was promoted, whereas β oxidation was blunted following HFD feeding, and lipid secretion from the liver was reduced. The expression of sirtuin 1 was not only reduced with age as expected but also significantly decreased due to intake of HFD. In the lipidomics analysis, the concentrations of diacylglycerol and TAG molecular species containing monounsaturated fatty acids were markedly increased following HFD feeding in elder mice compared with young mice. In contrast, the concentration of phosphatidylethanolamine and phosphatidylcholine molecular species containing polyunsaturated fatty acids were remarkably decreased following HFD feeding in elder mice compared with young mice, and the expression of fatty acid desaturase was blunted. CONCLUSIONS Aging-dependent alterations in lipid metabolism under excessive lipid supply most likely enhance hepatic lipotoxicity, thereby exacerbating metabolic steatohepatitis in elderly.
Collapse
Affiliation(s)
- Kei Ishizuka
- Department of Gastroenterology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuyoshi Kon
- Department of Gastroenterology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hyeon-Cheol Lee-Okada
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kumiko Arai
- Department of Gastroenterology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akira Uchiyama
- Department of Gastroenterology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shunhei Yamashina
- Department of Gastroenterology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kenichi Ikejima
- Department of Gastroenterology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Oprić D, Stankovich AD, Nenadović A, Kovačević S, Obradović DD, de Luka S, Nešović-Ostojić J, Milašin J, Ilić AŽ, Trbovich AM. Fractal analysis tools for early assessment of liver inflammation induced by chronic consumption of linseed, palm and sunflower oils. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
26
|
Abstract
Parenteral nutrition has been widely used in patients whose gastrointestinal tract is anatomically or physiologically unavailable for sufficient food intake. It has been considered lifesaving but is not without adverse effects. It has been proven to cause liver injury through different mechanisms. We present a review of parenteral nutrition-associated liver disease.
Collapse
|
27
|
Yan Z, Li M, Xie L, Luo X, Yang W, Yuan Y, Zhang Y, Niu L. A systematic comparison of 17 cultivated herbaceous peony seed based on phytochemicals and antioxidant activity. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03544-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Hou Z, Zhu L, Meng R, Wang B. Hypolipidemic and antioxidant activities of Trichosanthes kirilowii maxim seed oil and flavonoids in mice fed with a high-fat diet. J Food Biochem 2020; 44:e13272. [PMID: 32478901 DOI: 10.1111/jfbc.13272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/27/2022]
Abstract
Trichosanlhes kirilowii Maxim seed oil (TSO) is rich in conjugated linolenic acids, and the flavonoids (FLA) combined with n-3 fatty acids can effectively change the plasma antioxidant capacity. Hyperlipidemia and oxidative stress are one of the most important risk factors for cardiovascular disease. This study aims to evaluate the effect of the TSO, FLA, and TSO combined with FLA (TSOFLA) intake on hyperlipemia mice. TSO and TSOFLA administration resulted in a significant decline in serum levels of total cholesterol, triglycerides, and low density lipoprotein-cholesterol. TSOFLA improved the hepatic and serum antioxidant status as assessed by superoxide dismutase, glutathione peroxidase activities, and reduced the levels of lipid peroxidation. Hematoxylin-eosin staining of liver and aorta tissue has shown a marked reduction of the hyperlipidemia-induced lesions by gavage TSOFLA. Compared with TSO and FLA, TSOFLA has more significant hypolipidemic and antioxidant activities, which effects may be correlated to the synergy between TSO and FLA. PRACTICAL APPLICATIONS: Dyslipidemia is a common metabolic disorder, which is characterized by triglyceride levels increased, total cholesterol, and low-density lipoprotein cholesterol. Lipid-lowering treatment can reduce the expansion of coronary atherosclerosis, and particular the dietary lipids have important roles in controlling the concentrations of these risk factors. This is the first study evaluating the hypolipidemic and antioxidant activities effects of Trichosanlhes kirilowii Maxim seed oil (TSO), flavonoids (FLA), and TSO combined with FLA (TSOFLA) intake on hyperlipemia mice caused by a high-fat diet. The pharmacological effects of dietary TSOFLA are correlated to its high content of unsaturated fatty acids and flavonoids. This information can be of interest to the development of food supplements in the field of diseases associated with high-fat intakes such as cardiovascular diseases and adiposis.
Collapse
Affiliation(s)
- Zongkun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Run Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
29
|
Matilainen J, Mustonen AM, Rilla K, Käkelä R, Sihvo SP, Nieminen P. Orotic acid-treated hepatocellular carcinoma cells resist steatosis by modification of fatty acid metabolism. Lipids Health Dis 2020; 19:70. [PMID: 32284043 PMCID: PMC7155272 DOI: 10.1186/s12944-020-01243-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Orotic acid (OA) has been intensively utilized to induce fatty liver in rats. Although the capacity of OA to cause steatosis is species-specific, previous in vitro studies indicate that humans could also be susceptible to OA-induced fatty liver. The aim of the present study was to re-elucidate the potential of OA exposure to modulate the cellular mechanisms involved in both non-alcoholic fatty liver disease pathogenesis and cellular protection from lipid accumulation. In addition, alterations in detailed fatty acid (FA) profiles of cells and culture media were analyzed to assess the significance of lipid metabolism in these phenomena. METHODS In our experiments, human hepatocellular carcinoma HepG2 cells were exposed to OA. Bacterial endotoxin, lipopolysaccharide (LPS), was used to mimic hepatic inflammation. The lipogenic and inflammatory effects of OA and/or LPS on cells were assessed by labeling cellular lipids with Nile red stain and by performing image quantifications. The expression levels of key enzymes involved in de novo lipogenesis (DNL) and of inflammatory markers related to the disease development were studied by qRT-PCR. FA profiles of cells and culture media were determined from total lipids with gas chromatography-mass spectrometry. RESULTS Our data indicate that although OA possibly promotes the first stage of DNL, it does not cause a definite lipogenic transformation in HepG2 cells. Reduced proportions of 16:0, increased stearoyl-Coenzyme A desaturase 1 mRNA expression and relatively high proportions of 16:1n-7 suggest that active delta9-desaturation may limit lipogenesis and the accumulation of toxic 16:0. Inflammatory signaling could be reduced by the increased production of long-chain n-3 polyunsaturated FA (PUFA) and the active incorporation of certain FA, including 18:1n-9, into cells. In addition, increased proportions of 20:4n-6 and 22:6n-3, total PUFA and dimethyl acetal 18:0 suggest that OA exposure may cause increased secretion of lipoproteins and extracellular vesicles. CONCLUSIONS The present data suggest that, apart from the transcription-level events reported by previous studies, modifications of FA metabolism may also be involved in the prevention of OA-mediated steatosis. Increased delta9-desaturation and secretion of lipoproteins and extracellular vesicles could offer potential mechanisms for further studies to unravel how OA-treated cells alleviate lipidosis.
Collapse
Affiliation(s)
- Johanna Matilainen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Anne-Mari Mustonen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
- Faculty of Science and Forestry, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| | - Kirsi Rilla
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Reijo Käkelä
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Programme, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
- Helsinki Institute for Life Science (HiLIFE), Helsinki University Lipidomics Unit (HiLIPID), University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Sanna P Sihvo
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Programme, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
- Helsinki Institute for Life Science (HiLIFE), Helsinki University Lipidomics Unit (HiLIPID), University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Petteri Nieminen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
30
|
Ghazali R, Mehta KJ, Bligh SA, Tewfik I, Clemens D, Patel VB. High omega arachidonic acid/docosahexaenoic acid ratio induces mitochondrial dysfunction and altered lipid metabolism in human hepatoma cells. World J Hepatol 2020; 12:84-98. [PMID: 32231762 PMCID: PMC7097500 DOI: 10.4254/wjh.v12.i3.84] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/24/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a common cause of liver disease worldwide and is a growing epidemic. A high ratio of omega-6 fatty acids to omega-3 fatty acids in the diet has been implicated in the development of NAFLD. However, the inflicted cellular pathology remains unknown. A high ratio may promote lipogenic pathways and contribute to reactive oxygen species (ROS)-mediated damage, perhaps leading to mitochondrial dysfunction. Therefore, these parameters were investigated to understand their contribution to NAFLD development. AIM To examine the effect of increasing ratios of omega-6:3 fatty acids on mitochondrial function and lipid metabolism mediators. METHODS HepG2-derived VL-17A cells were treated with normal (1:1, 4:1) and high (15:1, 25:1) ratios of omega-6: omega-3 fatty acids [arachidonic acid (AA): docosahexaenoic acid (DHA)] at various time points. Mitochondrial activity and function were examined via MTT assay and Seahorse XF24 analyzer, respectively. Triglyceride accumulation was determined by using EnzyChrom™ and levels of ROS were measured by fluorescence intensity. Protein expression of the mediators of lipogenic, lipolytic and endocannabinoid pathways was assessed by Western blotting. RESULTS High AA:DHA ratio decreased mitochondrial activity (P < 0.01; up to 80%) and promoted intracellular triglyceride accumulation (P < 0.05; 40%-70%). Mechanistically, it altered the mediators of lipid metabolism; increased the expression of stearoyl-CoA desaturase (P < 0.05; 22%-35%), decreased the expression of peroxisome proliferator-activated receptor-alpha (P < 0.05; 30%-40%) and increased the expression of cannabinoid receptor 1 (P < 0.05; 31%). Furthermore, the high ratio increased ROS production (P < 0.01; 74%-115%) and reduced mitochondrial respiratory functions such as basal and maximal respiration, ATP production, spare respiratory capacity and proton leak (P < 0.01; 35%-68%). CONCLUSION High AA:DHA ratio induced triglyceride accumulation, increased oxidative stress and disrupted mitochondrial functions. Stimulation of lipogenic and steroidal transcription factors may partly mediate these effects and contribute to NAFLD development.
Collapse
Affiliation(s)
- Reem Ghazali
- School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| | - Kosha J Mehta
- Centre for Education, Faculty of Life Sciences and Medicine, King's College London SE1 1UL, United Kingdom
| | - Sw Annie Bligh
- School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| | - Ihab Tewfik
- School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| | - Dahn Clemens
- Nebraska and Western Iowa Veterans Administration Medical Center and Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Vinood B Patel
- School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom.
| |
Collapse
|
31
|
Differential Metabolomic Analysis of Liver Tissues from Rat Models of Parenteral Nutrition-Associated Liver Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9156359. [PMID: 32280707 PMCID: PMC7115143 DOI: 10.1155/2020/9156359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/26/2020] [Indexed: 12/18/2022]
Abstract
Parenteral nutrition (PN) is a life-saving therapy for patients with intestinal failure, but parenteral nutrition-associated liver disease (PNALD) limits its long-term use. The present study is aimed at determining which pathways are altered most notably in a rat model of PNALD. We randomly assigned male Sprague-Dawley (SD) rats into two different groups, whereby they received either enteral nutrition (EN) or PN. Liver tissues were harvested from all rats 7 days later for metabolomic profiling. The composition of primary conjugated bile acids was altered, the synthesis of polyunsaturated fatty acids was reduced, the conversion of pyruvate to acetyl-CoA was blocked, and the synthesis of phosphatidylcholine was inhibited in rats with PNALD. Riboflavin, which is involved in the electron transfer process in the mitochondrial electron transport chain, was remarkably decreased in PNALD rats. A deficiency of polyunsaturated fatty acids, riboflavin, choline, and taurine might be involved in the progression of PNALD. The implications of these findings for the field of medicine are that supplementation with polyunsaturated fatty acids, riboflavin, choline, and taurine might have potential as therapeutic strategies for PNALD and also shed light on the mechanisms of PNALD.
Collapse
|
32
|
Ahmed E, Abd-ellatief R, Ali M, Saleh T, Ahmed E. Optimization of the effectiveness and cytocompatibility of Nigella sativa as a co-treatment for reducing methotrexate-related adverse effects. COMPARATIVE CLINICAL PATHOLOGY 2020; 29:287-296. [DOI: 10.1007/s00580-019-03053-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/04/2019] [Indexed: 01/03/2025]
|
33
|
Zhang X, Ning X, He X, Sun X, Yu X, Cheng Y, Yu RQ, Wu Y. Fatty acid composition analyses of commercially important fish species from the Pearl River Estuary, China. PLoS One 2020; 15:e0228276. [PMID: 31999793 PMCID: PMC6992182 DOI: 10.1371/journal.pone.0228276] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/12/2020] [Indexed: 11/18/2022] Open
Abstract
Evaluation of fish nutritional content information could provide essential guidance for seafood consumption and human health protection. This study investigated the lipid contents, fatty acid compositions, and nutritional qualities of 22 commercially important marine fish species from the Pearl River Estuary (PRE), South China Sea. All the analyzed species had a low to moderate lipid content (0.51-7.35% fat), with no significant differences in fatty acid profiles among fishes from different lipid categories (p > 0.05). Compared with previous studies from other regions, the examined fish species exhibited higher proportions of saturated fatty acids (SFAs, 39.1 ± 4.00%) and lower contents of polyunsaturated fatty acids (PUFAs, 21.6 ± 5.44%), presumably due to the shifted diet influence from increased diatoms and decreased dinoflagellate over the past decades in the PRE. This study further revealed that there was a significantly negative correlation between the trophic levels and levels of PUFAs in the examined species (Pearson's r = -0.42, p = 0.04), likely associated with their differed dietary composition. Considering the health benefit of PUFAs, a few marine fish in PRE with low levels of PUFAs might have no significant contribution to the cardiovascular disease prevention, although fish with different fatty acid profiles most likely contribute differently towards human health. Additional studies are needed in order to comprehensively analyze the nutritional status of fish species in the PRE.
Collapse
Affiliation(s)
- Xiyang Zhang
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xi Ning
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xiaoxiao He
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xian Sun
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xinjian Yu
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yuanxiong Cheng
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ri-Qing Yu
- Department of Biology, Center for Environment, Biodiversity and Conservation, The University of Texas at Tyler, Tyler, Texas, United States of America
| | - Yuping Wu
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
34
|
Vergani L. Fatty Acids and Effects on In Vitro and In Vivo Models of Liver Steatosis. Curr Med Chem 2019; 26:3439-3456. [PMID: 28521680 DOI: 10.2174/0929867324666170518101334] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fatty liver, or steatosis, is a condition of excess accumulation of lipids, mainly under form of triglycerides (TG), in the liver, and it is the hallmark of non-alcoholic fatty liver disease (NAFLD). NAFLD is the most common liver disorder world-wide and it has frequently been associated with obesity, hyperlipidemia and insulin resistance. Free fatty acids (FA) are the major mediators of hepatic steatosis; patients with NAFLD have elevated levels of circulating FA that correlate with disease severity. METHODS Steatosis is a reversible condition that can be resolved with changed behaviors, or that can progress towards more severe liver damages such as steatohepatitis (NASH), fibrosis and cirrhosis. In NAFLD, FA of exogenous or endogenous origin accumulate in the hepatocytes and trigger liver damages. Excess TG are stored in cytosolic lipid droplets (LDs) that are dynamic organelles acting as hubs for lipid metabolism. RESULTS In the first part of this review, we briefly reassumed the main classes of FA and their chemical classification as a function of the presence and number of double bonds, their metabolic pathways and effects on human health. Then, we summarized the main genetic and diet-induced animal models of NAFLD, as well as the cellular models of NAFLD. CONCLUSIONS In recent years, both the diet-induced animal models of NAFLD as well as the cellular models of NAFLD have found ever more application to investigate the mechanisms involved in NAFLD, and we referred to their advantages and disadvantages.
Collapse
Affiliation(s)
- Laura Vergani
- DISTAV, Department of Earth, Environment and Life Sciences, University of Genova, Italy
| |
Collapse
|
35
|
Marchix J, Catheline D, Duby C, Monthéan-Boulier N, Boissel F, Pédrono F, Boudry G, Legrand P. Interactive effects of maternal and weaning high linoleic acid intake on hepatic lipid metabolism, oxylipins profile and hepatic steatosis in offspring. J Nutr Biochem 2019; 75:108241. [PMID: 31715523 DOI: 10.1016/j.jnutbio.2019.108241] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/12/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has been described as a hepatic manifestation of the metabolic syndrome. When several studies correlated maternal linoleic acid (LA) intake with the development of obesity, only few links have been made between n-6 fatty acid (FA) and NAFLD. Herein, we investigated the influence of both maternal and weaning high LA intake on lipid metabolism and susceptibility to develop later metabolic diseases in offspring. Pregnant rats were fed a control-diet (2% LA) or a LA-rich diet (12% LA) during gestation and lactation. At weaning, offspring was assigned to one of the two diets, i.e., either maintained on the same maternal diet or fed the other diet for 6 months. Physiological, biochemical parameters and hepatic FA metabolism were analyzed. We demonstrated that the interaction between the maternal and weaning LA intake altered metabolism in offspring and could lead to hepatic steatosis. This phenotype was associated with altered hepatic FA content and lipid metabolism. Interaction between maternal and weaning LA intake led to a specific pattern of n-6 and n-3 oxylipins that could participate to the development of hepatic steatosis in offspring. Our findings highlight the significant interaction between maternal and weaning high LA intake to predispose offspring to later metabolic disease and support the predictive adaptive response hypothesis.
Collapse
Affiliation(s)
- Justine Marchix
- Laboratoire de Biochimie et Nutrition Humaine, INRA USC 1378, Agrocampus Ouest, Rennes, France.
| | - Daniel Catheline
- Laboratoire de Biochimie et Nutrition Humaine, INRA USC 1378, Agrocampus Ouest, Rennes, France.
| | - Cécile Duby
- Laboratoire de Biochimie et Nutrition Humaine, INRA USC 1378, Agrocampus Ouest, Rennes, France.
| | | | - Francoise Boissel
- Laboratoire de Biochimie et Nutrition Humaine, INRA USC 1378, Agrocampus Ouest, Rennes, France.
| | - Frédérique Pédrono
- Laboratoire de Biochimie et Nutrition Humaine, INRA USC 1378, Agrocampus Ouest, Rennes, France.
| | - Gaëlle Boudry
- Institut NuMeCan INRA, INSERM, Univ Rennes, Rennes, France.
| | - Philippe Legrand
- Laboratoire de Biochimie et Nutrition Humaine, INRA USC 1378, Agrocampus Ouest, Rennes, France.
| |
Collapse
|
36
|
Chen R, Wang Q, Zhao L, Yang S, Li Z, Feng Y, Chen J, Ong CN, Zhang H. Lomatogonium Rotatum for Treatment of Acute Liver Injury in Mice: A Metabolomics Study. Metabolites 2019; 9:metabo9100227. [PMID: 31615066 PMCID: PMC6836280 DOI: 10.3390/metabo9100227] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/29/2019] [Accepted: 10/12/2019] [Indexed: 12/11/2022] Open
Abstract
Lomatogonium rotatum (L.) Fries ex Nym (LR) is used as a traditional Mongolian medicine to treat liver and bile diseases. This study aimed to investigate the hepatoprotective effect of LR on mice with CCl4-induced acute liver injury through conventional assays and metabolomics analysis. This study consisted of male mice (n = 23) in four groups (i.e., control, model, positive control, and LR). The extract of whole plant of LR was used to treat mice in the LR group. Biochemical and histological assays (i.e., serum levels of alanine transaminase (ALT) and aspartate transaminase (AST), and histological changes of liver tissue) were used to evaluate LR efficacy, and metabolomics analysis based on GC-MS and LC-MS was conducted to reveal metabolic changes. The conventional analysis and metabolomic profiles both suggested that LR treatment could protect mice against CCl4-induced acute liver injury. The affected metabolic pathways included linoleic acid metabolism, α-linolenic acid metabolism, arachidonic acid metabolism, CoA biosynthesis, glycerophospholipid metabolism, the TCA cycle, and purine metabolism. This study identified eight metabolites, including phosphopantothenic acid, succinic acid, AMP, choline, glycerol 3-phosphate, linoleic acid, arachidonic acid, and DHA, as potential biomarkers for evaluating hepatoprotective effect of LR. This metabolomics study may shed light on possible mechanisms of hepatoprotective effect of LR.
Collapse
Affiliation(s)
- Renhao Chen
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330002, China.
| | - Qi Wang
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Nanchang 330006, China.
| | - Lanjun Zhao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330002, China.
| | - Shilin Yang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330002, China.
| | - Zhifeng Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330002, China.
| | - Yulin Feng
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Nanchang 330006, China.
| | - Jiaqing Chen
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore.
| | - Choon Nam Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore.
| | - Hui Zhang
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore.
| |
Collapse
|
37
|
A Nutraceutical Rich in Docosahexaenoic Acid Improves Portal Hypertension in a Preclinical Model of Advanced Chronic Liver Disease. Nutrients 2019; 11:nu11102358. [PMID: 31623374 PMCID: PMC6835927 DOI: 10.3390/nu11102358] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/25/2019] [Accepted: 09/29/2019] [Indexed: 02/06/2023] Open
Abstract
Inflammation and oxidative stress play a key role in the pathophysiology of advanced chronic liver disease (ACLD) and portal hypertension (PH). Considering the current lack of effective treatments, we evaluated an anti-inflammatory and antioxidant nutraceutical rich in docosahexaenoic acid (DHA) as a possible therapy for ACLD. We investigated the effects of two-week DHA supplementation (500 mg/kg) on hepatic fatty acids, PH, oxidative stress, inflammation, and hepatic stellate cell (HSC) phenotype in rats with ACLD. Additionally, the effects of DHA were evaluated in murine macrophages and human HSC. In contrast to vehicle-treated animals, cirrhotic rats receiving DHA reestablished a healthy hepatic fatty acid profile, which was associated with an improvement in PH. The mechanisms underlying this hemodynamic improvement included a reduction in oxidative stress and inflammation, as well as a marked HSC deactivation, confirmed in human HSC. Experiments with cultured macrophages showed that treatment with DHA protects against pro-inflammatory insults. The present preclinical study demonstrates that a nutraceutical rich in DHA significantly improves PH in chronic liver disease mainly by suppressing inflammation and oxidative stress-driven HSC activation, encouraging its evaluation as a new treatment for PH and cirrhosis.
Collapse
|
38
|
Bond A, Huijbers A, Pironi L, Schneider SM, Wanten G, Lal S. Review article: diagnosis and management of intestinal failure-associated liver disease in adults. Aliment Pharmacol Ther 2019; 50:640-653. [PMID: 31342540 DOI: 10.1111/apt.15432] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hepatic disturbances in the context of intestinal failure and parenteral nutrition (PN) are frequently encountered and carry a significant burden of morbidity and sometimes mortality. The term intestinal failure-associated liver disease (IFALD) refers to liver injury due to intestinal failure and associated PN, in the absence of another evident cause of liver disease, encompassing a spectrum of conditions from deranged liver enzymes, steatosis/ steatohepatitis, cholestasis as well as progressive fibrosis, cirrhosis and end-stage liver disease. AIMS To present an up to date perspective on the diagnosis/definition, aetiologies and subsequent management of IFALD and to explore future consideration for the condition, including pharmacological therapies RESULTS: In adults using long-term PN for benign chronic intestinal failure, 1%-4% of all deaths are attributed to IFALD. The aetiology of IFALD is multifactorial and can be broadly divided into nutritional factors (eg lipid emulsion type) and patient-related factors (eg remaining bowel anatomy). Given its multifaceted aetiology, the management of IFALD requires clinicians to investigate a number of factors simultaneously. Patients with progressive liver disease should be considered for combined liver-intestine transplantation, although multivisceral grafts have a worse prognosis. However, there is no established non-invasive method to identify progressive IFALD such that liver biopsy, where appropriate, remains the gold standard. CONCLUSION A widely accepted definition of IFALD would aid in diagnosis, monitoring and subsequent management. Management can be complex with a number of factors to consider. In the future, dedicated pharmacological interventions may become more prominent in the management of IFALD.
Collapse
Affiliation(s)
- Ashley Bond
- Intestinal Failure Unit, Salford Royal NHS Foundation Trust, Salford, UK
| | - Angelique Huijbers
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Geert Grooteplein, The Netherlands
| | - Loris Pironi
- Department of Digestive System, Center for Chronic Intestinal Failure, St. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Stephane M Schneider
- Nutritional Support Unit, Archet University Hospital, University Côte d'Azur, Nice, France
| | - Geert Wanten
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Geert Grooteplein, The Netherlands
| | - Simon Lal
- Intestinal Failure Unit, Salford Royal NHS Foundation Trust, Salford, UK.,Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| |
Collapse
|
39
|
Yam K, Schipper L, Reemst K, Ruigrok SR, Abbink MR, Hoeijmakers L, Naninck EFG, Zarekiani P, Oosting A, Van Der Beek EM, Lucassen PJ, Korosi A. Increasing availability of ω‐3 fatty acid in the early‐life diet prevents the early‐life stress‐induced cognitive impairments without affecting metabolic alterations. FASEB J 2019; 33:5729-5740. [DOI: 10.1096/fj.201802297r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Kit‐Yi Yam
- Centre for NeuroscienceSwammerdam Institute for Life SciencesUniversity of Amsterdam Amsterdam The Netherlands
| | | | - Kitty Reemst
- Centre for NeuroscienceSwammerdam Institute for Life SciencesUniversity of Amsterdam Amsterdam The Netherlands
| | - Silvie R. Ruigrok
- Centre for NeuroscienceSwammerdam Institute for Life SciencesUniversity of Amsterdam Amsterdam The Netherlands
| | - Maralinde R. Abbink
- Centre for NeuroscienceSwammerdam Institute for Life SciencesUniversity of Amsterdam Amsterdam The Netherlands
| | - Lianne Hoeijmakers
- Centre for NeuroscienceSwammerdam Institute for Life SciencesUniversity of Amsterdam Amsterdam The Netherlands
| | - Eva F. G. Naninck
- Centre for NeuroscienceSwammerdam Institute for Life SciencesUniversity of Amsterdam Amsterdam The Netherlands
| | - Parand Zarekiani
- Centre for NeuroscienceSwammerdam Institute for Life SciencesUniversity of Amsterdam Amsterdam The Netherlands
| | | | - Eline M. Van Der Beek
- Danone Nutricia Research Utrecht The Netherlands
- Department of PediatricsUniversity Medical Centre GroningenUniversity of Groningen Groningen The Netherlands
| | - Paul J. Lucassen
- Centre for NeuroscienceSwammerdam Institute for Life SciencesUniversity of Amsterdam Amsterdam The Netherlands
| | - Aniko Korosi
- Centre for NeuroscienceSwammerdam Institute for Life SciencesUniversity of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
40
|
Lv Z, Xing K, Li G, Liu D, Guo Y. Dietary Genistein Alleviates Lipid Metabolism Disorder and Inflammatory Response in Laying Hens With Fatty Liver Syndrome. Front Physiol 2018; 9:1493. [PMID: 30405443 PMCID: PMC6207982 DOI: 10.3389/fphys.2018.01493] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/03/2018] [Indexed: 01/21/2023] Open
Abstract
This study investigated the molecular mechanism underlying the effect of dietary genistein (GEN) on fatty liver syndrome (FLS) in laying hens. Hens in the control group (CG) were fed a high-energy and low-choline (HELC) diet to establish the FLS model. The livers of the FLS hens were friable and swollen from hemorrhage. Hepatic steatosis and inflammatory cell infiltration were present around the liver blood vessels. Hens in the low-genistein (LGE) and high-genistein (he) groups were fed GEN at 40 and 400 mg/kg doses, respectively, as supplements to the HELC diet. GEN at 40 mg/kg significantly increased gonadotropin-releasing hormone (GnRH) mRNA expression in the hypothalamus, the serum estrogen (E2) level, and the laying rate, whereas 400 mg/kg of GEN decreased GnRH expression and the laying rate without significantly affecting E2, suggesting that high-dose GEN adversely affected the reproductive performance. Either high- or low-dose GEN treatment could alleviate metabolic disorders and inflammatory responses in FLS hens. GEN significantly decreased the serum ALT, creatinine, triglyceride (TG), total cholesterol (TC), and free fatty acid (FFA) levels. Accordingly, the TG and long-chain fatty acid (LCFA) levels, including long-chain saturated fatty acids (LSFAs) and monounsaturated fatty acids (MUFAs), and the n-6:n-3 polyunsaturated fatty acid (PUFA) ratio in the liver were reduced after the GEN treatments, whereas the levels of C22:0, n-3 family fatty acids, C20:3n6, and C20:4n6 were increased. These results indicated that dietary GEN downregulated the expression of genes related to fatty acid synthesis [sterol regulatory element-binding protein 1 (SREBP1c), liver X receptor alpha (LXRα), fatty acid synthase (FAS), and acetyl coenzyme A synthetase (ACC)] and the fatty acid transporter (FAT). Furthermore, GEN treatments upregulated the transcription of genes related to fatty acid β-oxidation [peroxisome proliferator-activated receptor (PPAR)α, PPARδ, ACOT8, ACAD8, and ACADs] in the liver and reduced PPARγ and AFABP expression in abdominal fat. Dietary GEN alleviated inflammatory cell infiltration in the livers of FLS hens and downregulated TNF-α, IL-6, and IL-1β expression. Moreover, GEN treatment increased SOD activity and decreased malondialdehyde activity in the liver. In conclusion, GEN supplementation in the feed inhibited fatty acid synthesis and enhanced β-oxidation in the liver through the PPAR-ACAD/ACOT and PPAR-LXRα-SREBP1c-ACC/FAS/FAT pathways. Dietary GEN alleviated metabolic disorder and inflammation in the FLS hens by improving the antioxidant capacity and fatty acid profile.
Collapse
Affiliation(s)
- Zengpeng Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kun Xing
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guang Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
41
|
Bosy-Westphal A, Braun W, Albrecht V, Müller MJ. Determinants of ectopic liver fat in metabolic disease. Eur J Clin Nutr 2018; 73:209-214. [PMID: 30323174 DOI: 10.1038/s41430-018-0323-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 12/17/2022]
Abstract
Common obesity-associated hepatic steatosis (nonalcoholic fatty liver disease (NAFLD)) and insulin resistance are mainly caused by dysfunctional adipose tissue. This adipose tissue dysfunction leads to increased delivery of NEFA and glycerol to the liver that (i) drives hepatic gluconeogenesis and (ii) facilitates the accumulation of lipids and insulin signaling inhibiting lipid intermediates. Dysfunctional adipose tissue can be caused by impaired lipid storage (overflow hypothesis, characterized by large visceral adipocytes) or increased lipolysis (due to impaired postprandial suppression of lipolysis in inflamed, insulin-resistant adipocytes). In line with the adipose tissue expandability hypothesis the amount and distribution of adipose tissue correlate with its dysfunction and thus with liver fat. This relationship is however modified by endocrine effects on lipid storage and lipolysis as well as dietary effects on hepatic lipogenesis and lipid oxidation. The association between body composition characteristics like visceral obesity or fat cell size and ectopic liver fat is modified by these influences. Phenotyping obesity according to metabolic risk should integrate body composition characteristics, endocrine parameters and information on diet.
Collapse
Affiliation(s)
- Anja Bosy-Westphal
- Institute for Human Nutrition and Food Science, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Wiebke Braun
- Institute for Human Nutrition and Food Science, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Viktoria Albrecht
- Institute for Human Nutrition and Food Science, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Manfred J Müller
- Institute for Human Nutrition and Food Science, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
42
|
Mendez-Sanchez N, Cruz-Ramon VC, Ramirez-Perez OL, Hwang JP, Barranco-Fragoso B, Cordova-Gallardo J. New Aspects of Lipotoxicity in Nonalcoholic Steatohepatitis. Int J Mol Sci 2018; 19:2034. [PMID: 30011790 PMCID: PMC6073816 DOI: 10.3390/ijms19072034] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 02/08/2023] Open
Abstract
NASH is becoming increasingly common worldwide because of the growing global prevalence of obesity and consequently NAFLD. Unfortunately, the mechanism of progression of NAFLD to NASH and then cirrhosis is not completely understood. Several factors, including insulin resistance, inflammation, oxidative stress, lipotoxicity, and bile acid (BA) toxicity, have been reported to be associated with NASH progression. The release of fatty acids from dysfunctional and insulin-resistant adipocytes results in lipotoxicity, which is caused by the ectopic accumulation of triglyceride-derived toxic metabolites and the subsequent activation of inflammatory pathways, cellular dysfunction, and lipoapoptosis. Adipose tissue (AT), especially visceral AT, comprises multiple cell populations that produce adipokines and insulin-like growth factor, plus macrophages and other immune cells that stimulate the development of lipotoxic liver disease. These biomolecules have been recently linked with many digestive diseases and gastrointestinal malignancies such as hepatocellular carcinoma. This made us question what role lipotoxicity has in the natural history of liver fibrosis. Therefore, this review focuses on the close relationship between AT and NASH. A good comprehension of the pathways that are related to dysregulated AT, metabolic dysfunction, and hepatic lipotoxicity will result in the development of prevention strategies and promising therapeutics for patients with NASH.
Collapse
Affiliation(s)
| | | | | | - Jessica P Hwang
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Beatriz Barranco-Fragoso
- Department of Gastroenterology, National Medical Center "20 Noviembre", 03229 Mexico City, Mexico.
| | | |
Collapse
|
43
|
Corte CD, Iasevoli S, Strologo AD, Sanseviero M, Nobili V. Omega-3 Fatty Acids and Fatty Liver Disease in Children. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 85:59-77. [PMID: 29860977 DOI: 10.1016/bs.afnr.2018.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents the most common cause of chronic liver disease in Industrialized Countries in adults and children. It is estimated that NAFLD will become the main indication for liver transplantation in the next decade. NAFLD is also considered the hepatic feature of metabolic syndrome and therefore it is generally associated to the risk of developing some metabolic complications, with negative impact on patient's survival. Today, no pharmacological treatment has been identified for NAFLD, and behavioral approach, based on diet and regular physical exercise, represent the current recommended treatment, even if with disappointing results. For these reasons, several pharmacological trials have been conducted, in order to identify possible alternative therapy direct against pathogenetic targets of NAFLD. Several data have suggested the potential beneficial role of omega-3 fatty acids in NAFLD and its related metabolic disarray. In this chapter, we try to elucidate the molecular and clinical available evidence for the omega-3 supplementation in pediatric NAFLD patients.
Collapse
Affiliation(s)
| | | | | | | | - Valerio Nobili
- "Sapienza" University, Rome, Italy; Hepatogastroenterology Unit, "Bambino Gesù" Children's Hospital, Rome, Italy.
| |
Collapse
|
44
|
Bagherniya M, Nobili V, Blesso CN, Sahebkar A. Medicinal plants and bioactive natural compounds in the treatment of non-alcoholic fatty liver disease: A clinical review. Pharmacol Res 2018; 130:213-240. [PMID: 29287685 DOI: 10.1016/j.phrs.2017.12.020] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/29/2017] [Accepted: 12/20/2017] [Indexed: 01/14/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major cause of liver diseases, and is closely related to metabolic syndrome and its related conditions, diabetes mellitus and dyslipidemia. On the other hand, NAFLD as a multisystem disease increases the risk of several chronic diseases include type 2 diabetes mellitus, cardiovascular disease (CVD), and chronic kidney disease. The main objective was to review the efficacy of bioactive natural compounds assessed by clinical trials. Search literature using four databases (PubMed, EBSCO, Web of Science, and Ovid Medline) to review publications that focused on the impact of bioactive natural compounds in NAFLD treatment. Due to the lack of effective pharmacological treatments available for NAFLD, lifestyle modifications such as following a healthy diet, vigorous physical activity, and weight reduction remain the first line of treatment for NAFLD. However, due to the poor adherence to this type of treatment, especially for long-term weight loss diets some of which may have harmful effects on the liver, finding novel therapeutic agents for NAFLD treatment and/or preventing NAFLD progression has garnered significant interest. Although the therapeutic agents of NAFLD treatment have been reviewed previously, to date, no summary has been conducted of clinical trials examining the effects of herbal compounds on NAFLD-related biomarkers. This review highlights the beneficial role of herbal bioactives and medicinal plants in NAFLD treatment, particularly as complementary to a healthy lifestyle. All natural products described in this review seem to have some benefits to improve oxidative stress, cellular inflammation and insulin-resistance, which always remain as the "primum movens" of NAFLD pathogenesis.
Collapse
Affiliation(s)
- Mohammad Bagherniya
- Student Research Committee, Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Valerio Nobili
- Hepato-Metabolic Disease Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Christopher N Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, United States
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
45
|
Marra F, Svegliati-Baroni G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol 2018; 68:280-295. [PMID: 29154964 DOI: 10.1016/j.jhep.2017.11.014] [Citation(s) in RCA: 594] [Impact Index Per Article: 84.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/05/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022]
Abstract
The pathogenesis of non-alcoholic fatty liver disease, particularly the mechanisms whereby a minority of patients develop a more severe phenotype characterised by hepatocellular damage, inflammation, and fibrosis is still incompletely understood. Herein, we discuss two pivotal aspects of the pathogenesis of NASH. We first analyse the initial mechanisms responsible for hepatocellular damage and inflammation, which derive from the toxic effects of excess lipids. Accumulating data indicate that the total amount of triglycerides stored in hepatocytes is not the major determinant of lipotoxicity, and that specific lipid classes act as damaging agents on liver cells. In particular, the role of free fatty acids such as palmitic acid, cholesterol, lysophosphatidylcholine and ceramides has recently emerged. These lipotoxic agents affect the cell behaviour via multiple mechanisms, including activation of signalling cascades and death receptors, endoplasmic reticulum stress, modification of mitochondrial function, and oxidative stress. In the second part of this review, the cellular and molecular players involved in the cross-talk between the gut and the liver are considered. These include modifications to the microbiota, which provide signals through the intestine and bacterial products, as well as hormones produced in the bowel that affect metabolism at different levels including the liver. Finally, the activation of nuclear receptors by bile acids is analysed.
Collapse
Affiliation(s)
- Fabio Marra
- Dipartimento di Medicina Sperimentale e Clinica and Centro di Ricerca Denothe, Università di Firenze, Italy.
| | - Gianluca Svegliati-Baroni
- Dipartimento Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy; Centro Interdipartimentale Obesità, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
46
|
Atanasov AG, Sabharanjak SM, Zengin G, Mollica A, Szostak A, Simirgiotis M, Huminiecki Ł, Horbanczuk OK, Nabavi SM, Mocan A. Pecan nuts: A review of reported bioactivities and health effects. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
|
48
|
Tunick MH, Van Hekken DL. Fatty Acid Profiles of In Vitro Digested Processed Milk. Foods 2017; 6:E99. [PMID: 29120353 PMCID: PMC5704143 DOI: 10.3390/foods6110099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 11/16/2022] Open
Abstract
Digestion of milkfat releases some long-chain (18-carbon) fatty acids (FAs) that can provide health benefits to the consumer, yet because they are found in small amounts and can be difficult to identify, there is limited information on the effects that common fluid milk processing may have on the digestibility of these FAs. This study provides FA profiles for raw and combinations of homogenized and/or heat-treated (high and ultra-high temperature pasteurization) milk, before and after in vitro digestion, in order to determine the effects of processing on the digestibility of these healthy fatty acids. Use of a highly sensitive separation column resulted in improved FA profiles that showed that, when milk was subjected to both pasteurization and homogenization, the release of the 18-carbon FAs, oleic acid, linoleic acid (an omega-6 FA), rumenic acid (a conjugated linoleic acid, CLA), and linolenic acid (an omega-3 FA) tended to be higher than with either pasteurization or homogenization, or with no treatment. Milk is noted for containing the omega-3 FAs and CLAs, which are associated with positive health benefits. Determining how processing factors may impact the components in milk will aid in understanding the release of healthy FAs when milk and dairy foods are consumed.
Collapse
Affiliation(s)
- Michael H Tunick
- Center for Food and Hospitality Management, Drexel University, 101 North 33rd Street, Philadelphia, PA 19104, USA.
| | - Diane L Van Hekken
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture (USDA), 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
| |
Collapse
|
49
|
Huang JP, Cheng ML, Hung CY, Wang CH, Hsieh PS, Shiao MS, Chen JK, Li DE, Hung LM. Docosapentaenoic acid and docosahexaenoic acid are positively associated with insulin sensitivity in rats fed high-fat and high-fructose diets. J Diabetes 2017; 9:936-946. [PMID: 27860326 DOI: 10.1111/1753-0407.12505] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/28/2016] [Accepted: 11/03/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The aim of the present study was to compare insulin resistance and metabolic changes using a global lipidomic approach. METHODS Rats were fed a high-fat diet (HFD) or a high-fructose diet (HFrD) for 12 weeks to induce insulin resistance (IR) syndrome. After 12 weeks feeding, physiological and biochemical parameters were examined. Insulin sensitivity and plasma metabolites were evaluated using a euglycemic-hyperinsulinemic clamp and mass spectrometry, respectively. Pearson's correlation coefficient was used to investigate the strength of correlations. RESULTS Rats on both diets developed IR syndrome, characterized by hypertension, hyperlipidemia, hyperinsulinemia, impaired fasting glucose, and IR. Compared with HFrD-fed rats, non-esterified fatty acids were lower and body weight and plasma insulin levels were markedly higher in HFD-fed rats. Adiposity and plasma leptin levels were increased in both groups. However, the size of adipocytes was greater in HFD- than HFrD-fed rats. Notably, the lipidomic heat map revealed metabolites exhibiting greater differences in HFD- and HFrD-fed rats compared with controls. Plasma adrenic acid levels were higher in HFD- than HFrD-fed rats. Nevertheless, linoleic and arachidonic acid levels decreased in HFrD-fed rats compared with controls. Plasma concentrations of docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) were significantly reduced after feeding of both diets, particularly the HFrD. There was a strong positive correlation between these two fatty acids and the insulin sensitivity index. CONCLUSIONS The systemic lipidomic analysis indicated that a reduction in DHA and DPA was strongly correlated with IR in rats under long-term overnutrition. These results provide a potential therapeutic target for IR and metabolic syndrome.
Collapse
Affiliation(s)
- Jiung-Pang Huang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Healthy and Aging Research, Chang Gung University, Taoyuan, Taiwan
- Division of Cardiology, Department of Internal Medicine, Heart Failure Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Cheng-Yu Hung
- Center for Healthy and Aging Research, Chang Gung University, Taoyuan, Taiwan
| | - Chao-Hung Wang
- Division of Cardiology, Department of Internal Medicine, Heart Failure Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Po-Shiuan Hsieh
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Shi Shiao
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Healthy and Aging Research, Chang Gung University, Taoyuan, Taiwan
| | - Jan-Kan Chen
- Center for Healthy and Aging Research, Chang Gung University, Taoyuan, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Dai-Er Li
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Man Hung
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Healthy and Aging Research, Chang Gung University, Taoyuan, Taiwan
- Division of Cardiology, Department of Internal Medicine, Heart Failure Center, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
50
|
Firat O, Makay O, Yeniay L, Gokce G, Yenisey C, Coker A. Omega-3 fatty acids inhibit oxidative stress in a rat model of liver regeneration. Ann Surg Treat Res 2017; 93:1-10. [PMID: 28706885 PMCID: PMC5507785 DOI: 10.4174/astr.2017.93.1.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/02/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022] Open
Abstract
Purpose Lipid peroxidation and consequent reactive oxygen species in the setting of oxidative stress have crucial roles in liver regeneration, which may adversely affect the regeneration itself and lead to liver failure. The aim of the current study is to investigate whether omega-3 fatty acid supplementation inhibits oxidative stress in an experimental model of liver regeneration. Methods Forty rats were allocated to four groups. Rats in group A received a sham operation. Rats in group B were subjected to right portal vein ligation (RPVL) and saline infusion. Rats in groups C and D were subjected to RPVL and total parenteral nutrition (TPN) with an all-in-one admixture containing a soybean oil based lipid emulsion. Rats in group D were additionally supplemented with omega-3 fatty acid infusion. Oxidative stresses in the blood and liver were measured by glutathione, superoxide dismutase, catalase, glutathione peroxidase, malondialdehyde, and nitric oxide. Results Omega-3 supplementation to the TPN solution significantly corrected alterations in the blood and tissue concentrations of oxidants and anti-oxidants during regeneration (P < 0.05). Conclusion Omega-3 fatty acid supplementation to the TPN solution revealed promising results in removal of oxidative stress that emerges during liver regeneration.
Collapse
Affiliation(s)
- Ozgur Firat
- Department of General Surgery, Ege University Hospital, Izmir, Turkey
| | - Ozer Makay
- Department of General Surgery, Ege University Hospital, Izmir, Turkey
| | - Levent Yeniay
- Department of General Surgery, Ege University Hospital, Izmir, Turkey
| | - Goksel Gokce
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Cigdem Yenisey
- Department of Medical Biochemistry, Adnan Menderes University Hospital, Aydın, Turkey
| | - Ahmet Coker
- Department of General Surgery, Ege University Hospital, Izmir, Turkey
| |
Collapse
|