1
|
Ma X, Huang T, Chen X, Li Q, Liao M, Fu L, Huang J, Yuan K, Wang Z, Zeng Y. Molecular mechanisms in liver repair and regeneration: from physiology to therapeutics. Signal Transduct Target Ther 2025; 10:63. [PMID: 39920130 PMCID: PMC11806117 DOI: 10.1038/s41392-024-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Liver repair and regeneration are crucial physiological responses to hepatic injury and are orchestrated through intricate cellular and molecular networks. This review systematically delineates advancements in the field, emphasizing the essential roles played by diverse liver cell types. Their coordinated actions, supported by complex crosstalk within the liver microenvironment, are pivotal to enhancing regenerative outcomes. Recent molecular investigations have elucidated key signaling pathways involved in liver injury and regeneration. Viewed through the lens of metabolic reprogramming, these pathways highlight how shifts in glucose, lipid, and amino acid metabolism support the cellular functions essential for liver repair and regeneration. An analysis of regenerative variability across pathological states reveals how disease conditions influence these dynamics, guiding the development of novel therapeutic strategies and advanced techniques to enhance liver repair and regeneration. Bridging laboratory findings with practical applications, recent clinical trials highlight the potential of optimizing liver regeneration strategies. These trials offer valuable insights into the effectiveness of novel therapies and underscore significant progress in translational research. In conclusion, this review intricately links molecular insights to therapeutic frontiers, systematically charting the trajectory from fundamental physiological mechanisms to innovative clinical applications in liver repair and regeneration.
Collapse
Affiliation(s)
- Xiao Ma
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiangzheng Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qian Li
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingheng Liao
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Fu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiwei Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
2
|
Zizzari P, Castellanos-Jankiewicz A, Yagoub S, Simon V, Clark S, Maître M, Dupuy N, Leste-Lasserre T, Gonzales D, Schoonjans K, Fénelon VS, Cota D. TGR5 receptors in SF1-expressing neurons of the ventromedial hypothalamus regulate glucose homeostasis. Mol Metab 2025; 91:102071. [PMID: 39603503 PMCID: PMC11650306 DOI: 10.1016/j.molmet.2024.102071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVE Steroidogenic factor-1 (SF1) neurons of the ventromedial hypothalamus play key roles in the regulation of food intake, body weight and glucose metabolism. The bile acid receptor Takeda G protein-coupled receptor 5 (TGR5) is expressed in the hypothalamus, where it determines some of the actions of bile acids on food intake and body weight through still poorly defined neuronal mechanisms. Here, we examined the role of TGR5 in SF1 neurons in the regulation of energy balance and glucose metabolism. METHODS We used a genetic approach combined with metabolic phenotyping and molecular analyses to establish the effect of TGR5 deletion in SF1 neurons on meal pattern, body weight, body composition, energy expenditure and use of energy substrates as well as on possible changes in glucose handling and insulin sensitivity. RESULTS Our findings reveal that TGR5 in SF1 neurons does not play a major role in the regulation of food intake or body weight under standard chow, but it is involved in the adaptive feeding response to the acute exposure to cold or to a hypercaloric, high-fat diet, without changes in energy expenditure. Notably, TGR5 in SF1 neurons hinder glucose metabolism, since deletion of the receptor improves whole-body glucose uptake through heightened insulin signaling in the hypothalamus and in the brown adipose tissue. CONCLUSIONS TGR5 in SF1 neurons favours satiety by differently modifying the meal pattern in response to specific metabolic cues. These studies also reveal a novel key function for TGR5 in SF1 neurons in the regulation of whole-body insulin sensitivity, providing new insight into the role played by neuronal TGR5 in the regulation of metabolism.
Collapse
Affiliation(s)
- Philippe Zizzari
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | | | - Selma Yagoub
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Vincent Simon
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Samantha Clark
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Marlene Maître
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Nathalie Dupuy
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | | | - Delphine Gonzales
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Kristina Schoonjans
- Institute of Bioengineering, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Valérie S Fénelon
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France.
| |
Collapse
|
3
|
Liu Q, Wang S, Fu J, Chen Y, Xu J, Wei W, Song H, Zhao X, Wang H. Liver regeneration after injury: Mechanisms, cellular interactions and therapeutic innovations. Clin Transl Med 2024; 14:e1812. [PMID: 39152680 PMCID: PMC11329751 DOI: 10.1002/ctm2.1812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 08/19/2024] Open
Abstract
The liver possesses a distinctive capacity for regeneration within the human body. Under normal circumstances, liver cells replicate themselves to maintain liver function. Compensatory replication of healthy hepatocytes is sufficient for the regeneration after acute liver injuries. In the late stage of chronic liver damage, a large number of hepatocytes die and hepatocyte replication is blocked. Liver regeneration has more complex mechanisms, such as the transdifferentiation between cell types or hepatic progenitor cells mediated. Dysregulation of liver regeneration causes severe chronic liver disease. Gaining a more comprehensive understanding of liver regeneration mechanisms would facilitate the advancement of efficient therapeutic approaches. This review provides an overview of the signalling pathways linked to different aspects of liver regeneration in various liver diseases. Moreover, new knowledge on cellular interactions during the regenerative process is also presented. Finally, this paper explores the potential applications of new technologies, such as nanotechnology, stem cell transplantation and organoids, in liver regeneration after injury, offering fresh perspectives on treating liver disease.
Collapse
Affiliation(s)
- Qi Liu
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Senyan Wang
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Jing Fu
- International Cooperation Laboratory on Signal TransductionNational Center for Liver CancerMinistry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver CancerShanghai Key Laboratory of Hepato‐biliary Tumor BiologyEastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical UniversityShanghaiChina
| | - Yao Chen
- International Cooperation Laboratory on Signal TransductionNational Center for Liver CancerMinistry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver CancerShanghai Key Laboratory of Hepato‐biliary Tumor BiologyEastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical UniversityShanghaiChina
| | - Jing Xu
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Wenjuan Wei
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Hao Song
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Xiaofang Zhao
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Hongyang Wang
- International Cooperation Laboratory on Signal TransductionNational Center for Liver CancerMinistry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver CancerShanghai Key Laboratory of Hepato‐biliary Tumor BiologyEastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical UniversityShanghaiChina
| |
Collapse
|
4
|
Lee TH, Cota D, Quarta C. Yin-Yang control of energy balance by lipids in the hypothalamus: The endocannabinoids vs bile acids case. Biochimie 2024; 223:188-195. [PMID: 35863558 DOI: 10.1016/j.biochi.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 11/02/2022]
Abstract
Obesity is a chronic and debilitating disorder that originates from alterations in energy-sensing brain circuits controlling body weight gain and food intake. The dysregulated syntheses and actions of lipid mediators in the hypothalamus induce weight gain and overfeeding, but the molecular and cellular underpinnings of these alterations remain elusive. In response to changes in the nutritional status, different lipid sensing pathways in the hypothalamus direct body energy needs in a Yin-Yang model. Endocannabinoids orchestrate the crosstalk between hypothalamic circuits and the sympathetic nervous system to promote food intake and energy accumulation during fasting, whereas bile acids act on the same top-down axis to reduce energy intake and possibly storage after the meal. In obesity, the bioavailability and downstream cellular actions of endocannabinoids and bile acids are altered in hypothalamic neurons involved in body weight and metabolic control. Thus, the onset and progression of this disease might result from an imbalance in hypothalamic sensing of multiple lipid signals, which are possibly integrated by common molecular nodes. In this viewpoint, we discuss a possible model that explains how bile acids and endocannabinoids may exert their effects on energy balance regulation via interconnected mechanisms at the level of the hypothalamic neuronal circuits. Therefore, we propose a new conceptual framework for understanding and treating central mechanisms of maladaptive lipid action in obesity.
Collapse
Affiliation(s)
- Thomas H Lee
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300, Bordeaux, France
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300, Bordeaux, France
| | - Carmelo Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300, Bordeaux, France.
| |
Collapse
|
5
|
Uriarte I, Santamaria E, López-Pascual A, Monte MJ, Argemí J, Latasa MU, Adán-Villaescusa E, Irigaray A, Herranz JM, Arechederra M, Basualdo J, Lucena F, Corrales FJ, Rotellar F, Pardo F, Merlen G, Rainteau D, Sangro B, Tordjmann T, Berasain C, Marín JJG, Fernández-Barrena MG, Herrero I, Avila MA. New insights into the regulation of bile acids synthesis during the early stages of liver regeneration: A human and experimental study. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167166. [PMID: 38642480 DOI: 10.1016/j.bbadis.2024.167166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND AND AIMS Liver regeneration is essential for the preservation of homeostasis and survival. Bile acids (BAs)-mediated signaling is necessary for liver regeneration, but BAs levels need to be carefully controlled to avoid hepatotoxicity. We studied the early response of the BAs-fibroblast growth factor 19 (FGF19) axis in healthy individuals undergoing hepatectomy for living donor liver transplant. We also evaluated BAs synthesis in mice upon partial hepatectomy (PH) and acute inflammation, focusing on the regulation of cytochrome-7A1 (CYP7A1), a key enzyme in BAs synthesis from cholesterol. METHODS Serum was obtained from twelve human liver donors. Mice underwent 2/3-PH or sham-operation. Acute inflammation was induced with bacterial lipopolysaccharide (LPS) in mice fed control or antoxidant-supplemented diets. BAs and 7α-hydroxy-4-cholesten-3-one (C4) levels were measured by HPLC-MS/MS; serum FGF19 by ELISA. Gene expression and protein levels were analyzed by RT-qPCR and western-blot. RESULTS Serum BAs levels increased after PH. In patients with more pronounced hypercholanemia, FGF19 concentrations transiently rose, while C4 levels (a readout of CYP7A1 activity) dropped 2 h post-resection in all cases. Serum BAs and C4 followed the same pattern in mice 1 h after PH, but C4 levels also dropped in sham-operated and LPS-treated animals, without marked changes in CYP7A1 protein levels. LPS-induced serum C4 decline was attenuated in mice fed an antioxidant-supplemented diet. CONCLUSIONS In human liver regeneration FGF19 upregulation may constitute a protective response from BAs excess during liver regeneration. Our findings suggest the existence of post-translational mechanisms regulating CYP7A1 activity, and therefore BAs synthesis, independent from CYP7A1/Cyp7a1 gene transcription.
Collapse
Affiliation(s)
- Iker Uriarte
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Eva Santamaria
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Amaya López-Pascual
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - María J Monte
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Université Paris-Saclay, Inserm U1193, Orsay, France
| | - Josepmaria Argemí
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Hepatology Unit, CCUN, Navarra University Clinic, Pamplona, Spain
| | - M Ujue Latasa
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Elena Adán-Villaescusa
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Ainara Irigaray
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Jose M Herranz
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - María Arechederra
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Jorge Basualdo
- Hepatology Unit, CCUN, Navarra University Clinic, Pamplona, Spain; Internal Medicine Department, ICOT Hospital Ciudad de Telde, Las Palmas, Spain
| | - Felipe Lucena
- Internal Medicine Department, Navarra University Clinic, Pamplona, Spain
| | - Fernando J Corrales
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Fernando Rotellar
- General Surgery Department, Navarra University Clinic, Pamplona, Spain
| | - Fernando Pardo
- General Surgery Department, Navarra University Clinic, Pamplona, Spain
| | | | - Dominique Rainteau
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine, Paris, France
| | - Bruno Sangro
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Hepatology Unit, CCUN, Navarra University Clinic, Pamplona, Spain
| | | | - Carmen Berasain
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Jose J G Marín
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Maite G Fernández-Barrena
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Ignacio Herrero
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Hepatology Unit, CCUN, Navarra University Clinic, Pamplona, Spain.
| | - Matias A Avila
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.
| |
Collapse
|
6
|
Bekheit M, Grundy L, Salih AK, Bucur P, Vibert E, Ghazanfar M. Post-hepatectomy liver failure: A timeline centered review. Hepatobiliary Pancreat Dis Int 2023; 22:554-569. [PMID: 36973111 DOI: 10.1016/j.hbpd.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Post-hepatectomy liver failure (PHLF) is a leading cause of postoperative mortality after liver surgery. Due to its significant impact, it is imperative to understand the risk stratification and preventative strategies for PHLF. The main objective of this review is to highlight the role of these strategies in a timeline centered way around curative resection. DATA SOURCES This review includes studies on both humans and animals, where they addressed PHLF. A literature search was conducted across the Cochrane Library, Embase, MEDLINE/PubMed, and Web of Knowledge electronic databases for English language studies published between July 1997 and June 2020. Studies presented in other languages were equally considered. The quality of included publications was assessed using Downs and Black's checklist. The results were presented in qualitative summaries owing to the lack of studies qualifying for quantitative analysis. RESULTS This systematic review with 245 studies, provides insight into the current prediction, prevention, diagnosis, and management options for PHLF. This review highlighted that liver volume manipulation is the most frequently studied preventive measure against PHLF in clinical practice, with modest improvement in the treatment strategies over the past decade. CONCLUSIONS Remnant liver volume manipulation is the most consistent preventive measure against PHLF.
Collapse
Affiliation(s)
- Mohamed Bekheit
- Department of Surgery, NHS Grampian, Foresterhill Health Campus, Ashgrove Road, AB252ZN Aberdeen, UK; Institute of Medical Sciences, Medical School, Foresterhill Health Campus, Ashgrove Road, AB252ZN Aberdeen, UK; Hépatica, Integrated Center of HPB Care, Elite Hospital, Agriculture Road, Alexandria, Egypt.
| | - Lisa Grundy
- Department of Surgery, NHS Grampian, Foresterhill Health Campus, Ashgrove Road, AB252ZN Aberdeen, UK
| | - Ahmed Ka Salih
- Department of Surgery, NHS Grampian, Foresterhill Health Campus, Ashgrove Road, AB252ZN Aberdeen, UK; Institute of Medical Sciences, Medical School, Foresterhill Health Campus, Ashgrove Road, AB252ZN Aberdeen, UK
| | - Petru Bucur
- Department of Surgery, University Hospital Tours, Val de la Loire 37000, France
| | - Eric Vibert
- Centre Hépatobiliaire, Paul Brousse Hospital, 12 Paul Valliant Couturier, 94804 Villejuif, France
| | - Mudassar Ghazanfar
- Department of Surgery, NHS Grampian, Foresterhill Health Campus, Ashgrove Road, AB252ZN Aberdeen, UK
| |
Collapse
|
7
|
Dong G, Huang X, Xu Y, Chen R, Chen S. Mechanical stress induced EndoMT in endothelial cells through PPARγ downregulation. Cell Signal 2023; 110:110812. [PMID: 37468053 DOI: 10.1016/j.cellsig.2023.110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/02/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Portal hypertension is a group of clinical syndromes induced by increased portal system pressure due to various etiologies including cirrhosis. When portal hypertension develops, the portal vein dilates and endothelial cells (ECs) in the portal vein are subjected to mechanical stretch. In this study, elastic silicone chambers were used to simulate the effects of mechanical stretch on ECs under portal hypertension. We found that mechanical stretch decreased PPARγ expression in ECs by blocking the PI3K/AKT/CREB signaling pathway or increasing NEDD4-mediated ubiquitination and degradation of PPARγ. Moreover, PPARγ downregulation triggered Endothelial-to-mesenchymal transition (EndoMT) in ECs under stretch by promoting Smad3 phosphorylation. The PPARγ agonist rosiglitazone mitigated stretch-induced EndoMT in vitro and alleviated EndoMT of the portal vein endothelium in cirrhotic rats.
Collapse
Affiliation(s)
- Gang Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoquan Huang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ye Xu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Rongxin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China.
| | - Shiyao Chen
- Department of Gastroenterology and Hepatology, Endoscopy Center and Endoscopy, Shanghai, China; Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China; Center of Evidence-based Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Ma JT, Xia S, Zhang BK, Luo F, Guo L, Yang Y, Gong H, Yan M. The pharmacology and mechanisms of traditional Chinese medicine in promoting liver regeneration: A new therapeutic option. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154893. [PMID: 37236047 DOI: 10.1016/j.phymed.2023.154893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND The liver is renowned for its remarkable regenerative capacity to restore its structure, size and function after various types of liver injury. However, in patients with end-stage liver disease, the regenerative capacity is inhibited and liver transplantation is the only option. Considering the limitations of liver transplantation, promoting liver regeneration is suggested as a new therapeutic strategy for liver disease. Traditional Chinese medicine (TCM) has a long history of preventing and treating various liver diseases, and some of them have been proven to be effective in promoting liver regeneration, suggesting the therapeutic potential in liver diseases. PURPOSE This review aims to summarize the molecular mechanisms of liver regeneration and the pro-regenerative activity and mechanism of TCM formulas, extracts and active ingredients. METHODS We conducted a systematic search in PubMed, Web of Science and the Cochrane Library databases using "TCM", "liver regeneration" or their synonyms as keywords, and classified and summarized the retrieved literature. The PRISMA guidelines were followed. RESULTS Forty-one research articles met the themes of this review and previous critical studies were also reviewed to provide essential background information. Current evidences indicate that various TCM formulas, extracts and active ingredients have the effect on stimulating liver regeneration through modulating JAK/STAT, Hippo, PI3K/Akt and other signaling pathways. Besides, the mechanisms of liver regeneration, the limitation of existing studies and the application prospect of TCM to promote liver regeneration are also outlined and discussed in this review. CONCLUSION This review supports TCM as new potential therapeutic options for promoting liver regeneration and repair of the failing liver, although extensive pharmacokinetic and toxicological studies, as well as elaborate clinical trials, are still needed to demonstrate safety and efficacy.
Collapse
Affiliation(s)
- Jia-Ting Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Shuang Xia
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Bi-Kui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Fen Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Lin Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Yan Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China.
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China.
| |
Collapse
|
9
|
Kondo T, Fujiwara K, Nakagawa M, Unozawa H, Iwanaga T, Sakuma T, Fujita N, Koroki K, Kanzaki H, Kobayashi K, Kiyono S, Nakamura M, Kanogawa N, Saito T, Ogasawara S, Suzuki E, Ooka Y, Nakamoto S, Chiba T, Arai M, Kato J, Kato N. The efficacy of contrast-enhanced computed tomography on the management of gastroesophageal varices in patients with hepatocellular carcinoma. Sci Rep 2022; 12:20726. [PMID: 36456830 PMCID: PMC9715668 DOI: 10.1038/s41598-022-25350-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The screening of gastroesophageal varices (GEV) is critical in hepatocellular carcinoma (HCC) management. Contrast-enhanced computed tomography (CECT) is often performed in patients with HCC. Therefore, this study aimed to examine the use of CECT in screening for GEV and predicting GEV bleeding. This retrospective study enrolled 312 consecutive patients who are initially diagnosed with HCC, measured the lower esophageal (EIV) and fundal intramural vessel (FIV) diameter on CECT, examined the changes after 1, 2, and 3 years, and verified the relationship with GEV bleeding. The EIV and FIV diameter on CECT correlates well with endoscopic variceal classification. EIV significantly worsened after 2 and 3 years. FIV showed worsening at both 1, 2, and 3 years. Cumulative GEV bleeding rates were 3.7% at 1 year and 6.2% at 3 years. The multivariate analysis revealed that EIV, FIV, and portal vein tumor thrombus were associated with GEV bleeding. Furthermore, EIV deterioration at 1, 2, and 3 years correlated with GEV bleeding. In conclusion, CECT is useful in variceal management during the longitudinal clinical course of HCC, and has the potential to decrease screening endoscopy. With deterioration in EIV, treatments should be considered due to a high-risk GEV bleeding.
Collapse
Affiliation(s)
- Takayuki Kondo
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan.
| | - Kisako Fujiwara
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Miyuki Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Hidemi Unozawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Terunao Iwanaga
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Takafumi Sakuma
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Naoto Fujita
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Keisuke Koroki
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Hiroaki Kanzaki
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Kazufumi Kobayashi
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
- Translational Research and Development Center, Chiba University Hospital, Chiba, Japan
| | - Soichiro Kiyono
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Masato Nakamura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Naoya Kanogawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Tomoko Saito
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Sadahisa Ogasawara
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Eiichiro Suzuki
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Yoshihiko Ooka
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Shingo Nakamoto
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Makoto Arai
- Department of Gastroenterology, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| | - Jun Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| |
Collapse
|
10
|
Di Ciaula A, Bonfrate L, Baj J, Khalil M, Garruti G, Stellaard F, Wang HH, Wang DQH, Portincasa P. Recent Advances in the Digestive, Metabolic and Therapeutic Effects of Farnesoid X Receptor and Fibroblast Growth Factor 19: From Cholesterol to Bile Acid Signaling. Nutrients 2022; 14:4950. [PMID: 36500979 PMCID: PMC9738051 DOI: 10.3390/nu14234950] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Bile acids (BA) are amphiphilic molecules synthesized in the liver (primary BA) starting from cholesterol. In the small intestine, BA act as strong detergents for emulsification, solubilization and absorption of dietary fat, cholesterol, and lipid-soluble vitamins. Primary BA escaping the active ileal re-absorption undergo the microbiota-dependent biotransformation to secondary BA in the colon, and passive diffusion into the portal vein towards the liver. BA also act as signaling molecules able to play a systemic role in a variety of metabolic functions, mainly through the activation of nuclear and membrane-associated receptors in the intestine, gallbladder, and liver. BA homeostasis is tightly controlled by a complex interplay with the nuclear receptor farnesoid X receptor (FXR), the enterokine hormone fibroblast growth factor 15 (FGF15) or the human ortholog FGF19 (FGF19). Circulating FGF19 to the FGFR4/β-Klotho receptor causes smooth muscle relaxation and refilling of the gallbladder. In the liver the binding activates the FXR-small heterodimer partner (SHP) pathway. This step suppresses the unnecessary BA synthesis and promotes the continuous enterohepatic circulation of BAs. Besides BA homeostasis, the BA-FXR-FGF19 axis governs several metabolic processes, hepatic protein, and glycogen synthesis, without inducing lipogenesis. These pathways can be disrupted in cholestasis, nonalcoholic fatty liver disease, and hepatocellular carcinoma. Thus, targeting FXR activity can represent a novel therapeutic approach for the prevention and the treatment of liver and metabolic diseases.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-059 Lublin, Poland
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
| | - Frans Stellaard
- Institute of Clinical Chemistry and Clinical Pharmacology, Venusberg-Campus 1, University Hospital Bonn, 53127 Bonn, Germany
| | - Helen H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
| |
Collapse
|
11
|
Xu Z, Jiang N, Xiao Y, Yuan K, Wang Z. The role of gut microbiota in liver regeneration. Front Immunol 2022; 13:1003376. [PMID: 36389782 PMCID: PMC9647006 DOI: 10.3389/fimmu.2022.1003376] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
The liver has unique regeneration potential, which ensures the continuous dependence of the human body on hepatic functions. As the composition and function of gut microbiota has been gradually elucidated, the vital role of gut microbiota in liver regeneration through gut-liver axis has recently been accepted. In the process of liver regeneration, gut microbiota composition is changed. Moreover, gut microbiota can contribute to the regulation of the liver immune microenvironment, thereby modulating the release of inflammatory factors including IL-6, TNF-α, HGF, IFN-γ and TGF-β, which involve in different phases of liver regeneration. And previous research have demonstrated that through enterohepatic circulation, bile acids (BAs), lipopolysaccharide, short-chain fatty acids and other metabolites of gut microbiota associate with liver and may promote liver regeneration through various pathways. In this perspective, by summarizing gut microbiota-derived signaling pathways that promote liver regeneration, we unveil the role of gut microbiota in liver regeneration and provide feasible strategies to promote liver regeneration by altering gut microbiota composition.
Collapse
Affiliation(s)
- Zhe Xu
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Nan Jiang
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yuanyuan Xiao
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- *Correspondence: Zhen Wang, ; Kefei Yuan, ; Yuanyuan Xiao,
| | - Kefei Yuan
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- *Correspondence: Zhen Wang, ; Kefei Yuan, ; Yuanyuan Xiao,
| | - Zhen Wang
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- *Correspondence: Zhen Wang, ; Kefei Yuan, ; Yuanyuan Xiao,
| |
Collapse
|
12
|
Fénelon VS, Cota D. [Hypothalamic bile acid-TGR5 signaling: A therapeutic target in the fight against obesity?]. Med Sci (Paris) 2022; 38:413-415. [PMID: 35608459 DOI: 10.1051/medsci/2022052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Valérie S Fénelon
- Université de Bordeaux, Inserm U1215, Neurocentre Magendie, Bordeaux, France
| | - Daniela Cota
- Université de Bordeaux, Inserm U1215, Neurocentre Magendie, Bordeaux, France
| |
Collapse
|
13
|
Reiterer C, Taschner A, Luf F, Hecking M, Tamandl D, Zotti O, Reiberger T, Starlinger P, Mandorfer M, Fleischmann E. Effect of liver resection-induced increases in hepatic venous pressure gradient on development of postoperative acute kidney injury. BMC Nephrol 2022; 23:21. [PMID: 34996372 PMCID: PMC8742325 DOI: 10.1186/s12882-021-02658-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The impact of changes in portal pressure before and after liver resection (defined as ΔHVPG) on postoperative kidney function remains unknown. Therefore, we investigated the effect of ΔHVPG on (i) the incidence of postoperative AKI and (ii) the renin-angiotensin system (RAAS) and sympathetic nervous system (SNS) activity. METHODS We included 30 patients undergoing partial liver resection. Our primary outcome was postoperative AKI according to KDIGO criteria. For our secondary outcome we assessed the plasma renin, aldosterone, noradrenaline, adrenaline, dopamine and vasopressin concentrations prior and 2 h after induction of anaesthesia, on the first and fifth postoperative day. HVPG was measured prior and immediately after liver resection. RESULTS ΔHVPG could be measured in 21 patients with 12 patients HVPG showing increases in HVPG (∆HVPG≥1 mmHg) while 9 patients remained stable. AKI developed in 7/12 of patients with increasing HVPG, but only in 2/9 of patients with stable ΔHVPG (p = 0.302). Noradrenalin levels were significantly higher in patients with increasing ΔHVPG than in patients with stable ΔHVPG. (p = 0.009). Biomarkers reflecting RAAS and SNS activity remained similar in patients with increasing vs. stable ΔHVPG. CONCLUSIONS Patients with increased HVPG had higher postoperative creatinine concentrations, however, the incidence of AKI was similar between patients with increased versus stable HVPG.
Collapse
Affiliation(s)
- Christian Reiterer
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria. .,Outcomes Research Consortium, Cleveland, OH, USA.
| | - Alexander Taschner
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Florian Luf
- Department of Anaesthesia and Intensive Care, Hanusch Krankenhaus, Vienna, Austria
| | - Manfred Hecking
- Division of Nephrology and Dialysis, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Dietmar Tamandl
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Oliver Zotti
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | | | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Edith Fleischmann
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.,Outcomes Research Consortium, Cleveland, OH, USA
| |
Collapse
|
14
|
Zheng Z, Wang B. The Gut-Liver Axis in Health and Disease: The Role of Gut Microbiota-Derived Signals in Liver Injury and Regeneration. Front Immunol 2021; 12:775526. [PMID: 34956204 PMCID: PMC8703161 DOI: 10.3389/fimmu.2021.775526] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Diverse liver diseases undergo a similar pathophysiological process in which liver regeneration follows a liver injury. Given the important role of the gut-liver axis in health and diseases, the role of gut microbiota-derived signals in liver injury and regeneration has attracted much attention. It has been observed that the composition of gut microbiota dynamically changes in the process of liver regeneration after partial hepatectomy, and gut microbiota modulation by antibiotics or probiotics affects both liver injury and regeneration. Mechanically, through the portal vein, the liver is constantly exposed to gut microbial components and metabolites, which have immense effects on the immunity and metabolism of the host. Emerging data demonstrate that gut-derived lipopolysaccharide, gut microbiota-associated bile acids, and other bacterial metabolites, such as short-chain fatty acids and tryptophan metabolites, may play multifaceted roles in liver injury and regeneration. In this perspective, we provide an overview of the possible molecular mechanisms by which gut microbiota-derived signals modulate liver injury and regeneration, highlighting the potential roles of gut microbiota in the development of gut microbiota-based therapies to alleviate liver injury and promote liver regeneration.
Collapse
Affiliation(s)
- Zhipeng Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baohong Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Hadjittofi C, Feretis M, Martin J, Harper S, Huguet E. Liver regeneration biology: Implications for liver tumour therapies. World J Clin Oncol 2021; 12:1101-1156. [PMID: 35070734 PMCID: PMC8716989 DOI: 10.5306/wjco.v12.i12.1101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
The liver has remarkable regenerative potential, with the capacity to regenerate after 75% hepatectomy in humans and up to 90% hepatectomy in some rodent models, enabling it to meet the challenge of diverse injury types, including physical trauma, infection, inflammatory processes, direct toxicity, and immunological insults. Current understanding of liver regeneration is based largely on animal research, historically in large animals, and more recently in rodents and zebrafish, which provide powerful genetic manipulation experimental tools. Whilst immensely valuable, these models have limitations in extrapolation to the human situation. In vitro models have evolved from 2-dimensional culture to complex 3 dimensional organoids, but also have shortcomings in replicating the complex hepatic micro-anatomical and physiological milieu. The process of liver regeneration is only partially understood and characterized by layers of complexity. Liver regeneration is triggered and controlled by a multitude of mitogens acting in autocrine, paracrine, and endocrine ways, with much redundancy and cross-talk between biochemical pathways. The regenerative response is variable, involving both hypertrophy and true proliferative hyperplasia, which is itself variable, including both cellular phenotypic fidelity and cellular trans-differentiation, according to the type of injury. Complex interactions occur between parenchymal and non-parenchymal cells, and regeneration is affected by the status of the liver parenchyma, with differences between healthy and diseased liver. Finally, the process of termination of liver regeneration is even less well understood than its triggers. The complexity of liver regeneration biology combined with limited understanding has restricted specific clinical interventions to enhance liver regeneration. Moreover, manipulating the fundamental biochemical pathways involved would require cautious assessment, for fear of unintended consequences. Nevertheless, current knowledge provides guiding principles for strategies to optimise liver regeneration potential.
Collapse
Affiliation(s)
- Christopher Hadjittofi
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Michael Feretis
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Jack Martin
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Simon Harper
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel Huguet
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
16
|
The Role of Farnesoid X Receptor in Accelerated Liver Regeneration in Rats Subjected to ALPPS. Curr Oncol 2021; 28:5240-5254. [PMID: 34940077 PMCID: PMC8700148 DOI: 10.3390/curroncol28060438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022] Open
Abstract
Background: the role of bile acid (BA)-induced farnesoid X receptor (Fxr) signaling in liver regeneration following associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) was investigated in a rat model. Methods: Male Wistar rats underwent portal vein ligation (PVL) (n = 30) or ALPPS (n = 30). Animals were sacrificed pre-operatively and at 24, 48, 72, or 168 h after intervention. Regeneration rate, Ki67 index, hemodynamic changes in the hepatic circulation, and BA levels were assessed. Transcriptome analysis of molecular regulators involved in the Fxr signaling pathway, BA transport, and BA production was performed. Results: ALLPS induced more extensive liver regeneration (p < 0.001) and elevation of systemic and portal BA levels (p < 0.05) than PVL. The mRNA levels of proteins participating in hepatic Fxr signaling were comparable between the intervention groups. More profound activation of the intestinal Fxr pathway was observed 24 h after ALPPS compared to PVL. Conclusion: Our study elaborates on a possible linkage between BA-induced Fxr signaling and accelerated liver regeneration induced by ALPPS in rats. ALPPS could trigger liver regeneration via intestinal Fxr signaling cascades instead of hepatic Fxr signaling, thereby deviating from the mechanism of BA-mediated regeneration following one-stage hepatectomy.
Collapse
|
17
|
A modified animal model of hepatic regeneration induced by hilar bile duct ligation. Sci Rep 2021; 11:20201. [PMID: 34642435 PMCID: PMC8511257 DOI: 10.1038/s41598-021-99758-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/24/2021] [Indexed: 11/08/2022] Open
Abstract
Mechanisms of the proliferation of liver are mainly studied in animal model of liver regeneration after partial hepatectomy (PH). However, the PH model involves complex regeneration mechanisms, including hemodynamic factors, cytokines, growth factors, and metabolites. Among liver metabolites, bile acid (BA) is a key signaling molecule that regulates liver regeneration. This study aimed to establish a new type of rapid liver hyperplasia model induced mainly by bile acid pathway through hepatoenteral circulation with hilar bile duct ligation (HBDL). We first established the HBDL model by ligating the bile duct of all hepatic lobes but the right lateral lobe in rabbits and compared with the PVL model and sham operation group. Changes in the liver lobe and hemodynamics were observed. Liver function and the bile acid level were also analyzed. Then we verified the HBDL model in mice. Liver function and the levels of bile acids and cytokines were tested. The protein and mRNA levels of FXR, FGF15, CYP7A1 and FoxM1b in liver tissue were also analyzed. After hilar ligation of the biliary tract, the unligated liver lobes proliferated significantly. Compared with those in the sham group, the volume and weight of the unligated right lateral lobe of the liver in the HBDL group and the PVL group increased significantly (P < 0.05). Transient liver function impairment occurred both in the HBDL group and PVL group in the rabbit model as well as the mouse models. The bile acid levels in the HBDL groups of the rabbit model and mouse model increased significantly within first week after surgery (P < 0.05). The immunohistochemistry results confirmed the proliferation of hepatocytes in the unligated liver lobe. Compared with those in the sham group, the levels of FXR, FGF15 and FoxM1b in the HBDL group were significantly increased (P < 0.05), while the expression of CYP7A1 was inhibited. Compared with those in the HBDL group, the postoperative hemodynamic changes in the PVL group were significant (P < 0.05). The levels of IL-6 and TNF-α in the HBDL group were higher than those in the sham group. The HBDL model is simple to establish and exhibits good surgical tolerance. The model has definite proliferative effect and strong specificity of bile acid pathway. This is an ideal animal model to study the mechanism of liver regeneration through bile acid pathway.
Collapse
|
18
|
Castellanos-Jankiewicz A, Guzmán-Quevedo O, Fénelon VS, Zizzari P, Quarta C, Bellocchio L, Tailleux A, Charton J, Fernandois D, Henricsson M, Piveteau C, Simon V, Allard C, Quemener S, Guinot V, Hennuyer N, Perino A, Duveau A, Maitre M, Leste-Lasserre T, Clark S, Dupuy N, Cannich A, Gonzales D, Deprez B, Mithieux G, Dombrowicz D, Bäckhed F, Prevot V, Marsicano G, Staels B, Schoonjans K, Cota D. Hypothalamic bile acid-TGR5 signaling protects from obesity. Cell Metab 2021; 33:1483-1492.e10. [PMID: 33887197 DOI: 10.1016/j.cmet.2021.04.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022]
Abstract
Bile acids (BAs) improve metabolism and exert anti-obesity effects through the activation of the Takeda G protein-coupled receptor 5 (TGR5) in peripheral tissues. TGR5 is also found in the brain hypothalamus, but whether hypothalamic BA signaling is implicated in body weight control and obesity pathophysiology remains unknown. Here we show that hypothalamic BA content is reduced in diet-induced obese mice. Central administration of BAs or a specific TGR5 agonist in these animals decreases body weight and fat mass by activating the sympathetic nervous system, thereby promoting negative energy balance. Conversely, genetic downregulation of hypothalamic TGR5 expression in the mediobasal hypothalamus favors the development of obesity and worsens established obesity by blunting sympathetic activity. Lastly, hypothalamic TGR5 signaling is required for the anti-obesity action of dietary BA supplementation. Together, these findings identify hypothalamic TGR5 signaling as a key mediator of a top-down neural mechanism that counteracts diet-induced obesity.
Collapse
Affiliation(s)
| | - Omar Guzmán-Quevedo
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France; Laboratory of Neuronutrition and Metabolic Disorders, Instituto Tecnológico Superior de Tacámbaro, 61650 Tacámbaro, Michoacán, Mexico; Pós-Graduação em Neuropsiquiatria e Ciências do Comportamento, Universidade Federal de Pernambuco, 50732-970 Recife, Pernambuco, Brazil
| | - Valérie S Fénelon
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Philippe Zizzari
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Carmelo Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Luigi Bellocchio
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Anne Tailleux
- University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59019 Lille, France
| | - Julie Charton
- University of Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, EGID, F-59000 Lille, France
| | - Daniela Fernandois
- University of Lille, INSERM, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, F-59000, Lille, France
| | - Marcus Henricsson
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Catherine Piveteau
- University of Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Vincent Simon
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Camille Allard
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Sandrine Quemener
- University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59019 Lille, France
| | - Valentine Guinot
- University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59019 Lille, France
| | - Nathalie Hennuyer
- University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59019 Lille, France
| | - Alessia Perino
- Institute of Bioengineering, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alexia Duveau
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Marlène Maitre
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | | | - Samantha Clark
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Nathalie Dupuy
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Astrid Cannich
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Delphine Gonzales
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Benoit Deprez
- University of Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, EGID, F-59000 Lille, France
| | - Gilles Mithieux
- INSERM U1213 Nutrition, Diabetes and the Brain, University of Lyon 1 Faculté de Médecine Lyon-Est, 69372 Lyon, France
| | - David Dombrowicz
- University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59019 Lille, France
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, 2200 N Copenhagen, Denmark; Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden
| | - Vincent Prevot
- University of Lille, INSERM, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, F-59000, Lille, France
| | - Giovanni Marsicano
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Bart Staels
- University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59019 Lille, France
| | - Kristina Schoonjans
- Institute of Bioengineering, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France.
| |
Collapse
|
19
|
Portincasa P, Di Ciaula A, Garruti G, Vacca M, De Angelis M, Wang DQH. Bile Acids and GPBAR-1: Dynamic Interaction Involving Genes, Environment and Gut Microbiome. Nutrients 2020; 12:3709. [PMID: 33266235 PMCID: PMC7760347 DOI: 10.3390/nu12123709] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Bile acids (BA) are amphiphilic molecules synthesized in the liver from cholesterol. BA undergo continuous enterohepatic recycling through intestinal biotransformation by gut microbiome and reabsorption into the portal tract for uptake by hepatocytes. BA are detergent molecules aiding the digestion and absorption of dietary fat and fat-soluble vitamins, but also act as important signaling molecules via the nuclear receptor, farnesoid X receptor (FXR), and the membrane-associated G protein-coupled bile acid receptor 1 (GPBAR-1) in the distal intestine, liver and extra hepatic tissues. The hydrophilic-hydrophobic balance of the BA pool is finely regulated to prevent BA overload and liver injury. By contrast, hydrophilic BA can be hepatoprotective. The ultimate effects of BA-mediated activation of GPBAR-1 is poorly understood, but this receptor may play a role in protecting the remnant liver and in maintaining biliary homeostasis. In addition, GPBAR-1 acts on pathways involved in inflammation, biliary epithelial barrier permeability, BA pool hydrophobicity, and sinusoidal blood flow. Recent evidence suggests that environmental factors influence GPBAR-1 gene expression. Thus, targeting GPBAR-1 might improve liver protection, facilitating beneficial metabolic effects through primary prevention measures. Here, we discuss the complex pathways linked to BA effects, signaling properties of the GPBAR-1, mechanisms of liver damage, gene-environment interactions, and therapeutic aspects.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro” Medical School, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Mirco Vacca
- Dipartimento di Scienze del Suolo, Della Pianta e Degli Alimenti, Università degli Studi di Bari Aldo Moro, 70124 Bari, Italy; (M.V.); (M.D.A.)
| | - Maria De Angelis
- Dipartimento di Scienze del Suolo, Della Pianta e Degli Alimenti, Università degli Studi di Bari Aldo Moro, 70124 Bari, Italy; (M.V.); (M.D.A.)
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
20
|
Bidault-Jourdainne V, Merlen G, Glénisson M, Doignon I, Garcin I, Péan N, Boisgard R, Ursic-Bedoya J, Serino M, Ullmer C, Humbert L, Abdelrafee A, Golse N, Vibert E, Duclos-Vallée JC, Rainteau D, Tordjmann T. TGR5 controls bile acid composition and gallbladder function to protect the liver from bile acid overload. JHEP Rep 2020; 3:100214. [PMID: 33604531 PMCID: PMC7872982 DOI: 10.1016/j.jhepr.2020.100214] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Background & Aims As the composition of the bile acid (BA) pool has a major impact on liver pathophysiology, we studied its regulation by the BA receptor Takeda G protein coupled receptor (TGR5), which promotes hepatoprotection against BA overload. Methods Wild-type, total and hepatocyte-specific TGR5-knockout, and TGR5-overexpressing mice were used in: partial (66%) and 89% extended hepatectomies (EHs) upon normal, ursodeoxycholic acid (UDCA)- or cholestyramine (CT)-enriched diet, bile duct ligation (BDL), cholic acid (CA)-enriched diet, and TGR5 agonist (RO) treatments. We thereby studied the impact of TGR5 on: BA composition, liver injury, regeneration and survival. We also performed analyses on the gut microbiota (GM) and gallbladder (GB). Liver BA composition was analysed in patients undergoing major hepatectomy. Results The TGR5-KO hyperhydrophobic BA composition was not directly related to altered BA synthesis, nor to TGR5-KO GM dysbiosis, as supported by hepatocyte-specific KO mice and co-housing experiments, respectively. The TGR5-dependent control of GB dilatation was crucial for BA composition, as determined by experiments including RO treatment and/or cholecystectomy. The poor TGR5-KO post-EH survival rate, related to exacerbated peribiliary necrosis and BA overload, was improved by shifting BAs toward a less toxic composition (CT treatment). After either BDL or a CA-enriched diet with or without cholecystectomy, we found that GB dilatation had strong TGR5-dependent hepatoprotective properties. In patients, a more hydrophobic liver BA composition was correlated with an unfavourable outcome after hepatectomy. Conclusions BA composition is crucial for hepatoprotection in mice and humans. We indicate TGR5 as a key regulator of BA profile and thereby as a potential hepatoprotective target under BA overload conditions. Lay summary Through multiple in vivo experimental approaches in mice, together with a patient study, this work brings some new light on the relationships between biliary homeostasis, gallbladder function, and liver protection. We showed that hepatic bile acid composition is crucial for optimal liver repair, not only in mice, but also in human patients undergoing major hepatectomy. Reducing BA hydrophobicity improves outcomes after major hepatectomy in mice. The BA receptor TGR5 controls BA pool composition, which is crucial for liver repair. TGR5 targets the gallbladder to induce a hepatoprotective effect. In patients, a more hydrophobic BA pool is associated with liver injury after hepatectomy.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- BA, bile acid
- BDL, bile duct ligation
- Bile acids
- CA, cholic acid
- CC, cholecystectomy
- CT, cholestyramine
- CYP, cytochrome P450
- EH, extended hepatectomy
- GB, gallbladder
- GM, gut microbiota
- GPBAR1
- GPBAR1, G protein-coupled bile acid receptor 1
- Gallbladder
- HI, hydrophobicity index
- Hepatoprotection
- KO, knockout
- ND, normal diet
- OA, oleanolic acid
- PH, partial hepatectomy
- TBA, total BA
- TGR5
- TGR5, Takeda G protein coupled receptor
- UDCA, ursodeoxycholic acid
- WT, wild-type
Collapse
Affiliation(s)
| | - Grégory Merlen
- Université Paris Saclay, Faculté des Sciences d'Orsay, INSERM U.1193, bât. 443, 91405, Orsay, France
| | - Mathilde Glénisson
- Université Paris Saclay, Faculté des Sciences d'Orsay, INSERM U.1193, bât. 443, 91405, Orsay, France
| | - Isabelle Doignon
- Université Paris Saclay, Faculté des Sciences d'Orsay, INSERM U.1193, bât. 443, 91405, Orsay, France
| | - Isabelle Garcin
- Université Paris Saclay, Faculté des Sciences d'Orsay, INSERM U.1193, bât. 443, 91405, Orsay, France
| | - Noémie Péan
- Université Paris Saclay, Faculté des Sciences d'Orsay, INSERM U.1193, bât. 443, 91405, Orsay, France
| | - Raphael Boisgard
- Plateforme d'Imagerie du Petit Animal, SHFJ, 91405, Orsay, France
| | - José Ursic-Bedoya
- Université Paris Saclay, Faculté des Sciences d'Orsay, INSERM U.1193, bât. 443, 91405, Orsay, France
| | - Matteo Serino
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, U1220, CHU Purpan, CS60039, 31024, Toulouse, France
| | | | - Lydie Humbert
- Sorbonne Université, Centre de Recherche Saint Antoine, CRSA, INSERM U 1057, 75571, Paris Cedex 12, France
| | - Ahmed Abdelrafee
- Centre Hépato-Biliaire, Hôpital Paul Brousse, Université Paris-Saclay, 94800, Villejuif, France
| | - Nicolas Golse
- Centre Hépato-Biliaire, Hôpital Paul Brousse, Université Paris-Saclay, 94800, Villejuif, France
| | - Eric Vibert
- Centre Hépato-Biliaire, Hôpital Paul Brousse, Université Paris-Saclay, 94800, Villejuif, France
| | | | - Dominique Rainteau
- Sorbonne Université, Centre de Recherche Saint Antoine, CRSA, INSERM U 1057, 75571, Paris Cedex 12, France
| | - Thierry Tordjmann
- Université Paris Saclay, Faculté des Sciences d'Orsay, INSERM U.1193, bât. 443, 91405, Orsay, France
| |
Collapse
|
21
|
Merlen G, Bidault-Jourdainne V, Kahale N, Glenisson M, Ursic-Bedoya J, Doignon I, Garcin I, Humbert L, Rainteau D, Tordjmann T. Hepatoprotective impact of the bile acid receptor TGR5. Liver Int 2020; 40:1005-1015. [PMID: 32145703 DOI: 10.1111/liv.14427] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 02/13/2023]
Abstract
During liver repair after injury, bile secretion has to be tightly modulated in order to preserve liver parenchyma from bile acid (BA)-induced injury. The mechanisms allowing the liver to maintain biliary homeostasis during repair after injury are not completely understood. Besides their historical role in lipid digestion, bile acids (BA) and their receptors constitute a signalling network with multiple impacts on liver repair, both stimulating regeneration and protecting the liver from BA overload. BA signal through nuclear (mainly Farnesoid X Receptor, FXR) and membrane (mainly G Protein-coupled BA Receptor 1, GPBAR-1 or TGR5) receptors to elicit a wide array of biological responses. While a great number of studies have been dedicated to the hepato-protective impact of FXR signalling, TGR5 is by far less explored in this context. Because the liver has to face massive and potentially harmful BA overload after partial ablation or destruction, BA-induced protective responses crucially contribute to spare liver repair capacities. Based on the available literature, the TGR5 BA receptor protects the remnant liver and maintains biliary homeostasis, mainly through the control of inflammation, biliary epithelial barrier permeability, BA pool hydrophobicity and sinusoidal blood flow. Mouse experimental models of liver injury reveal that in the lack of TGR5, excessive inflammation, leaky biliary epithelium and hydrophobic BA overload result in parenchymal insult and compromise optimal restoration of a functional liver mass. Translational perspectives are thus opened to target TGR5 with the aim of protecting the liver in the context of injury and BA overload.
Collapse
Affiliation(s)
- Grégory Merlen
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | | | - Nicolas Kahale
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | - Mathilde Glenisson
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | - José Ursic-Bedoya
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | - Isabelle Doignon
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | - Isabelle Garcin
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | - Lydie Humbert
- Centre de Recherche Saint Antoine, CRSA, Sorbonne Université, Paris, France
| | - Dominique Rainteau
- Centre de Recherche Saint Antoine, CRSA, Sorbonne Université, Paris, France
| | - Thierry Tordjmann
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| |
Collapse
|
22
|
Chromatin dynamics during liver regeneration. Semin Cell Dev Biol 2020; 97:38-46. [DOI: 10.1016/j.semcdb.2019.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/12/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022]
|
23
|
Merlen G, Kahale N, Ursic-Bedoya J, Bidault-Jourdainne V, Simerabet H, Doignon I, Tanfin Z, Garcin I, Péan N, Gautherot J, Davit-Spraul A, Guettier C, Humbert L, Rainteau D, Ebnet K, Ullmer C, Cassio D, Tordjmann T. TGR5-dependent hepatoprotection through the regulation of biliary epithelium barrier function. Gut 2020; 69:146-157. [PMID: 30723104 DOI: 10.1136/gutjnl-2018-316975] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/26/2018] [Accepted: 01/15/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE We explored the hypothesis that TGR5, the bile acid (BA) G-protein-coupled receptor highly expressed in biliary epithelial cells, protects the liver against BA overload through the regulation of biliary epithelium permeability. DESIGN Experiments were performed under basal and TGR5 agonist treatment. In vitro transepithelial electric resistance (TER) and FITC-dextran diffusion were measured in different cell lines. In vivo FITC-dextran was injected in the gallbladder (GB) lumen and traced in plasma. Tight junction proteins and TGR5-induced signalling were investigated in vitro and in vivo (wild-type [WT] and TGR5-KO livers and GB). WT and TGR5-KO mice were submitted to bile duct ligation or alpha-naphtylisothiocyanate intoxication under vehicle or TGR5 agonist treatment, and liver injury was studied. RESULTS In vitro TGR5 stimulation increased TER and reduced paracellular permeability for dextran. In vivo dextran diffusion after GB injection was increased in TGR5-knock-out (KO) as compared with WT mice and decreased on TGR5 stimulation. In TGR5-KO bile ducts and GB, junctional adhesion molecule A (JAM-A) was hypophosphorylated and selectively downregulated among TJP analysed. TGR5 stimulation induced JAM-A phosphorylation and stabilisation both in vitro and in vivo, associated with protein kinase C-ζ activation. TGR5 agonist-induced TER increase as well as JAM-A protein stabilisation was dependent on JAM-A Ser285 phosphorylation. TGR5 agonist-treated mice were protected from cholestasis-induced liver injury, and this protection was significantly impaired in JAM-A-KO mice. CONCLUSION The BA receptor TGR5 regulates biliary epithelial barrier function in vitro and in vivo through an impact on JAM-A expression and phosphorylation, thereby protecting liver parenchyma against bile leakage.
Collapse
Affiliation(s)
- Grégory Merlen
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Nicolas Kahale
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | | | | | - Hayat Simerabet
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Isabelle Doignon
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Zahra Tanfin
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Isabelle Garcin
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Noémie Péan
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Julien Gautherot
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Anne Davit-Spraul
- Service de Biochimie, Hopital Bicêtre, Le Kremlin-Bicêtre, France.,Université Paris Sud Faculte de Medecine, Le Kremlin-Bicêtre, France
| | - Catherine Guettier
- Université Paris Sud Faculte de Medecine, Le Kremlin-Bicêtre, France.,Service d'Anatomie Pathologique, Hopital Bicêtre, Le Kremlin-Bicêtre, France
| | - Lydie Humbert
- ER7, Université Pierre et Marie Curie-Paris-6, Paris, France
| | | | - Klaus Ebnet
- Institute-associated Research Group 'Cell adhesion and cell polarity', Institute of Medical Biochemistry, ZMBE, Münster, University of Münster, Münster, Germany
| | - Christoph Ullmer
- Roche Pharmaceutical Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Doris Cassio
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | | |
Collapse
|
24
|
Simvastatin Mitigates Apoptosis and Transforming Growth Factor-Beta Upregulation in Stretch-Induced Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6026051. [PMID: 31934265 PMCID: PMC6942893 DOI: 10.1155/2019/6026051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/24/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023]
Abstract
Portal hypertension is a common clinical symptom of digestive disorders. With an increase in portal pressure, the portal vein will continue to dilate. We aimed to determine whether continuous stretch induced by portal hypertension may impair the function of endothelial cells (ECs) in the portal vein and aggravate the progress of portal hypertension and explore its mechanism. ECs were cultured on an elastic silicone membrane and subjected to continuous uniaxial stretch. Apoptosis and expression of TGF-β in ECs under stretch were measured. We found that sustained stretch induced the apoptosis of ECs in a stretch length-dependent manner. Compared with the control, continuous stretch increased the nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) expression and damaged the mitochondria, resulting in an evident increase in reactive oxygen species (ROS) levels; pretreatment with gp91ds-tat or MitoTEMPO decreased the ROS level in the intracellular levels. N-acetyl-cysteine (NAC) treatment before stretch not only reduced ROS levels but also mitigated the apoptosis of ECs; simvastatin had similar effects through targeting NOX2 and mitochondria. During the stretch, the phosphorylation of p38 mitogen-activated protein kinase (P38MAPK), c-Jun N-terminal kinase (JNK), and nuclear factor-kappa B (NF-κB) was obviously increased; pretreatment with P38MAPK or JNK inhibitors decreased the phosphorylation of NF-κB and TGF-β expression. Pyrrolidine dithiocarbamate (PDTC) treatment before stretch also reduced TGF-β expression. After pretreatment with NAC, the phosphorylation of P38MAPK, JNK, and NF-κB and TGF-β expressions in ECs under stretch was suppressed; similar results were observed in simvastatin-treated ECs. This study demonstrated that simvastatin could mitigate EC apoptosis and TGF-β upregulation induced by continuous stretch by reducing the level of ROS.
Collapse
|
25
|
Abstract
Emerging evidence has shown that bile acids play important roles in renal physiology and diseases by activating two major receptors, the nuclear farnesoid X receptor (FXR) and the membrane G protein-coupled bile acid receptor-1 (Gpbar1; also known as TGR5). Both FXR and TGR5 have been identified in human and rodent kidneys, where they are deeply involved in renal water handling. In mice, FXR- or TGR5-related gene deficiency has been associated with reduced aquaporin-2 expression accompanied with impaired urinary concentration ability. In this mini-review, we briefly discuss the current understanding of FXR/TGR5 signaling in the kidneys, with a special focus on the regulation of aquaporin-2 expression by bile acids in the collecting ducts and its potential significance in disease conditions.
Collapse
Affiliation(s)
- Suchun Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
26
|
Theiler-Schwetz V, Zaufel A, Schlager H, Obermayer-Pietsch B, Fickert P, Zollner G. Bile acids and glucocorticoid metabolism in health and disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:243-251. [DOI: 10.1016/j.bbadis.2018.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/18/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022]
|
27
|
Li S, Qiu M, Kong Y, Zhao X, Choi HJ, Reich M, Bunkelman BH, Liu Q, Hu S, Han M, Xie H, Rosenberg AZ, Keitel V, Kwon TH, Levi M, Li C, Wang W. Bile Acid G Protein-Coupled Membrane Receptor TGR5 Modulates Aquaporin 2-Mediated Water Homeostasis. J Am Soc Nephrol 2018; 29:2658-2670. [PMID: 30305310 DOI: 10.1681/asn.2018030271] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The bile acid-activated receptors, including the membrane G protein-coupled receptor TGR5 and nuclear farnesoid X receptor (FXR), have roles in kidney diseases. In this study, we investigated the role of TGR5 in renal water handling and the underlying molecular mechanisms. METHODS We used tubule suspensions of inner medullary collecting duct (IMCD) cells from rat kidneys to investigate the effect of TGR5 signaling on aquaporin-2 (AQP2) expression, and examined the in vivo effects of TGR5 in mice with lithium-induced nephrogenic diabetes insipidus (NDI) and Tgr5 knockout (Tgr5 -/-) mice. RESULTS Activation of TGR5 by lithocholic acid (LCA), an endogenous TGR5 ligand, or INT-777, a synthetic TGR5-specific agonist, induced AQP2 expression and intracellular trafficking in rat IMCD cells via a cAMP-protein kinase A signaling pathway. In mice with NDI, dietary supplementation with LCA markedly decreased urine output and increased urine osmolality, which was associated with significantly upregulated AQP2 expression in the kidney inner medulla. Supplementation with endogenous FXR agonist had no effect. In primary IMCD suspensions from lithium-treated rats, treatment with INT-767 (FXR and TGR5 dual agonist) or INT-777, but not INT-747 (FXR agonist), increased AQP2 expression. Tgr5 -/- mice exhibited an attenuated ability to concentrate urine in response to dehydration, which was associated with decreased AQP2 expression in the kidney inner medulla. In lithium-treated Tgr5 -/- mice, LCA treatment failed to prevent reduction of AQP2 expression. CONCLUSIONS TGR5 stimulation increases renal AQP2 expression and improves impaired urinary concentration in lithium-induced NDI. TGR5 is thus involved in regulating water metabolism in the kidney.
Collapse
Affiliation(s)
- Suchun Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Miaojuan Qiu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yonglun Kong
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoduo Zhao
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hyo-Jung Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Maria Reich
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Qiaojuan Liu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shan Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mengke Han
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haixia Xie
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Avi Z Rosenberg
- Department of Pathology and.,Division of Kidney Urologic Pathology, Johns Hopkins University, Baltimore, Maryland; and
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Düsseldorf, Germany
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China;
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China;
| |
Collapse
|
28
|
The P2X4 purinergic receptor regulates hepatic myofibroblast activation during liver fibrogenesis. J Hepatol 2018; 69:644-653. [PMID: 29802948 DOI: 10.1016/j.jhep.2018.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/07/2018] [Accepted: 05/14/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Liver fibrosis is characterized by the accumulation of extracellular matrix produced by hepatic myofibroblasts (hMF), the activation of which is critical to the fibrogenic process. Extracellular ATP, released by dying or stressed cells, and its purinergic receptors, constitute a powerful signaling network after injury. Although the purinergic receptor P2X4 (P2RX4) is highly expressed in the liver, its functions in hMF had never been investigated during liver fibrogenesis. METHODS In vivo, bile duct ligation was performed and methionine- and choline-deficient diet administered in wild-type and P2x4 knock-out (P2x4-KO) mice. In vitro, hMF were isolated from mouse (wild-type and P2x4-KO) and human liver. P2X4 pharmacological inhibition (in vitro and in vivo) and P2X4 siRNAs (in vitro) were used. Histological, biochemical and cell culture analysis allowed us to study P2X4 expression and its involvement in the regulation of fibrogenic and fibrolytic factors, as well as of hMF activation markers and properties. RESULTS P2X4 genetic invalidation or pharmacological inhibition protected mice from liver fibrosis and hMF accumulation after bile duct ligation or methionine- and choline-deficient diet. Human and mouse hMFs expressed P2X4, mainly in lysosomes. Invalidation of P2X4 in human and mouse hMFs blunted their activation marker expression and their fibrogenic properties. Finally, we showed that P2X4 regulates calcium entry and lysosomal exocytosis in hMF, impacting on ATP release, profibrogenic secretory profile, and transcription factor activation. CONCLUSION P2X4 expression and activation is critical for hMF to sustain their activated and fibrogenic phenotype. Therefore, the inactivation of P2X4 may be of therapeutic interest during liver fibrotic diseases. LAY SUMMARY During chronic injury, the liver often repairs with fibrotic tissue, which impairs liver function, and for which there is currently no treatment. We found that a previously unexplored pathway involving the purinergic receptor P2X4, can modulate fibrotic liver repair. Therefore, this receptor could be of interest in the development of novel therapies for fibrotic liver diseases.
Collapse
|
29
|
Iwen KA, Oelkrug R, Brabant G. Effects of thyroid hormones on thermogenesis and energy partitioning. J Mol Endocrinol 2018; 60:R157-R170. [PMID: 29434028 DOI: 10.1530/jme-17-0319] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 02/06/2018] [Indexed: 01/08/2023]
Abstract
Thyroid hormones (TH) are of central importance for thermogenesis, energy homeostasis and metabolism. Here, we will discuss these aspects by focussing on the physiological aspects of TH-dependent regulation in response to cold exposure and fasting, which will be compared to alterations in primary hyperthyroidism and hypothyroidism. In particular, we will summarise current knowledge on regional thyroid hormone status in the central nervous system (CNS) and in peripheral cells. In contrast to hyperthyroidism and hypothyroidism, where parallel changes are observed, local alterations in the CNS differ to peripheral compartments when induced by cold exposure or fasting. Cold exposure is associated with low hypothalamic TH concentrations but increased TH levels in the periphery. Fasting results in a reversed TH pattern. Primary hypothyroidism and hyperthyroidism disrupt these fine-tuned adaptive mechanisms and both, the hypothalamus and the periphery, will have the same TH status. These important mechanisms need to be considered when discussing thyroid hormone replacement and other therapeutical interventions to modulate TH status.
Collapse
Affiliation(s)
- K Alexander Iwen
- Medizinische Klinik IExperimentelle und Klinische Endokrinologie, Universität zu Lübeck, Lübeck, Germany
- Department of Molecular EndocrinologyCenter of Brain, Behavior and Metabolism, Universität zu Lübeck, Lübeck, Germany
| | - Rebecca Oelkrug
- Department of Molecular EndocrinologyCenter of Brain, Behavior and Metabolism, Universität zu Lübeck, Lübeck, Germany
| | - Georg Brabant
- Medizinische Klinik IExperimentelle und Klinische Endokrinologie, Universität zu Lübeck, Lübeck, Germany
- Department of EndocrinologyThe Christie Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
30
|
Ulmer TF, Weiland A, Lurje G, Klink C, Andert A, Alizai H, Heidenhain C, Neumann U. Comparative study of the effects of terlipressin versus splenectomy on liver regeneration after partial hepatectomy in rats. Hepatobiliary Pancreat Dis Int 2017; 16:506-511. [PMID: 28992883 DOI: 10.1016/s1499-3872(17)60036-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 03/14/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Post-hepatectomy liver failure as a result of insufficient liver remnant is a feared complication in liver surgery. Efforts have been made to find new strategies to support liver regeneration. The aim of this study was to investigate the effects of terlipressin versus splenectomy on postoperative liver function and liver regeneration in rats undergoing 70% partial hepatectomy. METHODS Seventy-two male Wistar rats were randomly assigned into three groups (n=24 in each group): 70% partial hepatectomy as control (PHC), 70% partial hepatectomy with splenectomy (PHS) or 70% partial hepatectomy with a micropump for terlipressin administration (PHT). Eight rats in each group were sacrificed on postoperative day (POD) 1, 3 and 7. To assess liver regeneration, immunohistochemical analysis of liver tissue using bromodeoxyuridine (BrdU) and Ki-67 labeling was performed. Portal venous pressure, serum concentrations of creatinine, urea, albumin, bilirubin and prothrombin time as well as liver-, body-weight and their ratio were determined on POD 1, 3 and 7. RESULTS The liver-, body-weight and their ratio were not statistically different among the groups. On POD 1, 3 and 7 portal venous pressure in the intervention groups (PHT: 8.13±1.55, 10.38±1.30, 6.25±0.89 cmH2O and PHS: 7.50±0.93, 8.88±2.42, 5.75±1.04 cmH2O) was lower compared to the control group (PHC: 8.63±2.06, 10.50±2.45, 6.50±2.67 cmH2O). Hepatocyte proliferation in the intervention groups was delayed, especially after splenectomy on POD 1 (BrdU: PHS vs PHC, 20.85%±13.05% vs 28.11%±10.10%; Ki-67, 20.14%±14.10% vs 23.96%±11.69%). However, none of the differences were statistically significant. CONCLUSIONS Neither the administration of terlipressin nor splenectomy improved liver regeneration after 70% partial hepatectomy in rats. Further studies assessing the regulation of portal venous pressure as well as extended hepatectomy animal models and liver function tests will help to further investigate mechanisms of liver regeneration.
Collapse
Affiliation(s)
- Tom Florian Ulmer
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany.
| | - Anne Weiland
- Department of Urology, Helios Hospital, Berlin-Buch, Germany
| | - Georg Lurje
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Christian Klink
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Anne Andert
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Hamid Alizai
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Christoph Heidenhain
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Ulf Neumann
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
31
|
Alvarez-Sola G, Uriarte I, Latasa MU, Jimenez M, Barcena-Varela M, Santamaría E, Urtasun R, Rodriguez-Ortigosa C, Prieto J, Berraondo P, Fernandez-Barrena MG, Berasain C, Avila MA. Bile acids, FGF15/19 and liver regeneration: From mechanisms to clinical applications. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1326-1334. [PMID: 28709961 DOI: 10.1016/j.bbadis.2017.06.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022]
Abstract
The liver has an extraordinary regenerative capacity rapidly triggered upon injury or resection. This response is intrinsically adjusted in its initiation and termination, a property termed the "hepatostat". Several molecules have been involved in liver regeneration, and among them bile acids may play a central role. Intrahepatic levels of bile acids rapidly increase after resection. Through the activation of farnesoid X receptor (FXR), bile acids regulate their hepatic metabolism and also promote hepatocellular proliferation. FXR is also expressed in enterocytes, where bile acids stimulate the expression of fibroblast growth factor 15/19 (FGF15/19), which is released to the portal blood. Through the activation of FGFR4 on hepatocytes FGF15/19 regulates bile acids synthesis and finely tunes liver regeneration as part of the "hepatostat". Here we review the experimental evidences supporting the relevance of the FXR-FGF15/19-FGFR4 axis in liver regeneration and discuss potential therapeutic applications of FGF15/19 in the prevention of liver failure. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Gloria Alvarez-Sola
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda. Pio XII, n 36, 31008 Pamplona, Spain
| | - Iker Uriarte
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda. Pio XII, n 36, 31008 Pamplona, Spain
| | - Maria U Latasa
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain
| | - Maddalen Jimenez
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain
| | - Marina Barcena-Varela
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain
| | - Eva Santamaría
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda. Pio XII, n 36, 31008 Pamplona, Spain
| | - Raquel Urtasun
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain
| | - Carlos Rodriguez-Ortigosa
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda. Pio XII, n 36, 31008 Pamplona, Spain; Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain
| | - Jesús Prieto
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda. Pio XII, n 36, 31008 Pamplona, Spain; Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain
| | - Pedro Berraondo
- Immunology and Immunotherapy Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain
| | - Maite G Fernandez-Barrena
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda. Pio XII, n 36, 31008 Pamplona, Spain; Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain
| | - Carmen Berasain
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda. Pio XII, n 36, 31008 Pamplona, Spain; Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain.
| | - Matías A Avila
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda. Pio XII, n 36, 31008 Pamplona, Spain; Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain.
| |
Collapse
|
32
|
Gonzalez-Sanchez E, Firrincieli D, Housset C, Chignard N. Expression patterns of nuclear receptors in parenchymal and non-parenchymal mouse liver cells and their modulation in cholestasis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1699-1708. [PMID: 28390947 DOI: 10.1016/j.bbadis.2017.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/02/2017] [Accepted: 04/04/2017] [Indexed: 12/19/2022]
Abstract
Nuclear receptors (NR), the largest family of transcription factors, control many physiological and pathological processes. To gain insight into hepatic NR and their potential as therapeutic targets in cholestatis, we determined their expression in individual cell types of the mouse liver in normal and cholestatic conditions. Hepatocytes, cholangiocytes, hepatic stellate cells (HSC), sinusoidal endothelial cells (SEC) and Kupffer cells (KC) were isolated from the liver of mice with acute or chronic cholestasis (i.e. bile duct-ligated or Abcb4-/- mice, respectively) and healthy controls. The expression of 43 out of the 49 NR was evidenced by RT-qPCR in one or several liver cell types. Expression of four NR was restricted to non-parenchymal liver cells. In normal conditions, NR were expressed at higher levels in individual cell types when compared to total liver. Half of the NR expressed in the liver had maximal expression in non-parenchymal cells. After bile duct ligation, NR mRNA changes occurred mostly in non-parenchymal cells and mainly consisted in down-regulations. In Abcb4-/- mice, NR mRNA changes were equally frequent in hepatocytes and non-parenchymal cells. Essentially down-regulations were found in hepatocytes, HSC and cholangiocytes, as opposed to up-regulations in SEC and KC. While undetectable in total liver, Vdr expression was up-regulated in all non-parenchymal cells in Abcb4-/- mice. In conclusion, non-parenchymal liver cells are a major site of NR expression. During cholestasis, NR expression is markedly altered mainly by down-regulations, suggesting major changes in metabolic activity. Thus, non-parenchymal cells are important new targets to consider in NR-directed therapies.
Collapse
Affiliation(s)
- Ester Gonzalez-Sanchez
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), F-75012 Paris, France.
| | - Delphine Firrincieli
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), F-75012 Paris, France.
| | - Chantal Housset
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), F-75012 Paris, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Centre de Référence Maladies Rares des Maladies Inflammatoires des Voies Biliaires & Service d'Hépatologie, F-75012 Paris, France.
| | - Nicolas Chignard
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), F-75012 Paris, France; Inovarion, F-75013 Paris, France.
| |
Collapse
|
33
|
Abstract
Liver possesses many critical functions such as synthesis, detoxification, and metabolism. It continually receives nutrient-rich blood from gut, which incidentally is also toxin-rich. That may be why liver is uniquely bestowed with a capacity to regenerate. A commonly studied procedure to understand the cellular and molecular basis of liver regeneration is that of surgical resection. Removal of two-thirds of the liver in rodents or patients instigates alterations in hepatic homeostasis, which are sensed by the deficient organ to drive the restoration process. Although the exact mechanisms that initiate regeneration are unknown, alterations in hemodynamics and metabolism have been suspected as important effectors. Key signaling pathways are activated that drive cell proliferation in various hepatic cell types through autocrine and paracrine mechanisms. Once the prehepatectomy mass is regained, the process of regeneration is adequately terminated. This review highlights recent discoveries in the cellular and molecular basis of liver regeneration.
Collapse
Affiliation(s)
- Morgan E. Preziosi
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania,Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Satdarshan P. Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania,Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania,Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
Bile acids and their receptors during liver regeneration: "Dangerous protectors". Mol Aspects Med 2017; 56:25-33. [PMID: 28302491 DOI: 10.1016/j.mam.2017.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/07/2017] [Accepted: 03/10/2017] [Indexed: 02/07/2023]
Abstract
Tissue repair is orchestrated by a finely tuned interplay between processes of regeneration, inflammation and cell protection, allowing organisms to restore their integrity after partial loss of cells or organs. An important, although largely unexplored feature is that after injury and during liver repair, liver functions have to be maintained to fulfill the peripheral demand. This is particularly critical for bile secretion, which has to be finely modulated in order to preserve liver parenchyma from bile-induced injury. However, mechanisms allowing the liver to maintain biliary homeostasis during repair after injury are not completely understood. Besides cytokines and growth factors, bile acids (BA) and their receptors constitute an insufficiently explored signaling network during liver regeneration and repair. BA signal through both nuclear (mainly Farnesoid X Receptor, FXR) and membrane (mainly G Protein-coupled BA Receptor 1, GPBAR-1 or TGR5) receptors which distributions are large in the organism, and which activation elicits a wide array of biological responses. While a number of studies have been dedicated to FXR signaling in liver repair processes, TGR5 remains poorly explored in this context. Because of the massive and potentially harmful BA overload that faces the remnant liver after partial ablation or destruction, both BA-induced adaptive and proliferative responses may stand in a central position to contribute to the regenerative response. Based on the available literature, both BA receptors may act in synergy during the regeneration process, in order to protect the remnant liver and maintain biliary homeostasis, otherwise potentially toxic BA overload would result in parenchymal insult and compromise optimal restoration of a functional liver mass.
Collapse
|
35
|
Donepudi AC, Boehme S, Li F, Chiang JY. G-protein-coupled bile acid receptor plays a key role in bile acid metabolism and fasting-induced hepatic steatosis in mice. Hepatology 2017; 65:813-827. [PMID: 27351453 PMCID: PMC5195921 DOI: 10.1002/hep.28707] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 06/12/2016] [Accepted: 06/20/2016] [Indexed: 12/25/2022]
Abstract
UNLABELLED Bile acids are signaling molecules that play a critical role in regulation of hepatic metabolic homeostasis by activating nuclear farnesoid X receptor (Fxr) and membrane G-protein-coupled receptor (Takeda G-protein-coupled receptor 5; Tgr5). The role of FXR in regulation of bile acid synthesis and hepatic metabolism has been studied extensively. However, the role of TGR5 in hepatic metabolism has not been explored. The liver plays a central role in lipid metabolism, and impaired response to fasting and feeding contributes to steatosis and nonalcoholic fatty liver and obesity. We have performed a detailed analysis of gallbladder bile acid and lipid metabolism in Tgr5-/- mice in both free-fed and fasted conditions. Lipid profiles of serum, liver and adipose tissues, bile acid composition, energy metabolism, and messenger RNA and protein expression of the genes involved in lipid metabolism were analyzed. Results showed that deficiency of the Tgr5 gene in mice alleviated fasting-induced hepatic lipid accumulation. Expression of liver oxysterol 7α-hydroxylase in the alternative bile acid synthesis pathway was reduced. Analysis of gallbladder bile acid composition showed marked increase of taurocholic acid and decrease of tauro-α and β-muricholic acid in Tgr5-/- mice. Tgr5-/- mice had increased hepatic fatty acid oxidation rate and decreased hepatic fatty acid uptake. Interestingly, fasting induction of fibroblast growth factor 21 in liver was attenuated. In addition, fasted Tgr5-/- mice had increased activation of hepatic growth hormone-signal transducer and activator of transcription 5 (GH-Stat5) signaling compared to wild-type mice. CONCLUSION TGR5 may play a role in determining bile acid composition and in fasting-induced hepatic steatosis through a novel mechanism involving activation of the GH-Stat5 signaling pathway. (Hepatology 2017;65:813-827).
Collapse
Affiliation(s)
- Ajay C. Donepudi
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Shannon Boehme
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Feng Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - John Y.L. Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| |
Collapse
|
36
|
Pałkowska-Goździk E, Bigos A, Rosołowska-Huszcz D. Type of sweet flavour carrier affects thyroid axis activity in male rats. Eur J Nutr 2016; 57:773-782. [PMID: 28040879 PMCID: PMC5845588 DOI: 10.1007/s00394-016-1367-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 12/14/2016] [Indexed: 01/15/2023]
Abstract
PURPOSE Non-nutritive sweeteners are the most widely used food additives worldwide. However, their metabolic outcomes are still a matter of controversy and their effect on the thyroid activity, a key regulator of metabolism, has not been previously studied. Therefore, we aim to determine the influence of the sweet type flavour carrier on selected parameters of thyroid axis activity. METHODS Male Sprague-Dawley rats (n = 105) were divided into 3 groups fed ad libitum for three weeks isocaloric diets (3.76 ± 0.5 kcal/g): two with the same sweet flavour intensity responded to 10% of sucrose (with sucrose-SC-and sucralose-SU) and one non-sweet diet (NS). To evaluate the post-ingested effects, animals were euthanised at fast and 30, 60, 120, 180 min after meal. RESULTS The results obtained indicate that both the presence and the type of sweet taste flavour carrier affect thyroid axis activity both at fasting and postprandial state. Compared to diet with sucrose which stimulates thyroid axis activity, sucralose addition diminishes thyroid hormone synthesis as thyroid peroxidase (TPO) activity, plasma thyroxine (T4), and triiodothyronine (T3) concentration was lower than in SC and NS while in non-sweet diet the lowest level of hepatic deiodinase type 1 (DIO1) and the highest reverse T3 (rT3) level indicate on altered thyroid hormone peripheral metabolism. CONCLUSION Both the presence and the type of sweet flavour carrier have a significant impact on thyroid axis activity. Our findings suggest that this organochlorine sweetener is metabolically active and might exacerbate metabolic disorders via an adverse effect on thyroid hormone metabolism.
Collapse
Affiliation(s)
- Ewelina Pałkowska-Goździk
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, University of Life Sciences in Warsaw-SGGW, Poland, Nowoursynowska 159c Street, 02-776, Warsaw, Poland.
| | - Anna Bigos
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, University of Life Sciences in Warsaw-SGGW, Poland, Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| | - Danuta Rosołowska-Huszcz
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, University of Life Sciences in Warsaw-SGGW, Poland, Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| |
Collapse
|
37
|
van Mierlo KMC, Schaap FG, Dejong CHC, Olde Damink SWM. Liver resection for cancer: New developments in prediction, prevention and management of postresectional liver failure. J Hepatol 2016; 65:1217-1231. [PMID: 27312944 DOI: 10.1016/j.jhep.2016.06.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED Hepatic failure is a feared complication that accounts for up to 75% of mortality after extensive liver resection. Despite improved perioperative care, the increasing complexity and extensiveness of surgical interventions, in combination with an expanding number of resections in patients with compromised liver function, still results in an incidence of postresectional liver failure (PLF) of 1-9%. Preventive measures aim to enhance future remnant liver size and function. Numerous non-invasive techniques to assess liver function and predict remnant liver volume are being developed, along with introduction of novel surgical strategies that augment growth of the future remnant liver. Detection of PLF is often too late and treatment is primarily symptomatic. Current therapeutic research focuses on ([bio]artificial) liver function support and regenerative medicine. In this review we discuss the current state and new developments in prediction, prevention and management of PLF, in light of novel insights into the aetiology of this complex syndrome. LAY SUMMARY Liver failure is the main cause of death after partial liver resection for cancer, and is presumably caused by an insufficient quantity and function of the liver remnant. Detection of liver failure is often too late, and current treatment focuses on relieve of symptoms. New research initiatives explore artificial support of liver function and stimulation of regrowth of the remnant liver.
Collapse
Affiliation(s)
- Kim M C van Mierlo
- Department of Surgery, Maastricht University Medical Centre & NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Frank G Schaap
- Department of Surgery, Maastricht University Medical Centre & NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Cornelis H C Dejong
- Department of Surgery, Maastricht University Medical Centre & NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands; GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Steven W M Olde Damink
- Department of Surgery, Maastricht University Medical Centre & NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands; Department of Surgery, Institute of Liver and Digestive Health, Royal Free Hospital, University College London, London, United Kingdom.
| |
Collapse
|
38
|
Besnard A, Gautherot J, Julien B, Tebbi A, Garcin I, Doignon I, Péan N, Gonzales E, Cassio D, Grosse B, Liu B, Safya H, Cauchois F, Humbert L, Rainteau D, Tordjmann T. The P2X4 purinergic receptor impacts liver regeneration after partial hepatectomy in mice through the regulation of biliary homeostasis. Hepatology 2016; 64:941-53. [PMID: 27301647 DOI: 10.1002/hep.28675] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/25/2016] [Indexed: 02/06/2023]
Abstract
UNLABELLED Many regulatory pathways are involved in liver regeneration after partial hepatectomy (PH), to initiate growth, protect liver cells, and sustain remnant liver functions. Extracellular adenosine triphosphate rises in blood and bile after PH and contributes to liver regeneration, although purinergic receptors and mechanisms remain to be precisely explored. In this work we analyzed during regeneration after PH the involvement of P2X4 purinergic receptors, highly expressed in the liver. P2X4 receptor expression in the liver, liver histology, hepatocyte proliferation, plasma bile acid concentration, bile flow and composition, and lysosome distribution in hepatocytes were studied in wild-type and P2X4 knockout (KO) mice, before and after PH. P2X4 receptors were expressed in hepatocytes and Kupffer cells; in hepatocytes, P2X4 was concentrated in subcanalicular areas closely costained with lysosomal markers. After PH, delayed regeneration, hepatocyte necrosis, and cholestasis were observed in P2X4-KO mice. In P2X4-KO mice, post-PH biliary adaptation was impaired with a smaller increase in bile flow and HCO3 (-) biliary output, as well as altered biliary composition with reduced adenosine triphosphate and lysosomal enzyme release. In line with these data, lysosome distribution and biogenesis were altered in P2X4-KO compared with wild-type mice. CONCLUSION During liver regeneration after PH, P2X4 contributes to the complex control of biliary homeostasis through mechanisms involving pericanalicular lysosomes, with a resulting impact on hepatocyte protection and proliferation. (Hepatology 2016;64:941-953).
Collapse
Affiliation(s)
- Aurore Besnard
- INSERM U1174, Université Paris Sud, Orsay, France.,Université Paris Sud, Orsay, France.,UPMC, Université Paris 06, Paris, France
| | - Julien Gautherot
- INSERM U1174, Université Paris Sud, Orsay, France.,Université Paris Sud, Orsay, France
| | - Boris Julien
- INSERM U1174, Université Paris Sud, Orsay, France.,Université Paris Sud, Orsay, France
| | - Ali Tebbi
- INSERM U1174, Université Paris Sud, Orsay, France.,Université Paris Sud, Orsay, France
| | - Isabelle Garcin
- INSERM U1174, Université Paris Sud, Orsay, France.,Université Paris Sud, Orsay, France
| | - Isabelle Doignon
- INSERM U1174, Université Paris Sud, Orsay, France.,Université Paris Sud, Orsay, France
| | - Noémie Péan
- INSERM U1174, Université Paris Sud, Orsay, France.,Université Paris Sud, Orsay, France
| | - Emmanuel Gonzales
- INSERM U1174, Université Paris Sud, Orsay, France.,Université Paris Sud, Orsay, France.,Hépatologie pédiatrique, Hôpital du Kremlin Bicêtre, Le Kremlin Bicêtre, France
| | - Doris Cassio
- INSERM U1174, Université Paris Sud, Orsay, France.,Université Paris Sud, Orsay, France
| | - Brigitte Grosse
- INSERM U1174, Université Paris Sud, Orsay, France.,Université Paris Sud, Orsay, France
| | - Bingkaï Liu
- INSERM U1174, Université Paris Sud, Orsay, France.,Université Paris Sud, Orsay, France
| | - Hanaa Safya
- INSERM U1174, Université Paris Sud, Orsay, France.,Université Paris Sud, Orsay, France
| | - Florent Cauchois
- INSERM U1174, Université Paris Sud, Orsay, France.,Université Paris Sud, Orsay, France
| | - Lydie Humbert
- UPMC, Université Paris 06, Paris, France.,ERL INSERM U 1057, Faculté de Médecine Pierre et Marie Curie, Paris, France
| | - Dominique Rainteau
- UPMC, Université Paris 06, Paris, France.,ERL INSERM U 1057, Faculté de Médecine Pierre et Marie Curie, Paris, France
| | - Thierry Tordjmann
- INSERM U1174, Université Paris Sud, Orsay, France.,Université Paris Sud, Orsay, France
| |
Collapse
|
39
|
Starlinger P, Haegele S, Offensperger F, Oehlberger L, Pereyra D, Kral JB, Schrottmaier WC, Badrnya S, Reiberger T, Ferlitsch A, Stift J, Luf F, Brostjan C, Gruenberger T, Assinger A. The profile of platelet α-granule released molecules affects postoperative liver regeneration. Hepatology 2016; 63:1675-88. [PMID: 26528955 DOI: 10.1002/hep.28331] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/31/2015] [Indexed: 12/14/2022]
Abstract
UNLABELLED Platelets promote liver regeneration through site-specific serotonin release from dense granules, triggering proliferative signaling in hepatocytes. However, the effects of factors derived from platelet α-granules on liver regeneration are unclear, because α-granules contain bioactive molecules with opposing functions. Because α-granule molecules are stored in separate compartments, it has been suggested that platelets selectively release their α-granule content dependent on the environmental stimulus. Therefore, we investigated the pattern of circulating α-granule molecules during liver regeneration in 157 patients undergoing partial hepatectomy. We measured plasma levels of α-granule-derived factors in the liver vein at the end of liver resection, as well as on the first postoperative day. We observed a rapid accumulation of platelets within the liver after induction of liver regeneration. Platelet count and P-selectin (a ubiquitous cargo of α-granules) were not associated with postoperative liver dysfunction. However, low plasma levels of vascular endothelial growth factor (VEGF), but high levels of thrombospondin 1 (TSP-1), predicted liver dysfunction after resection. Patients with an unfavorable postoperative α-granule release profile (high TSP-1/low VEGF) showed substantially worse postoperative clinical outcomes. The unfavorable postoperative α-granule release profile was associated with increased postoperative portal venous pressure and von Willebrand factor antigen levels as a marker for intrahepatic endothelial dysfunction. CONCLUSION The postoperative profile of circulating platelet-derived factors correlates with the ability of the remnant liver to regenerate. Portal venous pressure and intrahepatic endothelial dysfunction might account for the selective granule release profile. Selective modulation of platelet α-granule release in patients may represent an attractive target for therapeutic interventions to improve liver regeneration and clinical outcomes after partial hepatectomy.
Collapse
Affiliation(s)
- Patrick Starlinger
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Stefanie Haegele
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Florian Offensperger
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Lukas Oehlberger
- Department of Surgery I, Rudolfstiftung Hospital, Vienna, Austria
| | - David Pereyra
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Julia B Kral
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Sigrun Badrnya
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Department of Gastroenterology and Hepatology, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Arnulf Ferlitsch
- Department of Gastroenterology and Hepatology, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Judith Stift
- Department of Pathology, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Florian Luf
- Department of Anesthesiology, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | | | - Alice Assinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
40
|
van de Laarschot LFM, Jansen PLM, Schaap FG, Olde Damink SWM. The role of bile salts in liver regeneration. Hepatol Int 2016; 10:733-40. [PMID: 27048617 PMCID: PMC5003899 DOI: 10.1007/s12072-016-9723-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/08/2016] [Indexed: 12/11/2022]
Abstract
A growing body of evidence has demonstrated that bile salts are important for liver regeneration following partial hepatectomy. The relative bile salt overload after partial liver resection causes activation of bile salt receptors in non-parenchymal (viz. the plasma membrane receptor TGR5) and parenchymal (viz. the intracellular receptor FXR) cells in the liver, thus, providing signals to the regenerative process. Impaired bile salt signaling in mice with genetic deficiency of Tgr5 or Fxr results in delayed liver regeneration after partial hepatectomy, and is accompanied by mortality in case of Fxr knock-out mice. Conversely, compensatory liver re-growth in hepatectomized mice can be stimulated by feeding of bile salts or alisol B 23-acetate, a natural triterpenoid agonist of Fxr. A large number of animal studies underscore the importance of strict maintenance of bile salt homeostasis for proper progression of liver regeneration. Both ileal and hepatic Fxr play a key role in regulation of bile salt homeostasis and, thus, preventing hepatotoxicity caused by excessive levels of bile salts. They further contribute to liver regeneration by induction of mitogenic factors. Agents that target bile salt receptors hold promise as drugs to stimulate liver regeneration in selected patients.
Collapse
Affiliation(s)
- Liyanne F M van de Laarschot
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, PO BOX 616, 6200 MD, Maastricht, The Netherlands
| | - Peter L M Jansen
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, PO BOX 616, 6200 MD, Maastricht, The Netherlands
| | - Frank G Schaap
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, PO BOX 616, 6200 MD, Maastricht, The Netherlands.
| | - Steven W M Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, PO BOX 616, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
41
|
Abstract
Bile acids (BA), long believed to only have lipid-digestive functions, have emerged as novel metabolic modulators. They have important endocrine effects through multiple cytoplasmic as well as nuclear receptors in various organs and tissues. BA affect multiple functions to control energy homeostasis, as well as glucose and lipid metabolism, predominantly by activating the nuclear farnesoid X receptor and the cytoplasmic G protein-coupled BA receptor TGR5 in a variety of tissues. However, BA also are aimed at many other cellular targets in a wide array of organs and cell compartments. Their role in the pathogenesis of diabetes, obesity and other 'diseases of civilization' becomes even more clear. They also interact with the gut microbiome, with important clinical implications, further extending the complexity of their biological functions. Therefore, it is not surprising that BA metabolism is substantially modulated by bariatric surgery, a phenomenon contributing favorably to the therapeutic effects of these surgical procedures. Based on these data, several therapeutic approaches to ameliorate obesity and diabetes have been proposed to affect the cellular targets of BA.
Collapse
Affiliation(s)
- Libor Vítek
- Fourth Department of Internal MedicineFirst Faculty of Medicine, Charles University, Na Bojišti 3, Prague 2 12000, Czech RepublicInstitute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of Medicine, Charles University, Prague, Czech RepublicInstitute of EndocrinologyCharles University, Prague, Czech Republic Fourth Department of Internal MedicineFirst Faculty of Medicine, Charles University, Na Bojišti 3, Prague 2 12000, Czech RepublicInstitute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of Medicine, Charles University, Prague, Czech RepublicInstitute of EndocrinologyCharles University, Prague, Czech Republic
| | - Martin Haluzík
- Fourth Department of Internal MedicineFirst Faculty of Medicine, Charles University, Na Bojišti 3, Prague 2 12000, Czech RepublicInstitute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of Medicine, Charles University, Prague, Czech RepublicInstitute of EndocrinologyCharles University, Prague, Czech Republic Fourth Department of Internal MedicineFirst Faculty of Medicine, Charles University, Na Bojišti 3, Prague 2 12000, Czech RepublicInstitute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of Medicine, Charles University, Prague, Czech RepublicInstitute of EndocrinologyCharles University, Prague, Czech Republic
| |
Collapse
|
42
|
Berasain C, Avila MA. Regulation of hepatocyte identity and quiescence. Cell Mol Life Sci 2015; 72:3831-51. [PMID: 26089250 PMCID: PMC11114060 DOI: 10.1007/s00018-015-1970-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/23/2015] [Accepted: 06/12/2015] [Indexed: 12/11/2022]
Abstract
The liver is a highly differentiated organ with a central role in metabolism, detoxification and systemic homeostasis. To perform its multiple tasks, liver parenchymal cells, the hepatocytes, express a large complement of enabling genes defining their complex phenotype. This phenotype is progressively acquired during fetal development and needs to be maintained in adulthood to guarantee the individual's survival. Upon injury or loss of functional mass, the liver displays an extraordinary regenerative response, mainly based on the proliferation of hepatocytes which otherwise are long-lived quiescent cells. Increasing observations suggest that loss of hepatocellular differentiation and quiescence underlie liver malfunction in chronic liver disease and pave the way for hepatocellular carcinoma development. Here, we briefly review the essential mechanisms leading to the acquisition of liver maturity. We also identify the key molecular factors involved in the preservation of hepatocellular homeostasis and finally discuss potential strategies to preserve liver identity and function.
Collapse
Affiliation(s)
- Carmen Berasain
- Division of Hepatology, CIMA, University of Navarra, CIBEREHD, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avda. Pio XII, n55, 31008, Pamplona, Spain.
| | - Matías A Avila
- Division of Hepatology, CIMA, University of Navarra, CIBEREHD, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avda. Pio XII, n55, 31008, Pamplona, Spain.
| |
Collapse
|
43
|
Gilgenkrantz H, Tordjmann T. Bile acids and FGF receptors: orchestrators of optimal liver regeneration. Gut 2015; 64:1351-2. [PMID: 25654989 DOI: 10.1136/gutjnl-2014-308746] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/14/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Hélène Gilgenkrantz
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris-Descartes, Paris, France
| | | |
Collapse
|
44
|
Jourdainne V, Péan N, Doignon I, Humbert L, Rainteau D, Tordjmann T. The Bile Acid Receptor TGR5 and Liver Regeneration. Dig Dis 2015; 33:319-26. [PMID: 26045264 DOI: 10.1159/000371668] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Most of the literature on the bile acid (BA) membrane receptor TGR5 is dedicated to its potential role in the metabolic syndrome, through its regulatory impact on energy expenditure, insulin and GLP-1 secretion, and inflammatory processes. While the receptor was cloned in 2002, very little data are available on TGR5 functions in the normal and diseased liver. However, TGR5 is highly expressed in Kupffer cells and liver endothelial cells, and is particularly enriched in the biliary tract [cholangiocytes and gallbladder (GB) smooth muscle cells]. We recently demonstrated that TGR5 has a crucial protective impact on the liver in case of BA overload, including after partial hepatectomy. KEY MESSAGES TGR5-KO mice after PH exhibited periportal bile infarcts, excessive hepatic inflammation and defective adaptation of biliary composition (bicarbonate and chloride). Most importantly, TGR5-KO mice had a more hydrophobic BA pool, with more secondary BA than WT animals, suggesting that TGR5-KO bile may be harmful for the liver, mainly in situations of BA overload. As GB is both the tissue displaying the highest level of TGR5 expression and a crucial physiological site for the regulation of BA pool hydrophobicity by reducing secondary BA, we investigated whether TGR5 may control BA pool composition through an impact on GB. Preliminary data suggest that in the absence of TGR5, reduced GB filling dampens the cholecystohepatic shunt, resulting in more secondary BA, more hydrophobic BA pool and extensive liver injury in case of BA overload. CONCLUSIONS In the setting of BA overload, TGR5 is protective of the liver through the regulation of not only secretory and inflammatory processes, but also through the control of BA pool composition, at least in part by targeting the GB. Thereby, TGR5 appears to be crucial for protecting the regenerating liver from BA overload.
Collapse
|
45
|
Beuers U, Trauner M, Jansen P, Poupon R. New paradigms in the treatment of hepatic cholestasis: from UDCA to FXR, PXR and beyond. J Hepatol 2015; 62:S25-37. [PMID: 25920087 DOI: 10.1016/j.jhep.2015.02.023] [Citation(s) in RCA: 374] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/16/2015] [Accepted: 02/16/2015] [Indexed: 02/08/2023]
Abstract
Cholestasis is an impairment of bile formation/flow at the level of the hepatocyte and/or cholangiocyte. The first, and for the moment, most established medical treatment is the natural bile acid (BA) ursodeoxycholic acid (UDCA). This secretagogue improves, e.g. in intrahepatic cholestasis of pregnancy or early stage primary biliary cirrhosis, impaired hepatocellular and cholangiocellular bile formation mainly by complex post-transcriptional mechanisms. The limited efficacy of UDCA in various cholestatic conditions urges for development of novel therapeutic approaches. These include nuclear and membrane receptor agonists and BA derivatives. The nuclear receptors farnesoid X receptor (FXR), retinoid X receptor (RXR), peroxisome proliferator-activated receptor α (PPARα), and pregnane X receptor (PXR) are transcriptional modifiers of bile formation and at present are under investigation as promising targets for therapeutic interventions in cholestatic disorders. The membrane receptors fibroblast growth factor receptor 4 (FGFR4) and apical sodium BA transporter (ASBT) deserve attention as additional therapeutic targets, as does the potential therapeutic agent norUDCA, a 23-C homologue of UDCA. Here, we provide an overview on established and future promising therapeutic agents and their potential molecular mechanisms and sites of action in cholestatic diseases.
Collapse
Affiliation(s)
- Ulrich Beuers
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Centre University of Amsterdam, Amsterdam, The Netherlands.
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria
| | - Peter Jansen
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Centre University of Amsterdam, Amsterdam, The Netherlands
| | - Raoul Poupon
- UPMC Université Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service d'Hépatologie, F-75012 Paris, France
| |
Collapse
|
46
|
Ren W, Chen G, Wang X, Zhang A, Li C, Lv W, Pan K, Dong JH. Simultaneous bile duct and portal vein ligation induces faster atrophy/hypertrophy complex than portal vein ligation: role of bile acids. Sci Rep 2015; 5:8455. [PMID: 25678050 PMCID: PMC4326731 DOI: 10.1038/srep08455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/19/2015] [Indexed: 12/31/2022] Open
Abstract
Portal vein ligation (PVL) induces atrophy/hypertrophy complex (AHC). We hypothesised that simultaneous bile duct and portal vein ligation (BPL) might induce proper bile acid (BA) retention to enhance AHC by activating BA-mediated FXR signalling in the intact liver and promoting apoptosis in the ligated liver. We established rat models of 90% BPL and 90% PVL and found that BPL was well-tolerated and significantly accelerated AHC. The enhanced BA retention in the intact liver promoted hepatocyte proliferation by promoting the activation of FXR signalling, while that in the ligated liver intensified caspase3-mediated apoptosis. Decreasing the BA pools in the rats that underwent BPL could compromise these effects, whereas increasing the bile acid pools of rats that underwent PVL could induce similar effects. Second-stage resection of posterior-caudate-lobe-spearing hepatectomy was performed 5 days after BPL (B-Hx), PVL (V-Hx) or sham (S-SHx), as well as whole-caudate-lobe-spearing hepatectomy 5 days after sham (S-Hx). The B-Hx group had the most favourable survival rate (93.3%, the S-SHx group 0%, the S-Hx group 26.7%, the V-Hx group 56.7%, P < 0.01) and the most sustained regeneration. We conclude that BPL is a safe and effective method, and the acceleration of AHC was bile acid-dependent.
Collapse
Affiliation(s)
- Weizheng Ren
- Department & Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing, China
| | - Geng Chen
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University
| | - Xiaofeng Wang
- Department & Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing, China
| | - Aiqun Zhang
- Department & Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing, China
| | - Chonghui Li
- Department & Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing, China
| | - Wenping Lv
- Department & Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing, China
| | - Ke Pan
- Department & Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing, China
| | - Jia-hong Dong
- Department & Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
47
|
Sonne DP, Lund A, Faber J, Holst JJ, Vilsbøll T, Knop FK. On the role of gallbladder emptying and incretin hormones for nutrient-mediated TSH suppression in patients with type 2 diabetes. Endocr Connect 2014; 3:193-9. [PMID: 25277744 PMCID: PMC4201783 DOI: 10.1530/ec-14-0088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bile acids are possible candidate agents in newly identified pathways through which energy expenditure may be regulated. Preclinical studies suggest that bile acids activate the enzyme type 2 iodothyronine deiodinase, which deiodinates thyroxine (T4) to the biologically active triiodothyronine (T3). We aimed to evaluate the influence of bile acid exposure and incretin hormones on thyroid function parameters in patients with type 2 diabetes. Thyroid-stimulating hormone (TSH) and thyroid hormones (total T3 and free T4) were measured in plasma from two human studies: i) 75 g-oral glucose tolerance test (OGTT) and three isocaloric (500 kcal) and isovolaemic (350 ml) liquid meals with increasing fat content with concomitant ultrasonographic evaluation of gallbladder emptying in 15 patients with type 2 diabetes and 15 healthy age, gender and BMI-matched controls (meal-study) and ii) 50 g-OGTT and isoglycaemic intravenous glucose infusions (IIGI) alone or in combination with glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP1) and/or GLP2, in ten patients with type 2 diabetes (IIGI-study). In both studies, TSH levels declined (P<0.01) similarly following all meal and infusion stimuli. T3 and T4 concentrations did not change in response to any of the applied stimuli. TSH levels declined independently of the degree of gallbladder emptying (meal-study), route of nutrient administration and infusion of gut hormones. In conclusion, intestinal bile flow and i.v. infusions of the gut hormones, GIP, GLP1 and/or GLP2, do not seem to affect thyroid function parameters. Thus, the presence of a 'gut-thyroid-pituitary' axis seems questionable.
Collapse
Affiliation(s)
- David P Sonne
- Department of MedicineCenter for Diabetes Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900 Hellerup, DenmarkDepartment of Biomedical SciencesFaculty of Health and Medical Sciences, The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DenmarkDepartment of EndocrinologyHerlev Hospital, University of Copenhagen, Herlev, Denmark Department of MedicineCenter for Diabetes Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900 Hellerup, DenmarkDepartment of Biomedical SciencesFaculty of Health and Medical Sciences, The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DenmarkDepartment of EndocrinologyHerlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Asger Lund
- Department of MedicineCenter for Diabetes Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900 Hellerup, DenmarkDepartment of Biomedical SciencesFaculty of Health and Medical Sciences, The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DenmarkDepartment of EndocrinologyHerlev Hospital, University of Copenhagen, Herlev, Denmark Department of MedicineCenter for Diabetes Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900 Hellerup, DenmarkDepartment of Biomedical SciencesFaculty of Health and Medical Sciences, The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DenmarkDepartment of EndocrinologyHerlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Jens Faber
- Department of MedicineCenter for Diabetes Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900 Hellerup, DenmarkDepartment of Biomedical SciencesFaculty of Health and Medical Sciences, The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DenmarkDepartment of EndocrinologyHerlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Jens J Holst
- Department of MedicineCenter for Diabetes Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900 Hellerup, DenmarkDepartment of Biomedical SciencesFaculty of Health and Medical Sciences, The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DenmarkDepartment of EndocrinologyHerlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Tina Vilsbøll
- Department of MedicineCenter for Diabetes Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900 Hellerup, DenmarkDepartment of Biomedical SciencesFaculty of Health and Medical Sciences, The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DenmarkDepartment of EndocrinologyHerlev Hospital, University of Copenhagen, Herlev, Denmark Department of MedicineCenter for Diabetes Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900 Hellerup, DenmarkDepartment of Biomedical SciencesFaculty of Health and Medical Sciences, The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DenmarkDepartment of EndocrinologyHerlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Filip K Knop
- Department of MedicineCenter for Diabetes Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900 Hellerup, DenmarkDepartment of Biomedical SciencesFaculty of Health and Medical Sciences, The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DenmarkDepartment of EndocrinologyHerlev Hospital, University of Copenhagen, Herlev, Denmark Department of MedicineCenter for Diabetes Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900 Hellerup, DenmarkDepartment of Biomedical SciencesFaculty of Health and Medical Sciences, The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DenmarkDepartment of EndocrinologyHerlev Hospital, University of Copenhagen, Herlev, Denmark
| |
Collapse
|
48
|
Tackett BC, Sun H, Mei Y, Maynard JP, Cheruvu S, Mani A, Hernandez-Garcia A, Vigneswaran N, Karpen SJ, Thevananther S. P2Y2 purinergic receptor activation is essential for efficient hepatocyte proliferation in response to partial hepatectomy. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1073-87. [PMID: 25301185 PMCID: PMC4254960 DOI: 10.1152/ajpgi.00092.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 09/30/2014] [Indexed: 01/31/2023]
Abstract
Extracellular nucleotides via activation of P2 purinergic receptors influence hepatocyte proliferation and liver regeneration in response to 70% partial hepatectomy (PH). Adult hepatocytes express multiple P2Y (G protein-coupled) and P2X (ligand-gated ion channels) purinergic receptor subtypes. However, the identity of key receptor subtype(s) important for efficient hepatocyte proliferation in regenerating livers remains unknown. To evaluate the impact of P2Y2 purinergic receptor-mediated signaling on hepatocyte proliferation in regenerating livers, wild-type (WT) and P2Y2 purinergic receptor knockout (P2Y2-/-) mice were subjected to 70% PH. Liver tissues were analyzed for activation of early events critical for hepatocyte priming and subsequent cell cycle progression. Our findings suggest that early activation of p42/44 ERK MAPK (5 min), early growth response-1 (Egr-1) and activator protein-1 (AP-1) DNA-binding activity (30 min), and subsequent hepatocyte proliferation (24-72 h) in response to 70% PH were impaired in P2Y2-/- mice. Interestingly, early induction of cytokines (TNF-α, IL-6) and cytokine-mediated signaling (NF-κB, STAT-3) were intact in P2Y2-/- remnant livers, uncovering the importance of cytokine-independent and nucleotide-dependent early priming events critical for subsequent hepatocyte proliferation in regenerating livers. Hepatocytes isolated from the WT and P2Y2-/- mice were treated with ATP or ATPγS for 5-120 min and 12-24 h. Extracellular ATP alone, via activation of P2Y2 purinergic receptors, was sufficient to induce ERK phosphorylation, Egr-1 protein expression, and key cyclins and cell cycle progression of hepatocytes in vitro. Collectively, these findings highlight the functional significance of P2Y2 purinergic receptor activation for efficient hepatocyte priming and proliferation in response to PH.
Collapse
Affiliation(s)
- Bryan C Tackett
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Texas Children's Liver Center, Houston, Texas; Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Hongdan Sun
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Texas Children's Liver Center, Houston, Texas
| | - Yu Mei
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Texas Children's Liver Center, Houston, Texas
| | - Janielle P Maynard
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Texas Children's Liver Center, Houston, Texas; Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Sayuri Cheruvu
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Texas Children's Liver Center, Houston, Texas
| | - Arunmani Mani
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Texas Children's Liver Center, Houston, Texas
| | | | - Nadarajah Vigneswaran
- Department of Diagnostic Sciences, University of Texas Dental Branch in Houston, Houston, Texas
| | - Saul J Karpen
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Texas Children's Liver Center, Houston, Texas; Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Sundararajah Thevananther
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Texas Children's Liver Center, Houston, Texas; Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas;
| |
Collapse
|
49
|
Elevated liver regeneration in response to pharmacological reduction of elevated portal venous pressure by terlipressin after partial hepatectomy. Transplantation 2014; 97:892-900. [PMID: 24621531 DOI: 10.1097/tp.0000000000000045] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Liver regeneration is of crucial importance for patients undergoing living liver transplantations or extended liver resections and can be associated with elevated portal venous pressure, impaired hepatic regeneration, and postoperative morbidity. The aim of this study was to assess whether reduction of portal venous pressure by terlipressin improves postoperative liver regeneration in normal and steatotic livers after partial hepatectomy in a rodent model. METHODS Portal venous pressure was assessed after minor (30%), standard (60%), or extended (80%) partial hepatectomy (PH) in mice with and without liver steatosis. Liver regeneration was assessed by BrdU incorporation and Ki-67 immunostaining. RESULTS Portal venous pressure was significantly elevated post-PH in mice with normal and steatotic livers compared to sham-operated mice. Reduction of elevated portal pressure after 80% PH by terlipressin was associated with an increase of hepatocellular proliferation. In steatotic livers, animals treated with terlipressin had an increase in liver regeneration after 30% PH and increased survival after 60% PH. Mechanistically, terlipressin alleviated IL-6 mRNA expression following PH and down-regulated p21 and GADD45 mRNA suggesting a reduction of cell cycle inhibition and cellular stress. CONCLUSIONS Reduction of elevated portal pressure post-PH by the use of terlipressin improves liver regeneration after PH in lean and steatotic mouse livers.
Collapse
|
50
|
Abstract
BACKGROUND & AIMS Many signals governing liver regeneration (LR) following 2/3 partial hepatectomy (PH) are recognized, but the primary signal(s) remains unknown. The aim of the study was to confirm that the remnant liver after PH lacks capacity to secrete the BA pool returning via the enterohepatic ciruculation (EHC), which may in turn stimulate LR. METHODS After standard PH, BA flux was documented and BA signaling (Fgf15) and synthesis (Cyp7a) determined by qPCR. Rat biliary fistula (BF) and Asbt knockout mouse models interrupted the EHC prior to PH, and standard assays for LR employed along with complete RNA sequencing. CCl4 intoxication after BF tested the hypothesis in an alternate injury model. RESULTS BA rise in systemic blood immediately following PH, confirming that the remnant liver cannot handle the BA returning via portal circulation. When the BA pool is drained prior to PH in the rat BF model, LR is markedly attenuated, a phenomenon reversed with duodenal BA replacement. Hepatocyte proliferation is similarly attenuated after PH in the Asbt knockout mouse as well as after CCl44 intoxication in rats with BF. Complete RNA sequencing in the rat PH model shows that early c-jun and AP-1 gene expression pathways are down regulated in the absence of BA, coincident with attenuated LR. CONCLUSIONS Absent BA return to the liver after PH or CCl4 injury markedly attenuates LR, though hepatocyte proliferation still occurs, inferring that BA flux and signaling are not the sole signals governing LR. Transcriptional networks involving c-jun and AP-1 are involved in the BA-specific effects on hepatocyte proliferation.
Collapse
Affiliation(s)
- Willscott E. Naugler
- Dept. of Medicine, Division of GI & Hepatology, Oregon Health & Science Center, Portland, Oregon, United States of America
- Oregon Stem Cell Center, Oregon Health & Science Center, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|