1
|
Samavat J, Boachie J, McTernan PG, Christian M, Saravanan P, Adaikalakoteswari A. Maternal B12 deficiency during pregnancy dysregulates fatty acid metabolism and induces inflammation in human adipose tissue. BMC Med 2025; 23:232. [PMID: 40264186 PMCID: PMC12016209 DOI: 10.1186/s12916-025-04056-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Adipose tissue (AT) responds to excess calorie intake; however, the deficit in micronutrients accompanied by the modern lifestyle is often overlooked. Micronutrient deficiency in pregnancy, particularly vitamin B12 (B12), is commonly associated with higher adiposity, dyslipidemia, and type 2 diabetes (T2D). Studies have demonstrated that dyslipidemia can trigger pro-inflammatory status. However, the release of the pro-inflammatory factors in a tissue-specific micronutrient deficient environment is unexplored. Therefore, we investigated the role of B12 deficiency on lipid metabolism and inflammatory mediators in both in vitro and ex vivo models including human pre-adipocytes, primary adipocytes, mature human white AT (WAT), and its association with metabolic risk. METHODS Paired abdominal subcutaneous and omental WAT (ScWAT and OmWAT) were chosen based on serum B12 (< 150 pM) from 115 Caucasian pregnant women. Human primary Sc adipocytes from women with different BMI (lean, overweight, obese, morbidly obese) and pre-adipocyte cell line (Chub-S7) were differentiated in various concentrations of B12. Serum B12, folate, lipids, cytokines, biochemical parameters, gene expression, intracellular triglyceride (TG), and mitochondrial function were assessed. RESULTS In pregnant women with low B12 levels, BMI and serum TG were significantly higher, and high-density lipoprotein (HDL) was lower (p < 0.05). B12 deficiency in both depots of AT correlated with higher expression of genes in fatty acid (FA) synthesis, elongation, desaturation, TG synthesis, and reduced fatty acid oxidation (FAO) (p < 0.05). In vitro adipocytes with low B12 demonstrated that TG synthesis utilizing radiolabeled FA was higher and mitochondrial function was impaired. We also found that the expression of pro-inflammatory cytokines in AT was increased, and circulatory cytokines inversely associated with serum B12 (p < 0.05). CONCLUSIONS Our novel data highlights that B12 deficiency dysregulates lipids and induces inflammation in AT and circulation, which could contribute to adipocyte dysfunction exacerbating cardiometabolic risk during pregnancy.
Collapse
Affiliation(s)
- Jinous Samavat
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| | - Joseph Boachie
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
- Department of Medical Laboratory Technology, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Philip G McTernan
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8 NS, UK
- De Montfort University, The Newarke, Leicester, LE1 9BH, UK
| | - Mark Christian
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8 NS, UK
| | - Ponnusamy Saravanan
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
- Department of Diabetes, Endocrinology and Metabolism, George Eliot Hospital, Nuneaton, Warwickshire, CV10 7DJ, UK
- Centre for Global Health, Warwick Medical School, University of Warwick, Coventry, UK
| | - Antonysunil Adaikalakoteswari
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK.
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8 NS, UK.
| |
Collapse
|
2
|
Basil B, Myke-Mbata BK, Eze OE, Akubue AU. From adiposity to steatosis: metabolic dysfunction-associated steatotic liver disease, a hepatic expression of metabolic syndrome - current insights and future directions. Clin Diabetes Endocrinol 2024; 10:39. [PMID: 39617908 PMCID: PMC11610122 DOI: 10.1186/s40842-024-00187-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/20/2024] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing health concern and the risk of its development is connected with the increasing prevalence of metabolic syndrome (MetS) which occurs as a result of some complex obesity-induced metabolic changes. It is a common chronic liver disease characterized by excessive fat accumulation in the liver, the tendency to progress to more severe forms, and a corresponding increase in morbidity and mortality. Thus, effectively addressing the rising burden of the disease requires a thorough understanding of its complex interrelationship with obesity and MetS. MAIN BODY MASLD results from complex interactions involving obesity, insulin resistance, and dyslipidaemia, leading to hepatic lipid accumulation, and is influenced by several genetic and environmental factors such as diet and gut microbiota dysbiosis. It has extensive metabolic and non-metabolic implications, including links to MetS components like hyperglycaemia, hypertension, and dyslipidaemia, and progresses to significant liver damage and other extra-hepatic risks like cardiovascular disease and certain cancers. Diagnosis often relies on imaging and histology, with non-invasive methods preferred over liver biopsies. Emerging biomarkers and OMIC technologies offer improved diagnostic capabilities but face practical challenges. Advancements in artificial intelligence (AI), lifestyle interventions, and pharmacological treatments show promise, with future efforts focusing on precision medicine and novel diagnostic tools to improve patient outcome. CONCLUSION Understanding the pathogenic mechanisms underlying the development of MASLD within the context of metabolic syndrome (MetS) is essential for identifying potential therapeutic targets. Advancements in non-invasive diagnostic tools and novel pharmacological treatments, hold promise for improving the management of MASLD. Future research should focus on precision medicine and innovative therapies to effectively address the disease and its consequences.
Collapse
Affiliation(s)
- Bruno Basil
- Department of Chemical Pathology, Benue State University, Makurdi, Nigeria.
- Department of Nursing, Central Washington College, Enugu, Nigeria.
| | - Blessing K Myke-Mbata
- Department of Chemical Pathology, Benue State University, Makurdi, Nigeria
- Department of Chemical Pathology, Bingham University, Jos, Nigeria
| | - Onyinye E Eze
- Department of Nursing, Central Washington College, Enugu, Nigeria
- Department of Haematology and Blood Transfusion, Enugu State University of Science and Technology, Enugu, Nigeria
| | | |
Collapse
|
3
|
Engin A. The Unrestrained Overeating Behavior and Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:167-198. [PMID: 39287852 DOI: 10.1007/978-3-031-63657-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obesity-related co-morbidities decrease life quality, reduce working ability, and lead to early death. In the adult population, eating addiction manifests with excessive food consumption and the unrestrained overeating behavior, which is associated with increased risk of morbidity and mortality and defined as the binge eating disorder (BED). This hedonic intake is correlated with fat preference and the total amount of dietary fat consumption is the most potent risk factor for weight gain. Long-term BED leads to greater sensitivity to the rewarding effects of palatable foods and results in obesity fatefully. Increased plasma concentrations of non-esterified free fatty acids and lipid-overloaded hypertrophic adipocytes may cause insulin resistance. In addition to dietary intake of high-fat diet, sedentary lifestyle leads to increased storage of triglycerides not only in adipose tissue but also ectopically in other tissues. Lipid-induced apoptosis, ceramide accumulation, reactive oxygen species overproduction, endoplasmic reticulum stress, and mitochondrial dysfunction play role in the pathogenesis of lipotoxicity. Food addiction and BED originate from complex action of dopaminergic, opioid, and cannabinoid systems. BED may also be associated with both obesity and major depressive disorder. For preventing morbidity and mortality, as well as decreasing the impact of obesity-related comorbidities in appropriately selected patients, opiate receptor antagonists and antidepressant combination are recommended. Pharmacotherapy alongside behavioral management improves quality of life and reduces the obesity risk; however, the number of licensed drugs is very few. Thus, stereotactic treatment is recommended to break down the refractory obesity and binge eating in obese patient. As recent applications in the field of non-invasive neuromodulation, transcranial magnetic stimulation and transcranial direct current stimulation are thought to be important in image-guided deep brain stimulation in humans. Chronic overnutrition most likely provides repetitive and persistent signals that up-regulate inhibitor of nuclear factor kappa B (NF-κB) kinase beta subunit/NF-κB (IKKβ/NF-κB) in the hypothalamus before the onset of obesity. However, how the mechanisms of high-fat diet-induced peripheral signals affect the hypothalamic arcuate nucleus remain largely unknown.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
4
|
La Colla A, Cámara CA, Campisano S, Chisari AN. Mitochondrial dysfunction and epigenetics underlying the link between early-life nutrition and non-alcoholic fatty liver disease. Nutr Res Rev 2023; 36:281-294. [PMID: 35067233 DOI: 10.1017/s0954422422000038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Early-life malnutrition plays a critical role in foetal development and predisposes to metabolic diseases later in life, according to the concept of 'developmental programming'. Different types of early nutritional imbalance, including undernutrition, overnutrition and micronutrient deficiency, have been related to long-term metabolic disorders. Accumulating evidence has demonstrated that disturbances in nutrition during the period of preconception, pregnancy and primary infancy can affect mitochondrial function and epigenetic mechanisms. Moreover, even though multiple mechanisms underlying non-alcoholic fatty liver disease (NAFLD) have been described, in the past years, special attention has been given to mitochondrial dysfunction and epigenetic alterations. Mitochondria play a key role in cellular metabolic functions. Dysfunctional mitochondria contribute to oxidative stress, insulin resistance and inflammation. Epigenetic mechanisms have been related to alterations in genes involved in lipid metabolism, fibrogenesis, inflammation and tumorigenesis. In accordance, studies have reported that mitochondrial dysfunction and epigenetics linked to early-life nutrition can be important contributing factors in the pathogenesis of NAFLD. In this review, we summarise the current understanding of the interplay between mitochondrial dysfunction, epigenetics and nutrition during early life, which is relevant to developmental programming of NAFLD.
Collapse
Affiliation(s)
- Anabela La Colla
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Carolina Anahí Cámara
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Sabrina Campisano
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Andrea Nancy Chisari
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| |
Collapse
|
5
|
Montemayor S, García S, Monserrat-Mesquida M, Tur JA, Bouzas C. Dietary Patterns, Foods, and Nutrients to Ameliorate Non-Alcoholic Fatty Liver Disease: A Scoping Review. Nutrients 2023; 15:3987. [PMID: 37764771 PMCID: PMC10534915 DOI: 10.3390/nu15183987] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease without pharmacological treatment yet. There is also a lack of specific dietary recommendations and strategies to treat the negative health impacts derived from NAFLD. OBJECTIVE This scoping review aimed to compile dietary patterns, foods, and nutrients to ameliorate NAFLD. METHODS A literature search was performed through MEDLINE, Scopus, Web of Science, and Google Scholar. RESULTS Several guidelines are available through the literature. Hypocaloric Mediterranean diet is the most accepted dietary pattern to tackle NAFLD. Coffee consumption (sugar free) may have a protective effect for NAFLD. Microbiota also plays a role in NAFLD; hence, fibre intake should be guaranteed. CONCLUSIONS A high-quality diet could improve liver steatosis. Weight loss through hypocaloric diet together with physical activity and limited sugar intake are good strategies for managing NAFLD. Specific dietary recommendations and a Mediterranean plate have been proposed to ameliorate NAFLD.
Collapse
Affiliation(s)
- Sofía Montemayor
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain (C.B.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Silvia García
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain (C.B.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Margalida Monserrat-Mesquida
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain (C.B.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Josep A. Tur
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain (C.B.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina Bouzas
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain (C.B.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
6
|
Chen Y, Xiang L, Luo L, Qin H, Tong S. Correlation of Nonalcoholic Fatty Liver Disease with Dietary Folate and Serum Folate in U.S. Adults: Cross-Sectional Analyses from National Health and Nutrition Examination Survey 2009-2018. Metab Syndr Relat Disord 2023; 21:389-396. [PMID: 37733056 DOI: 10.1089/met.2023.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Background and Aims: Nonalcoholic fatty liver disease (NAFLD) is a global health problem, and dietary intervention is still considered one of the primary interventions. This study aimed to examine cross-sectional associations between dietary and serum levels of folate and NAFLD. Methods: We conducted a study of 7543 adults who participated in the National Health and Nutrition Examination Survey, 2009-2018. NAFLD status was determined by a fatty liver index (FLI) value ≥60. Multivariable logistic regression models were used to estimate associations between folate and NAFLD. Results: Almost half (45%) of the patients were classified as having NAFLD based on the FLI. In the fully adjusted model, participants in the highest quartile of dietary total folate and food folate were found to have a lower prevalence of NAFLD than those in the lowest quartile [odds ratio (OR)quartile 4 versus 1 = 0.582; 95% confidence interval (CI) = 0.350-0.968; and ORquartile 4 versus 1 = 0.737; 95% CI = 0.611-0.888, respectively], and the fourth quartile values of serum total folate and 5-methyl-tetrahydrofolate were significantly negatively associated with NAFLD prevalence (ORquartile 4 versus 1 = 0.664; 95% CI = 0.495-0.891; and ORquartile 4 versus 1 = 0.712; 95% CI = 0.532-0.954, respectively). Subgroup analyses revealed that this beneficial association was more significant in women (ORquartile 4 versus 1 = 0.526; 95% CI = 0.329-0.843; pinteraction < 0.001) than in men (ORquartile 4 versus 1 = 0.805; 95% CI = 0.546-1.186). Conclusions: Higher dietary folate intake and serum folate levels are associated with a lower NAFLD prevalence among U.S. adults and the trend is more pronounced among women, indicating opportunities for dietary NAFLD interventions.
Collapse
Affiliation(s)
- Yushi Chen
- Department of Clinical Nutrition, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ling Xiang
- Department of Clinical Nutrition, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ling Luo
- Department of Clinical Nutrition, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Haixia Qin
- Department of Clinical Nutrition, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shiwen Tong
- Department of Clinical Nutrition, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Alkaissi H, McFarlane SI. Hyperhomocysteinemia and Accelerated Aging: The Pathogenic Role of Increased Homocysteine in Atherosclerosis, Osteoporosis, and Neurodegeneration. Cureus 2023; 15:e42259. [PMID: 37605676 PMCID: PMC10440097 DOI: 10.7759/cureus.42259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 08/23/2023] Open
Abstract
Cardiovascular diseases and osteoporosis, seemingly unrelated disorders that occur with advanced age, share major pathogenetic mechanisms contributing to accelerated atherosclerosis and bone loss. Hyperhomocysteinemia (hHcy) is among these mechanisms that can cause both vascular and bone disease. In its more severe form, hHcy can present early in life as homocystinuria, an inborn error of metabolic pathways of the sulfur-containing amino acid methionine. In its milder forms, hHcy may go undiagnosed and untreated into adulthood. As such, hHcy may serve as a potential therapeutic target for cardiovascular disease, osteoporosis, thrombophilia, and neurodegeneration, collectively representing accelerated aging. Multiple trials to lower cardiovascular risk and improve bone density with homocysteine-lowering agents, yet none has proven to be clinically meaningful. To understand this unmet clinical need, this review will provide mechanistic insight into the pathogenesis of vascular and bone disease in hHcy, using homocystinuria as a model for accelerated atherosclerosis and bone density loss, a model for accelerated aging.
Collapse
Affiliation(s)
- Hussam Alkaissi
- Internal Medicine, Kings County Hospital Center, Brooklyn, USA
- Internal Medicine, Veterans Affairs Medical Center, Brooklyn, USA
- Internal Medicine, State University of New York Downstate Medical Center, Brooklyn, USA
| | - Samy I McFarlane
- Endocrinology, State University of New York Downstate Medical Center, Brooklyn, USA
| |
Collapse
|
8
|
Alkaissi H, McFarlane SI. A Novel Finding of Increased ß-Aminoisobutyric Acid Levels in Classic Homocystinuria With Homocysteine-Lowering Treatment. Cureus 2023; 15:e36911. [PMID: 37128514 PMCID: PMC10148673 DOI: 10.7759/cureus.36911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/03/2023] Open
Abstract
Hyperhomocysteinemia is an independent risk factor for cardiovascular disease. Although commonly seen as a milder elevation of homocysteine levels in adult patients, on rare occasions, the internist may face extremely elevated homocysteine levels (>100 µmol/L). In such rare cases, the search for a monogenic disease is warranted. In this report, we present a patient with classical homocystinuria, where the diagnosis was delayed due to various factors. The patient experienced a constellation of symptoms over an extended period, including visual problems, recurrent thrombosis, and neurodevelopmental delay. Delayed diagnosis of genetic diseases is problematic, as patients may grow from pediatric care to adult internal medicine, where knowledge and exposure to such a rare genetic disorder are limited. A diagnosis was finally confirmed with amino acid profiling, revealing extremely elevated homocysteine levels, which were reduced with sequential treatment modalities, including folate, vitamin B12, vitamin B6, methionine restriction, and betaine. We also present derangements in other amino acids, namely, methionine, taurine, serine, and urea cycle products. With treatment, a progressive increase in body weight is noticed. Furthermore, we present a novel finding of increased levels of ß-aminoisobutyric acid with homocysteine-lowering treatment. ß-aminisobutyric acid is a myokine that potentiates some of the metabolic benefits of exercising muscle such as improved insulin resistance and browning of white adipose tissue.
Collapse
Affiliation(s)
- Hussam Alkaissi
- Internal Medicine, Kings County Hospital Center, New York, USA
- Internal Medicine, Veterans Affairs Medical Center, New York, USA
- Internal Medicine, State University of New York Downstate Medical Center, New York, USA
| | - Samy I McFarlane
- Internal Medicine, State University of New York Downstate Medical Center, New York, USA
| |
Collapse
|
9
|
Wang S, Zeng Y, He X, Liu F, Pei P, Zhang T. Folate-deficiency induced acyl-CoA synthetase short-chain family member 2 increases lysine crotonylome involved in neural tube defects. Front Mol Neurosci 2023; 15:1064509. [PMID: 36743291 PMCID: PMC9895841 DOI: 10.3389/fnmol.2022.1064509] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/28/2022] [Indexed: 01/22/2023] Open
Abstract
Maternal folate deficiency increases the risk of neural tube defects (NTDs), but the mechanism remains unclear. Here, we established a mouse model of NTDs via low folate diets combined with MTX-induced conditions. We found that a significant increase in butyrate acid was observed in mouse NTDs brains. In addition, aberrant key crotonyl-CoA-producing enzymes acyl-CoA synthetase short-chain family member 2 (ACSS2) levels and lysine crotonylation (Kcr) were elevated high in corresponding low folate content maternal serum samples from mouse NTD model. Next, proteomic analysis revealed that folate deficiency led to global proteomic modulation, especially in key crotonyl-CoA-producing enzymes, and dramatic ultrastructural changes in mouse embryonic stem cells (mESCs). Furthermore, we determined that folate deficiency induced ACSS2 and Kcr in mESCs. Surprisingly, folic acid supplementation restored level of ACSS2 and Kcr. We also investigated overall protein post-translational Kcr under folate deficiency, revealing the key regulation of Kcr in glycolysis/gluconeogenesis, and the citric acid cycle. Our findings suggest folate deficiency leads to the occurrence of NTDs by altering ACSS2. Protein crotonylation may be the molecular basis for NTDs remodeling by folate deficiency.
Collapse
Affiliation(s)
- Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China,Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China,Graduate School of Peking Union Medical College, Capital Institute of Pediatrics, Beijing, China,*Correspondence: Shan Wang, ; Ting Zhang,
| | - Yubing Zeng
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Xuejia He
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
| | - Fan Liu
- Graduate School of Peking Union Medical College, Capital Institute of Pediatrics, Beijing, China
| | - Pei Pei
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China,Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China,Graduate School of Peking Union Medical College, Capital Institute of Pediatrics, Beijing, China,*Correspondence: Shan Wang, ; Ting Zhang,
| |
Collapse
|
10
|
Sécula A, Bluy LE, Chapuis H, Bonnet A, Collin A, Gress L, Cornuez A, Martin X, Bodin L, Bonnefont CMD, Morisson M. Maternal dietary methionine restriction alters hepatic expression of one-carbon metabolism and epigenetic mechanism genes in the ducklings. BMC Genomics 2022; 23:823. [PMID: 36510146 PMCID: PMC9746021 DOI: 10.1186/s12864-022-09066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Embryonic and fetal development is very susceptible to the availability of nutrients that can interfere with the setting of epigenomes, thus modifying the main metabolic pathways and impacting the health and phenotypes of the future individual. We have previously reported that a 38% reduction of the methyl donor methionine in the diet of 30 female ducks reduced the body weight of their 180 mule ducklings compared to that of 190 ducklings from 30 control females. The maternal methionine-restricted diet also altered plasmatic parameters in 30 of their ducklings when compared to that of 30 ducklings from the control group. Thus, their plasma glucose and triglyceride concentrations were higher while their free fatty acid level and alanine transaminase activity were decreased. Moreover, the hepatic transcript level of 16 genes involved in pathways related to energy metabolism was significantly different between the two groups of ducklings. In the present work, we continued studying the liver of these newly hatched ducklings to explore the impact of the maternal dietary methionine restriction on the hepatic transcript level of 70 genes mostly involved in one-carbon metabolism and epigenetic mechanisms. RESULTS Among the 12 genes (SHMT1, GART, ATIC, FTCD, MSRA, CBS, CTH, AHCYL1, HSBP1, DNMT3, HDAC9 and EZH2) identified as differentially expressed between the two maternal diet groups (p-value < 0.05), 3 of them were involved in epigenetic mechanisms. Ten other studied genes (MTR, GLRX, MTHFR, AHCY, ADK, PRDM2, EEF1A1, ESR1, PLAGL1, and WNT11) tended to be differently expressed (0.05 < p-value < 0.10). Moreover, the maternal dietary methionine restriction altered the number and nature of correlations between expression levels of differential genes for one-carbon metabolism and epigenetic mechanisms, expression levels of differential genes for energy metabolism, and phenotypic traits of ducklings. CONCLUSION This avian model showed that the maternal dietary methionine restriction impacted both the mRNA abundance of 22 genes involved in one-carbon metabolism or epigenetic mechanisms and the mRNA abundance of 16 genes involved in energy metabolism in the liver of the newly hatched offspring, in line with the previously observed changes in their phenotypic traits.
Collapse
Affiliation(s)
- Aurélie Sécula
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Lisa E. Bluy
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Hervé Chapuis
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Agnès Bonnet
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Anne Collin
- grid.511104.0INRAE, Université de Tours, BOA, 37380 Nouzilly, France
| | - Laure Gress
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Alexis Cornuez
- UEPFG INRA Bordeaux-Aquitaine (Unité Expérimentale Palmipèdes à Foie Gras), Domaine d’Artiguères 1076, route de Haut Mauco, F-40280 Benquet, France
| | - Xavier Martin
- UEPFG INRA Bordeaux-Aquitaine (Unité Expérimentale Palmipèdes à Foie Gras), Domaine d’Artiguères 1076, route de Haut Mauco, F-40280 Benquet, France
| | - Loys Bodin
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Cécile M. D. Bonnefont
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Mireille Morisson
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| |
Collapse
|
11
|
Pansa CC, Molica LR, Moraes KCM. Non-alcoholic fatty liver disease establishment and progression: genetics and epigenetics as relevant modulators of the pathology. Scand J Gastroenterol 2022; 58:521-533. [PMID: 36426638 DOI: 10.1080/00365521.2022.2148835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) results from metabolic dysfunctions that affect more than one-third of the world population. Over the last decades, scientific investigations have clarified many details on the pathology establishment and development; however, effective therapeutics approaches are still evasive. In addition, studies demonstrated that NAFLD establishment and progression are related to several etiologies. Recently, genetics and epigenetics backgrounds have emerged as relevant elements to the pathology onset, and, hence, deserve deep investigation to clarify molecular details on NAFLD signaling, which may be correlated with population behavior. Thus, to minimize the global problem, public health and public policies should take advantage of studies on NAFLD over the next following decades. METHODS In this context, we have performed a selective literature review focusing on biochemistry of lipid metabolism, genetics, epigenetics, and the ethnicity as strong elements that drive NAFLD establishment. RESULTS Considering the etiological agents that acts on NAFLD development and progression, the genetics and the epigenetics emerged as relevant factors. Genetics acts as a powerful element in the establishment and progression of the NAFLD. Over the last decades, details concerning genes and their polymorphisms, as well as epigenetics, have been considered relevant elements in the systems biology of diseases, and their effects on NAFLD should be considered in-depth, as well as the ethnicity, clarifying whether people are susceptible to liver diseases. Moreover, the endemicity and social problems of hepatic disfunction are far to be solved, which require a combined effort of various sectors of society. CONCLUSION Hence, the elements presented and discussed in this short review demonstrated their relevance to the physiological control of NAFLD, opening perspectives for research to develop new strategy to treat fatty liver diseases.
Collapse
Affiliation(s)
- Camila Cristiane Pansa
- Departamento de Biologia Geral e Aplicada, Cellular Signalling and Gene Expression Laboratory, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Rio Claro, Brazil
| | - Letícia Ramos Molica
- Departamento de Biologia Geral e Aplicada, Cellular Signalling and Gene Expression Laboratory, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Rio Claro, Brazil
| | - Karen C M Moraes
- Departamento de Biologia Geral e Aplicada, Cellular Signalling and Gene Expression Laboratory, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Rio Claro, Brazil
| |
Collapse
|
12
|
PPARα in the Epigenetic Driver Seat of NAFLD: New Therapeutic Opportunities for Epigenetic Drugs? Biomedicines 2022; 10:biomedicines10123041. [PMID: 36551797 PMCID: PMC9775974 DOI: 10.3390/biomedicines10123041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing epidemic and the most common cause of chronic liver disease worldwide. It consists of a spectrum of liver disorders ranging from simple steatosis to NASH which predisposes patients to further fibrosis, cirrhosis and even hepatocarcinoma. Despite much research, an approved treatment is still lacking. Finding new therapeutic targets has therefore been a main priority. Known as a main regulator of the lipid metabolism and highly expressed in the liver, the nuclear receptor peroxisome proliferator-activated receptor-α (PPARα) has been identified as an attractive therapeutic target. Since its expression is silenced by DNA hypermethylation in NAFLD patients, many research strategies have aimed to restore the expression of PPARα and its target genes involved in lipid metabolism. Although previously tested PPARα agonists did not ameliorate the disease, current research has shown that PPARα also interacts and regulates epigenetic DNMT1, JMJD3, TET and SIRT1 enzymes. Moreover, there is a growing body of evidence suggesting the orchestrating role of epigenetics in the development and progression of NAFLD. Therefore, current therapeutic strategies are shifting more towards epigenetic drugs. This review provides a concise overview of the epigenetic regulation of NAFLD with a focus on PPARα regulation and highlights recently identified epigenetic interaction partners of PPARα.
Collapse
|
13
|
Talari HR, Molaqanbari MR, Mokfi M, Taghizadeh M, Bahmani F, Tabatabaei SMH, Sharifi N. The effects of vitamin B12 supplementation on metabolic profile of patients with non-alcoholic fatty liver disease: a randomized controlled trial. Sci Rep 2022; 12:14047. [PMID: 35982162 PMCID: PMC9388548 DOI: 10.1038/s41598-022-18195-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
The present study is the first effort to evaluate the effects of vitamin B12 supplementation on the serum level of liver enzymes, homocysteine, grade of hepatic steatosis, and metabolic profiles in patients with non-alcoholic fatty liver disease (NAFLD). Forty patients with NAFLD were enrolled in a double-blind placebo-controlled trial to receive either one oral tablet of vitamin B12 (1000 µg cyanocobalamin) or a placebo per day for 12 weeks. We investigated serum levels of homocysteine, aminotransferases, fasting blood glucose (FBG), lipids, malondialdehyde (MDA), and homeostasis model assessment of insulin resistance (HOMA-IR). The grade of liver steatosis and fibrosis was measured by real-time 2-dimensional shear wave elastography. Vitamin B12 supplementation significantly decreased serum levels of homocysteine compared to placebo (medians: - 2.1 vs. - 0.003 µmol/l; P = 0.038). Although serum alanine transaminase (ALT) in the vitamin B12 group decreased significantly, this change did not reach a significant level compared to the placebo group (medians: - 7.0 vs. 0.0 IU/l; P > 0.05). Despite the significant within-group decrease in FBG, MDA, and liver steatosis in the vitamin B12 group, between-group comparisons did not reveal any significant difference. Vitamin B12 supplementation might decrease serum levels of homocysteine in patients with NAFLD. The fasting blood glucose and serum levels of MDA were significantly improved in the trial group who received vitamin B12. However, these changes did not reach a significant level compared to the placebo group. In this respect, further studies with larger sample sizes, different doses, and types of vitamin B12 will reveal additional evidence.Trial Registration: At http://irct.ir/ as IRCT20120718010333N5 on December 25, 2019.
Collapse
Affiliation(s)
- Hamid Reza Talari
- Department of Radiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohamad Reza Molaqanbari
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Milad Mokfi
- Department of Radiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Basic Science Research Institute, Kashan University of Medical Sciences, Kashan, 87159-73474, Iran
| | - Fereshteh Bahmani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Basic Science Research Institute, Kashan University of Medical Sciences, Kashan, 87159-73474, Iran
| | | | - Nasrin Sharifi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Basic Science Research Institute, Kashan University of Medical Sciences, Kashan, 87159-73474, Iran.
| |
Collapse
|
14
|
Sharma J, Rushing BR, Hall MS, Helke KL, McRitchie SL, Krupenko NI, Sumner SJ, Krupenko SA. Sex-Specific Metabolic Effects of Dietary Folate Withdrawal in Wild-Type and Aldh1l1 Knockout Mice. Metabolites 2022; 12:metabo12050454. [PMID: 35629957 PMCID: PMC9143804 DOI: 10.3390/metabo12050454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/03/2022] [Accepted: 05/14/2022] [Indexed: 12/11/2022] Open
Abstract
ALDH1L1 (10-formyltetrahydrofolate dehydrogenase), an enzyme of folate metabolism, is highly expressed in the liver. It regulates the overall flux of folate-bound one-carbon groups by converting 10-formyltetrahydrofolate to tetrahydrofolate and CO2 in a NADP+-dependent reaction. Our previous study revealed that Aldh1l1 knockout (KO) mice have an altered liver metabotype with metabolic symptoms of folate deficiency when fed a standard chow diet containing 2 ppm folic acid. Here we performed untargeted metabolomic analysis of liver and plasma of KO and wild-type (WT) male and female mice fed for 16 weeks either standard or folate-deficient diet. OPLS-DA, a supervised multivariate technique that was applied to 6595 and 10,678 features for the liver and plasma datasets, respectively, indicated that genotype and diet, alone or in combination, gave distinct metabolic profiles in both types of biospecimens. A more detailed analysis of affected metabolic pathways based on most confidently identified metabolites in the liver and plasma (OL1 and OL2a ontology level) indicated that the dietary folate restriction itself does not fully recapitulate the metabolic effect of the KO. Of note, dietary folate withdrawal enhanced the metabolic perturbations linked to the ALDH1L1 loss only for a subset of metabolites. Importantly, both the ALDH1L1 loss and dietary folate deficiency produced sex-specific metabolic effects.
Collapse
Affiliation(s)
- Jaspreet Sharma
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA; (J.S.); (B.R.R.); (M.S.H.); (S.L.M.); (N.I.K.); (S.J.S.)
| | - Blake R. Rushing
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA; (J.S.); (B.R.R.); (M.S.H.); (S.L.M.); (N.I.K.); (S.J.S.)
- Department of Nutrition, UNC Chapel Hill, Chapel Hill, NC 27599, USA
| | - Madeline S. Hall
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA; (J.S.); (B.R.R.); (M.S.H.); (S.L.M.); (N.I.K.); (S.J.S.)
- Department of Nutrition, UNC Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristi L. Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Susan L. McRitchie
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA; (J.S.); (B.R.R.); (M.S.H.); (S.L.M.); (N.I.K.); (S.J.S.)
| | - Natalia I. Krupenko
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA; (J.S.); (B.R.R.); (M.S.H.); (S.L.M.); (N.I.K.); (S.J.S.)
- Department of Nutrition, UNC Chapel Hill, Chapel Hill, NC 27599, USA
| | - Susan J. Sumner
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA; (J.S.); (B.R.R.); (M.S.H.); (S.L.M.); (N.I.K.); (S.J.S.)
- Department of Nutrition, UNC Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sergey A. Krupenko
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA; (J.S.); (B.R.R.); (M.S.H.); (S.L.M.); (N.I.K.); (S.J.S.)
- Department of Nutrition, UNC Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence:
| |
Collapse
|
15
|
Wilson NRC, Veatch OJ, Johnson SM. On the Relationship between Diabetes and Obstructive Sleep Apnea: Evolution and Epigenetics. Biomedicines 2022; 10:668. [PMID: 35327470 PMCID: PMC8945691 DOI: 10.3390/biomedicines10030668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
This review offers an overview of the relationship between diabetes, obstructive sleep apnea (OSA), obesity, and heart disease. It then addresses evidence that the traditional understanding of this relationship is incomplete or misleading. In the process, there is a brief discussion of the evolutionary rationale for the development and retention of OSA in light of blood sugar dysregulation, as an adaptive mechanism in response to environmental stressors, followed by a brief overview of the general concepts of epigenetics. Finally, this paper presents the results of a literature search on the epigenetic marks and changes in gene expression found in OSA and diabetes. (While some of these marks will also correlate with obesity and heart disease, that is beyond the scope of this project). We conclude with an exploration of alternative explanations for the etiology of these interlinking diseases.
Collapse
Affiliation(s)
- N. R. C. Wilson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA;
| | - Olivia J. Veatch
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Steven M. Johnson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA;
| |
Collapse
|
16
|
May T, de la Haye B, Nord G, Klatt K, Stephenson K, Adams S, Bollinger L, Hanchard N, Arning E, Bottiglieri T, Maleta K, Manary M, Jahoor F. One-carbon metabolism in children with marasmus and kwashiorkor. EBioMedicine 2022; 75:103791. [PMID: 35030356 PMCID: PMC8761690 DOI: 10.1016/j.ebiom.2021.103791] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/24/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Kwashiorkor is a childhood syndrome of edematous malnutrition. Its precise nutritional precipitants remain uncertain despite nine decades of study. Remarkably, kwashiorkor's disturbances resemble the effects of experimental diets that are deficient in one-carbon nutrients. This similarity suggests that kwashiorkor may represent a nutritionally mediated syndrome of acute one-carbon metabolism dysfunction. Here we report findings from a cross-sectional exploration of serum one-carbon metabolites in Malawian children. METHODS Blood was collected from children aged 12-60 months before nutritional rehabilitation: kwashiorkor (N = 94), marasmic-kwashiorkor (N = 43) marasmus (N = 118), moderate acute malnutrition (N = 56) and controls (N = 46). Serum concentrations of 16 one-carbon metabolites were quantified using LC/MS techniques, and then compared across participant groups. FINDINGS Twelve of 16 measured one-carbon metabolites differed significantly between participant groups. Measured outputs of one-carbon metabolism, asymmetric dimethylarginine (ADMA) and cysteine, were lower in marasmic-kwashiorkor (median µmol/L (± SD): 0·549 (± 0·217) P = 0·00045 & 90 (± 40) P < 0·0001, respectively) and kwashiorkor (0·557 (± 0·195) P < 0·0001 & 115 (± 50) P < 0·0001), relative to marasmus (0·698 (± 0·212) & 153 (± 42)). ADMA and cysteine were well correlated with methionine in both kwashiorkor and marasmic-kwashiorkor. INTERPRETATION Kwashiorkor and marasmic-kwashiorkor were distinguished by evidence of one-carbon metabolism dysfunction. Correlative observations suggest that methionine deficiency drives this dysfunction, which is implicated in the syndrome's pathogenesis. The hypothesis that kwashiorkor can be prevented by fortifying low quality diets with methionine, along with nutrients that support efficient methionine use, such as choline, requires further investigation. FUNDING The Hickey Family Foundation, the American College of Gastroenterology, the NICHD, and the USDA/ARS.
Collapse
Affiliation(s)
- Thaddaeus May
- Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston TX, USA.
| | | | | | - Kevin Klatt
- Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston TX, USA,Center for Precision Environmental Health, Baylor College of Medicine
| | | | | | - Lucy Bollinger
- Washington University in St. Louis School of Medicine, USA
| | - Neil Hanchard
- National Institutes of Health, USA,National Human Genome Research Institute, Nationl Institutes of Health
| | - Erland Arning
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute
| | | | - Mark Manary
- Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston TX, USA,The University of Malawi College of Medicine, Malawi,Washington University in St. Louis School of Medicine, USA
| | - Farook Jahoor
- Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston TX, USA
| |
Collapse
|
17
|
Apelin expression deficiency in mice contributes to vascular stiffening by extracellular matrix remodeling of the aortic wall. Sci Rep 2021; 11:22278. [PMID: 34782679 PMCID: PMC8593139 DOI: 10.1038/s41598-021-01735-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 10/25/2021] [Indexed: 01/15/2023] Open
Abstract
Numerous recent studies have shown that in the continuum of cardiovascular diseases, the measurement of arterial stiffness has powerful predictive value in cardiovascular risk and mortality and that this value is independent of other conventional risk factors, such as age, cholesterol levels, diabetes, smoking, or average blood pressure. Vascular stiffening is often the main cause of arterial hypertension (AHT), which is common in the presence of obesity. However, the mechanisms leading to vascular stiffening, as well as preventive factors, remain unclear. The aim of the present study was to investigate the consequences of apelin deficiency on the vascular stiffening and wall remodeling of aorta in mice. This factor freed by visceral adipose tissue, is known for its homeostasic role in lipid and vascular metabolisms, or again in inflammation. We compared the level of metabolic markers, inflammation of white adipose tissue (WAT), and aortic wall remodeling from functional and structural approaches in apelin-deficient and wild-type (WT) mice. Apelin-deficient mice were generated by knockout of the apelin gene (APL-KO). From 8 mice by groups, aortic stiffness was analyzed by pulse wave velocity measurements and by characterizations of collagen and elastic fibers. Mann-Whitney statistical test determined the significant data (p < 5%) between groups. The APL-KO mice developed inflammation, which was associated with significant remodeling of visceral WAT, such as neutrophil elastase and cathepsin S expressions. In vitro, cathepsin S activity was detected in conditioned medium prepared from adipose tissue of the APL-KO mice, and cathepsin S activity induced high fragmentations of elastic fiber of wild-type aorta, suggesting that the WAT secretome could play a major role in vascular stiffening. In vivo, remodeling of the extracellular matrix (ECM), such as collagen accumulation and elastolysis, was observed in the aortic walls of the APL-KO mice, with the latter associated with high cathepsin S activity. In addition, pulse wave velocity (PWV) and AHT were increased in the APL-KO mice. The latter could explain aortic wall remodeling in the APL-KO mice. The absence of apelin expression, particularly in WAT, modified the adipocyte secretome and facilitated remodeling of the ECM of the aortic wall. Thus, elastolysis of elastic fibers and collagen accumulation contributed to vascular stiffening and AHT. Therefore, apelin expression could be a major element to preserve vascular homeostasis.
Collapse
|
18
|
Pandit P, Galande S, Iris F. Maternal malnutrition and anaemia in India: dysregulations leading to the 'thin-fat' phenotype in newborns. J Nutr Sci 2021; 10:e91. [PMID: 34733503 PMCID: PMC8532069 DOI: 10.1017/jns.2021.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 12/21/2022] Open
Abstract
Maternal and child malnutrition and anaemia remain the leading factors for health loss in India. Low birth weight (LBW) offspring of women suffering from chronic malnutrition and anaemia often exhibit insulin resistance and infantile stunting and wasting, together with increased risk of developing cardiometabolic disorders in adulthood. The resulting self-perpetuating and highly multifactorial disease burden cannot be remedied through uniform dietary recommendations alone. To inform approaches likely to alleviate this disease burden, we implemented a systems-analytical approach that had already proven its efficacy in multiple published studies. We utilised previously published qualitative and quantitative analytical results of rural and urban field studies addressing maternal and infantile metabolic and nutritional parameters to precisely define the range of pathological phenotypes encountered and their individual biological characteristics. These characteristics were then integrated, via extensive literature searches, into metabolic and physiological mechanisms to identify the maternal and foetal metabolic dysregulations most likely to underpin the 'thin-fat' phenotype in LBW infants and its associated pathological consequences. Our analyses reveal hitherto poorly understood maternal nutrition-dependent mechanisms most likely to promote and sustain the self-perpetuating high disease burden, especially in the Indian population. This work suggests that it most probably is the metabolic consequence of 'ill-nutrition' - the recent and rapid dietary shifts to high salt, high saturated fats and high sugar but low micronutrient diets - over an adaptation to 'thrifty metabolism' which must be addressed in interventions aiming to significantly alleviate the leading risk factors for health deterioration in India.
Collapse
Key Words
- 5-mTHF, 5-methyltetrahydrofolate
- Anaemia
- BAT, brown adipocyte tissue
- EAA, essential amino acids
- FA, fatty acid
- GSH, glutathione
- Hcy, homocysteine
- LBW, low birth weight
- Low birth weight
- Malnutrition
- PE, phosphatidylethanolamine
- Pathological mechanisms
- Physiological programming
- SAM, S-adenosyl methionine
- TG, triacylglycerol
- WAT, white adipocyte tissue
Collapse
Affiliation(s)
| | - Sanjeev Galande
- Arbuza Regenerate Private Limited, Pune, India
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune411008, India
- Department of Life Sciences, Shiv Nadar University, Delhi-NCR, India
| | - François Iris
- Arbuza Regenerate Private Limited, Pune, India
- BM-Systems Private Limited, Paris, France
| |
Collapse
|
19
|
Guéant JL, Guéant-Rodriguez RM, Kosgei VJ, Coelho D. Causes and consequences of impaired methionine synthase activity in acquired and inherited disorders of vitamin B 12 metabolism. Crit Rev Biochem Mol Biol 2021; 57:133-155. [PMID: 34608838 DOI: 10.1080/10409238.2021.1979459] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Methyl-Cobalamin (Cbl) derives from dietary vitamin B12 and acts as a cofactor of methionine synthase (MS) in mammals. MS encoded by MTR catalyzes the remethylation of homocysteine to generate methionine and tetrahydrofolate, which fuel methionine and cytoplasmic folate cycles, respectively. Methionine is the precursor of S-adenosyl methionine (SAM), the universal methyl donor of transmethylation reactions. Impaired MS activity results from inadequate dietary intake or malabsorption of B12 and inborn errors of Cbl metabolism (IECM). The mechanisms at the origin of the high variability of clinical presentation of impaired MS activity are classically considered as the consequence of the disruption of the folate cycle and related synthesis of purines and pyrimidines and the decreased synthesis of endogenous methionine and SAM. For one decade, data on cellular and animal models of B12 deficiency and IECM have highlighted other key pathomechanisms, including altered interactome of MS with methionine synthase reductase, MMACHC, and MMADHC, endoplasmic reticulum stress, altered cell signaling, and genomic/epigenomic dysregulations. Decreased MS activity increases catalytic protein phosphatase 2A (PP2A) and produces imbalanced phosphorylation/methylation of nucleocytoplasmic RNA binding proteins, including ELAVL1/HuR protein, with subsequent nuclear sequestration of mRNAs and dramatic alteration of gene expression, including SIRT1. Decreased SAM and SIRT1 activity induce ER stress through impaired SIRT1-deacetylation of HSF1 and hypomethylation/hyperacetylation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α), which deactivate nuclear receptors and lead to impaired energy metabolism and neuroplasticity. The reversibility of these pathomechanisms by SIRT1 agonists opens promising perspectives in the treatment of IECM outcomes resistant to conventional supplementation therapies.
Collapse
Affiliation(s)
- Jean-Louis Guéant
- UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux), Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Departments of Digestive Diseases and Molecular Medicine and National Center of Inborn Errors of Metabolism, University Hospital Center, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Rosa-Maria Guéant-Rodriguez
- UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux), Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Departments of Digestive Diseases and Molecular Medicine and National Center of Inborn Errors of Metabolism, University Hospital Center, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Viola J Kosgei
- UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux), Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - David Coelho
- UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux), Université de Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
20
|
Zhang Y, Yuan H, Peng M, Hu Z, Fan Z, Xu J, He L, Wang Y, Wang W, Su Y, Liu C, Zhang H, Zhao K. Folic acid deficiency damages male reproduction via endoplasmic reticulum stress-associated PERK pathway induced by Caveolin-1 in mice. Syst Biol Reprod Med 2021; 67:383-394. [PMID: 34474604 DOI: 10.1080/19396368.2021.1954724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Folic acid is critical to maintaining normal male reproductive function. Endoplasmic reticulum (ER) stress plays a crucial role in folic acid deficiency. Studies have shown that Caveolin-1 (Cav-1) is involved in ER stress, but the specific mechanism in male reproduction is still unclear. This study aimed to investigate the effects of folic acid deficiency on spermatogenesis and elucidate the underlying mechanisms. C57BL/6 mice fed with folic acid deficiency induced diet(0.3 mg/kg) were used. A significant decrease in the sperm concentration in the folic acid deficiency group was observed. Meanwhile, folic acid deficiency decreased Cav-1 expression in the testis tissue and increased endoplasmic reticulum stress-related PERK, eIF2α, ATF4, CHOP gene expression. Our results suggest that folic acid deficiency can affect male reproduction through the Cav-1-PERK-eIFα-ATF4-CHOP pathway.Abbreviations: ATF4: activating transcription factor 4; Ca2+: calcium ion; Cav-1: Caveolin-1; CCK-8: cell counting kit-8; CHOP: CCAAT-enhancer-binding protein homologous protein; DNA: Deoxyribonucleic acid; DSB: double strand breakage; eIF2α: eukaryotic Initiation Factor 2 alpha; ER: endoplasmic reticulum; FD: folic acid deficiency; FITC: fluorescein isothiocyanate; HE: hematoxylin and eosin; H3K4me3: histone H3 lysine 4 trimethylation; PERK: protein kinase RNA-like endoplasmic reticulum kinase; PI: propidium iodide; RT-qPCR: quantitative reverse transcription PCR; TUNEL: TdT mediated dUTP Nick End Labeling.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongfang Yuan
- Department of Obstetrics And Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meilin Peng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Hu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zunpan Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liting He
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongfeng Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufang Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Balint B, Hergalant S, Camadro JM, Blaise S, Vanalderwiert L, Lignières L, Guéant-Rodriguez RM, Guéant JL. Fetal Programming by Methyl Donor Deficiency Produces Pathological Remodeling of the Ascending Aorta. Arterioscler Thromb Vasc Biol 2021; 41:1928-1941. [PMID: 33827257 DOI: 10.1161/atvbaha.120.315587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Brittany Balint
- UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux) (B.B., S.H., R.-M.G.-R., J.-L.G.), Université de Lorraine, France
| | - Sébastien Hergalant
- UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux) (B.B., S.H., R.-M.G.-R., J.-L.G.), Université de Lorraine, France
| | - Jean-Michel Camadro
- Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Université Paris Diderot, CNRS, Sorbonne Paris Cité, France (J.-M.C., L.L.)
| | | | | | - Laurent Lignières
- Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Université Paris Diderot, CNRS, Sorbonne Paris Cité, France (J.-M.C., L.L.)
| | - Rosa-Maria Guéant-Rodriguez
- UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux) (B.B., S.H., R.-M.G.-R., J.-L.G.), Université de Lorraine, France
- Department of Molecular Medicine and National Center of Inborn Errors of Metabolism, University Hospital Center (R.-M.G.-R., J.-L.G.), Université de Lorraine, France
| | - Jean-Louis Guéant
- UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux) (B.B., S.H., R.-M.G.-R., J.-L.G.), Université de Lorraine, France
- Department of Molecular Medicine and National Center of Inborn Errors of Metabolism, University Hospital Center (R.-M.G.-R., J.-L.G.), Université de Lorraine, France
| |
Collapse
|
22
|
Zhang H, Liang Y, Wu P, Shi X, Zhang G, Cai Z. Continuous Dermal Exposure to Triclocarban Perturbs the Homeostasis of Liver-Gut Axis in Mice: Insights from Metabolic Interactions and Microbiome Shifts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5117-5127. [PMID: 33691405 DOI: 10.1021/acs.est.0c08273] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Humans are constantly exposed to antimicrobial triclocarban (TCC) via direct skin contact with personal care and consumer products, but the safety of long-term dermal exposure to TCC remains largely unknown. Herein, we used a mouse model to evaluate the potential health risks from the continuous dermal application of TCC at human-relevant concentrations. After percutaneous absorption, TCC circulated in the bloodstream and largely entered the liver-gut axis for metabolic disposition. Nontargeted metabolomics approach revealed that TCC exposure perturbed mouse liver homeostasis, as evidenced by the increased oxidative stress and impaired methylation capacity, leading to oxidative damage and enhancement of upstream glycolysis and folate-dependent one-carbon metabolism. Meanwhile, TCC was transformed in the liver through hydroxylation, dechlorination, methylation, glucuronidation, sulfation, and glutathione conjugation. TCC-derived xenobiotics were subsequently excreted into the gut, and glucuronide and sulfate metabolites could be further deconjugated by the gut microbiota into their active free forms. In addition, microbial community analysis showed that the composition of gut microbiome was altered in response to TCC exposure, indicating the perturbation of gut homeostasis. Together, through tracking the xenobiotic-biological interactions in vivo, this study provides novel insights into the underlying impacts of dermally absorbed TCC on the liver and gut microenvironments.
Collapse
Affiliation(s)
- Hongna Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Yanshan Liang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Pengfei Wu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Xianru Shi
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Guodong Zhang
- Department of Food Science and Molecular and Cellular Biology Program, University of Massachusetts, Amherst 01003, Massachusetts, United States
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
23
|
Rinaldi L, Pafundi PC, Galiero R, Caturano A, Morone MV, Silvestri C, Giordano M, Salvatore T, Sasso FC. Mechanisms of Non-Alcoholic Fatty Liver Disease in the Metabolic Syndrome. A Narrative Review. Antioxidants (Basel) 2021; 10:270. [PMID: 33578702 PMCID: PMC7916383 DOI: 10.3390/antiox10020270] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and metabolic syndrome (MS) are two different entities sharing common clinical and physio-pathological features, with insulin resistance (IR) as the most relevant. Large evidence leads to consider it as a risk factor for cardiovascular disease, regardless of age, sex, smoking habit, cholesterolemia, and other elements of MS. Therapeutic strategies remain still unclear, but lifestyle modifications (diet, physical exercise, and weight loss) determine an improvement in IR, MS, and both clinical and histologic liver picture. NAFLD and IR are bidirectionally correlated and, consequently, the development of pre-diabetes and diabetes is the most direct consequence at the extrahepatic level. In turn, type 2 diabetes is a well-known risk factor for multiorgan damage, including an involvement of cardiovascular system, kidney and peripheral nervous system. The increased MS incidence worldwide, above all due to changes in diet and lifestyle, is associated with an equally significant increase in NAFLD, with a subsequent rise in both morbidity and mortality due to both metabolic, hepatic and cardiovascular diseases. Therefore, the slowdown in the increase of the "bad company" constituted by MS and NAFLD, with all the consequent direct and indirect costs, represents one of the main challenges for the National Health Systems.
Collapse
Affiliation(s)
- Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (L.R.); (P.C.P.); (R.G.); (A.C.); (C.S.); (M.G.)
| | - Pia Clara Pafundi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (L.R.); (P.C.P.); (R.G.); (A.C.); (C.S.); (M.G.)
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (L.R.); (P.C.P.); (R.G.); (A.C.); (C.S.); (M.G.)
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (L.R.); (P.C.P.); (R.G.); (A.C.); (C.S.); (M.G.)
| | - Maria Vittoria Morone
- Department of Experimental Medicine, Section of Microbiology, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy;
| | - Chiara Silvestri
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (L.R.); (P.C.P.); (R.G.); (A.C.); (C.S.); (M.G.)
| | - Mauro Giordano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (L.R.); (P.C.P.); (R.G.); (A.C.); (C.S.); (M.G.)
| | - Teresa Salvatore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio 7, 80138 Naples, Italy;
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (L.R.); (P.C.P.); (R.G.); (A.C.); (C.S.); (M.G.)
| |
Collapse
|
24
|
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is caused by the accumulation of fat in over 5% of hepatocytes in the absence of alcohol consumption. NAFLD is considered the hepatic manifestation of metabolic syndrome (MS). Recently, an expert consensus suggested as more appropriate the term MAFLD (metabolic-associated fatty liver disease). Insulin resistance (IR) plays a key role in the development of NAFLD, as it causes an increase in hepatic lipogenesis and an inhibition of adipose tissue lipolysis. Beyond the imbalance of adipokine levels, the increase in the mass of visceral adipose tissue also determines an increase in free fatty acid (FFA) levels. In turn, an excess of FFA is able to determine IR through the inhibition of the post-receptor insulin signal. Adipocytes secrete chemokines, which are able to enroll macrophages inside the adipose tissue, responsible, in turn, for the increased levels of TNF-α. The latter, as well as resistin and other pro-inflammatory cytokines such as IL-6, enhances insulin resistance and correlates with endothelial dysfunction and an increased cardiovascular (CV) risk. In this review, the role of diet, intestinal microbiota, genetic and epigenetic factors, low-degree chronic systemic inflammation, mitochondrial dysfunction, and endoplasmic reticulum stress on NAFLD have been addressed. Finally, the clinical impact of NAFLD on cardiovascular and renal outcomes, and its direct link with type 2 diabetes have been discussed.
Collapse
|
25
|
Sámano-Hernández L, Fierro R, Marchal A, Guéant JL, González-Márquez H, Guéant-Rodríguez RM. Beneficial and deleterious effects of sitagliptin on a methionine/choline-deficient diet-induced steatohepatitis in rats. Biochimie 2020; 181:240-248. [PMID: 33333172 DOI: 10.1016/j.biochi.2020.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/05/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fat liver disease (NAFLD) is the most common chronic liver disease in the world. NAFLD is a spectrum of diseases ranging from simple steatosis to hepatic carcinoma. The complexity of pathomechanisms makes treatment difficult. The oral antidiabetic agents, dipeptidyl peptidase four inhibitors (DPP-4i) have been proposed as possible therapeutic agents. This study was performed using a well-established NAFLD model in rats to elucidate whether sitagliptin could prevent steatohepatitis. Rats were fed a methionine/choline-deficient (MCD) diet with or without sitagliptin treatment for six weeks. Liver tissue was examined to estimate sitagliptin's effect on the development of NASH. The MCD diet decreased the SAM/SAH ratio, and increased plasma levels of homocysteine, free fatty acids, and long-chain acylcarnitines in the MCD rats. MMP2 and Col1A2 expression also increased under the MCD diet. Sitagliptin treatment did not reverse these effects and increased steatosis and long-chain acylcarnitines. In conclusion, sitagliptin was ineffective to prevent from NAFLD in the MCD rat model. This result challenges previous data reporting beneficial effects and is consistent with the clinical trials' negative results.
Collapse
Affiliation(s)
- Leslye Sámano-Hernández
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico.
| | - Reyna Fierro
- Laboratorio de Andrología, Depto. Ciencias de la Salud, D.C.B.S. Universidad Autónoma Metropolitana, Iztapalapa, Mexico City, Mexico.
| | - Aude Marchal
- Laboratoire de Biopathologie, Hôpital Robert-Debré, Avenue du Général-Koenig, 51092, Reims CEDEX, France.
| | - Jean-Louis Guéant
- Laboratoire INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Nancy, France.
| | - Humberto González-Márquez
- Laboratorio de Expresión Génica, Depto. Ciencias de la Salud, D.C.B.S. Universidad Autónoma Metropolitana, Iztapalapa, Mexico City, Mexico.
| | | |
Collapse
|
26
|
Nutrients, Genetic Factors, and Their Interaction in Non-Alcoholic Fatty Liver Disease and Cardiovascular Disease. Int J Mol Sci 2020; 21:ijms21228761. [PMID: 33228237 PMCID: PMC7699550 DOI: 10.3390/ijms21228761] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries and expose patients to increased risk of hepatic and cardiovascular (CV) morbidity and mortality. Both environmental factors and genetic predisposition contribute to the risk. An inappropriate diet, rich in refined carbohydrates, especially fructose, and saturated fats, and poor in fibers, polyunsaturated fats, and vitamins is one of the main key factors, as well as the polymorphism of patatin-like phospholipase domain containing 3 (PNPLA3 gene) for NAFLD and the apolipoproteins and the peroxisome proliferator-activated receptor (PPAR) family for the cardiovascular damage. Beyond genetic influence, also epigenetics modifications are responsible for various clinical manifestations of both hepatic and CV disease. Interestingly, data are accumulating on the interplay between diet and genetic and epigenetic modifications, modulating pathogenetic pathways in NAFLD and CV disease. We report the main evidence from literature on the influence of both macro and micronutrients in NAFLD and CV damage and the role of genetics either alone or combined with diet in increasing the risk of developing both diseases. Understanding the interaction between metabolic alterations, genetics and diet are essential to treat the diseases and tailoring nutritional therapy to control NAFLD and CV risk.
Collapse
|
27
|
Sirt1-PPARS Cross-Talk in Complex Metabolic Diseases and Inherited Disorders of the One Carbon Metabolism. Cells 2020; 9:cells9081882. [PMID: 32796716 PMCID: PMC7465293 DOI: 10.3390/cells9081882] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Sirtuin1 (Sirt1) has a NAD (+) binding domain and modulates the acetylation status of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) and Fork Head Box O1 transcription factor (Foxo1) according to the nutritional status. Sirt1 is decreased in obese patients and increased in weight loss. Its decreased expression explains part of the pathomechanisms of the metabolic syndrome, diabetes mellitus type 2 (DT2), cardiovascular diseases and nonalcoholic liver disease. Sirt1 plays an important role in the differentiation of adipocytes and in insulin signaling regulated by Foxo1 and phosphatidylinositol 3′-kinase (PI3K) signaling. Its overexpression attenuates inflammation and macrophage infiltration induced by a high fat diet. Its decreased expression plays a prominent role in the heart, liver and brain of rat as manifestations of fetal programming produced by deficit in vitamin B12 and folate during pregnancy and lactation through imbalanced methylation/acetylation of PGC1α and altered expression and methylation of nuclear receptors. The decreased expression of Sirt1 produced by impaired cellular availability of vitamin B12 results from endoplasmic reticulum stress through subcellular mislocalization of ELAVL1/HuR protein that shuttles Sirt1 mRNA between the nucleus and cytoplasm. Preclinical and clinical studies of Sirt1 agonists have produced contrasted results in the treatment of the metabolic syndrome. A preclinical study has produced promising results in the treatment of inherited disorders of vitamin B12 metabolism.
Collapse
|
28
|
Low Vitamin B12 and Lipid Metabolism: Evidence from Pre-Clinical and Clinical Studies. Nutrients 2020; 12:nu12071925. [PMID: 32610503 PMCID: PMC7400011 DOI: 10.3390/nu12071925] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022] Open
Abstract
Obesity is a worldwide epidemic responsible for 5% of global mortality. The risks of developing other key metabolic disorders like diabetes, hypertension and cardiovascular diseases (CVDs) are increased by obesity, causing a great public health concern. A series of epidemiological studies and animal models have demonstrated a relationship between the importance of vitamin B12 (B12) and various components of metabolic syndrome. High prevalence of low B12 levels has been shown in European (27%) and South Indian (32%) patients with type 2 diabetes (T2D). A longitudinal prospective study in pregnant women has shown that low B12 status could independently predict the development of T2D five years after delivery. Likewise, children born to mothers with low B12 levels may have excess fat accumulation which in turn can result in higher insulin resistance and risk of T2D and/or CVD in adulthood. However, the independent role of B12 on lipid metabolism, a key risk factor for cardiometabolic disorders, has not been explored to a larger extent. In this review, we provide evidence from pre-clinical and clinical studies on the role of low B12 status on lipid metabolism and insights on the possible epigenetic mechanisms including DNA methylation, micro-RNA and histone modifications. Although, there are only a few association studies of B12 on epigenetic mechanisms, novel approaches to understand the functional changes caused by these epigenetic markers are warranted.
Collapse
|
29
|
Sowton AP, Padmanabhan N, Tunster SJ, McNally BD, Murgia A, Yusuf A, Griffin JL, Murray AJ, Watson ED. Mtrr hypomorphic mutation alters liver morphology, metabolism and fuel storage in mice. Mol Genet Metab Rep 2020; 23:100580. [PMID: 32257815 PMCID: PMC7109458 DOI: 10.1016/j.ymgmr.2020.100580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is associated with dietary folate deficiency and mutations in genes required for one‑carbon metabolism. However, the mechanism through which this occurs is unclear. To improve our understanding of this link, we investigated liver morphology, metabolism and fuel storage in adult mice with a hypomorphic mutation in the gene methionine synthase reductase (Mtrr gt ). MTRR enzyme is a key regulator of the methionine and folate cycles. The Mtrr gt mutation in mice was previously shown to disrupt one‑carbon metabolism and cause a wide-spectrum of developmental phenotypes and late adult-onset macrocytic anaemia. Here, we showed that livers of Mtrr gt/gt female mice were enlarged compared to control C57Bl/6J livers. Histological analysis of these livers revealed eosinophilic hepatocytes with decreased glycogen content, which was associated with down-regulation of genes involved in glycogen synthesis (e.g., Ugp2 and Gsk3a genes). While female Mtrr gt/gt livers showed evidence of reduced β-oxidation of fatty acids, there were no other associated changes in the lipidome in female or male Mtrr gt/gt livers compared with controls. Defects in glycogen storage and lipid metabolism often associate with disruption of mitochondrial electron transfer system activity. However, defects in mitochondrial function were not detected in Mtrr gt/gt livers as determined by high-resolution respirometry analysis. Overall, we demonstrated that adult Mtrr gt/gt female mice showed abnormal liver morphology that differed from the NAFLD phenotype and that was accompanied by subtle changes in their hepatic metabolism and fuel storage.
Collapse
Key Words
- 5-methyl-THF, 5-methyltetrahydofolate
- Agl, amylo-alpha-1,6-glucosidase,4-alpha-glucanotransferase gene
- BCA, bicinchoninic acid
- Bhmt, betaine-homocysteine S-methyltransferase gene
- CE, cholesteryl-ester
- Cebpa, CCAAT/enhancer binding protein (C/EBP), alpha gene
- Cer, ceramide
- DAG, diacylglycerol
- Ddit3, DNA damage inducible transcript 3 gene
- ETS, electron transport system
- FCCP, p-trifluoromethoxyphenyl hydrazine
- FFA, free fatty acid
- G6pc, glucose 6-phophastase gene
- Gbe1, glycogen branching enzyme 1 gene
- Glycogen
- Gsk3, glycogen synthase kinase gene
- Gyg, glycogenin gene
- Gys2, glycogen synthase 2 gene
- HOAD, 3-hydoxyacyl-CoA dehydrogenase
- Hepatic fuel storage
- Isca1, iron‑sulfur cluster assembly 1 gene
- JO2, oxygen flux
- LC-MS, liquid chromatography-mass spectrometry
- LPC, lysophosphatidylcholine
- Lipidomics
- Liver metabolism
- Mitochondrial function
- Mthfr, methylenetetrahydrofolate reductase gene
- Mtr, methionine synthase gene (also MS)
- Mtrr, methionine synthase reductase gene (also MSR)
- Myc, myelocytomatosis oncogene
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- Ndufs, NADH:ubiquinone oxidoreductase core subunit (ETS complex I) gene
- OXPHOS, oxidative phosphorylation
- One‑carbon metabolism
- PA, phosphatidic acid
- PAS, periodic acid Schiff
- PC, phosphatidylcholine
- PE, phosphatidylethanolamine
- PG, phosphatidylglycerol
- PI, phosphatidylinositol
- PIP, phosphatidylinositol phosphate(s)
- PL, phospholipid
- PS, phosphatidylserine
- RIPA, Radioimmunoprecipitation assay
- SAH, S-adenosylhomocysteine
- SAM, S-adenosylmethionine
- SM, sphingomyelin
- TAG, triacylglycerol
- Ugp2, UDP-glucose pyrophophorylase 2 gene
- gt, gene-trap
Collapse
Affiliation(s)
- Alice P. Sowton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Nisha Padmanabhan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Simon J. Tunster
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Ben D. McNally
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Antonio Murgia
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Aisha Yusuf
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Julian L. Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Erica D. Watson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| |
Collapse
|
30
|
Guo T, Luo F, Lin Q. You are affected by what your parents eat: Diet, epigenetics, transgeneration and intergeneration. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Harb Z, Deckert V, Bressenot AM, Christov C, Guéant-Rodriguez RM, Raso J, Alberto JM, de Barros JPP, Umoret R, Peyrin-Biroulet L, Lagrost L, Bronowicki JP, Guéant JL. The deficit in folate and vitamin B12 triggers liver macrovesicular steatosis and inflammation in rats with dextran sodium sulfate-induced colitis. J Nutr Biochem 2020; 84:108415. [PMID: 32645655 DOI: 10.1016/j.jnutbio.2020.108415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/21/2020] [Accepted: 05/02/2020] [Indexed: 02/06/2023]
Abstract
The risks of nonalcoholic steatohepatitis (NASH) and deficiency in vitamin B12 and folate (methyl donor deficiency, MDD) are increased in inflammatory bowel disease (IBD). We investigated the influence of MDD on NASH in rats with DSS-induced colitis. Two-month-old male Wistar rats were subjected to MDD diet and/or ingestion of DSS and compared to control animals. We studied steatosis, inflammation, fibrosis, plasma levels of metabolic markers, cytokines and lipopolysaccharide, and inflammatory pathways in liver. MDD triggered a severe macrovesicular steatosis with inflammation in DSS animals that was not observed in animals subjected to DSS or MDD only. The macrovesicular steatosis was closely correlated to folate, vitamin B12, homocysteine plasma level and liver S-adenosyl methionine/S-adenosyl homocysteine (SAM/SAH) ratio. Liver inflammation was evidenced by activation of nuclear factor kappa B (NFκB) pathway and nuclear translocation of NFκB phospho-p65. MDD worsened the increase of interleukin 1-beta (IL-1β) and abolished the increase of IL10 produced by DSS colitis. It increased monocyte chemoattractant protein 1 (MCP-1). MDD triggers liver macrovesicular steatosis and inflammation through imbalanced expression of IL-1β vs. IL10 and increase of MCP-1 in DSS colitis. Our results suggest evaluating whether IBD patients with MDD and increase of MCP-1 are at higher risk of NASH.
Collapse
Affiliation(s)
- Zeinab Harb
- INSERM U1256, Nutrition Génétique et Exposition aux Risques Environnementaux, Medical Faculty, University of Lorraine and Regional University Hospital Center of Nancy, Vandœuvre les Nancy, France
| | - Valérie Deckert
- INSERM UMR1231 Lipides, Nutrition, Cancer, University of Bourgogne Franche-Comté, LipSTIC LabEx, Dijon, France
| | - Aude Marchal Bressenot
- INSERM U1256, Nutrition Génétique et Exposition aux Risques Environnementaux, Medical Faculty, University of Lorraine and Regional University Hospital Center of Nancy, Vandœuvre les Nancy, France; Division of Anatomo-Pathology, Robert Debré University Hospital, Reims
| | - Christo Christov
- INSERM U1256, Nutrition Génétique et Exposition aux Risques Environnementaux, Medical Faculty, University of Lorraine and Regional University Hospital Center of Nancy, Vandœuvre les Nancy, France
| | - Rosa-Maria Guéant-Rodriguez
- INSERM U1256, Nutrition Génétique et Exposition aux Risques Environnementaux, Medical Faculty, University of Lorraine and Regional University Hospital Center of Nancy, Vandœuvre les Nancy, France; Biochemical and Molecular biology lab, Regional University Hospital Center of Nancy, Vandoeuvre les Nancy, France
| | - Jérémie Raso
- INSERM U1256, Nutrition Génétique et Exposition aux Risques Environnementaux, Medical Faculty, University of Lorraine and Regional University Hospital Center of Nancy, Vandœuvre les Nancy, France
| | - Jean Marc Alberto
- INSERM U1256, Nutrition Génétique et Exposition aux Risques Environnementaux, Medical Faculty, University of Lorraine and Regional University Hospital Center of Nancy, Vandœuvre les Nancy, France
| | - Jean-Paul Pais de Barros
- INSERM UMR1231 Lipides, Nutrition, Cancer, University of Bourgogne Franche-Comté, LipSTIC LabEx, Dijon, France
| | - Remy Umoret
- INSERM U1256, Nutrition Génétique et Exposition aux Risques Environnementaux, Medical Faculty, University of Lorraine and Regional University Hospital Center of Nancy, Vandœuvre les Nancy, France
| | - Laurent Peyrin-Biroulet
- INSERM U1256, Nutrition Génétique et Exposition aux Risques Environnementaux, Medical Faculty, University of Lorraine and Regional University Hospital Center of Nancy, Vandœuvre les Nancy, France; Division of Hepatogastroenterology, Regional University Hospital Center of Nancy, Vandoeuvre les Nancy, France
| | - Laurent Lagrost
- INSERM UMR1231 Lipides, Nutrition, Cancer, University of Bourgogne Franche-Comté, LipSTIC LabEx, Dijon, France
| | - Jean-Pierre Bronowicki
- INSERM U1256, Nutrition Génétique et Exposition aux Risques Environnementaux, Medical Faculty, University of Lorraine and Regional University Hospital Center of Nancy, Vandœuvre les Nancy, France; Division of Hepatogastroenterology, Regional University Hospital Center of Nancy, Vandoeuvre les Nancy, France
| | - Jean-Louis Guéant
- INSERM U1256, Nutrition Génétique et Exposition aux Risques Environnementaux, Medical Faculty, University of Lorraine and Regional University Hospital Center of Nancy, Vandœuvre les Nancy, France; Biochemical and Molecular biology lab, Regional University Hospital Center of Nancy, Vandoeuvre les Nancy, France; Division of Hepatogastroenterology, Regional University Hospital Center of Nancy, Vandoeuvre les Nancy, France.
| |
Collapse
|
32
|
Guéant JL, Oussalah A, Zgheib R, Siblini Y, Hsu SB, Namour F. Genetic, epigenetic and genomic mechanisms of methionine dependency of cancer and tumor-initiating cells: What could we learn from folate and methionine cycles. Biochimie 2020; 173:123-128. [PMID: 32289469 DOI: 10.1016/j.biochi.2020.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 01/07/2023]
Abstract
Methionine-dependency is a common feature of cancer cells, which cannot proliferate without constant inputs of exogenous methionine even in the presence of its precursor, homocysteine. The endogenous synthesis of methionine is catalyzed by methionine synthase, which transfers the methyl group of 5-methyltetrahydrofolate (5-methylTHF) to homocysteine in the presence of vitamin B12 (cobalamin, cbl). Diverse mechanisms can produce it, including somatic mutations, aberrant DNA methylation (epimutations) and altered expression of genes. Around twenty somatic mutations have been reported as a cause of methionine dependency. Some of them are contributors but not sufficient on their own to cause methionine dependency. Epigenetic invalidation of MMACHC gene expression triggers methionine dependency of the MeWo-LC1 melanoma cancer cell line. This epimutation is generated by aberrant antisense transcription of the adjacent gene PRDX1. Methionine dependency involves the abnormal expression of 1-CM genes in cancer stem cells. It is related to an increased demand for methionine and SAM, which is not compensated by the increased production of formate by glycine decarboxylase pathway in lung cancer tumor spheres. Tumor spheres of glioblastoma U251 are methionine-dependent through disruption of folate metabolism. The rescue of the growth of glioblastoma stem cells by folate shows the considerable importance to evaluate the influence of supplements and dietary intake of folate on the risk of tumor development, in particular in countries subjected to mandatory food fortification in folic acid. Dietary methionine restriction or the use of methioninase represent promising anticancer therapeutic strategies that deserve to be explored in combination with chemotherapy.
Collapse
Affiliation(s)
- Jean-Louis Guéant
- INSERM UMR_S 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, University of Lorraine, Nancy (Vandoeuvre-lès-Nancy), F-54000, France.
| | - Abderrahim Oussalah
- INSERM UMR_S 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, University of Lorraine, Nancy (Vandoeuvre-lès-Nancy), F-54000, France
| | - Racha Zgheib
- INSERM UMR_S 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, University of Lorraine, Nancy (Vandoeuvre-lès-Nancy), F-54000, France
| | - Youssef Siblini
- INSERM UMR_S 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, University of Lorraine, Nancy (Vandoeuvre-lès-Nancy), F-54000, France
| | - Shyuefang Battaglia Hsu
- INSERM UMR_S 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, University of Lorraine, Nancy (Vandoeuvre-lès-Nancy), F-54000, France
| | - Fares Namour
- INSERM UMR_S 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, University of Lorraine, Nancy (Vandoeuvre-lès-Nancy), F-54000, France
| |
Collapse
|
33
|
Bodin L, Sécula A, Chapuis H, Cornuez A, Lessire M, Cobo E, Marie-Louise S, Bonnefont CMD, Barrieu J, Mercerand F, Bravo C, Manse H, Le Bourhis MC, Martin X, Pitel F, Brun JM, Morisson M. Dietary methionine deficiency reduces laying performances of female common ducks and impacts traits of interest of their mule ducklings. Poult Sci 2020; 98:5590-5600. [PMID: 31237326 DOI: 10.3382/ps/pez315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 06/04/2019] [Indexed: 12/16/2022] Open
Abstract
The effects of maternal nutrition on offspring phenotypes have been mainly documented over the past years in mammals, and are now studied in poultry as well. In the present study, we investigated the effects of a reduced level of dietary Methionine (Met) on laying performances of common laying ducks and their impacts on the phenotype of their mule ducklings. A total of 60 female laying ducks were divided into 2 dietary treatments at 10 wk of age. The restricted group received Met-restricted diets (R group) containing 0.25% of Met whereas the control group received control diets (C group) containing 0.40% of Met that meets Met requirements. The restriction was applied during the growing and laying periods, from 10 to 51 wk of age and a particular focus was put on female breeder traits that might be affected by the Met restriction. Plasma parameters of hepatic and lipid metabolisms were recorded in ducklings. Total weight (P < 0.001), albumen weight (P < 0.001) and albumen percentage of dry matter (P < 0.01) were decreased for eggs laid by female breeders from the R group. Both male and female ducklings from the R group of female breeders showed a reduced BW at hatching (P < 0.001) and a tendency to an increased proportional liver weight (P = 0.07). Finally, the maternal low dietary Met level modified plasma parameters in newborn ducklings regardless of sex: alkaline phosphatase (ALP) and alanine transaminase (ALT) activities were reduced (P = 0.07 and P = 0.002, respectively), levels of glucose (P = 0.03) and triglycerides (P = 0.01) were higher whereas level of free fatty acids decreased (P = 0.01). It was concluded that feeding female laying ducks with a restricted dietary Met content during the growing and laying periods has a negative effect on egg weight and composition. The ducklings that were restricted in nutrients during their early development, have a reduced BW, and altered lipid and hepatic metabolisms.
Collapse
Affiliation(s)
- L Bodin
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet-Tolosan, France
| | - A Sécula
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet-Tolosan, France
| | - H Chapuis
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet-Tolosan, France
| | - A Cornuez
- UEPFG INRA Bordeaux-Aquitaine (Unité Expérimentale Palmipèdes à Foie Gras), Domaine d'Artiguères 1076, route de Haut Mauco, F-40280 Benquet, France
| | - M Lessire
- BOA, INRA, Université de Tours, 37380 Nouzilly, France
| | - E Cobo
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet-Tolosan, France
| | - S Marie-Louise
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet-Tolosan, France
| | - C M D Bonnefont
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet-Tolosan, France
| | - J Barrieu
- UEPFG INRA Bordeaux-Aquitaine (Unité Expérimentale Palmipèdes à Foie Gras), Domaine d'Artiguères 1076, route de Haut Mauco, F-40280 Benquet, France
| | - F Mercerand
- INRA - Unité Expérimentale du Pôle d'Expérimentation Avicole de Tours UEPEAT, Nouzilly, France
| | - C Bravo
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet-Tolosan, France
| | - H Manse
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet-Tolosan, France
| | - M C Le Bourhis
- INRA - Unité Expérimentale du Pôle d'Expérimentation Avicole de Tours UEPEAT, Nouzilly, France
| | - X Martin
- UEPFG INRA Bordeaux-Aquitaine (Unité Expérimentale Palmipèdes à Foie Gras), Domaine d'Artiguères 1076, route de Haut Mauco, F-40280 Benquet, France
| | - F Pitel
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet-Tolosan, France
| | - J M Brun
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet-Tolosan, France
| | - M Morisson
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet-Tolosan, France
| |
Collapse
|
34
|
Radziejewska A, Muzsik A, Milagro FI, Martínez JA, Chmurzynska A. One-Carbon Metabolism and Nonalcoholic Fatty Liver Disease: The Crosstalk between Nutrients, Microbiota, and Genetics. Lifestyle Genom 2019; 13:53-63. [PMID: 31846961 DOI: 10.1159/000504602] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/30/2019] [Indexed: 01/02/2023] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing worldwide. Its etiology includes nutritional, genetic, and lifestyle factors. Several mechanisms may link one-carbon metabolism - the associated metabolic pathways of folate, methionine, and choline - to the onset of NAFLD. In this review, we attempted to assess how choline, folate, methionine, and betaine affect NAFLD development, mainly through their role in the secretion of very low-density lipoproteins (VLDL) from the liver. We also reviewed recent articles that have described the relation between microbiota metabolism and NAFLD progression. Moreover, we describe the effect of single-nucleotide polymorphisms (SNP) in genes related to one-carbon metabolism and disease prevalence. We additionally seek SNP identified by genome-wide associations that may increase the risk of this disease. Even though the evidence available is not entirely consistent, it seems that the concentrations of choline, methionine, folate, and betaine may affect the progression of NAFLD. Since there is no effective therapy for NAFLD, further investigations into the link between nutrition, gut microbiota, genetic factors, and NAFLD are still necessary, with a particular emphasis on methyl donors.
Collapse
Affiliation(s)
- Anna Radziejewska
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Agata Muzsik
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Fermín I Milagro
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Navarra's Health Research Institute (IdiSNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Navarra's Health Research Institute (IdiSNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Agata Chmurzynska
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland,
| |
Collapse
|
35
|
Abstract
AbstractDietary protein insufficiency has been linked to excessive TAG storage and non-alcoholic fatty liver disease (NAFLD) in developing countries. Hepatic TAG accumulation following a low-protein diet may be due to altered peroxisomal, mitochondrial and gut microbiota function. Hepatic peroxisomes and mitochondria normally mediate metabolism of nutrients to provide energy and substrates for lipogenesis. Peroxisome biogenesis and activities can be modulated by odd-chain fatty acids (OCFA) and SCFA that are derived from gut bacteria, for example, propionate and butyrate. Also produced during amino acid metabolism by peroxisomes and mitochondria, propionate and butyrate concentrations correlate inversely with risk of obesity, insulin resistance and NAFLD. In this horizon-scanning review, we have compiled available evidence on the effects of protein malnutrition on OCFA production, arising from loss in mitochondrial, peroxisomal and gut microbiota function, and its association with lipid accumulation in the liver. The methyl donor amino acid composition of dietary protein is an important contributor to liver function and lipid storage; the presence and abundance of dietary branched-chain amino acids can modulate the composition and metabolic activity of the gut microbiome and, on the other hand, can affect protective OCFA and SCFA production in the liver. In preclinical animal models fed with low-protein diets, specific amino acid supplementation can ameliorate fatty liver disease. The association between low dietary protein intake and fatty liver disease is underexplored and merits further investigation, particularly in vulnerable groups with dietary protein restriction in developing countries.
Collapse
|
36
|
Mosca P, Leheup B, Dreumont N. Nutrigenomics and RNA methylation: Role of micronutrients. Biochimie 2019; 164:53-59. [DOI: 10.1016/j.biochi.2019.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/06/2019] [Indexed: 12/24/2022]
|
37
|
Reddy VS, Trinath J, Reddy GB. Implication of homocysteine in protein quality control processes. Biochimie 2019; 165:19-31. [PMID: 31269461 DOI: 10.1016/j.biochi.2019.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022]
Abstract
Homocysteine (Hcy) is a key metabolite generated during methionine metabolism. The elevated levels of Hcy in the blood are reffered to as hyperhomocystenimeia (HHcy). The HHcy is caused by impaired metabolism/deficiency of either folate or B12 or defects in Hcy metabolism. Accumulating evidence suggests that HHcy is associated with cardiovascular and brain diseases including atherosclerosis, endothelial injury, and stroke etc. Vitamin B12 (cobalamin; B12) is a water-soluble vitamin essential for two metabolic reactions. It acts as a co-factor for methionine synthase and L-methylmalonyl-CoA mutase. Besides, it is also vital for DNA synthesis and maturation of RBC. Deficiency of B12 is associated with haematological and neurological disorders. Hyperhomocysteinemia (HHcy)-induced toxicity is thought to be mediated by the accumulation of Hcy and its metabolites, homocysteinylated proteins. Cellular protein quality control (PQC) is essential for the maintenance of proteome integrity, and cell viability and its failure contributes to the development of multiple diseases. Chaperones, unfolded protein response (UPR), ubiquitin-proteasome system (UPS), and autophagy are analogous strategies of PQC that maintain cellular proteome integrity. Recently, multiple studies reported that HHcy responsible for perturbation of PQC by reducing chaperone levels, activating UPR, and impairing autophagy. Besides, HHcy also induce cytotoxicity, inflammation, protein aggregation and apoptosis. It has been shown that some of the factors including altered SIRT1-HSF1 axis and irreversible homocysteinylation of proteins are responsible for folate and/or B12 deficiency or HHcy-induced impairment of PQC. Therefore, this review highlights the current understanding of HHcy in the context of cellular PQC and their pathophysiological and clinical consequences, epigenomic changes, therapeutic implications of B12, and chemical chaperones based on cell culture and experimental animal models.
Collapse
Affiliation(s)
- V Sudhakar Reddy
- Biochemistry Division, National Institute of Nutrition, Hyderabad, India.
| | - Jamma Trinath
- Department of Biological Sciences, BITS-Pilani, 500078, Hyderabad Campus, Hyderabad, Telangana, India
| | | |
Collapse
|
38
|
Rees WD. Interactions between nutrients in the maternal diet and the implications for the long-term health of the offspring. Proc Nutr Soc 2019; 78:88-96. [PMID: 30378511 DOI: 10.1017/s0029665118002537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nutritional science has traditionally used the reductionist approach to understand the roles of individual nutrients in growth and development. The macronutrient dense but micronutrient poor diets consumed by many in the Western world may not result in an overt deficiency; however, there may be situations where multiple mild deficiencies combine with excess energy to alter cellular metabolism. These interactions are especially important in pregnancy as changes in early development modify the risk of developing non-communicable diseases later in life. Nutrient interactions affect all stages of fetal development, influencing endocrine programming, organ development and the epigenetic programming of gene expression. The rapidly developing field of stem cell metabolism reveals new links between cellular metabolism and differentiation. This review will consider the interactions between nutrients in the maternal diet and their influence on fetal development, with particular reference to energy metabolism, amino acids and the vitamins in the B group.
Collapse
Affiliation(s)
- William D Rees
- The Rowett Institute of Nutrition and Health, The University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
39
|
Cai CX, Carlos S, Solaimani P, Trivedi BJ, Tran C, Castelino-Prabhu S. Nutritional and Dietary Interventions for Nonalcoholic Fatty Liver Disease. DIETARY INTERVENTIONS IN LIVER DISEASE 2019:357-372. [DOI: 10.1016/b978-0-12-814466-4.00029-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
40
|
Leclerc D, Christensen KE, Cauvi O, Yang E, Fournelle F, Bahous RH, Malysheva OV, Deng L, Wu Q, Zhou Z, Gao ZH, Chaurand P, Caudill MA, Rozen R. Mild Methylenetetrahydrofolate Reductase Deficiency Alters Inflammatory and Lipid Pathways in Liver. Mol Nutr Food Res 2018; 63:e1801001. [PMID: 30408316 DOI: 10.1002/mnfr.201801001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/29/2018] [Indexed: 12/13/2022]
Abstract
SCOPE Dietary and genetic folate disturbances can lead to nonalcoholic fatty liver disease (NAFLD). A common variant in methylenetetrahydrofolate reductase (MTHFR 677C→T) causes mild MTHFR deficiency with lower 5-methyltetrahydrofolate for methylation reactions. The goal is to determine whether mild murine MTHFR deficiency contributes to NAFLD-related effects. METHODS AND RESULTS Wild-type and Mthfr+/- mice, a model for the human variant, are fed control (CD) or high-fat (HFAT) diets for 8 weeks. On both diets, MTHFR deficiency results in decreased S-adenosylmethionine, increased S-adenosylhomocysteine, and decreased betaine with reduced methylation capacity, and changes in expression of several inflammatory or anti-inflammatory mediators (Saa1, Apoa1, and Pon1). On CD, MTHFR deficiency leads to microvesicular steatosis with expression changes in lipid regulators Xbp1s and Cyp7a1. The combination of MTHFR deficiency and HFAT exacerbates changes in inflammatory mediators and introduces additional effects on inflammation (Saa2) and lipid metabolism (Nr1h4, Srebf1c, Ppara, and Crot). These effects are consistent with increased expression of pro-inflammatory HDL precursors and greater lipid accumulation. MTHFR deficiency may enhance liver injury through alterations in methylation capacity, inflammatory response, and lipid metabolism. CONCLUSION Individuals with the MTHFR variant may be at increased risk for liver disease and related complications, particularly when consuming high-fat diets.
Collapse
Affiliation(s)
- Daniel Leclerc
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| | - Karen E Christensen
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| | - Olivia Cauvi
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| | - Ethan Yang
- Department of Chemistry, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Frédéric Fournelle
- Department of Chemistry, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Renata H Bahous
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| | - Olga V Malysheva
- Division of Nutritional Sciences and Genomics, Cornell University, Ithaca, NY, 14853, USA
| | - Liyuan Deng
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| | - Qing Wu
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| | - Zili Zhou
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| | - Zu-Hua Gao
- Department of Pathology, McGill University, Montreal, H4A 3J1, Canada
| | - Pierre Chaurand
- Department of Chemistry, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Marie A Caudill
- Division of Nutritional Sciences and Genomics, Cornell University, Ithaca, NY, 14853, USA
| | - Rima Rozen
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| |
Collapse
|
41
|
Zhou YF, Zhou Z, Batistel F, Martinez-Cortés I, Pate RT, Luchini DL, Loor JJ. Methionine and choline supply alter transmethylation, transsulfuration, and cytidine 5'-diphosphocholine pathways to different extents in isolated primary liver cells from dairy cows. J Dairy Sci 2018; 101:11384-11395. [PMID: 30316602 DOI: 10.3168/jds.2017-14236] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 09/07/2018] [Indexed: 11/19/2022]
Abstract
Insufficient supply of Met and choline (Chol) around parturition could compromise hepatic metabolism and milk protein synthesis in dairy cows. Mechanistic responses associated with supply of Met or Chol in primary liver cells enriched with hepatocytes (PHEP) from cows have not been thoroughly ascertained. Objectives were to isolate and culture PHEP to examine abundance of genes and proteins related to transmethylation, transsulfuration, and cytidine 5'-diphosphocholine (CDP-choline) pathways in response to Met or Chol. The PHEP were isolated from liver biopsies of Holstein cows (160 d in lactation). More than 90% of isolated cells stained positively for the hepatocyte marker cytokeratin 18. Cytochrome P450 (CYP1A1) mRNA abundance was only detectable in the PHEP and liver tissue compared with mammary tissue. Furthermore, in response to exogenous Met (80 μM vs. control) PHEP secreted greater amounts of albumin and urea. Subsequently, PHEP were cultured with Met (40 μM) or Chol (80 mg/dL) for 24 h. Compared with control or Chol, mRNA and protein abundance of methionine adenosyltransferase 1A (MAT1A) and phosphatidylethanolamine methyltransferase (PEMT) were greater in PHEP treated with Met. The mRNA abundance of S-adenosylhomocysteine hydrolase (SAHH), betaine-homocysteine methyltransferase (BHMT), and sarcosine dehydrogenase (SARDH) was greater in Met-treated PHEP compared with control or Chol. Compared with control, greater expression of 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), betaine aldehyde dehydrogenase (BADH), and choline dehydrogenase (CHDH) was observed in cells supplemented with Met and Chol. However, Chol led to the greatest mRNA abundance of CHDH. Abundance of choline kinase α (CHKA), choline kinase β (CHKB), phosphate cytidylyltransferase 1 α (PCYT1A), and choline/ethanolamine phosphotransferase 1 (CEPT1) in the CDP-choline pathway was greater in PHEP treated with Chol compared with control or Met. In the transsulfuration pathway, mRNA and protein abundance of cystathionine β-synthase (CBS) was greater in PHEP treated with Met compared with control or Chol. Similarly, abundance of cysteine sulfinic acid decarboxylase (CSAD), glutamate-cysteine ligase, catalytic subunit (GCLC), and glutathione reductase (GSR) was greater in response to Met compared with control or Chol. Overall, these findings suggest that transmethylation and transsulfuration in dairy cow primary liver cells are more responsive to Met supply, whereas the CDP-choline pathway is more responsive to Chol supply. The relevance of these data in vivo merit further study.
Collapse
Affiliation(s)
- Y F Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agriculture University, Wuhan 430070, Hubei, China; Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Z Zhou
- Department of Animal and Veterinary Sciences, Clemson University, Clemson 29634
| | - F Batistel
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - I Martinez-Cortés
- Department of Immunology, National Autonomous University of Mexico (UNAM), Mexico City, Mexico 04510
| | - R T Pate
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | | | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
42
|
Xia MF, Bian H, Zhu XP, Yan HM, Chang XX, Zhang LS, Lin HD, Hu XQ, Gao X. Serum folic acid levels are associated with the presence and severity of liver steatosis in Chinese adults. Clin Nutr 2018; 37:1752-1758. [PMID: 28705466 DOI: 10.1016/j.clnu.2017.06.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/18/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) is a common and strong risk factor for cardiovascular disease and hepatocellular carcinoma. The rapid acceleration of the increase in NAFLD prevalence has exceeded the trends observed for obesity, and has been driven by multiple factors. The aim of this study was to investigate the correlation between the serum levels of folic acid, the endogenous source of methyl groups for DNA methylation, and NAFLD in Chinese adults. METHODS The correlations between the serum folic acid levels and NAFLD were investigated in two independent cohorts of 70 subjects who underwent a liver biopsy and 130 subjects with varying liver fat contents, as measured using proton magnetic resonance spectroscopy (1H-MRS). Independent correlations between serum folic acid levels and liver steatosis grades were detected using a multivariate ordinal regression analysis. The diagnostic performances of serum folic acid levels alone and in combination with existing NAFLD prediction scores were compared with those of traditional NAFLD prediction parameters using receiver operating characteristic (ROC) curve analyses. RESULTS Serum folic acid concentrations were inversely correlated with liver histological steatosis grades (ρ = -0.371, P < 0.001) and the 1H-MRS-measured liver fat content (r = -0.199, P = 0.038). According to the multivariate ordinal regression analysis, serum folic acid levels were inversely correlated with liver steatosis grades (OR 0.739 [0.594-0.918], P = 0.006) independent of age, gender, BMI, components of metabolic syndrome and the serum TC, LDL-c and HOMA-IR levels. The AUROC of serum folic acid for the diagnosis of NAFLD was 0.75 (0.65-0.83), and the addition of serum folic acid to NAFLD prediction scores significantly improved the diagnostic prediction of NAFLD (AUROC = 0.88 [0.81-0.94]). CONCLUSION Low serum folic acid levels were identified as an independent risk factor for NAFLD in the Chinese population. The addition of the serum folic acid levels to the current existing NAFLD prediction scores significantly improved the prediction of NAFLD.
Collapse
Affiliation(s)
- Ming-Feng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Xiao-Peng Zhu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Hong-Mei Yan
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Xin-Xia Chang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Lin-Shan Zhang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Huan-Dong Lin
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Xi-Qi Hu
- Department of Pathology, Medical College, Fudan University, Shanghai, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China.
| |
Collapse
|
43
|
Battaglia-Hsu SF, Ghemrawi R, Coelho D, Dreumont N, Mosca P, Hergalant S, Gauchotte G, Sequeira JM, Ndiongue M, Houlgatte R, Alberto JM, Umoret R, Robert A, Paoli J, Jung M, Quadros EV, Guéant JL. Inherited disorders of cobalamin metabolism disrupt nucleocytoplasmic transport of mRNA through impaired methylation/phosphorylation of ELAVL1/HuR. Nucleic Acids Res 2018; 46:7844-7857. [PMID: 30016500 PMCID: PMC6125644 DOI: 10.1093/nar/gky634] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/26/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022] Open
Abstract
The molecular mechanisms that underlie the neurological manifestations of patients with inherited diseases of vitamin B12 (cobalamin) metabolism remain to date obscure. We observed transcriptomic changes of genes involved in RNA metabolism and endoplasmic reticulum stress in a neuronal cell model with impaired cobalamin metabolism. These changes were related to the subcellular mislocalization of several RNA binding proteins, including the ELAVL1/HuR protein implicated in neuronal stress, in this cell model and in patient fibroblasts with inborn errors of cobalamin metabolism and Cd320 knockout mice. The decreased interaction of ELAVL1/HuR with the CRM1/exportin protein of the nuclear pore complex and its subsequent mislocalization resulted from hypomethylation at R-217 produced by decreased S-adenosylmethionine and protein methyl transferase CARM1 and dephosphorylation at S221 by increased protein phosphatase PP2A. The mislocalization of ELAVL1/HuR triggered the decreased expression of SIRT1 deacetylase and genes involved in brain development, neuroplasticity, myelin formation, and brain aging. The mislocalization was reversible upon treatment with siPpp2ca, cobalamin, S-adenosylmethionine, or PP2A inhibitor okadaic acid. In conclusion, our data highlight the key role of the disruption of ELAVL1/HuR nuclear export, with genomic changes consistent with the effects of inborn errors of Cbl metabolisms on brain development, neuroplasticity and myelin formation.
Collapse
Affiliation(s)
- Shyue-Fang Battaglia-Hsu
- INSERM UMRS 954 NGERE – Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-lès-Nancy, F-54000, France
| | - Rose Ghemrawi
- INSERM UMRS 954 NGERE – Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-lès-Nancy, F-54000, France
| | - David Coelho
- INSERM UMRS 954 NGERE – Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-lès-Nancy, F-54000, France
| | - Natacha Dreumont
- INSERM UMRS 954 NGERE – Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-lès-Nancy, F-54000, France
| | - Pauline Mosca
- INSERM UMRS 954 NGERE – Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-lès-Nancy, F-54000, France
| | - Sébastien Hergalant
- INSERM UMRS 954 NGERE – Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-lès-Nancy, F-54000, France
| | - Guillaume Gauchotte
- INSERM UMRS 954 NGERE – Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-lès-Nancy, F-54000, France
| | - Jeffrey M Sequeira
- Division of Hematology/Oncology, Department of Medicine, SUNY-Downstate Medical Center, Brooklyn, New York, NY, USA
| | - Mariam Ndiongue
- INSERM UMRS 954 NGERE – Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-lès-Nancy, F-54000, France
| | - Rémi Houlgatte
- INSERM UMRS 954 NGERE – Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-lès-Nancy, F-54000, France
| | - Jean-Marc Alberto
- INSERM UMRS 954 NGERE – Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-lès-Nancy, F-54000, France
| | - Remy Umoret
- INSERM UMRS 954 NGERE – Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-lès-Nancy, F-54000, France
| | - Aurélie Robert
- INSERM UMRS 954 NGERE – Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-lès-Nancy, F-54000, France
| | - Justine Paoli
- INSERM UMRS 954 NGERE – Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-lès-Nancy, F-54000, France
| | - Martin Jung
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Building 44, Homburg 66421, Germany
| | - Edward V Quadros
- Division of Hematology/Oncology, Department of Medicine, SUNY-Downstate Medical Center, Brooklyn, New York, NY, USA
| | - Jean-Louis Guéant
- INSERM UMRS 954 NGERE – Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-lès-Nancy, F-54000, France
| |
Collapse
|
44
|
Romier B, Ivaldi C, Sartelet H, Heinz A, Schmelzer CEH, Garnotel R, Guillot A, Jonquet J, Bertin E, Guéant JL, Alberto JM, Bronowicki JP, Amoyel J, Hocine T, Duca L, Maurice P, Bennasroune A, Martiny L, Debelle L, Durlach V, Blaise S. Production of Elastin-Derived Peptides Contributes to the Development of Nonalcoholic Steatohepatitis. Diabetes 2018; 67:1604-1615. [PMID: 29802129 DOI: 10.2337/db17-0490] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/14/2018] [Indexed: 11/13/2022]
Abstract
Affecting more than 30% of the Western population, nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and can lead to multiple complications, including nonalcoholic steatohepatitis (NASH), cancer, hypertension, and atherosclerosis. Insulin resistance and obesity are described as potential causes of NAFLD. However, we surmised that factors such as extracellular matrix remodeling of large blood vessels, skin, or lungs may also participate in the progression of liver diseases. We studied the effects of elastin-derived peptides (EDPs), biomarkers of aging, on NAFLD progression. We evaluated the consequences of EDP accumulation in mice and of elastin receptor complex (ERC) activation on lipid storage in hepatocytes, inflammation, and fibrosis development. The accumulation of EDPs induces hepatic lipogenesis (i.e., SREBP1c and ACC), inflammation (i.e., Kupffer cells, IL-1β, and TGF-β), and fibrosis (collagen and elastin expression). These effects are induced by inhibition of the LKB1-AMPK pathway by ERC activation. In addition, pharmacological inhibitors of EDPs demonstrate that this EDP-driven lipogenesis and fibrosis relies on engagement of the ERC. Our data reveal a major role of EDPs in the development of NASH, and they provide new clues for understanding the relationship between NAFLD and vascular aging.
Collapse
Affiliation(s)
- Béatrice Romier
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Corinne Ivaldi
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Hervé Sartelet
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Andrea Heinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Christian E H Schmelzer
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Roselyne Garnotel
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Alexandre Guillot
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Jessica Jonquet
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Eric Bertin
- Champagne Ardenne Specialized Center in Obesity, University Hospital Center, Reims, France
| | - Jean-Louis Guéant
- Institut National de la Santé et de la Recherche Médicale, U954, and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France
- Department of Molecular Medicine and Personalized Therapeutics and Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France
| | - Jean-Marc Alberto
- Institut National de la Santé et de la Recherche Médicale, U954, and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France
| | - Jean-Pierre Bronowicki
- Institut National de la Santé et de la Recherche Médicale, U954, and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France
- Department of Gastroenterology and Hepatology, University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France
| | - Johanne Amoyel
- Department of Gastroenterology and Hepatology, University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France
| | - Thinhinane Hocine
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Laurent Duca
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Pascal Maurice
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Amar Bennasroune
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Laurent Martiny
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Laurent Debelle
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Vincent Durlach
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Sébastien Blaise
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
45
|
Abstract
Abstract
Objective: Methylene-tetrahydrofolate reductase (MTHFR) is involved in adapting metabolism to environmental challenges by various mechanisms, including the control of gene expression by epigenetic and post-translational changes of transcription factors. Though a metabolic syndrome candidate gene, association studies of its common polymorphism rs1801133 (MTHFR-Ala222Val) remain inconclusive with important ethnic differences, and the effect on disease progression was not addressed.
Methods: 307 middle-aged metabolic syndrome patients in a central Romanian hospital setting were investigated metabolically, and genotyped by PCR-RFLP. Disease progression was assessed by the age of onset of metabolic components, as well as development of non-alcoholic fatty liver disease and atherosclerotic complications.
Results: The minor allele frequency of rs1801133 was 30.13%. Metabolic parameters showed no statistically significant differences according to genotype, but variant carriers developed dysglycemia and dyslipidemia earlier (53.28±10.8 vs 59.44±9.31 years, p<0.05 and 58.57±11.31 vs 64.72±10.6 years, p<0.1).While the polymorphism did not influence hepatic complications, an inverse association was found for manifest atherosclerosis (OR=0.49, p=0.006, 95%CI:0.29-0.81), which may be folate-status dependent, and needs further investigations. Simultaneous analysis with transcription factor polymorphisms (rs1801282, rs8192678) showed that the more protective genotypes were present the later metabolic disturbances developed, and in the presence of the other two variants the apparent protective cardiovascular effect disappeared.
Conclusions: The common functional polymorphism rs1801133 may influence metabolic syndrome progression, the age of onset of components and development of atherosclerotic complications. Besides simple additive effects, complex mitigating and aggravating variant interactions may exist, and the protective or predisposing outcome may depend on modifiable environmental factors.
Collapse
|
46
|
Singh BK, Sinha RA, Tripathi M, Mendoza A, Ohba K, Sy JAC, Xie SY, Zhou J, Ho JP, Chang CY, Wu Y, Giguère V, Bay BH, Vanacker JM, Ghosh S, Gauthier K, Hollenberg AN, McDonnell DP, Yen PM. Thyroid hormone receptor and ERRα coordinately regulate mitochondrial fission, mitophagy, biogenesis, and function. Sci Signal 2018; 11:eaam5855. [PMID: 29945885 DOI: 10.1126/scisignal.aam5855] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Thyroid hormone receptor β1 (THRB1) and estrogen-related receptor α (ESRRA; also known as ERRα) both play important roles in mitochondrial activity. To understand their potential interactions, we performed transcriptome and ChIP-seq analyses and found that many genes that were co-regulated by both THRB1 and ESRRA were involved in mitochondrial metabolic pathways. These included oxidative phosphorylation (OXPHOS), the tricarboxylic acid (TCA) cycle, and β-oxidation of fatty acids. TH increased ESRRA expression and activity in a THRB1-dependent manner through the induction of the transcriptional coactivator PPARGC1A (also known as PGC1α). Moreover, TH induced mitochondrial biogenesis, fission, and mitophagy in an ESRRA-dependent manner. TH also induced the expression of the autophagy-regulating kinase ULK1 through ESRRA, which then promoted DRP1-mediated mitochondrial fission. In addition, ULK1 activated the docking receptor protein FUNDC1 and its interaction with the autophagosomal protein MAP1LC3B-II to induce mitophagy. siRNA knockdown of ESRRA, ULK1, DRP1, or FUNDC1 inhibited TH-induced autophagic clearance of mitochondria through mitophagy and decreased OXPHOS. These findings show that many of the mitochondrial actions of TH are mediated through stimulation of ESRRA expression and activity, and co-regulation of mitochondrial turnover through the PPARGC1A-ESRRA-ULK1 pathway is mediated by their regulation of mitochondrial fission and mitophagy. Hormonal or pharmacologic induction of ESRRA expression or activity could improve mitochondrial quality in metabolic disorders.
Collapse
Affiliation(s)
- Brijesh K Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore.
| | - Rohit A Sinha
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Madhulika Tripathi
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Arturo Mendoza
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Kenji Ohba
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
- Department of Internal Medicine, Enshu Hospital, Hamamatsu, Shizuoka 430-0929, Japan
| | - Jann A C Sy
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Sherwin Y Xie
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Jin Zhou
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Jia Pei Ho
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C238A Levine Science Research Center, Durham, NC 27710, USA
| | - Yajun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, NUS, Singapore
| | - Vincent Giguère
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, NUS, Singapore
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Sujoy Ghosh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Anthony N Hollenberg
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Donald P McDonnell
- Department of Internal Medicine, Enshu Hospital, Hamamatsu, Shizuoka 430-0929, Japan
| | - Paul M Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore.
| |
Collapse
|
47
|
Itoh H, Kanayama N. Developmental Origins of Nonalcoholic Fatty Liver Disease (NAFLD). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1012:29-39. [PMID: 29956192 DOI: 10.1007/978-981-10-5526-3_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic syndrome. Its prevalence is currently increasing not only in developed obese countries but also in developing countries. Recent findings from human cohorts and animal studies suggest that a nutritional imbalance in the early critical period is causatively associated with the incidence of NAFLD in later life. Based on the current theory of the developmental origins of health and disease (DOHaD), undernourishment and overnourishment in utero are both hypothesized to prime the predisposition for hepatic fat storage. Current knowledge on the developmental origins of NAFLD is introduced in this chapter.
Collapse
Affiliation(s)
- Hiroaki Itoh
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan.
| | - Naohiro Kanayama
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| |
Collapse
|
48
|
Adaikalakoteswari A, Vatish M, Alam MT, Ott S, Kumar S, Saravanan P. Low Vitamin B12 in Pregnancy Is Associated With Adipose-Derived Circulating miRs Targeting PPARγ and Insulin Resistance. J Clin Endocrinol Metab 2017; 102:4200-4209. [PMID: 28938471 DOI: 10.1210/jc.2017-01155] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022]
Abstract
CONTEXT Low vitamin B12 during pregnancy is associated with higher maternal obesity, insulin resistance (IR), and gestational diabetes mellitus. B12 is a key cofactor in one-carbon metabolism. OBJECTIVE We hypothesize that B12 plays a role in epigenetic regulation by altering circulating microRNAs (miRs) during adipocyte differentiation and results in an adverse metabolic phenotype. DESIGN, SETTINGS, AND MAIN OUTCOME MEASURE Human preadipocyte cell line (Chub-S7) was differentiated in various B12 concentrations: control (500 nM), low B12 (0.15 nM), and no B12 (0 nM). Maternal blood samples (n = 91) and subcutaneous adipose tissue (SAT) (n = 42) were collected at delivery. Serum B12, folate, lipids, plasma one-carbon metabolites, miR profiling, miR expression, and gene expression were measured. RESULTS Our in vitro model demonstrated that adipocytes in B12-deficient conditions accumulated more lipids, had higher triglyceride levels, and increased gene expression of adipogenesis and lipogenesis. MiR array screening revealed differential expression of 133 miRs involving several metabolic pathways (adjusted P < 0.05). Altered miR expressions were observed in 12 miRs related to adipocyte differentiation and function in adipocytes. Validation of these data in pregnant women with low B12 confirmed increased expression of adipogenic and lipogenic genes and altered miRs in SAT and altered levels of 11 of the 12 miRs in circulation. After adjustment for other possible confounders, multiple regression analysis revealed an independent association of B12 with body mass index (β: -0.264; 95% confidence interval, -0.469 to -0.058; P = 0.013) and was mediated by four circulating miRs targeting peroxisome proliferator-activated receptor γ and IR. CONCLUSIONS Low B12 levels in pregnancy alter adipose-derived circulating miRs, which may mediate an adipogenic and IR phenotype, leading to obesity.
Collapse
Affiliation(s)
| | - Manu Vatish
- Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Mohammad Tauqeer Alam
- Department of Computer Science, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Sascha Ott
- Department of Computer Science, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Sudhesh Kumar
- Warwick Medical School, University of Warwick, Warwick CV2 2DX, United Kingdom
- University Hospital of Coventry and Warwickshire, Coventry CV2 2DX, United Kingdom
| | - Ponnusamy Saravanan
- Warwick Medical School, University of Warwick, Warwick CV2 2DX, United Kingdom
- Academic Department of Diabetes and Metabolism, George Eliot Hospital, Nuneaton CV10 7DJ, United Kingdom
| |
Collapse
|
49
|
Brito A, Grapov D, Fahrmann J, Harvey D, Green R, Miller JW, Fedosov SN, Shahab-Ferdows S, Hampel D, Pedersen TL, Fiehn O, Newman JW, Uauy R, Allen LH. The Human Serum Metabolome of Vitamin B-12 Deficiency and Repletion, and Associations with Neurological Function in Elderly Adults. J Nutr 2017; 147:1839-1849. [PMID: 28794205 PMCID: PMC5610547 DOI: 10.3945/jn.117.248278] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/21/2017] [Accepted: 06/21/2017] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The specific metabolomic perturbations that occur in vitamin B-12 deficiency, and their associations with neurological function, are not well characterized. OBJECTIVE We sought to characterize the human serum metabolome in subclinical vitamin B-12 deficiency and repletion. METHODS A before-and-after treatment study provided 1 injection of 10 mg vitamin B-12 (with 100 mg pyridoxine and 100 mg thiamin) to 27 community-dwelling elderly Chileans (∼74 y old) with vitamin B-12 deficiency, as evaluated with serum vitamin B-12, total plasma homocysteine (tHcy), methylmalonic acid (MMA), and holotranscobalamin. The combined indicator of vitamin B-12 status (cB-12) was computed. Targeted metabolites [166 acylcarnitines, amino acids, sugars, glycerophospholipids, and sphingolipids (liquid chromatography-tandem mass spectrometry)], and untargeted metabolites [247 chemical entities (gas chromatography time-of-flight mass spectrometry)] were measured at baseline and 4 mo after treatment. A peripheral nerve score was developed. Differences before and after treatment were examined. For targeted metabolomics, the data from 18 individuals with adequate vitamin B-12 status (selected from the same population) were added to the before-and-after treatment data set. Network visualizations and metabolic pathways are illustrated. RESULTS The injection increased serum vitamin B-12, holotranscobalamin, and cB-12 (P < 0.001), and reduced tHcy and serum MMA (P < 0.001). Metabolomic changes from before to after treatment included increases (P < 0.001) in acylcarnitines, plasmalogens, and other phospholipids, whereas proline and other intermediaries of one-carbon metabolism-that is, methionine and cysteine-were reduced (P < 0.001). Direct significant correlations (P < 0.05 after the false discovery rate procedure) were identified between acylcarnitines, plasmalogens, phospholipids, lyso-phospholipids, and sphingomyelins compared with vitamin B-12 status and nerve function. Multiple connections were identified with primary metabolites (e.g., an inverse relation between vitamin B-12 markers and tryptophan, tyrosine, and pyruvic, succinic, and citric acids, and a direct correlation between the nerve score and arginine). CONCLUSIONS The human serum metabolome in vitamin B-12 deficiency and the changes that occur after supplementation are characterized. Metabolomics revealed connections between vitamin B-12 status and serum metabolic markers of mitochondrial function, myelin integrity, oxidative stress, and peripheral nerve function, including some previously implicated in Alzheimer and Parkinson diseases. This trial was registered at www.controlled-trials.com as ISRCTN02694183.
Collapse
Affiliation(s)
- Alex Brito
- USDA Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA
| | - Dmitry Grapov
- NIH West Coast Metabolomics Center, University of California, Davis, Davis, CA
| | - Johannes Fahrmann
- NIH West Coast Metabolomics Center, University of California, Davis, Davis, CA
| | - Danielle Harvey
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA
| | - Ralph Green
- Department of Pathology and Laboratory Medicine, University of California, Davis, Davis, CA
| | - Joshua W Miller
- Department of Pathology and Laboratory Medicine, University of California, Davis, Davis, CA
- Department of Nutrition, University of California, Davis, Davis, CA
| | - Sergey N Fedosov
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Daniela Hampel
- USDA Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA
- Department of Nutrition, University of California, Davis, Davis, CA
| | - Theresa L Pedersen
- USDA Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, University of California, Davis, Davis, CA
| | - John W Newman
- USDA Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA
- NIH West Coast Metabolomics Center, University of California, Davis, Davis, CA
- Department of Nutrition, University of California, Davis, Davis, CA
| | - Ricardo Uauy
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Lindsay H Allen
- USDA Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA
- Department of Nutrition, University of California, Davis, Davis, CA
| |
Collapse
|
50
|
In rats gestational iron deficiency does not change body fat or hepatic mitochondria in the aged offspring. J Dev Orig Health Dis 2017; 9:232-240. [PMID: 28870272 DOI: 10.1017/s2040174417000721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondrial dysfunction and resulting changes in adiposity have been observed in the offspring of animals fed a high fat (HF) diet. As iron is an important component of the mitochondria, we have studied the offspring of female rats fed complete (Con) or iron-deficient (FeD) rations for the duration of gestation to test for similar effects. The FeD offspring were ~12% smaller at weaning and remained so because of a persistent reduction in lean tissue mass. The offspring were fed a complete (stock) diet until 52 weeks of age after which some animals from each litter were fed a HF diet for a further 12 weeks. The HF diet increased body fat when compared with animals fed the stock diet, however, prenatal iron deficiency did not change the ratio of fat:lean in either the stock or HF diet groups. The HF diet caused triglyceride to accumulate in the liver, however, there was no effect of prenatal iron deficiency. The activity of the mitochondrial electron transport complexes was similar in all groups including those challenged with a HF diet. HF feeding increased the number of copies of mitochondrial DNA and the prevalence of the D-loop mutation, however, neither parameter was affected by prenatal iron deficiency. This study shows that the effects of prenatal iron deficiency differ from other models in that there is no persistent effect on hepatic mitochondria in aged animals exposed to an increased metabolic load.
Collapse
|